검색
-
-
정부, 민생물가 TF 출범…2%대 물가에 범부처 협력 강화
- 정부에서 배추와 무 등 비축분을 지속 방출하는 등 물가를 잡는데 총력을 기울이기로 했다. 기획재정부는 3일 오전 정부서울청사에서 '물가관계부처회의'를 개최했다고 발표했다. 이 회의는 김범석 대통령실 경제금융비서관의 주재로 열렸으며, 기재부, 농림축산식품부, 산업통상자원부, 해양수산부, 공정거래위원회 등 여러 부처에서 참석했다. 참석자들은 국제유가의 변동성과 이상기후 등으로 인한 불확실성 속에서 2%대의 물가상승률이 안정될 때까지 가격 및 수급 관리 노력을 강화하기로 합의했다. 농산물과 관련하여, 정부는 배추를 하루 110톤, 무를 약 100톤의 규모로 비축분을 지속적으로 방출하고 있다. 또한 배추, 양배추(6,000톤), 당근(40,000톤), 포도 등에 대해 신규 할당관세를 적용하여 이달 중 도입을 추진할 예정이다. 수산물 부문에서는 지난달 말부터 국내 공급이 시작된 원양산 오징어를 최대 2000톤 추가로 비축함으로써 향후 수급 불안에 대비하기로 했다. 정부는 석유류, 가공식품, 외식 서비스, 섬유류 등에 대해 유류세 인하 연장, 원자재 할당관세 인하 등의 조치를 취하고 있으며, 업계에서도 국민의 부담 완화에 동참해 줄 것을 계속 촉구할 계획이다. 또한 편승 가격 인상이 나타나지 않도록 시장 점검을 지속할 예정이다. 김범석 경제금융비서관은 부처 간 협력을 강화하고, 핵심 품목의 물가 안정 및 유통, 비용, 공급 등의 구조적 개선 방안을 마련하기 위해 '민생물가 태스크포스(TF)'를 새롭게 출범시켰다고 밝혔다. 앞서 통계청이 지난 2일 발표한 '4월 소비자물가동향'에 따르면, 지난달 소비자물가지수는 113.99(2020년 기준 100)로, 작년 같은 달 대비 2.9% 상승했다. 올해 1월 소비자물가 상승률이 2.8%였으며, 2월과 3월에는 연속적으로 3.1%를 기록한 후 석 달 만에 2%대로 둔화되는 추세를 보였다. 상품별로는 농축수산물이 1년 전보다 10.6% 상승했다. 축산물은 0.3%, 수산물은 0.4% 상승하여 비교적 안정적인 흐름을 보였으나, 농산물은 20.3% 급등하며 상승세를 주도했다. 이는 3월에도 20.5% 상승했다. 가공식품은 1.6%, 석유류는 1.3% 상승했고, 전기·가스·수도는 각각 4.9% 상승했다. 물가 상승 기여도 측면에서, 농산물이 전체 물가상승률을 0.76%포인트 끌어올린 주요 요인이었다. 개인 서비스, 특히 외식 비용도 0.95%포인트 인플레이션 요인으로 크게 작용했다. 중동 지역의 불안정성 속에서 석유류 가격이 2개월 연속 증가세를 보이긴 했지만, 물가상승률에 미치는 기여도는 0.05%포인트에 그쳤다.
-
- 경제
-
정부, 민생물가 TF 출범…2%대 물가에 범부처 협력 강화
-
-
챗GPT 등 생성형 AI 기술 이용, 유전자 가위 '크리스퍼' 제작 길 넓힌다
- 이제 생성형 인공지능(AI) 기술을 이용해 컴퓨터 키 하나만 누르면 유전자 편집 도구를 만들 수 있는 길이 열리게 됐다고 네이처가 보도했다. 지금까지는 유전자 가위라고 알려진 크리스퍼(CRISPR) 유전자 편집 시스템을 발견하기 위해 온천, 이탄 습지, 분변, 심지어는 요구르트에 이르기까지 모든 미생물을 탐색해야 했다. 생명공학 스타트업 프로플루언트(Profluent)는 수백만 개의 단백질 서열을 훈련한 생성형 AI 기술(단백질 언어 모델)을 적용해 크리스퍼 유전자 편집 단백질을 설계하는 방법을 발표했다. 캘리포니아 버클리에 소재한 프로플루언트의 알리 마다니 최고경영자(CEO)는 “챗GPT와 같은 생성형 AI 기술을 사용해 크리스퍼와 같은 복잡한 시스템을 설계하는 것이 가능하다는 것을 보여주었다”고 밝혔다. 이 연구 결과는 생뮬학 온라인 프리프린트 서버 'bioRxiv' 사이트에 실렸다. 게시글에서는 "온전한 기계 학습으로 설계된 단백질에 의한 인간 게놈의 최초의 성공적인 편집"이라고 적고 있다. 크리스퍼 설계를 위한 생성형 AI는 단백질이나 게놈 서열 형태의 방대한 생물학적 데이터를 훈련받는다. 이 '사전 훈련' 단계를 통해 AI 모델은 ‘어떤 아미노산이 함께 결합되는지’ 등 유전자 서열에 대한 지식을 쌓게 된다. 이 정보는 완전히 새로운 단백질 서열 생성과 같은 작업에 적용될 수 있다. 프로플루언트 연구팀은 종전에 자사가 개발한 '프로젠(ProGen)'이라는 단백질 언어 모델을 사용해 새로운 항균 단백질을 개발했다. 그 후 박테리아와 고세균 등 단세포 미생물이 바이러스를 방어하기 위해 사용하는 수백만 개의 다양한 크리스퍼 시스템을 학습시켜 프로젠 차기 버전을 만들었다. 진보한 크리스퍼 시스템을 개발하기 위함이었다. 크리스퍼 유전자 편집 시스템은 단백질뿐만 아니라 표적을 지정하는 RNA 분자로도 구성돼 있기 때문에, 연구팀은 이러한 '가이드 RNA'를 설계하기 위한 또 다른 AI 모델도 개발했다. 연이어 신경망을 사용해 자연에서 발견되는 수십 개의 서로 다른 단백질 계열에 속하는 수백만 개의 새로운 크리스퍼 단백질 서열을 설계했다. AI가 설계한 크리스퍼가 올바른 유전자 편집자라는 사실도 확인됐다. '가이드 RNA'를 인간 세포에 삽입했을 때 의도한 표적을 정확하게 절단했다는 것. 확인 결과 실험실에서 널리 사용되는 크리스퍼-카스9(CRISPR-Cas9)에 속하는 단백질만큼 표적 DNA 서열을 절단하는 데 효율적이었다. 오히려 잘못된 위치에서 절단하는 횟수가 훨씬 적었다. 한편 캘리포니아 스탠포드 대학의 컴퓨터 생물학자 브라이언 히 교수와 캘리포니아 팔로알토에 소재한 Arc연구소가 이끄는 연구팀도 단백질과 RNA 서열을 모두 생성할 수 있는 AI 모델을 개발했다. EVO라고 불리는 이 모델은 박테리아와 고세균의 8만 개 게놈과 기타 미생물 서열(3000억 개의 DNA)에 대해 훈련받았다. EVO가 설계한 일부 크리스퍼-카스9 시스템의 예상 구조는 천연 단백질의 구조와 유사했다. 이 연구 역시 bioRxiv 사이트에 게시됐다. 마다니는 AI가 설계한 유전자 편집 도구가 기존 크리스퍼보다 의료 부문 응용에 더 적합할 수 있다고 기대했다. 프로플루언트는 AI 생성 크리스퍼를 테스트하기 위해 유전자 편집 치료법을 개발하는 회사와의 파트너십도 추진하고 있다. 편집 기술의 정밀도를 높이고 맞춤형 디자인으로 발전시킨다는 계획이다.
-
- IT/바이오
-
챗GPT 등 생성형 AI 기술 이용, 유전자 가위 '크리스퍼' 제작 길 넓힌다
-
-
[퓨처 Eyes(34)] 펭귄처럼 헤엄치는 수중 로봇, 쿼드로인 2세대 출시
- 인간 형태를 닮은 휴머노이드 로봇, 하늘을 나는 드론이 농업에 활용되며 속속 출시되는 가운데, 펭귄의 유영 방식을 모방한 수중 로봇이 공개됐다. 독일 수중 기술 기업 에보로직스(EvoLogics)는 최근 펭귄의 유영 방식을 모방한 개선된 수중 자율 운항체(AUV) 쿼드로인(Quadroin) 2세대를 출시했다고 뉴아틀라스가 보도했다. 에보로직스는 독일 베를린에 본사를 둔 수중 로봇 공학 기업으로, 혁신적이고 고성능의 수중 로봇, 데이터 네트워크, 센서 기술 개발에 주력하고 있다. 2005년 설립된 이 회사는 해양 연구, 오프쇼어 산업, 국방 분야에서 활용되는 다양한 제품과 솔루션을 제공하며 전 세계적인 명성을 얻었다. 쿼드로인은 2020년 에볼로지스가 헬름홀츠 센터 헤레온(Helmholtz-Zentrum Hereon) 연구소의 부르카르트 바셰크(Burkard Baschek) 교수와 협력하여 개발한 핑귄(PingGuin) 실험 AUV의 후속 제품이다. 핑귄의 디자인은 이 회사의 창업자인 루돌프 바나쉬(Rudolf Bannasch) 박사의 아델리(Adelie) 펭귄 운동 연구를 기반으로 구현됐다. 저항을 최소화하도록 설계된 쿼드로인은 최대 10노트(Knot)의 속도를 달성해 에너지 효율성을 극대화하고 다양한 현장 배치를 가능하게 한다. 노트는 해양에서 배의 속도를 나타내는 단위로, 1시간에 1해리(1.85km)를 가는 속도를 의미한다. 따라서 10노트는 1시간에 18.5km의 거리를 이동하는 속도에 해당한다. 일반적으로 선박의 느린 속도는 5노트 미만이며, 보통 속도는 5~10노트, 빠른 속도는 10노트 이상으로 분류된다. 물론 선박의 종류, 엔진 성능, 해양 환경 등에 따라 10노트의 속도는 느리거나 빠르게 느껴질 수 있다. 예를 들어 소형 요트의 경우 10노트는 상당히 빠른 속도이지만, 대형 컨테이너 선의 경우 10노트는 비교적 느린 속도에 해당한다. 펭귄 모방 수중 로봇 퀘드로인 사실 펭귄 모방 수중 로봇의 개념은 2009년까지 거슬러 올라간다. 당시 에보로직스는 독일 전기 자동화 기업 페스토(Festo)와 협력하여 펭귄과 유사한 아쿠아펭귄(AquaPenguin) 시연용 모델을 개발했다. 실제 쿼드로인은 2021년 5월 처음 공개되었는데, 펭귄의 유영 방식을 모방하여 제작되었으며, 헬름홀츠 센터 헤레온 연구소의 MUM(Modifiable Underwater Mothership) 프로젝트에 활용되고 있다. 이 프로젝트에서 쿼드로인은 다양한 센서를 탑재하고 무리를 지어 해류 데이터를 수집했다. 탑재된 센서는 수심별 온도, 압력, 용존 산소량, 전기 전도도, 형광 등을 정밀하게 측정할 수 있다. 다른 AUV와 마찬가지로 쿼드로인은 선박이나 해안에서 투입된 후 사전 프로그래밍된 수중 경로를 따라 자율적으로 이동하며 데이터를 수집한다. 수집된 데이터는 쿼드로인이 수면으로 올라갈 때 무선 전송되거나 기지로 돌아와 직접 다운로드받을 수 있다. 쿼드로인은 데이터를 와이파이(Wi-Fi) 또는 옵션인 이리듐 위성 모듈을 통해 전송한다. 이 두 시스템과 탑재된 글로벌 네비게이션 위성 시스템(GNSS)은 쿼드로인이 수면에 올라올 때 자동으로 뒤집히는 아치형 다기능 안테나를 사용한다. 추가적인 장점으로 안테나에는 빨간색과 초록색 LED 점멸등이 장착되어 사용자가 로봇을 회수할 때 쉽게 찾을 수 있도록 한다. 에보로직스 대표는 "새로운 쿼드로인이 올해 4분기에 양산에 돌입할 예정이며, 상업 고객들에게는 요청 시 가격 정보를 제공한다"고 밝혔다. 쿼드로인 활용 방안 쿼드로인은 다양한 해양 생물의 행동과 서식지를 관찰하고 데이터를 수집하는 데 활용될 수 있다. 이를 통해 해양 생태계에 대한 이해를 높이고 효과적인 보호 전략을 수립하는 데 기여할 수 있다. 또한, 해양 환경을 효과적으로 모니터링하는 데에도 활용될 수 있다. 쿼드로인은 수온, 염도, 용존 산소량 등 해양 환경 변수를 정밀하게 측정하고 실시간으로 데이터를 전송할 수 있다. 이를 통해 해양 오염, 기후 변화 등 해양 환경 문제를 파악하고 해결책을 모색하는 데 도움이 될 수 있다. 쿼드로인은 해저 지형을 정밀하게 측량하고 3D 모델을 구축하는 데 활용될 수 있다. 그로 인해 해양 자원 탐사, 해저 케이블 및 파이프라인 설치, 해양 구조 작업 등에 크게 활용될 수 있다. 또한, 쿼드로인은 해저 석유 및 가스 매장지를 효율적으로 탐색하고 개발 계획을 수립하는 데 활용될 수 있으며, 이를 통해 오프쇼어 에너지 개발의 효율성을 높이고 환경 영향을 최소화하는 데 도움이 될 수 있다. 뿐만 아니라, 쿼드로인은 해저 사고 현장을 탐사하고 생존자를 구조하는 데 활용될 수 있으며, 해저 침몰선 및 잔해물을 탐색하고 인양하는 데에도 활용될 수 있다. 해양 국방 분야에도 활용 쿼드로인은 적군 함정 및 해양 활동을 정밀하게 정찰하고 정보를 수집하는 데 활용될 수 있으며, 이는 해상 작전의 효율성을 획기적으로 높이고 적의 위협을 사전에 예측하는 데 크게 기여할 수 있다. 또한, 쿼드로인은 해저 지뢰를 효과적으로 탐지하고 제거하는 데 활용될 수 있으며, 이를 통해 해상 통로의 안전을 확보하고 군함 및 상선의 안전을 보호하는 데 도움이 될 수 있다. 뿐만 아니라, 쿼드로인은 해저 침몰선을 탐색하고 인양하는 데 활용될 수 있으며, 이를 통해 해양 역사 연구를 체계적으로 수행하고 침몰선에서 귀중한 유물을 발견하는 데 기여할 수 있다. 최근 미국 농업 분야에서는 드론과 인공지능(AI) 로봇 등 첨단 기술 도입이 활발하게 이루어지고 있다. 드론, 레이저 제초기, 로봇 손 등은 농작물 재배 및 가공 과정의 일부를 자동화할 수 있으며, AI 기반 시스템의 활용은 미래 농업의 새로운 가능성을 열어주고 있다. 수중 로봇 기술의 발전과 더불어 쿼드로인 또한 다양한 분야에서 활용될 것으로 전망된다. 하늘을 나는 드론이 다방면에서 활용되고 있는 것처럼, 쿼드로인 2세대는 아직 개발 초기 단계이지만, 앞으로 해양 분야뿐만 아니라 국방, 농업, 과학 연구, 레저 및 관광, 교육 등 다양한 분야에 새로운 변화를 가져올 것으로 기대된다. 한편 해양 강국인 한국은 한국해양과학기술원(KIOST), 한국해양연구원(KORDI), 한국과학기술원(KAIST), 포항공과대학교(POSTECH), 한화오션, HD현대중공업, 삼성중공업 등을 중심으로 자율 운항, 인공지능, 센서 기술, 통신기술, 로봇 공학 등의 핵심기술을 보유하고 있다. 특히 정부는 '해양 4.0' 산업 육성을 위해 수중 로봇 개발을 핵심 전략 분야로 지정하고 적극적으로 지원하고 있다.
-
- 포커스온
-
[퓨처 Eyes(34)] 펭귄처럼 헤엄치는 수중 로봇, 쿼드로인 2세대 출시
-
-
[신소재 신기술(41)] 극한의 강도와 인성 가진 혁신적인 합금
- 미국 버클리 국립연구소 과학자들은 원자 수준에서 합금 결정의 꼬임이나 굽힘으로 인해 극한의 온도에서도 균열이 발생하지 않는 특별한 금속 합금을 발견했다. 과학 전문매체 사이테크데일리는 지난 4월 29일(현지시간) 로렌스 버클리 국립연구소와 UC 버클리의 연구원들이 개발한 신소재에 대해 거의 불가능에 가까운 강도와 인성으로 재료 과학자들에게 충격을 주는 혁신적인 새로운 합금이라고 전했다. 니오븀, 탄탈륨, 티타늄, 하프늄으로 구성된 금속 합금은 지금까지 거의 달성하기 불가능해 보였던 극한의 고온과 저온 모두에서 놀라운 강도와 인성을 보여주었다고 한다. 여기서 강도는 재료가 원래 모양에서 영구적으로 변형되기 전에 견딜 수 있는 힘의 양으로 정의되며, 인성은 파단(균열)에 대한 저항력을 의미한다. 광범위한 조건에서 굽힘과 파단에 대한 합금의 복원력은 더 높은 효율로 작동할 수 있는 차세대 엔진을 위한 새로운 종류의 재료에 대한 문을 열 수 있다고 평가된다. 이전에는 이러한 특성을 동시에 달성하는 것이 거의 불가능하다고 여겨졌다. 이 연구는 로버트 리치(Robert Ritchie) 박사가 이끄는 로렌스 버클리 국립연구소(Berkeley Lab)와 UC 버클리 팀과 디란 아펠리안(Diran Apelian) 교수가 이끄는 UC 어바인 팀, 엔리케 라베르니아(Enrique Lavernia) 교수가 이끄는 텍사스 A&M 대학교 팀의 협력으로 진행됐다. 이 연구는 최근 '사이언스(Science)' 저널에 게재됐다. 이 합금의 특징은 넓은 온도 범위에서 강도과 파손에 대한 놀라운 저항성을 가지고 있다는 것이다. 이는 차세대 엔진을 위한 새로운 소재 개발에 혁신을 가져올 수 있는 가능성을 열어준다. 새로운 금속 합금 RHEA/RMEA 연구팀은 이 합금의 놀라운 특성을 발견하고 원자 구조에서 발생하는 상호 작용으로 인해 이러한 특성이 어떻게 발생하는지 밝혀냈다. 이들은 특히 RHEA/RMEA(Refractory High or Medium Entropy Alloys)라고 불리는 새로운 금속 합금 계열에 속하는 합금에 집중했다. 리치 연구실의 박사 과정 학생인 제1저자 데이비드 쿡(David Cook)은 "열을 전기 또는 추력으로 변환하는 효율은 연료가 연소되는 온도에 따라 결정되며, 온도가 높을수록 더 좋다. 그러나 작동 온도는 이를 견뎌야 하는 구조 재료에 의해 제한된다"고 설명했다. 쿡 연구원은 "우리는 현재 고온에서 사용하는 재료를 더욱 최적화할 수 있는 새로운 금속 재료가 절실히 필요하다. 이 합금이 바로 그 가능성을 보여주는 것"이라고 덧붙였다. 기존 RMEA의 한계 돌파한 뛰어난 인성 대부분의 상업용 또는 산업용 응용 분야에서 사용되는 금속은 하나의 주요 금속에 소량의 다른 원소를 혼합하여 만든 합금이지만, RHEA/RMEA는 매우 높은 녹는점을 가진 금속 원소를 거의 동일한 비율로 혼합해서 만든다. 이로 인해 RHEA/RMEA는 과학자들이 아직 밝혀내지 못한 독특한 특성을 가지고 있다. 리치 박사 팀은 고온 응용 분야의 잠재력으로 인해 수년 동안 이러한 합금을 연구해 왔다. 해당 논문의 공동 저자인 푸닛 쿠마르(Punit Kumar)박사는 "저희 팀은 이전에 RHEA/RMEA에 대한 연구를 진행했으며 이러한 재료가 매우 강하지만 일반적으로 극도로 낮은 인성을 가지고 있다는 것을 발견했다. 따라서 이 합금이 예외적으로 높은 인성을 보이는 것을 발견했을 때 매우 놀랐다"고 말했다. 극한의 온도에서도 강도와 인성 유지 쿡에 따르면 대부분의 RMEA는 파단 인성이 10MPa√m 미만으로, 기록상 가장 부서지기 쉬운 금속 중 하나다. 골절에 견디도록 특별히 설계된 최고의 극저온 강은 이 소재보다 약 20배 더 강하다. 하지만 니오븀, 탄탈륨, 티타늄, 하프늄(Nb45Ta25Ti15Hf15) RMEA 합금은 상온에서 일반적인 RMEA보다 25배 이상의 강도를 기록하여 극저온 강철을 능가할 수 있었다. 연구팀은 -196°C(액체 질소 온도), 25°C(실온), 800°C, 950°C 및 1200°C의 총 5가지 온도에서 새로운 합금의 강도와 인성을 평가했다. 마지막 온도인 1200°C는 태양 표면 온도의 약 1/5에 해당한다. 마침내 연구팀은 합금이 추위에서는 가장 강도가 높고 온도가 상승함에 따라 다소 약해졌지만 여전히 넓은 범위에서 인상적인 수치를 자랑한다는 것을 발견했다. 인성은 기존 균열에 얼마나 많은 힘이 필요한지 계산해서 산출되며 모든 온도에서 높았다. 원자 배열의 비밀 풀기 거의 모든 금속 합금은 결정질이며, 이는 재료 내부의 원자가 반복 단위로 배열되어 있음을 의미한다. 그러나 완벽한 결정은 없으며 모두 결함을 포함하고 있다. 가장 눈에 띄는 결함은 결정 내 원자의 미완성 평면인 전위라고 불리는 결함이다. 금속에 힘이 가해지면 모양 변화를 수용하기 위해 많은 전위가 움직이게 된다. 예를 들어 알루미늄으로 만든 종이 클립을 구부리면 종이 클립 내부의 전위가 움직이면서 모양이 변한다. 그러나 낮은 온도에서는 전위의 움직임이 더 어려워지고, 그 결과 많은 재료가 저온에서 전위가 움직이지 못해 부서지기 쉽다. 타이타닉의 강철 선체가 빙산에 부딪혔을 때 부서진 것도 바로 이 때문이다. 녹는 온도가 높은 원소와 그 합금은 이러한 현상을 극한으로 끌어올려 800°C까지 부서지기 쉽다. 하지만 이 RMEA는 액체 질소(-196°C)와 같은 낮은 온도에서도 잘 깨지지 않는 특성을 보이고 있다. 공동 연구자인 앤드류 마이너와 연구팀은 이 놀라운 금속 내부 특성을 이해하기 위해 버클리 랩 분자 파운드리의 일부인 국립 전자 현미경 센터의 4차원 주사 투과 전자 현미경(4D-STEM)과 주사 투과 전자 현미경(STEM)을 사용해 응력을 받은 샘플과 구부러지지 않고 금이 가지 않은 대조 샘플을 분석했다. 전자 현미경 데이터에 따르면 합금의 특이한 인성은 '꼬임 밴드(kink band)'라는 희귀 결함의 예상치 못한 부작용에서 비롯된 것으로 밝혀졌다. 꼬임 밴드는 가해진 힘으로 인해 결정 조각이 스스로 붕괴되어 갑작스럽게 구부러질 때 결정에 형성된다. 연구팀은 이전 연구를 통해 RMEA에서 꼬임 밴드가 쉽게 형성된다는 사실을 알고 있었지만 연화 효과가 격자를 통해 균열이 퍼지기 쉽게 만들어 재료의 강도를 낮출 것이라고 가정했다. 하지만 실제로는 그렇지 않았다. 쿡은 "우리는 원자 사이에 날카로운 균열이 있는 경우 꼬임 밴드가 실제로 손상을 멀리 분산시켜 균열의 전파에 저항하여 균열을 방지하고 매우 높은 파괴 인성을 이끌어 낸다는 것을 처음으로 보여주었다"라고 말했다. 한편, 리치는 "기계 엔지니어는 실제 세계에서 사용하기 전에 재료의 성능에 대한 깊은 이해가 당연히 필요하기 때문에 Nb45Ta25Ti15Hf15 합금을 제트기 터빈이나 스페이스X 로켓 노즐과 같은 것을 만들기 전에 훨씬 더 근본적인 연구와 엔지니어링 테스트를 거쳐야 한다"고 지적했다.
-
- 포커스온
-
[신소재 신기술(41)] 극한의 강도와 인성 가진 혁신적인 합금
-
-
최상목, 민생경제 회복 총력 강조…범부처 '민생안정 지원단' 신설
- 정부에서 민생 경제 회복에 총력을 기울일 방침이다. 최상목 부총리 겸 기획재정부 장관은 1일 "범부처 '민생안정 지원단'을 신설하여 국민의 관점에서 현장의 애로사항을 밀착 점검하고 해결책을 신속히 마련하겠다"고 밝혔다. 이날 정부서울청사에서 열린 '비상경제장관회의 겸 물가관계장관회의'에서 최 부총리는 "지표상의 회복에 안주하지 않고, 국민 공감을 얻어야 진정한 회복이라는 점을 인지하면서 민생경제 회복을 위해 정책을 집중하겠다"고 전했다. 또한, "1분기에 반등한 성장률을 정상 궤도에 올리고 지속 가능한 성장 동력을 확보하기 위한 노력을 본격화하겠다"고 강조했다. 경제의 역동성을 높이고 체질을 개선하기 위해 '역동경제 로드맵'을 다음 달까지 마련하고, 이를 뒷받침하는 재정정책 방향을 재정전략회의에서 논의할 계획이라고 부연했다. 이날 회의에서는 역동경제의 일환으로 '사회이동성 개선방안', 농림축산식품부의 '농수산물 유통구조 개선방안', 문화체육관광부의 '게임산업 진흥 종합계획' 등이 논의됐다. 최 부총리는 사회이동성 개선방안에 대해 "추가 과제를 발굴하여 역동경제 로드맵에 종합적으로 반영하고, 하반기 중에 후속 대책을 마련하겠다"고 덧붙였다.
-
- 경제
-
최상목, 민생경제 회복 총력 강조…범부처 '민생안정 지원단' 신설
-
-
LG전자 로봇·메타버스 AI 기술, 국제 학회서 최상위 논문 선정
- LG전자의 논문이 세계적으로 권위 있는 인공지능(AI) 학술대회인 '표현 학습 국제 학회(ICLR) 2024'에서 최상위 논문으로 선정됐다. 30일 LG전자에 따르면 이 논문은 '공간 인식률을 향상시킨 AI 기술'에 대해 다루며, 전체 제출된 논문 중 상위 1% 안에 들어 구두 발표 대상으로 선택됐다. 오는 5월 7일부터 11일까지 오스트리아 빈에서 열리는 ICLR은 구글 스칼라가 발표하는 엔지니어링 및 컴퓨터 과학 분야에서 전 세계적으로 세 번째로 큰 AI 학술대회로, 매년 선정된다. 이 대회는 논문 채택률이 25%에 불과할 만큼 치열한 경쟁을 보여준다. LG전자의 해당 논문은 AI로 두 이미지 간의 유사성과 차이점을 분석하고 이미지에서 물체의 위치와 형태를 파악하고 예측하는 기술을 설명한다. 특히 이 기술은 로봇 분야에서 공간 인식률을 높이는 것으로 중요하며, 사람이나 동물이 움직임에 따라 위치가 변하거나 조명 변화에도 불구하고 로봇이 정확히 위치를 인식하고 이동할 수 있는 지도를 생성하는 데 중점을 두고 있다. 또한 LG전자가 메타버스의 핵심 기술을 주제로 한 '2D 이미지 기반 3D 공간 재현 기술' 논문은 상위 5% 이내에 선정됐다. 이 논문은 AI가 2D 이미지에서 벽, 천장, 기둥과 같은 실내 구조물 전체를 학습해, 가구나 가전제품과 같은 개별 물체의 세부적인 형태까지 학습하는 방식을 다룬다. 이 기술은 복잡한 공간과 물체의 표면 디테일을 3D 가상 공간으로 재현한다. 이 기술은 스마트팩토리의 '디지털 트윈' 개발이나 메타버스 환경 구축에 활용될 수 있으며, 실제 공간을 정밀하게 재현한 가상 공간에서의 스마트홈 서비스 구현도 가능하다. 김병훈 LG전자 최고기술책임자(CTO) 부사장은 "LG전자의 세계적인 AI 기술을 제품과 서비스에 적용하여 실생활부터 미래의 가상 공간에 이르기까지 다양한 영역에서 고객의 삶을 편리하고 즐겁게 변화시킬 것"이라고 밝혔다. LG전자는 학술대회 기간 글로벌 AI 우수 인재 확보에도 나선다. 행사에 참가한 석·박사 학생들을 대상으로 LG전자 최신 AI 기술 현황을 공유하고 채용 상담 등을 진행한다. LG전자는 이번 학술대회 기간 동안 글로벌 AI 인재를 확보하기 위해 노력할 예정이다. 석사 및 박사 학생들을 대상으로 최신 AI 기술을 소개하고 채용 상담을 진행할 계획이다.
-
- IT/바이오
-
LG전자 로봇·메타버스 AI 기술, 국제 학회서 최상위 논문 선정
-
-
인공감미료 네오탐, 장벽 손상 가능성 밝혀져
- 차세대 인공감미료 중 하나인 네오탐(neotame)이 사람의 장을 손상시키고 질병을 유발할 수 있다는 새로운 연구 결과가 나와 주목된다고 의학 매체 메디컬익스프레스가 전했다. 네오탐은 아스파탐을 개선한 것으로 단맛이 설탕의 7000~1만 배나 강한 인공감미료다. 이 연구는 네오탐이 건강했던 장내 세균을 병들게 하고 장벽을 침범해 과민성 대장 증후군과 패혈증 등 다양한 건강 문제를 야기할 수 있음을 보여준다. 연구는 또한 장벽의 일부를 형성하는 상피 세포층의 파괴를 유발할 가능성을 알려주는 첫 번째 성과이기도 하다. 이번 연구는 영국 케임브리지 소재 공립 종합대학인 앵글리아러스킨대학(ARU) 연구팀이 수행했으며, 결과는 '프런티어 인 뉴트리션(Frontiers in Nutrition)' 저널에 실렸다. 이 연구에는 방글라데시의 자한기르나가르 대학도 참여했다. 연구 결과는 다소 충격적이다. 네오탐이 직접적으로 장 상피 세포의 사망을 유발함으로써 직접적으로 장을 손상시킬 수 있으며, 장에서 흔히 발견되는 박테리아를 병들게 해 간접적으로 장을 손상시킬 수 있다는 것이다. 실험실 연구에서는 음료, 식품 및 츄잉껌 등에서 발견되는 네오탐에 이.콜리(E.coli: Escherichia coli) 및 이.파이칼리스(E.faecalis: Enterocococcus faecalis)가 노출된 후, ▲생물막 형성 ▲병든 박테리아에 의한 세포 부착 ▲병든 박테리아 침입 증가 등 다양한 병원성 반응이 확인됐다. 이.콜리나 이.파이칼리스 등은 장내 감염을 일으키는 세균의 일종이다. 최신 인공감미료 중 일부는 설탕에 비해 1000배 이상 달콤한 맛을 가지고 있어 음식과 음료에 첨가하는 양을 줄인다. 비록 사용되는 양은 적지만, 상피-미생물군 관계에 대한 네오탐의 영향은 장 건강을 악화시킬 가능성이 있으며, 이는 다시 과민성 대장 질환 또는 인슐린 저항성과 같은 대사 및 염증성 질환으로 이어질 수 있다. 네오탐에 대한 이 새로운 연구는 가장 널리 사용되는 인공감미료 중 일부인 사카린, 수크랄로스, 아스파탐이 내장에 손상을 일으킬 수 있다는 사실을 발견한 과거 연구 결과의 연장선상에서 이루어진 것이다. 이전 연구도 ARU 하보비 칙저 박사팀이 수행했다. 인공감미료는 당 섭취를 줄여 줌으로써 체중 감량을 돕고 혈당 저항성과 제2형 당뇨병을 앓고 있는 사람을 도울 수 있다는 점에서 널리 사용되어 왔다. 그러나 이번에 발표된 새로운 연구는 최근 개발된 일부 인공감미료의 독성 유발 효과 또는 악영향에 대한 추가 연구가 필요함을 시사한다. 연구팀을 이끈 칙저 박사는 "사카린, 수크랄로스 및 아스파탐과 같은 감미료가 인체 건강에 미치는 좋지 않은 영향에 대한 인식이 증가하고 있다. 이는 장벽에 발생할 수 있는 손상과 장에서 형성되는 '좋은 박테리아'에 대한 손상을 보여준다“고 말했다. 그는 또 "이는 설사, 장염, 심지어 박테리아가 혈류로 들어갈 경우 패혈증과 같은 감염 등 심각한 건강 문제로 이어질 수 있다. 그러므로 최신 감미료에 대한 추가 연구는 중요하다"고 강조하고 "장 미생물군에서 일어나는 병원성 영향을 이해하는 것은 중요하다. 일반적인 식품 첨가물을 더 광범위하게 이해하고 건강에 부정적인 영향을 미치는 분자 메커니즘을 더 잘 이해할 필요가 있음을 보여준다"고 부연했다.
-
- IT/바이오
-
인공감미료 네오탐, 장벽 손상 가능성 밝혀져
-
-
한은 "코로나19로 '산업구조 서비스화' 가속…공산품 비중 축소"
- 한국의 산업구조가 코로나19 팬데믹 기간을 거치면서 공산품 비중이 줄고 서비스화가 가속화한 것으로 나타났다. 한국 경제에서 의료·비대면 서비스를 중심으로 서비스가 차지하는 비중이 확대되고 공산품 비중이 축소되면서 구조 변동이 빨라진 것으로 분석된다. 한국은행이 29일 발표한 '2020년 기준년 산업연관표 작성 결과'에 따르면, 산출액 기준 서비스 비중은 49.3%로 직전 조사 때인 2015년(44.9%)보다 4.4%포인트(p) 상승했다. 금번 실측 작업은 11차 KSIC(한국표준산업분류) 개정을 선반영한 부문 분류 개편. 상장성이 기대되는 전기 승용차 등 신상품 세분화, 정부부문 국민계정과의 일원화 등에 중점을 두고 추진됐다. 같은 기간 공산품 비중은 44.5%에서 40.2%로 4.3%p 즐었다. 부가가치 기준으로도 서비스 비중이 59.9%에서 63.8%로 3.9%p 증가했지만 공산품 비중은 29.5%에서 26.0%로 3.5%p 낮아졌다. 정영호 한은 투입산출팀장은 "코로나19 시기 의료 및 비대면 관련 서비스 시장이 크게 성장했다"며 "산업구조의 서비스화가 지속되고 있는 것"이라고 설명했다. 대외거래 비중은 축소되고 수입의존도도 줄었다. 한국 경제의 재화와 서비스 총공급(총수요)은 2020년 5221조2000억원으로 2015년(4457조6000억원)보다 17.1% 증가했다. 이 중 수출(717조6000억원)과 수입(663조9000억원)을 합한 대외거래는 1381조5000억원으로 총공급의 26.5%를 차지했다. 한국은행은 이는 2015년의 30.1%에 비해 3.6%p 줄어든 수치로, 코로나19로 인해 세계 경제가 위축되고 상품 교역이 감소한 것이 주된 원인이라고 설명했다. 또한, 최종 수요에서는 소비(46.6→49.4%)와 투자(21.6→24.0%) 비중이 나란히 확대된 반면, 수출(31.7→26.6%)은 크게 줄어들었다. 소비 면에 있어서는 민간소비(35.6→36.4%)와 정부소비(11.1→13.0%)의 역할이 동시에 증가했 커졌다. 총산출액 대비 수출을 나타내는 수출률은 15.7%로 2015년(18.7%)보다 3.0%p 떨어졌다. 총산출액 중 중간재 수입액을 뜻하는 수입의존도도 10.7%로 1.8%p 낮아졌다. 국산품에 대한 최종수요가 1단위 발생했을 때 유발되는 생산의 크기를 나타내는 생산유발계수는 2020년 1.804로 5년 전(1.813)보다 약간 하락했다. 국제유가가 하락함에 따라 중간재 국산화율이 높아졌지만, 중간투입률 자체가 낮아진 영향이다. 부가가치율이 상대적으로 높은 서비스 비중이 확대된 덕분에 부가가치유발계수는 0.806으로 0.032p 상승했다. 다만, 미국(0.944), 일본(0.903), 영국(0.873) 등 주요국과 비교하면 부가가치유발계수가 여전히 낮은 수준이라고 한은은 부연했다. 수입유발계수는 수입의존도가 완화되고 국제유가도 하락하면서 0.246으로 0.030p 하락했다. 서비스의 전방연쇄효과도 상대적으로 커졌다. 한 산업의 발전에 그 산업의 생산물을 사용하는 다른 산업의 발전으로 유발되는 효과를 의미한다. 이 효과의 정도를 나타내는 감응도 계수는 서비스(2.015→2.211)가 상승했고, 공산품(2.040→1.925)은 하락했다. 실측 산업연관표는 우리나라에서 발생한 모든 재화와 서비스의 생산 및 처분 내역을 일정한 원칙과 형식에 따라 기록한 통계다.
-
- 경제
-
한은 "코로나19로 '산업구조 서비스화' 가속…공산품 비중 축소"
-
-
인공지능, 기후변화 대처하는 식물 설계에 활용
- 과학자들이 인공지능(AI)을 활용해 기후 변화에 견딜 수 있는 식물을 설계하고 있다. 인공지능은 과학자들이 기후변화와 싸우고 지구 온도 상승을 억제하기 위해 식물을 개량하는 데 도움을 주고 있다고 웹사이트 피지스(phys. org)와 어스닷컴 등이 전했다. 기후변화 패널(IPCC)은 기후변화와 지구 온도 상승을 제한하기 위해서는 대기 중 이산화탄소를 제거하는 것이 필수적이라고 밝혔다. 미국 캘리포니아 라호야에 위치한 생명과학연구기관 솔크 연구소(Salk Institute) 과학자들은 기후 변화에 대응하기 위해 식물의 뿌리 시스템을 최적화해서 더 많은 이산화탄소를 더 오랜 기간 저장할 수 있는 식물의 자연적인 이산화탄소 흡수 능력 활용에 주목했다. 이 연구소의 '식물 활용 이니셔티브(Harnessing Plants Initiative)' 소속 과학자들은 기후변화 완화 식물을 설계하기 위해 'SLEAP'이라는 첨단 연구 도구를 사용하고 있다. 인공지능 SLEAP, 뿌리 성장 특징 추적 SLEAP은 사용하기 쉬운 인공지능 소프트웨어로서 다양한 뿌리 성장 특징을 추적한다. 솔크의 펠로우인 탈모 페레이라(Talmo Pereira)가 개발한 SLEAP은 당초 실험실에서 동물의 이동을 추적하기 위해 설계됐다. 페레이라는 현재 식물 과학자인 동료 연구원 볼프강 부쉬(Wolfgang Busch) 교수와 협력해 SLEAP을 식물에 적용하고 있다. 최근 '식물 게놈연구(Plant Phenomics)' 저널에 발표된 연구에서 부쉬 박사와 페레이라는 SLEAP을 사용해 식물 뿌리 형태 분석을 위한 새로운 프로토콜을 선보였다. 이 프로토콜은 뿌리가 얼마나 깊고 넓게 자라고, 뿌리 시스템이 얼마나 커지는 등 이전에는 측정하기 어려웠던 기타 물리적 특징을 분석한다. SLEAP을 식물에 적용한 결과 연구원들은 현재까지 가장 광범위한 식물 뿌리 시스템 형태 카탈로그를 구축할 수 있었다. 더욱이, 이러한 물리적 뿌리 시스템 특징을 추적하면 과학자들이 해당 특징과 관련된 유전자를 찾는 데 도움이 되며, 여러 뿌리 특징이 동일한 유전자에 의해 결정되는지 아니면 독립적으로 결정되는지를 판단할 수 있다. 이를 통해 솔크 연구팀은 식물 설계에 가장 유익한 유전자를 결정할 수 있다. 페레이라는 "이번 협업은 솔크 연구소의 과학이 특별하고 영향력 있는 이유를 실제로 보여주는 좋은 예"라고 말했다. 그는 "우리는 단순히 다른 분야의 지식을 '빌려오는' 것이 아니라, 더 큰 성과를 창출하기 위해 서로 동등한 위치에서 연구하고 있다"고 전했다. SLEAP을 사용하기 전에는 식물과 동물 모두의 물리적 특징을 추적하는 데 많은 노동이 필요했으며 이는 과학적 과정을 지연시켰다. 이전에는 연구원들이 식물 이미지를 분석하기 위해서는 이미지에서 식물 부분과 그렇지 않은 부분을 프레임 단위, 부분 단위, 픽셀 단위로 수작업으로 표시해야 했다. 그래야만 이전의 AI 모델을 적용해 이미지를 처리하고 식물 구조에 대한 데이터를 수집할 수 있었다. SLEAP의 독특한 점은 컴퓨터 시각(컴퓨터가 이미지를 이해하는 능력)과 딥 러닝(AI가 인간 뇌처럼 배우고 작업하도록 컴퓨터를 훈련하는 방법)을 모두 활용한다는 점이다. 이러한 조합을 통해 연구원들은 픽셀 단위로 이동하지 않고도 이미지를 처리할 수 있으며, 중간에 노동 집약적인 단계를 건너뛰고 이미지 입력에서 정의된 식물 특징으로 바로 넘어갈 수 있다. 부쉬 연구실의 생물정보학 분석가인 엘리자베스 베리건(Elizabeth Berrigan) 제1 저자는 "우리는 다양한 식물 유형에서 검증된 강력한 프로토콜을 개발했다. 이 프로토콜은 분석 시간과 인적 오류를 줄이고 접근성과 사용 편의성이 크며 실제 SLEAP 소프트웨어를 변경할 필요가 없었다"고 말했다. SLEAP의 기본 기술을 수정하지 않고 연구원들은 슬립 루트(sleap-roots)라는 SLEAP용 다운로드 가능한 도구킷을 개발했다. 슬립 루트는 오픈 소스 소프트웨어로 무료로 사용 가능하다. 슬립 루트를 사용하면 SLEAP는 뿌리 깊이, 질량, 성장 각도와 같은 뿌리 시스템의 생물학적 특성을 처리할 수 있다. 연구팀은 슬립 루트(sleap-roots) 패키지를 다양한 식물에서 테스트했다. 여기에는 대두, 쌀, 카놀라와 같은 농작물뿐만 아니라 모델 식물 종인 아라비도프시스 탈리아나(Arabidopsis thaliana)도 포함된다. 깊은 뿌리 시스템을 만드는 유전자 이해 높여 다양한 식물에서 시험한 결과 이 새로운 SLEAP 기반 방법은 기존 방법보다 1.5배 빠르게 주석을 달고, AI 모델을 10배 빠르게 훈련하고, 새로운 데이터에 대한 식물 구조를 10배 빠르게 예측하며, 모두 동일하거나 더 나은 정확도를 제공했다. 이러한 표형 데이터(예: 식물의 뿌리 시스템이 유난히 깊게 자라는 것)는 대규모 게놈 시퀀싱 노력과 함께 많은 숫자의 작물 품종에서 유전형 데이터를 밝히는 데 사용해 특히 깊은 뿌리 시스템을 만드는 유전자를 이해할 수 있다. 표형과 유전형을 연결하는 이 단계는 솔크 연구소의 목표인 더 많은 이산화탄소를 더 오랫동안 유지하는 식물을 만드는 데 중요하다. 이러한 식물은 더 깊고 더 강력한 뿌리 시스템을 설계해야 한다. 이 정확하고 효율적인 소프트웨어를 구현하면 식물 활용 이니셔티브는 원하는 표형을 표적 유전자에 아주 쉽고 획기적인 속도로 연결할 수 있다. 솔크의 식물 과학 부문 헤스 의장인 부쉬 박사는 "우리는 현재까지 가장 광범위한 식물 뿌리 시스템 형태 카탈로그를 만들 수 있었다. 이는 기후 변화와 싸우는 탄소 포집 식물을 만드는 연구를 실제로 가속화하고 있다"라고 말했다. 부쉬 박사는 "SLEAP은 탈모의 전문적인 소프트웨어 설계 덕분에 적용하고 사용하기 매우 쉬웠으며 앞으로 제 연구실에서 필수적인 도구가 될 것이다"라고 말했다. 페레이라가 SLEAP과 슬립 루트(sleap-roots)를 만들 때 접근성과 재현성을 가장 중요하게 고려했다. 연구원들은 NASA 과학자들과 토론을 시작하여 슬립 루트를 사용해 지구에서 탄소 포집 식물을 안내할 뿐만 아니라 우주에서 식물을 연구하는 데 도움이 되기를 기대한다. 솔크 연구소에서는 이미 SLEAP를 사용해 3D 데이터를 분석하는 새로운 도전에 착수하고 있다. SLEAP 및 슬립루트(sleap-roots)를 개선하고 확장하며 공유하는 노력은 앞으로 수년 동안 계속될 것이다. 솔크 연구소의 식물 활용 이니셔티브에서의 활용은 식물 설계를 가속화하고 연구소가 기후 변화에 대응하는 데 도움이 되고 있다.
-
- IT/바이오
-
인공지능, 기후변화 대처하는 식물 설계에 활용
-
-
줄자 다리를 사용해 빠르게 기어오르는 등산 로봇 등장
- 줄자 다리를 이용해 스마트하고 독특한 방법으로 금속 구조물을 올라갈 수 있는 새로운 바퀴 달린 로봇이 등장해 주목된다고 온라인 매체 뉴아틀라스가 전했다. 이 로봇은 줄자로 거리를 측정해 길이를 늘리거나 줄이면서 이동할 수 있는 팔다리로 만들어졌다. 기능이 개선되면 타워, 다리, 발전소, 선박과 같은 구조물이나 제품을 검사하거나 수리하는 용도로 발전할 가능성이 농후하다는 진단이다. 수직으로 곧추선 금속 표면 위로 오르내릴 수 있는 로봇은 다수 등장했지만, 이들 대부분은 진공 시스템과 바퀴의 조합, 또는 자석 발을 가진 다리들을 사용한다. 그러나 이 로봇들은 느리게 움직이고 기계적으로 복잡하며 상대적으로 작은 장애물들을 통과하지 못한다는 단점이 있었다. 이런 단점을 개선해 새로 선보인 로봇은 EEWOC(Extended-reach Enhanced Wheeled Orb for Climbing), 즉 기어오르는 확장 가능한 바퀴 구조로 설계됐다. 팔다리에 줄자가 들어가 늘이거나 줄일 수 있는 것. 로봇 프로토타입은 UCLA 로봇 공학 및 메커니즘 연구소(RoMeLa)의 저스틴 콴, 밍장 주, 데니스 홍 연구팀이 개발, 국제 디자인 엔지니어링 기술 컨퍼런스에서 발표됐다. 로봇은 땅이나 금속 등 수평 표면에 있을 때는 두 개의 바퀴로 굴러간다. 그러나 가파른 경사면을 오르게 되면 EEWOC는 EEMMa(이동 및 조작을 위한 탄력적 확장 메커니즘)로 개발된 팔다리를 수직으로 뻗는다. 이 장치는 로봇의 몸 안에 전동 스풀이 탑재된 줄자 구조다. 줄자는 로봇의 외부로 뻗어나가 거꾸로 된 U자 모양을 만들고, 다시 아래로 내려가 로봇의 꼭대기에 고정된다. 그리고 이동하고자 하는 곳에 전자석이 장착된 도구(엔드 이펙터)를 보내 고정시키고 줄자를 당겨 이동하게 된다. 작동 원리는 어렵지 않다. 상상하자면 세계적으로 흥행한 영화 ‘인디애나 존스’에서 존스 박사가 채찍을 던져 끝을 고정시키고 타잔처럼 이동하는 모습과 유사하다. EEMMMa 장치는 줄자를 늘리면서 시작한다. 그러면 줄자가 늘어나 사지가 길어지고(최대 1.2m 길이), 자석이 달린 엔드 이펙터는 역 U자 상단에 위치해 부착된다. 로봇은 줄자를 다시 스풀에 감으면서 본체를 이동한다. 이 같은 작업을 반복 수행해 경사진 어떤 방향이든 줄자 최대 거리 이내에서 표면 또는 공간 이동이 가능하다. 엔드 이펙터에는 브레이크가 포함돼 있어 로봇 본체의 이동을 조정할 수 있도록 해 원하는 이동 목표 지점에 대한 접근성을 높였다. 구형으로 만들어진 로봇의 지름은 260mm이고, 무게는 2.1kg에 불과하다. 로봇은 또한 초당 0.24m의 최대 등반 속도를 낸다. 이는 지금까지 만들어진 로봇 가운데 가장 빠른 등반 로봇 중 하나다. 연구팀은 다양한 방향으로 이동할 수 있는 발전된 EEMMMa 장치를 로봇에 적용할 방침이다. 그렇게 되면 전후좌우 가리지 않고 이동하는 것이 가능하다고. 연구팀은 나아가 나무나 콘크리트 벽과 같은 표면에서도 이동할 수 있는 비자성 EEMMMa 개발도 구상하고 있다.
-
- IT/바이오
-
줄자 다리를 사용해 빠르게 기어오르는 등산 로봇 등장
-
-
[신소재 신기술(38)] 한국 과학자팀, 상온 상압에서 다이아몬드 최초 합성
- 한국 기초과학연구원 연구원들이 새로운 액체 금속 합금 시스템을 사용해 상온 상압에서 다이아몬드 합성에 성공했다. 기초과학연구원(IBS)은 다차원탄소재료연구단 로드니 루오프 연구단장 팀이 갈륨, 철, 니켈, 실리콘으로 구성된 액체 금속 합금을 이용해 1기압과 1025°C의 상온 상압 조건에서 다이아몬드를 합성하는 데 세계 최초로 성공했다고 25일 밝혔다. 이 연구는 기존의 다이아몬드 합성 방법을 획기적으로 발전시킬 수 있는 성과라고 사이언스얼럿과 과학기술 웹사이트 Phsy 등에서도 비중있게 다뤘다. 기존의 다이아몬드 합성은 고온 고압(HPHT) 방법을 사용하며, 고온고압 조건을 유지하기 위한 압력 셀 제한 크기 때문에 다이아몬드 크기도 작아서 약 1㎠로 제한된다. 일반적으로 다이아몬드는 액체 금속 촉매를 사용해 '기가파스칼 압력 범위'(일반적으로 5~6GPa, 1GPa는 약 1만 기압)와 1300~1600°C의 고온에서만 다이아몬드를 생산할 수 있다. 천연 다이아몬드는 지하 깊은 곳의 극식한 압력과 온도에서 형성되는 데 수십억년이 걸린다. 합성 다이아몬드는 최대 몃 주 동안 강력한 압착이 필요하다. IBS 연구팀이 이번에 개발한 액체 금속 혼합을 기반으로 한 새로운 방법은 기존 다이아몬드 합성 패러다임을 깨고,1025도 온도 및 1기압 압력 조건에서 처음으로 다이아몬드를 합성했다. 이는 우리가 해수면에서 느끼는 압력과 동일하며 일반적으로 요구되는 압력보다 수만 배 더 낮다. 연구팀은 빠르게 가열과 냉각이 가능한 'RSR-S'라는 냉벽 진공 장치를 자체 제작해 통상 3시간 걸리는 기존 장치들과 달리, 15분이면 끝날 수 있게 했다. RSR-S는 온도와 압력을 빠르게 조절해 액체 금속 합금을 만드는 장치다. 연구팀은 메탄과 수소에서 갈륨 77.75%, 니켈 11.00%, 철 11.00%, 실리콘 0.25%로 구성된 액체 금속 합금을 만들어 하부 표면에서 다이아몬드 구성 물질인 탄소가 성장하는 것을 확인했다. 이 연구는 '네이처(Nature)' 저널 온라인에 게재됐다. 현재 다양한 산업 공정, 전자 제품, 심지어 양자 컴퓨터에 사용되는 대부분의 합성 다이아몬드를 만드는 데 사용되는 공정은 며칠이 걸리며 훨씬 더 많은 압력이 필요하다. 이 새로운 기술이 그 잠재력을 발휘한다면 다이아몬드 제작은 훨씬 더 빠르고 쉬워질 것이다. UNIST 석좌교수이기도 한 루오프 소장은 "이 선구적인 돌파구는 인간의 독창성과 끊임없는 노력, 그리고 많은 공동 연구자들의 협력이 만들어낸 결과"라고 말했다. 연구팀은 "액체 금속을 사용하는 일반적인 접근 방식은 다양한 표면에서 다이아몬드의 성장을 가속화하고 발전시킬 수 있으며 아마도 작은 다이아몬드(씨앗) 입자에서 다이아몬드의 성장을 촉진할 수 있다"라고 썼다. 루오프 소장은 "우리는 대형 챔버(내부 용적이 100리터인 RSR-A 챔버)에서 파라미터 연구를 진행했는데, 공기를 펌핑(약 3분)하고 불활성 가스로 퍼지(90분)한 다음 다시 진공 수준으로 펌프 다운(3분)하여 챔버를 1기압의 매우 순수한 수소/메탄 혼합물로 채우고(다시 90분) 실험을 시작하는 데 3시간 이상 소요되는 시간 때문에 다이아몬드 성장을 위한 파라미터 탐색이 더뎠다!"고 밝혔다. 이어 성원경 박사는 "메탄과 수소의 혼합물에 노출된 액체 금속으로 실험을 시작하고 완료하는 데 필요한 시간을 크게 줄이기 위해 훨씬 더 작은 챔버를 설계하고 제작하도록 요청했다"고 말했다. 성 박사는 "우리가 새로 제작한 시스템 즉, 내부 용적이 9리터에 불과한 RSR-S은 총 15분 만에 메탄/수소 혼합물을 펌핑, 퍼지, 배출, 채우기까지 완료할 수 있다. 매개변수 연구가 크게 가속화되었고, 이를 통해 액체 금속에서 다이아몬드가 성장하는 매개변수를 발견할 수 있었다"라고 설명했다. 제1저자인 얀 공 UNIST 대학원생은 "어느 날 RSR-S 시스템으로 실험을 진행한 후 흑연 도가니를 식혀 액체 금속을 고형화한 후 고형화된 액체 금속 조각을 제거했을 때, 이 조각의 바닥면에 수 밀리미터에 걸쳐 '무지개 무늬'가 퍼진 것을 발견했다. 그 무지개 색이 다이아몬드 때문이라는 사실을 알게 되었다! 이를 통해 다이아몬드의 재현 가능한 성장에 유리한 매개변수를 파악할 수 있었다"라고 말했다. 연구팀은 또 '광 발광 분광법' 실험으로 물질에 빛을 쏘아 방출되는 파장 빛을 준석해 다이아몬드 내 '실리콘 공극 컬러 센터' 구조도 발견했다. 이 구조는 액체 금속 합성 구성요소 중 하나인 실리콘이 탄소로만 이루어진 다이아몬드 결정 사이에 끼어들어 있는 것이다. 실리콘 공극 컬러 센터 구조는 양자 크기의 자성을 가져 자기 민감도가 높고, 양자 현상(양자적인 특성)을 보인다. 그로 인해 향후 나노 크기의 자기 센서 개발과 양자 컴퓨팅 분야의 응용이 기대된다. 논문 공동 저자인 메이후이 왕 박사는 "실리콘 공극 컬러 중심을 가진 이 합성 다이아몬드는 자기 감지 및 양자 컴퓨팅에 응용될 수 있을 것"이라고 말했다. 연구팀은 이러한 새로운 조건에서 다이아몬드가 핵을 형성하고 성장할 수 있는 메커니즘에 대해 심도 있게 연구했다. 시료의 단면을 고해상도 투과전자현미경(TEM)으로 촬영한 결과 다이아몬드와 직접 접촉한 고체 액체 금속에 약 30~40nm 두께의 비정질 표면 영역이 존재하는 것으로 나타났다. 공동 저자인 최명기 박사는 "이 비정질 영역의 상부 표면에 존재하는 원자의 약 27%가 탄소 원자였으며, 탄소 농도는 깊이에 따라 감소하는 것으로 나타났다"고 말했다. 연구팀은 또한 실리콘이 다이아몬드의 새로운 성장에 중요한 역할을 한다는 사실도 발견했다. 합금의 실리콘 농도가 최적 값보다 증가함에 따라 성장한 다이아몬드의 크기는 작아지고 밀도는 높아진다. 실리콘을 첨가하지 않으면 다이아몬드를 전혀 성장시킬 수 없었으며, 이는 실리콘이 다이아몬드의 초기 핵 형성에 관여할 수 있음을 시사한다. 루오프 소장은 "이 액체 금속에서 다이아몬드의 핵 형성과 성장에 대한 우리의 발견은 매우 흥미롭고 기초 과학을 위한 많은 흥미로운 기회를 제공한다. 이제 우리는 핵 형성과 그에 따른 다이아몬드의 빠른 성장이 언제 일어나는지 탐구하고 있다. 또한 탄소와 기타 필요한 원소의 과포화를 먼저 달성한 다음 온도를 빠르게 낮춰 핵 생성을 촉발하는 '온도 강하' 실험도 유망한 연구"라고 말했다.
-
- 포커스온
-
[신소재 신기술(38)] 한국 과학자팀, 상온 상압에서 다이아몬드 최초 합성
-
-
삼성전자, 업계 최초 '9세대 V낸드' 양산…290단 적층 구현
- 삼성전자가 업계 최초로 '1Tb(테라비트) TLC(Triple Level Cell) 9세대 V낸드' 양산을 시작해 메모리 기술에서 리더십을 강화했다. 이 기술은 인공지능(AI) 시대의 고용량 및 고성능 낸드에 대한 수요 증가에 대응하기 위한 것이다. 삼성전자는 23일, '더블 스택' 구조를 적용한 최고 단수 제품인 9세대 V낸드를 양산한다고 발표했다. 이 제품은 현재 주력 제품인 236단 8세대 V낸드를 뒤이어, 약 290단 수준의 기술로 구현되었다고 한다. 더블 스택 기술은 낸드플래시 메모리의 각 레이어를 두 번의 '채널 홀 에칭' 과정을 통해 나누고 이를 단일 칩으로 결합하는 고난도의 제조 방식을 의미한다. 삼성전자는 이 채널 홀 에칭 기술을 통해 한 번의 공정으로 업계 최대의 단수를 달성하는 생산 효율성을 크게 향상시켰다고 설명했다. 채널 홀 에칭 기술은 몰드층을 순차적으로 쌓은 후 한 번에 전자가 이동하는 홀(채널 홀)을 형성하는 방식으로, 적층 단수가 높아질수록 한 번에 더 많은 채널을 생성할 수 있어 생산 효율이 증가한다. 이 과정은 높은 정밀도와 고도의 기술이 요구된다. 낸드 메모리의 적층 경쟁이 치열해지면서 적층 공정의 기술력이 더욱 중요해지고 있다. V낸드에서 원가 경쟁력은 가능한 적은 공정 단계로 높은 적층 단수를 달성하는 데 있어, 스택 수가 적으면 거쳐야 하는 공정 수도 줄어들어 시간과 비용을 절감할 수 있어 경쟁력을 높인다. 삼성전자는 업계 최소 크기 셀(Cell), 최소 몰드(Mold) 두께를 구현해 '1Tb TLC 9세대 V낸드'의 비트 밀도(단위 면적당 저장되는 비트의 수)를 이전 세대에 비해 약 1.5배 증가시켰다. 더미 채널 홀(Dummy Channel Hole) 제거 기술로 셀의 평면적을 줄이고, 셀 크기 축소로 인한 간섭 현상을 제어하기 위해 셀 간섭 회피 기술과 셀 수명 연장 기술을 적용해 제품의 품질과 신뢰성을 향상시켰다. 9세대 V낸드는 차세대 낸드플래시 인터페이스인 '토글(Toggle) 5.1'을 적용해 8세대 V낸드 대비 33% 향상된 최대 3.2Gbps(초당 기가비트)의 데이터 전송 속도를 구현했다. 삼성전자는 이를 토대로 PCIe 5.0 인터페이스를 지원하며 고성능 SSD 시장을 확대하여 낸드플래시 기술의 리더십을 강화할 계획이다. 또한, 9세대 V낸드는 저전력 설계 기술을 적용해 이전 세대 제품에 비해 전력 소비를 약 10% 줄였다. 삼성전자는 올해 하반기에 'QLC(Quad Level Cell) 9세대 V낸드'의 양산을 시작하는 등 AI 시대의 요구에 부응하는 고용량, 고성능 낸드 개발에 박차를 가할 예정이다. 삼성전자 메모리사업부 플래시개발실장 허성회 부사장은 "낸드플래시 제품의 세대가 진화함에 따라 고용량, 고성능 제품에 대한 고객의 요구가 증가하고 있다"며 "극한의 기술 혁신을 통해 생산성과 제품 경쟁력을 향상시켰다. 9세대 V낸드를 통해 AI 시대에 적합한 초고속, 초고용량 SSD 시장을 선도할 것"이라고 말했다. 시장조사기관 옴디아의 보고에 따르면, 낸드플래시 매출은 2023년 387억 달러에서 2028년에는 1148억 달러로 성장할 것으로 예상되며, 이는 연평균 약 24%의 성장률을 보일 전망이다. 이러한 성장은 AI 서버 시장의 확대와 직결되어 있으며, 높은 데이터 전송 속도와 성능을 요구하는 신규 AI 서버 설치가 증가함에 따라 SSD에 대한 수요도 증가하고 있다. 옴디아는 "AI 관련 작업에서의 훈련 및 추론 수요 증가와 함께, 대규모 언어 모델(LLM)과 추론 모델에 필요한 데이터 저장을 위해 더 큰 저장 용량이 요구되고 있다"고 말했다. 이러한 시장 수요 증가로 인해 낸드 적층 기술의 경쟁도 치열해지고 있다. 삼성전자는 작년 3분기 실적 발표에서 2030년까지 1,000단 V낸드 개발 계획을 발표했다. SK하이닉스는 작년 8월 미국에서 열린 '플래시 메모리 서밋 2023'에서 업계 최초로 300단을 넘는 '1Tb TLC 321단 4D 낸드' 샘플을 공개하며, 이를 2025년 상반기부터 양산할 계획임을 밝혔다. 마이크론은 2022년에 세계 최초로 232단 낸드를 양산하기 시작했다. 후발주자인 중국의 YMTC(양쯔메모리테크놀로지)도 지난해 232단 낸드 생산을 시작한 데 이어 올해 하반기에는 300단 이상의 제품 출시를 계획하고 있다. 한편, 삼성전자 주식은 이날 '9세대 V낸드' 양산 발표 이후 소폭 상승했다. 이날 23일 11시 27분 현재 삼성전자 주가는 전일 대비 0.26% 올라 7만6300원에 거래됐다.
-
- IT/바이오
-
삼성전자, 업계 최초 '9세대 V낸드' 양산…290단 적층 구현
-
-
포스코그룹, 포항에 실리콘음극재 공장 준공…연산 550t 규모
- 포스코그룹은 산하 포스코실리콘솔루션이 지난 19일 경상북도 포항 영일만 산업단지에서 연간 생산량 550t(톤) 규모의 실리콘 음극재 공장 준공식을 가졌다고 23일 발표했다. 실리콘 음극재는 기존 리튬이온배터리에 적용되는 흑연 음극재에 비해 에너지 밀도를 4배 높일 수 있어, 이를 통해 전기차의 주행거리를 향상시키고 충전 시간을 단축시킬 수 있는 차세대 음극재로 각광받고 있다. 실리콘 음극재는 나노 구조로 제작되어 사이클 안정성이 높고 수명이 길다. 또한 지구상에 풍부하게 존재하는 실리콘은 흑연보다 생산 비용이 저렴하다. 그러나 실리콘 음극재는 부피 변화와 낮은 전기 전도도 등의 도전과제를 안고 있다. 충전/방전 과정에서 부피 변화가 크게 발생하여 전극 파손 위험이 있다. 아울러 전기 전도도가 낮아 전지 성능 저하 가능성이 있다. 또한 전극 표면과의 접착력이 약해 분리 발생 가능성이 있다. 이에 업계에서는 다양한 나노 구조 및 코팅 기술 개발해 부피 변화 및 전기 전도도 문제 해결을 위해 노력하고 있다. 실리콘의 장점과 흑연의 장점을 동시에 활용하는 흑연과의 복합화 연구 등도 진행 중이다. 포스코실리콘솔루션이 달성한 연간 550톤의 생산능력은 약 27만5000대의 전기차를 생산할 수 있는 규모에 해당한다. 포스코실리콘솔루션은 지난해 4월에 착공해 최근에 하(下)공정 설비를 준공했으며, 오는 9월에는 상(上)공정을 포함한 전체 생산라인의 종합 준공을 목표로 하고 있다. 이 회사는 2030년까지 연간 2만5000톤의 실리콘 음극재 생산 체제를 완비할 계획이다. 음극제 시장 전망에 따르면, 현재 약 1만톤 규모인 글로벌 실리콘 음극재 시장은 2035년까지 28만5000톤으로 성장할 것으로 예상된다. 포스코그룹은 음극재 제품군을 강화하고 증가하는 시장 수요에 선제적으로 대응하기 위하여 2022년 7월에 실리콘 음극재 기술을 보유한 스타트업 테라테크노스를 인수하고, 이를 포스코실리콘솔루션으로 사명을 변경했다. 또한, 포스코그룹은 실리콘과 탄소를 혼합한 복합체 음극재의 생산도 계획 중에 있다. 이와 관련해, 그룹사 포스코퓨처엠은 이달 말 경상북도 포항 영일만 산업단지에서 실리콘 탄소 복합체 음극재 데모플랜트의 운영을 시작할 예정이며, 고객사별로 최적화된 실리콘 음극재 솔루션을 제공할 계획이다.
-
- 산업
-
포스코그룹, 포항에 실리콘음극재 공장 준공…연산 550t 규모
-
-
[먹을까? 말까?(6)] 달걀 섭취 중단하면 혈압에 어떤 변화가 일어날까?
- 달걀은 영양이 풍부하고 양질의 동물성 단백질이 풍부하며, 노른자에는 비타민 A, 비타민 D, 비타민 E, 인, 칼슘 등이 포함되어 있다. 달걀의 구조는 노른자위(난황), 흰자위(난백), 껍데기(난각)로 이루어져 있다. 알 껍질은 주로 탄산칼슘으로 이루어져 있으며 바깥으로부터 산소를 받아들여 안에서 호흡한 뒤 바깥으로 이산화탄소를 내보낼 수 있게 되어 있다. 또한 달걀은 무게에 따라 왕란(68g 이상), 특란(60g 이상~68g 미만), 대란(52g 이상~60g 미만), 중란(44g 이상~52g 미만), 소란(44g 미만)으로 분류하기도 한다. 그런데 달걀과 고혈압의 관계가 종종 논란이 되기도 한다. 중년이 되면 고혈압을 멈추기 위한 식이요법인 대시(DASH) 다이어트를 주목하게 된다. DASH 다이어트는 미국 국립보건원(NIH) 산하 국립심장폐혈액연구소( National Heart, Lung, and Blood Institute )가 추진하는 고혈압 조절 다이어트다. DASH 다이어트는 혈압에 미치는 영향과 더불어 일반 대중을 위한 균형 잡힌 식사 접근 방식으로 설계됐다. DASH 다이어트에는 과일, 야채, 통곡물, 저지방 유제품이 풍부하게 포함된다. 여기에는 고기, 생선, 가금류, 견과류, 콩을 추천하며 설탕이 첨가된 식품 및 음료, 붉은 고기, 첨가된 지방 등은 제한된다. 헬스 다이제스트에 따르면 고혈압은 미국에서 가장 큰 사망 원인인 심장병의 원인이다. 미국 질병통제예방센터(CDC)에 따르면 미국 인구의 거의 절반이 혈압이 130/80mmHg 이상이지만 고혈압 환자 중 4분의 1만이 이를 치료하기 위한 조치를 취하고 있다. 증상이 나타나지 않기 때문에 많은 사람들은 자신이 고혈압이 있다는 사실조차 모르는 경우가 많다. 그렇기 때문에 40세가 넘었거나 다른 건강 질환이 있는 경우 매년 혈압을 검사해야 한다. 혈압을 효과적으로 관리할 수 있는 방법 중 하나는 다이어트다. 앞서 설명했듯이 DASH 다이어트에는 칼륨, 칼슘, 마그네슘, 섬유질, 단백질이 풍부한 음식에 중점을 두고 설탕, 나트륨, 포화 지방이 함유된 음식은 제한한다. 그렇다면 달걀 섭취를 중단하면 우리 몸에 어떤 일이 일어날까? 2020년 '현대 고혈압 보고서(Current Hypertension Reports)'에 따르면 15개의 무작위 대조 시험을 분석한 결과, 달걀 섭취와 혈압 사이의 연관성을 발견하지 못했지만 시간이 지남에 따라 너무 많은 달걀을 섭취하면 혈압이 상승할 수 있다는 점이 발견됐다. 왕란이나 특란 등 큰 달걀 1개에는 일일 섭취량의 62%에 해당하는 186mg의 콜레스테롤이 들어 있다. 2020년 영양학 학술지 '뉴트리언트(Nutrients)'에 발표된 연구에서는 고령 여성의 달걀, 콜레스테롤, 고혈압의 관계를 심층적으로 분석했다. 연구진은 연구 시작 시점에 여성들이 얼마나 많은 달걀과 총 콜레스테롤을 섭취했는지 조사했다. 몇 년 후, 전체 식단에서 콜레스테롤이 더 많은 여성은 고혈압에 걸릴 확률이 22% 더 높았다. 일주일에 달걀을 7개까지 먹은 여성은 고혈압 발병 가능성이 14% 더 높았다. 그러나 연구진이 총 콜레스테롤을 통계적으로 조정했을 때 달걀은 혈압 위험을 높이지 않았다. 즉, 음식에 함유된 콜레스테롤이 고혈압을 유발했을 가능성이 높았다. 2021년 '유럽 영양 저널(European Journal of Nutrition)'에 발표된 연구에 따르면 달걀의 위험성에서 완전히 벗어난 것은 아니다. 일주일에 달걀을 4개 이상 섭취하면 일주일에 1개 미만을 섭취할 때보다 전체 사망 위험이 50%, 심혈관 질환 사망 위험이 75%, 암으로 인한 사망 위험이 52% 높아지는 것으로 나타났다. 일주일에 달걀을 2~4개만 먹어도 모든 원인으로 인한 사망 위험이 22%, 심혈관 질환으로 인한 사망 위험이 43% 증가한다. 연구진은 달걀의 식이 콜레스테롤이 사람들의 혈중 콜레스테롤 수치보다 사망률과의 연관성을 더 많이 설명한다고 말했다. 달걀에는 영양이 풍부하기 때문에 식단에서 완전히 배제하고 싶지 않을 수도 있다. 큰 달걀 1개에는 72칼로리, 약 5g의 지방, 6g의 단백질이 들어 있다. 달걀에는 칼륨이나 칼슘이 일일 필요량의 2% 미만으로 많지 않지만 셀레늄과 충분한 양의 인을 섭취할 수 있다. 또한 달걀에는 비타민 A, 리보플라빈(B2), B5, B6, 엽산(B9), B12, D, E가 들어 있다. 시력에 도움이 되는 루테인과 제아잔틴이 함유되어 있다. 달걀은 또한 뇌와 신경계 기능을 유지하는 데 필요한 콜린이 일일 권장량의 27%가 함유되어 있다. 미국 국립보건원(NIH)에 따르면 콜린은 혈압을 낮추는 데도 도움이 될 수 있다. 전문가들은 달걀 섭취를 중단한다고 해서 혈압이 떨어지지는 않지만 대신 어떤 음식을 먹을지 고려해야 한다고 조언했다. 좋은 약은 입에는 쓰다는 말이 있다. DASH 다이어트의 일부인 과일, 야채, 콩류, 저지방 유제품, 통곡물을 먹을까. 아니면 짭쪼롬한 베이컨에 달달한 고당 에너지 음료, 그리고 버터를 얹은 풍미 가득한 커다란 블루베리 머핀을 먹을까. 가공육, 단 음료, 설탕과 나트륨 함량이 높은 음식은 혈압을 낮추는 가장 현명한 선택이 아니다. 달걀 1개나 달걀 흰자를 사용하는 것이 오히려 건강에 더 나을 수도 있다.
-
- 생활경제
-
[먹을까? 말까?(6)] 달걀 섭취 중단하면 혈압에 어떤 변화가 일어날까?
-
-
남극 활화산, 매일 6000달러 상당 금가루 분출⋯사업성은?
- 남극 최남단의 활화산 에레버스 산에서 매일 6000달러(약 830만원) 상당의 금가루가 분출되지만 가까이 다가가 쓸어담을 수는 없는 것으로 확인됐다고 IFL사이언스와 뉴욕포스트, 지오 뉴스 등 다수 외신이 보도했다. 지구 최남단에 있는 에레버스 산(Mount Erebus)은 남극 대륙 로스 해의 제임스로스 섬에 있는 활화산이다. 남극에는 수십 개의 화산이 있으며, 그 중 대부분은 서남극과 마리 버드 랜드에 위치해 있다. 2017년의 한 연구에 따르면 남극 대륙의 이 지역에서만 138개의 화산이 발견됐다. 이 중 대부분은 휴화산이지만, 8~9개의 남극 화산은 활화산으로 간주된다. 최근 역사상 남극의 화산이 폭발한 사례는 단 3건에 불과하다. 남극 대륙의 얼음 코어를 수집한 연구에 따르면 남극 대륙은 마지막 빙하기 동안 거대한 화산 폭발로 몸살을 앓았으며, 그 중 상당수는 현대 역사상 어떤 폭발보다 더 컸던 것으로 나타났다. 현재 남극 대륙에서 가장 사납게 활동하는 화산 중 하나인 에레버스 산은 정상 고도가 3794미터(1만2448피트)이다. 참고로 우리나라 제주도의 한라산 정상 높이는 약 1947m이다. 그리스 신화에 나오는 어둠의 화신에서 이름을 따온 에레버스 산은 1841년 영국 탐험가 제임스 클라크 로스 경이 처음 발견했을 때 분화 중이었다고 전해진다. 산 이름은 탐험가 제임스 클라크 로스의 배 이름에서 유래됐다고도 한다. 이 화산은 영국 탐험가의 이름을 딴 로스 섬의 다른 두 화산과 나란히 위치해 있다. 이 거대한 화산의 위성 사진을 자세히 보면 정상 분화구(lava lake)에 용암이 끓고 있음을 암시하는 아주 작은 붉은 색이 엿보인다. 뉴욕 컬럼비아 대학교 라몬트-도허티 지구 관측소의 코너 베이컨에 따르면 에레버스는 1972년부터 지속적으로 폭발해왔다. 그는 산 정상 분화구 중 하나에 끓어오르는 뜨거운 용암호수가 있는 것으로 알려져 있다고 덧붙였다. 화산은 정기적으로 많은 양의 가스와 증기를 뿜어낸다. 과거의 화산 활동에서는 '화산 폭탄'으로 알려진 용암에 의해 부분적으로 녹은 매우 뜨거운 암석을 분출하는 것으로도 알려져 있다. 미국 항공우주국(나사·NASA)에 따르면 에레버스 화산은 정기적으로 가수와 증기 기둥을 방출하고, 때때로 (용암으로 된)암석 폭탄을 뿜어낸다고 한다. 나사 과학자들은 이 화산이 분출하는 가스에는 20㎛(마이크로미터) 이하의 작은 금속 금 결정이 들어 있다는 사실을 발견했다. 이 화산은 하루 동안 약 80g의 금을 분출하는 것으로 추정되며, 이는 약 6000달러의 가치가 있다. 또한 남극의 연구자들은 이 화산에서 최대 1000km(621마일) 떨어진 대기에서 금 가루의 흔적을 발견했다. 1841년 영국의 탐험가이자 해군장교 제임스 클라크 로스가 처음 발견한 이후 여러 사람이 등정을 시도했으나 소규모 화산 폭발로 번번히 등정에 실패했다. 이후 1908년 호주의 지질학자 에지워스 데이비드가 처음으로 등반에 성공했다. 하지만 이 화산은 에레버스 화산 재해로 가장 악명이 높다. 1979년 11월 28일, 에어뉴질랜드 901편이 화산 측면을 정면으로 들이받아 탑승자 257명 전원이 사망했다. 당시 이 비행은 오클랜드에서 남극까지 11시간 동안 관광 비행을 한 후 다시 뉴질랜드로 돌아오는 에어뉴질랜드 프로그램의 일부였다. 1979년 11월 28일 사고 당일 날씨가 흐려졌지만 항공 투어는 예정대로 진행됐다. BBC의 보도에 따르면, 기장 짐 콜린스 대위는 비행기를 두 번 크게 돌면서 약 610m(2000피트)까지 하강하려고 시도했다. 이 기동 중 오후 1시 직전에 비행기는 에레버스 산 서쪽 측면에 부딪혀 탑승자 전원이 사망했다. 구조대원들은 사고 현장에서 승객들의 카메라에 필름이 온전히 남아 있는 것을 발견했다. 충돌 몇 초 전에 촬영된 이 사진들은 추락 당시 시야가 좋았고 비행기가 구름 아래에 있었음을 보여 주었다. 그로 인해 두꺼운 구름 층에 의해 화산이 시야에서 가려졌을 가능성은 배제됐다. 에어뉴질랜드 901편의 추락 원인은 '화이트아웃(whiteout)'으로 추정된다. 화이트아웃은 극심한 눈보라 상태에서 주로 발생하는 기상 현상으로, 눈과 얼음이 확산된 빛을 반사하여 지평선과 다른 시각적 지표들을 구분할 수 없게 만든다. 이 현상은 주로 극지방이나 높은 산악 지역에서 발생하며, 시야가 극도로 제한되어 항해나 이동에 매우 위험할 수 있다. 눈, 구름, 안개가 혼합되어 시야가 거의 제로에 가까워지는 상태를 말한다. 당시 조종사는 거리감을 가늠할 수 없었고 조종석 바로 앞에 보이는 산은 화이트아웃으로 인해 산의 모습이 아니라 아래 풍경의 얼음과 눈이라고 착각했다는 것이다. 이 사고로 인해 에어뉴질랜드는 여러 차례의 소송과 수많은 논란 끝에 남극 상공 관광 비행을 중단했다. 남극의 몇 안 되는 활화산인 에레버스 산은 매우 아름다운 풍경과 금가루를 뿌리는 신비한 모습으로 유혹하지만 동시에 매우 위험한 곳임을 기억해야 한다.
-
- 생활경제
-
남극 활화산, 매일 6000달러 상당 금가루 분출⋯사업성은?
-
-
보스턴 다이내믹스, 은퇴 아틀라스 후속 '획기적인' 휴머노이드 로봇 공개
- 테크크런치의 추측이 맞았다. 보스턴 다이내믹스(Boston Dynamics)가 1세대 유압식 휴머노이드 로봇 아틀라스(Atlas)를 중단한 것은 '2보 전진을 위한 1보 후퇴'였다. 보스턴 다이내믹스가 공상과학 또는 공포 영화에서나 나올 법한 기상천외의 움직임을 보여주는 아틀라스 휴머노이드 로봇의 새 버전을 공개했다고 메일온라인이 18일(현지시간) 전했다. 미국 매사추세츠에 본사를 둔 보스턴 다이내믹스는 최근 후속 휴머노이드 로봇 홍보 영상을 공개했는데, 영상은 로봇이 머리 뒤로 다리를 당겨 일어서는, '엑소시스트'와 같은 공포 영화에서 나오는 모습을 보여주었다고 한다. 새 아틀라스 버전은 춤과 파쿠르(장애물 통과)로 유명했던 종래의 아틀라스 로봇과 달리 인체가 할 수 없는 방식으로 구부러지고 움직일 수 있는 관절을 자랑한다. 회사는 최신형 휴머노이드 로봇도 판매할 계획이지만, 가격은 아직 공개되지 않았다. 우선 내년부터 현대차 공장에 투입돼 첫 작업을 시작할 예정이다. 공개된 영상 클립에서 새로운 아틀라스는 허리와 목을 180도 회전하며 바닥에서 부드럽게 일어나는 모습을 보인다. 카메라가 달린 머리는 360도 회전이 가능하다. 종래의 유압 방식을 전기 구동으로 바꾸었다. 과거의 유압식 아틀라스는 관절에 유압 액츄에이터가 있어서 가압 유체를 펌핑함으로써 강력한 점핑과 이동이 가능했었다. 그러나 매끄럽지 않고, 로봇이 각 관절을 약 20도 정도만 움직일 수 있었다. 인간의 팔꿈치는 약 130~153도 정도 구부릴 수 있다. 새로운 아틀라스는 더 넓은 동작 범위를 제공한다. 모든 관절이 360도로 회전할 수 있으며, 더 다양한 방법으로 로봇이 물체를 잡고 운반할 수 있다. 제조, 조립라인 사이의 부품 운반에 투입하기에 제격이라는 주장이다. 특히 다양한 모양과 크기의 부품을 운반할 수 있으며, 부피가 크거나 모양이 특이한 제품의 운반도 가능하다고 한다. 특히 인간이 가능한 동작 범위에 제약을 받지 않고, 가장 효율적인 방식으로 움직이도록 설계됐다. 업계에서는 아틀라스 첫 모델이 출시된 지 11년 만의 변신이 '괄목할 발전'이라고 평가했다. 회사의 로버트 플레이터 CEO는 보스턴글로브와의 인터뷰에서 "새로운 아틀라스 출시로 보스턴 다이내믹스는 휴머노이드 로봇의 기준을 새로 세웠다"고 자신했다. 한편 보스턴 다이내믹스 이후 여러 회사가 휴머노이드 로봇 분야에 뛰어들었다. 테슬라는 지난 2월 옵티머스 로봇이 부드러운 걸음걸이로 공장을 돌아다니는 영상을 공유했다. 지난해 10월 아마존은 창고에 휴머노이드 로봇을 사용할 계획임을 발표했다. 내년 현대차 공장 테스트가 순조롭게 진행되면 보스턴 다이내믹스는 다른 제조사로 사업을 확장할 예정이다. 아틀라스는 개를 형상화한 스팟(Spot)과 상자 하역 전문 스트레치(Stretch)에 이은 세 번째 상업용 로봇이다. 스팟은 2019년에 출시되었으며 2021년 뉴욕 경찰에 공급됐다. 뉴욕 경찰은 위험한 구조 임무에 스팟을 사용할 계획이었지만, 이 계획은 과도한 경찰 군사화라는 우려가 제기되자 무산됐다. 스트레치는 2021년 출시됐다.
-
- IT/바이오
-
보스턴 다이내믹스, 은퇴 아틀라스 후속 '획기적인' 휴머노이드 로봇 공개
-
-
[신소재 신기술(34)] 수소 저장용 신소재, 칠수소화 세슘(CsH7)과 9수소화 루비듐(RbH9) 합성 화합물
- 러시아 스콜코보 과학기술연구소(스콜테크·Skoltech) 연구팀과 러시아 과학 아카데미 슈브니코프(shubnikov) 결정체 연구소 및 중국, 일본, 이탈리아 연구 기관의 과학자들은 현재 최고의 수소 저장 물질보다 4배 더 많은 양의 수소 기체를 "흡수"할 수 있는 수소 화학 저장 물질을 발견했다고 테크익스플로어가 17일(현지시간) 보도했다. 이 연구팀이 개발한 합성한 화합물인 칠수소화 세슘(CsH7)과 9수소화 루비듐(RbH9)은 각각 금속 원자당 최대 7개와 9개의 수소를 저장할 수 있는 획기적인 기술이다. 기존 금속 합금기술로는 금속 원자 하나당 약 2개의 수소 원자를 넣을 수 있었다. 수소를 효율적으로 저장하는 방법을 찾는 것은 미래의 지속 가능한 경제에 통합하는 데 매우 중요하다. 적절한 저장 기술을 갖춘 수소는 향후 고온의 산업 공정과 운송에 연료를 공급하고 전력망의 공급과 수요를 균형 있게 조절하는 역할을 할 수 있다. 이번 연구는 학술지 '첨단 에너지 재료(Advanced Energy Materials)'에 게재됐다. 수소는 미래의 저탄소 경제에서 중요한 역할을 할 것으로 예상된다. 수소는 재생 가능하게 생산될 수 있고, 연료 전지나 연소를 통해 전기나 열을 생성하는 데 사용될 수 있다. 수소 에너지로 인해 가장 큰 이익을 얻을 수 있는 분야는 제철, 유리 및 시멘트 생산, 화학 산업 등이다. 국제 해운 및 일반적인 운송과 모빌리티 전반도 수소 에너지로 이익을 얻을 수 있다. 그 외에도 수소는 재생 가능 에너지의 불규칙한 공급을 포함해 잉여 에너지를 저장함으로써 전력망의 균형을 유지하는 데 도움이 될 수 있다. 수소 발전의 광범위한 채택을 막는 가장 큰 장애물은 공기보다 14배 가볍고, 반응성이 높으며, 가두기 어렵고 폭발성이 있는 가스인 수소를 저장하는 안전하고 지속 가능하며 경제적인 기술력의 부족이다. 가스 실린더, 튜브, 극저온 탱크 및 파이프 라인에서 수소를 축적하고 운반하려면 압축 또는 액화하거나 수소 분자로 구성된 고체로 변환해야 할 수도 있다. 하지만 이 방법에는 몇 가지 문제점이 있다. 첫째, 이러한 처리에는 매우 많은 비용이 든다. 압축 및 냉장 과정은 최종적으로 수소가 제공하는 총 에너지의 약 20%~40%에 해당하는 에너지를 소비한다. 이는 매우 높은 손실이다. 둘째, 수소는 질량당 가장 에너지 밀도가 높은 화학 연료이지만 너무 가벼워 압축 또는 액화된 천연가스보다 단위 부피당 여전히 약 절반의 에너지를 보유한다. 이는 특히 차량에 불편하다. 셋째, 수소는 가장 작은 분자이기 때문에 컨테이너에서 쉽게 빠져나가고 심지어 금속 벽에도 침투해 벽을 부서지게 하고 균열과 누출을 일으킨다. 연구의 주요 저자 중 한 명인 스콜테크의 재료 과학 및 공학 박사 드미트리 세메노크(Dmitrii Semenok)는 "대안은 화학 저장"이라고 지적했다. 세메노크 박사는 "예를 들어 마그네슘-니켈 및 지르코늄-바나듐 합금과 같은 특정 물질은 금속 원자가 결정 구조를 형성하는 사이의 공극에 수소를 저장할 수 있다. 이러한 축전기는 상대적으로 밀도가 높고 안전하며 필요에 따라 가열 시 빠르게 수소를 방출한다"라고 설명했다. 그는 "하지만 수소를 포집하고 방출하는 데 필요한 조건과 얼마나 많은 충방전 사이클을 견딜 수 있는지에 따라 금속 합금을 조정할 수는 있지만, 금속 원자 하나당 약 2개의 수소 원자를 넣을 수 있다는 상대적으로 엄격한 제한이 있다. 이것이 가장 큰 지표다"라고 부연했다. 세메노크 박사는 "우리가 합성한 화합물인 칠수소화 세슘(세슘 헵타하이드라이드·CsH7)과 9수소화 루비듐(루비듐 비수소화물·RbH9)은 금속 원자당 각각 최대 7개와 9개의 수소 원자를 담고 있다. 이 두 물질은 대기압에서 안정적으로 수소가 풍부한 최초의 물질이 될 것으로 예상되지만, 후자는 추가 확인이 필요하다. 어쨌든 이 화합물에서 수소 원자의 비율은 알려진 모든 수소화물 중에서 가장 높으며 메탄 CH4보다 두 배나 높다"라고 말했다. 이 연구의 수석 연구자인 스코테크의 재료 발견 연구실 책임자 아르템 오가노프(Artem R. Oganov) 교수는 "우리는 수소가 풍부한 암모니아 보란 분말을 세슘 또는 루비듐과 반응시킨다"고 설명했다. 이렇게 하면 세슘 또는 루비듐 아미도보란으로 알려진 염이 생성된다. 열을 가하면 이러한 염이 세슘 또는 루비듐 일수화물과 다량의 수소로 분해된다. 오가노프 박사는 "실험은 대기압의 10만 배에 달하는 압력을 가하는 두 다이아몬드 사이의 셀에서 실행되기 때문에 여분의 수소가 결정 격자 공극으로 강제 이동하여 세슘 헵타하이드라이드와 루비듐 비수소화물(후자는 두 가지 다른 결정 격자 종류)을 형성한다"라고 말했다. 연구팀에 따르면 세슘과 루비듐은 원자의 크기가 커서 결정 구조에서 수소가 차지할 수 있는 빈 공간이 더 커지기 때문에 "예정된 운명"이라고 한다. 이 화합물의 형성은 연구팀의 시뮬레이션과 기본 물리 법칙에 기반한 계산의 예측과 일치했다. 화합물의 존재는 여러 분석 기법을 통해서도 확인됐다. X-선 분석, 라만 분광법, 반사/투과 분광법 등 다양한 분석 기법을 통해 화합물의 존재를 확인했다. 후자는 스콜테크의 하이브리드 포토닉스 연구소의 데니스 산니코프 연구원의 기여로 가능했다. 연구팀은 이제 약 1만기압의 낮은 압력에서 대규모 유압 프레스를 사용해 실험을 반복하여 더 많은 양의 세슘과 루비듐 폴리하이드리드를 얻고, 이 화합물이 지금까지 알려진 다른 폴리하이드리드와 달리 일단 합성되면 대기압에서도 안정적으로 유지되는지 검증할 계획이다.
-
- 포커스온
-
[신소재 신기술(34)] 수소 저장용 신소재, 칠수소화 세슘(CsH7)과 9수소화 루비듐(RbH9) 합성 화합물
-
-
[신소재 신기술(33)] 원자 1개 두께의 이상한 형태의 금
- 스웨덴 과학자들은 단일 원자층으로 구성된 아주 얇은 박막의 금 소재를 개발했다. 이 새로운 물질은 '골덴'이라고 명명되었으며 반도체 특성을 지니고 있다. 과학 전문매체 사이언스 얼럿은 스웨덴 린쇼핑 대학교(Linköping University) 연구원들은 금을 더 이상 얇아질 수 없는 원자 1개 두께의 납작한 박막 시트 형태로 만들어내는 새로운 방법을 개발했다며 지난 16일(현지시간) 이같이 보도했다. 재료 과학의 명명 관습에 따라 연구팀은 이 새로운 2차원 물질에 '골덴(goldene)'이라는 이름을 붙였다. 골덴은 3차원 형태의 금에서는 볼 수 없는 몇 가지 흥미로운 특성을 가지고 있다. 스웨덴 린쇼핑 대학교의 재료 과학자 슌 카시와야는 "그래핀처럼 물질을 매우 얇게 만들면 놀라운 일이 일어난다"며 "금도 마찬가지다. 아시다시피 금은 보통 금속이지만, 단일 원자층 두께로 만들면 금이 반도체가 될 수 있다"라고 설명했다. 금은 서로 뭉치는 경향이 있기 때문에 2차원 구조로 동축하는 것은 매우 어렵다. 이전의 시도는 몇 원자 두께의 얇은 시트를 만들거나 다른 물질 사이에 또는 그 위에 단층을 끼워 분리할 수 없는 결과를 낳았다. 카시와야와 연구팀은 금을 만들려고 시작한 것이 아니라 우연히 공정의 첫 단계를 발견하게 됐다고 전했다. 린쇼핑 대학교의 나노 공학 분야의 연구를 이끌고 있는 재료 물리학자 라르스 튈트만(Lars Hultman)은 "우리는 완전히 다른 응용 분야를 염두에 두고 기본 재료를 만들었다"면서 "우리는 실리콘이 얇은 층으로 이루어진 티타늄 실리콘 카바이드라는 전기 전도성 세라믹으로 시작했다. 그런 다음 이 소재를 금으로 코팅해 접촉을 만드는 것이 아이디어였다. 하지만 부품을 고온에 노출시켰을 때 실리콘 층이 기본 재료 내부의 금으로 대체됐다"라고 설명했다. 튈트만 교수는 금속 나노구조의 합성 및 특성 연구에 선구자적인 역할을 했다. 특히, 금속 나노입자, 나노선, 나노막 등 다양한 금속 나노구조를 합성하고, 그들의 광학적, 전기적, 촉매적 특성을 연구해 다양한 응용 분야에 활용 가능한 새로운 재료를 개발하는 데 기여했다. 앞서 연구팀은 단층 금을 만들려는 시도에서 중요한 단계에서 한계에 도달해 연구 과정이 중단됐다. 몇 년 동안 연구팀이 만든 인터칼레이티드 티타늄 금 카바이드는 티타늄과 탄소 층 사이에 있는 초박막 금 층을 추출할 방법이 없어 그냥 그 상태로 남아있었다. 이에 연구팀은 무라카미 시약이라는 에칭 용액에 기반한 기술을 사용해 지난 연구의 한계를 돌파했다. 무라카미 시약은 금속 가공에 사용되는 화학 물질의 혼합물로, 탄소를 에칭하고 강철을 얼룩지게 하여 일부 일본 칼에서 볼 수 있는 무늬를 만들어낸다. 연구팀은 혼합물의 농도와 에칭 공정이 금을 둘러싼 티타늄과 탄소를 부식시키는 시간대를 다르게 시도했다. 무라카미 시약의 에칭 효과는 페로시아나이드 칼륨이라는 부산물을 생성한다. 이 화합물은 빛에 노출되면 시안화물을 방출하여 금을 녹이기 때문에 연구팀은 에칭 공정을 완전히 어둠 속에서 진행해야 했다. 게다가 얇은 금 시트는 말리거나 뭉치는 경향이 있었다. 이에 연구팀은 층이 접히거나 달라붙는 것을 방지하는 계면활성제를 추가해 금의 단일 원자층의 무결성을 유지했다. 연구팀은 이론적 시뮬레이션에서 예측한 대로 이 까다로운 단계를 거쳐 마침내 안정적인 금을 형성하는 데 성공했다. 이번 연구는 학술지 '네이처 신티시스(Nature Synthesis)'에 게재됐다. 일반적으로 금은 우수한 전기 전도성 물질이다. 원소가 2차원 시트 형태를 취할 때 원자는 두 개의 자유 결합을 가지며 도체와 절연체 사이의 전도 특성을 가진 반도체로 변모한다. 이는 전도도를 조절할 수 있기 때문에 유용하다. 다시 말하면, 전기 전도성이 우수하고 부식에 강한 금은 반도체 소자의 접점, 연결 부품, 패키징 등에 사용된다. 금은 나노 크기의 입자로 제조될 수 있으며, 이러한 금 나노 입자는 차세대 반도체 소자의 제작에 활용될 수 있다. 예를 들어, 금 나노 입자는 트랜지스터의 게이트 전극, 메모리 소자의 저장 매질, 광전자 소자의 광 감지 소자 등으로 사용될 수 있다. 게다가 금은 생체 적합성이 우수하고 전기 전도성이 높기 때문에 생체 의료 분야에서 사용되는 뇌-컴퓨터 인터페이스, 심장 박동기 리드, 인공 근육 등의 전극 소재로 활용될 수 있다. 그러나 금은 높은 비용과 가공의 어려움, 제한된 반도체 특성 등의 단점도 존재한다. 금은 반도체 특성이 제한적이기 때문에 고성능 트랜지스터 제작에는 적합하지 않다.
-
- 포커스온
-
[신소재 신기술(33)] 원자 1개 두께의 이상한 형태의 금
-
-
한국, 대미 수출 21년 만에 대중 수출 앞질러...무역 갈등 우려 제기
- 우리나라의 대(對)미국 수출이 반도체를 포함한 제조업 분야의 직접투자(FDI)로 인해 당분간 호조를 보일 것으로 예상되지만, 중장기적인 관점(2∼10년)에서는 무역 제재 등의 여러 위험 요소가 존재할 것이라는 분석이 제시됐다. 한국은행이 18일 발표한 '대미국 수출구조 변화 평가와 전망' 보고서에 따르면 2020년 이후 한국 총수출에서 미국의 비중이 계속 커져 올해 1분기에는 대미국 수출이 2003년 2분기 이후 처음으로 대중국 수출액을 넘어섰다. 2024년 1분기 대미국 수출의 호조는 미국의 강력한 소비와 인플레이션 감축법(IRA) 등 산업정책으로 인한 투자 확대에 대한 한국 기업들의 빠른 대응으로 인한 것이라는 진단이다. 2020년 이후 대미국 수출의 구조적 특징으로는 미국 내수(소비·투자)와의 연계성 강화, 신성장 산업 중심의 중간재 비중과 다양성 확대, 소비재 비중의 장기간 30% 유지 등이 거론됐다. 한국은행은 단기적 관점에서 대미국 수출의 증가 추세가 당분간 지속될 것으로 전망했다. 이는 미국의 활발한 소비와 투자가 한국의 직접 수출뿐만 아니라 중국과 아세안을 통한 간접 수출에도 긍정적인 영향을 미치기 때문이다. 또한, 제조업 분야의 FDI가 증가함에 따라 투자 대상국에 대한 수출도 증가하는 경향을 보이고 있다. 실제로, 2020년 이후 미국 내 생산이 대한국 수입 유발률을 빠르게 증가시키고 있다. 그러나 중장기적으로는 한국 기업의 대미국 FDI가 수출 증가에 미치는 효과가 점차 감소할 것이라는 우려가 제기됐다. 아울러 제조업의 FDI가 늘어나면 투자 대상국에 대한 수출도 증가하는 경향이 있다. 실제로 미국 내 생산에 따른 대한국 수입 유발률은 2020년 이후 빠르게 높아지고 있다. 미국의 산업구조는 수입 중간재보다는 국내 산업의 자체 투입이 우세하며, 높은 생산 비용 때문에 한국 대기업이 FDI를 확대하더라도 국내 중소기업의 동반 진출이 어려울 것이라는 것이 한국은행의 분석이다. 미래에는 자동차와 같은 기존 주력 수출 품목뿐만 아니라 인공지능(AI)과 같은 첨단 분야에서도 미국 시장의 경쟁이 더욱 치열해질 것으로 전망됐다. 일각에서는 대규모 대미국 무역흑자로 인해 미국의 대한국 무역 제재 가능성도 언급됐다. 남석모 한국은행 조사국 국제무역팀 과장은 "과거 미국은 무역수지 적자가 커지거나 자국 산업 보호 여론이 고조될 때 무역 제재를 강화한 사례가 있다"며, 특히 2017∼2018년 동안 트럼프 행정부가 FTA 재협상과 세이프가드 조치를 취한 것을 예로 들었다. 트럼프가 재집권할 경우에 대한 질문에 남 과장은 "무역 제재가 강화될 가능성이 있지만, 선거 운동 중에 제시되는 정책과 실제 집권 후의 정책은 달라질 수 있다"고 답변했다. 통상 압력을 완화하기 위한 방안으로, 미국으로부터 에너지 및 농축산물을 더 많이 수입하는 제안이 나왔다. 이는 에너지와 식량 안보를 확보하고 국내 물가 안정에도 도움이 될 것이라는 주장이다. 남 과장은 "우리 기업들의 대미국 진출이 반도체, 배터리 등 첨단 분야에 집중되어 있어, 이러한 분야에서 국내 투자가 둔화되고 인재 유출의 위험이 있다"며 "인재 유출을 줄이기 위해 기업과 정부가 더욱 적극적으로 협력해야 한다"라고 강조했다.
-
- 경제
-
한국, 대미 수출 21년 만에 대중 수출 앞질러...무역 갈등 우려 제기
-
-
보스턴 다이내믹스의 유압식 휴머노이드 로봇 '아틀라스' 은퇴한다
- 휴머노이드 로봇(인간 신체를 닮은 로봇)이 로보틱스 산업에서 대세를 이루고 있는 가운데, 보스턴 다이내믹스(Boston Dynamics)는 자사의 유압식 휴머노이드 로봇 아틀라스(Atlas)가 은퇴할 것이라고 공식 발표했다. 이 소식은 테크크런치 등 정보기술 매체에 주요 뉴스로 실렸다. 현대차 그룹이 소유한 것으로도 잘 알려진 보스턴 다이내믹스가 이 같은 결정을 내린 것에 대해 의문도 쏟아지고 있다. 경영과 개발 부문에서 독자적인 전략과 방향을 유지해 온 회사가 현재 뜨겁게 부상하면서 수억 달러씩 투자가 집중되는 휴머노이드 로봇을 은퇴시키기 때문에 이상한 결정이라는 것이다. 이와 관련, 테크크런치는 아틀라스의 은퇴는 마지막이 아니라 새로운 차세대 로봇 시대를 위한 시작을 알리는 것일 수도 있다고 보도했다. 보스턴 다이내믹스는 수년 동안 휴머노이드 로봇 기술 상용화에 주력해 왔다. 현대차가 지난 2021년 회사를 인수하고 롭 플레이터가 회사의 두 번째 CEO로 임명되면서, 개발은 더욱 가속화됐다. 애질리티, 피규어, 1X, 앱트로닉 등과 같은 유사한 회사들에 대한 큰 관심을 고려할 때, 보스턴 다이내믹스가 상업용 휴머노이드 로봇에 매진한 것은 당연한 것이었다. 회사는 매사추세츠주 월섬에 본사를 두고 있다. 물론 보스턴 다이내믹스는 현재 휴머노이드 로봇 공학 기술 면에서는 시장을 크게 앞서 있는 것이 사실이다. 아틀라스가 데뷔한 지도 지난해 7월로 10주년을 넘겼다. 회사는 DARPA(미국 고등방위연구계획국)의 자금을 지원받아 아틀라스를 개발했으며, 이를 통해 휴머노이드 로봇 시대를 이끌었다. 백덤블링, 춤추기 등 사람과 유사하게 움직이는 모습으로 대중의 큰 관심과 인기를 끌었다. DARPA는 "아틀라스는 데뷔 당시 그때까지 제작됐던 것 중 가장 진보된 휴머노이드 로봇이었다. 특히 아틀라스에 탑재된 소프트웨어 두뇌와 신경 기술은 독보적이었다. 아틀라스 로봇은 이런 소프트웨어를 담는 물리적인 껍질이었다"고 말했다. 당시 DARPA 프로그램 관리자였던 길 프래트는 로봇을 실제 1살 짜리 인간 어린이에 비유하기도 했다. 두 다리로 움직이는 2족 보행 로봇 아틀라스는 보스턴 다이내믹스의 연구 및 홍보 자료에 지속적으로 등장하면서 지난 10년 동안 많은 발전을 이루었다. 아틀라스가 은퇴를 결정하게 된 결정적인 이유는 유압 장치에 있다는 지적이 많다. 로봇의 이동에 대한 시스템은 인상적으로 큰 발전을 이루었지만, 유압 장치와 같은 특정 부분은 현대 로봇 공학 표준을 감안하면 '이제는 구식'이라는 것이다. 유압식 휴머노이드 로봇은 유압 시스템을 사용하여 움직이는 인간형 로봇이다. 유압 시스템은 압력을 가한 액체(보통 오일)를 사용하여 동력을 전달한다. 유압 시스템은 전기 모터보다 강력한 토크를 제공해 무거운 물건을 들어 올리거나 힘든 작업을 수행하는 데 적합하다. 또한 비교적 간단한 구조로 되어 있어 제작 및 유지 관리가 용이하다. 방수성이 있어 습한 환경에서도 작동할 수 있는 등의 장점이 있다. 반면, 유압 시스템은 많은 양의 액체를 필요로 하기 때문에 로봇 자체가 무겁고, 작동시 소음이 발생하며, 정밀 제어가 어렵다는 등의 단점이 있다. 최근에는 전기 구동 방식의 휴머노이드 로봇이 개발되면서 유압식 로봇의 사용이 감소하고 있는 추세다. 회사 측은 최근까지도 아틀라스의 상용화를 꾀했던 것으로 보인다. 지난 2월에도 보스턴 다이내믹스는 아틀라스를 대대적으로 홍보하는 영상을 내보내고 있었다. 이 영상의 공식 캡션은 "아틀라스는 넘어뜨릴 수 없다!"였다. 휴머노이드 로봇 아틀라스가 힘, 지각력, 이동성을 결합해 실제 작업을 수행할 준비가 되어 있다는 것이었다. 이 영상에서는 또 증강 현실 기술과 공장 현장 작업을 위해 특별히 설계된 새로운 그래퍼도 선보였다. 현대차가 회사를 소유하고 있다는 점을 감안할 때, 궁극적으로 아틀라스 또는 그 후속 모델이 현대차의 미래 자동차를 제작하는 데 도움을 줄 것이라는 기대도 있었다. 그러나 이 홍보물은 아틀라스의 은퇴와 함께, 불투명한 아틀라스의 미래의 길로 들어갈 것으로 보인다.
-
- IT/바이오
-
보스턴 다이내믹스의 유압식 휴머노이드 로봇 '아틀라스' 은퇴한다