검색
-
-
[먹을까? 말까?(38)] 우주 식량, 맛없는 이유는 외로움 때문?
- 우주라는 고립된 환경에서 오는 외로움이 우주 비행사들의 식사 만족도에도 영향을 끼치는 것으로 나타났다. 호주의 로열멜버른공과대학(RMIT)의 연구팀은 우주 비행사들이 우주 식량을 즐기지 못하는 이유가 음식 향과 관련이 있을 수 있다는 연구 결과를 발표했다. 우주에서는 장기 보관을 위해 동결 건조 또는 탈수 처리된 인스턴트 식품 위주로 섭취하는데, 이는 우주 비행사들이 영양 섭취 부족 문제와 연결되어 왔다. RMIT 연구팀은 이번 연구를 통해 우주 환경 자체가 음식 향에 대한 인식을 변화시킬 수 있으며, 외로움과 고립감 역시 식사 만족도에 영향을 미칠 수 있다는 가능성을 제시했다고 인터레스팅엔지니어링이 전했다. 수석연구원인 줄리아 로우는 "외로움과 고립감도 영향을 미칠 수 있으며, 이번 연구는 고립된 사람들이 음식 냄새를 맡고 맛보는 방식에 관한 시사점이 있다"고 말했다. 후각은 미각의 큰 부분을 차지한다는 것은 누구나 알고 있는 사실이다. 이에 연구팀은 54명의 참가자를 대상으로 VR을 이용해 국제우주정거장(ISS)환경을 시뮬레이션하고, 바닐라, 아몬드, 레몬 향에 대한 인식 변화를 관찰했다. 그 결과, 시뮬레이션된 우주정거장 환경에서 바닐라와 아몬드 향은 더 강하게 느껴졌지만, 레몬 향은 변화가 없었다. 연구팀은 이러한 현상의 원인으로 벤즈알데히드라는 화학 물질과 개인별 향 민감도 차이를 제시했다. 연구팀은 무중력 상태에서 체액이 상체로 이동하면서 발생하는 코막힘 등의 현상도 우주인의 미각과 후각을 둔하게 만들 수 있다고 설명했다. 중력이 부족하면 체액이 하체에서 상체로 끌려간다. 이로 인해 얼굴 붓기와 코막힘 현상 등이 나타난다. 이는 심한 감기에 걸린 것과 비슷하다. 그러나 이러한 체액 이동 효과는 일시적인 것이며, 우주정거장에 머무르는 동안 몇주 이내에 사라진다. 로우는 보도자료에서 "우주인들이 체액 이동 효과가 사라진 후에도 여전히 음식을 즐기지 못하는 데. 이는 다른 더 큰 이유가 있을 수 있음을 시사한다"고 밝혔다. 한편, 우주 식량은 모든 사람들이 먹을 수 있는 일반적인 음식은 아니다. 또한 우주 식량은 단순한 식사를 넘어 우주 탐사의 성공과 우주인의 건강을 책임지는 핵심요소라고 할 수 있다. 우주 식량은 탄수화물, 단백질, 지방, 비타민, 무기질 등 필수 영양소를 골고루 함유해 균형잡힌 식단을 제공한다. 극한의 우주 환경을 극복하기 위해 특별히 개발된 우주 식량은 뛰어난 보존성과 간편 요리 등의 특징을 지니고 있다. 냉장 시설이 부족한 우주에서는 장기간 보관이 필수다. 우주 식량은 동결 건조, 탈수, 레토르트 살균 등 첨단 기술을 통해 부패 걱정 없이 오랫동안 신선함을 유지한다. 아울러 우주선은 공간이 한정적이기 때문에 우주 식량은 부피와 무게를 최소화해 효율적인 운반과 보관을 가능하게 한다. 또 우주에서는 조리 환경이 열악하고 무중력 상태에서는 조리하기가 어렵다. 그 때문에 우주 식량은 뜨거운 물이나 차가운 물, 전자레인지만으로도 간편하게 조리할 수 있도록 설계됐다. 우주 식량 개발 과정에서 얻은 기술은 식품 가공, 포장, 보존 기술 발전에 기여해 일반인의 식탁에도 긍정적인 영향을 미치고 있다. 이번 연구는 장기 우주 임무를 수행하는 우주 비행사들을 위한 맞춤형 식단 뿐만 아니라 요양원 등 고립된 환경에 있는 사람들의 식단 개선에도 기여할 수 있을 것으로 기대된다. 로우는 "이 연구의 장기적인 목표 중 하나는 우주비행사뿐만 아니라 고립된 환경에 있는 다른 사람들에게 더 나은 맞춤형 식품을 만들어 영양 섭취량을 100%에 가깝게 늘리는 것"이라고 말했다.
-
- 생활경제
-
[먹을까? 말까?(38)] 우주 식량, 맛없는 이유는 외로움 때문?
-
-
춤추는 휴머노이드 로봇, 인간과의 협업 강화 기대
- 캘리포니아 주립대학교 샌디에이고 캠퍼스(UC 샌디에이고)의 공학 연구팀이 간단한 댄스와 손 흔들기, 하이파이브, 포옹과 같은 행동을 포함, 다양한 표현과 동작을 쉽게 배우고 수행하는 동시에 다양한 지형에서 안정적인 보행을 유지하는 휴머노이드 로봇를 선보였다고 전문 매체 테크익스플로어가 전했다. UC 샌디에이고 연구팀이 선보인 휴머노이드 로봇은 과거에 비해 표현력이나 민첩성이 크게 향상됐다는 평가를 받고 있다. 이에 따라 공장 조립라인, 병원 및 가정과 같은 민감한 중요 환경하에서 인간과의 협업을 더욱 진전시킬 수 있을 것으로 기대된다. 실험실이나 재난 현장 등 위험한 환경에서 사람을 대체하거나 보조하는 방법도 더욱 다양하고 원활해질 것이라고 연구팀은 밝혔다. UC 샌디에이고 전기컴퓨터공학부 샤오룽 왕 교수는 "표현력이 풍부하고 인간과 더욱 유사한 신체 동작을 통해, 연구팀은 신뢰를 구축하고 인간과 조화롭게 공존할 수 있는 로봇을 개발하는 것을 목표로 하고 있다"면서 "우리는 로봇이 터미네이터처럼 무섭기보다는 친근하고 협력적이라는 방향으로 일반의 인식을 바꾸고자 한다"고 밝혔다. 왕 교수가 주도한 연구팀은 이달 15일(현지시간)부터 19일까지 네덜란드 델프트에서 개최되는 '2024 로봇공학: 과학 및 시스템 컨퍼런스(2024 Robotics: Science and Systems Conference)'에서 연구 결과를 발표한다. 개발된 휴머노이드 로봇은 다양한 인체 동작을 교육받아 훈련하고 이를 응용해 새로운 동작을 만들어 내거나 쉽게 모방할 수 있다는 점에서 표현력이 대단히 뛰어나다는 평가다. 댄스를 배우는 학생이 빠르게 배우는 것과 마찬가지로 이 휴머노이드 로봇도 새로운 춤과 동작을 매우 빠르게 배울 수 있다. 팀은 로봇을 훈련시키기 위해 다양한 모션 캡처 데이터들과 댄스 동영상을 활용했다. 특히 상체와 하체를 별도로 훈련하는 방법도 새로이 적용했다. 새로운 교육 방식을 통해 로봇의 상체는 춤, 하이파이브 등 다양한 동작을 복제할 수 있었고, 다리는 균형을 유지하고 다양한 지형을 걸어 이동할 수 있도록 안정적인 보행 동작에 집중했다. 왕교수는 이와 관련, "이런 로봇 상하 분리 교육의 주요 지향점은 로봇이 넘어지지 않고 이곳저곳을 걸으면서 다양한 일을 할 수 있는 능력을 보여주는 것"이라고 말했다. 작업장에서 할 로봇 작업을 캠퍼스에서 일상적인 춤과 행동을 통해 교육한다는 의미다. 상체와 하체가 별도로 훈련받지만 로봇은 전체 신체를 통합해 관리하는 프로그램과 통제 플랫폼에 따라 작동한다. 이를 통해 로봇은 자갈, 흙과 같은 오프로드는 물론 잔디나 경사진 콘크리트 길 등 거의 모든 표면을 안정적으로 걸으면서 복잡한 상체 동작을 수행할 수 있다. 휴머노이드 로봇은 가상 플랫폼에서 시뮬레이션으로 과제를 수행한 후 실제 로봇에 적용했다. 그 결과 로봇은 실제 조건에서도 시뮬레이션과 같이 이미 학습된 동작이나 새로운 동작 모두에서 안정적인 실행 능력을 보여주었다. 현재 로봇의 움직임은 속도, 방향 및 특정 동작을 지시하는 게임 컨트롤러를 사용해 인간 운영자에 의해 지시된다. 팀은 로봇이 작업을 수행하고 지형을 모두 자율적으로 탐색할 수 있도록 카메라가 장착된 미래 버전을 개발하고 있다. 연구팀은 앞으로 더 복잡하고 세밀한 작업을 수행할 수 있도록 휴머노이드 로봇 설계를 개선하는 데 중점을 둘 계획이다. 왕 교수는 "로봇 상체의 기능을 확장함으로써 로봇이 수행할 수 있는 동작의 범위를 크게 넓힐 것"이라고 말했다.
-
- IT/바이오
-
춤추는 휴머노이드 로봇, 인간과의 협업 강화 기대
-
-
[신소재 신기술(30)] 190% 양자 효율 달성! 태양 전지 혁신 이끌 새로운 양자 물질 개발
- 미국 펜실베이니아주 리하이 대학교의 연구진은 태양전지 패널의 효율을 획기적으로 높일 수 있는 잠재력을 지닌 소재를 개발했다. 해당 물질을 태양 전지의 활성층으로 사용한 프로토타입은 평균 80%의 광전 흡수율, 높은 광여기 전하체 생성 속도, 최대 190%에 달하는 외부 양자 효율 (EQE)을 나타냈다고 과학 기술 전문 매체 테크익스플로어가 11일(현지시간) 전했다. 이는 실리콘 기반 물질의 이론적 쇼클리 퀴서(Shockley-Queisser) 효율 한계를 훨씬 뛰어넘는 수치이며, 태양전지용 양자 물질 분야를 새로운 차원으로 끌어올린 것이다. 쇼클리 퀴서 한계는 태양전지의 최대 효율을 결정하는 이론적 모델이다. 이 이론은 19661년에 물리학자 윌리엄 쇼클리에 의해 개발됐다. 이 한계는 단일 띠 구조를 가진 반도체 재료를 사용하는 태양전지의 최대 전력 변환효율을 설명하고 있다. 쇼클리 퀴서 한계는 이상적인 조건하에서 단일 접합 실리콘 태양전지의 최대 효율을 33%로 예측한다. 연구 논문을 저술한 치네두 에쿠마(Chinedu Ekuma) 리하이 대학교 물리학 교수는 "이 연구는 지속 가능한 에너지 솔루션에 대한 이해와 개발에서 중요한 도약을 의미하며, 가까운 미래에 태양 에너지 효율과 접근성을 재정의할 수 있는 혁신적인 접근 방식을 강조한다"라고 말했다. 에쿠마 교수와 리하이 박사과정 학생 스리하리 카스투아르가 함께 작성한 이번 연구 논문은 '사이언스 어드밴스' 저널에 발표됐다. 이 소재의 효율성은 주로 소재의 전자 구조 내에 태양 에너지 변환에 이상적인 방식으로 배치된 특정 에너지 레벨인 '중간 대역 상태'에 기인한다. 이러한 상태는 최적의 서브밴드 갭(물질이 태양광을 효율적으로 흡수하고 전하 캐리어를 생성할 수 있는 에너지 범위) 내에서 약 0.78 및 1.26전자볼트의 에너지 레벨을 갖는다. 또한 이 물질은 전자기 스펙트럼의 적외선 및 가시광선 영역에서 높은 흡수율을 보여 특히 우수한 성능을 발휘한다. 기존 태양 전지에서 최대 EQE는 100%이며, 이는 흡수된 태양광 한 개당 전자 하나를 생성 및 수집하는 것을 의미한다. 하지만 최근 몇 년 동안 개발된 일부 첨단 물질과 구성은 고에너지 광자로부터 둘 이상의 전자를 생성 및 수집할 수 있는 능력을 보여주었으며, 이는 100%를 초과하는 EQE를 나타낸다. 이러한 다중 엑시톤 생성(MEG) 물질은 아직 상용화되지 않았지만 태양 에너지 시스템의 효율을 크게 향상시킬 수 있는 잠재력을 가지고 있다. 리하이대학교에서 개발한 물질의 경우, 중간대 상태는 반사 및 열 생성을 포함하여 기존 태양 전지에서 손실되는 광자 에너지를 포집할 수 있다. 연구팀은 층을 이룬 2차원 물질 사이의 원자적으로 작은 틈인 '반 데르 발스 갭(van der Waals gap)'을 활용하여 새로운 물질을 개발했다. 반 데르 발스 갭은 분자나 이온을 가둘 수 있다. 재료 과학자들은 일반적으로 다른 원소를 삽입하거나 '인터칼레이트(intercalate)'하여 재료 특성을 조정하는 데 이 틈새를 사용한다. 리하이대학교 연구팀은 새로운 물질을 개발하기 위해 게르마늄 셀레나이드(GeSe)와 주석 황화물(SnS)로 구성된 2차원 물질 층 사이에 0가 구리 원자를 삽입했다. 컴퓨터 응집 물질 물리학 전문가인 에쿠마 교수는 이 시스템의 광범위한 컴퓨터 모델링을 통해 이론적 가능성을 입증한 후 개념 증명으로 프로토타입을 개발했다. 그는 "빠른 반응과 향상된 효율은 첨단 태양광 응용 분야에 사용할 수 있는 양자 물질로서 Cu-인터칼레이티드 GeSe/SnS의 잠재력을 강력하게 보여주며, 태양 에너지 변환의 효율을 개선할 수 있는 길을 제시한다"라면서 "이는 전 세계 에너지 수요를 해결하는 데 중요한 역할을 할 차세대 고효율 태양전지 개발의 유망한 후보 물질이다"라고 말했다. 새로 설계된 양자 물질을 현재의 태양 에너지 시스템에 통합하려면 더 많은 연구와 개발이 필요하지만, 과학자들은 오랜 시간 동안 원자, 이온, 분자를 물질에 정밀하게 삽입하는 방법을 터득해 왔다. 이에 에쿠마 교수는 이러한 물질을 만드는 데 사용되는 실험 기술은 이미 고도로 발전했다고 지적했다.
-
- 포커스온
-
[신소재 신기술(30)] 190% 양자 효율 달성! 태양 전지 혁신 이끌 새로운 양자 물질 개발
-
-
배낭 메고 걷는 운동 '러킹', 미국서 인기 급증
- 최근 많은 사람들이 무병장수를 위해 운동을 시작하고 있다. 그 중, 가장 많은 인기를 얻고 있는 단순하면서도 효과적인 운동은 '걷기'다. 국내에서는 하루 1만 보 걷기를 통해 포인트를 적립해주고, 이를 실제로 활용할 수 있는 앱들도 큰 인기를 누리고 있다. 이제, 걷기의 효과를 더 크게 느낄 수 있는 새로운 운동법이 주목받고 있다. 미국 CNN에서는 배낭을 매고 하는 '러킹(Rucking)'이라는 운동 방식을 소개했다. 피트니스 전문 프리랜서 작가인 멜라니 라지키 맥마너스(Melanie Radzicki McManus)는 이 운동이 심혈관과 근육 건강을 개선하는 효과적인 전신 운동이라고 전했다. '러킹'은 전 세계 군대에서 활용되는 핵심 훈련인 '럭 행진(Ruck Marching)'에서 비롯된 용어이다. 먼저 가벼운 무게의 배낭으로 시작해 근력이 강화됨에 따라 점진적으로 무게를 추가하는 방식으로 진행된다. 2019년 9월 연구 결과에 따르면, 10주 동안 가중된 걷기와 저항 훈련을 진행한 남성은 신체적 기능이 향상되었으며, 인지적으로 느끼는 운동 부담도 줄었다. 또한, 중장년 여성들도 하체의 근력과 기능성이 개선된 것으로 확인됐다. 이러한 결과 때문에 러킹이 많은 사람들 사이에서 주목받고 있다. 게다가, 러킹은 주로 야외에서 실시되기 때문에 정신 건강에도 이롭다. 매사추세츠 브리검(Mass General Brigham)의 스포츠 수행 및 연구 센터 선임 이사인 마크 스티븐슨(Mark Stephenson)은 "자연 환경에서의 활동이 정신 건강에 큰 이점을 가져다준다는 연구 결과가 다수 있다"고 강조했다. 러킹은 간단히 말하면 배낭을 메고 걷는 활동이지만, 주의사항이 있다. 다른 새로운 운동처럼 처음에는 가볍게 시작해 점차 무게를 늘리는 것이 중요하다. 스티븐슨은 "먼저 중량이 별로 나가지 않는 배낭을 메고 평소 걷는 거리를 걸어본 후, 배낭에 체중의 약 10%에 해당하는 무게를 추가해 보는 것을 권장한다"며, "배낭에 무게를 늘리게 되면 발목, 무릎, 엉덩이, 허리에 부담이 가해지기 때문에 점진적으로 증가해 나가는 게 필요하다"고 말했다. 배낭 대신 무게 조절이 가능한 조끼를 착용하는 방법도 있다. 이 방법은 무게가 앞과 뒤로 균등하게 분산되므로 부담이 적다. 조끼에 익숙해진 후에는 배낭으로 전환할 수 있다. 전직 미 해군 특수부대 네이비 실의 스튜 스미스(Stew Smith)는 "대부분의 가방끈은 4.5~9kg 정도의 무게를 감당하기 어렵다"며 "너무 무거운 무게는 피하고, 얇은 끈은 사용하지 않는 것이 좋다"고 조언했다. 그는 "배낭의 허리끈을 활용하면 움직임을 최소화하고 무게를 균등하게 분산시킬 수 있어 허리에 딱 맞게 착용되며 어깨에 부담이 가지 않게 될 것"이라고 말했다. 또 "무거운 물건은 배낭의 바닥이 아닌, 허리보다 조금 위인 견갑골 부근에 위치시켜야 한다"고 덧붙였다. 러킹을 할 때 적절한 배낭과 무게 선택에 대한 고민을 줄이고 싶다면, 러킹 전용으로 제작된 배낭을 구매하는 것이 바람직하다. 뿐만 아니라 발바닥의 물집을 예방하기 위해 양모나 흡습성이 좋은 소재의 양말과 편안한 신발을 착용하는 것도 중요하다. 피트니스 전문가들은 일주일에 2~3회의 러킹을 추천하며, 하체 운동과 함께 하면 건강 향상에 더욱 효과적이라고 강조했다.
-
- IT/바이오
-
배낭 메고 걷는 운동 '러킹', 미국서 인기 급증