- 'GaN 기술의 요람' 일본 나고야 대학 연구팀 10년 만의 쾌거
- 1980년대 최초의 청색 LED 개발-2014년 노벨 물리학상 수상
- 벌크 반도체에 2차원 금속층이 삽입되는 현상 최초 확인
과학자들이 질화갈륨(GaN)과 금속 마그네슘(Mg)을 가열해서 초격자가 형성되는 것을 발견했다.
일본 나고야 대학 연구팀은 질화갈륨과 마그네숨 간의 열 반응을 통해 톡특한 조격자 구조가 형성되는 것을 실험 과정 중에 우연히 발견했다고 PHYS가 보도했다. 이는 벌크 반도체에 2차원 금속층이 삽입되는 현상이 최초로 확인된 사례이다.
초격자는 인공적으로 만들어진 주기적인 구조를 가진 물질로, 고성능 트랜지스터, 레이저 다이오드, 광검출기 등 다양한 분야에 활용된다.
연구팀은 최첨단 분석 기술을 통해 물질을 정밀하게 관찰해 반도체 도핑 및 탄성 변형 공학에 대한 새로운 통찰력을 얻었으며, 연구 결과는 학술지 '네이처(Nature)'에 게재됐다.
질화갈륨(GaN)은 높은 전력 밀도와 빠른 작동 주파수를 요구하는 분야에서 기존 실리콘 반도체를 대체할 것으로 기대되는 광대역 갭 반도체 물질이다. GaN의 이러한 특징은 LED레이저 다이오드, 전력 전자 장치(전기 자동차 및 고속 충전기의 핵심 부품 포함) 등 다양한 분야에서 활용 가치가 높다.
GaN 기반 장치의 성능 향상은 에너지 절약 사회 실현과 탄소 중립 미래를 실현하는 데 기여할 수 있다.
반도체에는 p형 및 n형이라는 두 가지 필수적이고 상호 보완적인 전기 전도 유형이 존재한다. p형 반도체는 주로 양전하를 운반하는 자유 캐리어인 정공을 특징으로 하며, n형 반도체는 자유 전자를 통해 전기를 전도한다.
반도체는 도핑이라는 과정을 통해 p형 또는 n형 전도성을 획득한다. 도핑은 순수 반도체 물질에 특정 불순물(도펀트)을 의도적으로 도입하여 전기적 및 광학적 특성을 크게 변화시키는 것을 의미한다.
GaN 반도체 분야에서 p형 전도성을 생성하는 것으로 알려진 유일한 원소는 Mg이다. 그러나 Mg 도핑의 성공 이후 35년이나 지났음에도 불구하고, GaN에서 Mg 도핑의 전체 메커니즘, 특히 Mg의 용해도 한계 및 분리 거동은 여전히 명확하지 않다. 이러한 불확실성은 광전자 및 전자 분야에서의 최적화를 제한한다.
이 연구의 제1 저자인 지아 왕과 그의 동료들은 p형 GaN의 전도도를 개선하기 위해 GaN 웨이퍼에 증착된 금속 Mg 박막을 패턴화하고 고온에서 가열하는 어닐링이라는 기존 공정을 수행하는 실험을 진행했다.
'어닐링(Annealing)'은 금속이나 유리 등의 재료를 가열한 후 천천히 식혀 내부 응집력을 제거하고 재료의 성질을 변화시키는 열처리 과정을 말한다. 금속을 가열하고 천천히 식히면 재료의 결정 구조를 변화시켜 강도, 경도, 내식성 등의 특징을 개선할 수 있다.
왕 연구원은 "GaN은 이온 결합과 공유 결합이 혼합된 광대역 갭 반도체이고 Mg는 금속 결합을 특징으로 하는 금속이지만, 이 두 이질적인 물질은 동일한 결정 구조를 가지고 있으며 육각형 GaN과 육각형 Mg의 격자 차이가 무시할 정도로 적다는 것은 놀랍도록 자연스러운 우연"이라고 말했다.
이어 "우리는 GaN과 Mg사이의 완벽한 격자 일치가 구조를 만드는 데 필요한 에너지를 크게 줄여 이러한 초격자의 자발적인 형성에 중요한 역할을 한다고 생각한다"라고 설명했다.
연구팀은 최첨단 전자 현미경 이미징을 사용해 GaN 및 Mg 층이 번갈아 나타나는 초격자의 자발적인 형성을 관찰했다. GaN과 Mg는 물리적 특성이 크게 다른 물질이므로 이처럼 초격자가 자발적으로 형성된 것은 매우 특이한 현상이다.
연구팀은 이 독특한 삽입 거동을 '틈새 삽입(interstitial intercalation)'이라고 명명하고, 이것이 모재에 압축 변형을 유발한다는 것을 밝혀냈다. 특히 Mg 층이 삽입된 GaN은 20GPa 이상의 높은 응력을 견뎌냈다. 이는 대기압의 20만배에 해당하며, 박막 물질에서 기록된 가장 높은 압축 변형이다. 이는 실리콘 필름에서 일반적으로 발견되는 압축 응력(0.1~2GPa)보다 훨씬 크다.
전자 박막은 이러한 변형으로 인해 전자 및 자기 특성에 상당한 변화를 겪을 수 있다. 연구팀은 변형된 방향을 따라 정공 수송을 통한 GaN의 전기 전도도가 크게 향상되었음을 발견했다.
한편, 이 연구는 'GaN 기술의 요람'으로 알려진 나고야 대학에서 이루어졌다는 데 의미가 있다.
이번 연구의 교신 저자인 아마노 히로시와 나고야 대학의 아카사키 이사무는 1980년대 후반에 Mg가 도핑된 GaN을 사용해 최초의 청색 LED를 개발했다. 이들의 공헌은 2014년 노벨 물리학상 수상으로 이어졌다.
이번 연구에서는 2차원 Mg 도핑의 새로운 메커니즘을 밝혀냄으로써 III-질화물 반도체 연구 분야의 잠재적으로 새로운 길을 열 것으로 기대된다.
왕 연구원은 "마그네슘이 삽입된 GaN 초격자 구조의 발견과 2D-Mg 도핑의 새로운 메커니즘 규명은 질화 3족 반도체 연구 분야의 선구적인 업적을 기릴 수 있는 어렵게 얻은 기회"라고 말했다.
노벨상 수상 후 10년 만에 Mg 도핑의 기술을 발전시킨 왕 연구원은 "이 시기적절한 발견이 이 분야의 새로운 길을 열고 더 많은 기초 연구에 영감을 줄 수 있는 '자연의 진정한 선물'"이라고 밝혔다.
이 연구에는 나고야 대학에서 지아 왕, 카이 웬타오, 순 루, 에미 카노, 비랩 사르카, 와타나베 히로타카, 이카라시 노부유키, 혼다 요시오, 아마노 히로시 등이 참여했다. 외에도 메이지 대학교의 연구진과 오사카 대학교의 나카지마 마코토 교수가 이끄는 광학 그룹이 이 연구의 다른 공저자로 참여했다.