검색
-
-
[신소재 신기술(15)] 배터리 스타트업 코어셸, 주행거리 희생 없는 저렴한 LFP배터리 선봬
- 배터리 소재 스타트업인 코어쉘(Coreshell)은 저렴한 리튬 이온 배터리 제조 기술을 개발했다고 발표했다. 미국 기술전문매체 티크크런치는 15일(현지시간) 코어쉘이 야금용 실리콘을 활용한 리튬-철-인산염(LFP) 음극과 결합된 실리콘 양극으로 만든 전기차 배터리를 내년부터 양산에 들어간다 보도했다. 회사에 따르면 kWh당 최대 30% 저렴한 비용으로 비교할 수 없는 충전 성능과 안전성을 갖춘 배터리를 만들 수 있다. 야금 등급 실리콘은 고순도 실리콘보다 저렴할 뿐만 아니라 일반적으로 리튬 이온 배터리에 사용되는 흑연 비용의 약 절반에 불과하다는 설명이다. 현재 전기자동차(EV) 보급의 가장 큰 장애물 중 하나는 비용이다. 소비자들은 현재 대부분의 전기자동차는 휘발유 차량보다 가격이 높아 구매를 망설이고 있다. 실리콘은 리튬이온배터리의 음극 단자인 양극에서 흑연을 대체할 수 있는 잠재력이 있다. 실리콘과 흑연 모두 배터리가 충전 중일 때 리튬 이온을 받아들이고 저장한다. 실리콘은 훨씬 더 많은 양의 전기를 저장할 수 있지만 단점이 있다. 충전할 때 양극이 부풀어 오르는 경향이 있다. 흑연 음극은 약간 부풀뿐 크게 팽창하지는 않는다. 하지만 실리콘 양극은 충전할 때 풍선처럼 부풀어 원래 크기의 몇 배까지 팽창할 수 있다. 이를 보완할 수 있는 소재가 없으면 충전과 방전을 반복하면 양극이 무너질 수 있다. 실리콘 음극 기술 개발 경쟁 이에 실리콘의 배터리 성능 향상 잠재력을 인식한 여러 스타트업은 실리콘의 팽창 문제를 해결하기 위해 노력하고 있다. 대부분의 접근 방식은 실리콘의 팽창 특성을 수용하기 위해 특수한 미세 구조를 사용한다. 이들 기업은 자체 개발 배터리를 제조하기 위해 더욱 정제되고 비용이 높은 실리콘을 사용한다. 결과적으로 실리콘 음극은 현재까지 가격 프리미엄을 보다 쉽게 흡수할 수 있는 소비자 전자 제품 및 고급 전기자동차 시장을 타겟으로 했다. 코어쉘은 이전에는 다양한 배터리 재료의 성능 저하를 늦추는 코팅 기술에 주력했지만, 현재는 실리콘 전문 기업으로 전환했다. 조나단 탄 코어쉘 공동 설립자 겸 최고경영자(CEO)는 테크크런치와의 인터뷰에서 "우리는 2년 전 야금용 실리콘 분야에서 획기적인 발전을 이루었다"라고 말했다. 그는 야금용 실리콘 코팅은 충전 및 방전 사이클을 통해 재료를 유지하는 데 도움이 되는 탄력적인 특성을 가지고 있으며 표면 저하도 방지한다고 강조했다. 탄 CEO는 "시장에 출시한 이 기술은 내년부터 상용화에 집중할 것"이라고 밝혔다. 야금 등급 실리콘, 흑연 비용의 절반 탄 CEO는 지난 14일(현지시간) 국제 배터리 세미나의 프레젠테이션에서 야금 등급 실리콘은 고순도 옵션보다 저렴할 뿐만 아니라 일반적으로 리튬 이온 배터리에 사용되는 흑연 비용의 약 절반에 불과하다고 말했다. 코어쉘은 이번 주 금속 생산업체인 페로글로브와 야금용 실리콘 공급 계약을 체결했다. 야금용 실리콘은 전 세계 흑연 공급망을 쥐고 있는 중국을 벗어날 수 있는 지정학적 파급 효과도 있다. 벤치마크 미네랄 인텔리전스에 따르면 전 세계 흑연 음극 공급망의 4분의 3이 중국을 통과한다. 이로 인해 배터리 제조업체와 자동차 제조업체는 곤경에 처해 있다. 미국에서 전기차에 대한 세금 공제 혜택을 받으려면 인플레이션 감축법(IRA)에 따라 배터리 소재의 최소 비율을 미국산 또는 미국과 자유무역협정을 맺은 국가에서 조달해야 한다. 이 비율은 2028년에 90%까지 늘어날 예정이다. 실리콘은 훨씬 더 많은 에너지를 저장할 수 있기 때문에 동일한 용량의 배터리는 흑연에 비해 재료가 더 적게 들어간다. 코어쉘은 이를 감안해 미국이 수요를 충족하기에 충분한 금속 실리콘을 보유해야 한다고 추정했다. 또한 금속 실리콘은 흑연보다 가격이 저렴하기 때문에 중국산 흑연을 완전히 대체할 수 있는 잠재력을 가지고 있다. 리튬-철-인산염(LFP) 음극과 결합된 실리콘 양극 코어쉘이 생산하는 첫 번째 제품은 리튬-철-인산염(LFP) 음극과 결합된 실리콘 양극이 될 예정이다. LFP 음극은 니켈-망간-코발트(NMC) 등 전기차에 사용되는 다른 화학 물질보다 저렴하고 안전하며, 중국 외 지역에서 쉽게 구할 수 있다. 이러한 이점에도 불구하고, 자동차 제조업체들은 NMC에 비해 에너지 밀도가 낮다는 점 때문에 LFP의 광범위한 적용을 망설여 왔다. 그러나 실리콘 음극과의 결합은 이러한 에너지 밀도의 차이를 해결할 것으로 보인다. 코어쉘은 실리콘 음극을 사용함으로써, 흑연 음극을 사용하는 기존의 NMC 배터리에 비해 LFP 배터리가 경쟁 우위를 가질 수 있다고 전망했다. 한편, 코어쉘은 기술을 확장하고 상용화해야 하는 과제가 있다. 이 과정은 쉽지 않으며, 초기 시장은 전기 자전거, 전기 스쿠터, 전기 듄 버기 같은 e-모빌리티 분야가 될 것으로 보인다. 이와 관련해, 코어쉘은 1960년대 상징적인 듄 버기를 제작한 마이어스 맨스(Meyers Manx)와 파트너십을 체결했다. 현재는 자체적으로 재료를 생산하고 있으나, 기술을 라이선스하고 공급업체와 더 긴밀히 협력하는 방안에도 열려 있다. 이 회사는 2025년까지 파트너사에 첫 번째 샘플(A-샘플)을 제공할 계획이다. 또한 10년 내에 자사의 기술이 전기차에 탑재되기를 기대하고 있다. 경쟁 업체인 실라(Sila)와 그룹 14(Group14)도 2025년까지 상업 생산을 목표로 하고 있다. 실리콘 음극 재료는 현재 비용이 더 높지만, 대량 생산과 축적된 경험을 통해 비용을 절감할 수 있는 잠재력을 가지고 있다. 자동차 제조업체들에게 이는 매력적인 옵션이 될 수 있다. 모든 배터리 혁신이 시장의 요구를 충족시키는 것은 아니지만, 리튬 이온 배터리 기술이 비용 효율적으로 계속 발전하려면, 다양한 접근 방식이 필요하다. 코어쉘의 기술이 성공적으로 입증된다면, 중국에 대한 의존도를 줄이면서도 비용 효율적인 배터리 개발로 나아가는 새로운 방향을 제시할 수 있다.
-
- 포커스온
-
[신소재 신기술(15)] 배터리 스타트업 코어셸, 주행거리 희생 없는 저렴한 LFP배터리 선봬
-
-
'바이오플라스틱' 환경 문제의 해답인가, 새로운 문제의 시작인가?
- 생분해성 혹은 식물 기반의 바이오 플라스틱은 급성장하고 있지만 여전히 기후 및 화학 물질에 대한 우려가 제기됐다. 환경건강뉴스(EHN)은 지난 11일(현지시간) 바이오 플라스틱은 미국 멕시칸 푸드 프랜차이즈 치폴레의 퇴비화 가능한 부리또 그릇부터 코카콜라의 식물성 병, 슈퍼마켓의 불투명한 농산물 봉투에 이르기까지, 식품 산업 전반에 걸쳐 확산되고 있다며 이같이 보도했다. 바이오 플라스틱은 그 외에도 자동차 쿠션, 전자제품, 의류, 건축 자재 등에도 사용되고 있다. EHN에서 소개한 바이오 플라스틱의 정의와 장점과 단점을 다음과 같이 정리했다. 전 세계 바이오 플라스틱 산업은 2023년 87억 달러(약 11조 4031억원)에서 2030년 310억 달러(약 40조 6317억 원)로 급성장세를 보이고 있다. 이는 전통적인 플라스틱 산업보다 빠른 성장률이다. 바이오 플라스틱은 전체 플라스틱 시장의 1%에 불과하지만, 일각에서는 바이오 플라스틱이 플라스틱의 지속 가능한 미래라고 선전하고 있다. 오는 4월, 플라스틱 오염 문제에 대한 해결책을 모색하기 위해 개최되는 국제 조약 회담을 앞두고 있는 대표단 중 일부는 바이오 플라스틱을 조약의 대안 및 대체품으로 포함시키려는 움직임을 보이고 있다. 유럽 바이오플라스틱 협회는 웹사이트에서 "바이오플라스틱이 플라스틱의 진화를 주도하고 있다"고 주장하며 바이오플라스틱의 장점으로 기존 플라스틱에 비해 '탄소 중립성'과 특정 조건에서의 생분해성을 꼽았다. 그러나 바이오 플라스틱이 분해 속도가 빠르고, 더 안전한 소재일 뿐만 아니라 탄소 발자국이 적다는 주장은 과장된 면이 있다. 전문가들은 바이오 플라스틱이 다양한 해결책 중 하나가 될 잠재력을 가지고 있음을 인정하면서도, 제품의 수명 종료 시 관리 및 화학적 안전성을 설계에 포함시키고, 기업의 그린워싱을 방지할 수 있는 더 강력한 표준과 규제의 필요성을 강조했다. 그린워싱(Greenwashing)은 기업이나 조직이 자신들의 제품, 서비스, 정책이 환경에 미치는 영향이 실제보다 훨씬 친환경적이거나 지속 가능하다는 인상을 주기 위해 마케팅 전략이나 홍보 활동을 하는 행위를 말한다. 이러한 행위는 대중에게 오해를 불러일으키거나 잘못된 정보를 제공하여, 실제로는 환경에 해를 끼칠 수 있는 제품이나 서비스를 친환경적인 것처럼 포장하는 것을 포함할 수 있다. 바이오 플라스틱 폐기물 규제 없어 노르웨이 과학기술연구소의 마틴 와그너 생물학 부교수는 바이오 기반 플라스틱을 안전한 방법으로 제조할 수 있다면, 물론 이는 매우 큰 전제이지만, 우려되는 화학 물질을 배제하고, 나노 및 미세 플라스틱의 생성을 최소화하는 방식으로 생산될 경우, 바이오 기반 플라스틱이 해결책의 한 부분이 될 수 있다고 말했다. 와그너의 연구에 따르면, 환경에 우호적인 것으로 여겨지는 퇴비화 가능한 그릇과 식물 기반 음료수 병이 전통적 플라스틱 제품에서 발견되는 것과 같은 수준의 건강에 해로운 화학 물질을 방출할 수 있다는 사실이 밝혀졌다. 또한, 생분해성 바이오 플라스틱이 플라스틱 쓰레기 문제를 근본적으로 해결하지 못한다는 지적도 있다. 바이오 플라스틱은 사용 후 적절한 관리가 필요함에도 불구하고, 바이오 플라스틱 폐기물을 산업적으로 퇴비화하거나 안전하게 관리할 수 있는 인프라나 규정이 아직 충분히 마련되지 않았다. 그로 인해 과학자들과 플라스틱을 지지하는 이들은 플라스틱 사용을 줄이는 것이 플라스틱 위기에 대응하는 가장 핵심적인 해법이라고 강조했다. 특히, 일회용 바이오플라스틱의 사용이 문제를 야기한다고 우려를 표명했다. 플라스틱 재사용을 지지하는 단체인 업스트림(Upstream)의 전무이사 크리스탈 드리스바흐 전무이사는 "지구에서 자원을 수십억 번 채취하고 제조해 단 한 번 사용한 뒤 버리는 행위 자체가 문제의 본질이다"라고 말함으로써, 지속 가능성에 대한 근본적인 접근 필요성을 강조했다. 바이오 플라스틱의 오해 바이오 플라스틱은 생분해성 또는 바이오 기반과 같은 용어가 명확하지 않아 많은 오해를 불러일으킨다는 지적이 있다. 해양 생물학 교수이자 플리머스 대학교 해양 연구소의 리처드 톰슨 소장은 "냉소적인 시각으로 보면 바이오플라스틱은 혼란을 일으키기 위해 의도적으로 만들어진 용어라고 생각한다"고 꼬집었다. 많은 사람들이 모든 바이오 플라스틱이 환경에서 생분해되거나 분해된다고 잘못 알고 있다는 지적이다. 또한 많은 사람들이 바이오 플라스틱이 식물 기반이라고 생각하지만, 폴리부틸렌 아디페이트 테레프탈레이트(PBAT)와 같이 화석 연료로만 만들어진 제품도 있다. 업계에서는 PBAT와 같은 물질을 바이오 플라스틱이라고 부르는데, 이는 화학 결합의 유형과 환경 조건에 따라 식물 기반 바이오 플라스틱과 마찬가지로 분해되도록 설계됐기 때문이다. 또한 업계에서는 바이오 플라스틱을 주로 생분해성 플라스틱과 비생분해성 플라스틱으로 나누며, 이들 각각의 범주 안에서 식물 기반 플라스틱과 화석 연료 기반 플라스틱을 동일한 그룹으로 분류하는 경향이 있다. 전 세계적으로 생산되는 플라스틱은 대체로 이 두 범주로 구분된다. 퇴비화 가능한 바이오 플라스틱은 업계 표준에 따라 산업 퇴비화 시설에서 12주 이내에 완전히 분해될 수 있는 생분해성 바이오플라스틱의 특정 부류에 속한다. 다른 한편으로, 비생분해성 바이오 플라스틱에는 사탕수수, 사탕무, 당밀, 또는 옥수수 등에서 추출된 바이오 기반의 폴리에틸렌(바이오-PE), 바이오 기반 폴리에틸렌 테레프탈레이트(바이오-PET), 폴리아미드(나일론) 등이 포함된다. 이 바이오 플라스틱들은 사탕수수 등 천연 자원에서 추출되었음에도 불구하고, 기존의 화석 연료 기반 플라스틱과 유사한 기능성을 제공하도록 설계됐다. 가장 흔히 사용되는 생분해성 바이오플라스틱 중 하나는 폴리락트산(PLA)으로, 옥수수와 같은 전분 기반의 폴리에스테르로 제조된다. 또한, 셀룰로오스 기반의 바이오 플라스틱 섬유도 이 범주에 포함되며, 농업 부산물, 해조류, 효모, 박테리아에서 추출한 폴리하이드록시알카노에이트(PHA)와 폴리부틸렌숙신산염(PBS)으로 제작된 바이오플라스틱도 동일한 범주 안에 속한다. '3세대' 바이오플라스틱은 농업 폐기물, 음식물 쓰레기, 다시마, 스위치그래스, 폐유, 박테리아, 목재 폐기물 등 다양한 원료를 활용하여 제작되며, 식량 작물을 사용하지 않기 때문에 보다 지속 가능한 대안으로 간주된다. 이러한 3세대 바이오플라스틱 제품들은 이미 시장에 출시되어 있지만, PLA나 바이오 폴리아미드를 사용한 제품들의 규모에는 아직 미치지 못하고 있다. 바이오 플라스틱 사용 용도는? 플라스틱 산업 협회의 지속 가능성 담당 매니저 헤더 노츠는 일회용 바이오 플라스틱 음료 용기, 퇴비화 가능한 식품 서비스 용기, 소매 포장, 그리고 기타 식품 산업 관련 제품이 바이오 플라스틱 사용의 약 43%를 차지한다고 말했다. 그중에서도 PLA와 바이오 PET의 사용이 가장 많다. 노츠에 따르면, 생분해성 멀치 필름 및 기타 농업용 제품이 주로 PLA와 PHA로 제조되어 전체 바이오 플라스틱 사용량의 약 21%를 차지한다. 또한, 안경, 섬유, 컵, 아이폰 케이스, 커피 포드 등의 소비재들은 전체 사용량의 13%를 차지하며, 이들 제품은 생분해성 및 비생분해성 다양한 바이오 플라스틱으로 제작된다. 자동차 산업도 바이오 플라스틱의 또 다른 중요한 소비자 군이다. 자동차 쿠션, 대시보드, 범퍼, 배터리 커버 및 기타 부품들이 점점 더 바이오 기반의 폴리아미드 및 바이오 PP로 제작되고 있다. 바이오 플라스틱의 사용은 또한 건축 및 건설, 전자, 코팅 산업에서도 확장되고 있지만, 상대적으로 더 적은 비율을 차지한다. 대규모 바이오 플라스틱 제조업체들은 대부분 화석 연료 기반 플라스틱을 생산하는 대형 석유화학 회사의 내부 사업부이거나, 이러한 대기업에서 독립한 분사 회사들이다. 그럼에도 불구하고, 어떤 회사가 시장에서 선도적인 위치를 차지하고 있는지에 대해서는 재무 분석가들 사이에 의견이 분분하다. 예를 들어, 인사이더 몽키는 바이오 플라스틱 부문이 전체 시가총액에서 차지하는 비중이 비록 작지만, 전체 시가총액 기준으로 BASF SE, 다우, 라이온델바젤 인더스트리, LG화학, 셀라니즈를 상위 5대 제조업체로 지목했다. 반면, 다른 분석가들은 석유화학 기업에 인수되었거나, 석유화학 기업과의 합작 투자를 통해 성장한 기업들을 시장의 선두 주자로 보는 경향이 있다. 이러한 기업으로는 네덜란드 암스테르담에 본사를 둔 다국적 식품 및 바이오케미컬 기업 코비온(Corbion), 영국 옥스퍼드에 본사를 둔 바이오플라스틱 생산 및 개발회사 바이옴 바이오플라스틱(Biome Bioplastics), 텐마크 코펜하겐의 플랜틱(Plantic), 미국 미시건 주의 네이처웍스(NatureWorks), 태국 방콕에 본사를 둔 바이오플라스틱 및 바이오케미컬 회사 PTT MCC바이오케미(PTT MCC Biochem) 등이 포함된다. 환경과 건강에 미치는 영향 바이오플라스틱은 전통적인 플라스틱과 유사한 제조 공정을 거쳐 생산된다. 이 폴리머는 최소한 부분적으로 식물 재료에서 추출한 화학 물질을 기반으로 하며, 때로는 화석 연료에서 완전히 추출한 화학 물질로 구성된다. 제품의 유연성, 내구성, 색상 및 기타 특성을 조정하기 위해 다양한 화학적 충전재, 첨가제 및 염료가 첨가된다. 세계자연기금(WWF)의 플라스틱 폐기물 및 사업 책임자인 에린 사이먼 부사장은 바이오 플라스틱이 여전히 독성 화학 물질을 포함할 수 있다고 말했다. 사이먼은 “PET를 제조할 때, 오래된 탄소 또는 새로운 탄소를 사용하더라도, 궁극적으로 같은 제품을 만들기 때문에 많은 가공 화학 물질이 여전히 필요하다”며, 바이오 플라스틱 생산 과정에서도 화학 물질의 사용이 불가피함을 지적했다. 와그너의 2020년 연구에 따르면 PLA, PBAT, PHA, PBS, 바이오 PE 및 바이오 PET로 만든 43개의 일상적인 바이오 플라스틱 제품이 기존 제품과 마찬가지로 독성이 있는 것으로 나타났다. 이 중 3분의 2가 환경 내 다양한 생명체에 유해할 가능성이 있는 것으로 나타났으며, 42%는 DNA 손상을 유발할 수 있는 자유 라디칼을 생성하는 화학물질의 존재로 인해 산화 스트레스를 일으키는 것으로 조사됐다. 또한, 4분의 1의 샘플에서는 호르몬 교란 특성이 관찰됐다. 분석된 개별 바이오 플라스틱 샘플에는 평균적으로 1000개에서 최대 2만965개에 이르는 다양한 화학적 특성이 포함되어 있었다. 연구를 주도한 와그너는 "이런 종류의 연구를 진행하면서 가장 충격적인 발견은 개별적인 플라스틱 제품에 엄청나게 많은 화학 물질이 존재한다는 사실이었다"고 말했다. 이 연구 과정에서 발견된 다수의 화학 물질들 중 상당수는 특정되지 않았지만, 와그너는 프탈레이트 같은 '자주 지목되는 화학물질들'은 검출되지 않았다고 말했다. 그는 "바이오플라스틱을 기능적으로 제조하는 데 쓰이는 화학물질들에 대한 우리의 이해가 상당히 제한적임을 발견했다. 폴리머의 화학 구조가 다르기 때문에, 사용되는 첨가제 역시 다를 가능성이 있다"고 밝혔다. 바이오 플라스틱과 기후 변화 바이오플라스틱을 옹호하는 주요 주장 중 하나는 이들이 이론상으로 재생 가능한 자원에서 탄소를 추출할 때 순 이산화탄소 배출량이 증가하지 않으므로, 전체 수명주기 동안 전통적 플라스틱에 비해 훨씬 적은 온실가스를 배출한다는 것이다. 예컨대, 유럽 바이오플라스틱 협회는 전 세계적으로 화석 연료 기반의 폴리에틸렌 수요를 바이오 PE로 대체할 경우, 연간 약 8000만 톤의 이산화탄소 배출을 절감하여 마치 매년 2000만 번의 항공 여행을 줄인 것과 동등한 효과를 가져올 수 있다고 주장한다. 2017년 진행된 연구에서는 미국 내 기존 플라스틱을 옥수수 기반의 PLA로 대체할 경우, 미국 플라스틱 산업에서 발생하는 온실가스 배출량을 25% 감소시킬 수 있을 것으로 추정했다. 이 연구는 또한 화학 산업이 재생 가능 에너지 및 스위치그래스와 같은 더 지속 가능한 원료로 전환함으로써 더 큰 탄소 배출 감소 효과를 달성할 수 있다고 제시했다. 앞서 설명했듯이 바이오 플라스틱 샘플에는 평균적으로 1,000개에서 최대 2만965개에 이르는 다양한 화학적 특성이 포함되어 있음이 밝혀졌다. 드레이스바흐는 세라믹, 스테인리스 스틸, 유리로 만든 재사용 가능한 용기는 수명 기간 동안 일회용 바이오 플라스틱보다 이산화탄소 배출량이 3~10배 적다고 말했다. 하지만 바이오플라스틱이 가져올 수 있는 이산화탄소 절감의 잠재적 이점은, 비료와 살충제의 사용 증가, 그리고 옥수수나 사탕수수 같은 원료의 생산을 위한 토지 개간과 산림 태우기로 인해 일부 상쇄될 수 있다. 또한, 생분해성 플라스틱이 매립지에 매립될 경우, 분해 과정에서 메탄 같은 강력한 온실가스가 배출되어 환경에 또 다른 부담을 줄 수 있다. 바이오 플라스틱 폐기물 규정은? 생분해성 바이오플라스틱의 폐기물 관리는 생분해성을 정의하는 명확한 규정이 부재하기 때문에 복잡한 과제로 남아있다. 업계 자발적 기준에 따르면, 생분해성 제품은 대부분 6개월 이내에 자연적으로 분해되어야 하지만, 생분해성이라고 표시된 일부 제품은 완전히 분해되기까지 수년이 걸릴 수 있다. 예를 들어, 한 연구에 따르면 토양에 묻힌 생분해성 비닐봉지가 3년 후에도 여전히 분해되지 않은 채 발견됐다. 이러한 물질이 퇴비 시설에 매립되면 오염 물질이 되어 걸러내야 한다. 톰슨에 따르면, 재활용 시설에서도 이런 종류의 폐기물은 전체 재활용 플라스틱의 품질을 저하시킬 수 있어 기피 대상이다. 게다가 많은 지역에서는 산업 퇴비화 시설이나 도로변 수거 시설이 부족해, 퇴비화 가능한 포장재와 운반 용기가 결국 매립지나 소각장으로 향하는 경우가 많다. 퇴비화되지 않는 플라스틱이 퇴비화 가능한 플라스틱으로 잘못 인식되는 경우가 빈번하여, 라벨링이 명확하지 않을 때 혼란이 가중된다. 미국 퇴비화 위원회의 린다 노리스-월트 부국장은 이러한 문제를 “그린워싱, 모조품, 짝퉁”이라고 지칭했다. 다수의 퇴비화 업체들이 이러한 재료로 인해 퇴비화 가능한 식품 포장을 기피하며, 이는 업체의 수익성에 부정적인 영향을 미친다. 노리스-월트는 이 문제를 두 가지 주요 요인으로 설명했다. 첫 번째는 처리 과정에서 발생하는 노동력 문제이며, 두 번째는 최종 퇴비 제품의 품질 저하로 인해 농장, 조경업체, 골프장 등의 시장에 미치는 영향이다. 따라서, 바이오플라스틱은 퇴비를 오염시키는 원인이 될 수 있다. 생분해성 인스티튜트(BPI)와 유럽의 대응 기관인 OK컴포스트(OK Compost)는 퇴비화 업체들의 우려에 대응하기 위하여 퇴비화 가능한 포장을 위한 자발적 인증 표준을 마련했다. 이 인증을 획득하기 위해서는 바이오플라스틱 제조업체가 제품의 분해 속도를 증명하는 ASTM 기준을 만족시켜야 하며, PFAS(영구적 화학 물질)를 포함하지 않고, 일반적인 토양 생태독성 테스트를 통과해야 한다. 그러나 노리스-월트는 이러한 인증 프로그램이 퇴비 중 미세 플라스틱 문제를 충분히 고려하지 않는다고 지적했다. 이에도 불구하고, 미국 퇴비화 위원회의 최근 조사 결과, 조사 대상 173개 퇴비업체 중 오직 46개 업체만이 퇴비화 가능한 식품 포장의 사용을 허용하는 것으로 나타났다. 혁신을 위한 기회 전문가들은 바이오플라스틱이 여러 어려움에도 불구하고, 화학적 안전성과 수명이 제품 설계에 주요 고려사항으로 포함될 경우, 농업용 멀치 필름과 같은 특정한 용도에 대해 적합한 대안이 될 수 있다고 지적했다. 린 프로덕션 액션의 마크 로시 전무이사는 플라스틱 사용이 필수적인 상황에서는 바이오플라스틱의 활용을 고려해야 한다고 말했다. 그는 "모든 재료에는 잠재적 문제가 존재한다. 우리는 이러한 재료를 인간의 건강과 안전을 고려하여 어떻게 최적화할 수 있을까?"라고 의문을 제기했다. 플라스틱 산업 내에서 바이오플라스틱은 특정 시장에서의 성장 가능성을 가지고 있지만, 광범위한 대체재로는 여겨지지 않는다. 로시는 바이오플라스틱이 대규모로 기존 플라스틱을 대체할 수 있는 해법이 아니라고 명확히 했다. 다시마나 농업 폐기물로 제작된 차세대 바이오플라스틱은 식량 작물을 원료로 사용함으로써 발생하는 환경적 문제를 어느 정도 해결했으나, 여전히 독성 문제에 대한 해결책을 마련해야 한다는 지적이 있다. 클린 프로덕션 액션은 제조업체들이 자사 제품에서 수천 가지의 유해 화학물질을 식별하고 제거할 수 있도록 돕기 위해, 일회용 식품 포장과 재사용 가능한 용기에 적용할 수 있는 독립적인 표준인 그린스크린(GreenScreen)을 개발했다. 주요 PLA 제조업체 중 하나인 네이처웍스(NatureWorks)는 그린스크린 평가를 통해 자사의 원료가 유해 화학물질을 포함하지 않음을 공식적으로 인증받았다. 그러나 업계 전반에 걸친 변화를 이끌기 위해서는 더 많은 제조업체들이 이러한 제품 인증 과정을 통과해 한다. 노리스-발트는 캘리포니아나 콜로라도에서 시행된 것과 같은 엄격한 라벨링 기준과 법률의 존재가 퇴비화 가능한 바이오플라스틱이 실제로 산업 퇴비화 시설로 올바르게 전달되기 위해 필수적이라고 강조했다. 그녀는 "실수든 의도적이든 시리얼을 퇴비화할 수 있다고 잘못 표시하는 비양심적 기업들에 대해 소송을 제기하는 것만으로도 이러한 오해를 빠르게 중단시킬 수 있다. 여기서 중요한 것은 법의 집행이다"라고 말했다. 전 세계적으로 전문가들은 바이오플라스틱이 현재 직면한 플라스틱 오염 문제에 대응하기 위한 국제적 합의에서 중요한 역할을 하고 있음에 동의하며, 이러한 재료는 기존 플라스틱과는 다르게 관리되어야 한다는 점에 대해 합의했다. 톰슨은 단순히 대안이나 대체재를 찾는 것 이상이 필요하다고 말했다. 그는 "우리가 직면한 문제를 해결할 뿐만 아니라 더 우수한 성능을 제공할 수 있음이 입증된 대안과 대체재가 필요하다"고 강조했다. 톰슨과 와그너가 활동하는 국제적 단체인 '효과적인 글로벌 플라스틱 조약을 위한 과학자 연합'은 플라스틱이 화학물질을 적게 포함하도록 재설계되고, 재료 회수를 간소화할 인센티브를 조약에 포함시키길 바란다. 와그너는 "업계가 1만가지의 화학 물질을 포함하지 않는 제품을 설계하길 바란다"고 말해, 제품 설계 시 화학물질 사용을 대폭 줄이는 것을 목표로 하고 있음을 밝혔다.
-
- 생활경제
-
'바이오플라스틱' 환경 문제의 해답인가, 새로운 문제의 시작인가?
-
-
LG엔솔·SK온, '인터배터리 2024'서 혁신 기술 대방출
- 한국 배터리 선도 기업 LG에너지솔루션과 SK온은 오는 3월 6일부터 8일까지 서울 강남구 코엑스에서 개최되는 국내 최대 규모의 배터리 전시회인 '인터배터리 2024'에 참가해 혁신적인 기술들을 선보일 예정이다. 올해 12회째인 인터배터리 2024는 산업통상자원부가 주최하고 한국배터리산업협회 등이 주관하는 산업 전시회로, 올해는 역대 최대 규모인 전 세계 18개국 579개 배터리 업체가 참가할 예정이다. 지난 2월 29일 한국배터리산업협회에 따르면 이번 행사에는 역대 최대 규모인 전 세계 18개국 579개 배터리 업체가 참여해 1896개의 부스를 운영할 예정이다. 또한 약 7만5000명의 참관객이 찾을 것으로 예상된다. 최신 배터리 관련 기술 및 정보를 공유하는 '더 배터리 콘퍼런스'와 전기차(EV) 산업 전시회인 'EV 트렌드 코리아' 등이 전시회 기간 동안 동시에 개최될 예정이다. 또한, 배터리 잡페어, 미국 전기차 배터리 포럼, 영국 배터리 산업·투자 세미나 등의 부대 행사도 마련되어 있다. LG에너지솔루션은 미드니켈 NCM(니켈·코발트·망간) 배터리와 셀투팩(Cell to Pack) 기술을 전시하고, 삼성SDI는 '꿈의 배터리'로 불리는 전고체 배터리 개발 현황과 구체적 양산 계획을 소개할 예정이다. SK온은 저온 충전과 방전 성능을 개선한 LFP(리튬인산철) 배터리와 급속 충전 성능을 개선한 SF 배터리를 공개하며 다변화 전략 추진 상황을 공유한다. 포스코홀딩스는 리튬·니켈 상업화 원년을 기념하여 그룹 차원에서 전시회에 참여하여 이차전지 소재 전주기 가치사슬(밸류체인) 구축을 완성해가는 모습을 선보인다. 차세대 배터리를 비롯해 LFP와 에너지저장장치(ESS), 원통형 배터리 등 다양한 미래 배터리 기술을 한자리에서 확인할 수 있다는 점도 이번 전시회의 특징이다. 인공지능(AI) 기반 배터리 솔루션과 재활용·재사용 기술 등도 선보일 예정이다. 협회 측은 "원재료부터 소재, 장비·시스템, 배터리 제조, 재사용·재활용까지 배터리 산업 전체 밸류체인을 조망할 수 있을 것"이라고 설명했다. LG엔솔, 파우치형 셀투팩 기술 최초 공개 LG에너지솔루션은 3일 참가업체 중 최대 규모인 540㎡ 규모로 전시공간을 마련, 자체 개발한 파우치형 셀투팩(Cell to Pack·CTP) 기술을 최초로 공개한다고 밝혔다. 셀투팩 기술은 최근 전기차(EV) 배터리 시장에서 주목받는 첨단 팩 디자인으로, 기존 배터리 구성에서 모듈 단계를 제거하고 팩에 직접 셀을 조립하여 에너지 밀도를 향상시키고 배터리 무게와 비용을 절감하는 것이 특징이다. LG에너지솔루션이 개발한 파우치형 셀투팩은 파우치 셀의 가벼운 무게 특성을 유지하면서 팩 강성을 높이고 검증된 열 전달 방지 기술을 적용하여 안정성을 강화했다. 또한, 팩을 구성하는 부품을 줄이고 공정을 단순화하여 제조 원가를 절감하고 가격 경쟁력도 높였다. LG에너지솔루션은 IT 기기용 미드니켈 소형 파우치 셀을 최초로 공개한다. 또한, LG에너지솔루션의 셀, 모듈, 팩 및 배터리 관리 시스템(BMS)까지 적용된 일본 이스즈의 첫 전기 상용차도 국내에 처음 전시될 예정이다. LG에너지솔루션은 이번 전시회를 통해 배터리 제조를 넘어 고객에게 새로운 경험과 가치를 제공하는 배터리 관리 토탈 솔루션(BMTS) 사업을 소개한다. BMTS 사업은 기존 BMS를 더욱 고도화한 개념으로, BMS 서비스, 배터리별 특화된 안전 진단 및 상태 추정 소프트웨어, 클라우드 서비스, 미래형 모빌리티에 적합한 솔루션까지 배터리 전 생애주기 관리 서비스를 제공한다. LG에너지솔루션은 사내 독립 기업 AVEL의 재생 에너지 전력망 통합 관리 사업 등 신규 사업도 선보일 예정이다. LG에너지솔루션 측은 "인터배터리 2024는 미래를 이끌 혁신적인 제품과 기술을 통해 LG에너지솔루션의 압도적인 기술 리더십을 확인할 수 있는 기회"라고 밝혔다. 또한, "생생한 체험형 콘텐츠와 탁월한 전시 연출을 통해 차별화된 고객 가치를 경험할 수 있을 것"이라고 덧붙였다. SK온, 어드밴스드 SF 배터리 등 급속충전 기술 첫선 SK온은 어드밴스드(Advanced) SF(Super Fast·급속충전) 배터리를 공개하는 등 진화된 급속충전 기술을 공개한다. SF 배터리는 SK온이 2021년 처음 공개한 하이니켈 배터리로, 18분 만에 셀 용량의 10%에서 80%까지 충전할 수 있다. 하이니켈 배터리는 고에너지 밀도와 긴 수명을 제공하는 리튬 이온 배터리의 한 종류다. 이 배터리는 니켈산화물(Ni(OH)₂) 양극과 리튬 양극을 사용해 작동한다. 하이니켈 배터리는 높은 에너지 밀도를 가지고 있어서 휴대전화, 노트북, 전기 자동차 등 다양한 전자제품과 이동 수단에 널리 사용된다. 또한, 상대적으로 저렴하고 안정적인 충전/방전 성능을 가지고 있어서 널리 사용되고 있다. 이번에 선보일 어드밴스드 SF 배터리는 이보다 에너지 밀도는 9% 높이면서 급속충전 시간은 유지했다. 에너지 밀도가 높을수록 많은 에너지를 저장할 수 있어 1회 충전 시 주행거리가 길어진다. SK온은 특수 코팅공법을 통해 음극 저항을 획기적으로 낮추고, 음극 정렬 공법을 적용해 리튬이온 이동 경로를 단축했다. 급속충전 시간을 18분에서 15분으로 단축한 SF+ 배터리도 공개된다. SK온만의 이중 레이어 구조에 고용량 실리콘과 저저항 흑연을 배치해 리튬이온 이동 거리를 줄이고, 이동 속도는 늘었다. 저온 성능을 개선한 '윈터 프로(Winter Pro)' 리튬인산철(LFP) 배터리도 선보인다. 일반적으로 LFP 배터리는 저온(영하 20도)에서 주행 거리가 50∼70%로 급감하지만, 윈터 프로 LFP 배터리는 에너지 밀도를 19% 높이고도 저온에서 충전과 방전 용량을 기존 대비 각각 16%, 10% 높였다. SK온은 이번 전시에서 '성장 가속화'를 의미하는 '스피드 온(Speed On)'을 주제로 전시장을 구성하여, 차세대 배터리 기술과 다변화 전략을 선보인다. 핵심 기술로는 물을 사용하지 않는 친환경적인 비수세 공법을 기반으로 하는 SK온 하이니켈 배터리의 양극 활물질 제조 기술과 폼팩터 및 케미스트리(양극재·음극재 소재) 다변화 전략 등이 소개된다. 또한, 에너지 저장 장치(ESS)도 처음 공개될 예정이다. 이외에도 SK온 배터리가 탑재된 다양한 차량 미니어처, 실물 차량 등의 전시를 통해 방문객들에게 시각적 경험을 제공한다. SK온 관계자는 "이번 전시를 통해 SK온의 세계 최고 수준의 연구개발 역량을 직접 체험할 수 있을 것"이라고 밝혔다. 또한, "앞으로도 끊임없는 혁신 기술 개발과 포트폴리오 다변화를 통해 다양한 고객 요구에 부응할 것"이라고 강조했다. 박태성 협회 상근부회장은 "이번 전시회는 불확실한 대외 환경 속에서 K-배터리의 경쟁력을 강화하고 새로운 도약을 위한 발판이 될 것"이라고 밝혔다. 또한, "최신 기술과 시장 정보 공유, 업계 전문가 네트워킹 기회 제공을 통해 글로벌 배터리 산업 발전에 기여하는 플랫폼으로 자리매김할 것"이라고 기대감을 표했다.
-
- 산업
-
LG엔솔·SK온, '인터배터리 2024'서 혁신 기술 대방출
-
-
[신기술 신소재(4)] 혁신적인 비독성 고품질 산화그래핀 생산 기술 개발
- 스웨덴 과학자들이 가장 일반적인 방법으로 생산되는 물질에 비해 결함이 훨씬 적은 그래핀 산화물을 합성하는 새로운 방법을 발견했다. 과학전문 매체 싸이키ORG는 지난 20일 스웨덴 우메오 대학 연구팀 그래핀 산화물 합성에 새로운 비독성 방법을 개발하여 기존 주요 방법보다 결함이 현저히 적은 물질을 얻는데 성공했다고 보도했다. 이전에는 유사한 품질의 그래핀 산화물을 얻기 위해서는 매우 독성이 강한 발연 질산을 사용하는 위험한 방법밖에 없었다. 그래핀 산화물은 일반적으로 산소를 제거하여 그래핀을 제조하는데 사용된다. 하지만 그래핀 산화물에 구멍이 존재하면 그래핀으로 전환될 때도 구멍이 생기게 된다. 따라서 그래핀 산화물의 품질은 매우 중요하다. 우메오 대학의 알렉산드르 탈리진(Alexandr Talyzin)박사와 그의 연구팀은 안전하게 고품질 그래핀 산화물을 만드는 방법을 발견했다. 이 연구 결과는 '카본(Carbon)' 저널에 게재됐다. 첨단 나노소재인 그래핀은 유연성, 높은 기계적 강도, 전도성 등 뛰어난 특성으로 인해 경이로운 물질로 불린다. 하지만 모든 그래핀 특성은 결함에 영향을 받는다. 그래핀 산화물로부터 제조된 그래핀은 기대보다 훨씬 낮은 기계적 특성과 전도성을 보인다. 많은 연구에 따르면 가장 많이 사용되는 '험머스(Hummers)' 방법으로 합성하면 항상 많은 결함이 생기는 것으로 나타났다. 험머스 방법은 그래핀 옥사이드(GO, graphene oxide) 제조에 널리 활용되는 대표적인 화학적 합성 기술이다. 1958년 윌리엄 험머스(William S. Hummers)와 리처드 오프만(Richard E. Offeman)에 의해 처음 소개된 이 방법은 강력한 산화제를 사용하여 그래파이트(graphite)를 산화시켜 그래핀 옥사이드를 생산하는 과정으로 이루어진다. 기존 방법들에 비해 안전성이 높고, 합성 속도가 빠르며, 환경 친화적이라는 장점을 지녀 대량 생산에 적합하며 널리 활용되고 있다. 구체적인 합성 과정에서는 황산(H2SO4)을 주요 용매로 사용하고 칼륨 퍼망가네이트(KMnO4)를 산화제로 활용한다. 엄격하게 조절된 온도 조건에서 반응을 진행하여 그래파이트를 산화시키고 그래핀 옥사이드를 생성한다. 이렇게 얻어진 그래핀 옥사이드는 물과 같은 용매에 분산될 수 있으며, 이를 통해 다양한 응용 분야와 연구에 활용될 수 있다. 특히 전자 소자, 에너지 저장 장치, 복합 재료 등 여러 분야에서 험머스 방법으로 제조된 그래핀 옥사이드의 활용도가 높아지고 있다. 훨씬 오래된 '브로디(Brodie)' 방법은 거의 구멍이 없는 그래핀 산화물을 제공하지만 아직 어떤 기업도 이 유형의 그래핀 산화물을 생산하지 않고 상업적으로 이용하지 못하고 있다. 탈리진은 "단순히 너무 위험하고 산업 생산에 적합하지 않다"고 말했다. 브로디 방법은 그래핀 옥사이드 합성에 활용되는 고전적인 화학적 방법이다. 1859년 벤저민 콜린스 브로디(Benjamin Collins Brodie)에 의해 처음 소개된 이 방법은 험머스 방법과는 차별화된 접근 방식을 통해 그래핀 옥사이드를 제조한다. 브로디 방법의 핵심은 강력한 산화제인 질산(HNO3)과 염소산(KClO3)을 사용하여 그래파이트(graphite)를 산화시키는 과정이다. 험머스 방법에 비해 긴 반응 시간과 낮은 온도 조건을 특징으로 하며, 이를 통해 높은 수준의 산화와 기능화를 가진 그래핀 옥사이드를 얻을 수 있다. 장점으로는 브로디 방법으로 제조된 그래핀 옥사이드는 험머스 방법으로 제조된 그래핀 옥사이드보다 높은 수준의 산화와 기능화 수준을 가진다. 이는 특정 응용 분야에서 유용할 수 있다. 또한 브로디 방법은 고도로 산화된 그래핀 옥사이드의 제조에 특히 적합하다. 반면, 브로디 방법의 단점은 긴 반응 시간과 위험한 산화제 사용 등이 있다. 험머스 방법에 비해 반응 시간이 길어 대량 생산에 적합하지 않다. 반응 조건을 엄격하게 제어해야 원하는 결과를 얻을 수 있다. 아울러 질산과 염소산은 위험한 산화제이며 취급에 주의가 필요하다. 브로디 방법은 주로 연구 목적으로 사용된다. 특히 고도로 산화된 그래핀 옥사이드가 필요한 경우 선택적으로 사용되고 있다. 이번 연구팀은 험머스 방법의 산(H2SO4)과 브로디 방법의 산화제(염소산 칼륨)를 결합하여 브로디 방법과 동일하게 결함이 적은 그래핀 산화물을 제조할 수 있는 새로운 방법을 발견했다. 하지만 합성 과정은 험머스 산화만큼 간단하다. 탈리진은 "이 방법은 연구팀의 바르토스 구르제다(Bartosz Gurzeda) 연구원의 이름을 따서 구르제다(Gurzeda) 방법으로 명명되어야 한다"라고 주장했다. 탈리진은 결함 없는 그래핀 산화물이 필요한 경우 구르제다 방법이 험머스 방법만큼 널리 사용될 가능성이 높다고 여긴다. 이 방법은 산소 그룹을 제거하여 그래핀을 만들거나 가스 보호 코팅, 반투과성 막, 센서 등 다양한 응용 분야에 활용될 수 있다. 최근 10여 년 동안 그래핀 산화물 자체의 응용 분야에 대한 관심도 높아지고 있다. 층층 구조의 그래핀 산화물 재료는 해수에서 간단한 여과를 통해 식수를 생산하거나 톨루엔과 같은 유해한 유기 오염 물질을 차단하면서 물만 통과시키는 반투과성 보호 코팅 제작을 위한 막 응용 분야에서 집중적으로 연구되고 있다. 탈리진은 "저희는 연구 커뮤니티가 이 새로운 그래핀 산화물을 응용 분야에 적용하여 시험하고 차이를 확인하기를 바란다. 그래핀 산화물은 하나의 물질이 아니라 다양한 특성을 가진 물질 그룹이며 무한한 새로운 응용 가능성을 제공한다"고 말했다. 한편, 그래핀은 탄소 원자가 단원자층 두께의 이차원 결정 격자를 이루며 구성된, 탁월한 특성을 지닌 신소재다. 그래핀은 동일 두께의 다이아몬드보다 강하며, 존재하는 재료 중 최고 수준의 강도를 자랑한다. 약 130GPa의 인장 강도를 가지고 있으며, 얇음에도 불구하고 압도적인 강도를 유지한다. 또한 그래핀은 탁월한 전기 전도성을 지니고 있어, 전자가 거의 무저항으로 빠르게 이동할 수 있다. 이는 그래핀을 전자 소자, 전도성 잉크, 투명 전극 등에 유용하게 활용할 수 있게 한다. 그래핀은 압도적인 열 전도성을 가지고 있어, 열을 매우 효율적으로 전달한다. 이 특성으로 그래핀은 열 관리 분야의 핵심 소재로 주목받고 있다. 그래핀은 놀라운 유연성과 높은 신축성을 동시에 지닌다. 이러한 특징은 그래핀을 플렉서블 전자기기나 착용 가능한 웨어러블 기술에 이상적인 소재로 꼽힌다. 아울러 그래핀은 극도로 높은 투명성을 가지고 있으며, 약 97.7%의 빛을 투과시킨다. 이는 터치스크린, 라이트 패널, 심지어 태양 전지판 등의 응용 분야에서 획기적인 가능성을 제시한다. 그래핀은 뛰어난 화학적 안정성을 지니고 있어, 대부분의 환경에서 산화되거나 분해되지 않는다. 이는 다양한 화학적, 생물학적 환경에서 안심하고 활용할 수 있게 한다. 이러한 그래핀의 탁월한 특성들은 전자, 에너지, 복합 재료, 바이오메디컬 분야 등 다양한 산업 분야에서 혁신적인 변화를 이끌 핵심 동력이 될 것이다.
-
- 포커스온
-
[신기술 신소재(4)] 혁신적인 비독성 고품질 산화그래핀 생산 기술 개발
-
-
러시아, 2미터 거리 탐지 불가능한 '투명 망토' 개발⋯군사 작전 활용
- 러시아가 군대를 위해 투명 망토라는 혁신적인 위장술을 개발했다. 이 투명 망토는 영화 '해리포터와 죽음의 성물'에서 등장한 것과 유사하게 몸을 가려주는 기능을 갖추고 있다. 매국 매체 뉴욕포스트는 전략 군사 정보 분석가이자 푸틴 플레이북의 저자인 레베카 코플러(Rebekah Koffler)가 러시아의 이 혁신적인 망토 '네비딤카'에 대한 인터뷰를 최근 소개했다. 코플러는 "네비딤카는 러시아 및 이전 소련의 '마스키로프카' 교리(문자 그대로 '변장'을 뜻하나, 개념적 어원은 '가장 무도회')의 일부이며, 이는 러시아 군대의 기본 원칙 중 하나로서 당신이 하는 모든 일에 대해 적을 속이는 것이다"라고 설명했다. 그는 이어 "적에게 병력의 존재, 위치, 규모, 공격 시기, 그리고 장소에 대한 오도하고, 군사 하드웨어 유형을 식별하지 못하도록 하는 것이 목표"라며 "그들은 전장에서 일어나고 있는 사건에 대한 적의 인식을 통제하고 조작하는 데 중점을 둔다"고 덧붙였다. 러시아인들은 '마스키로프카' 활동을 실행하는데 엄청난 양의 자원을 투입한다. 예를 들어, 군인들을 따뜻하게 유지하기 위해 적절한 군복을 디자인하지 않을 수도 있지만 투명망토 '네비딤카에는 돈을 쓸 것'이라는게 코플러의 주장이다. 러시아 매체 타스(TASS)는 지난 1월 19일 이 투명 망토를 제작한 러시아 기업 하이더엑스(HiderX)와의 인터뷰를 공개했다. 이 인터뷰에서 하이더엑스는 망토 네비딤카는 350그램(약 3/4 파운드)의 무게로 접어서 사람의 주머니에 넣을 수 있고 열 신호를 숨겨서 작동한다는 점 등 새로운 군사 기술의 여러 측면을 설명했다. 회사 측에 따르면, 투명 망토는 물체의 주변 온도를 차단해 열을 추적하는 적군으로부터 러시아 군인을 효과적으로 위장한다. 하이더엑스는 타스에 새로운 망토에 대해 "우리는 완전히 새로운 제품, 즉 실루엣을 희석시키는 위장복을 디자인했다"라며 "특정 혼합물로 직물을 코팅하는 것은 완전히 러시아 기술이다"라고 말했다. 또한 "우리의 노하우이며 자세한 내용은 공개하지 않겠다"며 "이 슈트는 물체의 주변 온도를 감지한다. 적대적인 열 추적자로부터 러시아 군인을 효과적으로 위장할 수 있다"라고 주장했다. 당시 하이더엑스는 "시험이 진행 중이며 1월 말까지 완료해야 한다"고 말했다. 하이더엑스에 따르면 현재 기술로는 러시아 군대가 열을 차단할 순 있지만 비효율적인 것으로 입증됐다며 그들의 기술은 "직물이 숨을 쉬면서 자연스럽게 발생하는 열 교환을 통해 작동한다"고 말했다. 코플러는 "이 소재 자체는 세 가지 층으로 구성되어 있는데, 첫째는 사용자 몸에서 나오는 적외선(IR)을 반사하는 내부 층, 둘째는 IR 복사를 흡수하는 중간 층, 그리고 외부 환경에서 나오는 IR 복사를 반사하는 외부 층이다"라면서 "클로크-네비딤카는 방사능 화학 생물학 방어를 뜻하는 RKhBZ 아카데미에서 개발됐다"고 설명했다. 한편, 2019년에는 캐나다의 군수 기업이 군인을 위해 '퀀텀 스텔스'라는 특별한 소재로 제작된 투명 망토를 개발했다. 이 망토는 뒤에 가려진 대상 주위의 빛을 조작하여 대상을 사라지게 하고 배경만 보이도록 하는 뛰어난 위장 효과를 자랑한다. 한국의 연구진도 2021년에 이미 투명 망토 제작과 관련된 메타 물질 구현에 성공했다. 이 메타 물질은 벽돌처럼 찍어서 잘라내어 빛의 경로를 조절할 수 있게 만들었다. 이를 통해 모든 방향에서 들어오는 빛을 일반적인 굴절 방향과는 다른 방향으로 휘도록 조절하며, 파장대도 정밀하게 조절할 수 있는 특징을 갖추고 있다.
-
- 산업
-
러시아, 2미터 거리 탐지 불가능한 '투명 망토' 개발⋯군사 작전 활용
-
-
5분 충전 EV 배터리, 전기차 대중화 앞당긴다
- 5분 만에 충전이 완료되는 전기자동차(EV) 배터리가 개발됐다. 미국 코넬 대학의 연구원들이 반복되는 '충전 및 방전' 주기를 통해 안정적인 성능을 제공하면서도 5분 이내에 충전할 수 있는 리튬 배터리를 개발했다고 미국 경제매체 패스트컴퍼니(fastcompany)가 지난 1월 25일(현지시간) 보도했다. 리튬이온 배터리는 가벼움, 높은 에너지 효율, 긴 수명 등의 특성으로 인해 전기 자동차에 광범위하게 적용되고 있다. 배터리의 충전 시간은 그 크기와 사용되는 충전기의 종류에 따라 달라진다. 예를 들어, 급속 충전기를 사용하면 전기 자동차를 약 30분 내에 충전할 수 있는 반면, 가정용 '레벨 1' 충전기를 사용할 경우 충전 완료까지 40시간 이상이 소요될 수 있다. 전기자동차 충전 업체 그래비티(Gravity)는 자사의 충전기를 통해 약 200마일 주행 가능한 전기자동차를 단 5분 만에 충전할 수 있다고 주장했다. 그러나 모든 전기자동차가 이러한 고속 충전기의 전력을 처리할 수 있도록 설계된 것은 아니다. 그러나 리튬이온 배터리는 여러 장점에도 불구하고, 충전 시간이 길게 소요되며 전류 급증 처리의 제한점을 가지고 있다. 인듐 양극재 사용 연구팀은 터치스크린과 태양광 패널에 주로 사용되는 인듐이라는 금속이 배터리의 충전 속도와 저장 능력 향상에 기여할 수 있다는 것을 발견했다. 이들이 개발한 배터리는 인듐을 양극 재료로 사용한다. 이는 기존의 리튬이온 배터리 양극이 주로 구리 호일에 코팅된 흑연을 사용하는 것과 대비된다. 충전 시간이 단 5분으로 단축될 경우, 운전자는 한 번의 충전으로 전기 자동차가 얼마나 멀리 갈 수 있는지에 대한 우려를 덜게 된다. 5분 충전 EV 배터리 프로젝트를 주도한 코넬대 공과대학 학장이자 공과대 교수인 린든 아처(Lynden Archer)는 "전기 자동차 배터리를 단 5분 만에 충전할 수 있다면, 300마일 이상 주행 가능한 큰 배터리의 필요성이 감소하게 됨을 의미한다"고 설명했다. 그는 이는 비용 절감 및 전기 자동차의 보다 넓은 채택을 가능하게 하여, 전기 자동차 시장에 긍정적인 영향을 미칠 수 있다고 강조했다. 인듐을 사용한 양극은 특정 단점도 가지고 있다. 인듐은 상대적으로 무거운 물질이며, 전기 자동차 제조업체들은 더 가벼운 소재를 선호한다. 그럼에도 불구하고, 이러한 연구 개발은 미래에 더 많은 고속 충전 가능한 배터리의 개발로 이어질 수 있는 잠재력을 가지고 있다. 연구팀은 인듐과 동일한 특성을 지니면서도 더 가벼운 금속을 찾을 가능성에 대해 말했다. 아처 교수는 특정 금속 합금이 연구 대상은 아니었지만, 원하는 특성을 지닌 재료가 존재할 수 있음을 시사했다. 그는 이를 통해 더 빠른 충전 속도를 달성하는 더 우수한 배터리 양극을 설계할 수 있는 일반적인 원리의 존재를 긍정적으로 평가했다. 아처의 발언은 기술의 발전 가능성을 강조하며, 최첨단 기술보다 더 우수한 성능을 달성할 수 있는 미래 배터리 기술에 대한 기대감을 나타낸다. 한편, 중국은 배터리 충전 기술의 발전보다는 배터리 교체 방식에 더 중점을 두고 있는 것으로 나타났다. 최근에는 세계에서 가장 큰 배터리 제조업체인 CATL이 중국 최대의 차량 공유 서비스 제공업체인 디디추싱과 함께 배터리 교체 기술에 관한 합작 벤처를 설립했다. 이 협력을 통해 교환소에서 단 5분 만에 배터리를 교체할 수 있는 시스템을 제공한다는 계획이다. 배터리 수명과 성능을 향상시키는 데는 기술적 개발뿐만 아니라, 일상적인 관리 방법도 중요하다. 배터리를 극단적인 고온이나 저온에 노출시키지 않는 것, 충전량을 20%에서 80% 사이로 유지하는 것, 그리고 느린 충전 속도를 선택하고 구속된 상태에서 주행하는 것이 배터리 상태를 유지하고 수명을 연장하는 데 도움이 될 수 있다고 알려져 있다. 이러한 관리 방법은 배터리의 효율적 사용과 지속 가능성을 높이는 데 기여할 수 있다.
-
- 산업
-
5분 충전 EV 배터리, 전기차 대중화 앞당긴다
-
-
제임스웹 망원경, 은하수 너머 별 탄생 클러스터 관측
- 제임스웹 우주 망원경이 별을 형성하는 복합체의 놀라운 이미지를 공개했다. 미 매체 폭스뉴스는 최근 제임스웹 망원경이 우리 은하계의 위성 은하인 대마젤란 성운(LMC) 내에서 별 형성 복합체 'N79'의 새로운 이미지를 포착했다고 보도했다. 유럽우주국(ESA)에 따르면, N79는 일반적으로 미개척 지역인 LMC에서 약 1630광년에 걸쳐 있는 거대한 별 형성 복합체다. N79는 타란툴라 성운(Tarantula Nebula)으로도 알려진 또 다른 유사한 지역인 30도라두스의 젊은 버전이다. 천문학자들은 N79가 지난 50만 년 동안 30 도라두스보다 훨씬 더 효율적으로 별을 형성할 수 있다고 추정했다. 이번에 공개된 최신 이미지는 일련의 회절 스파이크가 있는 세 개의 거대한 분자 구름 복합체 중 하나를 둘러싼 화려한 별 폭발 패턴을 보여준다. ESA는 이미지에서 눈에 띄는 별 폭발 스파이크는 웹의 18개 기본 거울(미러) 세그먼트가 육각형 대칭을 이루는 결과라고 설명했다. 이 스파이크는 모든 빛이 발산되는 밝고 작은 물체 주변에서 가장 잘 보인다. 제임스웹 망원경의 분할형 거울은 접힌 상태로 발사됐지만 지구에서 100만 마일 떨어진 궤도 지점에 도착한 후 펼쳐졌다. 최근 공개된 이미지는 중적외선 빛이 비추어주는 덕분에, 구름 깊숙이 일어나는 일을 드러내면서 이 영역의 빛나는 가스와 먼지를 보여준다. 제임스웹 망원경은 우리 태양과 같은 별이 태어나는 영역을 들여다보기 위해 설계됐다. 천문학자들이 이 지역에 관심을 갖는 이유는 별 형성이 절정에 달했던 시기의 젊은 우주에 대한 통찰력을 제공하기 때문이다. 제임스웹 망원경은 허블 우주 망원경의 후속작이자 지금까지 우주로 발사된 망원경 중 가장 큰 망원경으로 미 항공우주국(나사·NASA)과 유럽우주국이 공동 프로젝트로 제작했다. 1990년에 지구 저궤도로 발사된 허블 망원경은 천문학 역사상 중요하고 대중에게 인기 있는 망원경이다. 제임스웹의 주거울은 18장의 작은 거울 세그먼트로 구성됐으며, 거울 세그먼트는 금으로 코팅된 베릴륨 재질이다. 세그먼트가 하나로 모인 제임스웹의 주거울은 직경이 6.5미터에 달하여 2.4미터의 허블 우주 망원경의 주거울보다도 크다. 제임스웹은 적외선 천문 관측을 주목적으로 하는 우주 망원경으로 2021년 12월 25일 발사됐다. 웹의 거대한 거울과 절묘한 해상도를 통해 천문학자들은 우주의 다양한 진화 단계에서 N79 영역의 별 형성 관찰을 비교하고 대조할 수 있었다. 제임스웹 망원경이 포착한 N79 이미지는 우주에서 별이 어떻게 형성되는지에 대한 놀라운 통찰력을 제공한다. 이 이미지는 젊은 우주를 연구하고, 별 형성의 과정을 이해하고, 우주의 진화를 연구하는 데 도움이 될 것으로 보인다.
-
- 산업
-
제임스웹 망원경, 은하수 너머 별 탄생 클러스터 관측
-
-
하버드대 연구팀, 고체 배터리 재충전 10분대로 단축
- 미국 스타트업이 가격이 저렴하면서도 충전 시간을 획기적으로 줄인 전기자동차(EV)용 전고체 배터리를 개발했다. 현대 사회에서 탄소 중립을 향한 움직임이 활발해지면서, 전세계 에너지 기업들은 화석 연료에 대한 의존도를 줄이는 데 집중하고 있다. 이러한 상황에서 전기차용 배터리의 중요성이 더욱 강조되고 있으며, 특히 환경 친화적이고 에너지 효율이 높은 전고체 배터리 개발이 업계의 중요한 과제로 부상했다. 기술 전문 매체 클린테크니카(cleantechnica)는 최근 하버드 대학의 스핀오프 기업인 아덴 에너지(Adden Energy)가 충전 시간을 10분대로 낮춘 새로운 전고체 배터리를 개발했다고 보도했다. 이 배터리는 최대 6000사이클 동안 사용 가능하며, 재충전 시간은 단 10분에 불과하다. 이는 연료 탱크를 채우는 시간과 유사하다고 한다. 비용에 대한 구체적인 언급은 없었으나, 이 회사의 배터리는 수명이 길어 전기차의 제조 비용을 줄이는 데 크게 기여할 것으로 전망된다. 새로운 고체 에너지 저장 기술은 기존 리튬 이온 배터리의 액체를 폴리머, 첨단 세라믹 또는 기타 고체 재료로 대체하는 차세대 기술이다. 리튬 이온이 고체를 통과해 이동하게 하는 것은 어려운 기술이지만, 그로 인해 더 긴 사용 범위와 더 빠른 충전 시간을 제공한다. 새로운 고체 에너지 저장 기술은 기존 리튬 이온 배터리에서 사용되는 액체 전해질을 폴리머, 첨단 세라믹, 또는 다른 고체 재료로 대체하는 혁신적인 접근법이다. 리튬 이온이 고체를 통과해 이동하는 것은 기술적으로 어려운 과제이지만, 이를 통해 배터리의 사용 가능 범위를 확장하고 충전 시간을 단축할 수 있다. 아덴 에너지는 여러 고체 배터리 혁신 기업 중 하나로, 이온 이동의 장애를 극복하는 데 중점을 두고 있다. 특히 이 회사는 리튬 이온 배터리의 양극에서 발생하는 수상돌기 문제에 대한 강력한 해결책을 제시했다. 덴드라이트(일종의 수지상의 골격을 형성한 결정)는 리튬 이온 배터리의 양극에서 발생하는 작은 양치류의 돌기처럼 생긴 현상으로, 배터리 성능을 저하시키고 화재 위험을 증가시키는 요인이다. 2018년, 아덴 에너지는 국제 학술지 네이처 커뮤니케이션즈(Nature Communications)에 황화물 기반의 고체 전해질 연구 결과를 발표하며 고체 배터리 분야에서 중요한 발전을 이루었다. 아덴 에너지는 "우리 논문의 목표는 LGPS와 LSPS라는 두 가지 유형의 결정질 황화물 고체 전해질의 미세 구조를 조절하고 수정함으로써 전압 안정성을 향상시킬 수 있다는 점을 입증하는 것이다"라며 두 가지 유형의 결정질 황화물 고체 전해질에 대해 밝혔다. 더 나아가, 회사는 "황화물 고체 전해질의 미세 구조와 성능 간의 기본 메커니즘을 밝히는 것이 중요하다"며 "이는 미래 재료 및 배터리 셀 설계에 대한 지침이 될 수 있다"고 기대했다. 덴드라이트 현상은 과거에는 주로 액체 전해질을 사용하는 배터리에서만 관찰되었지만, 최근 연구에 따르면 고체 배터리에서도 문제가 될 수 있음이 밝혀졌다. 이 문제를 해결하기 위한 여러 방법이 연구되고 있는 가운데, 하버드 대학 SEAS(John A. Paulson School of Engineering and Applied Sciences)의 재료과학 부교수 신 리(Xin Li) 팀은 이 현상을 완전히 멈추는 데 성공했다. 하버드 대학의 언론 담당자 레아 버로우스(Leah Burrows)는 리 팀의 새로운 연구에 대해 "연구팀은 리튬화 반응을 제어하고 균일한 리튬 금속층의 도금을 촉진하기 위해 양극에 마이크론 크기의 실리콘 입자를 사용하여 덴드라이트 형성을 방지했다"고 설명했다. 버로우스는 "이 코팅된 입자가 전류 밀도가 균일하게 분포되는 표면을 만들어 덴드라이트의 성장을 막는다"고 설명했다. 또한, "이런 설계 덕분에 도금과 박리 과정이 평평한 표면에서 더 빠르게 일어날 수 있어 배터리를 약 10분 만에 재충전할 수 있다"고 덧붙였다. 리 부교수는 "우리의 설계에서 리튬 금속이 실리콘 입자를 감싸는 것은 초콜릿 트러플에 있는 헤이즐넛 코어를 단단한 초콜릿 껍질이 감싸는 것과 유사하다"라고 비유했다. 이 혁신적인 새 배터리는 현재 상업적 생산을 위한 확장 단계에 있다. 연구팀은 우표 크기의 파우치 셀을 사용하여 이번 실험을 진행했다. 이는 일반적인 대학 연구실에서 만들어진 배터리보다 10~20배 정도 크며, 실제 사용 환경에서의 데이터 수집에 충분한 크기라고 할 수 있다. 버로우스는 이 배터리의 내구성에 대해서도 언급했다. 그녀는 "배터리가 6000사이클을 거친 후에도 초기 용량의 80%를 유지하며, 이는 현재 시장에 나와 있는 다른 파우치 셀 배터리보다 우수한 성능을 나타낸다"고 말했다. 한편, 아덴 에너지는 2022년에 하버드 대학교의 기술개발실(Office of Technology Development)로부터 이 기술에 대한 독점 라이선스를 획득했다. 또한, 회사는 515만 달러(한화 약 68억원)의 시드 자금을 조달하는 데 성공했다. 이 자금은 창업 아이템을 구체화하고 개발하여 시제품을 생산하는 과정에 사용될 예정이다. 회사 측은 라이선스 획득과 벤처 자금 조달을 통해 하버드 대학의 실험실 프로토타입을 상업적 규모로 확장할 수 있게 되었다고 설명했다. 이를 통해 아덴 에너지는 전기자동차(EV) 시장에 빠르게 충전되고 안정적인 고체 리튬-금속 배터리를 제공할 수 있게 될 것으로 기대된다. 아덴 에너지는 2022년에 손바닥 크기의 파우치 셀을 개발하는 것을 첫 단계로 삼고, 향후 3~5년 이내에 전기자동차(EV)용 풀사이즈의 전고체 배터리 개발을 목표로 하고 있다. 이 회사는 2030년 이전에 이러한 배터리를 시장에 출시될 것으로 예상하고 있다. 리 부교수는 전기차의 중요성에 대해 강조하며, "전기차가 말 그대로 도로 위의 1%에 불과한 단순한 고급 패션 아이템으로 여겨져서는 안 된다"고 말했다. 그는 "청정에너지 미래를 향해 나아가기 위해서는 전기차가 일반 대중에게도 접근 가능해야 한다"고 강조했다. 그는 또한 "만약 전기차 배터리가 3년에서 5년만 지속된다면, 미국은 중고차 시장을 갖지 못할 것"이라고 지적했다. 이어 "기술은 모든 사람이 접근할 수 있어야 하며, 우리가 하고 있는 것처럼 배터리 수명을 연장하는 것은 그 과정에서 매우 중요한 부분이다"라고 덧붙였다.
-
- 산업
-
하버드대 연구팀, 고체 배터리 재충전 10분대로 단축
-
-
탄소 질화물, 다이아몬드를 뛰어넘는 초강력 물질 탄생
- 과학자들이 수십 년의 연구 끝에 다이아몬드에 필적하는 새로운 초경도 물질을 개발했다는 연구 결과가 공개됐다. 과학 전문매체 '사이테크데일리(scitechdaily)'에 따르면, 영국 에든버러 대학교(University of Edinburgh)를 포함한 국제 연구팀은 탄소와 질소를 혼합한 물질을 극한의 압력과 열에 노출시킴으로써, 다이아몬드보다 더 단단한 새로운 물질을 창출했다. 연구팀은 탄소와 질소를 혼합한 물질을 지구 내부와 유사한 약 100만 배의 대기압 압력에 노출시켰다. 더불어, 섭씨 150만 도 이상의 고온에서 가열하는 실험을 진행했는데, 이는 태양 표면의 온도에 가까운 극한의 조건이다. 이러한 극한 조건에서 탄소와 질소 원자는 강력하게 결합하여 '탄소 질화물(carbon nitride)'을 형성한다. 연구팀은 이 새로운 물질의 경도를 측정하기 위해 여러 강도 시험을 수행했다. 그 결과 이 탄소 질화물이 현재 알려진 물질 중 두 번째로 단단한 '입방정 질화붕소(cubic boron nitride)'보다 더 단단한 것으로 밝혀졌다. 이번 연구는 재료 과학 분야에 있어 중대한 발견으로, 특히 항공우주, 군사, 산업 분야 등에서의 응용 가능성이 높은 새로운 초경도 물질의 개발을 의미한다. 연구팀은 프랑스의 유럽 싱크로트론 연구 시설(European Synchrotron Radiation Facility, ESRF), 독일의 독일 전자 싱크로트론(Deutsches Elektronen-Synchrotron, DESY), 미국에 기반을 둔 고에너지 물리학 연구소(Advanced Photon Source, APS)에 있는 세 개의 입자 가속기를 이용하여 강렬한 X선 빔을 이용해 샘플을 조사했다. 이 X선 빔은 샘플 내의 원자 구조와 전자 분포를 산란시켜, 물질의 내부 구조를 세밀하게 분석할 수 있게 해준다. 연구 결과는 세 가지 다른 질화탄소 화합물이 초경도를 달성하기 위한 필수 구성 요소들을 보유하고 있다는 것을 보여준다. 특히 놀라운 점은, 이 세 화합물이 모두 일반적인 압력 및 온도 조건으로 돌아갔을 때도 다이아몬드와 유사한 특성을 유지한다는 것이다. 이러한 발견은 물질의 안정성과 내구성에 대한 새로운 이해를 제공하며, 과학 및 산업 분야에서의 응용 가능성을 확대한다. 추가적인 계산과 실험에 따르면 이 새롭게 개발된 물질이 광발광과 높은 에너지 밀도와 같은 여러 특별한 특성을 가지고 있음이 밝혀졌다. 이는 물질이 매우 적은 질량으로 상당한 양의 에너지를 저장할 수 있음을 의미한다. 연구팀은 이러한 초비압축성 탄소 질화물이 다양한 응용 분야에 적용될 잠재력이 크다고 지적했다. 그들은 이 물질이 다이아몬드와 비견될 수 있는 궁극적인 공학 재료로 자리 잡을 수 있다고 전망했다. 연구를 주도한 에든버러 대학교의 도미니크 라니엘(Dominique Laniel) 박사는 "이 새로운 질화탄소 물질 중 첫 번째 질화탄소 물질이 발견되었을 때, 우리는 지난 30년 동안 과학자들이 꿈꿔온 물질을 만들어낸 것이 믿기 어려웠다. 이러한 재료는 고압 재료 합성과 산업적 응용 사이의 간극을 메우는 데 강력한 동기를 제공한다."라고 말했다. 린셰핑 대학 플로리안 트리벨(Florian Trybel) 박사는 "이 물질은 다기능성이 탁월할 뿐만 아니라 지구 내부 깊숙한 곳에서 발견되는 조건과 유사한 극한의 합성 압력에서도 안정한 상태를 유지할 수 있다는 점을 보여준다. 우리는 이 공동 연구를 통해 이 분야에서 새로운 가능성을 열 것이라고 확신한다"라고 말했다. 이번 연구는 깨지지 않는 초단단 재료 개발 분야에서 중요한 진전을 이루었다. 이 새로운 재료는 자동차와 우주선의 보호 코팅, 내구성이 뛰어난 절삭 공구, 태양 전지판, 광검출기 등과 같은 다양한 산업 분야에 응용될 수 있는 잠재력을 가지고 있다. 이는 기술적인 혁신 뿐만 아니라 산업 전반에 걸친 여러 응용 분야에도 중대한 영향을 미칠 수 있을 것으로 기대된다.
-
- 산업
-
탄소 질화물, 다이아몬드를 뛰어넘는 초강력 물질 탄생
-
-
美 MIT, 미생물 비료 코팅 개발…재생농업 촉진
- 미국 매사추세츠 공과대학(MIT) 화학자들은 지속 가능한 대안으로 질소 고정 박테리아를 사용해 화학 비료의 탄소 배출량을 줄이고 있다. 과학 전문 매체 사이테크데일리(SciTechDaily)는 MIT 화학 엔지니어들이 박테리아 세포의 성장이나 기능을 방해하지 않으면서 세포를 손상으로부터 보호하는 금속-유기 코팅을 개발해 종자 발아율을 크게 향상시켰다고 보도했다. 이러한 혁신은 미생물 비료의 접근성을 높이고 재생 농업을 촉진할 수 있다. 이 코팅은 박테리아 세포의 표면에 금속과 폴리페놀로 구성된 삼각형 모양의 구조를 형성한다. 이러한 구조는 박테리아 세포를 둘러싸고 보호막을 형성하여 열이나 습도, 건조 등의 손상으로부터 박테리아 세포를 보호해주어 미생물 비료의 안정성을 향상시킬 수 있다. 화학 비료 생산은 전 세계 온실 가스 배출량의 약 1.5%를 차지한다. MIT 화학자들은 일부 화학 비료를 보다 지속 가능한 공급원인 박테리아로 대체하여 탄소 발자국을 줄이는 데 도움이 되기를 기대하고 있다. 질소 가스를 암모니아로 전환할 수 있는 박테리아는 식물에 필요한 영양분을 제공할 뿐만 아니라 토양을 재생하고 해충으로부터 식물을 보호하는 데 도움이 될 수 있다. 그러나 이러한 박테리아는 열과 습도에 민감하기 때문에 대량 생산해서 농장으로 배송하기가 어렵다. 박테리아 민감성 극복 이러한 장애물을 극복하기 위해 MIT 화학 엔지니어들은 박테리아 세포의 성장이나 기능을 방해하지 않으면서 손상으로부터 세포를 보호하는 금속-유기 코팅을 개발했다. 새로운 연구에서 MIT 연구진은 이러한 코팅 박테리아가 옥수수와 청경채와 같은 채소를 포함한 다양한 종자의 발아율을 향상시킨다는 사실을 발견했다. 코팅된 박테리아로 처리한 씨앗은 코팅되지 않은 신선한 미생물로 처리한 씨앗에 비해 발아율이 150% 증가했다. 연구를 주도한 MIT 화학 공학과 아리엘 퍼스트(Ariel Furst) 박사는 "이 코팅은 농부들이 미생물을 비료로 배치하는 것을 훨씬 쉽게 만들 수 있다. 건조 공정으로부터 박테리아를 보호하고, 액체가 아닌 건조 분말이기 때문에 훨씬 더 쉽고 더 적은 비용으로 유통할 수 있다. 또한 섭씨 55.55도(화씨 132도)까지 견딜 수 있으므로 이러한 미생물을 냉장 보관을 사용할 필요가 없다"라고 말했다. 연구진은 이 기술은 화학 비료 사용을 줄여 환경 오염을 감소시킬 수 있고 토양의 영양분을 보충하고 토양을 건강하게 유지하는 데 도움이 될 수 있어 농업의 지속 가능성을 높이기를 기대한다. 이번 연구는 최근 '미국 화학학회지 Au'에 게재됐다. 미생물 보호 코팅 화학 비료는 공기 중의 질소와 수소를 결합하여 암모니아를 만드는 데 매우 높은 압력을 사용하는 에너지 집약적인 하버-보쉬 공정을 통해 제조된다. 화학 비료의 또 다른 단점으로는 이 과정에서 상당한 탄소 발자국이 발생한다는 점 외에도 장기간 사용하면 결국 토양의 영양분이 고갈된다는 것이다. 토양을 복원하기 위해 일부 농부들은 작물 순환과 퇴비화 등 다양한 전략을 사용해 토양을 건강하게 유지하는 '재생 농업'으로 전환하고 있다. 질소 가스를 암모니아로 전환하는 질소 고정 박테리아가 이러한 접근 방식에 도움이 될 수 있다. 퍼스트 박사는 열과 동결 건조로부터 미생물을 보호하기 위해 이전에 소화관으로 전달되는 치료용 박테리아를 보호하는 등 다른 용도로 미생물을 캡슐화하기 위해 개발한 금속-페놀 네트워크(MPN)라는 코팅을 적용하기로 결정했다. 이 코팅에는 금속과 폴리페놀이라는 두 가지 유기 화합물 성분이 포함되어 있어 스스로 조립되어 보호막을 형성할 수 있다. 철, 망간, 알루미늄, 아연 등 코팅에 사용되는 금속은 식품첨가물로서 안전한 것으로 간주된다. 식물에서 흔히 발견되는 폴리페놀은 탄닌과 오트 등의 분자를 포함한다. 퍼스트 박사는 "우리는 그 자체로 효능이 있는 것으로 알려진 천연 식품 등급의 화합물을 사용하여 미생물을 보호하는 작은 갑옷을 만들고 있다라고 말했다. 이 연구를 위해 연구팀은 12가지 MPN을 만들어 유해한 곰팡이와 기타 해충으로부터 식물을 보호하는 질소 고정 박테리아인 슈도모나스 클로로라피스를 캡슐화하는 데 사용했다. 연구진은 모든 코팅이 최대 섭씨 50도(화씨 122도)의 온도와 최대 48%의 상대 습도로부터 박테리아를 보호한다는 사실을 발견했다. 또한 코팅은 동결 건조 과정에서도 미생물의 생존을 유지했다. 종자 발아 향상 연구팀은 망간과 에피갈로카테킨 갈레이트(EGCG)라는 폴리페놀의 조합인 가장 효과적인 MPN으로 코팅된 미생물을 사용하여 실험용 접시에서 종자 발아를 돕는 능력을 테스트했다. 또 연구팀은 코팅된 미생물을 접시에 넣기 전에 50°C로 가열한 후 코팅되지 않은 신선한 미생물과 동결 건조된 코팅되지 않은 미생물을 비교했다. 연구 결과 코팅된 미생물은 발아율을 150% 향상 시켰다. 퍼스트 박사는 "기술을 개발할 때는 의도적으로 저렴하고 접근하기 쉽도록 설계해야 하는데, 이 기술이 바로 그런 기술이다. 이 기술은 재생 농업의 대중화에 도움이 될 것이다라고 말했다. 퍼스트 박사는 이 기술을 상용화하기 위해 세이아 바이오(Seia Bio)라는 회사를 설립했다. 세이아 바이오는 현재 이 코팅을 적용한 미생물 비료를 농업 현장에 적용하는 데 대한 연구를 진행하고 있다.
-
- 산업
-
美 MIT, 미생물 비료 코팅 개발…재생농업 촉진
-
-
식중독 예방 위해 설계된 전자 코 'E-노즈' 개발
- 일반적으로 마약 탐지, 주인 인식, 매몰된 사람 구조와 같은 활동에서 뛰어난 후각을 발휘하는 동물로 개를 떠올리곤 한다. 이 때문에 냄새를 잘 맡는 사람을 종종 '개코'라고 부른다. 하지만 이제는 '개코'가 아닌 'AI 코(AI Nose)'라는 용어를 사용해야 할 시대가 올 것으로 보인다. 인공지능(AI)의 발전으로 인해, 사람의 코를 대체할 수 있는 이 'AI 코'는 다양한 냄새를 구분하도록 훈련되고 있기 때문이다. 미국 BBC에 따르면, 사람의 코에는 약 400개의 후각 수용체가 있어 약 1조 종류의 냄새를 감지할 수 있다고 한다. 그러나 이러한 수준의 감각을 과학적 장비로 복제하는 것은 어려운 과제다. 그럼에도 불구하고, 최근 AI의 발전 덕분에 최신 전자 코(특정 냄새를 감지하고 보고할 수 있는 첨단 센서)의 처리 속도와 정확도가 급속도로 향상되고 있다. 그들의 지지자들은 식품 안전을 변화시킬 수 있다고 말한다. 센시파이(Sensifi)라고 불리는 'E-노즈(e-nose)'의 공동 개발자이자 이스라엘 네게브 벤 구리온 대학교의 화학 교수인 라즈 젤리넥(Raz Jelinek) 교수는 "잠재적으로 치명적인 식인성 박테리아의 일반적인 유형인 살모넬라와 대장균은 고유한 전자적 특성을 가지고 있다"고 설명했다. E 노즈에는 탄소 나노입자로 코팅된 전극이 포함되어 있어, 박테리아가 내뿜는 냄새나 휘발성 유기화합물(VOC)을 감지한다. 서로 다른 종류의 박테리아는 서로 다른 VOC 지문을 생성하며 이는 다시 Sensifi 기계에서 서로 다른 전기 신호를 생성한다. 그런 다음 AI 소프트웨어 시스템에 의해 기록되어 계속 증가하는 데이터베이스와 비교하여 이를 확인하고 사용자에게 알린다. 올해 초 출시된 Sensifi는 식품 산업의 감염과의 전쟁을 변화시킬 수 있기를 희망하고 있다. 모디 펠레드(Modi Peled) CEO는 "대부분의 경우 식품 생산업체가 현재 테스트를 위해 샘플을 실험실로 보낸 다음 결과가 나올 때까지 며칠을 기다려야 한다"며 "하지만 E-노즈는 식품 회사가 직접 현장에서 사용할 수 있으며 1시간 이내에 결과를 제공한다"고 말했다. 펠레드는 "식품 산업의 테스트 방법은 40~50년 동안 동일하게 유지됐다"라며 "지금까지 AI는 실제로 이 시장의 테스트 부문에 진출하지 못했다"고 지적했다. 식중독은 전 세계적으로 여전히 심각한 문제로 남아 있다. 미국에서는 매년 4800만 명, 즉 6명 중 1명이 식중독으로 인해 병에 걸리며, 이 중 12만8000명이 입원했고, 3000명이 사망했다. 영국에서는 매년 240만 건의 식중독 사례가 발생하고, 약 180명이 사망하는 것으로 추산되고 있다. 펠레드는 "사람들은 고기, 가금류, 생선이 주범이라고 말하지만, 지난 5~10년 동안 미국 식품 산업의 가장 큰 암살자는 바로 로메인 상추다”라며 “식품 시장이 산업화될수록 병원균에 더 취약해질 것"이라고 주장했다. 독일 회사인 NTT 데이터 비즈니스 솔루션(NTT Data Business Solutions)는 현재 개발 중인 E 노즈를 구동하는 AI를 훈련하는데 커피를 통해 도움이 되는 새로운 방법을 가지고 있다. 한 테스트에서 기술자들은 AI 센서 옆에 인스턴트 커피 가루를 놓는 데 3일을 보냈다. 그런 다음 AI는 좋은 커피, 나쁜 커피(식초를 곁들인 커피), 커피가 전혀 없는 세 가지 옵션 중 하나를 식별해야 했다. 회사의 혁신 관리자인 안드리안 코츠르(Adrian Kostrz)는 "냄새는 단순한 가스가 아니라 독특한 가스 조합이다"라며 "그리고 냄새가 나는 방식에 변화나 아주 작은 차이가 있는 경우가 많다"고 말했다. NTT의 센서는 3D 프린팅된 인간 코의 플라스틱 모델에 장착된다. 신선하고 상태가 좋을 때 어떤 냄새가 나는지 알 수 있도록 커피와 기타 식품으로 AI를 훈련하고 있으며, 이를 "냄새의 기준값"이라고 회사는 말한다. 아이디어는 NTT의 E-노즈가 전염병의 냄새를 맡는 것뿐만 아니라 식품의 신선도 여부에도 사용될 수 있다는 것이다. 이는 슈퍼마켓이나 카페에서 유통기한이 없는 물건이 있을 때 무엇을 먼저 팔아야 할지 알 수 있도록 도와줄 것으로 기대된다. 코츠르는 "악취의 기준값을 아는 것은 식품 산업이 그에 따라 생산, 저장, 수확 및 공정을 조정하는 데 도움이 될 것이다"라고 말했다. 그러나 일부 AI 전문가들은 최신 E-노즈가 잘 작동하지만, 식품업체들이 비용 문제로 인해 발을 빼게 될 가능성이 높아 큰 수요를 발생할 가능성은 낮다고 말한다. 미국에 본사를 둔 이 회사의 설립자이자 수석 디자이너인 빈센트 피터스(Vincent Peters)는 "피킹부터 보관, 배송까지 전 세계 소형 감지기 네트워크를 구축하는 것에 대해 이야기하고 있다면 이것이 비즈니스 모델에 어떤 영향을 미칠지 고려해야 한다"고 말했다. 한편, 샌프란시스코에 본사를 둔 도미노 데이터 랩(Domino Data Lab)의 동료 AI 전문가인 크젤 칼쏜(Kjell Carlsson)은 "E-이 노스가 작업 중인 각 시설에 대해 복잡한 미세 조정이 필요할 것이다"라며 "이것은 새로운 기술을 수용하는 것으로 알려지지 않은 업계에서 매우 어려운 작업이다"라고 꼬집었다. 이러한 지적에도 불구하고, 뉴질랜드의 센티안 바이오(Scentian Bio)라는 회사는 곤충의 더듬이를 모방해 바이오센서이를 개발했다. 이를 통해 곤충 단백질을 복제하고 이를 냄새 센서에 포함시킨 것이다. 이는 개 코보다 수천 배 더 민감하다는 설명이다.
-
- IT/바이오
-
식중독 예방 위해 설계된 전자 코 'E-노즈' 개발
-
-
99.6% 반사율 '초백색 세라믹' 개발⋯건물 냉각 혁신
- 99.6%라는 최고의 반사율로 건물을 시원하게 하는 혁신적인 '초(超)백색 세라믹'이 개발됐다. 홍콩의 과학자들이 햇빛과 열을 99.6% 반사해 건물을 획기적으로 냉각시킬 수 있는 새로운 초백색 세라믹 소재를 시연했다고 과학전문 매체 뉴아틀라스가 지난 12일(현지시간) 보도했다. 딱정벌레의 특성에서 영감을 받은 이 소재는 나노 구조 기술을 활용해 그 효과를 발휘하며, 외부 환경 조건에 견딜 수 있는 강한 내구력을 지녔다. 또한, 이 소재의 생산 과정은 상대적으로 간단하여 대량 생산으로 확장이 용이하다는 장점이 있다. 사람들은 집이 너무 더워지면 종종 에어컨을 먼저 켜곤 한다. 이는 즉각적인 냉방 효과를 가져올 수 있지만, 건물의 냉난방 비용이 전체 에너지 비용의 큰 부분을 차지하기 때문에 에너지 효율성은 낮은 편이다. 과학자들은 에너지 소모가 적으면서도 실내 온도를 수동적으로 조절하는 대체 방법을 찾고 있다. 그이러한 방법 중 하나는 건물과 옥상을 밝은 색으로 칠하는 것이다. 기본 물리학 원리에 따르면, 밝은 색상은 어두운 색상보다 빛을 덜 흡수하기 때문에 실내를 더 시원하게 유지할 수 있다. 이러한 원리를 바탕으로 최근에는 태양광을 95% 이상 반사하는 '초백색 페인트'가 개발됐다. 앞서 미국 퍼듀대학교의 연구팀은 2020년 10월, 햇빛의 95.5%를 반사하고 열을 거의 흡수하지 않는 초백색 페인트를 개발했다. 연구에 따르면, 이 페인트를 적용한 표면은 밤에는 주변보다 약 10도(°C) 낮은 온도를 기록했고, 낮 시간에는 태양이 가장 높은 위치에 있을 때도 온도가 최소 1.7°C 낮았다. 이 페인트는 자외선 흡수를 최소화하기 위해 시중 페인트에 주로 사용되는 이산화티타늄 대신 탄산칼슘을 충전제로 사용했다. 그 결과, 이 초백색 페인트는 햇빛을 80~90% 반사하는 기존의 열 차단 페인트들보다 훨씬 높은 빛 반사율을 달성했다 그러나 이러한 페인트는 건물의 냉각 효과를 상당히 개선할 수 있지만, 코팅 솔루션은 건물의 내구성과 관련된 문제들이 발생할 가능성이 있다. 최근 홍콩 시티대학교(CityU)의 과학자들은 다른 페인트보다 성능이 뛰어난 새로운 냉각 세라믹 소재를 개발했다. 이 소재는 단순한 흰색 페인트가 아니라 나노 구조에서 높은 반사율을 달성하는 것이 특징이다. 사이포칠러스 딱정벌레에서 영감을 얻은 이 소재는 거의 모든 스펙트럼의 햇빛을 효율적으로 산란시킨다. 이 연구의 결과로, 개발된 소재의 태양 반사율은 99.6%로 사상 최고치를 기록했으며, 적외선 열 방출량도 96.5%에 달하는 것으로 나타났다. 이 연구는 '사이언스' 저널에 게재됐다. 홍콩 시티 대학교 연구팀은 알루미나 소재가 태양열 흡수를 줄일 뿐만 아니라 날씨에 따라 냉각 세라믹의 내구성을 높여준다고 말했다. 다른 패시브 쿨링 소재와 코팅의 약점인 자외선 노출로 인한 성능 저하를 방지하고 표면에서 수분 증발 속도를 높여 증발 냉각의 보너스 효과를 더한다. 게다가 1000°C(1832°F) 이상의 온도에서도 견딜 수 있는 내화성까지 자랑한다. 이 연구의 공동 교신저자인 에드윈 초치얀 교수는 "이 냉각 세라믹의 장점은 고성능 PRC와 실제 환경에서의 애플리케이션에 대한 요구 사항을 모두 충족한다는 점"이라고 말했다. 초치얀 교수는 "우리의 실험에 따르면 냉각 세라믹을 주택 지붕에 적용하면 공간 냉각을 위해 20% 이상의 전기 절감을 달성할 수 있으며, 이는 기존의 능동 냉각 전략에 대한 사람들의 의존도를 줄이는 데 있어 냉각 세라믹의 큰 잠재력을 확인하고 전력망 과부하, 온실가스 배출과 도시 열섬을 피할 수 있는 지속 가능한 솔루션을 제공한다"고 설명했다. 연구팀은 또 알루미나와 같은 일반적인 재료와 상 반전 및 소결의 2단계 공정을 사용해 이 소재를 대량으로 쉽게 생산할 수 있다고 설명했다. 그리고 흰색 세라믹 기반의 소재에 다른 재료를 추가하면 다양한 색상과 패턴의 제품을 만들수 있다고 덧붙였다.
-
- IT/바이오
-
99.6% 반사율 '초백색 세라믹' 개발⋯건물 냉각 혁신
-
-
브리지스톤, '인공 근육'으로 로봇 팔다리 구현
- 타이어 전문 기업 '브리지스톤'이 인공 근육 신기술을 선보였다. 오랜 기간의 고무 소재 연구 끝에, 로봇 움직임을 위한 '인공 근육' 개발에 성공한 것. 일본 매체 뉴스위치(Newswitch)의 최근 보도에 따르면, 브리지스톤은 좌우로 구부러지는 특성을 가진 인공 근육을 제작에 성공했다. 새롭게 공개된 인공 근육은 특별한 구조로 디자인됐다. 판 스프링에 두 개의 튜브를 장착하면 튜브가 팽창될 때 해당 튜브의 측면 방향으로 구부러진다. 이러한 구조 덕분에 한 개의 튜브만으로도 킬로그램 단위의 큰 힘을 발휘할 수 있다. 특히, 이 인공 근육을 로봇의 손가락 부분에 적용하면 로봇이 손을 열거나 닫는 동작을 수행하는 것이 가능하다는 것이 브리지스톤 측의 설명이다. 이 회사는 인공 근육을 '소프트 로보틱스 벤처스'라는 자체 벤처를 통해 상용화할 방안을 모색하고 있다. 로봇 기술의 새로운 변화를 주도하고 있는 '로봇 근육'이 맥키벤 형태의 설계를 중심으로 주목을 받고 있다. 이 혁신적인 설계는 고강도 섬유로 짜여진 슬리브 안에 고무 튜브를 삽입하여 부풀리는 방식이다. 튜브의 팽창을 통해 인공 근육은 수축하는 힘을 발휘하며, 내부의 판 스프링과 조화롭게 작동하여 근육이 신축적으로 구부러진다. 흥미롭게도 판 스프링 양측에 튜브를 배치하면, 부풀리는 방향으로 인공 근육이 구부러질 수 있다. 과거 기술에서는 로봇 손가락이 닫는 방향으로만 움직였지만, 이번에 개발된 인공 근육은 양쪽으로 구부러져 손가락을 열거나 닫는 동작이 가능하다. 심지어 이를 로봇의 다리에 적용하면, 앞으로 밀거나 뒤로 당기는 동작도 가능하게 된다. 또한 이 인공 근육의 특징 중 하나는 공압 구동 방식을 채택해 가볍고, 킬로그램 단위의 힘을 발휘할 수 있다는 점이다. 복잡한 기어 구조가 없어 파손 위험이 줄어들며, 물이나 모래 같은 환경에도 높은 저항성을 보인다. 간결한 구조 덕분에 상당히 긴 길이의 인공 근육 제작도 가능하다. 현재는 신축성 있는 미터 단위의 큰 근육을 연구 중이다. 브리지스톤 관계자는 "부드러운 신체와 움직임을 제어하는 기술, 소프트 로보틱스에 큰 가능성을 보고 있다"며, "정확한 손의 위치나 형태에 구애받지 않아도, 인공 근육이 자동으로 형태를 조절해 불규칙한 대상도 쉽게 잡을 수 있다"고 설명했다. 한편, 이보다 앞서 2022년 12월, 미국의 MIT에서는 '맥키벤 엑추에이터'라는 공압장치를 모방한 로봇 인공호흡기를 선보였다. 이는 횡경막 기능 장애를 앓고 있는 환자들에게 새로운 희망의 빛을 선사했다. 게다가 강력한 골격과 부드러운 외부 코팅을 통해 단순한 파지만으로도 대상을 식별하는 놀라운 핸드 기술도 선보였다. 국내 기업 클론로보틱스도 이 분야에서 뒤쳐지지 않는다. 인공 근육과 밸브의 조화로움을 통해 사람의 손처럼 유연한 움직임을 구현한 '로봇 핸드'를 구현했다. 또한, 생추어리AI는 휴머노이드 로봇에 특화된 핸드를 탑재, 지퍼백 안에 공을 넣는 정교한 동작을 완벽히 구현하는 기술력을 과시했다. 로봇 과학 전문가들은 '로봇 핸드 기술'을 로보틱스 발전의 핵심으로 꼽고 있어, 이 분야에 대한 기업과 정부, 연구 기관의 지속적인 관심과 투자가 절실하게 요구된다.
-
- 산업
-
브리지스톤, '인공 근육'으로 로봇 팔다리 구현
-
-
지구 자전축, 80cm 또 기울어진 이유는?
- 지구의 자전축 기울기가 약 80cm(약 31.5인치)나 또 어긋난 것으로 밝혀졌다. 최근에 '지구의 기울기'가 다시 화제가 되고 있는 가운데, 과학자들의 조사에 따르면 지구의 기울기 변동이 가속화되어 31.5인치(약 80 센치)나 변경된 것으로 확인됐다. 이 데이터는 2023년 6월 지구과학 저널 「지구물리학 연구 레터(Geophysical Research Letters)」에 게재된 연구에 따른 것으로, '지하수의 과도한 채취'가 지구 기울기의 주요 원인으로 보고됐다. 또한 이 연구에서는 "지구의 기울기 변화와 전 세계적인 해수면 상승(약 0.24인치 또는 약 6mm) 간에 연관성이 있다"고 지적했다 지구 자전축의 변화가 세계 해수면에 어떤 영향을 미치는지, 그리고 지하수 채취가 왜 자전축의 기울기에 영향을 주는지, 그리고 자전축의 기울기가 31.5인치로 커진 것이 실제로 얼마나 큰 문제인지에 대해 정리했다. 먼저 자전축의 기울기는 지구에 어떤 영향을 미칠까. 자전축의 기울기는 지구를 특징짓는 특징 중 하나다. 자전축이 기울어져 있기 때문에 지구에는 봄, 여름, 가을, 겨울과 같은 계절이 발생하는 지역이 있으며, 북극과 남극에서는 궁극적으로 극야(위도 66.55도 이상인 극지방에서 겨울철에 해가 뜨지 않고 밤만 계속되는 기간)와 극주야(?)/백야(해가 지지 않아 밤에 어두워지지 않는 현상)가 존재한다. 이 현상을 놀이기구를 떠올리면 쉽게 이해할 수 있다. 자전축이 공전 궤도에 수직이라면, '틸트 어 휠(Tilt-a-Whirl)' 놀이기구처럼 어느 북반구나 남반구에서도 일년 내내 일정한 일조 시간을 가지며, 태양의 궤도 위치가 항상 같아 시간의 흐름에 따른 변화가 없을 것이다. 이와 같은 상황은 북극점과 남극점에서도 동일한 상황이 지속될 것이다. 하지만, 지구는 기울어져 있기 때문에 '틸트 어 휠' 내부에 있는 것처럼 중심(태양)이나 수평선에 가까워질 때도 있고 멀어질 때도 있다. 우리가 평소에 단단하다고 느끼는 지구의 안정성은 실제로는 그렇지 않다. 지구의 지각은 주로 단단한 암석으로 구성되어 있으며, 대부분의 지역에서는 약 40킬로미터(약 25마일)의 깊이에 이른다. 1 평방피트(약 930㎠) 크기의 지표면 아래 40킬로미터 깊이의 지각 부분은 부피로 따지면 대략 1만1000톤으로 추정된다. 이것은 2012년 티레니아 해에서 전복된 호화 여객선 코스타 콘코르디아(약 11만4000톤)의 무게와 거의 비슷하며, 이 배를 원래의 상태로 세울 수 있는 무게와 동일하다. 그러나 태양계 내에서 밀도가 가장 높은 행성인 지구에서도 40킬로미터 두께의 지각은 지구 지름의 0.33% 정도에 불과하며, 1만1000톤은 지구의 총 질량인 5.972 ×10²⁴kg에 비하면 미미하다. 지구를 M&M 초콜릿 한 알로 비유하면, 얇은 설탕 코팅 부분이 지각에 해당한다. 그렇다면 과도한 지하수 채취는 어떤 문제를 야기할까. 지각 위에는 바다가 있고, 지각 바로 아래에는 광대한 지하 담수층이 있다. 그 아래에는 유동성 있는 암석을 포함한 맨틀이 있으며, 외피 아래의 외부 핵은 액체이다. 현재 지구의 내부 핵은 고체라는 주장이 유력하다. 최근 발표된 지하수 관련 논문에서는 특정 현상에 대한 조사가 진행되고 있다. "지하수를 얻기 위해 지하 또는 지각 내에 저장된 물을 얻으려고 구멍을 뚫으면 갑자기 지구 외부의 일부 무게가 크게 가벼워지며, 지구 전체의 균형 유지에 매우 간단한 형태로 영향을 미치게 된다"는 설명이다. 볼링 공이나 회전하는 스피너 외부에만 구멍을 뚫는다면 어떤 변화가 일어나는지 상상해보자. 볼링공은 여전히 회전은 가능하겠지만, 원래의 회전과는 달리 불규칙한 방식으로 회전할 것이다. 게다가 지구에는 대량의 물과 용해된 금속이 있으므로, 이러한 물질들이 새로운 회전 방향에 영향을 받아 추가적인 회전 특성을 나타낼 수도 있다. 지구의 기울기는 '자전축 기울기'라고도 하며, 약 4만 1000년마다 22.1도에서 24.5도 사이로 변동한다. 지구의 위도 1도당 거리는 대략 111.11킬로미터(약 69마일)이기 때문에, 80cm의 변화는 사실상 크게 중요하지 않다고 볼 수 있다. 이 논문은 지구의 기울기에 영향을 미치는 특정 요인에 집중하고 있다. 중요한 것은 이 변화가 자연적인 변동이 아닌 인간의 활동에 의한 결과라는 점이다. 인류는 약 4만 1000년 전부터 존재했지만, 그 당시 인간은 지하수를 채취하기 위해 지각을 깊게 파지 않았다. 반면, 정화된 물을 위한 우물의 역사를 살펴보면, 약 9000년 전 신석기 시대의 시리아 텔 사비 아비아드(Tell Seker al-Aheimar) 유적에서 발견된 것이 가장 오래된 것으로 기록되어 있다. 과도한 지하수 채취 문제는? 미국 지질 조사국(USGS)에 따르면 지표면 아래의 수층은 세계의 강과 호수의 수백 배 이상의 물량을 포함하고 있다. 여기서수층은 지하수를 저장하는 암석과 퇴적층을 의미한다. 이 지하수는 지구의 다양한 지역(사막 포함)에서 볼 수 있지만, 접근이 어렵거나 정화 처리가 필요한 경우가 많다. 지하수는 지표면 근처에 위치하며, 단지 몇 시간 정도만 축적되었을 수도 있고, 지하의 매우 깊은 곳에서 몇 천 년 동안 존재했을 수도 있다. 미국 과학·공학·의학 아카데미와 애리조나 주립 대학교의 '과학과 기술의 이슈(Issues in Science and Technology)' 간행물에 따르면, 호수와 강의 담수 부족 때문에 인간은 지하수를 채취하기 시작했다. 이러한 지하수는 음용, 관개, 그리고 광물 채굴 등 여러 목적으로 사용되고 있다. 그렇지만 지하수의 과도한 채취는 자연 환경과 습지에 큰 피해를 준다. 이는 땅이 건조해지는 것뿐만 아니라 토양의 붕괴, 야생동물과 물고기, 나무에 대한 부정적 영향, 그리고 일부 종의 멸종 위험을 가져온다. 더욱이, 최근의 연구에서는 지하수 채취가 지구의 기울기에도 영향을 주고 있음이 밝혀졌다. 지구 기울기가 변한 다른 요인 지구는 완벽한 균형을 가진 공이나 볼링 공처럼 완벽하게 균형 잡힌 상태를 유지할 필요가 없다. 사실, 과학자들은 '테이아(Theia)'라는 천체가 원시 지구와의 충돌로 인해 지구가 기울게 되어 자전하게 되었다는 가설을 제기하고 있다. 이 충돌에 의해 원시 지구에서 분리된 부분이 달이 되었다고 추측하고 있다. 당시 충돌로 인해 원시 지구의 한 쪽에는 커다란 스위스 치즈 같은 크레이터가 생겨나, 그 결과 회전 축이 변화했다고 본다. 그 이후로 지구의 자전축이 다시 원래대로 돌아온 적은 없다. 지구와 같은 행성은 자전으로 인해 시간이 지남에 따라 점차적으로 거의 완벽한 구형에 가까운 형태로 변화한다. 이 개념은 '정적압력 균형'이라고 불린다. 사실, 거의 완벽한 구형에 가까운 형태는 행성이나 천체의 기본적인 특성 중 하나이다. 이를 고려하면 '테이아'라는 천체의 충돌 이전의 울퉁불퉁한 지구는 자전 활동이 회복되기 전까지 '행성'으로 간주되지 않았을 수도 있다. 지구의 자전축 기울기는 지구의 구 형태를 유지하는 데 영향을 미치지 않는다고 여겨진다. 지구의 정적압력 균형은 이러한 기울기와 상관없이 각 행성의 자전 현상에 의해 결정되기 때문이다. 미국 항공우주국(NASA)은 2018년 "20세기에 지구의 기울기 변화를 초래한 3가지 주요 원인을 확인했다"고 보고했다. 나사에서 파악한 원인은 '그린란드의 얼음 해빙', 빙하의 이동 또는 해빙으로 인해 얼음의 무게가 사라져 지각이 서서히 상승하는 '빙하성 반동', 그리고 '맨틀 대류'이다. 맨틀 대류는 지각 아래에 있는 유동성 있는 암석 성분이 가열되어 상층으로 이동하고 표면 근처에서 냉각되어 밀어내는 운동이다. 온도가 다른 암석의 밀도가 서로 다르기 때문에 중심을 뒤흔드는 것. 한편, 과학자들은 지구의 기울기가 많은 다른 요인에 의해 변동된다는 사실을 알고 있지만, 이러한 요인을 동시에 연구하는 단계는 아직 확립되지 않았다고 말했다. 2020년 논문에서 과학자들은 "지구는 내부에서부터 외부로 이르기까지 다양한 시간 스케일에서 연속적인 변화가 진행 중이기 때문에 이러한 동적 매개변수는 모두 안정된 값을 갖지 않으며 시간이 지남에 따라 변화한다"고 지적했다. 또한 "이러한 변동은 상대적으로 작기 때문에 최근까지 관측하기 어려웠다"면서 "앞으로 몇 년 안에 지구의 기울기 변화가 특정 요인에 의해 크게 변할 것이라는 뉴스를 자주 접할 가능성은 낮을 것으로 생각된다"고 밝혔다.
-
- 산업
-
지구 자전축, 80cm 또 기울어진 이유는?
-
-
파나소닉 HD, 전기 없이 '수소 생성기' 연구 착수
- 일본의 대표 리튬이온 배터리 제조사인 '파나소닉 홀딩스(HD)'가 전기 없이 수소를 생성하는 기술 연구에 본격적으로 착수했다. 이와 함께, 한국도 탄소배출을 하지 않고 수소를 만드는 '수전해' 기술 개발에 힘을 쏟고 있다. 일본 산업 전문 매체 '뉴스위치(Newswith)'에 따르면, 파나소닉 HD는 '메조결정(mesocrystal)'이라는 특별한 규칙적인 결정 구조를 가진 금속 산화물을 활용하면, 태양광만으로 광촉매의 원리로 물을 분해, 수소를 생산할 수 있다는 연구 결과를 발표했다. 이로써 앞으로 수소 에너지 활용 시, 전기를 사용하는 문제를 극복할 수 있을 것이라는 전망이 나왔다. 메조결정(mesocrystal)은 아주 작은 단위결정들이 결합해 큰 구조를 형성하는 특징을 가진다. 직경이 수백 나노미터(나노는 1/10억)에서 수 마이크로미터(마이크로는 1/1백만) 크기이며, 규칙적이고 조밀한 방식으로 축적된다. 표면적이 증가하기 때문에 특성이 향상되고 광촉매 작용의 효율을 기대할 수 있다는 장점이 있다. 파나소닉 HD는 "소자 표면에 금속 산화물의 메조결정질 용액으로 코팅된 기판을 부착해 빛을 통한 광촉매 반응으로 수분을 분해하는 기술을 개발했다"고 밝혔다. 그러면서 "현재 초소형 실험 장비에서는 이 기술의 기본 작동 원리가 확인됐다"고 덧붙였다. 파나소닉은 2030년까지 이 기술의 프로토타입을 완성하는 것을 목표로, 메조 결정 구조를 더욱 정밀하게 제어하고 장치의 크기를 확장하는 연구에 주력할 계획이다. 또한, 태양광과 물을 분리해 얻은 수소로부터 추가 에너지를 얻기 위해 태양 전지판과 함께 사용하는 등의 응용 방법을 검토하고 있는 것으로 알려졌다. 한편, 한국은 탄소배출을 최소화한 수소생산 기술, 즉 '녹색 수소' 생산에 집중하고 있다. 이를 위한 핵심 기술로는 신재생에너지와 수전해가 대표적이다. 수전해 기술은 전기를 이용해 물을 수소와 산소로 분해하는 과정이다. 이 중, 두산퓨얼셀은 양성자 교환막 기반의 고분자 전해질막(PEM) 수전해 시스템을 2023년 하반기에 상용화할 방침이다. 세계 1위의 선박평형수 전기분해 처리장치 제조사 테크로스는 알카라인 방식의 수전해 시스템 개방 중인 것으로 알려졌다. 이밖에도 SK E&S는 미국의 수소 전문 기업 플러그파워와 손잡고 수전해 분야로의 진출을 준비하고 있다.
-
- IT/바이오
-
파나소닉 HD, 전기 없이 '수소 생성기' 연구 착수
-
-
'역백신', 제1형 당뇨병·크론병 등 자가면역 질병 치료
- 제1형 당뇨병과 크론병 등 자가 면역질환을 역백신으로 치료하는 연구가 진행중이다. 중추신경계의 탈수초성 질환(demyelinating disease 신경세포의 축삭을 둘러싸고 있는 절연물질인 수초가 탈락되는 질병) 중 가장 흔한 유형인 다발성 경화증과 췌장에서 인슐린이 분비되지 않아 발생하는 제1형 당뇨병, 만성 염증성 장질환인 크론병을 정복할 수 있는 날이 코앞에 다가왔다. 과학기술 전문 매체 '사이테크데일리(SciTechDaily)’에 따르면, 시카고대학 프리츠커 분자공대(PME Pritzker Molecular Engineering) 연구팀이 '역백신(inverse vaccine)'을 개발해 자가면역 반응을 제거할 수 있음을 증명했다. 일반적인 백신은 인간의 면역 체계가 바이러스나 박테리아를 공격해야 할 적으로 인식하도록 만들지만, ‘역백신’은 한 분자에 대한 면역 체계 기억을 제거하는 정반대의 역할을 하도록 했다. 면역 체계 기억을 제거하는 것은 전염병의 경우 바람직하지 않지만 다발성 경화증, 제1형 당뇨병, 류머티즘성 관절염 또는 면역 체계가 사람의 건강한 조직을 공격하는 크론병에서 나타나는 자가면역 반응을 멈출 수 있다는 것이 연구팀의 설명이다. 최근 국제학술지 네이처 생명의학공학(Nature Biomedical Engineering)에 발표된 논문을 살펴보면, 역백신은 자연 과정에 의해 죽는 세포에 대한 자가면역 반응을 예방하기 위해 간이 자연적으로 세포 분해 생성물을 '공격 금지'로 표시하는 방식을 활용한다. PME 연구팀은 우리 몸의 간이 면역 체계가 공격하는 항원(면역 체계가 공격하는 분자)을 친구로 인식하는 노화된 세포 조각과 유사한 분자와 결합해, 이 백신이 어떻게 다발성 경화증과 유사한 질병과 관련된 자가면역 반응을 성공적으로 막을 수 있는지 보여줬다. 이번 논문의 주 저자인 제프리 허벨(Jeffrey Hubbell) 교수는 "이 연구에서 가장 흥미로운 점은 이미 염증이 진행 중임에도 다발성 경화증과 같은 질병을 치료할 수 있다는 것이며, 이는 실제 상황에서 더 유용하다"고 강조했다. 역백신으로 면역력 억제 면역 체계의 T세포(세포성 면역을 담당하는 림프구의 일종) 역할은 바이러스, 박테리아, 암 등 원치 않는 세포와 분자를 신체의 이물질로 인식해 제거하는 것이다. 그러나 T세포는 건강한 세포를 이물질로 인식하는 실수를 할 수 있다. 예를 들어, 크론병 환자의 경우 면역 체계는 소장 세포를, 다발성 경화증 환자의 경우에는 신경 주변의 보호 코팅인 미엘린을 공격한다. 허벨 교수와 그의 동료들은 면역 반응이 몸 전체의 모든 손상된 세포에 대해 발생하지 않도록 하는 메커니즘을 가지고 있다는 것을 주목했다. 이러한 현상은 간에서 일어나는 말초 면역 관용(Peripheral Immune Tolerance)으로 알려져 있다. 그들은 최근 몇 년 동안 N-아세틸갈락토사민(pGal)으로 알려진 당으로 분자를 태깅하면 이 과정을 모방하여 분자를 간으로 보내서 분자에 대한 내성이 생길 수 있다는 사실을 발견했다. 이 연구는 면역계의 작동 원리를 이해하는 데 크게 기여했으며, 미래의 의학적 치료법 개발에 중요한 토대를 제공한다. 허벨은 "우리가 원하는 분자를 pGal에 부착할 수 있고 면역 체계가 이를 견딜 수 있도록 가르칠 것"이라며 "백신처럼 면역력을 높이는 대신 역백신을 사용하면 매우 구체적인 방식으로 면역력을 억제할 수 있다"고 주장했다. 연구팀은 미엘린 단백질을 pGal에 연결하고 새로운 역백신의 효과를 테스트한 결과, 면역 체계가 미엘린 공격을 중단하고 신경이 다시 올바르게 기능하도록 하며 동물의 질병 증상을 완화시킬 수 있음을 발견했다. 일련의 다른 실험을 통해 과학자들은 동일한 접근 방식이 지속적인 면역 반응을 최소화하는데 도움이 된다는 것을 보여줬다. 제1상 안전임상시험 수행 허벨은 "오늘날 자가면역 질환은 일반적으로 면역 체계를 광범위하게 억누르는 약물로 치료되는데, 이는 매우 효과적일 수 있지만 감염을 막기 위해 필요한 면역 반응도 차단하므로 많은 부작용이 발생할 수 있다":고 지적했다. 대신 역백신으로 환자를 치료할 수 있다면 훨씬 더 구체적이고 부작용도 줄어들 수 있다는 설명이다. 허벨의 pGal 화합물을 사람을 대상을 하기 위해선 더 많은 연구가 필요하지만, 밀, 보리, 호밀 섭취와 관련된 자가면역 질환인 복강병 환자를 대상으로 초기 제1상 안전임상시험이 이미 수행됐다. 현재 다발성 경화증에서 임상시험이 진행 중이다.
-
- IT/바이오
-
'역백신', 제1형 당뇨병·크론병 등 자가면역 질병 치료
-
-
눈물로 충전하는 '스마트 렌즈 배터리' 개발
- 눈물로 작동하는 스마트 콘택트 렌즈가 개발됐다. 프랑스 매체 위진누벨(L`USINENOUVELLE)은 싱가포르의 난양 공과대학(Nanyang Technological University)의 연구팀은 지난 9월 초 눈물로 충전되는 배터리를 개발했다고 전했다. 이 스마트 콘택트 렌즈는 눈물을 이용하여 12시간 동안 작동 가능하다. 사용자의 안구 내에 있는 눈물만으로도 배터리를 충전하는 이 기술은 기존 렌즈와 같이 눈에 장착하여 다양한 정보를 제공한다. 이 기술의 도입으로 이메일 확인, 소셜 미디어 접근, 건강 모니터링, 시력 보정 등 다양한 기능이 눈 앞에서 가능해질 전망이다. 물론, 안전한 배터리 개발이 주요 과제로 거론되어 왔으나, 난양 공과대학의 연구팀은 혁신 기술을 통해 스마트 콘택트 렌즈의 보급이 한층 가까와졌다. 특히, 이번에 공개된 배터리는 두께가 0.5mm에 불과한 유연한 형태로, 솔루션 식염수에 담가놓기만 해도 충전이 가능하다. 눈물의 나트륨 및 포타슘 이온이 배터리의 포도당 기반 코팅과 반응하여 전기를 생성하는 원리로 작동한다. 눈물을 흘리기 위해 '타이타닉'과 같은 슬픈 영화를 볼 필요 없이, 평소의 눈물만으로도 이 배터리를 충전하는 데 문제가 없다고 연구진은 밝혔다. 과학자들의 연구 결과를 토대로, 이 배터리는 45 마이크로암페어(μA)의 전류와 201 마이크로와트(mW)의 최대 출력을 제공할 수 있어, 스마트 콘택트 렌즈의 12시간 연속 작동이 가능하다. 그러나, 이 기술의 충전 및 방전 주기는 200회로, 기존 리튬 배터리의 300~500회와 비교할 때 상대적으로 낮다. 리석우(Seok Woo Lee) 난양 공과대학 교수는 "우리 방식은 포도당과 물을 활용하여 전기를 발생시키는데, 이는 인간과 환경에 해가 없다"고 설명했다. 이러한 연구 성과를 바탕으로 난양대 연구팀은 스마트 콘택트 렌즈 제조사들에게 배터리 테스트를 제안할 계획이다. 이 기술의 도입은 스마트 콘택트 렌즈 개발의 속도를 더욱 높일 것으로 전망된다.
-
- 산업
-
눈물로 충전하는 '스마트 렌즈 배터리' 개발
-
-
美 샌디아 국립연구소, 내구성 높인 분자 개발 성공⋯장단점은?
- 미국 샌디아 국립연구소(Sandia National Laboratories)의 연구팀이 내구성을 높인 획기적인 분자 구조를 개발했다. 일반적으로 열을 가하면 팽창하는 대부분의 재료와 달리, 이 새로운 분자는 열을 가할 경우 수축한다는 놀라운 특성을 보인다. 과학 및 기술 전문 매체 '사이테크데일리(SciTechDaily)'에 따르면, 이 연구팀이 개발한 분자는 폴리머와 결합될 경우 뛰어난 내구성을 발휘한다. 이러한 특성 덕분에 휴대폰 케이스부터 미사일에 이르기까지 다양한 분야에서 활용 가능성이 높아 보인다. 폴리머는 작은 분자들이 결합해 만들어진 고분자로, 섬세한 구성 요소를 보호하는 이상적인 재료로 알려져 있다. 그러나 재료가 오래 사용되거나 다양한 환경에 노출될 경우 성능이 저하되는 문제가 있다. 이와 관련해 대부분의 물질이 가열될 때 팽창하고, 냉각될 때 수축하는 반면, 이 새로운 분자는 그렇지 않다. 일반적으로 폴리머는 가장 높은 팽창률과 수축률을 보이며, 금속이나 세라믹은 상대적으로 낮은 수준을 보인다. 샌디아 연구팀의 이번 발견은 물질의 온도에 따른 변화율을 조절할 수 있는 새로운 가능성을 열어놓았다. 이로써 다양한 산업 분야에서의 응용이 기대된다. 샌디아 연구팀을 이끄는 재료 과학자 에리카 레드라인(Erica Redline)은 "많은 제품들이 플라스틱, 유리, 금속 등 여러 재료로 구성되어 있는데, 이 재료들이 서로 다른 속도로 팽창하거나 수축하기 때문에 시간이 지날수록 제품이 갈라지거나 뒤틀리는 현상이 발생한다"고 지적했다. 레드라인은 이 문제점을 극복하기 위한 새로운 아이디어를 생각하게 되었고, 그 아이디어를 팀원들과 함께 실제로 구현하는 데 성공했다고 말했다. 그는 "우리 팀은 고분자와 잘 결합하면서 그 특성을 바꿀 수 있는 새로운 분자를 개발했다. 이 분자는 흥미롭게도 가열될 때 팽창하는 대신 수축하는 특징을 가진다"고 설명했다. 레드라인은 "이 분자를 폴리머에 첨가하면, 폴리머의 팽창과 수축이 금속과 유사한 수준으로 조절되게 된다. 실제로 금속과 같은 특성을 갖게 만든 이 분자의 개발은 큰 도전이었다"고 강조했다. 이 새로운 분자는 다양한 방식으로 활용될 수 있는 잠재력을 보여주고 있다. 폴리머는 전자부터 통신 시스템, 태양광 패널, 자동차 부품, 인쇄 회로 기판, 항공우주 응용, 국방 시스템, 바닥재 보호 코팅에 이르기까지 광범위한 분야에서 사용되는데, 이 분자가 그 활용성을 더욱 확장시킬 것으로 보인다. 화학 엔지니어인 제이슨 더거(Jason Dugger)는 "이 분자는 국방 시스템에서 특히 큰 잠재력을 발휘할 것"이라며 미래의 혁신을 위한 길을 열 것으로 기대하고 있다. 더거는 또 3D 프린팅 분야에서의 활용성에 대해서도 언급했다. 그는 "하나의 영역에서는 특정한 열적 반응을 보이는 반면, 다른 영역에서는 다른 열적 반응을 보이게끔 인쇄하는 것이 가능하다"며 "재료의 무게를 줄일 수 있어 위성 등에도 적용될 수 있다"고 덧붙였다. 또한, 한 에폭시 제조 회사가 이 분자를 접착제로 활용하려는 시도를 했다는 소식이 전해졌다. 물론, 이 기술에도 단점이 있다. 유기 화학자 샤드 스티커(Chad Staiger)에 따르면, 7~10그램(g)의 분자를 합성하는데 약 10일이 소요된다. 이런 점은 대량 합성 시에 추가적인 시간과 비용이 들 수 있다는 것을 의미한다. 현재 연구팀은 시장에 출시될 제품을 준비하는 과정에서 10만 달러(한화 약 1억3276만원)를 투자해 분자 합성 시간을 단축시키는 연구에 집중하고 있다. 이 분자의 활용 가능성은 무궁무진해 보인다.
-
- 산업
-
美 샌디아 국립연구소, 내구성 높인 분자 개발 성공⋯장단점은?
-
-
전기차 시장, '전고체 배터리'가 뜬다…10대 리드 기업 어디?
- 최근 전기차 업계가 주목하는 기술 중 하나는 '전고체 배터리'다. 이 기술은 기존 리튬 이온 배터리보다 에너지 저장 용량이 뛰어나고, 충전 시간도 단축되는 등 탁월한 성능을 자랑한다. 그렇다면 이 전고체 배터리는 기존 배터리와 다른 점은 무엇일까. 전고체 배터리는 이름에서도 알 수 있듯이 액체 전해질이 아닌 고체 전극과 고체 전해질을 사용한다. 이로 인해 배터리의 누출이나 열 문제가 크게 줄어들어 사용자의 안전을 더욱 보장한다. 게다가 작은 크기로도 높은 에너지 밀도를 구현할 수 있어 휴대성과 효율성 모두에서 높은 점수를 받는다. 시장의 변화에 민감하게 반응하는 글로벌 자동차 기업들도 전고체배터리 개발에 발빠르게 뛰어들었다. 토요타와 폭스바겐은 이미 전고체 배터리 기술 개발에 속도를 내고 있다. 이러한 대기업들이 전고체 배터리의 선봉에 서게 될 것인가, 아니면 다른 참여 기업들이 이를 따라잡거나 앞질러 나갈 것인가. 전기차 시장의 미래는 어떻게 전개될지 기대된다. 폭스바겐과 퀀텀스케이프는 전기 자동차용 고체 상태 배터리 기술 개발에 손을 잡았다. 전기차의 두 가지 큰 걸림돌인 '주행 거리'와 '충전 시간'을 해결하기 위해서는 향상된 '에너지 저장 능력'과 '빠른 충전'이 선결과제다. 이 두 마리 토끼를 잡을 수 있는 전고체 배터리는 소비자의 전기차에 대한 인식을 크게 바꿔놓을 것으로 보인다. 전고체 배터리 개발 진행중인 선도적인 10개 기업은 다음과 같다. 1. 도요타 토요타는 21세기 자동차 혁신의 핵심으로 전고체 배터리를 지목하며, 2027년까지 상용화를 목표로 연구개발을 가속화하고 있다. 도요타의 이러한 움직임은, 배터리가 전기차 업계의 핵심 부품임을 감안하면, 전기차 시장에서의 선두 주자로의 복귀를 알리는 신호로 해석된다. 그들은 이미 2012년부터 전고체 배터리 기술 개발에 뛰어들었고, 현재 200명 이상의 전문가로 구성된 팀이 이를 주도하고 있다. 그 결과, 토요타는 1000개 이상의 특허를 보유하게 되었다. 이 기업의 최종 목표는 전고체 배터리의 장점을 살려 완충 상태에서 약 700km (435마일)의 주행 거리를 달성하는 전기차와 하이브리드 차량을 출시하는 것이다. 2. 폭스바겐(Volkswagen) 폭스바겐은 전고체 배터리 연구의 선구자 중 하나인 퀀텀스케이프와 파트너십을 맺고 전기 자동차용 고에너지 밀도 배터리를 개발하고 있다. 2018년 폭스바겐은 퀀텀스케이프와 함께 전기차용(EV) 배터리 기술 개발을 추진했고, 2020년 추가적으로 2억 달러의 투자를 통해 이 연구의 가속화를 선언했다. 퀀텀스케이프는 기존 배터리 대비 전고체 배터리가 약 80% 더 긴 주행 거리와 80% 더 많은 충전량을 제공한다고 주장했다. 2022년 말 현재, 퀀텀스케이프는 전고체 배터리 셀의 시험을 진행 중이다. 폭스바겐은 다른 기업들과 협업하여 고체 상태 기술 및 전극 건조 코팅 공정과 같은 다양한 배터리 기술을 연구 중이며, 이를 2030년에 대량 생산에 투입할 계획이다. 3. 파나소닉(Panasonic) 전세계적인 전기차 시장의 확대와 함께 배터리 기술의 중요성이 강조되는 가운데, '파나소닉'과 '도요타'의 조합이 눈길을 끈다. 두 기업은 2020년 '프라임 플래닛 에너지 솔루션(Prime Planet Energy & Solutions, Inc.)'이라는 이름의 합작기업을 설립, 생산성과 용량 모두에서 우수한 배터리 솔루션을 제공하기 위해 노력하고 있다. 도요타는 이미 전고체 배터리 기술 관련 1000개 이상의 특허를 보유하고 있으며, 파나소닉도 445개의 특허로 그 기술력을 과시하고 있다. 파나소닉은 지난 수십 년 동안 배터리 기술을 선도해 왔다. 특히 전고체 배터리 기술 연구에 주력하며, 액체 전해질로 인한 화재, 폭발 위험 등의 문제점을 해결하고자 고체 상태 배터리로의 전환에 큰 희망을 걸고 있다. 파나소닉은 기술에 대한 구체적인 일정을 제공하지는 않았지만, 연구 및 개발에 적극적으로 투자하고 있다. 특히 도요타, 테슬라, 포드와 같은 국제적인 자동차 기업들과의 협력은, 전고체 배터리의 시장 출시 때 그들이 이 분야의 혁신을 주도할 가능성을 제시한다. 4. 베이징 웨이란신에너지기술(Beijing WeLion New Energy Technology) 중국 기업 니오(Nio)는 배터리 제조업체인 중국 베이징 웨이란신에너지기술(北京卫蓝新能源科技·Beijing WeLion New Energy Technology, 이하 '웨이란'-WeLion)과 파트너십을 맺어 새로운 배터리 기술을 선보였다. 이들 두 기업은 전기 자동차에 대한 반고체 상태 배터리 셀을 생산했다. 반고체 상태 배터리는 리튬 이온 배터리의 젤 전해질과 고체 전해질을 결합한 것이다. 니오는 특히 이번 파트너십을 통해 웨이란으로부터 150 kWh 용량의 반고체 배터리 셀을 공급받게 되었으며, 이 배터리는 'Nio ET7' 전기자동차에 적용될 예정이다. 이러한 혁신적인 기술을 탑재한 세단 'Nio ET7'은 CLTC 기준으로 약 1000킬로미터(621 마일), EPA 기준으로는 740킬로미터(460 마일)의 높은 주행 거리를 자랑한다. 또한, 이 배터리는 'Nio ES6 SUV'에도 적용되어, 약 689킬로미터(428 마일)의 주행 거리를 제공하게 된다. 5. 중국 CATL(Amperex Technology Co. Limited) 중국 배터리 대기업 CATL은 2023년 4월 전기 항공기 전동화를 향한 새로운 움직임을 위해 고체 상태 배터리 기술의 한 형태인 압축형 배터리 셀을 출시했다. 이 배터리 셀은 에너지 밀도가 500 Wh/kg로 매우 높다. 중국의 배터리 대기업 'CATL'은 2023년 4월 전기 항공기의 전동화를 목표로 고채 상태 배터리 기술의 한 형태인 압축형 배터리 셀을 출시했다. 이번에 선보인 배터리 셀은 무려 500 Wh/kg의 높은 에너지 밀도를 자랑한다. 반면, 테슬라가 자랑하는 4680 배터리 셀의 에너지 밀도는 244 Wh/kg에 불과하다. 이를 비교하면 CATL의 신제품은 기존 리튬 이온 배터리에 비해 약 두 배의 충전량을 가지고 있음을 알 수 있다. 이렇게 혁신적인 배터리 기술은 중국 지리자동차(Geely)의 2023년 형 전기차 '지커-001(Zeekr-001 EV)'에도 적용될 수 있으며, 해당 차량은 CLTC 기준으로 641 마일의 주행 거리를 달성할 수 있다. CATL의 압축형 배터리 셀은 이보다 훨씬 더 긴 주행 거리를 제공할 전망이다. 6. 혼다 혼다는 2050년까지 탄소 중립을 목표로 하고 있으며, 이를 위해 제너럴 모터스(GM)와 소니 같은 기업들과 파트너십을 맺어 고체 상태 배터리 기술을 연구하고 있다. 또한 혼다는 일본의 사쿠라에 4300억 엔 (약 2950만 달러)을 투자해 2028년까지 전기 자동차에 고체 상태 배터리 셀을 도입하는 생산 라인을 구축하는 작업을 진행 중이다. 고체 상태 배터리 기술의 가장 큰 단점은 세포의 무결성을 위협하는 덴드라이트(dendrites)의 존재다. 혼다는 덴드라이트 문제를 해결하기 위한 새로운 연구를 진행하고 있다. 이를 통해 2030년까지 연간 200만 대의 배터리 전기 자동차 생산을 목표로 하고 있다. 7. 닛산 닛산은 2028년까지 고체 상태 배터리로 구동되는 차량을 시장에 선보이기 위한 연구를 본격화했다. 가나가와에 위치한 닛산의 연구 센터에서는 2024년까지 고체 상태 셀 프로토타입을 생산하기 위한 공장 건립 작업이 진행 중이다. 고체 상태 배터리 기술 도입 후, 닛산은 EV 배터리 비용을 최소 50% 절감하며, 충전 능력을 현존하는 기술의 세 배로 향상시키고, 에너지 밀도를 두 배로 늘리는 것을 목표로 삼고 있다. 시장에서 현재 주목받는 최고 성능의 배터리 셀은 에너지 밀도 240 Wh/kg을 제공하는데, 닛산의 목표는 이를 480~500 Wh/kg로 높이는 것이다. 이외에도 닛산은 액체 전해질을 사용하지 않는 올 고체 상태 배터리와 나트륨을 활용한 셀에 대한 연구를 활발히 진행하고 있다. 8. 솔리드에너지시스템(SolidEnergy Systems) 솔리드에너지시스템(SES)은 치차오 후 박사(Dr. Qichao Hu)가 2012년에 매사추세츠주 워본(Woburn)에 설립했다. 이 회사는 리튬 금속 기술을 사용하며, 리튬 이온 배터리 셀에서 발견되는 전통적인 젤 대신 분리 막으로 사용한다. SES 리튬 금속 배터리 셀은 에너지 밀도가 400 Wh/kg이며, 전통적인 리튬 이온 배터리 셀의 주행 거리를 두 배로 늘릴 수 있다. SES는 안전하고 효율적인 배터리 개발에 중점을 둔다. 인공 지능 알고리즘을 활용해 배터리의 안전성을 향상시켰고, 가볍고 비용 효율적으로 제작될 수 있다. 게다가 15분만에 배터리의 80%까지 빠르게 충전할 수 있다는 것은 큰 강점이다. 차량 제조업체들과의 협력도 활발한 편이다. 제너럴 모터스(GM), 혼다, 현대자동차, 지리, 기아와 같은 주요 자동차 기업들과 파트너십을 체결하고 있다. 특히 2021년에는 GM이 SES에 1억 3900만 달러를 투자했으며, 2025년부터는 SES의 리튬 금속 배터리 셀을 자동차에 적용할 계획이다. 9. 솔리드 파워(Solid Power) 솔리드 파워는 2011년 콜로라도 대학의 스핀오프로 탄생했으며 현대자동차, BMW, 포드와 같은 글로벌 자동차 제조업체들의 후원을 받으며 빠르게 성장했다. 2021년에는 콜로라도 주의 손턴(Thornton)에 7만5000평방 피트(약 6967제곱미터) 규모의 최첨단 생산 공장을 설립했다. 솔리드 파워의 주요 기술은 전통적인 리튬 이온 배터리의 액체 전해질을 황화물 기반의 고체 전해질로 교체하는 것이다. 이 고체 전해질은 액체 전해질보다 안전하며, 안정적인 성능을 제공한다. 이 회사는 2028년까지 연간 80만 대의 전기차 배터리 셀 생산을 목표로 하고 있으며, 그를 위한 생산 확장 계획을 세우고 있다. 또한, 솔리드 파워는 미국 에너지부의 "전기 자동차를 위한 미국 저탄소 생활 (EVs4ALL)" 프로그램에서 총 4200만 달러 중 560만 달러의 지원을 받아 연구 및 개발 활동을 지속적으로 진행하고 있다. 10. 실라 나노 테크놀로지스(Sila Nanotechnologies) 실라 나노 테크놀로지스는 BMW, 다임러 AG(Daimler AG), 지멘스(Siemens), CATL과 같은 세계적인 기업들과 전략적 파트너십을 체결해 전기 자동차용 고체 상태 배터리의 상용화를 위한 강력한 투자 지원을 확보했다. 산업 내 주요 플레이어들의 지원 아래, 이 회사는 2028년까지 150 GWh 이상의 대규모 배터리 셀 생산을 목표로 하는 로드맵을 구축하고 있다. 특히, 실라 나노는 20% 더 긴 주행 거리와 20분만에 10-80%까지 충전이 가능한 타이탄 실리콘(Titan Silicon) 배터리 셀을 선보였다. 이 기술은 메르세데스-벤츠의 EQG 모델에 적용될 예정이다. 더욱이, 회사는 기존 고체 상태 배터리 기술의 덴드라이트 현상과 부피가 큰 세라믹 전해질의 한계를 극복하기 위한 방안으로, 중간 온도에서 다공성 분리막-양극 스택에 고체 전해질을 용융 침투시키는 방식을 도입할 계획이다.
-
- IT/바이오
-
전기차 시장, '전고체 배터리'가 뜬다…10대 리드 기업 어디?
-
-
우산부터 프라이팬까지⋯일상 속 '암 유발' 독성 화학물질 6가지
- 한국의 장마철에는 많은 비가 쏟아진다. 6월 말부터 시작되는 장마철을 대비해 미리 튼튼한 우산을 준비하기도 한다. 그러나 대부분의 사람들이 몰랐던 충격적인 사실이 밝혀졌다. 그 바로 우산에 '암 유발' 위험을 가진 '잔류성 독성 화학물질(Perfluoroalkyl Sulfonate 과불화옥테인술폰산)'이 숨어있다는 것. 그게 끝이 아니다. 음식물이 타지 않도록 코팅 처리된 프라이팬과 심지어 화장품에도 독성 화학물질이 들어 있다. 잔류성 독성 화학물질은 우리 주변 곳곳에 있으나, PFAS와 PFOA(perfluorooctanoic acid 과불화옥탄산)와 같은 물질들은 자연환경이나 인체에서 쉽게 분해되지 않아, 영구적으로 남는 위험이 있다. 야후 뉴스는 최근 이 같은 위험한 화학물질이 함유되어 있을 가능성이 있는 제품 6가지를 소개했다. 다양한 용도를 자랑하는 PFAS와 PFOA는 많은 기업들이 애용하고 있다. 조리용 팬에 적용하면 매끄러운 표면이 형성되며, 셔츠의 얼룩 제거에도 탁월한 효과를 보인다. 일부 규제 기관들은 잔류성 독성 화학물질이 건강에 미치는 영향을 파악하기 위해 지속적인 모니터링을 진행하고 있다. 그러나 해당 물질의 사용을 제한하자, 다른 대체 분자를 개발해 새로운 화학물질이 등장하고 있는 현실이다. 코팅 팬에는 PFAS와 같은 화학물질의 잔류 가능성이 높다. 이들 물질은 고혈압, 심장마비, 뇌졸중, 간 기능 약화, 신장암 및 고환암의 위험성이 증가한다. 심할 경우 불임 문제까지 초래할 수 있다. 유해물질추방국제네트워크(IPEN, International Pollutants Elimination Network) 과학 고문 사라 브로쉐(Sara Brosché) 박사는 "이 물질은 생식력 및 내분비 장애 문제와 관련이 있다"며 "환경 오염으로 인해 부분적으로 발생하는 출산 위기와 관련돼 있다"고 주장했다. 편리함 때문에 자주 이용하는 전자레인지용 팝콘 봉지도 가급적 사용하지 않는 것이 좋다. IPEN이 2023년 3월 발표한 연구자료에 따르면, 전자 레인지용 팝콘 봉지에는 PFBA(perfluorobutanoic acid)와 PFHxA(perfluorohexanoic acid), FTOH(플루오로텔로머 알코올), 오르텔로머 알코올(FTOHs)이 종종 함유됐다. 또 국제적인 환경 분야 학술지 '종합환경과학(Science of the Total Environment)'의 2022년 연구 결과에 따르면, 테프론 코팅 팬에서 발생하는 단 하나의 표면 균열로 인해 최대 9100개의 플라스틱 입자가 인체 내로 들어갈 수 있다고 밝혀졌다. 물건을 구입할 때 받는 영수증도 안전하다고 볼 수 없다. 이런 영수증은 광택이 나며 미끄러운 느낌이 있는데, 그 이유는 내분비계를 교란시킬 수 있는 BPS(비스페놀S)라는 독성 화학물질이 포함되어 있기 때문이다. 패스트푸드의 포장지에도 PFAS가 함유되어 있다. 우산은 방수 효과를 높이기 위해 PFAS 같은 물질이 사용되고 있다. 또한, 로션, 면도크림, 파운데이션, 립스틱, 아이라이너, 아이샤도우, 마스카라와 같은 일부 화장품에도 PFAS가 포함되어 있다. 카펫과 가구에도 내구성을 향상시키기 위해 이 물질이 사용된다. 이처럼 우리가 일상 속에서 흔히 접하게 되는 다양한 제품에 잔류성 독성 화학 물질이 함유되어 있기 때문에 특별한 주의가 요구된다.
-
- 생활경제
-
우산부터 프라이팬까지⋯일상 속 '암 유발' 독성 화학물질 6가지