검색
-
- 파나소닉 HD, 전기 없이 '수소 생성기' 연구 착수
- 일본의 대표 리튬이온 배터리 제조사인 '파나소닉 홀딩스(HD)'가 전기 없이 수소를 생성하는 기술 연구에 본격적으로 착수했다. 이와 함께, 한국도 탄소배출을 하지 않고 수소를 만드는 '수전해' 기술 개발에 힘을 쏟고 있다. 일본 산업 전문 매체 '뉴스위치(Newswith)'에 따르면, 파나소닉 HD는 '메조결정(mesocrystal)'이라는 특별한 규칙적인 결정 구조를 가진 금속 산화물을 활용하면, 태양광만으로 광촉매의 원리로 물을 분해, 수소를 생산할 수 있다는 연구 결과를 발표했다. 이로써 앞으로 수소 에너지 활용 시, 전기를 사용하는 문제를 극복할 수 있을 것이라는 전망이 나왔다. 메조결정(mesocrystal)은 아주 작은 단위결정들이 결합해 큰 구조를 형성하는 특징을 가진다. 직경이 수백 나노미터(나노는 1/10억)에서 수 마이크로미터(마이크로는 1/1백만) 크기이며, 규칙적이고 조밀한 방식으로 축적된다. 표면적이 증가하기 때문에 특성이 향상되고 광촉매 작용의 효율을 기대할 수 있다는 장점이 있다. 파나소닉 HD는 "소자 표면에 금속 산화물의 메조결정질 용액으로 코팅된 기판을 부착해 빛을 통한 광촉매 반응으로 수분을 분해하는 기술을 개발했다"고 밝혔다. 그러면서 "현재 초소형 실험 장비에서는 이 기술의 기본 작동 원리가 확인됐다"고 덧붙였다. 파나소닉은 2030년까지 이 기술의 프로토타입을 완성하는 것을 목표로, 메조 결정 구조를 더욱 정밀하게 제어하고 장치의 크기를 확장하는 연구에 주력할 계획이다. 또한, 태양광과 물을 분리해 얻은 수소로부터 추가 에너지를 얻기 위해 태양 전지판과 함께 사용하는 등의 응용 방법을 검토하고 있는 것으로 알려졌다. 한편, 한국은 탄소배출을 최소화한 수소생산 기술, 즉 '녹색 수소' 생산에 집중하고 있다. 이를 위한 핵심 기술로는 신재생에너지와 수전해가 대표적이다. 수전해 기술은 전기를 이용해 물을 수소와 산소로 분해하는 과정이다. 이 중, 두산퓨얼셀은 양성자 교환막 기반의 고분자 전해질막(PEM) 수전해 시스템을 2023년 하반기에 상용화할 방침이다. 세계 1위의 선박평형수 전기분해 처리장치 제조사 테크로스는 알카라인 방식의 수전해 시스템 개방 중인 것으로 알려졌다. 이밖에도 SK E&S는 미국의 수소 전문 기업 플러그파워와 손잡고 수전해 분야로의 진출을 준비하고 있다.
-
- IT/바이오
-
- 美 리튬이온 배터리,10분 만에 80% 충전 가능한 소재 개발
- 미국 오크리지 국립연구소(Oak Ridge National Laboratory, ORNL)의 연구진이 기존 리튬이온 배터리보다 훨씬 빠른 충전 속도와 오래 지속되는 수명을 가진 새로운 배터리 소재를 개발했다. 최근 사이테크데일리(SciTechDaily)에서 공개된 이 연구에 따르면, 새로 개발된 리튬이온 배터리는 단 10분만에 80%까지 충전이 가능하며, 1500사이클 이상 사용 수명을 자랑한다. 오크리지 국립연구소는 미국 에너지부가 후원하고 UT-Battelle이 연방 기금 연구 개발 센터 (Federally funded research and development centers,FFRDCs)로 관리와 운영을 하는 미국 다중 프로그램 과학 기술 국가 연구소다. 리튬이온 배터리는 액체 전해질을 사용해 갑작스러운 충격이나 압력 변화에 내부 구조가 변화되면 온도가 상승해 폭발할 수 있다. 이번에 개발한 리튬이온 배터리의 핵심 기술은 탄산염 용매를 활용한 새로운 형태의 리튬 염과 이온 흐름의 향상에 있다. 연구팀은 이를 통해 고전류에도 견디며, 배터리 가열 문제가 크게 줄었다는 설명이다. 이번 연구결과는 전기 자동차(EV) 시장에서의 배터리의 충전 시간과 수명 문제를 크게 개선하는 데 기여할 것으로 보인다. 이는 전기자동차의 보급 확대와 환경 보호에 중요한 발판이 될 것으로 전망된다. 이번에 ORNL에서 개발된 배터리는 이온이 전해질, 즉 매개체를 통해 전극 사이로 움직이게 되는 원리로 작동 및 재충전된다. 연구원 즈이지아 두(Zhijia Du)는 탄산염 용매를 활용해 시간이 흐를수록 보다 효율적인 이온 흐름을 보장하는 리튬 염의 새로운 제형을 개발했다. 또한, 이 제형은 고속 충전 시 고전류에 의한 배터리 가열에 효과적으로 대응했다. 아울러 배터리의 안전성과 사이클링 특성을 입증하기 위해 ORNL의 배터리 제조 시설에서 만든 배터리 파우치 셀을 여러 차례 테스트했다. 즈이지아 연구원은 "이 새로운 전해질 제형을 통해 초고속 충전 배터리의 수명을 기존의 3배로 늘릴 수 있음을 확인했다"고 말했다. 이번 연구는 ORNL의 배터리 제조 시설에서 만든 배터리 파우치 셀을 통해 배터리의 안전성과 사이클링 특성을 입증하며 혁신적인 배터리 소재의 가능성을 높였다.
-
- 생활경제
-
- 일본, 리튬이온 배터리 등 6개 품목 세계 점유율 1위
- 일본이 휴대용 리튬이온 배터리, 디지털 카메라 등의 분야에서 두각을 나타내고 있다. 일본 경제 매체 니혼게이자이신문이 최근 발표한 2022년 실시한 '주요 상품 및 서비스 점유율 조사'에 따르면, 일본 기업은 전체 63개 품목 중 6개 품목에서 세계 점유율 1위를 유지하고 있다. 일본의 세계 점유율에서 1위를 차지한 품목은 자동차, 오토바이, CMOS 이미지 센서, 휴대용 리튬이온 배터리, 디지털 카메라, A3 레이저 복사기 및 다기능 복합기였다. 그 중 디지털 카메라와 A3 레이저 복사기 및 다기능 복합기는 모두 캐논이 1위를 차지했다. 조사 결과 일본 기업들이 몇몇 전통적인 분야에서는 여전히 경쟁력을 유지하고 있지만, 성장 중인 시장 혹은 신기술 분야에서의 점유율이 줄어들고 있다는 분석이다. 특히 자동차용 리튬이온 배터리와 스마트 워치 분야에서 미국, 중국, 한국의 기업들이 선두로 나서는 것은 글로벌 경쟁력 측면에서 일본에 큰 도전이다. 일본 기업 중에는 1위를 차지하고 있지만 수익을 올리지 못하는 분야도 있으며, 이는 해외 대기업들이 해당 분야에 주력 투자를 하지 않는 것과 관련이 있을 수 있다는 지적도 나왔다. 디지털 카메라 시장의 규모는 2022년에 720만 대였다. 이는 2021년의 849만 대에서 15.2% 감소한 수치다. 스마트폰과 같은 고성능 기기의 카메라 기능이 발전함에 따라 디지털 카메라 시장이 어려움을 겪고 있는 결과다. A3 레이저 복사기 및 다기능 복합기 역시 2021년 대비 1.1% 감소한 337만 대로 출하 대수가 줄었다. 자동차용 리튬이온 배터리는 2021년 대비 시장 규모가 82.7% 증가했지만, 파나소닉 홀딩스(Panasonic Holdings) 점유율은 8.5%로 작년의 12.0%에서 3.5% 하락했다. 반도체 제조 장비에서도 시장 규모가 8.4% 증가하는 가운데, 도쿄 일렉트론(Tokyo Electron)의 점유율은 2.0% 감소한 13.2%를 차지했다. 이 두 회사 모두 점유 순위는 작년의 3위에서 4위로 내려갔다. 시장 규모가 11.3% 증가한 탄산 음료에서도 산토리 홀딩스(Suntory Holdings)와 아사히 그룹 홀딩스(Asahi Group Holdings)의 합산 점유율이 0.2 포인트 감소했다. 한편, 마이크로컨트롤러(MCU)는 시장 규모가 2자리로 급증했으며, 르네사스 일렉트로닉스(Renesas Electronics)는 0.4% 소폭 증가했다. 일본 기업들이 16개 품목에서 상위 3위 안에 든 것은 기술력과 경쟁력을 보여주는 지표로 볼 수 있다. 특히 조선 분야에서 이마바리 조선이 작년 5위에서 3위로 상승한 것은 주목할 만한 성과다. 중국과 한국 같은 강력한 경쟁자들 사이에서 점유율을 늘린 것은 이마바리 조선의 기술 및 경영 능력의 향상을 반영하는 것으로 볼 수 있다. 그러나 이 회사의 점유율은 작년 대비 0.1% 포인트 증가한 6.0%를 차지한 것은 조선 분야의 경쟁이 얼마나 치열한지 나타내는 방증이다. 액정용 유리에서는 일본 전기 유리가 작년의 3위에서 2위로 순위를 올리며, 작년 2위인 AGC를 눌렀다. 중소형 액정 패널에서는 샤프와 재팬 디스플레이(Japan Display)가 각각 1위로 올라섰다. 상위 5개 기업이 모두 일본 기업이었던 2개 품목 이외에는 점유율은 액정용 유리(40.7%), CMOS 이미지 센서(47.9%), 휴대용 리튬이온 배터리(37.5%), 베어링(24.6%) 등이었다. 이번 조사에서는 중대형 트럭, 주식 매매, 조선, 마이크로컨트롤러(MCU) 등 4개 품목에서 세계 1위가 교체되었다는 점도 주목할만 하다. 일본 기업은 일부 품목에서 높은 점유율을 유지하고 있지만, 이를 유지하고 새로운 분야에서 경쟁력을 향상시키기 위해서 연구 및 개발 투자를 확대하고, 글로벌 시장의 트렌드를 빠르게 파악하여 대응 전략을 세워야 할 것으로 보인다. 컨설팅 기업 PwC재팬(PwC Japan)의 피베트 쿠미코 시니어 매니저는 "성장 시장에서 리스크를 효과적으로 관리하면서 얼마나 강하게 공세를 가해야 하는지를 확실히 판단하는 것이 중요하다"고 말했다.
-
- 산업
-
- 일본-캐나다, 전기차 배터리 공급망 구축 협력
- 일본이 캐나다와 베터리 공급망에 관한 협력 각서를 체결할 계획이다. 15일 일본 요미우리 신문과 니혼게이자이신문에 따르면 일본과 캐나다가 전기자동차(EV) 관련 중요 광물 채굴, 배터리 생산 등 공급망 구축을 위해 협력하기로 했다. 보도에 따르면 니시무라 야스토시 경제산업상은 오는 21일 캐나다를 방문, 조너선 윌킨슨 천연자원부 장관 등과 만나 배터리 공급망에 관한 협력 양해각서(MOU)를 체결하기로 했다. 이번 방문에는 파나소닉에너지와 미쓰비시상사 등 기업 관계자들도 동행한다. 이러한 움직임은 베터리 공급망을 더욱 다양화하려는 일본의 의지를 보여주는 것으로 풀이된다. 경제산업성 관계자는 자세한 설명은 생략한 채 "현재로서는 구체적으로 밝힐 수 없지만 배터리 공급망에 대한 협력 각서 체결을 검토하고 있다"며 말을 아꼈다. 협력 양해각서는 일본 기업이 캐나다 현지에서 자원 개발과 현지 생산을 확대하고 양국 정부가 이를 지원한다는 내용으로 들어가는 것으로 알려졌다. 닛케이는 일본의 공공 및 민간 부문이 전기 자동차(EV)용 중요 광물의 탐사 및 가공과 배터리 생산을 통해 캐나다에 공급망을 구축할 것이라고 전했다. 일본 정부는 지난 6월 자국내 배터리 생산에 대한 지원을 최대 22억 달러로 늘렸다. 캐나다 정부는 산업육성과 고용 창출 등을 기대해 현지에 진출하는 일본 기업에 보조금을 지원하는 방안도 강구 중인 것으로 전해졌다. 요미우리는 일본은 코발트, 흑연, 리튬 등 중요 광물의 상당 부분을 중국에 의존하고 있어 경제 안보 관점에서 대중 의존도를 낮출 필요가 있다고 전했다. 이어 캐나다는 미국 시장에 접근하기 유리한 환경을 갖고 있다고 덧붙였다.
-
- 산업
-
- 파나소닉, 2029년까지 드론용 전고체 배터리 생산
- 최근 우크라이나와 러시아 전쟁에서 승리의 판도를 뒤흔들고 있는 무기가 있다. 바로 '드론'이다. 드론은 '웅웅'하는 소리 때문에 붙여진 애칭으로 최근 일본의 파나소닉을 비롯해 한국의 SK온 등 여러 기업들이 소형 드론용 배터리 생산에 집중하고 있다. 일본 매체 닛케이아시아(Nikkei Asia)는 최근 테슬라와 협업하는 공급업체나 도요타 같은 기업들이 전기차에 적용되는 전고체 배터리 개발에 집중하는 가운데, 파나소닉 홀딩스는 2029년까지 소형 드론 및 공장 로봇을 위한 전고체 배터리 판매를 시작할 계획이라고 보도했다. 도요타와 같은 대기업들은 리튬 이온 배터리를 대체할 더 안전한 전기차용 배터리 기술의 개발 경쟁을 벌이고 있다. 파나소닉 그룹의 타츠오 오가와(Tatsuo Ogawa) 최고기술책임자(CTO)는 "새로운 배터리 기술은 초기에는 산업용으로 사용될 예정이며, 전고체 배터리 기술 중 일부는 자동차에도 적용될 것"이라고 밝혔다. 전고체 배터리는 액체 전해질을 쓰는 리튬이온 배터리와 달리, 고체 전해질을 사용해 만들어진 배터리로, 가연성 유기용제를 사용하지 않는다. 그 결과, 이 배터리는 리튬이온 배터리보다 안전성이 높고, 에너지 밀도가 높아져 전기차의 주행 거리를 늘릴 수 있다는 장점이 있다. 하지만 높은 비용과 대량 생산의 어려움이 주요 단점으로 지적된다. 도요타는 2027년까지 전고체 배터리를 장착한 전기차를 시장에 출시하는 것을 목표로 하여 1회 충전만으로 주행 가능 거리를 2배 이상으로 확장하려고 한다. 그 외에도 한국의 삼성SDI, SK온, LG에너지솔루션 등도 전고체 배터리의 개발에 박차를 가하고 있다. 현재 LG에너지솔루션은 2026년 고분자계 전고체 배터리와 2030년 황화물 전고체 배터리의 대량 생산을 목표로 하고 있다. 삼성SDI 역시 2027년에 황화물계 전고체 배터리를 대량 생산할 계획을 가지고 있다. 그러나 테슬라의 핵심 배터리 공급업체인 파나소닉은 차량용 전고체 배터리의 대량 생산 계획을 공개하지 않았다. 파나소닉 관계자에 따르면, 최근에 개발된 전고체 배터리는 기존의 최첨단 리튬 이온 배터리에 비해 에너지 용량은 작지만, 충전 속도는 훨씬 빠르다. 또한, 가장 큰 약점으로 지적되었던 수명 제한 문제도 개선되었다고 전했다. 파나소닉은 이 배터리가 수만 번의 충전 주기를 견딜 수 있다고 발표했다. 이에 전문가들은 전고체 배터리 생산 회사들에게 긍정적인 영향을 미칠 것이라고 전망했다. 테크노 시스템 리서치(Techno Systems Research)의 후지타 미츠타카 연구원은 "드론은 제한된 시장일 수 있지만 새로운 기술의 발전은 여전히 견고하다"고 말했다. 전고체 배터리 개발에는 아직 극복해야 할 여러 문제점이 있지만, 소형 드론을 위한 전고체 배터리의 연구와 개발로 향후 더 큰 발전이 기대된다.
-
- 산업
-
- 눈물로 충전하는 '스마트 렌즈 배터리' 개발
- 눈물로 작동하는 스마트 콘택트 렌즈가 개발됐다. 프랑스 매체 위진누벨(L`USINENOUVELLE)은 싱가포르의 난양 공과대학(Nanyang Technological University)의 연구팀은 지난 9월 초 눈물로 충전되는 배터리를 개발했다고 전했다. 이 스마트 콘택트 렌즈는 눈물을 이용하여 12시간 동안 작동 가능하다. 사용자의 안구 내에 있는 눈물만으로도 배터리를 충전하는 이 기술은 기존 렌즈와 같이 눈에 장착하여 다양한 정보를 제공한다. 이 기술의 도입으로 이메일 확인, 소셜 미디어 접근, 건강 모니터링, 시력 보정 등 다양한 기능이 눈 앞에서 가능해질 전망이다. 물론, 안전한 배터리 개발이 주요 과제로 거론되어 왔으나, 난양 공과대학의 연구팀은 혁신 기술을 통해 스마트 콘택트 렌즈의 보급이 한층 가까와졌다. 특히, 이번에 공개된 배터리는 두께가 0.5mm에 불과한 유연한 형태로, 솔루션 식염수에 담가놓기만 해도 충전이 가능하다. 눈물의 나트륨 및 포타슘 이온이 배터리의 포도당 기반 코팅과 반응하여 전기를 생성하는 원리로 작동한다. 눈물을 흘리기 위해 '타이타닉'과 같은 슬픈 영화를 볼 필요 없이, 평소의 눈물만으로도 이 배터리를 충전하는 데 문제가 없다고 연구진은 밝혔다. 과학자들의 연구 결과를 토대로, 이 배터리는 45 마이크로암페어(μA)의 전류와 201 마이크로와트(mW)의 최대 출력을 제공할 수 있어, 스마트 콘택트 렌즈의 12시간 연속 작동이 가능하다. 그러나, 이 기술의 충전 및 방전 주기는 200회로, 기존 리튬 배터리의 300~500회와 비교할 때 상대적으로 낮다. 리석우(Seok Woo Lee) 난양 공과대학 교수는 "우리 방식은 포도당과 물을 활용하여 전기를 발생시키는데, 이는 인간과 환경에 해가 없다"고 설명했다. 이러한 연구 성과를 바탕으로 난양대 연구팀은 스마트 콘택트 렌즈 제조사들에게 배터리 테스트를 제안할 계획이다. 이 기술의 도입은 스마트 콘택트 렌즈 개발의 속도를 더욱 높일 것으로 전망된다.
-
- 산업
-
- 전기차 시장, '전고체 배터리'가 뜬다…10대 리드 기업 어디?
- 최근 전기차 업계가 주목하는 기술 중 하나는 '전고체 배터리'다. 이 기술은 기존 리튬 이온 배터리보다 에너지 저장 용량이 뛰어나고, 충전 시간도 단축되는 등 탁월한 성능을 자랑한다. 그렇다면 이 전고체 배터리는 기존 배터리와 다른 점은 무엇일까. 전고체 배터리는 이름에서도 알 수 있듯이 액체 전해질이 아닌 고체 전극과 고체 전해질을 사용한다. 이로 인해 배터리의 누출이나 열 문제가 크게 줄어들어 사용자의 안전을 더욱 보장한다. 게다가 작은 크기로도 높은 에너지 밀도를 구현할 수 있어 휴대성과 효율성 모두에서 높은 점수를 받는다. 시장의 변화에 민감하게 반응하는 글로벌 자동차 기업들도 전고체배터리 개발에 발빠르게 뛰어들었다. 토요타와 폭스바겐은 이미 전고체 배터리 기술 개발에 속도를 내고 있다. 이러한 대기업들이 전고체 배터리의 선봉에 서게 될 것인가, 아니면 다른 참여 기업들이 이를 따라잡거나 앞질러 나갈 것인가. 전기차 시장의 미래는 어떻게 전개될지 기대된다. 폭스바겐과 퀀텀스케이프는 전기 자동차용 고체 상태 배터리 기술 개발에 손을 잡았다. 전기차의 두 가지 큰 걸림돌인 '주행 거리'와 '충전 시간'을 해결하기 위해서는 향상된 '에너지 저장 능력'과 '빠른 충전'이 선결과제다. 이 두 마리 토끼를 잡을 수 있는 전고체 배터리는 소비자의 전기차에 대한 인식을 크게 바꿔놓을 것으로 보인다. 전고체 배터리 개발 진행중인 선도적인 10개 기업은 다음과 같다. 1. 도요타 토요타는 21세기 자동차 혁신의 핵심으로 전고체 배터리를 지목하며, 2027년까지 상용화를 목표로 연구개발을 가속화하고 있다. 도요타의 이러한 움직임은, 배터리가 전기차 업계의 핵심 부품임을 감안하면, 전기차 시장에서의 선두 주자로의 복귀를 알리는 신호로 해석된다. 그들은 이미 2012년부터 전고체 배터리 기술 개발에 뛰어들었고, 현재 200명 이상의 전문가로 구성된 팀이 이를 주도하고 있다. 그 결과, 토요타는 1000개 이상의 특허를 보유하게 되었다. 이 기업의 최종 목표는 전고체 배터리의 장점을 살려 완충 상태에서 약 700km (435마일)의 주행 거리를 달성하는 전기차와 하이브리드 차량을 출시하는 것이다. 2. 폭스바겐(Volkswagen) 폭스바겐은 전고체 배터리 연구의 선구자 중 하나인 퀀텀스케이프와 파트너십을 맺고 전기 자동차용 고에너지 밀도 배터리를 개발하고 있다. 2018년 폭스바겐은 퀀텀스케이프와 함께 전기차용(EV) 배터리 기술 개발을 추진했고, 2020년 추가적으로 2억 달러의 투자를 통해 이 연구의 가속화를 선언했다. 퀀텀스케이프는 기존 배터리 대비 전고체 배터리가 약 80% 더 긴 주행 거리와 80% 더 많은 충전량을 제공한다고 주장했다. 2022년 말 현재, 퀀텀스케이프는 전고체 배터리 셀의 시험을 진행 중이다. 폭스바겐은 다른 기업들과 협업하여 고체 상태 기술 및 전극 건조 코팅 공정과 같은 다양한 배터리 기술을 연구 중이며, 이를 2030년에 대량 생산에 투입할 계획이다. 3. 파나소닉(Panasonic) 전세계적인 전기차 시장의 확대와 함께 배터리 기술의 중요성이 강조되는 가운데, '파나소닉'과 '도요타'의 조합이 눈길을 끈다. 두 기업은 2020년 '프라임 플래닛 에너지 솔루션(Prime Planet Energy & Solutions, Inc.)'이라는 이름의 합작기업을 설립, 생산성과 용량 모두에서 우수한 배터리 솔루션을 제공하기 위해 노력하고 있다. 도요타는 이미 전고체 배터리 기술 관련 1000개 이상의 특허를 보유하고 있으며, 파나소닉도 445개의 특허로 그 기술력을 과시하고 있다. 파나소닉은 지난 수십 년 동안 배터리 기술을 선도해 왔다. 특히 전고체 배터리 기술 연구에 주력하며, 액체 전해질로 인한 화재, 폭발 위험 등의 문제점을 해결하고자 고체 상태 배터리로의 전환에 큰 희망을 걸고 있다. 파나소닉은 기술에 대한 구체적인 일정을 제공하지는 않았지만, 연구 및 개발에 적극적으로 투자하고 있다. 특히 도요타, 테슬라, 포드와 같은 국제적인 자동차 기업들과의 협력은, 전고체 배터리의 시장 출시 때 그들이 이 분야의 혁신을 주도할 가능성을 제시한다. 4. 베이징 웨이란신에너지기술(Beijing WeLion New Energy Technology) 중국 기업 니오(Nio)는 배터리 제조업체인 중국 베이징 웨이란신에너지기술(北京卫蓝新能源科技·Beijing WeLion New Energy Technology, 이하 '웨이란'-WeLion)과 파트너십을 맺어 새로운 배터리 기술을 선보였다. 이들 두 기업은 전기 자동차에 대한 반고체 상태 배터리 셀을 생산했다. 반고체 상태 배터리는 리튬 이온 배터리의 젤 전해질과 고체 전해질을 결합한 것이다. 니오는 특히 이번 파트너십을 통해 웨이란으로부터 150 kWh 용량의 반고체 배터리 셀을 공급받게 되었으며, 이 배터리는 'Nio ET7' 전기자동차에 적용될 예정이다. 이러한 혁신적인 기술을 탑재한 세단 'Nio ET7'은 CLTC 기준으로 약 1000킬로미터(621 마일), EPA 기준으로는 740킬로미터(460 마일)의 높은 주행 거리를 자랑한다. 또한, 이 배터리는 'Nio ES6 SUV'에도 적용되어, 약 689킬로미터(428 마일)의 주행 거리를 제공하게 된다. 5. 중국 CATL(Amperex Technology Co. Limited) 중국 배터리 대기업 CATL은 2023년 4월 전기 항공기 전동화를 향한 새로운 움직임을 위해 고체 상태 배터리 기술의 한 형태인 압축형 배터리 셀을 출시했다. 이 배터리 셀은 에너지 밀도가 500 Wh/kg로 매우 높다. 중국의 배터리 대기업 'CATL'은 2023년 4월 전기 항공기의 전동화를 목표로 고채 상태 배터리 기술의 한 형태인 압축형 배터리 셀을 출시했다. 이번에 선보인 배터리 셀은 무려 500 Wh/kg의 높은 에너지 밀도를 자랑한다. 반면, 테슬라가 자랑하는 4680 배터리 셀의 에너지 밀도는 244 Wh/kg에 불과하다. 이를 비교하면 CATL의 신제품은 기존 리튬 이온 배터리에 비해 약 두 배의 충전량을 가지고 있음을 알 수 있다. 이렇게 혁신적인 배터리 기술은 중국 지리자동차(Geely)의 2023년 형 전기차 '지커-001(Zeekr-001 EV)'에도 적용될 수 있으며, 해당 차량은 CLTC 기준으로 641 마일의 주행 거리를 달성할 수 있다. CATL의 압축형 배터리 셀은 이보다 훨씬 더 긴 주행 거리를 제공할 전망이다. 6. 혼다 혼다는 2050년까지 탄소 중립을 목표로 하고 있으며, 이를 위해 제너럴 모터스(GM)와 소니 같은 기업들과 파트너십을 맺어 고체 상태 배터리 기술을 연구하고 있다. 또한 혼다는 일본의 사쿠라에 4300억 엔 (약 2950만 달러)을 투자해 2028년까지 전기 자동차에 고체 상태 배터리 셀을 도입하는 생산 라인을 구축하는 작업을 진행 중이다. 고체 상태 배터리 기술의 가장 큰 단점은 세포의 무결성을 위협하는 덴드라이트(dendrites)의 존재다. 혼다는 덴드라이트 문제를 해결하기 위한 새로운 연구를 진행하고 있다. 이를 통해 2030년까지 연간 200만 대의 배터리 전기 자동차 생산을 목표로 하고 있다. 7. 닛산 닛산은 2028년까지 고체 상태 배터리로 구동되는 차량을 시장에 선보이기 위한 연구를 본격화했다. 가나가와에 위치한 닛산의 연구 센터에서는 2024년까지 고체 상태 셀 프로토타입을 생산하기 위한 공장 건립 작업이 진행 중이다. 고체 상태 배터리 기술 도입 후, 닛산은 EV 배터리 비용을 최소 50% 절감하며, 충전 능력을 현존하는 기술의 세 배로 향상시키고, 에너지 밀도를 두 배로 늘리는 것을 목표로 삼고 있다. 시장에서 현재 주목받는 최고 성능의 배터리 셀은 에너지 밀도 240 Wh/kg을 제공하는데, 닛산의 목표는 이를 480~500 Wh/kg로 높이는 것이다. 이외에도 닛산은 액체 전해질을 사용하지 않는 올 고체 상태 배터리와 나트륨을 활용한 셀에 대한 연구를 활발히 진행하고 있다. 8. 솔리드에너지시스템(SolidEnergy Systems) 솔리드에너지시스템(SES)은 치차오 후 박사(Dr. Qichao Hu)가 2012년에 매사추세츠주 워본(Woburn)에 설립했다. 이 회사는 리튬 금속 기술을 사용하며, 리튬 이온 배터리 셀에서 발견되는 전통적인 젤 대신 분리 막으로 사용한다. SES 리튬 금속 배터리 셀은 에너지 밀도가 400 Wh/kg이며, 전통적인 리튬 이온 배터리 셀의 주행 거리를 두 배로 늘릴 수 있다. SES는 안전하고 효율적인 배터리 개발에 중점을 둔다. 인공 지능 알고리즘을 활용해 배터리의 안전성을 향상시켰고, 가볍고 비용 효율적으로 제작될 수 있다. 게다가 15분만에 배터리의 80%까지 빠르게 충전할 수 있다는 것은 큰 강점이다. 차량 제조업체들과의 협력도 활발한 편이다. 제너럴 모터스(GM), 혼다, 현대자동차, 지리, 기아와 같은 주요 자동차 기업들과 파트너십을 체결하고 있다. 특히 2021년에는 GM이 SES에 1억 3900만 달러를 투자했으며, 2025년부터는 SES의 리튬 금속 배터리 셀을 자동차에 적용할 계획이다. 9. 솔리드 파워(Solid Power) 솔리드 파워는 2011년 콜로라도 대학의 스핀오프로 탄생했으며 현대자동차, BMW, 포드와 같은 글로벌 자동차 제조업체들의 후원을 받으며 빠르게 성장했다. 2021년에는 콜로라도 주의 손턴(Thornton)에 7만5000평방 피트(약 6967제곱미터) 규모의 최첨단 생산 공장을 설립했다. 솔리드 파워의 주요 기술은 전통적인 리튬 이온 배터리의 액체 전해질을 황화물 기반의 고체 전해질로 교체하는 것이다. 이 고체 전해질은 액체 전해질보다 안전하며, 안정적인 성능을 제공한다. 이 회사는 2028년까지 연간 80만 대의 전기차 배터리 셀 생산을 목표로 하고 있으며, 그를 위한 생산 확장 계획을 세우고 있다. 또한, 솔리드 파워는 미국 에너지부의 "전기 자동차를 위한 미국 저탄소 생활 (EVs4ALL)" 프로그램에서 총 4200만 달러 중 560만 달러의 지원을 받아 연구 및 개발 활동을 지속적으로 진행하고 있다. 10. 실라 나노 테크놀로지스(Sila Nanotechnologies) 실라 나노 테크놀로지스는 BMW, 다임러 AG(Daimler AG), 지멘스(Siemens), CATL과 같은 세계적인 기업들과 전략적 파트너십을 체결해 전기 자동차용 고체 상태 배터리의 상용화를 위한 강력한 투자 지원을 확보했다. 산업 내 주요 플레이어들의 지원 아래, 이 회사는 2028년까지 150 GWh 이상의 대규모 배터리 셀 생산을 목표로 하는 로드맵을 구축하고 있다. 특히, 실라 나노는 20% 더 긴 주행 거리와 20분만에 10-80%까지 충전이 가능한 타이탄 실리콘(Titan Silicon) 배터리 셀을 선보였다. 이 기술은 메르세데스-벤츠의 EQG 모델에 적용될 예정이다. 더욱이, 회사는 기존 고체 상태 배터리 기술의 덴드라이트 현상과 부피가 큰 세라믹 전해질의 한계를 극복하기 위한 방안으로, 중간 온도에서 다공성 분리막-양극 스택에 고체 전해질을 용융 침투시키는 방식을 도입할 계획이다.
-
- IT/바이오
-
- 폐배터리 '블랙매스'에서 희토류 재탄생
- 전세계적으로 내연 자동차의 전동화 추세가 가속화되면서 폐배터리 폐기물 처리 문제가 점점 부각되고 있다. 특히 리튬, 코발트, 니켈 등의 중요한 자원이 한정적이라는 점에서 이러한 자원에 대한 과도한 의존이 환경적, 경제적 위험요소로 지적되어 왔다. 그러나 최근 업계는 이 문제의 해결책으로 배터리 재활용 기술에 주목하고 있다. 특히 배터리 폐기 과정에서 발생하는 '블랙매스(Black Mass)'라는 검은색 덩어리에서 희망의 신호가 보이고 있다. 프랑스의 주요 일간지 프레시트론(presse-citron)에 따르면, '블랙매스(Black Mass)'는 말 그대로 짙은 검정색의 분말 덩어리인데, 배터리 제조과정에서 발생하는 폐기물인 스카프(Scarp, 배터리 제조 공장에서 발생하는 불량품)와 폐배터리를 수거해 분쇄한 가루를 지칭한다. 이때 폐배터리를 기술적으로 안전하게 파쇄해야 하며, 이 과정에서 니켈, 코발트, 리튬, 망간 등 가치 있는 희토류 원소들을 고순도로 추출해 내는 기술이 매우 중요하다. 이러한 기술을 활용하면 희소 금속에 대한 의존성을 대폭 감소시킬 수 있을 것으로 보인다. 외신 보도에 따르면, 2030년까지 리튬은 15%, 니켈은 11%, 코발트는 44%의 재활용 소재 비중으로 증가할 것으로 예상된다. 유럽연합(EU)은 2023년까지 재활용 배터리 비율을 최대 73%까지 높이는 내용의 새로운 법안을 채택했다. 다만, EU에서는 국가별로 재료 분류가 달라 블랙매스의 대규모 생산 절차가 좀 복잡하다. '유해 폐기물'이라는 라벨이 부착되면 경제협력개발기구(OECD) 회원국만 수출할 수 있기 때문이다. 또 철, 리튬, 인산염 등을 기반으로 하는 새로운 유형의 배터리 출현도 걸림돌이다. 배터리 찌꺼기에 불과했던 블랙매스는 전기차 확산과 자원의 한계라는 측면에서 볼 때 상당한 이점을 가지고 있다. 이 분야에서 선두에 있는 한국 기업 SK에코플랜트는 경주에 첫 배터리 리사이클링 공장을 구축한 것으로 알려져 미래의 친환경 에너지 솔루션으로서의 가능성을 제시하고 있다. SK에코플랜트는 2026년까지 매년 1만 톤의 블랙매스를 처리할 계획이다. 이는 한국에서 처음으로 건설된 이차전지 재활용 공장이다. 이 회사는 자체 개발한 용매추출 공정을 활용하여 후처리 공정의 경쟁력을 강화하겠다는 전략이다. 또한, 유럽, 미국, 아시아와 같은 배터리 산업의 중심지와 전기차가 널리 보급된 지역에 거점을 마련했다. 박경일 SK에코플랜트 사장은 "전기차 확산 본격화와 한정적인 자원 속에서 이차전지 리사이클링 사업은 선택이 아닌 필수"라며, "글로벌 폐배터리 수거망을 확보한 SK에코플랜트는 이번 경주 리사이클링 사업 추진으로 국내는 물론 글로벌 배터리 리사이클링 시장을 선점해 나갈 것"이라고 밝혔다.
-
- IT/바이오
-
- 효율성 높은 리튬 배터리, 문제점은 무엇?
- 알카라인, 니켈수소, 리튬 등 여러 종류의 배터리가 시장에 나와 있지만, 리튬이온 배터리가 가장 인기 있고 널리 사용되는 것으로 알려져 있다. 리튬 배터리는 고에너지 밀도와 오래 지속되는 수명 때문에 휴대용 장치에 주로 선호되지만, 최근에는 높은 생산 비용과 화재 위험 등이 문제점으로 부각되고 있다. IT 전문 매체 슬래시기어(Slash Gear)는 영국 패러데이 연구소(Faraday Institution) 비아트리체 브라우닝(Beatrice Browning) 박사를 인용, 리튬이온 배터리의 경우 리튬 이온이 전극 안팎으로 순환할 때 발생하는 전극 구조가 손상되면 배터리 수명이 단축될 수 있다고 보도했다. 또한 영국 왕립화학회(Royal Society of Chemistry)의 연구에 따르면, 온도와 충전상태(SoC), 부하 프로필 등의 외부 스트레스 요인이 배터리 성능 저하에 영향을 미쳤으며 시간이 지남에 따라 용량이 감소하는 모습을 보였다. 뉴어크 일렉트로닉스(Newark Electronics)는 배터리를 사용하지 않아도 지속적인 방전으로 인해 노화될 수 있음을 확인했다. 또 제조 결함과 같은 여러 제어 불가능한 이유로 치명적인 결과를 초래할 수도 있다고 지적했다. 배터리는 과충전 혹은 부적절한 전압 사용으로 문제가 발생할 수 있으며, 이러한 문제는 잠재적으로 위험을 수반한다. 실제로 2019년 뉴저지와 2021년 캘리포니아에서는 애플 배터리의 부풀림 이슈 때문에 집단소송이 제기됐다. 물론, 애플 외에도 리튬이온 배터리를 사용하는 많은 다른 전자 제품 회사들이 같은 문제를 겪고 있다. 에너지 효율성과 가벼운 특성으로 오늘날 많은 자동차 제조업체에서 선택하고 있는 리튬이온 배터리는 여전히 화재의 위험이 있다. 미국 환경보호국(Environmental Protection Agency)에 따르면 2013년부터 2020년까지 미국의 64개 지자체 폐기물 시설에서 240건 이상의 리튬이온 배터리 화재가 발생했다. 특히, 2016년에는 삼성이 설계 결함으로 갤럭시 노트7 라인 생산을 영구 중단하는 등 미국 내 190만 대의 갤럭시 노트7을 리콜했다. 더 큰 문제는 리튬 배터리를 처분하는 방법에 여전히 제한이 있다는 점이다. 이러한 배터리는 화재 위험이 있어 운송 과정에서부터 실제 폐기물 처리 장소에 도착해서도 문제를 일으킬 수 있다. 미국 환경보호국은 리튬이온 배터리 단자를 테이프로 감싸고 플라스틱 봉지에 보관하는 것을 권장하고 있다. 슬래시기어는 "리튬을 재활용하는 새로운 방법이 발견되었지만, 가정용 배터리 제품을 적절히 처분하는 것은 많은 노력이 필요하다”며 “모든 사람이 인증된 전자 제품 재활용업자에 가는 시간과 여력이 있지는 않다"고 지적했다. 또한, 비싼 생산 비용도 걸림돌이다. 미국환경보호국에 따르면, 2021년 기준 리튬 배터리의 가격은 1kWh 당 약 132달러(약 17만5810원) 정도로 다른 배터리에 비해 높다. 리튬이온 배터리는 여전히 많은 종류의 전자 제품에서 최고의 선택이지만, 미래에는 보다 더 효율적인 배터리 구성 요소가 필요하다. 이에 업계에서는 리튬 기반 배터리보다 빠르게 충전되는 알루미늄 이온 배터리와 같은 새로운 배터리 기술을 개발하고 있다.
-
- IT/바이오
-
- 스위스 연구지원회사(BTRY), 전고체 배터리 시장 진출
- 스위스 연방재료 과학기술연구소(EMPA)가 혁신적인 배터리 기술로 전고체 배터리 시장에 진출한다. 금속산업 및 광업 전문 매체인 '마이닝(MINING)'에 따르면, EMPA는 전고체 배터리 시장 진입을 목표로 새 회사 'BTRY'를 설립할 예정이다. 이 매체에 따르면, '전고체 배터리(solid state battery)'는 기존 리튬 이온 배터리와 달리 1분 이내의 빠른 충전과 방전이 가능하고 수명이 10배 이상 지속된다. 게다가 온도 변화에도 안정적인 성능을 보인다. 또한 전고체 배터리는 인화성이 없어 안전하다. 기존의 리튬 이온 셀은 부주의하게 취급하거나 손상될 경우 유독한 가스가 방출되거나, 진화가 어려운 위력적인 화재가 발생하기도 했다. 전고체 배터리의 한 예로 박막 배터리(Thin Film battery)가 있다. 이는 반도체 공정기술인 진공증착 방식을 사용해 얇은 기판 위에 양극재, 고체 전해질, 음극재를 순차적으로 적층하여 제작하는 2차 전지를 지칭한다. 고비용으로 대량 생산 난항 박막 배터리는 두께가 단지 0.15mm로, 종이처럼 휘어지는 특성을 가지고 있다. 기존 전지에 비해 고온에서의 안정성이 우수하며, 수명도 매우 길다. 그러나 단위 부피당 충전 용량은 리튬 이온 배터리보다 낮고, 제조 비용은 3배 이상 더 비싸기 때문에 대량 생산에 어려움이 있다. 마이닝에 따르면 BTRY의 책임 연구원인 압데살렘 아리비아(Abdessalem Aribia)와 모리츠 푸셔(Moritz Futscher)가 개발한 이 새로운 배터리는 에너지 저장 용량을 늘리는데 성공했다. 푸셔 연구원은 "박막 배터리 제조 시 사용되는 박막셀의 생산 방법은 현재 반도체 칩과 유리 코팅 제작 기술을 활용하므로, 새로 개발한 박막 배터리의 제조에 큰 어려움이 없을 것"이라고 설명했다. 박막 배터리 저장 용량 향상 박막 배터리는 고정밀 제조 방식을 사용을 하는데 독성 용매가 필요하지 않은 환경 친화적인 장점을 가지고 있으나 아직까지 대량 생산 하기엔 원가 대비 효율성이 낮은 부분이 있다. 이에 아리비아 연구원은 "스마트폰이나 스마트워치처럼 배터리 전체를 구동하는 것이 아니라 일부만을 담당하는 제품에 적합하다"고 밝혔다. BTRY사의 연구원들은 박막 배터리의 에너지 저장 용량 향상을 기반으로 원가 대비 효율성을 개선해 대량 상용화를 목표로 연구에 더욱 매진할 계획이다.
-
- 산업
-
- 바나듐 플로우 배터리, 신재생 에너지의 미래를 열다
- 영국의 배터리 기업인 인비니티 에너지 시스템(Invinity Energy Systems PLC, 이하 인비니티)은 바나듐 플로우 배터리를 활용하여 신재생 에너지를 효율적으로 관리하며, 전력 네트워크의 안정성을 강화하는 혁신적인 기술을 개발하는 데 성공했다. 영국 기술전문매체 프로액티브인베스터스에 따르면 바나듐 플로우 베터리 관련 기술은 대용량 에너지 저장 시스템(ESS)으로 구현되어 재생 에너지의 효과적인 활용을 가능하게 한다. 바나듐은 은빛 회색의 금속으로, 강철 제련이나 연소 과정을 통해 얻어지거나 우라늄 광산에서 추출된다. 바나듐 레독스 배터리는 바나듐을 전해액으로 사용하며, 양극과 음극을 별도의 탱크에 저장함으로써 리튬 이온 배터리처럼 화재나 폭발의 위험 없이 안전하게 작동한다. 이러한 배터리는 바나듐 플로우 배터리(VFB) 또는 바나듐 레독스 플로우 배터리(VRFB)로도 알려져 있다. 바나듐 플로우 배터리는 환경에 친화적이며, 장기적인 에너지 저장에 적합하게 설계돼 다양한 응용 분야에서 활용된다. 전력 그리드의 에너지 저장, 재생 가능 에너지의 통합, 급속 충전 인프라 지원, 산업용 에너지 저장 등 여러 분야에서 이 배터리의 활용성이 증명되고 있다. 이 배터리의 주요 장점은 장기적인 에너지 저장 능력, 안정성, 수천 번의 충방전 수명, 그리고 용량 감소가 최소화된 구조다. 또한, 이 배터리는 환경 친화적이고, 재활용이 가능하며, 빠른 충전이 가능하다는 장점도 가지고 있다. 인비니티는 최근 캐나다의 재생 에너지 프로젝트 개발 회사인 엘리멘탈 에너지(Elemental Energy)에 8.4 MWh 바나듐 플로우 배터리 공급 계약을 체결했다. 해당 배터리는 앨버타의 차피스 레이크 솔라 스토리지(Chappice Lake Solar Storage) 프로젝트에서 활용되어, 앨버타 전력망에 경제적이면서도 환경 친화적인 전력을 제공할 예정이다. 이로써 재생 에너지의 효율적 활용과 전력망의 안정성이 강화될 것으로 예상된다. 인비니티는 이런 프로젝트들을 통해 다양한 분야에 걸쳐 안정적이고 지속 가능한 에너지 솔루션을 제공하는 능력을 갖추었음을 증명하고 있다. 바나듐 플로우 배터리는 신재생 에너지 산업의 미래를 밝히는 중요한 역할을 할 것으로 기대된다.
-
- IT/바이오
-
- 한국전기연구원(KERI), 차세대 '리튬황배터리' 개발 성공
- 기존 배터리가 전기 저장만을 목적으로 했다면, 미래의 배터리는 단순 저장을 넘어서 부가가치 있는 화학물질 생산 기능을 갖는 하이브리드 배터리로 변화할 것으로 보인다. 한국의 연구팀은 아연과 망간을 활용해 이러한 하이브리드 배터리를 개발했고, 그 결과 기존 배터리에 비해 10% 이상의 향상된 전압과 에너지 효율을 보였다. 과학·기술 매체 '사이테크데일리(SciTechDaily)'에 따르면, 최근 과학자들은 단순 전기 저장 외에도 유용한 화학물질을 생성하는 하이브리드 배터리 시스템의 개발에 성공했다고 발표했다. 이 하이브리드 배터리는 전기 에너지를 저장하는 동시에 유용한 화학물질도 생성한다. 전통적인 2차 배터리는 전극 재료에 전기 에너지를 저장하는 방식을 사용한다. 반면, 레독스 흐름 전지(Redox Flow Battery)는 전극에 연결된 탱크에 보관된 화학물질을 활용한다. 이는 산화와 환원의 화학적 반응을 통해 전자가 전해액을 통해 음극에서 양극으로 이동하며 전기에너지를 발생시키는 원리를 기반으로 한다. 이번에 연구자들이 개발한 하이브리드 배터리는 사용 과정에서 푸르푸랄(나일론 합성에 사용되거나 살충제로 활용되는 액체)을 기반으로 한 니켈 수산화물 배터리이다. 이 배터리는 바이오매스(생물 유기체)에서 추출한 푸르푸랄을 푸르푸릴 알코올이나 푸로산 중 하나로 변환할 수 있다. 푸르푸랄 자체는 농업용 바이오매스에서 흔히 발견되는 오탄당에서 형성되는 작은 분자이며, 다양한 화학 분야에서 중요한 중간체로 사용되는 플랫폼 화학물질로 알려져 있다. 이물질은 푸로산으로 산화될 때 식품 방부제, 약물, 향료 합성의 중간체가 될 수 있으며, 환원될 때는 레진(수지), 향료, 약물의 전구체로서의 역할을 하는 푸르푸릴 알코올로 변환된다. 중국 베이징의 청화대학(Tsinghua University)에서 활동하는 하오홍 두안(Haohong Duan) 박사를 포함한 연구팀은 하이브리드 흐름 배터리를 사용해 두 종류의 부가가치 화학물질을 추출함으로써 배터리 시스템의 비용 효율성을 개선하는 데 성공했다. 기존의 충전식 배터리는 충전 과정에서 전극에 전기를 저장하고, 방전 시에는 해당 전기를 회로로 전달한다. 반면 레독스 흐름 전지라는 다른 타입의 배터리는 특정 화학물질에 전기를 저장하며, 해당 화학물질은 두 상태 사이에서 순환하면서 배터리 내에 계속 보관된다. 한국전기연구원(KERI) 차세대전지연구센터 박준우 박사팀과 부산대학교의 박민준 교수팀은 아연과 망간을 주요 소재로 사용하여 고성능 '레독스 흐름 전지' 기술을 개발했다. 레독스 흐름 전지는 큰 용량 저장이 가능하며, 배기가스를 발생시키지 않아 화재나 폭발 위험에서 상대적으로 안정적이다. 이러한 특성으로 인해 에너지저장장치(ESS) 용도로서 많은 관심을 받는 차세대 전지로 평가받고 있다. 연구자들은 에너지 저장 및 제공과 동시에 추가 화학물질을 생산하는 능력을 결합하여 이를 조사했고, 그 과정에서 흥미로운 결과를 발견하게 되었다고 한다. 양극용 이중 기능성 금속 촉매의 혁신적인 발전이 관찰되었는데, 로듐(백금족 금속의 일종)과 구리를 단일 원자 합금으로 조합하여 만들어진 촉매가 등장했다. 이 촉매는 배터리가 충전될 때 푸르푸랄(전해액 포함)을 푸르푸릴 알코올로 효과적으로 변환하며, 방전 시에는 푸로산을 생성한다. 또한 연구원들은 음극에서 니켈-아연 또는 니켈-금속 수소화물 배터리에서 사용되는 음극 재료와 유사한 특성을 가진 코발트-도핑 수산화니켈 재료를 확인했다. 이러한 조합을 통해 참신한 이중용 배터리 시스템이 개발되었다. 태양 전지로 충전된 이 배터리는 4개를 직렬로 연결하여 사용되며, LED 조명과 스마트폰 등의 장치를 작동시키면서도 지속적으로 푸르푸릴 알코올과 푸로산을 생성한다. 이 화학물질들은 흐름 시스템을 통해 전달된다. 이 새로운 하이브리드 배터리는 일반 배터리와 비교하여 에너지 밀도와 전력 밀도에서 유사한 성능을 보이면서도, 동시에 전력과 부가가치 있는 화학물질을 생산한다는 점이 새로 확인되었다. 1kWh의 에너지 저장 시, 0.7kg의 푸르푸릴 알코올이 생성되고, 0.5kWh의 전력 공급 시에는 1kg의 푸로산이 생산된다. 단, 푸르푸랄은 지속적으로 시스템에 공급되며, 최종 제품은 전해질에서 분리해야 한다. 이 연구팀이 제시한 하이브리드 방식은 2차 전지의 지속 가능성과 경제성을 높이는 첫걸음이지만, 이를 더욱 발전시키기 위한 지속적인 노력이 필요하다.
-
- IT/바이오
-
- '리튬 이온 배터리' 단점 고가와 불안정성에 '고체 전해질' 주목
- 전기자동차부터 휴대폰, 가전제품까지 다양한 분야에서 활용되는 리튬 이온 배터리. 그러나 이 배터리의 높은 가격과 안정성 문제로 고체 전해질 배터리가 대안으로 급부상하고 있다. 현재 국내에서는 SK온이 주도하는 가운데, 세계적으로도 도요타 등 주요 기업들이 고체 전해질 배터리의 연구와 개발에 박차를 가하고 있다. 특히 일본 도호쿠 대학의 연구팀은 이 분야의 연구에서 큰 진전을 이루며 주목받고 있다. 일본 에너지 전문 매체 '에너진'에 따르면, 도호쿠 대학 연구원들은 물리 화학분야 국제 저명 학술지인 '재료 화학(Chemistry of Materials)'에 고체 전해질의 구조가 배터리 성능에 어떤 영향을 주는지 예측 가능한 프레임워크를 공개했다. 고체 전해질(Solid Electrolyte)은 전기를 전도하는 역할을 유지하는 물질 중 하나다. 고체 전해질의 주요 특징은 리튬 이온 배터리의 액체 전해질에 비해 화학적 안정성이 탁월하다. 다시 말하면, 고체 전해질은 배터리의 양극과 음극 사이에서 리튬 이온을 전달하는 역할을 하는 전해질을 고체 형태로 만든 것이다. 액체 전해질에 비해 고체 전해질은 화재 위험이 없고, 온도 변화나 외부 충격에도 강한 장점이 있다. 또한, 분리막이 필요 없어 배터리의 구조를 단순화하고, 에너지 밀도를 높일 수 있다. 고체 전해질은 크게 황화물계, 산화물계, 폴리머계 세 가지 종류로 나눌 수 있다. 황화물계 전해질은 리튬 이온 전도도가 높고, 전극과의 접촉면을 넓게 형성할 수 있는 특징이 있다. 산화물계 전해질은 리튬 이온 전도도는 낮지만, 전기화학적 안정성이 우수하다. 폴리머계 전해질은 기존 액체 전해질과 유사한 제조 공정과 비용 경쟁력을 가지고 있다. 하오 리(Hao Li) WPI-AIMR의 부교수는 "에너지 저장 장치의 개발은 지속 가능한 미래를 보장하는 데 필수"라며 "클로소형 2차 복합 수소화물(CTCH, 리튬 이온 기술을 대체할 고체 전해질)은 리튬 이온 기술의 안전성 및 에너지 밀도 한계를 극복할 수 있는 귀중한 대안"이라고 강조했다. 한편, SK온은 단국대 신소재공학과 박희정 교수 연구팀과 공동으로 새로운 고체 전해질 기술을 선보여 관심을 모았다. 이 연구 팀은 산화물계 고체 전해질 소재인 리튬·란타넘·지르코늄·산소(LLZO)의 첨가물질을 추가해 리튬이온전도도를 기존보다 무려 70% 개선한 것으로 알려졌다. 이러한 기술적 진보는 배터리의 화재 위험 감소와 용량 증대 효과가 있을 것으로 예상된다. 국내외 기업들도 전고체 배터리 시장에 본격 진출하고 있다. SK온과 함께 삼성SDI, LG에너지솔루션은 각각 연구와 개발에 나서고 있으며, 일본의 토요타와 중국의 칭다오에너지 역시 전고체 배터리 기술 개발에 힘쓰고 있다. SK온을 비롯해 삼성SDI는 지난 2022년 국내 최초로 전고체 배터리 파일럿 라인을 착공했다. LG에너지솔루션은 오는 2026년 고분자계 전고체 배터리, 2023년 황화물계 전고체 배터리 양산을 목표로 연구를 진행 중이다. 일본 도요타는 전고체 배터리 관련 특허만 약 1000여개에 달할 만큼, 전고체 배터리 연구에 전념하고 있다. 중국에서는 칭다오에너지가 지난 2018년 100메가와트시 규모의 전고체 배터리 파일럿 생산 공장을 건설한 바 있다. 전고체 배터리는 고체 전해질을 사용한 차세대 배터리로, 꿈의 배터리라고도 불린다. 고체 전해질은 전기차와 에너지 저장 분야의 향후 기술적 파장을 주도할 핵심 기술로 떠오르며, 그 가능성이 무궁무진함을 입증하고 있다.
-
- IT/바이오
-
- 전기차 배터리 전문가, CATL 리튬인산철 배터리 급속 충전 이의 제기
- 중국 리튬 이온 배터리 전문 기업 CATL은 지난 8월 중순 세계 최초의 4C 초고속 충전 리튬 인산철 배터리인 '셴싱(Shenxing)'을 개발, '전기차 초고속 충전 시대'를 열었다고 발표했다. 세계 최대의 EV 배터리 제조업체인 CATL(Contemporary Amperex Technology Co.)은 '셴싱' 배터리가 10분 충전으로 전기 자동차에 약 400킬로미터(약 249마일)의 주행 거리를 제공할 수 있다고 주장했다. 그러나 4일(현지시간) 야후 뉴스에 따르면 배터리 기술 과학자 라치드 야자미(Rachid Yazami) 박사는 "전기차의 총 주행 거리로 환산되는 배터리의 사이클 수명, 극한 온도 성능, 안전성 및 비용과 같은 중요한 정보가 CATL의 주장에는 많이 누락되어 있다"며 CALT 주장에 이의를 제기했다. 1979~1980년에 리튬 그래핀 양극을 발명한 야자미 박사는 세계 최고의 배터리 기술 전문가 중 한명이다. 이 양극은 시장에 출시된 리튬 이온 배터리에서 가장 흔히 사용된다. 상업용 리튬 이온 시장은 2023년부터 2032년까지 1303억 달러 규모로 성장할 것으로 예상된다. 리튬인산철(LFP) 배터리의 장점 중 하나는 지속 가능한 청정 에너지 공급원이라는 점이다. 또한 다른 리튬 이온 배터리보다 비용 효율적이고 폭발 위험이 적어 안전하다. CATL은 이 배터리를 연말까지 대량 생산해 2024년 1분기까지 전기차에 탑재할 수 있을 것이라고 밝혔다. 이 회사는 "현재 급속 충전에 대한 불안감이 소비자들이 전기차로 전환하는 것을 막는 가장 큰 요인이 되고 있다"고 말했다. 미국에는 전기차 충전 인프라가 부족하기 때문에 주행 가능 거리는 전기차 소유자와 잠재적 구매자에게 중요한 요소다. 2022년 미국에서 판매되는 전기차의 평균 주행 거리는 291마일(약 470킬로미터)로 알려졌다. CATL은 셴싱의 '높은 에너지 밀도'로 인해 완전 충전 시 435마일(700킬로미터) 이상의 주행거리를 확보할 수 있다고 주장했다. 또한 CATL은 셴싱이 섭씨 -10도(화씨 14℉)에서 30분 만에 0%에서 80%까지 충전할 수 있다고 밝혔다. 더 레지스터는 "셴싱은 LFP 배터리로, 구형 전기차 리튬 배터리보다 과충전 허용 범위가 더 넓다" 면서 "또한 더 높은 온도에서 작동 할 수 있으며, 그 과정에서 더 많은 열이 발생하기 때문에 빠르게 충전하려는 경우 적합하다"고 전했다. 그러나 단점으로 "배터리가 최대 용량에 가까워질수록 충전 속도가 느려지고 추운 날씨도 충전을 지연시킬 수 있다"고 지적했다.
-
- 산업