검색
-
-
[우주의 속삭임(106)] 초기 우주에서 풍부한 산소 발견, 천문학계 '경악'
- 우주 탄생 후 불과 3억 년이라는 이른 시기에 형성된 것으로 추정되는 한 은하에서 기존 학설로는 설명하기 어려운 다량의 산소가 발견돼 천문학계가 놀라움을 금치 못하고 있다. 최근 관측된 JADES-GS-z14-0 은하는 수소와 헬륨보다 무거운 원소들이 초기 우주에는 극히 드물었을 것이라는 과학계의 통념을 뒤엎는 산소 풍부도를 나타냈다고 과학전문 매체 사시언스얼럿과 CNN 등이 20일(현지시간) 보도했다. 이는 초기 우주가 기존 예상보다 훨씬 빠르게 성숙했을 가능성을 시사하는 또 다른 강력한 증거로 제시되고 있다. 네덜란드 라이덴 천문대의 우주론 학자인 산더르 스하우스는 이번 발견에 대해 "마치 갓난아기들만 있을 것으로 예상되는 곳에서 청소년을 발견한 것과 같다"며 감격했다. 그는 "이번 결과는 해당 은하가 매우 빠르게 형성되었을 뿐만 아니라 빠르게 성숙하고 있다는 것을 보여주며, 은하 형성이 예상보다 훨씬 빠르게 진행된다는 증거가 점점 늘어나고 있음을 뒷받침한다"고 덧붙였다. JADES-GS-z14-0 은하의 존재 자체도 기존 우주론 모델에는 이미 상당한 문제였다. 은하가 탐지될 만큼 거대하고 밝아지기 위해서는 상당한 시간이 필요하다고 여겨졌기 때문이다. 134억 광년이 넘는 거리에서 관측될 수 있을 정도의 크기와 밝기는 기존 이론으로는 쉽게 설명하기 어려웠다. 수소와 헬륨보다 무거운 원소들의 형성에 시간이 걸린다는 점 또한 이번 발견의 중요성을 더한다. 빅뱅 직후 우주에는 수소와 헬륨만이 존재했으며, 밀도 차이로 인해 최초의 별들이 탄생했다. 별의 중심핵에서 수소 원자들이 융합하여 점차 무거운 원소들이 만들어지는 과정을 거쳐야 산소가 존재할 수 있게 된다. 특히, 이렇게 생성된 원소들이 우주 공간으로 퍼져나가기 위해서는 별이 수명을 다하고 초신성 폭발을 일으켜야 한다. 이는 비교적 짧은 시간 안에 일어날 수 있지만, 가장 무거운 별의 수명도 1천만 년 이하일 수 있다. 하지만 칠레 아타카마 대형 밀리미터/서브밀리미터 전파망원경(ALMA)을 이용한 관측 결과, JADES-GS-z14-0 은하에서 검출된 수소와 헬륨보다 무거운 원소의 양은 예측치의 10배나 되는 것으로 나타났다. 이는 원소 생성 속도 또한 기존 예상을 훨씬 뛰어넘는다는 것을 의미한다. 이탈리아 고등사범학교의 천체물리학자인 스테파노 카르니아니는 "예상치 못한 결과에 매우 놀랐으며, 이는 초기 은하 진화의 새로운 관점을 열어주었다"고 말했다. 그는 "갓 태어난 우주에서 이미 성숙한 은하의 증거는 은하가 언제 그리고 어떻게 형성되었는지에 대한 의문을 제기한다"고 강조했다. 우주가 팽창함에 따라 멀리 떨어진 은하에서 방출된 빛은 도플러 효과로 인해 붉은 파장으로 늘어난다. 제임스 웹 우주 망원경(JWST)은 이러한 적색편이된 천체를 탐지하는 데 최적화된 가장 강력한 적외선 우주 망원경이다. JWST 발사 이후 천문학자들은 빅뱅 후 첫 10억 년 동안 초기 우주에서 예상보다 훨씬 큰 은하들을 다수 발견했으며, 이는 초기 우주 진화에 대한 기존의 그림과는 매우 다른 새로운 관점을 제시하고 있다. JADES-GS-z14-0 은하에서의 산소 발견은 초기 우주에서 은하들이 기존 예상보다 훨씬 빠르게 성장하고 진화했다는 것을 점점 더 강력하게 시사하는 또 다른 중요한 단서가 될 것으로 보인다. 이제 과학자들은 이러한 빠른 성장이 우주론적 시간표를 어떻게 변화시키는지, 그리고 초기 우주에 대한 기존의 다른 가설들을 어떻게 재검토해야 할지에 대한 연구를 진행할 예정이다. 이번 연구 결과는 『천체물리학 저널(The Astrophysical Journal)』과 『천문학 및 천체물리학(Astronomy & Astrophysics)』 저널에 게재될 예정이며, 사전 공개 사이트인 arXiv를 통해 확인할 수 있다.
-
- 포커스온
-
[우주의 속삭임(106)] 초기 우주에서 풍부한 산소 발견, 천문학계 '경악'
-
-
우주 '유령 입자'의 놀라운 에너지, 심해 탐사로 밝혀내
- 천문학자들이 지중해 심해에 건설중인 거대한 센서 네트워크를 활용해 역대 최고 에너지의 우주 '유령 입자'를 검출하는 데 성공했다. 해당 연구에 대해서는 CNN, 뉴욕타임스, 네이터닷컴 등 다수 외신이 심층적으로 다루었다. 이 입자는 공식 명칭 '중성미자(Nutiino)'로, 이전에 검출된 수백 개의 중성미자보다 30배나 높은 에너지를 지닌 것으로 확인됐다. 우주에서 날아오는 이 작고 강렬한 입자들은 물질과 상호작용없이 통과하는 특성 때문에 '유령 입자'로 불린다. 질량이 거의 없는 중성미자는 별, 행성, 은하 전체를 포함한 극한 환경을 통과하면도 구조를 유지한다. 전 세계 360명 이상의 과학자들이 참여한 KM3NeT 협력단의 중성미자 분석 결과는 12일 과학 저널 '네이처(Nature)'에 게재됐다. 공동 저자인 로사 코닐리오네 KM3NeT 부대변인 겸 이탈리아 국립핵물리연구소 연구원은 "중성미자는 특별한 우주 메신저로, 가장 강력한 현상과 관련된 메커니즘에 대한 독특한 정보를 제공하며 우주의 가장 먼 곳까지 탐험할 수 있게 해 준다"고 밝혔다. 이번에 검출된 기록적인 중성미자는 KM3-230213A로 명명됐으며 2200억 전자볼트의 에너지를 가지고 있었다. 연구진에 따르면 이 엄청난 에너지는 스위스 제네바 인근 유럽입자물리연구소(CERN)의 거대 강입자 충돌기(LHC)가 입자를 빛의 속도에 가깝게 가속시키는 능력보다 약 3만 배나 강력한 것이다. 전하를 띠지 않는 중성미자는 고에너지 양성자가 우주를 창조한 빅뱅에서 남은 복사선의 광자와 결합할 때 생성될 수 있다. 이 입자들은 우주를 거의 빛의 속도로 이동한다. KM3NeT 공동 저자인 브래드 K. 깁슨 박사는 이메일을 통해 CNN에 "이 단일 중성미자의 에너지는 우라늄 원자 하나, 또는 열 개, 심지어 백만 개의 원자를 쪼개서 방출되는 에너지와 맞먹는다고 생각하면 된다"며 "이 작은 중성미자 하나가 10억 개의 우라늄 원자를 쪼개서 방출되는 에너지만큼의 에너지를 가지고 있었다. 핵분열로 생성되는 에너지와 비교하면 정말 엄청난 숫자"라고 설명했다. 이 입자는 우주에서 그렇게 높은 에너지의 중성미자가 생성될 수 있다는 최초의 증거를 제공한다. 연구진은 이 중성미자가 우리 은하 너머에서 왔다고 믿지만, 정확한 기원 지점은 아직 밝혀내지 못했다. 초거대 블랙홀, 감마선 폭발, 초신성 잔해와 같은 극한 환경에서 중성미자가 생성되어 우주를 가로질러 날아왔을 가능성이 제기된다. 공동 저자인 파스칼 코일 KM3NeT 대변인 겸 프랑스 국립과학연구센터-마르세유 입자물리센터 연구원은 이번 획기적인 발견은 중성미자 천문학의 새로운 장을 열었을 뿐만 아니라 우주를 관측할 새로운 창을 열었다고 말했다. 코일은 "KM3NeT은 검출된 중성미자가 극한의 천체 물리학적 현상에서 비롯될 수 있는 에너지와 감도의 범위를 탐색하기 시작했다"고 덧붙였다. 중성미자, 얼음이나 물과 상호작용 중성미자는 주변 환경과 상호작용을 잘 하지 않기 때문에 검출하기 어렵지만, 물이나 얼음과는 상호작용한다. 중성미자가 검출기와 직접 상호작용하면 얼음에 박히거나 물에 떠 있는 인근 디지털 광학 센서 네트워크가 감지할 수 있는 푸르스름한 빛을 방출한다. 예를 들어 남극의 아이스큐브 중성미자 관측소는 남극 얼음에 박힌 5000개 이상의 센서 그리드를 포함한다. 2011년부터 운영된 이 검출기는 수백 개의 중성미자를 발견했으며, 과학자들은 그 중 일부를 블레이저나 활동 은하의 밝은 핵과 같이 우주적 근원으로 그 일부를 추적할 수 있었다. 국제 연구팀은 2010년대 초 심해에서 중성미자를 포착할 수 있는 1 입방킬로미터 중성미자 망원경(KM3NeT)으로 알려진 검출기 네트워크 아이디어를 구상했고, 2015년에 네트워크 설치가 시작됐다. KM3NeT은 2023년 2월 13일, 이 입자가 두 검출기 중 하나를 밝혔을 때 기록적인 검출에 성공했다. 두 개의 검출기 중 하나인 ARCA(심해 우주선 연구)는 수심 3450m에 위치하고, ORCA(심해 우주선 진동 연구)는 지중해 해저 수심 2450m에 위치한다. 이탈리아 카포 파세로 인근 시칠리아 해안에 있는 ARCA 검출기는 고에너지 중성미자를 포착하도록 설계됐고, 프랑스 남동부 툴롱 근처에 있는 ORCA는 저에너지 중성미자 탐색에 전념한다. 해저에 고정된 센서 그리드를 포함하는 KM3NeT은 아직 건설 중이지만, 고에너지 중성미자를 포착하기에 충분한 검출기가 배치됐다고 연구진은 밝혔다. ARCA 검출기는 계획된 구성 요소의 10%만 작동 중이었을 때 입자가 망원경 전체를 거의 수평으로 통과하며 활성 센서의 3분의 1 이상에서 신호를 발생시켰다. 검출기는 하전 입자에 의해 생성된 2만8000개 이상의 빛 광자를 기록했다. 미스터리하고 강력한 기원 이 중성미자 내의 에너지가 일상적인 물체에 대한 이해를 위해 전환된다면 0.04줄, 즉 1m 높이에서 떨어진 탁구공의 에너지에 해당한다고 공동 저자인 아르트 헤이보어 KM3NeT 물리학 코디네이터 겸 네덜란드 국립 아원자 물리학 연구소(NIKHEF) 및 암스테르담 대학 교수는 말했다. 그 양은 작은 LED 전구를 약 1초 동안 켤 수 있는 정도라고 그는 말했다. 헤이보어는 이메일을 통해 "일상적인 물체에 대해서는 큰 에너지가 아니지만, 일상 세계와의 그런 유추가 가능하다는 사실 자체가 놀랍다. 이 모든 에너지는 단일 기본 입자 안에 담겨 있었다"고 설명했다. 연구진에 따르면 입자 규모에서 중성미자는 가시광선 광자 에너지의 약 10억 배에서 1억 배에 해당하는 초고에너지로 간주됐다. 지구에서 중성미자를 검출하면 연구원들은 근원지를 추적할 수 있다. 이 입자들이 어디에서 오는지 이해하는 것은 오랫동안 광선이 지구 대기에 충돌할 때 중성미자의 주요 원천으로 여겨져 온 미스터리한 광선인 우주선(Cosmic Ray)의 기원에 대해 더 많은 것을 밝힐 수 있다. 우주에서 가장 강력한 입자인 우주선(cosmic ray)은 우주에서 지구로 쏟아진다. 이 광선은 대부분 양성자나 원자핵으로 구성되어 있으며, 광선을 생성하는 것이 거대 강입자 충돌기의 능력을 능가하는 매우 강력한 입자 가속기이기 때문에 우주 전역으로 방출된다. 중성미자는 우주선이 이디에서 오는지, 무엇이 우주 전역으로 발사하는 지 천문학자들에게 알려줄 수 있다. 연구진은 감마선 폭발이나 138억년 전 빅뱅에서 남은 복사인 우주 마이크로파 배경의 광자와 우주선 상호 작용과 같이 강력한 무엇인가가 이번에 새로 발견된 중성미자를 방출했다고 추정한다. 연구 기간 동안 연구진은 중성미자를 생성했을 가능성이 있는 12개의 잠재적 블레이저를 확인하기도 했다. 블레이저는 검출기에서 수집한 데이터와 감마선, X선, 전파 망원경의 교차 참조 데이터를 기반으로 입자가 이동한 것으로 추정되는 방향과 일치한다. 하지만 더 많은 연구가 필요하다.
-
- 포커스온
-
우주 '유령 입자'의 놀라운 에너지, 심해 탐사로 밝혀내
-
-
[우주의 속삭임(86)] 우주 팽창 속도, 표준 우주론에 의문 제기⋯제임스웹 망원경, 허블 망원경 측정값 검증
- 우주가 천문학자들의 예상보다 빠르게 확장되고 있는 것으로 나타나 우주론 연구에 새로운 국면을 예고했다. 미국 항공우주국(나사·NASA)의 제임스 웹 우주 망원경은 우주의 팽창 속도가 예상보다 8% 빠르다는 것을 확인했다. 우주는 마치 오븐 속에서 머핀을 굽는 것처럼 확장된다는 것이다. 즉, 빵 반죽이나 머핀 반죽을 넣어 오븐에 구으면 빵이나 머핀이 커지는 것처럼 우주가 팽창된다는 것. 이때 머핀 속의 건포도나 블루베리는 오븐 속에서 머핀 반죽이 부풀어 오르면서 서로 멀어진다. 제임스 웹 망원경의 최신 관측 결과는 우주의 팽창 속도에 대한 기존 이론에 의문을 제기했다. 이는 단순한 측정 오류가 아닌, 우주 자체의 미지의 특징이 현재의 팽창 속도를 설명할 수 있음을 시사한다. 우주론적 난제 '허블 텐션' 심화 제임스 웹이 수집한 2년간의 데이터는 허블 우주 망원경이 이전에 발견한 우주의 팽창 속도가 천체물리학자들이 우주의 초기 조건과 수십억 년에 걸친 진화에 대해 알고 있는 이론에 근거해 예상했던 것보다 8% 빠르다는 것을 입증했다. 이 불일치를 '허블 텐션'이라고 한다. 허블 텐션은 현재까지 최고 우주 모델로도 설명되지 않은 난제로 남아 있다. 이번 연구는 허블 우주 망원경의 측정값을 검증하며, 우주의 팽창 속도를 나타내는 허블 상수 측정에서 나타나는 불일치, 즉 '허블 텐션'을 해결하기 위한 중요한 단서를 제공한다고 스페이스닷컴, PHYS, KSL.닷컴 등 다수 외신이 전했다. 우주 가속 팽창을 공동 발견한 공로로 2011년 노벨상 수상자이자 이번 연구의 주요 저자인 존스 홉킨스 대학교의 애덤 리스 교수는 "관측된 우주 팽장 속도와 표준 모델의 예측 사이의 불일치는 우리의 우주에 대한 이해가 불전할 수 있음을 시사한다"며 "두 개의 NASA 주력 망원경이 서로의 발견을 확인하는 현 상황에서, 우리는 이 문제를 매우 심각하게 받아들여야 한다. 이는 도전이지만 동시에 우리 우주에 대해 더 많이 배울 수 있는 놀라운 기회이기도 하다"라고 말했다. 이번 연구는 천체물리학 저널(Astrophysical Journal)에 게재됐으며, 리스 교수의 노벨상 수상 업적인 '암흑 에너지'에 의한 우주 가속 팽창 이론을 기반으로 한다. 암흑 에너지는 별과 은하 사이의 광활한 공간에 스며들어 우주의 팽창을 가속화시키는 미지의 에너지다. 우주의 약 27%를 차지한다고 생각되는 '암흑 물질'은 눈에 보이지 않지만 일반 물질(별, 행성, 달, 지구상의 모든 물질)에 미치는 중력 효과를 바탕으로 그 존재가 추정되는 가설적 물질의 한 형태다. 지구상의 모든 물질은 우주의 약 5%를 차지한다. 우주의 약 69%를 차지하는 것으로 추정되는 '암흑 에너지'는 우주의 광대한 공간에 스며들어 중력을 상쇄하고 우주의 가속 팽창을 주도하는 에너지의 한 형태라고 가정된다. 우주가 정적이지 않고 확장되거나 수축될 수 있다는 이론은 1922년 물리학자 알렉산더 프리드먼이 처음 발표했다. 그는 우주가 확장되고 있다는 것을 수학적으로 확인했다. 우주의 확장 속도를 더 깊이 들여다 본 사람은 에드윈 허블이었다. 허블은 1929년 우주 전체가 확장되고 있으며 확장 속도가 증가하고 있다는 것을 확인한 유명한 논문을 발표했다. 수수께끼의 '허블 상수' 연구팀은 웹 망원경이 우주에서 보낸 첫 2년 동안 수집한 방대한 데이터를 활용하여 허블 망원경의 허블 상수 측정값을 검증했다. 초신성을 포함하는 거리를 정하는 세 가지 방법을 사용했으며, 특히 허블 망원경으로 측정하여 가장 정확한 '국부적' 허블 상수 값을 제공하는 것으로 알려진 거리에 초점을 맞추었다. 두 망원경의 관측 결과는 매우 유사하게 일치해 허블 망원경의 측정값이 정확함을 보여줬으며, 허블 텐션을 허블 망원경의 오류로 돌릴 만큼 큰 오차가 없음을 확인했다. 그러나 허블 상수는 여전히 수수께끼로 남아 있다. 망원경 관측을 기반으로 한 현재 우주의 측정값은 우주 마이크로파 배경 복사 데이터를 사용하여 보정된 표준 우주론 모델의 예측 값보다 높기 때문이다. 표준 우주론 모델에 따르면 허블 상수의 값은 약 67~68km/Mpc(메가파섹, 은하의 거리 단위)이어야 한다. 반면, 허블과 웹 망원경 데이터 기반 측정값은 일반적으로 70~76km/Mpc의 더 높은 값을 나타냈다. 평균값은 73km/s/Mpc다. 이러한 불일치는 측정 또는 관측 기술의 오류로 설명하기에는 너무 큰 차이이기 때문에 10년 이상 우주론자들을 혼란스럽게 했다. 메가파섹(Mpc)은 326만 광년에 해당하는 엄청난 거리를 말한다. 1광년은 빛이 1년 동안 이동하는 거리로 5.9조마일이다. 웹 망원경의 새로운 데이터가 허블 망원경 측정의 유의미한 편향을 배제함에 따라, 허블 텐션은 아직 밝혀지지 않은 미지의 요인이나 우주론자들의 물리학적 이해의 틈에서 비롯될 수 있다고 연구팀은 보고했다. 존스 홉킨스 대학교에서 이 연구를 진행한 대학원생 사양 리는 "웹 망원경 데이터는 처음으로 고화질로 우주를 보는 것과 같으며 측정의 신호 대 잡음비를 실제로 향상시킨다"고 말했다. 우주 진화를 보여주는 허블 상수 이번 연구는 NGC 4258이라는 은하까지의 알려진 거리를 기준점으로 사용하여 허블 망원경의 전체 은하 샘플의 약 3분의 1을 다루었다. 더 작은 데이터 세트에도 불구하고 연구팀은 측정값 간의 차이를 2% 미만으로 줄이는 인상적인 정밀도를 달성했는데, 이는 허블 텐션 불일치의 약 8~9% 크기보다 훨씬 작다. 연구팀은 우주 거리 측정의 황금 표준인 세페이드 변광성 분석 외에도 동일한 은하에 걸쳐 탄소가 풍부한 별과 가장 밝은 적색 거성을 기반으로 측정값을 교차 검증했다. 세페이드 변광성은 변광성(變光星·광도가 변하는 별)의 한 유형으로 이들의 변광 주기와 절대광도 사이의 정확한 관계성으로 유명하다. 웹 망원경으로 관측된 모든 은하와 그 초신성은 허블 상수 72.6km/s/Mpc를 산출했으며, 이는 허블 망원경이 동일한 은하에서 발견한 72.8km/s/Mpc 값과 거의 동일하다. 이 연구에는 리스 교수의 SH0ES 팀(초신성, H0, 암흑 에너지 상태 방정식), 카네기-시카고 허블 프로그램, 그리고 다른 팀들의 웹 망원경 데이터 샘플이 포함됐다. 이러한 결합된 측정은 허블 망원경 세페이드 변광성을 사용하여 측정된 거리의 정확도에 대한 가장 정확한 결정을 가능하게 했다. 세페이드 변광성은 허블 상수를 결정하는 데 기본적인 역할을 한다. 세페이드 변광성들의 강도는 태양의 10³~10⁴배이다. 허블 상수는 태양계, 지구 또는 일상생활에 실질적인 영향을 미치지 않지만, 매우 큰 규모에서 우주의 진화를 보여준다. 이는 과학자들이 우주의 구조를 파악하고 빅뱅 이후 130~140억 년이 지난 현재 우주의 상태에 대한 이해를 심화하며 우주의 기본적인 측면을 계산하는 핵심 값이다. 존슨 홉킨스 대학교의 우주론자인 마크 카미온코프스키 교수는 허블 텐션을 해결하면 최근 몇 년 동안 밝혀진 표준 우주론 모델과의 다른 불일치에 대한 서로 다른 수요 관측 현상을 설명할 수 있다고 말했다. 그러나 우주의 구성과 가속 팽창의 96%를 차지하는 것으로 추정되는 미지의 구성 요소인 암흑 물질과 암흑 에너지의 본질을 완전히 설명하지는 못한다. 이번 연구에 참여하지 않은 카미온코프스키 교수는 "허블 텐션에 대한 한 가지 가능한 설명은 초기 우주에 대한 우리의 이해에 누락된 부분이 있는 경우다. 예를 들어 빅뱅 이후 우주에 예상치 못한 킥을 준 새로운 물질 성분인 초기 암흑 에너지가 존재할 수 있다"고 말했다. 그는 "그리고 재미있는 암흑 물질 특성, 이국적인 입자, 변화하는 전자 질량, 또는 원시 자기장과 같은 다른 아이디어들도 있다. 이론가들은 상당히 창의적일 수가 있다"고 덧붙였다.
-
- 포커스온
-
[우주의 속삭임(86)] 우주 팽창 속도, 표준 우주론에 의문 제기⋯제임스웹 망원경, 허블 망원경 측정값 검증
-
-
[신소재 신기술(105)] 세계 최고 슈퍼컴퓨터, 칼슘-48 자기적 특성 규명…10년 논쟁 종결
- 세계에서 가장 강력한 슈퍼 컴퓨터인 '프론티어'가 10년 동안 과학자들의 논쟁의 중심에 섰던 칼슘-48 퍼즐을 해독했다. 미국 오크리지 국립연구소(ORNL)의 핵물리학 연구팀은 세계 최고 슈퍼컴퓨터 프론티어를 활용해 칼슘-48 원자핵의 자기적 특성을 규명하는 데 성공했다고 과학전문 매체 인터레스팅엔지니어링이 4일(현지시간) 보도했다. 이는 1980년대부터 지속되어온 핵물리학계의 논쟁을 종식시키는 중요한 성과로 평가된다. 칼슘-48, '이중 마법' 핵으로 안정성 높아 칼슘-48은 20개의 양성자와 28개의 중성자로 이루어진 '이중 마법' 핵으로 매우 안정적인 구조를 가지고 있다. 이러한 특성 대문에 핵물리학 연구에 이상적인 물질로 꼽힌다. 하지만 칼슘-48의 자기적 특성은 오랜 기간 동안 논쟁의 대상이었다. 양성자와 전자빔을 사용한 초기 실험에서는 자기 전이 강도가 4제곱 마그네톤으로 측정되었으나 2022년 감마선을 이용한 실험에서는 이 값이 두 배나 높게 나타났기 때문이다. 여기서 '핵 마그네톤'은 원자핵의 자기적 특성을 나타내는 기본 단위다. 쉽게 말해, 핵 마그네톤은 원자핵이 얼마나 강한 자석처럼 행동하는 지를 나타내는 척도라고 할 수 있다. 따라서 4제곱 마그네톤은 칼슘-48 원자핵이 특정 에너지 상태 변화를 겪을 때, 자기장의 세기가 핵 마그네톤 단위로 4의 제곱만큼 변한다는 것을 의미한다. 수퍼컴퓨터 '프론티어' 활용, 10년 논쟁 종식 ORNL 연구팀은 초당 퀸틸리언(quintillion, 100경) 이상의 계산을 수행할 수 있는 세계 최초의 엑사스케일 컴퓨터인 '프론티어' 슈퍼컴퓨터를 활용해 칼슘-48의 자기 전이 강도를 시뮬레이션했다. 그 결과 감마선 실험 결과와 일치하는 값을 얻어냄으로써 오랜 논쟁에 종지부를 찍었다. 또한 이 연구는 핵 내부의 핵자 쌍(양성자와 중성자)의 복잡한 상호작용과 핵이 주변 환경과 상호작용하는 방식을 설명하는 연속 효과에 대한 새로운 통찰력을 제공했다. 초신성 연구에도 영향 이번 연구는 핵물리학뿐만 아니라 천체물리학에도 중요한 의미를 갖는다. 칼슘-48은 초신성 폭발 과정에 풍부하게 생성되는 데, 이 때 중성미자가 물질과 상호작용하는 방식을 이해하는 데 핵심적인 역할을 하기 때문이다. 연구의 제 1저자인 비자야 아차리아는 "칼슘-48의 자기 전이 강도를 설명하는 물리학은 중성미자가 물질과 상호작용하는 방식도 설명한다"고 말했다. 칼슘-48의 자기 전이 강도에 대한 정확한 이해는 초신성 폭발과정과 우주 형성 과정에 대한 이해를 높이는 데 기여할 것으로 기대된다. ORNL 핵천체물리학자 라파엘 힉스는 "이번 연구는 핵의 생성 원리를 밝히는 데 중요한 걸음이며, 별과 행성의 생성부터 원소의 풍바함까지 우주를 형성하는 과정을 더 잘 이해하게 해 줄것"이라고 말했다.
-
- IT/바이오
-
[신소재 신기술(105)] 세계 최고 슈퍼컴퓨터, 칼슘-48 자기적 특성 규명…10년 논쟁 종결
-
-
NASA도 관측하지 못하는 소행성 포착 가능 '3톤 초대형 디지털 카메라' 완성
- 세계 최대의 디지털 카메라가 미 캘리포니아주에 소재한 에너지부 산하 국립 스탠포드 선형 가속기 센터(SLAC)에서 제작됐다고 비즈니스인사이더가 전했다. SLAC의 과학자와 엔지니어들은 20년에 걸쳐 대략 1억 6800만달러(약 2273억원)의 비용을 들여 이 거대한 카메라를 제작했다고 한다. SUV 차량 크기로, LSST(Legacy Survey of Space and Time)라고 명명된 이 카메라의 무게는 무려 3톤(6200파운드)에 달하며 전면 렌즈 폭은 150cm(5피트)를 넘는다. LSST 카메라는 앞으로 남녘 하늘 전체를 10년간 디지털로 측량하고, 밤마다 전체를 스캔해, 사상 최대 규모의 천문 영화를 제작하는 임무를 담당하게 된다. 프로젝트를 이끈 애런 루드먼(Aaron Roodman)은 비즈니스인사이더와의 인터뷰에서 "우주의 많은 부분을 볼 수 있을 것"이라고 기대했다. LSST는 다양한 용도로도 활용된다. 카메라는 도시를 파괴할 수 있는 크기의 대형 소행성도 추적하고 그 결과를 나사(NASA)와 공유함으로써 지구를 위협할 수 있는 우주 암석을 식별할 수 있도록 지원한다. 이는 우주 과학의 주요 목표다. 카메라는 또한 우주를 가득 채우고 있는 신비한 암흑 에너지와 암흑 물질을 조사하는 역할도 담당한다. 완성된 카메라는 안데스 산맥에 위치한 칠레의 루빈 천문대(Rubin Observatory)에 설치될 예정이다. 설치는 올해 말에 완료된다. LSST 카메라 렌즈는 3200MP(메가픽셀)의 선명도로 사진을 제공하게 된다. 1MP는 100만 픽셀이다. 초고화질 또는 4K TV는 약 8MP이다. 따라서 LSST 카메라의 이미지를 전체 해상도로 표시하려면 수백 대의 울트라 HDTV가 필요하다. 이 정도의 선명도라면 25km 떨어진 곳에서도 골프공을 식별해 낼 수 있다. LSST는 매일 밤 약 1000장의 이미지를 촬영하고 이를 결합해 며칠 밤마다 남쪽 하늘 전체에 대한 매우 상세한 이미지 한 장을 만들어낸다. 10년에 걸쳐 수만 장의 이미지를 생성하게 되며, 이를 통해 연구자들은 3D 영화라고 불리는 우주 파노라마를 얻게 된다. 이 카메라를 사용하면 200억 개가 넘는 은하계의 변화를 관찰하고 움직임과 변화 방식을 모두 추적할 수 있게 된다. 다른 천체 카메라와 달리 LSST는 회전할 필요가 전혀 없다. 렌즈가 포함하는 범위가 워낙 넓기 때문에 남쪽 하늘 전체를 담을 수 있다. 이런 넓은 범위는 지금까지 감지되지 않았던 은하계 인근의 소행성까지도 관측할 수 있게 해준다. LSST는 또한 하늘에 새로운 물질이 발견될 때마다 천문학자들에게 알리도록 설계됐다. 이를 통해 천문학자들은 빛의 모든 파장에서 새로운 초신성, 블랙홀 합병 및 기타 천문학 현상을 관찰하고, 이러한 동적 현상에 대한 다량의 데이터를 수집할 수 있다. 카메라가 작동하면 새로운 유형의 우주 물체와 이벤트도 발견할 가능성이 높다. 10년에 걸친 은하의 변화를 추적함으로써 우주가 어떻게 진화했는지에 대한 새로운 분석 데이터도 제공할 것이라는 기대다. 이는 암흑 에너지와 암흑 물질을 이해하는 열쇠다. 암흑 에너지는 '우주를 더욱 빠르게 팽창시키는 신비한 힘'을 의미한다. 암흑 물질은 공간을 차지하고 질량이 있지만, 빛과 상호작용하지 않는 물질의 일종이다. 암흑 에너지와 물질이 함께 우주의 대부분을 구성하고 있는데, 그것이 무엇인지는 전혀 알려지지 않았다. LSST가 그 단서를 찾는 데 도움이 될 수 있다고 한다. 루드먼은 "하나의 은하계를 보면 아무 것도 알 수 없지만 수억 개의 은하계를 보면 수십억 개의 은하계를 파악할 수 있으며, 전체 하늘의 패턴을 알 수 있다"면서 "우주에 물질이 어떻게 분포되어 있는지 알 수 있게 될 것"이라고 기대했다.
-
- IT/바이오
-
NASA도 관측하지 못하는 소행성 포착 가능 '3톤 초대형 디지털 카메라' 완성
-
-
[신기술 신소재(8)] 美 미시간대, 희토류 원소의 새로운 동위원소 발견
- 중원소 원자핵을 분열하는 획기적인 실험에서 이전에 관찰되지 않았던 입자 비율로 구성된 새로운 형태의 원자핵이 발견됐다. 과학 전문매체 사이언스얼럿에 따르면 미국 미시간 주립 대학 올렉 타라소프(Oleg Tarasov) 박사가 이끄는 물리학자들은 백금 원자핵을 분열해 처음으로 희토류 원소인 툴륨, 이터비움, 루테튬의 새로운 동위원소를 발견했다. 과학자들은 이번 연구를 통해 중성자가 풍부한 원자핵의 특성과 천체 충돌 과정에서 새로운 원소가 형성되는 과정을 이해하는 데 도움이 될 것으로 기대했다. 아울러, 연구팀은 이 연구를 통해 2022년 6월 첫 실험을 수행한 미시간 주립 대학의 희귀 동위원소 빔 연구시설(FRIB)의 위력도 입증했다. 일반적으로 헬륨보다 무거운 원소를 중원소라고 한다. 대부분의 중원소는 별에서 일어나는 핵합성을 통해 생성된다. 즉, 초신성 폭발이나 중성자별 병합 등을 통해 중원소가 생성된다. 모든 원소는 완전히 동일한 형태로 존재하지 않는다. 각 원자핵은 양성자와 중성자라는 원자핵의 여러 하위입자로 구성되어 있다. 중원소 원자핵은 양성자와 중성자로 구성된다. 양성자와 중성자의 총 갯수를 핵자수라고 한다. 여기서 양성자의 갯수를 원자 번호라고 하며 원자번호는 원소를 구성하는 고유한 특징이다. 같은 원자번호지만 중성자 갯수가 다른 원자핵을 동위원소라고 한다. 모든 원소는 다양한 안정성 수준을 가진 여러 동위원소를 가지고 있다. 일부 동위원소는 극히 빠르게 붕괴해 이온화 복사 폭발과 함께 가벼운 원소로 분해된다. 반면 안정적으로 존재하는 동위원소도 있다. 과학자들은 다양한 동위원소와 그 행태를 이해함으로써 우주가 어떻게 원소를 만드는 지, 시간과 공간에 걸쳐 이러한 원소들이 얼마나 풍부한 지 추정할 수 있다. 타라소프 박사팀은 새로운 동위원소를 합성하기 위해 120개의 중성자를 가진 백금 동위원소 198Pt로 실험을 시작했다. 표준 백금은 117개의 중성자를 가지고 있으며, 더 무거운 동위원소를 사용하면 원자핵 분열 방식을 변경할 수 있다. 연구팀은 이 원자를 중이온가속기를 사용해 원자핵을 조각내는 FRIB에 배치했다. 희귀 동위원소 빔은 빛의 절반보다 빠른 속도로 표적에 발사된다. 이 동위원소가 표적에 부딪히면 더 가벼운 동위원소 핵으로 부서지고 물리학자들은 이 동위원소를 검출하고 연구할 수 있다. 타라소프 연구팀은 198Pt의 분열 과정에서 각각 113개와 114개의 중성자를 가진 182Tm과 183Tm을 발견했다. 표준 툴륨은 69개의 중성자를 가지고 있다. 또한 각각 116개와 117개의 중성자를 가진 186Yb과 187Yb도 발견했다. 표준 이터비움은 103개의 중성자를 갖는다. 마지막으로 119개의 중성자를 가진 190Lu를 발견했다. 표준 루테튬은 104개의 중성자를 가지고 있다. 이러한 동위원소는 모두 가속기에서 여러 번 반복되는 실험에서 관찰됐다. 이는 FRIB가 이전에는 거의 연구되지 않았던 영역, 즉 중성자 수 N=126 이상의 중원소 풍부 동위원소 합성 연구에 사용될 수 있다는 것을 의미한다. 그동안의 연구 부진은 관심 부족 때문이 아니라 이러한 동위원소를 생성하고 검출하는 능력 때문이었다고 연구팀은 지적했다. 이는 우주 현상에서 가장 무거운 원소가 어떻게 형성되는지 이해하는 데 기여할 수 있다. 우주에서 철보다 무거운 모든 원소는 초신성 폭발이나, 중성자별 간의 충돌 등 극한의 조건에서만 생성될 수 있다. 중성자별 충돌에서 일어나는 핵합성 과정 중 하나는 급속 중성자 포획 과정(r-process)이다. 이는 킬로노바 폭발 과정에서 방출되는 자유 중성자를 원자핵이 빠르게 흡수하여 더 무거운 원소로 변환되기 시작할 때 발생한다. 이 과정을 통해 금, 스트론튬, 백금과 기타 중금속이 생성된다. 연구팀은 이번 실험을 통해 r-process를 재현하는 데 매우 가까이 다가갔다고 주장했다. 이는 곧 우주에서 가장 폭력적인 사건 중 일부에서 관찰되는 핵합성 경로 중 하나를 복제할 수 있는 도구를 갖게 될 가능성이 있다는 것을 뜻한다. 연구팀은 "국립 초전도 사이클로트론 연구소에서 사용가능했던 에너지를 능가하는 매우 강렬한 1차 빔을 포함해 FRIB의 독특한 기능은 중성자 수 N=126 이상 영역을 탐색하는 데 이상적인 시설이다"고 설명했다. 또한 "FRIB의 연구원들은 이러한 반응을 이용해 새로운 동위원소의 특성을 생성하고 식별 및 특성을 연구함으로써 핵물리학, 천체물리학 및 물질의 기본적 특성에 대한 이해를 향상시킬 수 있다"고 말했다. 이 연구는 지난 2월 미국 물리학회에서 발행하는 주간 학술지 'Physical Review Letters(PRL)'에 발표됐다.
-
- 포커스온
-
[신기술 신소재(8)] 美 미시간대, 희토류 원소의 새로운 동위원소 발견
-
-
NASA 망원경, 빠른 라디오 버스트의 놀라운 비밀 포착!
- 우주에서 전파 폭발이 일어나고 있는 가운데 과학자들은 이 놀라운 현상의 원인을 찾고 있다. 지난 15일(현지시간) 미국 과학전문 매체 싸이테크 데일리에 따르면 최근 미 항공우주국(NASA·나사)의 두 개의 X선 망원경이 빠른 우주 전파 폭발이 발생하기 몇 분 전과 후의 관찰에 성공했다. 이번 관찰은 과학자들이 이러한 전파 폭발을 더 잘 이해하는 데 도움이 될 것으로 기대된다. 빠른 라디오 버스트(FRB)는 1초 미만의 짧은 순간에 태양 1년치 에너지를 방출하는 우주 현상이다. 눈 깜짝할 사이에 거대한 불꽃놀이가 펼쳐지는 것과 비슷하다. 레이저처럼 좁은 방향으로 에너지를 방출하는 빠른 라디오 버스트는 2007년 처음 발견되었지만, 아직 그 원인은 밝혀지지 않았다. 과학자들은 짧은 폭발 시간과 뚜렷한 방향성 때문에 빠른 라디오 버스트의 위치를 정확히 파악하기 어려워 연구에 어려움을 겪고 있다. 2020년 이전에는 먼 은하에서만 관측되었던 빠른 라디오 버스트가 최근 우리 은하계 안에서도 발견됐다. 마그네타라는 강력한 자기장을 가진 별에서 빠른 라디오 버스트가 발생하는 것으로 밝혀졌다. 빠른 라디오 버스트가 마그네타에서 발생하는 이유는 아직 밝혀지지 않았지만 과학자들은 마그네타 표면에서 발생하는 강력한 자기장 재결합, 마그네타 내부의 초유체 붕괴, 마그네타 주변의 플라즈마 와동 등의 가능성을 예상하고 있다. 마그네타는 초신성 폭발 후 남은 죽은 별의 잔해로 이들은 엄청나게 강력한 자기장을 가지고 있다. 이는 태양보다 약 10억 배 이상 강력하다. 마치 거대한 자석과 같은 이 자기장은 주변 환경에 영향을 미치고 심지어 빠른 라디오 버스트를 발생시킬 수도 있다고 과학자들은 지적했다. 2022년 10월, 과학자들은 SGR 1935+2154라는 마그네타에서 또 다른 빠른 라디오 버스트를 관찰했다. 이번 관찰은 국제 우주 정거장(ISS)에 있는 NASA의 니서(Neutron Interior Composition Explorer) 망원경과 낮은 지구 궤도에 있는 뉴스타(Nuclear Spectroscopic Telescope Array/NuSTAR) 망원경의 협력을 통해 자세히 관찰됐다. 이들 망원경은 몇 시간 동안 마그네타를 관찰하해 빠른 라디오 버스트 전후에 소스 물체의 표면과 바로 주변에서 무슨 일이 일어나는지 볼 수 있었다. 연구 결과, 폭발은 마그네타가 갑자기 더 빠르게 회전하기 시작했을 때 두 개의 '글리치(마그네타가 갑작스럽게 회전 속도를 변화시키는 현상)' 사이에서 발생했다는 것을 알게 되었다. SGR 1935+2154는 지름이 약 20km에 불과하며, 초당 3.2회라는 놀라운 속도로 회전하는 마그네타로 이는 표면이 약 11,000km/h의 속도로 움직이고 있는 것과 같다. 이는 서울에서 부산까지 1시간 만에 이동하는 것과 비슷한 속도라고 볼 수 있다. 하지만 2022년 10월 폭발 이후 SGR 1935+2154는 단 9시간 만에 이전 속도보다 느려졌고, 이는 마그네타가 이전보다 약 10배 더 빠르게 속도를 감소시키는 것과 같다. 마치 자동차가 110km/h로 달리다가 9시간 만에 1km/h까지 속도를 줄이는 것과 비슷하다. 연구원들은 이러한 현상이 빠른 라디오 버스트의 생성과 관련이 있을 수 있다고 예상했다. 빠른 라디오 버스트를 생성하는 방법은 아직 밝혀지지 않았지만 과학자들은 여러 가지 가능성을 고려하고 있다. 첫번째로 마그네타가 갑자기 회전 속도를 변화시키는 현상으로, 이 과정에서 에너지가 방출되어 빠른 라디오 버스트를 발생시킬 수 있다. 두번째로 초기 결함으로 인해 마그네타 표면에 균열이 발생하여 화산 폭발처럼 별 내부의 물질이 우주로 방출되었을 수도 있다. 질량을 잃으면 회전하는 물체의 속도가 느려지기 때문에 연구자들은 이것이 마그네타의 급격한 감속을 설명할 수 있다고 생각한다. 세번째로 마그네타의 강력한 자기장 또한 빠른 라디오 버스트의 생성에 영향을 미칠 수 있다. 자기장은 주변 환경에 영향을 미치고, 심지어 입자를 가속하여 에너지 빔을 형성할 수도 있다. 이러한 빔이 다른 물체와 충돌하면 빠른 라디오 버스트를 생성할 수 있다. 그러나 이러한 사건 중 하나만 실시간으로 관찰한 후에도 팀은 이러한 요인(또는 마그네타의 강력한 자기장과 같은 다른 요인) 중 어떤 요인이 빠른 라디오 버스트를 일으킬 수 있는지 확실히 말할 수 없다. 일부는 버스트에 전혀 연결되지 않을 수도 있다. 고다드 우주 비행 센터(Goddard Space Flight Center)의 연구원이자 마그네타 전문 중성자 내부 구성 탐사기(Neutron Interior Composition Explorer) 과학팀의 일원인 조지 유네스(George Younes)는 "빠른 라디오 버스트를 이해하는 데 중요한 것을 의심할 여지 없이 관찰했다"라고 말했다. 그러면서 그는 "하지만 미스터리를 완성하려면 아직 더 많은 데이터가 필요하다고 생각한다"라고 덧붙였다. NASA 망원경은 신비한 심우주 신호 뒤에 숨은 비밀을 밝히는 데 한 걸음 더 다가갔다. 하지만 여전히 많은 미스터리가 남아 있다. 앞으로 더 많은 연구를 통해 빠른 라디오 버스트의 정확한 원인과 메커니즘을 밝혀낼 수 있을 것으로 기대된다.
-
- 산업
-
NASA 망원경, 빠른 라디오 버스트의 놀라운 비밀 포착!
-
-
신비한 천체, 블랙홀일까 중성자별일까?
- 최근 천문학자들이 발견한 신비한 천체가 블랙홀인지 중성자별인지 논란이 되고 있다. 천문학자들은 최근 지구에서 약 4만 광년 떨어진 천체인 콜드웰 73(NGC 1851)에서 빠르게 회전하는 밀리초 펄서를 발견했다. 이 펄서는 태양 질량의 약 3.887배에 달하는 동반 천체를 가지고 있는데, 이는 태양 질량의 2배보다 큰 중성자별보다 무겁고, 태양 질량의 5배보다 작은 블랙홀보다 가볍다. 이러한 천체는 블랙홀 질량 간격에 위치하는 것으로 알려져 있으며, 태양 질량의 2~5배 사이의 질량을 가진 천체는 중성자별과 블랙홀 중 어느 것으로 분류될지 명확하지 않은 상태이다. 과학 전문 매체 유니버스투데이(universetoday)는 최근 남아프리카의 전파천문대 미어캣(MeerKAT, TRAPUM 프로젝트) 망원경을 사용하여 천문학자들이 'NGC 1851'이라는 구상성단 내에 위치한 PSR J0514-4002E라는 특별한 천체를 발견했다고 보도했다. 나사에 따르면 콜드웰 73(NGC 1851)은 1826년 스코틀랜드 천문학자 제임스 던롭(James Dunlop)이 발견했다. 콜드웰 73은 콜롬바 별자리 방향으로 지구에서 약 4만 광년 떨어진 곳에 위치해 있다. 이 조밀한 구상성단은 쌍안경을 통해 발견할 수 있으며, 흐릿한 빛 조각처럼 보인다. 소형 망원경은 성단의 조밀한 중심에서 멀리 떨어져 있는 성단의 개별 별 중 일부를 분해할 수 있다. 콜드웰 73은 겨울에는 북반구의 적도 위도에서, 여름에는 남반구에서 가장 쉽게 볼 수 있다. 과학 저널 '사이언스(Science)'에 실린 연구에 따르면, 이 천체는 편심 이진 밀리초 펄서로, 펄서와 동반 천체의 총 질량은 약 3.887 ± 0.004 태양 질량으로, 이는 블랙홀의 질량 격차에 위치해 있다. 이 연구의 주요 저자는 맥스 플랑크 전파천문학 연구소(Max Planck Institute for Radio Astronomy)의 이완 바르(Ewan Barr)이며, 논문 제목은 '중성자별과 블랙홀 사이의 질량 간격에 컴팩트한 물체가 있는 쌍성계의 펄서'다. 바르와 그의 팀은 초신성 폭발의 결과로 생성된 빠르게 회전하는 중성자별인 밀리초 펄서의 궤도를 도는 컴팩트한 물체를 발견했다. 펄서는 극에서 전자기 에너지 빔을 방출하며 회전한다. 지구와 펄서가 정확히 맞춰져 있을 때, 우리는 펄서의 깜박임을 관찰할 수 있으며, 이로 인해 펄서는 우주의 등대로 불리게 된다. 밀리초 펄서는 초당 1~10밀리초의 회전 주기를 가지며, 이는 분당 6만회에서 6000회 사이의 회전 속도를 의미한다. 이 연구에서, 천문학자들은 펄서의 정밀한 타이밍 분석을 통해 펄서와 블랙홀로 구성된 이진(쌍성계) 시스템 내에 있는 다른 물체를 감지했다. 그들은 아직 펄서와 블랙홀로 구성된 이진 시스템을 발견하지 못했지만, 그러한 발견을 간절히 원하고 있다. 이러한 이진 시스템은 블랙홀 연구에 새로운 접근법을 제공할 수 있으며, 아인슈타인의 일반상대성이론을 새롭게 검증할 기회를 마련할 수 있다. 이 경우 동반체는 작은 블랙홀이 아니라 무거운 중성자별다. 맨체스터 대학의 천체물리학 교수이자 공동 저자인 벤 스태퍼스(Ben Stappers)는 "펄서-블랙홀 시스템은 중력 이론을 시험하는 데 중요한 대상이 될 것이며, 무거운 중성자별은 고밀도 핵물리학에 대한 새로운 통찰을 제공할 것"이라고 말했다. 중성자별은 거대한 별이 초신성으로 붕괴한 후 남은 극도로 밀도가 높은 천체다. 다른 별의 물질과 상호작용하면서 질량을 증가시키고, 더욱 붕괴될 가능성이 있다. 그러나 천문학자들은 중성자별이 붕괴하여 어떤 상태로 변화하는지 확실히 알지 못한다. 그것이 블랙홀로 변할 수도 있는데, 이는 바로 블랙홀 질량 격차를 연구하는 데 중요한 포인트다. 과학자들은 중성자별이 붕괴하려면 태양 질량의 약 2.2배가 되어야 한다고 추정한다. 이것이 붕괴가 발생하는 데 필요한 임계값이다. 그러나 이론과 관찰 모두 이러한 붕괴된 중성자별이 태양보다 5배 더 큰 블랙홀을 생성할 수 있음을 보여준다. 이로 인해 블랙홀 질량 격차가 발생한다. 과학자들은 중성자별이 블랙홀로 붕괴하기 위한 임계 질량이 태양 질량의 약 2.2배라고 추정한다. 이는 붕괴가 발생하기 위해 필요한 임계값이다. 그러나 이론과 관측 모두에서, 이러한 붕괴 과정이 태양 질량보다 5배 더 큰 블랙홀을 형성할 수 있다는 것이 확인됐다. 이는 블랙홀 질량 격차의 원인이다. 그러나 질량 격차에 존재하는 물체의 정체에 대해서는 확실한 결론이 없다. 관측 결과에 따르면, 해당 구역에는 분명히 어떤 물체가 존재하지만, 그 본질을 명확히 식별하기 어렵다. 연구자들은 이 동반체가 두 중성자별의 합병 결과일 가능성을 제시했다. 만약 동반성이 거대한 중성자별일 경우, 이는 펄서일 가능성이 있다. 그러나 연구진은 어떠한 맥동도 감지하지 못했다. 이 쌍성계 내 물체의 기원은 해당 물체가 무엇인지에 대한 해석을 가능하게 한다. 천체물리학자들은 쌍성계의 진화에 대해 상세한 모델을 개발했으며, 이 모델들은 물질의 전달이 중요한 역할을 한다는 것을 보여준다. 저자들은 더 낮은 질량의 초기 동반 물체가 펄서에 질량을 전달했다고 여긴다. 이러한 유형의 상호 작용은 별이 촘촘하게 밀집되어 있는 쌍성계 물체가 있는 구상 성단에서 발생할 가능성이 더 높다. 펄서는 또한 매우 빠르게 회전하는데, 이는 동반성으로부터 질량을 얻었다는 또 다른 징후다. 연구팀은 펄서의 초기 동반 물체가 비교적 낮은 질량이었으며, 이 물체로부터 펄서가 질량을 획득했다고 추정한다. 이런 종류의 상호 작용은 별들이 밀집하여 있는 구상 성단 내의 쌍성계에서 발생할 확률이 높다. 펄서의 매우 빠른 회전 속도도, 동반성으로부터 질량을 얻었다는 추가적인 증거를 제공한다. MPIA의 공동 저자 아루니마 듀타(Arunima Dutta)는 "이 쌍성의 진정한 성질을 규명하는 것은 중성자별, 블랙홀, 블랙홀 질량 격차에 숨겨진 모든 가능성에 대한 우리의 이해를 한 단계 발전시킬 것"이라고 말했다.
-
- 생활경제
-
신비한 천체, 블랙홀일까 중성자별일까?
-
-
아마추어 천문학자, 초신성 폭발 후 블랙홀 형성 목격
- 최근 아마추어 천문학자가 초신성의 폭발 과정에서 블랙홀의 형성을 관측했다. '초신성(超新星, supernova)'은 일반적인 별의 폭발인 신성(nova)보다 훨씬 더 강력한 에너지를 방출하는 별의 폭발 현상이다. 이 폭발은 매우 밝게 빛나며, 폭발적인 방사선을 방출한다. 폭발의 밝기는 수 주에서 수 개월 동안 지속되며, 때로는 은하 전체의 밝기에 필적할 정도다. 미국의 과학 전문 매체 코스모스 매거진은 이스라엘 와이즈만 연구소(Weizmann Institute of Science)의 핑첸(Ping Chen) 연구원이 이 과정을 실시간으로 처음으로 관측했다고 보도했다. 네이처지에 발표된 이 연구에 따르면, 아마추어 천문학자의 발견과 연구팀의 적절한 타이밍, 그리고 별의 연구 협력이 결합하여, 초신성 폭발이 블랙홀이나 유사한 천체를 형성하는 직접적인 증거를 제시했다. 핑첸은 이 연구의 중요성을 강조하며, "우리의 연구는 가능한 모든 증거를 모아 퍼즐을 풀어나가는 것과 같다. 이 모든 조각들이 모여 진실을 이룬다"고 말했다. 이 발견의 시작점은 남아프리카의 아마추어 천문학자 베르토 모나드가 약 7600만 광년 떨어진 NGC 157 은하의 나선팔에서 새롭게 발견한 밝은 물체, SN 2022jli의 관측에서 비롯된다. 하늘에서 갑자기 나타난 새로운 밝은 물체는 종종 초신성의 출현을 나타낸다. 이러한 현상이 발견되면, 천문학자들은 추가 관측을 통해 물체의 정확한 위치와 다른 정보를 파악하고 빠르게 망원경을 해당 물체에 맞춘다. 초신성은 예측하기 어렵고 짧은 기간 동안만 관측할 수 있어 연구가 어렵다. 초신성은 별의 수명이 다할 때 강력하게 폭발하는 현상으로, 별의 자체 중력에 의해 붕괴되면서 발생한다. 이 폭발은 별이 다시 어두워질 때까지 은하계 전체만큼 밝아질 수 있다. 블랙홀과 중성자별은 별의 붕괴로 인해 형성되는 초밀도 물체다. 과학자들은 이들이 초신성 이후에 형성될 것으로 확신하지만, 초신성 폭발에서 이러한 소형 물체가 형성되는 전체 과정을 직접적으로 관측한 적은 없었다. 그러나 최근의 연구와 관측을 통해 이 단계가 직접 확인될 수 있게 됐다. SN 2022jli는 일반적인 우주 규칙을 따르는 것이 아닌 평범하지 않은 패턴을 보였다. 처음에는 밝게 빛났으나 점차 어두워졌고, 발견된 후 약 한 달이 지난 시점에서 다시 밝아지는 현상을 나타냈다. 이후 200일 동안 약 12일 간격으로 주기적인 밝기 변화를 경험했다. 벨파스트 퀸스 대학의 토마스 무어 교수는 이와 관련하여 "SN 2022jli의 데이터 분석 결과, 반복적으로 밝아지고 어두워지는 패턴이 명확하게 관찰되었다"고 말했다. 무어 교수는 "이러한 주기적인 변화가 초신성 광 곡선에서 감지된 것은 이번이 처음"이라고 설명했다. 이 연구는 2023년 천체물리학 저널인 '아스트로피지컬 저널(Astrophysical Journal)'에 실렸다. 연구팀은 이러한 특이한 패턴이 초신성 폭발을 겪은 후 살아남은 두 번째 별의 영향 때문일 것으로 추측하고 있다. 그들은 이 두 번째 별이 소형 물체의 존재를 간접적으로 드러내고 있다고 설명했다. 연구팀은 블랙홀이나 중성자별이 동반성 별의 풍부한 대기에서 수소를 흡수할 것이라는 가설을 세웠다. 이러한 흡수 현상, 즉 '강착'은 연구원들이 관찰한 주기적인 변화의 원인으로, 많은 에너지를 방출하는 파동 형태로 나타난다. 연구원들은 "SN 2022jli가 보여준 독특한 특성들은 이 시스템에서 일어나는 현상이 매우 드물다는 것을 시사하며, 이는 초신성 폭발을 겪고도 살아남는 결합된 이중 별계의 드문 존재로 설명될 수 있다"고 밝혔다. 또한, "SN 2022jli의 사례는 초신성 폭발과 그 이후 소형 천체 형성 사이의 직접적인 연결고리를 제시한다"고 네이처 저널에 기고했다. 한편, 2018년에는 중국, 미국, 독일의 연구진이 초신성 폭발 과정에 대한 중요한 정보를 얻기 위해 초신성 잔해물 간의 상대적 거리 측정에 성공했다. 이들은 잔해물 주변의 밝은 별들을 기준점으로 사용하여 측정의 정확도를 높였으며, 이러한 연구는 별의 진화와 소멸 과정을 이해하는 데 큰 도움이 되고 있다.
-
- 산업
-
아마추어 천문학자, 초신성 폭발 후 블랙홀 형성 목격
-
-
입자물리학, 양자 우주 탐사 위한 10개년 계획 공개
- 입자 물리학 프로젝트 우선 순위 지정 패널(Particle Physics Projects Prioritization Panel·P5)은 최근 향후 5년에서 10년 간의 연구 자금 지원에 대한 권장 사항을 담은 상세한 보고서를 발표했다. 입자물리학은 기본입자의 특성과 상호작용을 탐구하는 물리학의 한 분야이다. 이 권고안은 뮤온, 중성미자, 암흑물질, 힉스 입자 등의 연구를 포함하고 있으며, 비록 구속력은 없지만 미국 입자 물리학 커뮤니티의 의견을 반영한다. 이는 물리학 연구 분야에서 가장 창의적인 아이디어 중 일부를 제시하는 것으로, 해당 분야의 발전 방향을 제안하고 있다. 인터넷 포럼 빅씽크(Big Think)는 최근 보도를 통해 미국 입자 물리학 커뮤니티가 다년간의 검토를 거쳐 향후 5년에서 10년간의 연구 비전을 발표했다고 전했다. 이들은 다양한 프로젝트들이 자금을 지원받을 경우, 연구자들이 자연의 법칙을 더 깊이 이해하는 데 크게 기여할 수 있을 것이라고 강조했다. 이번 권고안은 '양자 우주 탐사: 입자 물리학의 혁신과 발견을 위한 길'이라는 제목의 보고서에서 발표됐다. 이 보고서는 고에너지 물리학 자문 패널(HEPAP)의 하위 패널인 입자 물리학 프로젝트 우선순위 지정 패널(P5)에 의해 작성됐다. 이 권고안은 미국 에너지부 과학국과 국립과학재단 등 자금 지원 기관에 제출되어 향후 10년간의 자금 지원 결정을 안내하는 데 사용될 예정이다. 입자 물리학자들은 실험실에서 달성 가능한 최극단의 조건에서 물질의 거동을 연구한다. 이들은 양성자와 전자와 같은 아원자 입자를 거의 광속에 가까운 속도로 가속시키고, 크고 강력한 입자 가속기를 사용하여 이들을 충돌시킨다. 세계에서 가장 강력한 가속기를 사용하는 과학자들은 약 섭씨 7조도에 달하는, 상상하기 어려운 극도의 고온에 도달할 수 있다. 이는 태양의 핵심보다도 10만 배 더 뜨겁고, 초신성의 중심보다 약 100배 더 뜨겁다. 빅뱅 직후 1조분의 1초도 안 되는 시점부터 우주 전체에 걸쳐 온도가 균일하지 않았다. 미국 입자 물리학 커뮤니티는 약 5년마다 지난 5년 동안의 진전을 평가한다. 이 정보를 바탕으로, 단기적으로 진전을 이룰 가능성이 높은 연구에 우선 순위를 둔다. 커뮤니티는 예산, 필요한 기술의 존재 여부 및 개발 상황과 같은 실질적인 사항을 고려해야 한다. 과학적 영향력도 중요한 고려 대상이다. P5와 HEPAP는 모두 어떤 프로젝트를 추진해야 할지에 대한 권고를 제시하는 자문 및 정부 자금 지원 기관에 불과하다. P5 보고서는 다양한 규모와 영향력을 가진 프로젝트를 권장한다. 이 중 더 큰 프로젝트 중 하나는 우주의 우주 마이크로파 배경을 연구하기 위한 4세대 노력이다. 이 마이크로파는 빅뱅 이후 남은 가장 오래된 탐지 가능한 잔해로, 초기 우주의 모습을 직접 관찰할 수 있게 해 준다. 또 다른 주요 프로젝트는 세계적 수준의 중성미자 연구 프로그램을 강화하기 위해 페르미랩(Fermilab) 가속기 단지를 업그레이드하는 것이다. 페르미랩은 미국의 주요 입자물리학 연구소로, 지구 전체를 통과할 수 있는 드물게 상호작용하는 중성미자의 행동을 연구하기 위해 특별한 노력을 기울이고 있다. 중성미자 연구는 우주가 왜 물질로만 보이는지에 대한 해답을 찾는 데 중요한 역할을 할 수 있으며, 우리가 가진 최고의 이론은 반물질도 동등하게 존재해야 한다고 가정한다. P5 보고서는 또한 일반 물질보다 약 5배 더 널리 퍼져 있을 것으로 추정되는, 형태가 알려지지 않은 암흑물질을 찾기 위한 3세대 실험을 권장하고 있다. 만약 암흑물질이 실제로 존재한다면, 그것은 거의 상호작용 없이 지구를 통과할 것으로 예상된다. 이러한 이론적 형태의 물질을 탐지하기 위해서는 집중적인 연구 노력과 첨단 기술이 필요하다. 보고서는 또한 미국이 유럽이나 아시아에서 개발될 힉스 입자에 대한 심층 연구를 수행할 미래의 가속기 프로젝트에 참여하는 것을 권장한다. 이는 2012년에 발견된 힉스 입자가 다른 아원자 입자에 질량을 부여하는 역할을 한다는 것을 더 상세히 연구하는 데 중요하다. 또한, 고에너지 뮤온 충돌기의 개발 가능성을 탐구하는 것도 야심 찬 제안 중 하나다. 뮤온은 전자보다 무겁고, 빠르게 붕괴하는 특성을 가지고 있다. 뮤온 충돌기를 만들기 위해서는 연구자들이 뮤온을 생성하고 포획한 후, 매우 짧은 시간 내에 가속하고 충돌시켜야 한다. 이러한 시설의 구현 가능성은 아직 확실하지 않지만, 국가 가속기 과학 커뮤니티가 협력하여 이를 확인하는 것이 중요하다. 더 적당한 가격의 미래 시설에는 아이스큐브(IceCube) 감지기의 업그레이드가 포함된다. 아이스큐브는 남극 대륙의 입방 킬로미터 규모의 얼음을 활용하여, 현재까지 발견된 가장 강력한 에너지를 가진 우주 중성미자를 포함해 우주 중성미자를 연구한다. 이러한 연구는 초신성, 중성자별 충돌, 거대한 블랙홀 주변에서 가속되는 물질과 같은 격렬한 천문학적 현상에 대한 중요한 통찰력을 천문학자들에게 제공할 수 있다. 2세대 아이스큐브는 10배 더 많은 얼음을 사용하여 훨씬 더 정밀한 측정이 가능하다. P5 위원회의 권고안은 구속력은 없지만, 미국 입자물리학 커뮤니티의 판단을 반영하고 있다. P5 소집 전에는 수천 명의 물리학자들이 스노우매스 프로세스(Snowmass Process)를 통해 함께 작업했다. 여러 해에 걸쳐 이들은 최고의 아이디어를 제안하고, 이에 대한 토론을 위해 대규모 회의에 모였다. 토론, 비평 및 개선을 거쳐 스노우매스의 제안은 자연 법칙에 대한 우리의 이해를 향상시키는 가장 창의적인 아이디어 중 일부를 제시한다. P5 위원회는 스노우매스의 제안을 검토하여 일부는 개선하고, 나머지는 자금 지원 기관에 제출할 예정이다. 이 과정의 다음 단계는 미국 DOE(에너지부) 및 NSF(국립과학재단)와 같은 기관들이 국제적 차원의 협력을 고려하고 재정적 실제 상황을 반영하는 것이다. 2024년이 되면 미국 입자물리학 연구의 미래 방향이 더욱 명확해질 것으로 기대된다. 반면, 한국의 경우 연구 지원금이 끊기면서 연구진이 어려움을 겪고 있다. 한국의 연구팀은 우주에서 가장 높은 에너지를 가진 것으로 알려진 우주선(cosmic ray) 관측에 성공한 '텔레스코프 어레이(TA) 코퍼레이션' 국제 공동 연구에 참여 하고 있었다. 박일흥 성균관대 물리학과 교수가 이끄는 연구팀은 지난 연구 최종 평가에서 최우수 등급을 받았음에도 불구하고 한국연구재단의 우수연구자교류지원사업에서 탈락하여 연구 중단 위기에 직면했다. 이 연구팀이 관측하는 우주선은 우주공간에서 지구로 끊임없이 도달하는 다양한 입자와 방사선으로, 이를 통해 암흑물질을 비롯한 미지의 우주 구성물질을 규명하는 데 중요한 역할을 할 수 있다. 그러나 아쉽게도 2023년 1월, 연구비 확보의 불확실성으로 인해 박 교수 연구팀의 연구가 중단됐다. 결과적으로 한국 연구팀은 최소 1~2년 동안 TA 코퍼레이션 국제 공동 연구에 기여할 수 없게 됐다.
-
- 산업
-
입자물리학, 양자 우주 탐사 위한 10개년 계획 공개