검색
-
-
NASA 망원경, 빠른 라디오 버스트의 놀라운 비밀 포착!
- 우주에서 전파 폭발이 일어나고 있는 가운데 과학자들은 이 놀라운 현상의 원인을 찾고 있다. 지난 15일(현지시간) 미국 과학전문 매체 싸이테크 데일리에 따르면 최근 미 항공우주국(NASA·나사)의 두 개의 X선 망원경이 빠른 우주 전파 폭발이 발생하기 몇 분 전과 후의 관찰에 성공했다. 이번 관찰은 과학자들이 이러한 전파 폭발을 더 잘 이해하는 데 도움이 될 것으로 기대된다. 빠른 라디오 버스트(FRB)는 1초 미만의 짧은 순간에 태양 1년치 에너지를 방출하는 우주 현상이다. 눈 깜짝할 사이에 거대한 불꽃놀이가 펼쳐지는 것과 비슷하다. 레이저처럼 좁은 방향으로 에너지를 방출하는 빠른 라디오 버스트는 2007년 처음 발견되었지만, 아직 그 원인은 밝혀지지 않았다. 과학자들은 짧은 폭발 시간과 뚜렷한 방향성 때문에 빠른 라디오 버스트의 위치를 정확히 파악하기 어려워 연구에 어려움을 겪고 있다. 2020년 이전에는 먼 은하에서만 관측되었던 빠른 라디오 버스트가 최근 우리 은하계 안에서도 발견됐다. 마그네타라는 강력한 자기장을 가진 별에서 빠른 라디오 버스트가 발생하는 것으로 밝혀졌다. 빠른 라디오 버스트가 마그네타에서 발생하는 이유는 아직 밝혀지지 않았지만 과학자들은 마그네타 표면에서 발생하는 강력한 자기장 재결합, 마그네타 내부의 초유체 붕괴, 마그네타 주변의 플라즈마 와동 등의 가능성을 예상하고 있다. 마그네타는 초신성 폭발 후 남은 죽은 별의 잔해로 이들은 엄청나게 강력한 자기장을 가지고 있다. 이는 태양보다 약 10억 배 이상 강력하다. 마치 거대한 자석과 같은 이 자기장은 주변 환경에 영향을 미치고 심지어 빠른 라디오 버스트를 발생시킬 수도 있다고 과학자들은 지적했다. 2022년 10월, 과학자들은 SGR 1935+2154라는 마그네타에서 또 다른 빠른 라디오 버스트를 관찰했다. 이번 관찰은 국제 우주 정거장(ISS)에 있는 NASA의 니서(Neutron Interior Composition Explorer) 망원경과 낮은 지구 궤도에 있는 뉴스타(Nuclear Spectroscopic Telescope Array/NuSTAR) 망원경의 협력을 통해 자세히 관찰됐다. 이들 망원경은 몇 시간 동안 마그네타를 관찰하해 빠른 라디오 버스트 전후에 소스 물체의 표면과 바로 주변에서 무슨 일이 일어나는지 볼 수 있었다. 연구 결과, 폭발은 마그네타가 갑자기 더 빠르게 회전하기 시작했을 때 두 개의 '글리치(마그네타가 갑작스럽게 회전 속도를 변화시키는 현상)' 사이에서 발생했다는 것을 알게 되었다. SGR 1935+2154는 지름이 약 20km에 불과하며, 초당 3.2회라는 놀라운 속도로 회전하는 마그네타로 이는 표면이 약 11,000km/h의 속도로 움직이고 있는 것과 같다. 이는 서울에서 부산까지 1시간 만에 이동하는 것과 비슷한 속도라고 볼 수 있다. 하지만 2022년 10월 폭발 이후 SGR 1935+2154는 단 9시간 만에 이전 속도보다 느려졌고, 이는 마그네타가 이전보다 약 10배 더 빠르게 속도를 감소시키는 것과 같다. 마치 자동차가 110km/h로 달리다가 9시간 만에 1km/h까지 속도를 줄이는 것과 비슷하다. 연구원들은 이러한 현상이 빠른 라디오 버스트의 생성과 관련이 있을 수 있다고 예상했다. 빠른 라디오 버스트를 생성하는 방법은 아직 밝혀지지 않았지만 과학자들은 여러 가지 가능성을 고려하고 있다. 첫번째로 마그네타가 갑자기 회전 속도를 변화시키는 현상으로, 이 과정에서 에너지가 방출되어 빠른 라디오 버스트를 발생시킬 수 있다. 두번째로 초기 결함으로 인해 마그네타 표면에 균열이 발생하여 화산 폭발처럼 별 내부의 물질이 우주로 방출되었을 수도 있다. 질량을 잃으면 회전하는 물체의 속도가 느려지기 때문에 연구자들은 이것이 마그네타의 급격한 감속을 설명할 수 있다고 생각한다. 세번째로 마그네타의 강력한 자기장 또한 빠른 라디오 버스트의 생성에 영향을 미칠 수 있다. 자기장은 주변 환경에 영향을 미치고, 심지어 입자를 가속하여 에너지 빔을 형성할 수도 있다. 이러한 빔이 다른 물체와 충돌하면 빠른 라디오 버스트를 생성할 수 있다. 그러나 이러한 사건 중 하나만 실시간으로 관찰한 후에도 팀은 이러한 요인(또는 마그네타의 강력한 자기장과 같은 다른 요인) 중 어떤 요인이 빠른 라디오 버스트를 일으킬 수 있는지 확실히 말할 수 없다. 일부는 버스트에 전혀 연결되지 않을 수도 있다. 고다드 우주 비행 센터(Goddard Space Flight Center)의 연구원이자 마그네타 전문 중성자 내부 구성 탐사기(Neutron Interior Composition Explorer) 과학팀의 일원인 조지 유네스(George Younes)는 "빠른 라디오 버스트를 이해하는 데 중요한 것을 의심할 여지 없이 관찰했다"라고 말했다. 그러면서 그는 "하지만 미스터리를 완성하려면 아직 더 많은 데이터가 필요하다고 생각한다"라고 덧붙였다. NASA 망원경은 신비한 심우주 신호 뒤에 숨은 비밀을 밝히는 데 한 걸음 더 다가갔다. 하지만 여전히 많은 미스터리가 남아 있다. 앞으로 더 많은 연구를 통해 빠른 라디오 버스트의 정확한 원인과 메커니즘을 밝혀낼 수 있을 것으로 기대된다.
-
- 산업
-
NASA 망원경, 빠른 라디오 버스트의 놀라운 비밀 포착!
-
-
[퓨처 Eyes(23)] 콘크리트보다 강하고 환경친화적인 차세대 건축자재 '페록'
- 기존 콘크리트보다 5배 강하고 이산화탄소(CO₂)를 흡수하는 환경친화적인 건축 자재 페록이 개발됐다. 콘크리트가 건축 자재로 사용되기 시작한 시기는 고대 로마 시대로 거슬러 올라간다. 로마인들은 기원전 3세기경부터 콘크리트를 사용하기 시작했으며, 이를 활용해 수많은 건축물, 교량, 도로 등을 건설했다. 로마 콘크리트는 화산재와 석회석을 혼합한 것으로, 현대 콘크리트의 전신이라 할 수 있다. 그 당시에 건설된 많은 구조물들이 오늘날까지도 남아 있어 그 내구성을 입증하고 있다. 미국 애리조나 대학에서 개발된 '페록(Ferrock)'이라는 새로운 건축 자재가 과학 저널을 통해 최근 또 다시 주목받고 있다. '페록(Ferrock)'은 '철'과 '돌'이 결합된 용어다. 시멘트 대용품으로 사용되는 친환경 건축 자재인 페록은 주로 폐철강 분진과 유리 분쇄물에서 나온 실리카 등 재활용 재료로 생산된다. 철강 분진은 이산화탄소와 반응해 탄산철을 생성하고, 이것이 응고되면 페록이 된다. 미국 매체 쿨다운(TCD)에 따르면 페록은 기존 콘크리트보다 강하면서 환경친화적이라는 특징을 지니고 있어 건물이나 인프라 구조물 설계에 혁신을 가져올 수 있다는 평가를 받고 있다. 강철 분진과 실리카의 혼합물을 철암 및 물과 혼합하고 고농도의 이산화탄소에 노출시키면 페록 경화 과정이 진행된다. 페록의 강도는 일반 포틀랜드 시멘트로 만든 콘크리트의 5배에 달한다. 또한 기존 콘크리트에 비해 더 유연하다. 균열 없이 움직임과 압력을 견디는 페록은 콘크리트에 비해 지진에 의한 압축 하중을 더 많이 견딘다. 일반적으로 페록 강도는 34.5 Mpa(메가파스칼)에서 48 Mpa 사이이며 일부 페록 테스트에서는 69 Mpa에 도달했다. 갓 만들어진 페록은 빠르게 굳으며 최대 강도에 도달하는 데 약 1주일이 걸린다. 페록의 개발은 10여 년 전, 데이비드 스톤 박사 연구원이 시멘트 대체재 개발 대회에서 폐철강 분진을 사용해 우승하면서 시작됐다. 2013년 특허를 획득한 스톤 박사는 '아이언쉘(Iron Shell)' 회사를 설립해 페록 상용화에 나섰다. 스톤 박사는 "실험실에서의 우연한 발견에서 시작됐다"라고 말했다. 보다 지속 가능한 건축 산업 혁신은 짚을 포함한 모든 종류의 재료를 사용하는 전 세계 연구자들의 관심사다. 폐 철강도 바로 여기에 속한다. 건설업계 전문지 사이언스다이렉트(ScienceDirect)에 따르면 페록은 기존 콘크리트보다 압축 강도 13.5%, 인장 강도 20%, 휨 강도 18%가 강하다. 또한 주재료인 철강 분진과 유리 분말을 포함해 페록 제조 과정에 사용되는 재료의 95%는 재활용 재료로 이루어져 비용 효율이 높은 것으로 알려졌다. 아울러 경화 과정에서 특별한 화학 반응을 통해 대기 중 이산화탄소를 흡수해 오염을 줄이는 효과도 있다. 전 세계 시멘트 연간 생산량은 40억 톤이며, 제조 과정에서 지구 대기 오염의 8%를 차지한다고 로이터통신은 전했다. 현재 공개된 페록 사진은 벽돌 모양의 슬라브와 굳어서 벽을 형성하는 슬러리 형태를 보여준다. 보고서는 폐철강 확보 등 과제가 아직 남아있지만 소규모 프로젝트부터 적용 가능하다고 전했다. 페록 외에도 콘크리트보다 더 강한 신소재에 대한 연구는 다양한 분야에서 활발히 이루어지고 있다. 그래핀이나 탄소 나노튜브, 고성능 폴리머,금속 매트릭스 복합 재료 등의 신소재들은 건축, 항공, 자동차 등 여러 산업에서의 응용 가능성을 탐색하고 있다. 먼저 그래핀은 탄소 원자가 2차원 평면상에서 벌집 모양의 격자를 이루는 형태로, 강철보다 약 100배 강하면서도 매우 가벼운 물질이다. 그래핀은 높은 전도성, 유연성, 투명성을 가지며, 이러한 특성으로 인해 전자기기, 에너지 저장 장치, 심지어 건축재료에 이르기까지 광범위한 응용이 기대되고 있다. 탄소 나노튜브(Carbon Nanotubes, CNTs)는 그래핀을 원통형으로 말아 만든 나노스케일의 튜브 형태로, 뛰어난 인장 강도와 탄성 모듈러스를 가지고 있다. 이러한 속성으로 탄소 나노튜브는 항공우주, 군사, 스포츠 용품 등의 고성능 재료에 유용하게 활용될 수 있다. 고성능 폴리머 등 여러 고분자 재료들은 새로운 제조 기술과 결합해 콘크리트보다 훨씬 강하면서도 가벼운 신소재를 만드는 데 사용된다. 이들은 높은 내구성, 우수한 열 저항성 및 화학 저항성을 제공한다. 금속 매트릭스 복합재료(Metal Matrix Composites, MMCs)는 금속을 기반으로 해 다른 금속이나 비금속 재료를 강화재로 추가하여 제작된다. 이러한 복합재료는 원래 금속의 좋은 성질에 강화재의 특성을 더해, 더 높은 강도와 경도, 개선된 내구성을 제공한다. 그밖에 세라믹 매트릭스 복합재료(Ceramic Matrix Composites, CMCs)는 세라믹을 기반으로 하며, 강화재로 탄소 나노튜브나 그래핀 같은 나노물질을 사용할 수 있다. 이들은 높은 온도에서의 안정성, 낮은 밀도, 뛰어난 내마모성 등을 제공한다. 이러한 신소재들은 각각의 독특한 특성으로 인해 콘크리트와 같은 전통적인 건축 재료를 대체하거나, 그 성능을 크게 향상시킬 수 있는 잠재력을 가지고 있다. 연구와 개발이 계속됨에 따라, 페록과 그래핀 등 신소재들의 생산 비용이 절감되고, 더 넓은 적용 범위와 함께 실용화될 것으로 기대된다.
-
- 포커스온
-
[퓨처 Eyes(23)] 콘크리트보다 강하고 환경친화적인 차세대 건축자재 '페록'
-
-
나사 주노 탐사선, 목성 위성 '이오' 초근접 비행…화산 활동 원인·패턴 규명 기대
- 미국 항공우주국(NASA·나사)의 주노 우주선이 목성의 위성 이오(Io)에 대한 대담한 초근접 비행을 통해 화산 활동의 원인과 패턴을 탐구할 수 있는 새로운 기회의 문을 열었다고 과학 기술 전문 매체 퓨처리즘이 지난 7일(현지시간) 보도했다. 나사에 따르면 주노 우주선은 지난주 태양계에서 가장 활발한 화산 활동을 보이는 이오에 20년 만에 가장 근접한 비행을 실시했다. 이 과정에서 주노는 이오의 변화무쌍한 표면과 화산 활동의 새로운 이미지를 포착했다. 주노 우주선은 지구 저궤도를 벗어나 이오의 표면에서 약 930마일(약 1497미터) 이내까지 접근했을 가능성이 높은 것으로 알려졌다. 나사는 이번의 드문 초근접 비행을 통해 주노 우주선의 장비가 아주 풍부한 데이터를 축적했을 것으로 기대하고 있다. 주노, 이오 위성 20년 만에 초근접 촬영 이미 주노가 포착한 사진들은 이오의 화산 활동의 실체를 드러내는 데 큰 도움이 될 것으로 보인다. 이 사진들에는 유황으로 덮인 평원과 드문드문 솟아 있는 이오의 산들이 선명하게 포착됐다. 이는 갈릴레이 위성의 노란색과 갈색 색조에 대한 이해를 높이는 데 기여할 것이다. 또한, 목성에서 반사된 햇빛 덕분에 달의 어두운 면도 관찰될 수 있었다. 이번 근접 비행은 태양계 탐사에서 중요한 이정표가 될 것으로 기대된다. 사우스웨스트 연구소의 물리학자이자 주노 탐사선의 수석 연구원인 스콧 볼튼은 최근 뉴욕 타임스와의 인터뷰에서 이오 표면의 다양한 지형을 페퍼로니 피자에 비유하며 "경외감을 느꼈다"고 말했다. 이오, 뜨거운 용암 분출 위성 태양계에서 화산 활동이 가장 활발한 목성의 위성중 하나인 이오는 뜨거운 온도로 유명하다. 천문학자들은 이오의 지각 아래에 마그마의 바다가 존재한다고 믿고 있으며, 주노의 데이터를 통해 이를 확인할 수 있을 것으로 기대하고 있다. 이오의 열은 거대한 조석력에 의해 더욱 증폭되는 것으로 알려져 있다. 이오가 목성과 다른 위성들 사이의 중력적 힘겨루기의 중심에 위치해 마그마를 뒤흔들고, '조석 가열'이라는 현상을 통해 엄청난 마찰열을 생성한다고 한다. 이오는 갈릴레이 위성들과 달리 물이 존재하지 않지만, 그 대신 전혀 다른 형태의 액체인 용암이 흘러내린다. 이 용암의 흐름은 이오의 중요한 특징 중 하나이고, 때때로 수백 개의 화산이 장관을 이루며 분출하는 광경을 연출한다. 이 용암은 이오의 내부(마그마로 추정되는 바다)에서 끊임없이 표면으로 흘러나와 정기적으로 이전에 없던 완전히 새로운 표면을 만들고, 용암 호수로 메운다. 과학자들은 주노를 통해 이러한 화산 현상의 원인과 어떤 패턴이 있는 지를 탐구하고 있다. 볼튼은 비행 완료에 앞서 성명을 통해 "이번 비행에서 얻은 데이터와 이전 관측 자료를 결합하여 주도 과학팀은 이오의 화산이 어떻게 변화하는지 연구하고 있다"고 설명했다. 그는 "우리는 화산이 얼마나 자주 분출하는지, 얼마나 밝고 뜨거운지, 용암 흐름의 모양이 어떻게 변하는 지, 그리고 이오의 활동이 목성 자기권의 하전 입자의 흐름과 어떻게 연결되어 있는지 찾고 있다"고 말했다. 주노 우주선은 오는 2월 3일 목성을 다시 한번 '초근접' 촬영할 예정이다. 이는 7년 넘게 궤도를 돌면서 57번째로 목성을 근접 비행하는 임무가 될 것이다. 한편, 목성은 태양계의 다섯번째 행성이자 가장 큰 행성으로 종종 행성의 왕으로 불린다. 목성은 4개의 갈릴레이 위성을 포함해 최소 500개의 위성이 있는 것으로 알려져 있다. 일부 과학자들은 목성이 최대 600개의 위성을 가지고 있다고 추산하기도 한다. '갈릴레이 위성' 또는 '갈릴레오 위성'은 1610년 과학자 갈릴레이 갈릴레오가 목성 주변에서 발견한 4개의 위성을 말한다. 이들 위성은 이오, 에우로페, 가니메데, 칼리스토 등 제우스(목성의 이름)의 연인의 이름을 따서 지었다. 주노(Juno) 우주선은 나사의 목성 탐사선으로 2011년 8월 5일 뉴 프런티어의 일환으로 케이프커내버럴 공군 기지에서 발사됐다. 극 궤도에 존재하는 성분과 중력장, 자기장 등을 조사하는 임무를 맡았다. 그밖에 목성의 대기에 존재하는 물의 양과 바위 응어리 존재 여부, 행성의 질량 분포, 시속 600km에 도달할 수 있는 목성의 대기 조사 등의 임무를 수행하고 있다. 오는 2024년 2월 3일 58번째로 이오 위성을 근접 통과할 예정이며 2025년 9월 2차 탐사 확장 계획이 종료된다.
-
- IT/바이오
-
나사 주노 탐사선, 목성 위성 '이오' 초근접 비행…화산 활동 원인·패턴 규명 기대
-
-
美 슈미트 해양연구소, 태평양서 1.5km 높이 거대 해산 발견
- 연구선 팔코르(Falkor)호가 과테말라 해역에서 두바이의 부르즈 칼리파보다 두 배 더 높은 해산을 발견했다. 미국 비영리 운영재단 슈미트 해양 연구소(Schmidt Ocean Institute·SOI)에서 진행하는 해저 매핑 프로젝트가 태평양에서 1.5km 높이의 해산을 발견했다고 야후 뉴스가 최근 보도했다. 이 해산은 세계에서 가장 높은 건물인 두바이의 부르즈 칼리파보다 두 배 더 높다. 연구선 팔코르 호 팀이 발견한 해산은 과테말라 배타적 경제 수역에서 약 84해리(154.92km) 떨어진 곳에 위치하고 있으며, 14.19㎢(5.4 평방마일)의 면적을 차지하고 있다. 해산은 일반적으로 화산으로 시작되는 수중 산으로 이번에 발견한 해산은 전형적인 화산 모양을 하고 있으며, 가파른 둥근 측면과 평평한 꼭대기를 가지고 있다. 국립해양대기국(NOAA)은 이 해산이 화산 기원과 활동의 잔재인 분화구가 잠재되어 있다고 전했다. 해산은 심해 산호와 해면동물, 그리고 수많은 무척추동물이 서식하는 '생명의 오아시스' 역할을 한다. 따라서 이번 발견은 과학적으로 중요한 의미를 갖는다. 슈미트 해양 연구소의 죠티카 비르마니(Jyotika Virmani) 전무 이사는 "지금까지 파도 밑에 숨겨져 있던 1.5km가 넘는 해산은 우리가 아직 발견하지 못한 것이 얼마나 많은지를 강조한다"고 말했다. 이 해산은 과테말라 분지에 위치하고 있으며, 약 2000만 년 전에 형성된 것으로 추정된다. 해산의 꼭대기에는 다양한 종류의 해양 생물이 서식하고 있으며, 특히 심해 산호와 해면동물이 풍부하다고 한다. 연구진이 발견한 해산은 새로운 생명체의 발견으로 이어질 가능성이 높으며 해양 생태계의 보존과 지속 가능한 개발에도 기여할 수 있을 것으로 전망하고 있다. 팔코르호는 이번 발견 외에도, 갈라파고스 제도 해양보호구역에 있는 두 개의 미지의 해산, 세 개의 새로운 열수 분출구, 열수 분출구 아래의 새로운 생태계, 두 개의 깨끗한 냉수 산호초 등 일련의 해저 발견을 했다.
-
- 산업
-
美 슈미트 해양연구소, 태평양서 1.5km 높이 거대 해산 발견
-
-
화산인가 소행성인가? AI, 공룡 멸종에 답하다
- 전통적으로 공룡의 멸종 원인은 운석의 충돌과 화산 분출 같은 복잡한 요인들로 인식되어 왔다. 그러나 최근에는 인공지능(AI)을 활용한 새로운 접근 방식이 등장했다. 과학기술 전문매체 '사이테크데일리(SciTechDaily)'에 따르면, 미국 다트머스 대학의 연구팀이 AI를 사용해 6600만 년 전 공룡 멸종에 관한 화석 기록을 역설계하는 혁신적인 방법을 시도했다. 이 연구에서 연구팀은 복잡한 지질학적 기후 데이터를 분석할 수 있는 연결된 프로세서 네트워크를 활용하여 '사이언스(Science)' 저널에 결과를 발표했다. 연구팀은 약 130개의 프로세서를 이용해 백악기-팔레오기 멸종(K-Pg) 사건의 원인과 조건을 역추적했다. 다트머스 대학의 지구과학과 대학원생이자 이 연구의 주 저자인 알렉스 콕스(Alex Cox)는 연구의 목표가 가설이나 편견 없이 평가하는 것이었으며, 탄소 순환 모델을 적용해 최소한의 정보만으로 원인을 파악했다고 밝혔다. 콕스는 이 모델이 지질학적 기록에서 어떻게 결론에 도달했는지 보여준다고 설명했다. 이 연구에서 사용된 모델은 K-Pg 멸종 이전과 이후 약 100만 년 동안의 이산화탄소 및 이산화황 배출, 그리고 생물학적 생산성을 포함한 30만 개 이상의 다양한 시나리오를 분석했다. 마르코브 체인 몬테 카를로(Markov Chain Monte Carlo)로 알려진 기계 학습 유형을 통해 프로세서는 독립적으로 협력하여 일치하는 시나리오에 도달할 때까지 결론을 비교, 수정 및 재계산 했으며, 그 결과는 화석 기록에 보존되어 있다. 화석 기록에 담긴 지구화학적 및 유기적 잔존물은 K-Pg 멸종 당시의 격변적인 상황을 선명하게 보여준다. 이 시기는 지질학적으로 유황이 햇빛을 가리고, 공기 중에 미네랄이 가득하며, 이산화탄소로 인해 열이 가두어진 불안정한 대기로 인해 먹이 사슬이 붕괴되어 전 세계의 동식물이 대규모 멸종을 겪은 시기였다. 이러한 효과는 분명하지만, 멸종의 정확한 원인은 아직 명확히 밝혀지지 않았다. 초기에는 화산 폭발로 인한 공룡 멸종 이론이 주목받았으나, 현재는 멕시코에서 발견된 수 마일 너비의 칙슬루브(Chicxulub) 충돌 분화구로 인한 소행성 충돌이 주요 원인으로 여겨진다. 화석 증거가 지구의 역사상 전례 없는 '원투 펀치' 현상을 시사하면서, 과학계의 이론이 점차 수렴하기 시작했다. 이 이론에 따르면, 소행성은 이미 인도 서부 데칸 트랩의 강력한 화산 활동으로 인해 불안정한 상태에 있던 지구에 충돌했을 가능성이 있다. 그러나 과학자들 사이에서는 여전히 이 두 사건이 공룡 대량 멸종에 어느 정도 기여했는지에 대한 의견 일치가 없다. 이에 대해 브레힌 켈러(Brenhin Keller) 다트머스 대학 지구과학 조교수 겸 이 연구의 공동 저자와 알렉스 콕스는 코드가 어떤 결과를 도출하는지 실험해보기로 결정했다. 해당 연구팀의 모델은 데칸 트랩에서 방출된 기후 변화를 일으키는 가스가 단독으로도 전 지구적인 멸종을 촉발할 수 있음을 시사한다. 데칸 트랩의 화산 활동은 칙슬루브 소행성의 충돌보다 약 30만 년 전에 시작되었으며, 이 폭발은 거의 100만 년 동안 지속되었다. 이 기간 동안 데칸 트랩은 최대 10조 4000억 톤의 이산화탄소와 9조 3000억 톤의 황을 대기 중으로 배출했을 것으로 추정된다. 브레힌 켈러는 이에 대해 "역사적으로 화산 활동이 대규모 멸종을 일으킬 수 있다는 것은 잘 알려져 있지만, 이번 연구는 환경에 미치는 영향을 증거에 근거하여 휘발성 물질의 배출량을 독립적으로 추정한 최초의 사례"라고 설명했다. 그는 이어 "우리 모델은 인간의 편견 없이 독립적으로 데이터를 분석하여 지질학적 기록에서 볼 수 있는 기후와 탄소 순환의 교란에 필요한 이산화탄소와 이산화황의 양을 결정했고, 이는 데칸 트랩의 배출량과 일치하는 것으로 나타났다"고 덧붙였다. 연구팀의 모델은 칙슬루브 충돌 당시 심해에서 유기 탄소의 축적이 급격히 감소한 사실을 밝혀냈다. 이는 소행성 충돌이 다수의 동식물 종의 멸종을 초래했을 가능성이 크다는 것을 의미한다. 또한, 기록에 따르면 매머드급 운석이 유황이 풍부한 표면과 충돌했을 때, 대기 중으로 유황(단기 냉각 효과를 가진)이 대량으로 방출되었을 가능성이 있으며, 이와 연관된 기온 하락의 흔적이 발견된다. 소행성 충돌은 탄소와 이산화황을 방출했을 가능성이 높지만, 모델은 이 두 가스의 방출이 그 당시 급격히 증가하지 않았음을 발견했다. 이는 소행성 충돌이 멸종에 기여한 주요 원인이 가스 방출이 아니었을 가능성을 시사한다. 콕스는 현대 맥락에서 볼 때, 2000년부터 2023년까지 화석 연료의 연소로 인해 연간 약 160억 톤의 이산화탄소가 대기 중으로 배출되었다고 언급했다. 이는 데칸 트랩에서 과학자들이 추정하는 최대 연간 배출량보다 약 100배 더 많은 양이다. 콕스는 현재의 이산화탄소 배출량이 고대 화산에서 방출된 총량과 일치하기까지 여전히 수천 년이 소요될 것이라고 언급했다. 이는 자체적으로 매우 놀라운 사실이다. 그는 "우리 연구의 결과가 물리적으로 타당하다는 것이 가장 고무적인 부분이며, 이는 모델이 강력한 사전 제약 없이도 기술적으로 완벽하게 실행될 수 있음을 시사한다"고 말했다. 또한, 연구팀은 프로세서를 상호 연결하여 대규모 데이터 세트의 분석 시간을 몇 달 또는 몇 년에서 몇 시간으로 대폭 단축하는 데 성공했다. 이는 과학적 연구의 효율성과 속도를 혁신적으로 개선한 사례로 볼 수 있다 콕스는 "이와 같은 유형의 병렬 역전 과정은 지구 과학 모델링 분야에서 이전에는 시도된 적이 없었다"고 언급했다. 그는 이어 "우리의 방법론은 수천 개의 프로세서를 동원할 수 있어, 훨씬 더 광범위한 솔루션 공간을 탐색할 수 있으며, 인간의 편견으로부터 크게 자유롭다"고 설명했다. 그는 또한 "지금까지 우리 분야의 전문가들은 우리가 도달한 결론보다는 이 새로운 방법론에 더 매료되어 왔다"라고 말했다. 콕스는 "지구 시스템에 대해 우리가 결과는 알지만 원인은 모르는 경우가 많으며, 이러한 시스템은 역전될 가능성이 높다. 출력에 대한 더 나은 이해는 그 결과를 초래한 입력을 더 정확하게 특성화하는 데 도움이 된다"고 덧붙였다.
-
- 생활경제
-
화산인가 소행성인가? AI, 공룡 멸종에 답하다
-
-
일본, 해저 화산 폭발로 새로운 섬 탄생
- 세계 곳곳에서 해수면 상승으로 인한 섬 침몰 우려가 커지고 있는 가운데, 일본에서 해저 화산 폭발로 새로운 섬이 탄생했다고 지오 뉴스(Geo News)가 전했다. 일본 기상청(JMA)은 지난 11월 1일, 태평양 오가사와라 제도 이오지마 해역에서 해저 화산 폭발로 새로운 섬이 형성되었다고 밝혔다. 이 섬은 일본 수도인 도쿄에서 남쪽으로 약 1200km 떨어진 이오지마 앞바다에서 약 1km 지점에 위치한다. 섬의 크기는 가로 약 400m, 세로 약 200m로 추정된다. 지난 1일 일본 해상자위대가 섬이 바다 위로 떠오른 모습을 촬영하면서 새로운 섬이 형성된 것이 세상에 알려졌다. 기상청은 작년부터 이 지역의 화산 활동을 모니터링해 왔으며, 지난 10월 30일 발생한 해저 화산 폭발로 분출한 암석이 쌓이면서 이 섬이 형성된 것으로 보고 있다. 폭발 당시 섬은 해수면 위로 약 30m가량 솟아올랐으며, 이후에도 화산 활동이 계속되고 있다. 이후 파도의 침식으로 섬의 형태가 점차 변하고 있는 것으로 알려졌다. 도쿄 대학 지진연구소의 나카다 세츠야 명예 교수는 "분출 전부터 표면 아래에 마그마가 축적되어 있었으며, 이 마그마가 분출하면서 섬이 형성된 것으로 보인다"고 설명했다. 이 섬의 육지를 형성한 주요 퇴적물은 경석이다. 담색 또는 백색의 화산 생성물인 경석은 화산에서 분출한 마그마가 갑자기 식으면서 생긴 돌로 스펀지처럼 구멍이 많은 것이 특징이다. 또한 이 섬에는 토사가 많아서 앞으로 파도에 씻겨 사라질 수도 있다. 이오지마 해안 부근에 새로운 육지가 형성된 것은 이번이 처음이 아니다. 됴쿄대 지진연구소는 화산 활동이 계속되면 섬이 더 커질 수 있다고 내다봤다. 일본은 해수면 상승으로 인해 섬 침몰 피해를 입을 가능성이 있는 국가 중 하나로, 일본 정부는 섬의 침몰을 막기 위해 해안 보호 시설을 강화하는 등 다양한 노력을 기울이고 있다.
-
- 산업
-
일본, 해저 화산 폭발로 새로운 섬 탄생
-
-
화성 지진, 운석 충돌 아닌 지각 내부 활동 때문
- 우주과학 전문 매체 머커닷더(Merkur.de)는 2022년 5월 4일 화성에서 발생한 규모 4.7의 지진은 미국 항공우주국(NASA)의 인사이트호(InSight)에 의해 포착되었으며, 화성에서 발견된 가장 강력한 지진 중 하나로 기록되었다고 최근 보도했다. 당시 NASA는 이 지진이 운석 충돌로 인해 발생했다는 가능성을 제기했다. 그러나 옥스퍼드대의 벤저민 페르난도 교수가 주도한 국제 연구팀은 다른 가설을 제기했다. 이 연구팀은 화성 표면을 철저히 조사한 결과, 지진을 일으킬 만한 충분한 운석 충돌 흔적을 찾지 못했다고 발표했다. 대신, 화성 지각 내부의 엄청난 압력 변화가 지진의 주 원인이라고 지목다. 연구팀은 전 세계 화성 탐사 프로젝트가 공동으로 화성 표면을 탐색했으나 강진을 유발할만한 운석 충돌 흔적을 찾지 못했다고 밝혔다. 대신 화성 내부에 응축돼 있던 엄청난 지각의 힘이 방출되면서 규모 4.7의 강진을 일으킨 것으로 결론지었다. 연구팀은 화성 지각 내부의 높은 압력이 지각의 얇은 구조와 관련이 있을 것으로 추정했다. 화성의 지각은 지구보다 얇고, 그로 인해 암석층이 더욱 활발하게 움직일 수 있다. 화성의 지각은 지구처럼 판이 움직이지는 않지만, 내부의 암석층은 다른 속도로 냉각과 수축 과정을 겪으면서 지진을 유발하는 압력을 쌓게 된다. 이러한 상황에서 충분한 압력이 축적되면, 암석층이 파괴되면서 지진이 발생하게 된다는 것이 연구팀의 결론이다. 이번에 발생한 화성 지진의 규모는 4.7로, 지구의 지진에 비해 상대적으로 약하지만 화성에서는 매우 강한 편에 속한다. 이 지진은 화성 북극 부근의 거대한 화산인 발행산에서 북서쪽으로 약 280km 떨어진 지점에서 발생했다. 인사이트호는 지진이 발생한 지점에서 대략 1000km 떨어진 곳에 있었으며, 다행히도 지진으로 인해 피해는 발생하지 않았다. 이번 연구는 화성의 지질학적 특성과 활동에 대한 중요한 통찰을 제공할 것으로 예상된다. 화성의 지진 활동 분석은 화성의 내부 구조와 진화 과정을 이해하는 데 도움이 될 것으로 보인다. 특히, 이번 연구는 화성 내부의 암석층이 상당히 활발하게 움직이고 있음을 보여주며, 이로 인해 화성의 지질 활동이 지구보다 활발할 수 있다는 가설을 제시했다. NASA는 이번 연구 결과를 통해 화성의 지질학적 활동에 대한 이해를 넓힐 수 있을 것으로 기대하며, 향후 인사이트호를 통해 화성의 지진 활동을 지속적으로 관측할 계획이다. 한편, 인사이트(InSight)는 NASA의 화성 지질 탐사 착륙선이다. 화성의 탄생과 태양계의 진화와 형성과정, 내부 온도, 지각활동, 화성의 열분포 등의 연구가 목적이다. 2018년 5월 5일 발사되어, 2018년 11월 26일 화성에 도착해 탐사 임무를 수행중이다. 주요 장비로는 HP3과 지진계 등을 장착했으며, SEIS로 화성 지표면 내부의 파동을 들여다 볼 수 있다. 달에도 아폴로 12호, 14, 15, 16호 미션 때 설치한 지각활동을 탐사하는 지진계가 있다. 현재까지 지구 외 다른 천체에서 관측된 가장 강한 지진은 달에서 1977년 관측된 것으로 우리나라 경주 지진과 비슷한 강도 5.5규모였다.
-
- 산업
-
화성 지진, 운석 충돌 아닌 지각 내부 활동 때문
-
-
신비한 핑크 다이아몬드, 희귀한 이유는?
- 누구나 한 번쯤은 사랑하는 연인이나 결혼 기념일 또는 특별한 순간을 기념하기 위해 다이아몬드를 선물하거나, 혹은 선물 받고 싶다는 생각을 한다. 다이아몬드는 그 자체로 귀중한 보석으로 알려져 있지만, 그 중에서도 핑크 다이아몬드는 특별한 가치를 지닌다. 최근 프랑스의 매체 푸투라(FUTURA)는 이 희귀한 핑크 다이아몬드의 신비한 기원에 대한 연구결과를 보도했다. 다이아몬드의 희소성은 그것이 형성되는 극도의 환경 때문이다. 이런 보석은 지구 내부 약 140~190km 깊이에서 극도의 온도와 압력 속에서 수십억 년 동안 천천히 형성된다. 푸투라에 따르면, 이러한 고유한 형성 과정이 다이아몬드의 가치를 높여준다. 특히, 핑크 다이아몬드는 10만 개의 다이아몬드 중 단 하나만이 가지는 독특한 색상으로, 그것만으로도 특별한 보석임을 확인시켜 준다. 핑크 다이아몬드는 전 세계 몇 안 되는 광산에서만 발견되며, 그 중 호주의 아가일 광산은 시장에 공급되는 핑크 다이아몬드의 약 90%를 생산하고 있다. 호주에 위치한 이 고대 화산에는 특별한 특징이 있다. 이 광산은 일반적인 경우처럼 킴벌라이트[반상조직의 초고철질(ultramafic) 화성암으로 칼륨의 함량이 매우 높다]가 아니라 램프로이트(150km를 초과하는 깊이에서 부분적으로 녹은 맨틀에서 형성되는 암석) 화산 도관에서 채취된 것이다. 이 화산암이 형성된 지질과정은 아직 미스터리한 채로 남아 있다. 학술지 네이처 커뮤니케이션즈(Nature Communications)에 등재된 연구 결과에 따르면, 아가일 램프로이트는 약 13억년 전 형성됐을 것으로 추정된다. 이는 이전까지 추정되던 시기보다 1억년 앞선 것이며, 바로 이 점이 광산의 형성 이해에 큰 영향을 미칠 것으로 보인다. 아가일이 위치한 지구상에서 가장 오래된 대륙 중 하나인 킴벌리 대륙과 북부 오스트레일리아 대륙의 접합 지대는 오래전부터 알려진 지역이다. 이 지점은 약 18억년 전, 세계에서 가장 고대의 대륙 중 하나인 누나(Nuna) 형성 과정에서 생겨났다. 핑크 다이아몬드의 형성에는 극도의 지각압이 필요하다고 여겨진다. 이러한 조건은 아가일 지역에서 충족됐을 것이다. 그렇지만, 이 귀한 다이아몬드가 어떻게 지표면까지 올라왔는지는 아직 풀리지 않았다. 최근 연구에 따르면, 아가일 램프로이트는 대략 13억년 전에 형성되었을 것으로 추정되며, 이는 초대륙 분열의 시작과 일치한다. 그러나 아가일 지역의 분열은 완전히 이루어지지는 않았다. 지각이 매우 얇아진 결과로 마그마가 지표로 상승했고, 이 과정에서 지구 깊은 곳에서 형성된 핑크 다이아몬드가 표면으로 올라 온 것으로 추정된다. 이런 지리적 특징은 앞으로 전 세계에서 새로운 광산 위치를 파악하는 데 중요한 단서가 될 수 있다. 한편, 다이아몬드 산업은 광업에서 더 넓은 제조업 영역으로 확장되고 있다. 금속 촉매제인 철과 니켈을 탄소 파우더에 첨가하여 고온 및 고압에서 다이아몬드 '씨앗'을 합성하는 방법이 개발됐다. 이 합성 다이아몬드 제조 기술을 보유한 국가로는 인도, 중국, 한국 등 총 8개국이 있다. '랩그로운 다이아몬드'라는 이름으로 알려진 이 인공 다이아몬드는 천연 다이아몬드보다 가격이 경제적이다. 환경에 미치는 영향도 크게 줄일 수 있어서 인공 다이아몬드에 대한 수요가 크게 증가하고 있다.
-
- 생활경제
-
신비한 핑크 다이아몬드, 희귀한 이유는?
-
-
달, 고대 얼음 없다..."달 탐사 전략 수정"
- 달의 영구음영 지역에 존재하는 것으로 알려진 얼음이 탄생 초기에 생성된 '고대 얼음'이 아니라는 연구 결과가 공개됐다. 달의 영구음영 지역(permanently shadowed regions, PSR)은 달의 남극과 북극 등 햇빛이 전혀 들지 않는 영원한 음지를 말한다. 과학 기술 전문 매체 인터레스팅엔지니어링에 따르면 행성과학연구소의 새로운 연구 결과, 달의 얼음이 우리가 알고 있는 것보다 훨씬 '젊다'는 사실이 밝혀졌다. 이번 발견으로 달 탐사 전략이 크게 수정될 전망이다. 행성과학연구소의 노버트 쇼르호퍼 선임 연구원이 이끄는 연구팀은 최근 '사이언스 어드밴스(Science Advances)' 학술지에 발표한 논문에서 달의 영구음영 지역(PSR)에 저장된 얼음은 약 34억년 전에 형성된 것으로 기존 추정치인 45억년보다 훨씬 '젊다'는 연구 결과를 공개했다. 쇼르호퍼 박사는 "이번 연구 결과로 달의 지질학적 이해뿐만 아니라 얼음 발견 예측에 대한 전략도 크게 수정될 것"이라고 말했다. 특히, 이 얼음은 달에서의 인간 생명 유지와 연료 생산 자원으로의 활용 가능성 때문에 많은 주목을 받고 있다. 달은 지구로부터 점점 멀어지면서 중요한 스핀 축 방향의 변화를 겪었다. 이 변화 이후에 영구적으로 그림자가 드리운 지역(PSR)이 등장하고 확장됐다. 달의 얼음은 수십억 년에 걸쳐 보존된 것으로 알려져 왔으며, 이로 인해 태양빛에서 가려진 PSR 지역은 여러 탐사 임무의 핵심으로 여겨져 왔다. 그러나 이번 연구 결과는 달 탐사의 궤도를 크게 변경할 필요가 있다는 점이 밝혀졌다. 지난해 발표된 프랑스의 한 연구와도 일치하는 이번 연구 결과는 지구와 달 사이의 거리 변화를 중심으로 진행됐다. 쇼르호퍼 박사는 이에 대한 깊은 통찰을 얻고 즉각 이를 달의 얼음 탐사에 반영하기 위한 조사를 시작했다고 밝혔다. 랄루카 루푸 공동 저자와 논문 작업을 협업한 쇼르호퍼는 지구와 달 사이의 거리 변화 모델을 바탕으로 달의 스핀 축 방향을 추정하고 PSR 지역을 정확하게 매핑했다. 11억년 '젊은' PSR 얼음 일반적으로는 달이 45억 년 전 초기에 혜성과 화산 활동으로 물이 생기거나 수증기를 내뿜었다고 믿어져 왔다. 그러나 이 연구에서는 PSR이 실제로는 약 34억 년 전에 형성되기 시작했다는 사실을 밝혀냈다. 쇼르호퍼는 "현재 극지방에서 발견되는 물은 달 초기의 물이 아니다. 데이터를 기반으로 PSR의 평균 연령은 최대 18억 년으로 추정된다. 따라서 달에는 실제로 '고대 얼음 저장소'가 없다"라고 강조했다. 또한 2009년에 달의 분화구 관측 및 감지 위성을 통해 발견된 물이 위치한 지점의 PSR은 10억 년보다 더 젊다. 쇼르호퍼는 이것이 긍정적인 발견이라고 지적하며, 젊은 PSR에도 얼음이 있을 가능성이 높다는 것을 시사했다. 한편, 이 연구는 얼음이 풍부하게 있는 것으로 보이는 수성의 극지방에 대한 관심을 증대시키고 있다. 쇼르호퍼는 "수성의 PSR이 오래되었을 것이며, 초기에 물을 포착했을 수 있다. 이것이 두 행성 간의 불일치를 설명할 수 있을 것"이라고 추측했다. 쇼르호퍼의 이번 연구는 NASA의 달 데이터 분석 프로그램 보조금과 태양계 탐사 연구 가상 연구소(SSERVI)의 GEODES 노드 지원을 받아 진행했다. 한국 달 탐사선 '다누리' 한편, 한국 달 탐사선 '다누리'도 달의 영구음영 지역 사진을 전송해 우리나라 달 탐사 위상을 높이고 있다. 다누리가 담은 달의 북극 지역 관측 사진은 지난 8월 7일 공개됐다. 달의 북극 지역에 있는 직경 약 20km의 분화구 에르미트-A는 내부에 영원히 태양빛이 닿지 않는 영구음영 지역을 포함하고 있다. 아울러 다량의 물이 얼음 형태로 존재할 것으로 예상되는 지역이기도 하다. 이외에도 다누리는 지구에서 관측하기 쉽지 않은 남극 지역 대형 분화구 드라이갈스키, 미국 아르테미스 III 계획의 착륙 후보지 중 하나인 아문센 분화구 영역 등의 고해상도 이미지를 담아 달의 민낯을 적극 탐사하고 있다. 이들 사진은 지난 8월 7일 대전 한국항공우주연구원에서 열린 '다누리 발사 1주년 기념식 및 우주탐사 심포지엄'에서 공개됐다. 다누리는 작년 8월 5일 오전 8시 8분 미국 플로리다주 케이프커내버럴 우주군 기지에서 발사된 후, 145일 간의 지구-달 항행을 통해 2022년 12월 27일 달 임무궤도에 진입했다. 이후 약 1개월의 시운전을 거쳐 2월 4일 정상 임무운영에 들어갔다. 다누리는 6개의 탑재체로 달 착륙후보지 탐색, 달 과학연구, 우주인터넷기술 검증 등 과학기술 임무를 수행 중이다. 지난 3월에는 우리나라 최초로 달 뒷면 촬영 사진을 전송하기도 했다. 지난 6월 다누리는 잔여 연료량과 본체 영향성 분석을 거쳐 임무운영기간을 2025년까지 연장했다.
-
- 포커스온
-
달, 고대 얼음 없다..."달 탐사 전략 수정"
-
-
아시아에서 은퇴 후 살기 좋은 나라 1위는?
- 추석명절을 앞두고 있는 한국은 10월2일을 임시공휴일로 지정하면서 6일 간의 황금 연휴를 보내게 됐다. 이에 따라 해외여행 수요가 급증할 것으로 예상된다. 실제로 동남아지역 등 근거리 지역을 중심으로 예약률이 크게 증가해 국내 여행업계는 다양한 여행 상품을 마련하고 있다. 이처럼 누구나 휴가 기간 동안 해외여행을 계획하고, 또 한 번쯤은 은퇴 후 동남아시아에서 시간을 보내고 싶다는 설계를 해보기도 한다. 투자분석 전문지 인사이드 몽키(Insider Monkey)가 꼽은 은퇴 후 아시아에서 살기 가장 좋은 나라 5개국을 정리했다. 아시아 지역은 오랜 역사와 찬란한 문화 유산과 빼어난 자연 경관, 저렴한 물가 등 다양한 매력을 갖고 있다. ◇ 카타르 카타르가 은퇴 후 살기 좋은 아시아 국가 5위로 선정됐다. 18점을 얻은 카타르는 2022년 월드컵 개최국으로 스포츠 강국 면모를 과시하기도 했다. 카타르의 현대적인 인프라와 안전 문제, 의료 서비스 등이 전 세계적으로 은퇴자들을 끌어들이고 있다. 고품질의 편의 시설을 합리적인 가격에 즐길 수 있다는 점이 카타르의 장점이다. 여기에 아랍 문화를 대표하는 이벤트와 축제, 다양한 문화 체험 등을 즐길 수 있다. 카타르에서 1인 평균 생활비는 월 2500달러(약 333만 원) 정도로 예상된다. ◇ 라오스 아름다운 자연과 평화로운 라이프 스타일, 풍부한 문화를 내세운 라오스는 평점 19점을 받아 4위에 올랐다. 아시아 최고의 은퇴 주거지 중 한 곳으로 선정된 라오스는 때묻지 않은 자연경관이 힐링을 선사한다. 30개의 사립병원과 의료보험 시스템이 잘 갖춰졌으며, 1인 평균 생활비는 월 1500달러(약 200만 원)가 들어간다. ◇ 오만 카타르의 인접 국가인 오만은 깨끗한 해변, 광활한 사막, 장엄한 산 등 야외 활동을 즐기는 은퇴자들에게 흥미진진한 장소로 꼽혔다. 오만 역시 라오스와 같은 평점 19점을 받았다. 아랍 국가인 오만은 세계적 수준의 의료 시설, 쇼핑 및 레저, 레스토랑 등으로 인생 2막을 준비하는 은퇴자들을 유혹하고 있다. 무스카트와 같은 주요 도시의 원룸 아파트 임대료는 월 약 1000달러(약 133만 원) 정도다. 생활비는 1인당 매달 약 2000달러(약 266만 원)의 들어갈 것으로 예상된다. ◇ 인도네시아 인도네시아가 노후를 보내기 좋은 아시아 국가 2위로 선정됐다. 1만7000개의 섬이 있는 인도네시아는 깨끗한 해변, 거대한 화산, 무성한 열대 우림, 다양한 야생동물 등 은퇴자들에게 그림 같은 배경을 제공한다. 2인 가구는 매월 평균 1900달러(약 253만 원) 비용으로 편안하게 살 수 있으며, 1인 가구의 경우 매달 약 1000달러가 필요하다. 그렇다면 대망의 1위를 차지한 나라는 어디일까? ◇ 말레이시아 말레이시아가 은퇴 후 아시아에서 가장 살기 좋은 나라 1위로 꼽혔다. 저렴한 생활비용과 따뜻한 기후, 맛있는 요리, 수준 높은 의료 서비스 등이 퇴직자들이 이상적인 노후를 보낼 수 있는 최고의 장소로 말레이시아를 꼽은 이유다. 광대한 열대우림과 모래 해변이 은퇴자들에게 즐거움을 더해주며, 저렴한 생활비는 덤이다. 부부의 경우 월 2500달러로 상당히 호화롭게 생활할 수 있고, 1인 가구라면 월 평균 1600달러(약 213만 원)가 소요된다. 한편, 프랑스계 투자은행 나틱시스에서 발표한 '2022년 연례 글로벌 은퇴 지수'를 살펴보면, 한국은 은퇴 후 살기 좋은 나라 17위에 올랐다. 당시 한국은 아시아 국가 중에서 1위를 차지해 눈길을 끌었다. 특히 우리나라서 가장 살기 좋은 지역으로 제주도가 제일 높은 점수를 얻었다.
-
- 생활경제
-
아시아에서 은퇴 후 살기 좋은 나라 1위는?