검색
-
-
[퓨처 Eyes(72)] 주사 공포 끝?⋯피부에 '바르는' 백신 탄생
- 미국 스탠퍼드대학교 연구팀이 피부에 서식하는 무해한 박테리아를 이용해 강력한 면역 반응을 유도하는 새로운 백신 기술을 개발했다. 연구팀은 이 박테리아의 특정 단백질을 변형해 생백신으로 전환시켰고, 이를 통해 면역 체계를 훈련시켜 파상풍과 디프테리아 같은 질병을 예방하는 데 성공했다. 백신 접종이 크림을 피부에 바르는 것만으로 가능해지는 상상이 현실로 다가오고 있는 것. 스탠퍼드리포트에 따르면 생체공학적으로 개량된 이 박테리아를 접종받은 실험용 쥐는 치명적인 독소 투여에도 생존할만큼 면역력을 형성했다. 현재 인간 대상 임상시험이 진행중이며, 피부에 바르는 방식으로 백신 접종의 새로운 패러다임을 만들 가능성이 크다. 기존의 주사 방식과 달리 이 기술은 간편한 접종 방식으로 통증이나 발열 부기 등 부작용이 적은 장점을 갖추고 있어 대중 보급이 빠르게 진행될 수 있다. 피부 박테리아의 놀라운 발견 피부에 바르는 생백신은 주사로 인한 통증과 부작용이 없으며, 병원 방문 없이 간편하게 접종할 수 있어 의료 비용 절감에도 기여할 것으로 보인다. 특히 예방접종을 두려워하는 어린이나 주사를 기피하는 성인들에게 긍정적인 변화를 줄 수 있다. 스탠퍼드대학교 연구진은 거의 모든 사람의 피부에 존재하는 박테리아를 활용해 새로운 백신 접종 방식을 연구하고 있다. 마이클 피시바흐 스탠퍼드대학교 생명공학 교수는 "주삿바늘을 좋아하는 사람은 아무도 없다. 주사 대신 크림을 바르는 방식으로 예방 접종을 할 수 있다면 누구나 환영할 것이다"라고 말했다. 이러한 방식은 특히 의료 인프라가 부족한 개발도상국에서도 백신 접종 접근성을 개선하는 데 기여할 수 있다. 피부 박테리아, 면역 반응 촉진 역할 피시바흐 교수에 따르면 인간 피부는 대부분의 미생물에게는 가혹한 환경이다. 건조하고 염도가 높으며, 영양분도 부족하기 때문에 미생물이 살아가기 쉽지 않다. 하지만 표피포도상구균(Staphylococcus epidermidis)과 같이 척박한 환경에서도 살아남은 강한 미생물들이 존재한다. 이 박테리아는 인간의 모낭에 서식하며, 우리 몸과 공생 관계를 유지한다. 지금까지 면역학자들은 피부에 서식하는 박테리아가 인체 면역 체계에 큰 영향을 미치지 않는다고 생각해 왔다. 하지만 최근 연구 결과, 표피포도상구균이 예상보다 훨씬 강한 면역반응을 유도한다는 사실이 밝혀졌다. 이는 피부 박테리아가 단순한 공생 미생물이 아니라 면역 체계의 중요한 일부라는 점을 보여준다. 항체 반응과 백신 효과 피시바흐 교수 연구팀은 최근 학술지 네이처(Nature)에 발표한 논문에서 면역 반응의 핵심 요소인 항체 생성이 주목했다. 항체는 특정 미생물의 단백질에 달라붙어 감염을 막는 단백질이다. 연구팀은 쥐의 피부에 표피포도상구균을 도포했을 때 면역 반응이 어떻게 나타나는 지 실험했다. 실험 결과, 쥐의 항체 수치가 점짐적으로 증가해 6주 후에는 일반적인 백신 접종보다 높은 수준에 도달했다. 이는 쥐들이 마치 백신을 접종받은 것과 같은 효과를 나타냈다. 피시바흐 교수는 "인간 역시 자연적으로 표피포도상구균에 대한 항체를 형성하며, 그 수치는 일반적인 백신 접종으로 얻는 항체 수치와 비슷하다"고 설명했다. 생백신 개발과 적용 가능성 연구팀은 표피포도상구균을 활용하여 피부에 바르는 형태의 생백신 개발에 성공했다. 생백신은 약한 독소가 있는 살아있는 병원체를 사용하여 면역 반응을 유도하는 백신이다. 이 백신의 핵심은 Aap이라는 단백질이다. 이 단백질은 표피포도상구균의 세포벽에서 돌출된 형태로, 면역 감시 세포가 항원을 인식하고 면역 반응을 유도하는 데 중요한 역할을 한다. 연구팀은 Aap 단백질의 유전자를 조작하여 파상풍 독소의 일부를 발현하도록 만들었다. 실험 쥐에게 이 박테리아를 도포한 결과, 높은 수준의 파상풍 항체가 생성되는 것을 확인했다. 이와 같은 방식으로 디프테리아 항체 생성에도 성공해, 다양한 질병을 예방하는 백신 개발 가능성을 열었다. 연구진은 박테리아 배양액에서 Aap 단백질을 대량 생산한 후, 파상풍 독소 단편을 화학적으로 결합하는 방식을 시도하기도 했다. 놀랍게도 이 방식으로 만든 백신 역시 강력한 면역 반응을 유도했으며, 실험용 쥐를 치사량의 6배에 달하는 독소로부터 보호하는 효과를 보였다. 이는 백신의 효능을 높이고 지속성을 유지하는 데 중요한 의미를 가진다. 임상시험과 미래전망 피시바흐 교수는 "쥐 실험을 통해 효과를 확인했으며, 이제 원숭이 실험을 거쳐 인간 임상 시험을 진행할 계획"이라고 밝혔다. 연구팀은 2~3년 안에 임상 시험을 시작할 수 있을 것으로 예상하고 있다. 이 기술이 인간에게도 효과적인 것으로 밝혀질 경우, 백신 접종 방식에 획기적인 변화가 일어날 가능성이 크다. 기존 백산과 달리 염증 반응을 유발하지 않아 부작용이 거의 없을 것으로 보이며, 장기적으로는 다양한 질병 예방을 위한 백신 플랫폼으로 발전할 수 있을 것이다. 이 연구는 미국 국립보건원(NIH), 빌&멜린다 게이츠 재단, 찬 저커버그 바이오허브, 스탠퍼드 미생물 치료 이니셔티브 등의 지원을 받았다. 캘리포니아대학교 데이비스 캠퍼스, 미국 국립인간게놈연구소, 국립알레르기 및 감염병연구소, 국립관절염 및 근골격계 및 피부질환 연구소의 연구자들이 이 연구에 기여했다.
-
- 포커스온
-
[퓨처 Eyes(72)] 주사 공포 끝?⋯피부에 '바르는' 백신 탄생
-
-
[퓨처 Eyes(70)] 두 아빠 쥐의 탄생⋯생명 과학의 새 지평 열다
- 2025년 새해 벽두 과학계는 '두 아빠 사이에서 태어난 쥐'라는 놀라운 소식을 접하며 경탄을 금치 못했다. 한때 공상 과학 소설 속 장면으로 여겨졌던 일이 현실로 성큼 다가온 것이다. 이 획기적인 연구는 베이징에 있는 중국과학원의 리 지쿤(Zhi-Kun Li) 박사와 그의 연구팀에 의해 주도됐으며 과학전문 매체 사이언스얼럿과 MIT 테크놀로지 리뷰(MIT Technology) 등에 의해 상세히 보도됐다. 두 매체의 보도에 따르면 이 연구는 정밀한 줄기세포 공학 기술과 크리스퍼(CRISPER) 유전자 편집 기술을 통해 생물학적 엄마 없이 두 아빠를 가진 쥐를 탄생시키고, 성체로 성장시키는데 성공했다. 크리스퍼 유전자 편집 기술은 DNA를 자르고 붙이는 기술로, 특정 유전자를 수정하는 데 사용된다. 과거 유사한 시도들이 번번이 실패로 끝난 것을 감안하면, 이번 성과는 그 의미가 남다르다. 이전 연구자들은 수컷 줄기세포로부터 난자를 생성하는 데 어려움을 겪었고, 설령 성공하더라도 모성 유전 물질의 부재로 인해 새끼들이 심각한 발달 장애를 겪거나 끝내 생존하지 못했다. 하지만 리 지쿤 박사 팀은 '각인'된 유전자를 표적화하는 새로운 접근 방식을 통해 이러한 문제들을 말끔히 해결했다. 각인(Imprinting)이란 특정 유전자가 어느 부모에게서 왔는지에 따라 다르게 발현되는 현상을 말한다. 리 박사 팀은 배아 발달에 핵심적인 것으로 알려진 20개의 각인 유전자를 CRISPR 기술로 정교하게 편집하여 두 아빠를 둔 쥐의 탄생을 현실로 만들었다. 각인 유전자는 부모 중 누구에게서 왔는지에 따라 발현 여부가 결정되는 유전자를 말한다. 사이언스 얼럿은 이 연구가 "줄기세포 및 재생 의학 연구의 여러 가지 제한점을 해결하는 데 도움이 될 것"이라는 중국과학원 웨이 리(Wei Li) 연구원의 말을 인용하며, 이 연구의 중요성을 재차 강조했다. 난관 극복, 새로운 가능성 제시 두 아빠 쥐의 탄생 과정이 순탄하지만은 않았다. 이번 연구는 아빠가 둘인 생쥐를 만들려는 이전 연구를 바탕으로 했다. 1980년대 영국 과학자들은 정자 세포의 DNA가 포함된 핵을 수정란 세포에 주입하려는 시도를 했다. 그 결과 배아는 난자의 세포질에 두 수컷의 DNA와 암컷의 소량의 DNA를 가지고 있었다. 그러나 이 배아를 대리모 쥐의 자궁으로 이식했을 때 어느 배아도 건강하게 태어나지 않았다. MIT 테크놀로지 리뷰는 이는 부계와 모계 유전체에서 모두 각인된 유전자가 발달에 필요하기 때문인 것으로 보인다고 짚었다. 리 박사 팀은 유전자 편집을 이용해 각인된 유전자를 완전히 제거하는 다른 접근 방식을 취했다. 약 200개의 쥐 유전자가 각인되어 있지만 연구팀은 배아 발달에 중요한 것으로 알려진 20개의 유전자에 초점을 맞춘 것. 팀은 실험실에서 줄기 세포를 수집하기 위해 정자 DNA로 세포를 배양했다. 그런 다음 CRISPR를 사용하여 표적으로 삼은 20개의 각인된 유전자를 파괴했다. 유전자 편집된 세포는 다른 정자 세포와 함께 핵이 제거된 난자 세포에 주입됐다. 그 결과 두 마리 수컷 쥐의 DNA가 있는 배아 세포가 탄생했다. 이 세포는 태반을 만드는 데 필요한 세포를 제공하는 연구에 사용되는 일종의 '배아 껍질'에 주입됐다. 그 결과 생성된 배아는 암컷 쥐의 자궁으로 이식됐다. 일부 배아는 살아 있는 새끼로 발달했고, 심지어 성체가 될 때까지 살아 남았다. 연구팀은 더 나아가 두 아빠 쥐를 만드는 두 번째 접근 방식을 발견했다. 이는 일본 오사카 대학의 카츠히코 하야시(Katsujiko Hayashi) 팀의 연구를 바탕으로 했다. 이 팀은 몇년 전 수컷 쥐의 꼬리에서 세포를 채취해 미성숙 난자로 만드는 방법을 발견했다. 이 난자는 정자와 수정돼 양부계 배아를 만들 수 있었다. 하야시는 그 배아는 번식 능력을 가져, 성체가 자신의 자손을 가질 수 있다고 말했다. MIT 테크놀로지 리뷰에 따르면, 중국과학원 연구팀은 164개의 유전자 편집된 배아를 이식했지만, 살아있는 새끼는 고작 7마리밖에 태어나지 않았다. 게다가 태어난 새끼들도 정상적인 쥐보다 크게 자라거나 장기가 비대해지는 등 몇 가지 문제점을 드러냈다. 수명도 일반 쥐보다 짧았고, 불임이라는 문제도 안고 있었다. 이러한 결과는 여전히 해결해야 할 과제가 산적해 있음을 보여준다. 리 지쿤 박사 역시 "각인 유전자에 대한 추가적인 수정은 생존 가능한 배우자를 생산할 수 있는 건강한 두 아빠 쥐의 생성을 촉진하고 각인 관련 질병에 대한 새로운 치료 전략으로 이어질 수 있다"고 말하며, 앞으로 연구가 더 필요함을 시사했다. 그럼에도 불구하고 두 아빠를 둔 쥐의 탄생은 생명 과학 연구에 지대한 의미를 갖는다. 펜실베이니아 대학의 발달 생물학자 코타로 사사키(Kotaro Sasaki)는 "흥미로운 연구"라며, 리 박사 팀이 "일련의 각인 결함을 피할 수 있었을 뿐만 아니라, 두 수컷의 DNA를 사용하여 쥐를 만드는 두 번째 방법을 발견했다"는 점을 높이 평가했다. 이 연구 결과는 학술지 '셀 스템 셀(Cell Stem Cell)'에 게재됐다. 각인 현상에 대한 새로운 통찰력 두 아빠 쥐 연구는 각인 현상에 대한 새로운 통찰력을 제공할 수 있다는 점에서 더욱 주목받고 있다. 이전 연구에서는 두 엄마 쥐가 더 작고 오래 사는 것으로 밝혀진 반면, 이번 연구에서는 두 아빠 쥐가 과도하게 성장하고 더 빨리 죽는다는 사실이 새롭게 밝혀졌다. 코타로 사사키는 "아마도 부계 각인된 유전자는 성장을 지원하고 모계 유전자는 성장을 제한하며, 동물이 건강한 크기에 도달하려면 둘 다 필요할 것"이라고 추측했다. 물론, 이 연구 결과를 인간에게 적용하기까지에는 넘어야 할 산이 많다. 리 지쿤 박사는 "인간의 20개 각인된 유전자를 편집하는 것은 용납할 수 없으며, 건강하거나 생존 가능하지 않은 개체를 생산하는 것은 단순히 선택 사항이 아니다"라고 분명히 선을 그었다. 코타로 사사키 역시 "연구팀이 사용한 많은 실험실 기술 절차가 인간 세포에는 확립되지 않았고, 인간 유전자를 제거하면 예측할 수 없는 건강상의 결과를 초래할 수 있다"며 인간에게 적용하는 데에는 많은 어려움이 있을 것이라고 지적했다. 생명 과학의 새로운 지평 두 아빠를 둔 쥐의 탄생은 생명 과학 연구의 새로운 장을 열었으며, 앞으로 각인 현상과 유전 질환에 대한 이해를 넓히는 데 크게 기여할 것으로 기대된다. 비록 인간에게 직접 적용하기에는 아직 많은 과제가 남아 있지만, 이 연구가 제시하는 가능성은 무궁무진하며, 미래 생명 과학 발전에 중요한 토대가 될 것이다. 두 아빠 쥐의 탄생은 분명 획기적인 사건이지만, 아직 넘어야 할 산이 많다. 특히 인간에게 적용하기 위해서는 윤리적인 문제와 기술적인 난관을 극복해야 한다. 하지만 이 연구가 각인 현상에 대한 새로운 통찰력을 제공하고, 유전 질환 치료에 새로운 가능성을 제시했다는 점은 높이 평가할 만하다. 전문가들은 앞으로 두 아빠 사이에서 태어난 쥐 연구가 생명 과학 발전에 어떤 영향을 미칠지 주목할 필요가 있다고 지적한다.
-
- 포커스온
-
[퓨처 Eyes(70)] 두 아빠 쥐의 탄생⋯생명 과학의 새 지평 열다
-
-
[신소재 신기술(150)] 세포 독성 없는 항균·항염 나노 꽃, '꿈의 상처 치료제'로
- 카네이션을 닮은 나노 구조체가 상처 치유를 돕는 밴드 형태로 개발되어 주목받고 있다. 미국화학회(ACS)의 응용 생체 재료 저널(ACS Applied Bio Materials)에 발표된 연구 결과에 따르면, 이탈리아 제노아 대학 연구팀이 개발한 나노 꽃(nanoflower) 코팅 드레싱은 실험실 시험에서 항생, 항염증 효과와 생체 적합성 특성을 나타냈다. 해당 연구에 대해서는 전문 사이트 Phys, 팝 사이언스 등 다수 외신이 보도했다. 연구팀은 넓은 표면적을 가진 카네이션을 닮은 나노 꽃에 주목했다. 넓은 표면적은 수많은 상처 치유 약물 분자를 담을 수 있는 공간을 제공하기 때문이다. 연구팀은 구리 인산염과 탄닌산, 두 가지 폴리페놀 기반 재료를 활용하여 새로운 나노 구조를 설계했다. 이 시약들은 뛰어난 항염 및 항생 효과로 잘 알려져 있다. 혼합된 시약을 식염수에 넣으면 구리 인산염-탄닌산 화합물이 자체 조립되면서 꽃 모양의 구조로 자란다. 연구진은 이렇게 만들어진 나노 꽃을 전기 방사 나노 섬유 직물 조각에 조심스럽게 부착했다. 연구팀은 "페놀 구조가 풍부한 천연 화합물인 폴리페놀은 항산화, 항염, 항균 및 항암 특성으로 널리 주목받고 있으며, 생물 의학 분야에서 매우 유용하게 쓰인다"고 설명했다. 이어 "경제적이고 환경 친화적인 전략을 사용한 폴리페놀 기반 재료의 합성은 더욱 중요해지고 있다"고 강조했다. 탄닌산과 인산구리(II)로 만들어진 이 나노 꽃 밴드는 감염 및 염증 치료에 유망한 후보 물질로 평가받는다. 나노 꽃은 스스로 조립되는 미세 구조체로, 넓은 표면적을 가지고 있어 약물 분자를 부착할 공간이 충분하므로 약물 전달에 특히 적합하다. 이번 연구에서 파테메 아흐마드푸르, 피에르 프란체스코 페라리 연구진은 인산구리(II)와 탄닌산의 항생 및 항염증 특성에 주목하여 이 두 물질을 나노 꽃 재료로 선택했다. 생리 식염수 용액에서 나노 꽃을 성장시킨 후, 생체 모방 구조체를 전기 방사된 나노 섬유 직물 스트립에 부착했다. 실험 결과, 나노 꽃 코팅 밴드는 배양된 다양한 세균(대장균, 녹농균, 황색포도상구균 포함)과 항생제 내성 생물막을 비활성화하고, 활성 산소종을 제거했으며, 실험실에서 배양한 인체 세포에 손상을 주지 않는 것으로 나타났다. 아흐마드푸르와 페라리는 "나노 꽃 코팅 밴드는 감염 퇴치와 상처 치유 촉진을 위한 자연적이고 비용 효율적이며 고효율적인 해결책을 제시함으로써 획기적인 발전을 이루었으며, 치료 기준을 재정의할 가능성이 있다"고 평가했다. 연구팀은 대장균(E. coli), 녹농균(Pseudomonas aeruginosa), 황색포도상구균(Staphylococcus aureus)을 포함한 유해 세균 배양액에 나노 꽃 붕대 샘플을 넣었다. 2025년 1월 31일 발표된 내용에 따르면, 나노 꽃으로 덮인 원단은 세균을 '불활성화'했을 뿐만 아니라 항생제 내성 바이오필름까지 억제했으며, 실험실에서 배양한 인간 세포를 보호하는 효과를 보였다. 연구팀은 "새로운 나노 꽃 기반 접근법은 비용 효율적일 뿐만 아니라 매우 효율적이어서 상처 치유를 가속화하고 감염과 싸우는 더 나은 수단을 제공한다"고 밝혔다. 나노 꽃의 잠재적 이점은 의학에만 국한되지 않는다. 2024년 10월 '어드밴스트 머티리얼(Advanced Materials)'에 발표된 또 다른 연구에서는 나노 꽃이 실시간 이미징, 폐수 정화, 심지어 마이크로 로봇 공학에도 사용될 수 있다고 제시했다. 이번 연구 결과는 상처 치료 분야에 새로운 패러다임을 제시할 가능성이 엿보인다. 기존 항생제 내성 문제와 상처 치유 지연 문제를 동시에 해결할 수 있는 혁신적인 접근 방식이기 때문이다. 특히 자연 소재인 폴리페놀을 활용하여 생체 적합성을 높인 점은 향후 임상 적용에 긍정적인 영향을 미칠 것으로 예상된다.
-
- IT/바이오
-
[신소재 신기술(150)] 세포 독성 없는 항균·항염 나노 꽃, '꿈의 상처 치료제'로
-
-
[퓨처 Eyes(61)] 10억 년 전 고대 유전자, 생쥐 탄생 혁명 주도
- 10억 년 전 지구를 지배했던 단세포 생물의 고대 유전자가 오늘날 생쥐 탄생을 가능하게 했다. 과학계를 놀라게 한 이번 연구는 줄기세포와 진화의 관계를 새롭게 조명하며 재생의학의 미래를 열 획기적인 발견으로 평가받고 있다. 홍콩 대학교와 독일 막스 플랑크 육상 미생물학 연구소의 공동 연구진은 단세포 생물에서 유래한 유전자를 생쥐 세포에 도입해 줄기세포를 생성했으며, 이를 통해 살아있는 생쥐를 탄생시키는 데 성공했다고 사이언스 얼럿(Science Alert)과 IFL사이언스 등 다수 외신이 전했다. 연구팀은 편모조류에서 발견되는 유전자를 쥐의 유전자와 교환함으로써 두 편모조류가 기능적으로 얼마나 유사한지 확인할 수 있었다. 홍콩 대학의 야 가오 박사와 데이지린 세나 탄, 독일 막스 플랑크 육상 미생물학 연구소의 마티아스 기르빅 박사가 이끄는 연구팀은 복제된 쥐의 줄기세포를 배양하고 게놈을 재프로그래밍하여 포유류의 Sox2 유전자를 동물과 가까운 단세포 생물인 동정편모충류[choanoflagellate, 후생동물의 가장 가까운 친척으로 여겨지는 생물로, 긴 편모(flagellum)를 가지고 있으며, 이 편모 주변을 둘러싼 깃(collar) 모양의 구조를 가지고 있는 게 특징] Sox 유전자로 대체해, 연구를 진행했다. 이 세포를 배아 쥐(마우스) 배반포에 주입한 다음, 임신한 쥐 대리모에 이식하는 임신, 출산, 양육 환경에서 배양했다. 영국 퀸 메리 대학의 유전학자 알렉스 드 멘도사는 사이언스얼럿에 "단세포 친척인 쥐에서 얻은 분자 도구를 사용해 성공적으로 쥐를 만들어냄으로써 우리는 거의 10억 년 전의 진화 과정에서 놀라운 기능의 연속성을 목격하고 있다"고 말했다. 멘도사는 "이 연구는 줄기세포 형성에 관여하는 핵심 유전자가 줄기세포 자체보다 훨씬 일찍 생겨났을 수 있음을 시사하는데, 아마도 우리가 보는 다세포 생명체의 길을 닦는 데 도움이 되었을 것"이라고 설명했다. 고대 유전자가 오늘날 동물 발달에 핵심적인 역할을 한다는 점을 실증한 이번 연구는 줄기세포의 기원과 재활용 메커니즘에 대한 새로운 통찰력을 제공한다. 고대 유전자, 다세포 생물 진화의 토대가 되다 약 10억 년 전, 지구에는 동물이나 식물 같은 다세포 생물이 존재하지 않았다. 당시 지구를 지배하던 단세포 생물 가운데 동정편모충류(choanoflagellates)는 오늘날 동물의 가장 가까운 친척으로 여겨진다. 동정편모충은 현미경으로 관찰할 정도로 작은 단세포 생물이지만, 이들의 유전체에는 포유류 줄기세포 형성을 돕는 것으로 알려진 Sox와 POU라는 유전자의 초기 버전이 포함되어 있다. 기존에는 줄기세포가 다세포 생물에서만 진화했을 것이라 여겨졌지만, 이번 연구는 단세포 생물에도 줄기세포 형성에 중요한 유전자가 존재했음을 보여준다. 연구진은 이 유전자들이 다세포 생물로 진화하는 과정에서 재활용되고 확장되었을 가능성을 제시하며, 고대 유전자의 가치를 새롭게 조명하고 있다. 생쥐 탄생의 비밀, 동정편모충류 유전자 연구진은 동정편모충류의 Sox 유전자를 생쥐 세포에 도입해 생쥐의 Sox2 유전자를 대체했다. Sox2는 포유류 줄기세포의 다능성(모든 세포로 분화할 수 있는 능력)을 유지하는 데 중요한 유전자다. 놀랍게도 동정편모충의 Sox 유전자 역시 생쥐 세포에서 동일한 기능을 수행할 수 있었다. 동물은 '다능성'이라고 알려진 특징을 가지고 있다. 다능성은 배아 줄기세포가 분화하여 완전히 발달된 유기체를 구성하는 다양한 조직으로 발달할 수 있는 능력을 말한다. 동물에 인접한 미생물에 대한 이전 연구에 따르면 다능성의 기원은 다세포성보다 앞선 것으로 나타났다. 이것이 사실이라면, 이는 동물의 진화 결과가 아니라 동물 진화의 원동력 중 하나일 수 있다. 생쥐 세포는 동정편모충 유전자의 도움으로 유도만능줄기세포(iPSC) 상태로 전환되었으며, 이를 발달 중인 생쥐 배아에 주입한 결과 키메라 생쥐(마우스)가 탄생했다. 키메라 생쥐는 서로 다른 유전자를 가진 두 세포 집단이 공존하는 동물로, 이번 실험에서는 줄기세포의 영향을 받아 맨 위의 사진에서 보이는 것처럼 검은 털 반점과 어두운 눈 등의 특징을 가진 생쥐가 만들어졌다. 이 발견은 단세포 생물의 간단한 유전자가 다세포 생물의 복잡한 발달에 얼마나 중요한 역할을 할 수 있는지 명확히 보여준다. 고대 유전자, 재생의학의 미래를 열다 줄기세포는 손상된 조직을 복원하거나 질병 치료에 사용될 수 있는 '만능 세포'로, 재생의학의 핵심이다. 일본의 야마나카 신야(山中 伸弥) 박사가 2012년 노벨 생리학·의학상을 수상한 연구를 통해, 일반 세포를 줄기세포로 변환하는 기술이 세상에 알려졌다. 그는 Sox와 POU 유전자를 포함한 4가지 인자를 활용해 줄기세포를 유도했다. 이번 연구는 야마나카 박사의 연구를 기반으로 더 나아가, 고대 단세포 생물의 유전자를 활용해 줄기세포를 생성했다. 이는 줄기세포 형성 메커니즘이 생명 진화 초기 단계부터 존재했음을 강력히 뒷받침한다. 진화에서 재활용된 유전자, 재생의학의 열쇠 연구진은 동정편모충 유전자들이 초기 생명체의 기본적인 세포 기능을 조절하는 역할을 했으며, 이후 다세포 생물이 출현하면서 더 복잡한 기능으로 진화했을 가능성을 제시한다. 이를 "10억 년에 걸친 기능적 연속성"이라 설명하며, 진화생물학과 재생의학이 맞닿은 접점임을 강조한다. 홍콩대 랄프 야우흐(Ralf Jauch) 박사는 "고대 유전자 연구는 다능성 메커니즘을 더욱 정밀하게 조정하고 최적화할 방법을 제시할 것"이라며, 동정편모충 유전자의 합성 버전을 개발해 기존 유전자보다 효율적으로 작동할 가능성도 시사했다. 이번 연구는 고대 단세포 생물이 현대 생명공학에 얼마나 큰 영감을 줄 수 있는지 보여준다. 단세포 생물의 유전자가 다세포 생물의 기원과 발전에 중요한 역할을 했다는 사실은 줄기세포 연구와 재생의학의 새로운 가능성을 열고 있다. 줄기세포와 진화라는 두 축이 만들어갈 생명과학의 미래가 더욱 기대된다. 한편, 이번 연구 결과는 국제 학술지 '네이처 커뮤니케이션스'에 게재됐다.
-
- 포커스온
-
[퓨처 Eyes(61)] 10억 년 전 고대 유전자, 생쥐 탄생 혁명 주도
-
-
[퓨처 Eyes(60)] 우주에서 자란 줄기세포, 노화와 질병 치료에 새 길 열다
- 우주는 더 이상 단순한 탐험의 공간이 아니다. 국제우주정거장(ISS)과 민간 우주 임무에서 진행된 줄기세포 실험에서 의료 과학의 판도를 바꿀 혁신적인 결과가 나왔다. ISS의 미세중력 환경에서 배양된 줄기세포가 지구에서는 실현할 수 없었던 뛰어난 능력을 발휘한 것이다. 미국 플로리다 메이요 클리닉과 세다스-사이나이 연구진은 이번 실험 결과가 질병 치료와 재생의학 연구에 새로운 지평을 열 것이라고 최근 발표했다. 우주에서는 줄기세포가 스스로 3차원 구형 배열을 형성했다는 점이 연구진에게 가장 큰 놀라움을 안겨 주었다. 지구의 중력 때문에 평면 배양 접시 위에서만 자라던 줄기세포가 우주의 미세중력 아래에서는 스스로 진화하듯 3차원 조직 구조를 만들어 낸 것이다. 이는 인체 조직에 가까운 구조로, 면역 조절과 염증 완화 능력을 크게 향상시켰다. 플로리다 메이요 클리닉의 아바 주바이르 박사는 "우리는 세포가 3차원으로 자라리라고는 기대하지 않았다. 그러나 미세중력 환경은 세포가 자연스럽게 구형 배열을 형성하도록 했다. 이는 지구에서는 불가능했던 현상"이라고 설명했다. 이처럼 우주의 미세중력은 줄기세포의 자가 조립 능력을 활성화하며, 새로운 의료 혁신의 가능성을 열어주었다. 이번 연구는 NPJ 마이크로그래비티(NPJ Microgravity)에 게재됐으며, 우주 환경을 활용한 줄기세포 연구가 새로운 의료 혁신을 가져올 것으로 기대된다. [미니해설] 우주 실험이 밝혀낸 줄기세포의 비밀⋯불로장생의 꿈 '성큼' 줄기세포는 손상된 조직을 복원하거나 질병 치료에 사용될 수 있는 '만능 세포'로, 재생의학의 핵심이다. 일본의 야마나카 신야(山中 伸弥) 박사가 2012년 노벨 생리학·의학상을 수상한 연구를 통해, 일반 세포를 줄기세포로 변환하는 기술이 세상에 알려졌다. 그는 Sox와 POU 유전자를 포함한 4가지 인자를 활용해 줄기세포를 유도했다. 줄기세포는 그 자체로 현대 의학의 혁신적인 가능성을 품고 있다. 복제와 분화 능력은 조직 재생과 질병 치료의 핵심 자원으로 평가받는다. 그러나 기존 기술은 여전히 복잡한 한계를 지니고 있다. 이런 상황에서 우주에서 진행된 줄기세포 배양 실험은 재샌의학 분야에 새로운 방향을 제시하며 주목받고 있다. 미세중력, 줄기세포 배양의 최적 환경 미세중력은 중력이 거의 없는 상태를 말한다. '무중력' 이라고도 불리지만, 중력이 완전히 없는 것은 아니고 지구 표면 중력의 100만분의 1 정도로 매우 작은 중력만 존재하는 환경이다. 지구 궤도를 도는 우주정거장에서는 지구 중력의 영향을 거의 받지 안항 미세중력 환경이 조성된다. 우주 환경에서 줄기세포를 배양하는 일은 간단하지 않았다. 미세중력 상태에서는 액체가 접시 밖으로 흘러나갈 위험이 있었기 때문이다. 하지만 연구진은 96웰 플레이트의 액체 표면 장력을 활용해 세포를 고정하는 기술을 개발하여, 성공적으로 배양 과정을 진행할 수 있었다. 아룬 샤르마 세다스-사이나이 연구소 박사는 "표면 장력을 활용한 이번 기술은 실험 성공의 핵심이었다. 맞춤형 장비 없이도 우주 실험을 가능하게 한 중요한 성과였다"라고 말했다. 우주에서의 새로운 가능성: 노화 관련 질환 치료 미세중력 환경은 줄기세포가 더 자연스러운 성장 상태를 유지하며, 면역 조절 능력과 염증 완화 효과를 향상시키는 데 기여했다. 이는 단순한 발견을 넘어, 줄기세포의 응용 가능성을 확장하는 중요한 과학적 단서를 제공한다. 연구진은 미세중력 환경에서 줄기세포를 대량으로 제조할 방법을 모색 중이다. 이는 줄기세포 기술의 상업적 생산과 재생의학 응용을 위한 중요한 전환점이 될 것으로 기대된다. 이번 연구는 노화 관련 질환의 치료에 새로운 전환점을 마련했다. 줄기세포는 뇌졸중, 암, 치매와 같은 질환 치료에서 중요한 역할을 할 가능성을 보여주었다. 또한, 우주 환경에서 배양된 줄기세포는 지구로 돌아온 뒤에도 복제 안정성과 확장 능력을 유지하며 의료 응용 가능성을 높였다. 클라이브 스벤슨 세다스-사이나이 연구소 교수는 "우리가 수행한 연구는 시작에 불과하다. 우주에서 제조된 줄기세포는 재생의학을 혁신할 독특한 특성을 갖고 있다"고 말했다. 우주 시대의 의료 혁명: '불로장생'의 가능성 이번 연구 결과는 단순한 과학적 발견을 넘어, 재생의학의 새로운 장을 열었다. 우주라는 실험실은 줄기세포 기술의 대량 생산과 상업적 생산 가능성을 제시하며, 인류의 오랜 꿈인 '불로장생'을 현실로 만들 가능성을 보여준다. 우주에서 시작된 줄기세포 연구는 더 이상 공상과학의 영역이 아니다. 미세중력이라는 우주의 독특한 환경은 질병 치료와 장기 이식 기술에 혁신적인 변화를 가져올 것이다. 미래의 어느 날, 우리는 줄기세포 기술 덕분에 질병의 고통에서 벗어나 건강하게 오래 사는 꿈을 이룰지도 모른다. 그리고 그 꿈을 현실로 만들 열쇠는 바로 우주에서 진화한 작은 세포들이 쥐고 있을 것이다.
-
- 포커스온
-
[퓨처 Eyes(60)] 우주에서 자란 줄기세포, 노화와 질병 치료에 새 길 열다
-
-
[신소재 신기술(137)] 혈액으로 만든 맞춤형 3D 프린팅 임플란트, 재생 의료의 새 지평 열까
- 영국에서 자신의 혈액을 사용해서 재생 치유 능력을 60% 이상 높인 3D 프린팅 임플란트가 개발됐다. 우리 몸의 면역 체계는 재생 혈종(RH)을 조절하여 작은 파열이나 골절을 효과적으로 치료하는 능력을 가지고 있다. RH는 다양한 분자 및 세포 과정을 조율하는 복잡하고 역동적인 환경으로 완전한 조직 복구를 보장한다. 최근 영국 노팅엄 대학교 약학 및 화학 공학 연구팀은 이러한 자연 치유 과정을 활용하여 개인 맞춤형 재생 소재를 만드는 '생체협력적' 접근법을 제시했다. 혈액을 기반으로 하는 이 기술은 부상 및 질병 치료에 효과적인 맞춤형 재생 혈액 제품 개발로 이어질 수 있다. 해당 논문에 대해서는 테크 익스플로리스트와 뉴아틀라스 등 다수 외신이 보도했다. 연구팀은 자연 조직 치유에 관여하는 필수 과정을 유도하는 펩타이드 분자 조직을 사용해 조직 재생을 촉진하는 생체 소재를 개발했다. 대부분의 신체 조직은 복잡한 치유 과정을 통해 작은 파열이나 골절을 효율적으로 재생시킬 수 있다. 초기 단계에서는 액체 혈액이 고체 RH를 형성하는 데, 이는 재생에 필수적인 세포, 거대 분자와 요소를 포함하는 살아 있는 미세 환경이라 할 수 있다. 팀은 합성 펩타이드와 환자의 혈액을 결합하는 자가 조립 기술을 개발해 자연 치유 과정의 핵심 분자, 세포 및 메커니즘을 포착하는 소재를 만들었다. 이를 통해 RH를 모방하고 구조적 및 기능적 특성을 향상시키는 재생 소재를 제작할 수 있었다. 이러한 소재는 정상적인 혈소판 행동, 성장 인자 생성, 치유에 필수적인 세포 모집 등 RH의 자연적 기능을 유지하면서 쉽게 조립하고 조작 및 3D 프린팅이 가능하다. 연구팀은 이 방법을 사용해 동물 모델에서 동물 자신의 혈액을 활용하여 뼈를 성공적으로 복구하는 것을 입증했다. 팀은 두개골에서 뼈 일부를 수술로 제거한 쥐를 대상으로 실험을 진행했다. 쥐의 혈액에서 새로운 RH 구조물을 배양해 제거된 두개골 뼈 틈새에 이식한 결과, 부상 부위가 재생의 징후를 보였다. 6주 후 새로운 RH 구조물이 투입된 쥐는 새로운 뼈가 최대 62% 생성됐다. 반면, 시중에서 판매되는 뼈 대체물을 사용한 쥐는 50%가 재생됐다. 아무 것도 처리하지 않은 대조군 쥐는 뼈가 30%만 재생되는 데 그쳤다. 알바로 마타 노팅엄 대학교 생체 의학 공학 및 생체 재료 교수는 "수년 동안 과학자들은 자연 재생 환경을 재현하기 위한 합성적 접근 방식을 연구해 왔지만, 고유한 복잡성으로 인해 어려움을 겪었다"며 "이번 연구에서는 재생 환경을 재현하는 대신 생물학적 시스템과 협력하는 방식을 택했다"고 설명했다. 코시모 리고리오 공학부 박사는 "사람들의 혈액을 고도로 재생 가능한 임플란트로 쉽고 안전하게 바꿀 수 있는 가능성은 매우 흥미롭다"며 "혈액은 사실상 무료이며 환자로부터 비교적 많은 양을 쉽게 얻을 수 있다. 우리의 목표는 환자의 혈액을 풍부하고 접근 가능하며 조정 가능한 재생 임플란트로 빠르고 안전하게 변화하기 위해 임상 환경에서 쉽게 접근하고 사용할 수 있는 도구 키트를 구축하는 것이다"라고 밝혔다. 이 연구는 어드밴스트 머티리얼(Advanced Materials) 저널에 게재됐다.
-
- IT/바이오
-
[신소재 신기술(137)] 혈액으로 만든 맞춤형 3D 프린팅 임플란트, 재생 의료의 새 지평 열까
-
-
[퓨처 Eyes(59)] 햇빛 먹는 동물? 광합성 동물 세포 탄생!
- 햇빛을 받아 에너지를 만드는 동물, 상상이나 해봤는가? '광합성을 하는 동물'은 마치 SF 영화 속 이야기 같지만, 이제 현실이 되고 있다. 일본 도쿄대학교 마츠나가 사치히로 교수 연구팀은 동물 세포에 조류(藻類)의 엽록체를 이식해 광합성을 가능하게 하는 혁신적인 기술을 개발했다. 이는 동물과 식물의 생물학적 경계를 허물며 의학, 식량 생산, 환경 개선 등 다양한 분야에서 획기적인 변화를 예고한다. 50년 넘는 난제, 마침내 해결! 광합성은 햇빛, 물, 이산화탄소를 이용해 산소와 포도당을 생성하는 과정으로, 지구 생태계를 유지하는 핵심이다. 식물, 조류, 일부 박테리아가 광합성을 통해 스스로 영양분을 만들고 산소를 생성한다. 이는 동물의 생존에 필수적인 요소다. 동물 세포에 광합성 기능을 도입하려는 시도는 1970년대부터 있었지만, 동물 세포가 엽록체를 이물질로 인식하고 파괴하는 면역 반응 때문에 번번이 실패했다. 마츠나가 교수 연구팀은 이러한 난제를 해결하기 위해 동물 세포의 고온 환경(37℃)에서도 생존 가능한 홍조류(紅藻類)인 시아니디오시존 메롤래(Cyanidiochyzon merolae) 엽록체를 선택하고, 동물 세포가 엽록체를 '먹이'로 섭취하도록 유도해 면역 반응을 우회하는 전략을 사용했다. 이 홍조류는 이탈리아의 화산 온천에서 자라고 37℃ 이상의 온도에서 광합성을 할 수 있었다. 연구팀은 이 엽록체를 동물 세포에 강제로 주입하는 대신 배양액에 첨가한 다음 중국 햄스터 난소 세포에 먹였다. 동물 세포, 엽록체와 공존하며 광합성하다! 그 결과, 동물 세포는 엽록체를 파괴하지 않고 최대 48시간 동안 공존하며 광합성 초기 반응을 성공적으로 나타냈다. 뿐만 아니라 엽록체로부터 추가적인 에너지를 공급받아 성장 속도가 증가하는 현상도 확인됐다. 연구팀은 이틀간의 공동 배양 직후 세포의 1%가 "엽록체가 풍부해졌다"고 밝혔다. 이는 엽록체를 7개 이상 흡수했다는 의미다. 추가로 20%의 세포는 엽록체가 1개에서 3개 사이인 것으로 밝혀졌다. 중요한 것은 이들 엽록체가 이틀 동안 더 활동했으며, 이 기간 동안 숙주 세포가 빠른 속도로 성장했다는 점이다. 이는 엽록체가 잠재적으로 탄소 공급원으로 작용하면서 광합성이 실제로 일어나고 있음을 나타난다고 IFL 사이언스가 전했다. 마츠나가 교수는 "50년 동안 모든 생물학 연구자들이 포기했던 일을 해냈다는 사실에 놀랐다"며 이번 연구 성과에 대한 소감을 밝혔다. 생물학의 경계를 허물다 연구팀은 이러한 동물-식물 잡종 세포를 영어의 식물(plant)과 동물(animal)을 합성한 신조어인 '플래니멀(planimal)' 세포라고 이름을 붙였다. 이 기술은 동물 세포가 스스로 에너지를 생성하는 가능성을 열며 생명과학의 패러다임을 바꾸고 있다. 엽록체를 통해 공급받은 에너지로 동물 세포의 성장 속도가 증가하는 현상이 확인되면서, 자율적인 에너지 생산 시스템 구축에 대한 기대감이 높아지고 있다. 의학·식량·환경, 응용의 무한 가능성 이번 기술은 바이오산업의 여러 분야에서 실질적인 변화를 가져올 것으로 예상된다. 먼저, 의료 분야에서는 심장병 환자의 손상된 심장에 광합성 세포를 이식하여 빛으로 산소를 공급, 회복을 돕는 치료법이 개발될 수 있다. 또한, 산소 공급의 한계를 극복해 대형 조직 배양 및 이식 기술을 크게 발전시킬 수 있다. 식량 생산 분야에서는 배양육 생산에 광합성 동물 세포를 활용하여 외부 산소 공급 없이 자체적으로 산소를 생성, 생산 비용을 절감하고 효율성을 극대화할 수 있다. 이는 지속 가능한 식량 생산의 돌파구가 될 전망이다. 환경 문제 해결에도 기여할 수 있다. 광합성 동물 세포는 이산화탄소를 흡수하고 산소를 배출하는 기능을 통해 탄소 배출 감소와 환경 복원에 기여할 수 있으며, 탄소 중립 목표를 추구하는 기업들에게 획기적인 솔루션을 제공할 수 있다. 남은 과제와 미래 전망 물론 아직 넘어야 할 산도 있다. 추가 관찰 결과 이 이식된 엽록체는 2일 후에 분해되기 시작해 4일째 완전히 파괴됐다. 이 기술을 완성하기 위해서는 더 많은 연구가 필요하지만, 연구팀은 "이미 합성 생물학 기반 접근법이 인공 광합성 동물 세포를 만드는 데 기초가 될 수 있다"며 이번 연구 성과에 대해 기대감을 드러냈다. 그럼에도 불구하고 광합성 기능을 안정적으로 유지하려면 엽록체의 장기 생존 및 효율적인 공생 메커니즘 구축이 필수적이다. 또한, 이 기술이 대규모로 활용되기 위해서는 사회적 수용성과 윤리적 검토도 병행되어야 한다. 광합성 동물 세포 기술은 생명공학의 새로운 문을 열며, 지속 가능한 미래를 위한 혁신적인 도구로 자리매김할 전망이다. 이 기술이 의학, 식량, 환경 등 다양한 분야에서 어떠한 변화를 가져올지, 앞으로의 발전이 더욱 기대된다. 이번 연구는 단순한 학문적 성과를 넘어, 미래 바이오산업의 초석이 될 기술적 기반을 제공했다는 점에서 주목할 만하다. "동물이 햇빛을 먹는다"는 발상이 이제는 더 이상 SF 영화 속 이야기가 아닌, 현실로 다가오고 있는 것이다. 이 연구 결과는 '일본 학술원 회보 B(proceedings of tje Japan Academy, Series B)' 저널에 게재됐다.
-
- IT/바이오
-
[퓨처 Eyes(59)] 햇빛 먹는 동물? 광합성 동물 세포 탄생!
-
-
[퓨처 Eyes(49)] 신개념 하이드로겔, 초기 관절염 치료 및 진행 억제 가능성 제시
- 중국 과학자들이 관절염 치료의 새로운 지평을 열 혁신적인 생체 재료 개발에 성공했다. 이번 연구는 퇴행성 관절염으로 고통받는 전 세계 수억 명 환자들에게 새로운 희망을 제시할 것으로 기대된다. 관절염은 뼈 사이의 완충 역할을 하는 연골이 점차 파괴되면서 발생하는 질환이다. 연골 손상은 윤활 감소와 마찰 증가를 초래하여 결국 관절에 돌이킬 수 없는 손상을 입힌다. 특히 성인의 연골은 자연적으로 치유되지 않아 치료가 어려운 난제로 꼽혀왔다. 관절염, 삶의 질 저하시키는 질환 세계보건기구(WHO)에 따르면, 전 세계 관절염 환자 수는 꾸준히 증가하여 1990년부터 2019년까지 113% 증가한 5억 2800만 명에 달한다. 인구 고령화와 현대인의 생활 방식 변화가 관절염 증가세를 부추기고 있다. 국내에서도 관절염 문제는 심각하다. 국민건강보험공단 통계에 따르면, 무릎 관절염 환자 수는 지난해 기준 4년간 6.7% 증가했다. 특히 60대 이상 노년층에서 무릎 관절염 발병률이 높게 나타났다. 무릎 관절염은 초기에는 간헐적인 통증으로 시작되지만, 방치할 경우 심각한 통증, 다리 변형, 보행 장애까지 이어질 수 있다. 손상된 연골, 정밀하게 치료한다 이번에 중국 연구팀이 개발한 기술은 '하이드로겔 마이크로스피어(HMS)'와 항체를 결합하여 연골 윤활을 회복시키는 획기적인 치료법이다. 홍콩 매체 사우스차이나 모닝 포스트(SCMP)에 따르면 상하이 고등 연구소와 창사 샹야 국립 병원 연구팀은 손상된 조직 복구에 널리 사용되는 '하이드로겔 마이크로스피어'를 활용하여 관절염 치료의 새로운 접근법을 제시했다. 이번 연구 결과는 첨단 소재 분야 학술지 '어드밴스트 머티리얼즈(Advanced Materials)'에 게재됐다. 이 혁신적인 마이크로스피어는 천연 단백질에서 추출한 젤라틴 메타크릴레이트와 합성 고분자인 폴리(설포베타인 메타크릴레이트)를 결합하여 만들어졌다. 이 두 물질의 조합은 세포 성장과 수분 공급에 이상적인 환경을 제공한다. 연구팀은 나아가 손상된 연골에 결합하고 마이크로스피어에 부착되는 표적 항체를 개발하여 치료 효과를 극대화했다. 이 새로운 치료법은 기존 생체 윤활제와 달리 염증 부위를 정확하게 표적하여 치료할 수 있다는 장점을 가진다. '하이드로겔 마이크로스피어'는 작고 균일한 구형의 하이드로겔 입자이다. 쉽게 말해, 아주 작은 크기의 물을 많이 머금을 수 있는 3차원 젤리 공을 떠올리면 된다. 크기는 일반적으로 마이크로미터(㎛) 단위로 매우 작다. 구조는 3차원 망상구조를 가진 친수성 또는 양친매성 고분자 사슬이 가교되어 형성된다. 쉽게 비유하자면, HMS는 작은 스펀지처럼 물을 흡수하여 촉촉함을 유지하고, 필요한 물질을 머금고 있다가 서서히 방출하는 역할을 한다. 이러한 특성 덕분에 약물 전달, 조직 공학, 세포 배양 등 의료 분야에서 다양하게 활용될 수 있는 잠재력을 가지고 있다. 쥐 실험 통해 초기 골관절염 치료 효과 입증 연구팀은 개발한 생체 물질을 쥐에게 주입하여 초기 골관절염 치료 효과를 검증했다. 그 결과, 이 치료법은 골관절염 증상을 완화하고 추가적인 관절 손상을 예방하는 데 효과적인 것으로 나타났다. 특히, 새로운 생체 재료는 표준 식염수 주입과 비교했을 때 마찰을 줄이고 관절 윤활을 개선하는 측면에서 기존 치료법보다 뛰어난 성능을 보였다. 보고에 따르면 마찰 계수는 표준 식염수 주입에 비해 '3분의 1' 이상 감소했다. 이번 연구는 특히 초기 단계 관절염 치료에 대한 유망한 접근 방식을 제시한다. 표적 윤활 제공과 추가적인 관절 손상 예방을 통해 관절염 치료의 새로운 패러다임을 열 것으로 기대된다. 연구팀은 "개발된 주입형 표적 윤활 HMS와 정밀 표적 윤활 HMS는 특히 초기 단계의 골관절염 진행을 늦추는 데 유망하고 편리한 기술"이라고 강조했다. 관절염 치료의 새 지평 열리나 앞서 미국 노스웨스턴대학교 연구팀은 손상된 무릎 연골을 재생하는 새로운 생체 활성 물질을 개발하고, 양을 이용한 실험에서 성공적인 결과를 얻었다. 이 새로운 생체 재료는 연골 성장 및 유지에 필수적인 단백질인 TGFb-1에 결합하는 생체 활성 펩타이드와 연골 및 관절의 윤활 활액에 존재하는 천연 다당류인 히알루론산으로 구성되어 있다. 노스웨스턴 연구팀은 새로운 생체 재료 물질을 동물 모델인 양의 손상된 무릎 연골에 적용한 결과, 6개월 이내에 새로운 연골이 생성되는 것을 확인했다. 새로 생성된 연골은 통증 없는 기계적 탄력성을 가능하게 하는 천연 생체 고분자인 콜라겐 II와 프로테오글리칸을 포함하고 있었다. 해당 연구 결과는 미국 국립과학원회보(PNAS)에 게재됐다. 관절은 일단 망가지면 자연적으로 재생되지 않아 그동안 치료의 한계가 있었다. 그러나 이처럼 연골을 재생시키기 위한 전 세계 과학자들의 노력이 합쳐지면 관절염 치료를 더욱 앞당길 수 있을 것으로 기대된다.
-
- 포커스온
-
[퓨처 Eyes(49)] 신개념 하이드로겔, 초기 관절염 치료 및 진행 억제 가능성 제시
-
-
[신소재 신기술(102)] 국내 연구진, 플라스틱 생산 미생물 개발⋯석유 기반 플라스틱 대체 가능성 열어
- 국내 연구진이 석유 기반 플라스틱 산업의 대안으로 생분해성 플라스틱을 생산하는 미생물 개발에 성공했다. 한국과학기술원(KAIST) 연구팀은 플라스틱의 강성과 열 안정성을 높이는 고리형 구조의 폴리머를 생산하는 박테리아를 개발했다. 해당 기술에 대해서는 인터레스팅엔지니어링과 물리학org, 사이테크 데일리 등 다수 외신이 조명했다. 외신에서는 "한국 연구진이 개발한 새로운 '살아있는 플라스틱'은 버려지면 스스로 파괴된다"고 호평했다. 연구를 주도한 KAIST 화학 및 생물분자 연구 책임자인 이상엽 교수는 "(플라스틱) 바이오 제조는 기후 변화와 세계적인 플라스틱 위기를 완화하는 데 중요한 역할을 할 것"이라며 "미래를 위한 더 나은 환경을 보장하기 위해 국제적인 협력을 통해 바이오 기반 제조를 촉진해야 한다"고 강조했다. 일반적으로 고리형 분자는 미생물에 독성을 나타내기 때문에 연구진은 독특한 대사 경로를 설계했다. 이를 통해 대장균은 폴리머를 합성할 뿐만 아니라 폴리머와 그 전구체의 축적을 견딜 수 있게 되었다. 결과적으로 생성된 폴리머는 생분해성이며 약물 전달 시스템과 같은 생물 의학 분야에 유용하게 활용될 수 있는 물리적 특성을 가지고 있다. 최초의 미생물을 이용한 방향족 및 지방족 폴리머 생산 포장과 산업 분야에서 사용되는 대부분의 플라스틱(PET, 폴리스티렌 등)은 고리 모양의 '방향족' 구조를 포함하고 있다. 이전 연구에서는 미생물을 이용하여 방향족 및 지방족(비고리형) 단량체가 혼합된 폴리머를 생산하는 데 성공했지만, 이번 연구는 미생물이 방향족 측쇄(곁가지)를 가진 단량체로만 구성된 폴리머를 생산한 최초의 사례다. 이를 위해 연구팀은 다양한 미생물의 효소를 통합하여 새로운 대사 경로를 만들었고, 이를 통해 박테리아가 페닐락테이트라는 방향족 단량체를 생산할 수 있도록 했다. 그런 다음 컴퓨터 시뮬레이션을 활용하여 이러한 페닐락테이트 단량체를 완전한 방향족 폴리머로 효율적으로 조립할 수 있는 폴리머라제 효소를 설계했다. 이상엽 교수는 보도 자료에서 "이 효소는 자연에 존재하는 어떤 효소보다 폴리머를 더 효율적으로 합성할 수 있다"고 설명했다. 산업용 생산을 위한 규모 확대 연구팀은 박테리아의 대사 경로와 폴리머라제 효소를 개선한 후, 6.6리터(1.7갤런) 발효조에서 미생물을 배양하여 실험 규모를 확대했다. 최적화된 균주는 리터당 12.3g의 폴리머(폴리-D-페닐락테이트)를 성공적으로 생산했다. 그러나 상용화를 위해서는 이 수율을 리터당 최소 100g까지 높이는 것을 목표로 하고 있다. 이 교수는 "그 특성에 근거해 우리는 이 폴리머가 특히 약물 전달에 적합할 것이라고 생각한다"며 "주로 분자량이 낮기 때문에 PET만큼 강하지는 않다"고 말했다. 향후 연구진은 다양한 화학적 및 물리적 특성을 가진 추가적인 방향족 단량체 및 폴리머를 개발할 계획이다. 특히 산업용으로 필요한 더 높은 분자량을 가진 폴리머 개발에 주력할 예정이다. 또한 대규모 생산을 가능하게 하기 위해 공정 최적화 작업도 계속 진행할 계획이다. 이상엽 교수는 "수율을 높이기 위해 더 많은 노력을 기울이면 이 방법을 더 큰 규모로 상용화할 수 있을 것"이라며 "생산 공정의 효율성뿐만 아니라 회수 공정도 개선해 생산된 폴리머를 경제적으로 정제할 수 있도록 노력하고 있다"고 밝혔다. 이 연구는 지난 8월 21일 생명공학 분야의 최신 동향과 미래 전망에 대한 리뷰 논문을 주로 다루는 학술지 '트렌드 인 바이오테크놀로지(Trends in Biotechnology)'에 게재됐다.
-
- IT/바이오
-
[신소재 신기술(102)] 국내 연구진, 플라스틱 생산 미생물 개발⋯석유 기반 플라스틱 대체 가능성 열어
-
-
[신소재 신기술(101)] 버섯 곰팡이 전기 자극으로 바이오하이브리드 로봇 제어
- 코넬 대학교 연구진이 곰팡이 균사체를 배양해 여기서 나오는 전기 신호를 활용, 일반 로봇보다 환경에 더 잘 반응하는 '바이오 하이브리드' 로봇 제어 방법을 새로 발견했다고 테크익스플로러가 전했다. 로봇 제조에 시간과 기술, 재료 정도가 필요했다면, 이제는 곰팡이까지 더해질 수 있게 됐다. 로봇 제어 기술 개발은 코넬 대학교 롭 셰퍼드 교수가 이끄는 유기로봇연구실의 아난드 미슈라 박사팀이 주도했으며, 「곰팡이 균사의 전기 생리학적 측정을 통해 매개되는 로봇의 감각 운동 제어」라는 제목의 논문은 '사이언스 로보틱스(Science Robotics)'에 발표했다. 셰퍼드 교수는 "이 연구는 곰팡이가 내는 생체 전기를 사용해 로봇에 환경 감지 및 명령 신호를 제공, 자율성 수준을 향상시키는 첫 번째 성과"라며 "로봇의 전자 장치에 균사체를 배양함으로써, 바이오 하이브리드 로봇이 환경을 감지하고 이에 대응할 수 있도록 할 수 있었다. 이번에는 입력원으로 빛을 사용했지만, 미래에는 화학 물질이 될 것이다. 개발할 미래 로봇은 작물에서 토양의 화학적 성질을 감지하고 비료를 뿌릴 시기를 결정할 수 있을 것"이라고 말했다. 엔지니어들은 로봇을 설계하면서 동물계에서 많은 단서를 얻었다. 동물이 움직이는 방식을 모방하고, 환경을 감지하고, 심지어 땀을 통해 내부 온도를 조절하는 기계를 만들었다. 일부 로봇은 근육 조직 세포와 같은 살아있는 조직을 통합했지만, 이러한 복잡한 생물학적 로봇 시스템은 기능적으로 유지하기 어렵다. 로봇의 성능과 기능을 살리는 작업은 쉽지 않다. 균사체는 버섯의 지하 식물체이며, 여러 가지 장점이 있다. 혹독한 환경에서도 자랄 수 있다. 또 화학적 및 생물학적 신호를 감지하고 여러 입력에 반응할 수 있다. 미슈라 박사는 "기존의 수동 센서는 한 가지 목적으로만 사용되지만 살아있는 시스템은 촉각에 반응하고, 빛에 반응하고, 열에 반응하고, 신호와 같은 알려지지 않은 것에도 반응한다"면서 "미래 로봇 제작은 예상치 못한 환경에서 어떻게 작동할 수 있을까에 초점이 맞추어질 것이다. 우리 연구팀이 찾아낸 ‘살아있는 시스템’을 활용하면 알려지지 않은 입력이 들어와도 로봇이 그에 반응할 것"이라고 밝혔다. 그러나 버섯과 로봇의 통합에는 기술에 대한 지식 이상이 필요하다. 기계나 전자공학뿐 아니라 균류학, 신경 생물학, 신호 처리에 대한 배경 지식 등도 요구된다. 이 모든 분야가 모여야 시스템을 구축할 수 있다. 그래서 연구팀은 신경 생물학 및 행동 분야(브루스 존슨 연구원)의 자문을 구해 균사체 막의 뉴런과 같은 이온 채널로 전달되는 전기 신호를 기록하는 방법을 배웠다. 농업 및 생명 과학 대학의 통합 식물 과학부(캐시 호지 박사)는 균류에 전극을 붙일 때 우려되는 오염을 방지하기 위해 깨끗한 균사체 배양 방법을 전달했다. 미슈라가 개발한 시스템은 △ 진동과 전자기 간섭을 차단하고 균사체의 전기 생리학적 활동을 실시간으로 정확하게 기록하고 처리하는 전기 인터페이스 △ 일종의 신경 회로인 중앙 패턴 생성기에서 영감을 받은 컨트롤러로 구성되어 있다. 기본적으로 이 시스템은 원시 전기 신호를 읽고, 이를 처리하고, 균사체의 리드미컬한 스파이크를 식별한 다음, 해당 정보를 디지털 제어 신호로 변환해 로봇의 액추에이터로 전송한다. 이를 바탕으로 연구팀은 거미 모양의 소프트 로봇과 바퀴 달린 로봇 등 두 가지 바이오 하이브리드 로봇을 제작했다. 개발된 로봇은 세 가지 실험을 완료했다. 첫 번째 실험에서 로봇은 균사체 신호에서 자연스럽고 연속적으로 급증하는 스파이크에 대한 응답으로 걷고 구르는 동작을 시연했다. 그런 다음 연구팀은 자외선으로 로봇을 자극하여 보행 패턴을 변화시켜 균사체가 환경에 반응하는 능력을 입증했다. 세 번째로 연구팀은 균사체의 원래 신호를 완전히 무시할 수 있었다. 이는 로봇 공학과 균류학 분야를 훨씬 넘어섬을 의미한다고 연구팀은 전했다. 신호를 받아들이면 무슨 일이 일어나고 있는지도 이해할 수 있다는 점에서, 이는 로봇을 제어하는 것만이 아니라 생명체와 진정한 연결을 만드는 것이라는 지적이다. 사람이 시각화할 수 없는 신호를 로봇은 시각화하고 있다는 것이다. 한편, 이 연구에는 이탈리아 피렌체 대학교의 김재석 연구원도 참여했다.
-
- IT/바이오
-
[신소재 신기술(101)] 버섯 곰팡이 전기 자극으로 바이오하이브리드 로봇 제어
-
-
[먹을까? 말까?(54)] 마누카 꿀, 유방암 세포 성장 84% 억제…천연 항암치료 가능성 제시
- 호주와 뉴질랜드 특산물인 마누카 꿀이 유방암 세포 성장을 억제하는 것으로 나타났다. 미국 캘리포니아 대학교 로스앤젤레스(UCLA) 연구팀의 예비 연구 결과, 마누카 꿀이 유방암 세포 성장을 84% 억제하는 효과를 보였다고 메디컬 익스프레스와 뉴아틀라스 등 다수 외신이 전했다. 특히 마누카 꿀은 에스트로겐 수용체 양성 유방암 세포에 대한 억제 효과가 뛰어났으며, 건강한 세포에는 영향을 미치지 않았다. 이번 연구는 마누카 꿀이 기존 항암 치료의 부작용을 줄이고, 새로운 천연 항암치료제 개발의 가능성을 제시했다는 점에서 의미가 크다. 마누카 꿀은 뉴질랜드와 호주 남동부에서 자생하는 마누카 나무의 꽃에서 채취한 꿀로 항균, 항산화, 치유 효과 등이 있는 것으로 알려져 있다. UCLA 연구팀은 이번 연구를 통해 마누카 꿀이 유방암 예방 및 치료에도 도움이 될 수 있다는 가능성을 확인했다. 연구팀은 실험실에서 에스트로겐 수용체 양성 유방암 세포와 삼중 음성 유방암 세포를 배양하고, 마누카 꿀 또는 탈수 마누카 꿀 분말을 처리했다. 그 결과 에스트로겐 수용체 양성 유방암 세포에서 꿀의 농도에 따라 암세포 증식이 억제되는 것을 관찰했다. 또한 마누카 꿀을 항에스트로겐 치료제인 티옥시펜과 함께 사용했을 때, 암세포 증식 억제 효과가 더욱 강력하게 나타났다. 동물 실험에서도 마누카 꿀은 인간 유방암 세포를 이식한 쥐의 종양 성장을 억제하는 효과를 보였다. 특히 건강한 세포에는 영향을 미치지 않으면서 종양 성장을 84%까지 억제하는 결과를 나타냈다. 이번 연구는 마누카 꿀이 유방암 치료에 새로운 가능성을 제시했다는 점에서 주목할 만하다. 하지만 아직 예비 연구 단계이며, 추가적인 연구를 통해 안전성과 효능을 검증해야 한다. 해당 연구는 학술지 '뉴트리언트(Nutrients)'에 게재됐다.
-
- 생활경제
-
[먹을까? 말까?(54)] 마누카 꿀, 유방암 세포 성장 84% 억제…천연 항암치료 가능성 제시
-
-
[퓨처 Eyes(42)] 인간 뇌세포 로봇, 현실로…중국, 뇌-칩 융합 로봇 '메타복' 개발 성공
- 중국 연구진이 인공 칩 위에서 배양한 뇌세포를 로봇에 연결하여 로봇을 제어하는 획기적인 시스템인 '메타복(MetaBOC)' 개발에 성공했다고 사우스차이나모닝포스트(SCMP)와 뉴아틀라스, 인터레스팅엔지니어링 등 다수 외신이 보도했다. 이는 인간의 뇌와 기계를 연결하는 '뇌-컴퓨터 인터페이스(BCI)' 기술의 새로운 지평을 열었을 뿐만 아니라, 인공지능(AI)과 생물학적 지능의 융합 가능성을 보여주는 중요한 성과로 기록됐다. 메타복은 뇌세포를 이용하여 로봇을 제어하고 학습시키는 시스템으로, 인간의 뇌 기능을 모방하는 인공지능 개발에 한 걸음 더 다가섰다는 평가를 받는다. 텐진대학교와 남방과학기술대학교 연구팀이 개발한 메타복은 뇌-칩 생체 컴퓨터와 다른 전자 장치의 인터페이스 역할을 수행한다. 즉, 인공적으로 배양된 뇌 오가노이드(미니 뇌)가 전기 신호를 통해 외부 환경을 인지하고, 로봇을 제어해 특정 작업을 수행하도록 돕는 것이다. 이는 인간의 뇌세포를 인공 신체에 이식하는 것을 목표로 하는 '바이오 컴퓨팅' 분야의 혁신적인 발전을 의미한다. 바이오 컴퓨팅은 생물학적 시스템, 즉 뇌세포를 이용하여 정보를 처리하고 계산하는 기술이다. 기존의 실리콘 기반 컴퓨터와 달리, 바이오 컴퓨터는 뇌세포의 벙렬 처리 능력과 에너지 효율성을 활용하여 복잡한 문제를 해결할 수 있다. 메타복은 이러한 바이오 컴퓨팅 기술을 로봇 제어에 적용함으로써, 로봇의 학습 능력과 지능을 획기적으로 향상시킬 수 있는 기능성을 제시했다. 브레인 온 칩 기술, 로봇 학습 능력 향상:인간 뇌 기능 모방 연구팀은 '브레인 온 칩(Brain-on-chip)' 기술을 활용해 로봇의 학습 능력을 획기적으로 향상시켰다. 브레인 온 칩은 작은 칩 위에 살아있는 뇌세포를 배양하고, 이를 통해 뇌의 복잡한 구조와 기능을 연구하는 기술이다. 연구팀은 이 기술을 통해 로봇이 물체를 잡고 장애물을 피하는 등 다양한 작업을 수행하도록 훈련시키는 데 성공했다. 특히, 뇌세포를 3차원 구형 오가노이드 형태로 배양해 더욱 복잡한 신경 연결을 형성하도록 유도했다. 또한 저강도 집속 초음파(LIFU) 자극을 통해 뇌 오가노이드의 지능적 기반을 강화해 뇌세포가 더욱 효과적으로 학습하고 정보를 처리할 수 있도록 했다. 이러한 기술적 진보는 로봇이 인간의 뇌처럼 학습하고 문제를 해결하는 능력을 갖추는 데 기여할 것으로 기대된다. 인공지능과 생물학적 지능의 융합: 새로운 지능 시스템의 탄생 메타복 시스템의 가장 큰 특징은 인공지능 알고리즘을 활용하여 뇌세포의 생물학적 지능과 효과적으로 소통한다는 점이다. 이러한 인공지능과 생물학적 지능의 융합은 뇌-컴퓨터 인터페이스 기술의 새로운 가능성을 제시하며, 인간과 기계의 상호 작용 방식을 혁신적으로 변화시킬 잠재력을 가지고 있다. 인공지능은 데이터 학습을 통해 스스로 문제 해결 능력을 향상시키는 반면, 생물학적 지능은 직관, 창의성, 감정 등 인간 고유의 능력을 발휘한다. 메타복 시스템은 이 두 가지 지능을 결합하여 새로운 형태의 지능 시스템을 구축하는 것을 목표로 한다. 이러한 시스템은 기존의 인공지능이나 인간의 지능만으로는 해결할 수 없는 복잡한 문제를 해결하는 데 활용될 수 있다. 시뮬레이션 환경에서의 로봇 학습: 안전하고 효율적인 학습 환경 제공 메타복 시스템을 통해 뇌 오가노이드는 시뮬레이션 환경에서 로봇을 제어하고, 장애물 회피, 목표 추적, 물체 파지 등의 작업을 학습하는 데 성공했다. 시물레이션 환경에서의 학습은 실제 뇌세포 손상 없이 효율적인 학습을 가능하게 하며, 다양한 시나리오에서의 학습을 통해 로봇의 성능을 더욱 향상시킬 수 있다. 이러한 시뮬레이션 기반 학습은 로봇이 실제 환경에 배치되기 전에 다양한 상황에 대한 경험을 쌓을 수 있도록 하며, 로봇의 안전성과 신뢰성을 높이는 데 기여할 수 있다. 또한, 시뮬레이션 환경에서의 학습 데이터를 분석하여 로봇의 성능을 개선하고 새로운 기능을 추가하는 데 활용할 수 있다. 윤리적 문제와 기술적 과제: 인간 존엄성과 안전성 확보 하지만 이러한 뇌-칩 인터페이스 기술은 윤리적인 문제를 야기할 수 있다. 접시에서 배양되는 뇌세포는 과연 의식이 있는 것인가. 인공지능 또한 의식이 있다고 봐야 하는가. 생물학적 지능과 실리콘 기반 지능의 윤리는 다르다고 봐야 하는가 등의 의문을 제기한다. 이러한 시스템이 의식을 발달시킨다고 가정해 보면, 실제로 이 시스템으로 테스트 하는 것이 윤리적으로 옳은 일인지, 아닌지를 결정해야 할 수도 있다. 인공 뇌세포를 이용한 로봇 제어가 인간의 존엄성을 침해할 수 있다는 우려와 함께 뇌세포의 생존 유지 및 시스템 안정성 확보 등 해결해야 할 과제도 많다. 또한 뇌-칩 인터페이스 기술이 발전함에 따라 인공지능과 인간 지능의 경계가 모호해지면서 철학적인 논쟁도 불가피할 것으로 보인다. 따라서 메타복 시스템과 같은 뇌-컴퓨터 인터페이스 기술 개발 과정에서는 윤리적 문제와 기술적 과제를 충분히 고려해야 한다. 인공 뇌세포 사용에 대한 명확한 윤리적 지침을 마련하고, 뇌세포의 안전한 관리 및 시스템의 안정성 확보를 위한 기술 개발에 힘써야 한다. 또한 인공지능과 인간 지능의 한계에 대한 사회적 논의를 통해 기술 발전에 따른 잠재적 문제점을 예방하고 해결 방안을 모색해야 한다. 미래 사회 변화의 촉매제: 의료, 로봇 공학, 인공지능 분야의 혁신 그럼에도 불구하고, 이번 연구는 뇌-컴퓨터 인터페이스 기술의 발전 가능성을 보여주는 중요한 성과다. 앞으로 메타복 시스템과 같은 기술은 의료, 로봇공학, 인공지능 등 다양한 분야에 혁신적인 변화를 가져올 것으로 기대된다. 예를 들어, 뇌졸중이나 착수 손상 환자의 제활 치료, 인공지능 로봇 개발, 뇌 질환 연구 등에 활용될 수 있다. 특히, 메타복 시스템은 인간의 뇌 기능을 모방하는 인공지능 개발에 새로운 가능성을 제시한다. 인간의 뇌는 정교한 정보 처리 시스템으로, 현재의 인공지능 기술로는 완벽하게 모방하기 어렵다. 하지만 메타복 시스템과 같은 뇌-컴퓨터 인터페이스 기술을 통해 인간의 뇌 기능을 더욱 심층적으로 이해하고 이를 인공지능 개발에 적용할 수 있을 것으로 기대된다. 이번 연구는 인간과 기계의 융합이라는 새로운 시대를 앞당기는 중요한 발걸음이 될 것이다. 앞으로 뇌-컴퓨터 인터페이스 기술이 어떻게 발전하고 우리 사회에 어떤 영향을 미칠지 주목된다.
-
- 포커스온
-
[퓨처 Eyes(42)] 인간 뇌세포 로봇, 현실로…중국, 뇌-칩 융합 로봇 '메타복' 개발 성공
-
-
해양 폐플라스틱 폴리에틸렌 분해 곰팡이 발견
- 바다에 서식하는 곰팡이 파렝지오돈티움 앨범(Parengyodontium album)이 햇빛에 의한 UV(자외선)에 일정 시간 노출된 플라스틱 폴리에틸렌(PE)을 분해할 수 있는 것으로 나타났다고 PHYS가 전했다. 네덜란드 왕립해양연구소(NIOZ)의 해양 미생물학 연구팀은 이 같은 사실을 밝힌 연구 결과를 '종합환경과학(Science of the Total Environment)' 저널에 발표했다. 연구팀은 더 많은 플라스틱 분해 곰팡이가 깊은 바다에 살고 있을 것으로 예상하고 있다. 이 곰팡이는 바다의 플라스틱 쓰레기 위에 얇은 층을 이루며 다른 해양 미생물과 함께 공존하고 있다. NIOZ의 해양 미생물학자들은 이 곰팡이가 바다에 유입된 모든 플라스틱 중에서도 가장 많은 PE 입자를 분해할 수 있다는 사실을 규명했다. 연구는 NIOZ 연구팀이 위트레흐트 대학, 해양정화재단(Ocean Cleanup Foundation) 및 파리, 코펜하겐, 스위스 세인트 갈렌 등에 소재한 연구기관의 과학자들과 협력해 수행했다. 이번 발견으로 이 곰팡이는 플라스틱을 분해하는 소수의 해양 곰팡이 목록에 합류하게 됐다. 현재까지 발견된 곰팡이는 4종뿐이지만, 더 많은 수의 박테리아가 플라스틱을 분해할 수 있는 것으로 알려져 있다. 플라스틱 분해과정 정확하게 추적 연구팀은 북태평양의 플라스틱 오염 집중지역에서 플라스틱 분해 미생물을 추적했다. 수집된 플라스틱 폐기물에서 탄소가 포함된 특수 플라스틱을 실험실에서 배양해 해양 곰팡이를 분리했다. 연구팀원인 백스마(Vaksma)는 "13C 동위원소는 먹이 사슬에서 추적 가능한 상태로 유지되며 이는 탄소가 어디로 가는지 파악할 수 있게 해주는 태그와 같은 것이고, 연구를 통해 이를 추적했다"고 밝혔다. 이 연구가 과학적으로 뛰어난 이유는 분해 과정을 정량화할 수 있다는 점이라고 백스마는 강조했다. 실험실에서 연구팀은 이 곰팡이에 의한 PE 분해가 하루 약 0.05%의 비율로 발생한다는 것을 관찰했다. 연구팀의 측정에 따르면 곰팡이는 PE를 분해할 때 PE에서 발생하는 탄소를 많이 내보내지는 않았다. 곰팡이가 분해하는 PE의 대부분은 이산화탄소로 변환되어 다시 배출된다. 배출되는 이산화탄소가 강력한 온실가스이지만 환경 등에 새로운 문제를 일으키지는 않는다. 곰팡이가 방출하는 양은 인간이 호흡할 때 방출하는 것처럼 소량에 지나지 않기 때문이다. 자외선의 영향을 받는 경우에만 작용 연구팀은 곰팡이가 PE를 에너지원으로 사용하려면 햇빛의 존재가 필수적이라고 지적했다. 실험실에서 이 곰팡이는 일정한 시간 동안 자외선에 노출된 PE만 분해한다는 것이다. 이는 바다에서 곰팡이가 처음에 해수면 근처에 떠 있던 플라스틱만 분해할 수 있다는 것을 의미한다는 설명이다. 자외선이 플라스틱 자체를 기계적으로 분해한다는 것은 이미 알려져 있지만, 이번 연구 결과는 해양 곰팡이에 의한 생물학적 플라스틱 분해도 활발해질 수 있음을 보여준다. 그 밖의 다른 곰팡이들 많은 양의 다양한 플라스틱이 햇빛에 노출되기 전에 더 깊은 층으로 가라앉기 때문에 곰팡이가 이를 모두 분해할 수는 없다. 연구팀은 바다의 더 깊은 부분에도 플라스틱을 분해하는 아직 알려지지 않은 다른 곰팡이가 있을 것으로 예상했다. 연구진은 해양균류는 탄소로 이루어진 복잡한 물질을 분해할 수 있으며, 해양균류의 양이 많기 때문에 지금까지 확인된 4종 외에 다른 종들도 플라스틱을 분해할 가능성이 높다고 보고 있다. 더 깊은 층에서 플라스틱 분해가 어떻게 일어나는지에 대한 역학에 대해서는 많이 알려지지 않았다. 해저, 폐 플라스틱 집하지 플라스틱을 분해하는 유기체를 찾는 것이 시급하다. 매년 인간은 4000억kg 이상의 플라스틱을 생산하며, 2060년에는 이 양이 적어도 3배 이상 늘어날 것으로 예상된다. 플라스틱 폐기물의 대부분은 바다로 흘러간다. 극지방에서 열대지방에 이르기까지 플라스틱 폐기물은 표층수를 떠돌다가 바다의 더 깊은 곳까지 도달한 후 결국 해저에 묻힌다. 대량의 플라스틱은 결국 바닷물이 거의 정지해 있는 고리 모양 해류인 아열대 환류에 이르게 되는데, 플라스틱이 일단 그곳으로 운반되면 그대로 갇히게 된다. 그 양은 약 8000만kg에 달한다는 추정이다. 떠다니는 거대한 플라스틱의 양은 이미 태평양의 북태평양 아열대 환류에 축적되어 있는데, 이는 전 세계 6대 환류 중 하나일 뿐이다. 그 만큼 해저에 쌓이는 플라스틱의 양이 막대하다는 뜻이다. 해저 플라스틱 분해 박테리아는 플라스틱 오염 문제 해결에 큰 잠재력을 가지고 있다. 그러나 현재 발견된 박테리아는 분해 속도가 느려 플라스틱 오염 해결에 효과적이지 못하다는 문제점이 있다. 지속적인 연구와 투자를 통해 해저 플라스틱 분해 박테리아 기술이 발전한다면 우리는 더욱 깨끗하고 건강한 바다 환경을 유지할 수 잇을 것으로 보인다.
-
- IT/바이오
-
해양 폐플라스틱 폴리에틸렌 분해 곰팡이 발견
-
-
중국 의료진, 세계 최초 줄기세포로 당뇨병 치료
- 중국 연구진이 세계 최초로 줄기세포 치료법을 사용해 59세 남성의 당뇨병을 치료했다고 밝혔다. 59세 남성인 이 환자는 2021년 세포 이식을 받았고, 지난 2022년부터는 당뇨 약물 치료를 받지 않고 있다고 데일리메일이 전했다. 이번 줄기세포 당뇨병 치료에는 인슐린을 생성하고 혈당 수치를 정상으로 유지하는 췌장의 인공 세포를 만드는 것이 포함됐다. 남성 환자는 25년 동안 제2형 당뇨병을 앓고 있었고 췌장 세포의 기능이 거의 모두 상실된 상태였다. 그는 당뇨병성 혼수상태에 빠지는 것을 막기 위해 매일 여러 차례 인슐린 주사를 맞아야 하는 등 치명적인 합병증의 위험도 높았다. 중국에서의 당뇨병 치료 사례(사실임을 전제로)는 당뇨병 환자가 음식 등 생활 방식을 바꾸지 않고도 혈당을 자연적으로 조절하는 신체의 능력을 회복하는 것이 가능하다는 점을 시사하고 있다. 이 치료법은 신체가 기능하는 데 필요한 다양한 유형의 세포로 전환될 수 있는 공백 상태의 줄기세포를 사용했다. 적절한 조건에서 줄기세포는 뇌, 근육, 신장, 심지어 췌장 조직으로도 변할 수 있다는 것이다. 이번 치료에서는 환자의 줄기세포를 췌장 세포로 바꾸는 화학 칵테일을 사용했다고 한다. 이 세포가 인슐린을 생산하는데, 에너지 생성을 위해 섭취하는 음식에서 당분을 언제 끌어와야 하는지를 신체에 알려준다. 당뇨병 환자의 경우 췌장은 혈당을 조절하기에 충분한 인슐린 생산 및 조절 능력을 상실한다. 혈액에 당분이 너무 많거나 너무 적으면 신경 손상, 신장 손상, 심장병 등 합병증이 발생할 수 있다. 의사들이 중국 환자에게서 관찰한 내용에 따르면, 실험실에서 배양한 인슐린을 생산할 수 있는 새로운 세포를 환자에게 이식함으로써 환자는 다시 정상적으로 인슐린을 생산할 수 있었다고 연구팀은 밝혔다. 캐나다 브리티시컬럼비아 대학교의 세포 및 생리학 교수인 티모시 키퍼는 사우스차이나모닝포스트와의 인터뷰에서 이 연구가 당뇨병 줄기세포 치료 분야에서 중요한 발전을 의미한다고 말했다. 이번 성과가 당뇨병 치료에 고무적이지만 시장에서 받아들여지기까지는 아직 갈 길이 멀다는 지적이다. 키퍼 교수는 더 많은 환자들을 대상으로 줄기세포 치료법을 테스트하고, 연구 규모를 확대할 수 있는 방법을 찾아야 한다고 제안했다. 현재 줄기세포를 췌장 세포로 바꾸어 제대로 작동하게 만드는 것은 매우 복잡하고 시간이 많이 걸리며 비용도 많이 든다. 이 방법이 여러 환자들에게 가능할 수 있게 하기위해서는 그 과정을 더 쉽게 만들어야 할 것으로 보인다. 이 연구는 또 일반적인 당뇨병인 제2형 당뇨병을 치료하는 데에만 효과가 있을 가능성이 있다. 연구팀은 췌장이 면역체계의 공격을 받은 제1형 당뇨병 환자는 면역체계가 새로 이식된 세포를 거부할 수 있기 때문에 이 치료법 적용이 어려울 수 있다고 밝혔다. 아직 넘어야 할 장애물이 남아 있음에도 불구하고, 줄기세포 치료는 현재 당뇨병을 앓고 있는 3840만 명의 미국인과 당뇨병 발병 단계인 9760만 명의 미국인에게 큰 희망이 될 수 있다. 이 연구 결과는 '셀 디스커버리(Cell Discovery)' 저널에 게재됐다. 이는 줄기세포를 여러 장기 세포로 전환하는 방법에 대해 여러 국가에서 수십 년간 진행한 연구 결과다. 연구팀은 줄기세포 기술은 성숙해졌으며 당뇨병 치료를 위한 재생 의학 분야의 경계를 넓혔다고 말했다. 이번 연구는 상하이에 있는 세 기관(상하이 창정병원, 중국과학원 산하 분자세포과학 우수센터, 렌지병원) 간의 협력으로 이루어졌다. 키퍼 교수는 앞으로 이 치료법이 당뇨병 환자를 만성 약물 부담에서 해방시키고, 건강과 삶의 질을 향상시키며, 의료비 지출을 줄일 수 있을 것이라고 기대했다.
-
- IT/바이오
-
중국 의료진, 세계 최초 줄기세포로 당뇨병 치료
-
-
일본 에어컨 배선 로봇, 루빅스 큐브 퍼즐 신기록 수립
- 에어컨과 같은 가전제품의 모터에 전선을 연결(배선)하는 미쓰비시전기(Mitsubishi Electric) 로봇이 루빅스 큐브 퍼즐을 초고속으로 풀면서 새로운 기네스 세계 기록을 세웠다고 뉴아틀라스가 전했다. 루빅스 큐브는 지금은 관심을 끌지 못하는 소소한 기구이지만, 1980년대 초반에는 젊은 층을 중심으로 크게 유행했던 3D 퍼즐이다. 양손으로 큐브를 돌려 6개 면 모두 동일한 단색으로 맞추면 퍼즐이 완성된다. 루빅스 큐브는 2000년대 초반 다시 인기를 끌었고, 큐브를 맞추는 '스피드큐빙' 토너먼트까지 개최됐다. 인간이 루빅스 큐브를 완성하는 데 걸린 기록은 3.13초로, 미국 챔피언 맥스 파크(Max Park)가 2023년에 세운 것이다. 그런데 이번에 미쓰비시전기 로봇은 루빅스 큐브 퍼즐을 완성하는 데 불과 0.305초라는 짧은 시간을 소요했다. 이는 2018년 MIT 로봇이 세운 기존 기록을 0.075초 단축한 것이다. 사람이 눈을 깜박이는 데 걸리는 시간이 100~400밀리초가 걸린다는 점을 감안하면 엄청나게 빠른 속도다. 미쓰비스전기의 에어컨 와이어 배선 로봇이 세운 기록은 기네스에 등재됐다. 기네스는 기록을 인정하면서 '루빅스 큐브 퍼즐을 푼 가장 빠른 로봇'이라고 적었다. 토쿠이(TOKUI) 고속 정확도 동기화 동작 테스트 로봇 ‘토쿠패스트봇(TOKUFASTbot)’은 자체 회전 메커니즘의 장점을 활용해 기록을 경신할 수 있었다고 한다. 이 로봇은 마쓰비시전기의 신호 반응형 서보 모터와 색상 인식 인공지능(AI) 알고리즘을 사용해 0.9밀리초 내에 90도 회전을 수행할 수 있다. 타사의 휴머노이드 로봇(인간을 닮은 로봇)과 달리 토쿠패스트봇은 외형적인 모습에 중점을 두기보다는 기능 쪽에 초점을 맞추었다. 회사의 '본업'이 에어컨 및 환기팬과 같은 가전제품의 모터 제조를 고도화하는 것이 목표였기 때문이다. 미쓰비시전기는 지난 2016년 부품 생산을 위한 엔지니어링 센터를 설립한 이후, 첨단 모터, 전력 반도체 및 관련 제품을 개발하고 제조해 왔다. 기능적으로 특화된 로봇을 개발하고 상용화했던 것. 모터의 생산성과 효율성을 높이는 것이 핵심이었으며, 이를 위해 고속 및 고정밀 작업 수행 로봇을 개발하는 데 주력해 왔다. 이를 응용해 이번에 루빅스 큐브 퍼즐에 도전했고 기네스 기록을 세우게 된 것이다. 회사 측은 이번 기네스북 세계 기록은 회사 엔지니어들이 기술 능력을 더욱 발전시키는 동기를 부여한 것이라며, 앞으로도 모터 개발에서 배양한 기술을 사용해 흥미로운 도전을 계속할 것이라고 밝혔다.
-
- IT/바이오
-
일본 에어컨 배선 로봇, 루빅스 큐브 퍼즐 신기록 수립
-
-
[신소재 신기술(49)] 비건 가죽, 박테리아로 만든다?
- 유전자 변형 박테리아를 이용해 동물 가죽이 없이도 비건 가죽 소재를 배양하는 새로운 기술이 개발됐다. 영국 임페리얼 칼리지 런던 과학자들은 유전자 조작 박테리아를 이용해 비건 가죽을 배양해 신발 시제품을 제작했다고 더쿨다운이 지난 21일(현지시간) 보도했다. 미생물을 이용해 친환경적인 원단을 만드는 것은 새로운 것이 아니지만 연구팀은 패션 업계에서 가장 환경에 해로운 공정중 하나인 합성 화학 염료가 필요없는 자가 염색 가죽을 생산할 수 있도록 한 것은 이번이 처음이라고 인터레스팅엔지니어링은 전했다. 가죽은 지속가능한 패션 산업 내에서 많은 논쟁의 진원지였다. 가죽을 생산하려면 동물 가죽을 적절하게 가공하고, 염색하기 위해서 유해한 화학 물질을 사용해야 한다. 그로 인해 동물 학대나 환경 오염 등의 논란이 꾸준히 제기됐다. 가장 일반적인 비건 가죽 대체품은 원단이나 코팅에 석유 기반 폴리머(플라스틱)이 포함된다. 이는 동물 사육이나 화학적 처리의 필요성은 없지만 생분해가 되지 않아 플라스틱 페기물 문제에 대한 우려를 불러일으키기도 했다. 임페리얼 칼리지 연구원들은 미생물에서 기능성 직물을 얻는 소재 디자이너인 젠 케인(Jen Keane)과 협력해 박테리아 셀룰로스 시트를 활용해 가죽 시제품을 만들었다. 박테리아로 자가 염색 가죽 제작 임페리얼 칼리지에 따르면 연구팀은 내구성과 유연성이 뛰어나 섬유에 완벽하게 작용하는 미생물 셀룰로오스 시트를 생산하는 박테리아의 일종으로 자가 염색 가죽을 만들었다. 그런 다움 연구팀은 유전자를 변형해 가죽을 성장사키는 미생물이 검은 색소를 생산하도록 지시해 염색 과정을 대체했다. 연구팀은 박테리아를 '신발 모양 용기'에서 2주 동안 배양해 신발의 갑피 부분을 성장 시켰다. 셀룰로오스가 신발과 비슷해지면 연구팀은 86도에서 부드럽게 흔들어 박테리아의 검은색을 활성화해서 가죽 안쪽부터 염색했다. 연구팀은 또 신발 이외에도 정사각형 모양의 셀롤로오스 시트 2장을 함께 꿰매 검은색 지갑을 제작했다. 임페리얼은 연구팀이 "이 박테리아가 다른 미생물의 유전자를 사용해 다양한 패턴, 색상 및 캐시미어와 면과 같은 기타 직물을 생산하도록 조작할 수 있었다"고 밝혔다. 이번 연구의 공동 저자인 케네스 워커 박사는 "우리의 기술은 시제품에서 볼 수 있듯이 실제 제품을 만들 수 있을 만큼 큰 규모로 작동한다"고 말했다. 워커 박사는 "이 연구는 또한 과학자와 디자이너가 함께 작업할 때 발생할 수 있는 시너지 효과를 보여준다"고 덧붙였다. 지속가능한 패션 산업 기대 패션 산업의 친환경 미래를 위한 연구팀의 시도는 여기서 멈추지 않았다. 현재 연구팀은 가죽을 성장시키는 박테리아가 어떤 색소를 만들수 있는 지를 연구하고 있다. 연구팀과 협력자들은 영국의 생명 공학 및 생물과학 연구위원회로부터 250만달러의 자금을 지원받아 합성 생물학을 사용해 패션 산업의 폐기물 절감 연구를 계획하고 있다. 그동안 몇몇 스타트업이 버섯을 활용한 비건 가죽이나 파인애플 잎, 선인장을 사용해 플라스틱이 없는 식물성(비건) 가죽을 만들었지만 대량 생산으로 이어진 사례는 거의 없다. 이번 연구의 제1저자인 톰 엘리스 교수는 "지속가능한 자가 염색 가죽 대체품을 생산할 수 있는 새롭고 빠른 방법을 개발한 것은 중요한 성과"라고 평가했다. 엘리스 교수는 "박테리아의 셀룰로오스는 본질적으로 비건이다. 박테리아 셀룰로오스의 성장에는 가죽을 생산하기 위해 소를 사육하는 데 필요한 탄소 배출량, 물, 토지 사용량 중의 극히 일부분만 필요하다. 박테리아 셀룰로오스는 플라스틱 기반의 가죽 대체제와 달리 석유화학 물질 없이도 가죽을 생산할 수 있으며, 안전하고 무독성으로 생분해된다"고 말했다.
-
- 포커스온
-
[신소재 신기술(49)] 비건 가죽, 박테리아로 만든다?
-
-
알츠하이머병, 수혈 통해 전염 가능
- 캐나다 과학자들이 혈액 수혈을 통해 건강한 사람에게 알츠하이머병이 전염될 수 있다고 발표했다. 네오스콥은 알츠하이머병의 정확한 원인은 아직 완전히 밝혀지지 않았지만, 캐나다 브리티시 컬럼비아 대학 연구팀의 이번 연구 결과는 환경 요인이 질병 발병에 영향을 미칠 수 있다는 점을 지속적으로 시사하고 있다고 지난달 30일(현지시간) 전했다. 최근 학술지 '줄기세포 보고서(Stem Cell Reports)'에 발표된 연구 결과에 따르면 혈액 수혈이나 골수, 장기 등 생체 물질의 이식을 통해 유전성 알츠하이머 환자의 질병이 건강한 사람에게 전염될 가능성이 제기됐다. 연구팀은 쥐와 줄기세포를 이용한 실험을 통해 알츠하이머병이 건강한 사람에게 전염될 수 있다는 결론을 도출했다. 연구팀은 실험을 위해 인간 유전성 알츠하이머병 유전자, 특히 아밀로이드 플라크 생성과 관련된 유전자를 가진 쥐를 배양했다. 그리고 이 쥐의 골수에서 줄기세포를 추출해 건강한 쥐에 주입했다. 그 결과 9개월 만에 정상 쥐들의 뇌에서 인지 기능 저하와 아밀로이드 플라크 축적과 같은 알츠하이머병의 전형적인 징후가 나타났다. '알츠하이머는 유전성' 기존 인식 뒤바꿔 연구 결과는 몇 가지 중요한 시사점을 제공한다. 첫째, 이 연구는 알츠하이머병이 신경 중추계 외의 줄기세포에서 발생할 수 있다는 점을 보여주었다. 이는 기존의 알츠하이머 병 형성에 대한 인식을 뒤바꿨다. 연구팀은 "이 연구의 핵심적인 결과 중 하나는 알츠하이머병 병리학의 기존 중심 교리, 즉 뇌에서 생성된 베타 아밀로이드(Aβ) 축적이 질병의 원인이라는 가설에서 벗어나는 계기가 될 것"이라며 "이 연구는 뇌의 외부에서 생성된 Aβ가 질병 발병에 기여한다는 사실을 입증했다"고 말했다. 둘째, 이 연구는 알츠하이머병의 발병 경로가 크로이츠펠트-야콥병과 유사할 수 있다는 점을 시사한다. 크로이츠펠트-야콥병은 전염성 질환으로 감염된 소고기를 섭취한 사람들에게 발병하는 것으로 알려져 있다. 간단히 말해, 이번 연구 결과는 혈액이나 장기 등 생체 물질의 기증을 통해 알츠하이머병이 건강한 사람에게 전염될 수 있다는 가능성을 제시한다. 이는 잠재적인 기증자에 대한 알츠하이머 질병 검사가 필요하다는 것을 의미한다. 연구팀의 주요 저자인 브리티시 컬럼비아 대학 면역학자인 윌프레드 제프리스 박사는 성명서에서 "이 연구는 뇌의 외부에서 발현되는 아밀로이드가 중추 신경계 병리에 영향을 미치는 전신 질환이라는 알츠하이머병 이론을 뒷받침한다"고 말했다. 제프리스 박사는 "이 메커니즘에 대한 연구를 지속함에 따라 알츠하이머병은 정복될 수 있을 것으로 보인다. 아울러 혈액, 장기 및 조직 이식과 인간 유래 줄기세포 또는 혈액 제품의 이식에 사용되는 기증자에 대한 더욱 엄격한 관리 및 검사가 필요하다"고 강조했다. 한편, 알츠하이머병은 치매 중 가장 흔한 유형으로, 인지 기능의 저하를 특징으로 하는 퇴행성 뇌 질환이다. 전 세계적으로 약 3200만 명이 이 질환으로 고통받고 있으며, 인구 고령화가 진행됨에 따라 이 수치는 증가할 것으로 예상된다. 현재 많은 연구가 이루어지고 있음에도 불구하고, 알츠하이머병의 정확한 원인과 치료법은 아직 완전히 밝혀지지 않았다. 연구자들은 생활 습관, 유전적 요인, 환경적 요인이 이 병의 발병에 복합적으로 영향을 미친다고 보고 있다.
-
- 생활경제
-
알츠하이머병, 수혈 통해 전염 가능
-
-
실데나필, 알츠하이머 발병 위험 50% 감소
- 발기부전 치료에 사용되는 미국 식품의약국(FDA) 승인 의약품 비아그라가 알츠하이머 병의 발병 위험을 줄인다는 연구 결과가 나왔다. 과학 전문 매체 사이언스 얼럿은 25일(현지시간) 미국 클리블랜드 클리닉 연구팀은 '비아그라'라는 브랜드로 흔히 판매되는 실데나필의 유전적 및 신경학적 효과에 대한 실험실 조사와 함께 의료 보험 데이터를 분석, 실데나필이 뇌 신경 세포의 중요한 단백질이 엉키는 것을 방지하는 잠재력을 검증했다고 보도했다. 신경 가소성 관련 효소 억제제의 역할 연구 결과에 따르면 포스포디에스테라아제(PDE) 억제제라는 효소 차단제가 음경의 혈류를 촉진할 뿐만 아니라 치매의 원인이 되는 신경 퇴화를 예방할 수 있다는 사실이 여러 연구에서 입증됐다. 이는 PDE5가 신경 가소성(neuroplasticity)에 영향을 미치는 신경 신호 경로에 관여한다는 사실과 연관이 있다. 동물 모델 연구에서 PDE5 억제제인 실데나필은 신경 세포에서 '타우' 단백질의 과도한 인산화를 줄여 독성 응집체 형성을 억제하고, 이를 통해 인지 기능과 기억력 향상에 도움이 되는 것으로 나타났다. 하지만 모든 연구 결과가 긍정적인 것은 아니며, 일부 연구에서는 실데나필의 인구 집단 수준 효과를 확인하지 못했다. 또한 실데나필의 신경계 작용 메커니즘은 아직 완전히 규명되지 않았다. 줄기 세포 뉴런 모델을 통한 치료 효과 연구 이번 연구에서는 알츠하이머 환자로부터 기증받은 줄기 세포로 만들어진 신경 세포 배양을 이용해 실데나필의 치료 효과를 뒷받침하는 대사 및 유전 활동을 지도했다. 연구팀은 5일간 실데나필을 투여한 결과 실험실에서 배양한 뉴런은 과도한 농도의 인을 첨가했을 때 타우 단백질 수치가 현저히 낮아져, 실데나필이 뇌세포를 보호하는 데 탁월한 효과가 있음을 확인했다. 세포의 DNA에서 생성되는 메시지를 통해 염증, 신경 간 통신 장애 및 신경 세포 구조의 안내와 관련된 유전자 발현에 수백 가지의 변화가 발견됐다. 그러나 이러한 영향이 알츠하이머 병에 어떻게 관여하는지 정확히 파악하려면 추가 연구가 필요하다. 이 연구는 인공지능(AI)을 사용해 실데나필이 인구 수준에서 작용하는 징후를 찾는 것이다. 이전 연구에서는 의료 보험 데이터를 사용해 실데나필이 알츠하이머병의 위험을 최대 60%까지 낮출 수 있다는 사실을 발견했다. 연구팀은 데이터 분석에 PH에 일반적으로 처방되는 네 가지 치료법을 포함시켜 실데나필이 알츠하이머 위험을 약 60% 감소시키는 것을 확인했다. 그럼에도 이번 연구는 단일 보험 데이터베이스에만 의존했기 때문에 다른 변수를 놓쳤을 가능성이 있다는 지적이 제기됐다. 또한, 이 연구에서는 폐 고혈압 또는 폐 고혈압(PH) 치료를 받는 환자의 치매 위험 감소가 동일하게 나타나지 않는 것으로 나타났다. 클리블랜드 클리닉 생의학 정보학자이자 공동 제1저자인 페이시옹 쳉(Feixiong Cheng)은 "방대한 양의 데이터를 컴퓨터로 통합한 후, 실데나필이 인간 신경세포에 미치는 영향과 실제 환자 치료 결과를 확인하게 되어 보람을 느낀다"고 말했다.
-
- 생활경제
-
실데나필, 알츠하이머 발병 위험 50% 감소
-
-
털매머드 부활하나?...코끼리 줄기세포 배양 성공
- 과학자들이 코끼리 피부 세포로 줄기세포 배양에 성공해 털매머드 부활에 한 발 더 가까이 다가가고 있다. 미국 텍사스 주 댈러스에 있는 멸종 방지 기업이자 DNA 편집 회사인 콜로설 바이오사이언스(Colossal Biosciences)는 6일(현지시간) 털복숭이 매머드 형질을 가진 코끼리를 유전적으로 복원시키기 위해 아시아 코끼리 세포로 줄기세포 배양에 성공했다고 밝혔다. 콜로설은 자사 웹사이트에서 내한성 코끼리를 만들 것이라고 밝히면서 이 동물은 털매머드의 모든 핵심 생물학적 특성을 갖게 될 것이라고 설명했다. 또한 이 회사는 매머드와 유사한 코끼리가 코끼리 내피 친화성헤르페스 바이러스로 인한 매우 치명적인 질병에 저항성을 갖도록 만들 계획이다. 네이처에 따르면 콜로설은 코끼리 세포의 유전자(게놈)을 편집해 매머드와 비슷하게 만들었다. 하지만 살아 있는 매머드 같은 코끼리를 만들려면 편집된 게놈을 포함하는 배아를 생성해야 한다. 이론적으로 이를 수행하는 한 가지 방법은 유전자 편집된 코끼리 세포를 소위 유도만능줄기세포(iPS)로 전환한 다음 이를 난자와 정자 세포로 전환하는 것이다. 뉴사이언티스트에 따르면 유도만능줄기세포는 난자와 정자를 포함한 신체의 모든 세포로 분화할 수 있다. 배아에서 자연적으로 발생하지만 특정 단백질을 추가하여 성체 세포에서 만들 수도 있으므로 '유도'라고 한다. 많은 동물 종에서 유도만능세포가 만들어졌지만 지금까지 코끼리 세포를 유도만능세포로 만드는 데 성공한 사례는 없었다. 유전자 편집 18년 전, 연구자들은 쥐의 피부 세포를 배아 세포처럼 작동하도록 재프로그래밍할 수 있음을 보여줬다. 이러한 유도만능줄기세포는 동물의 모든 세포 유형으로 분화할 수 있다. 이 세포는 멸종된 털매머드(맘무투스 프리미제니우스·Mammuthus primigenius)의 가장 가까운 친척인 아시아 코끼리(엘레푸스 막시무스·Elephus maximus)를 복원하려는 콜로설의 계획에 핵심으로, 털과 지방 및 기타 매머드의 특성을 갖도록 유전적으로 편집됐다. 콜로설은 아시아 코끼리 세포를 유전자 변형해 핵심 단백질을 영구적으로 생산하도록 했다. 그럼에도 불구하고 세포를 유도만능줄기세로로 전환하는데 두 달이 걸렸다고 한다. 콜로설의 생물과학 책임자인 에리오나 히솔리는 "우리는 이 과정을 더 효율적이고 빠르게 만들고 싶었다"고 말했다. 핵심 단백질을 코딩하는 DNA는 쉽게 제거할 수 있다고 그녀는 덧붙였다. 매사추세츠주 보스턴에 위치한 하버드 의과대학의 유전학자이자 이 연구 논문의 공동 저자인 콜로설의 공동 설립자 조지 처치는 "우리는 세계 기록으로 가장 어려운 iPS 세포 수립에 도전하고 있다고 생각한다"고 말했다. 하지만 연구팀은 코끼리 줄기세포를 확립하는 데에도 어려움을 겪고 있다. 멸종 위기 종에 대한 줄기세포 연구의 권위자인 캘리포니아 주 라호야에 있는 스크립스 연구소의 줄기세포 생물학자인 장 로랑(Jeanne Loring) 박사는 "코끼리는 매우 어려운 과제"라고 말했다. 멸종 동물 복원 프로젝트 2011년 잔 로링과 동료들은 멸종 위기 동물에서 최초로 북방 흰코뿔소(Ceratotherium simum cottoni)와 드릴 원숭이(만드릴루스 류코패우스)로부터 iPS 세포를 만들었다. 이후 눈표범(Panthera uncia), 수마트라 오랑우탄(Pongo abelii), 일본뇌조(Lagopus muta japonica) 등 멸종 위기종에서 배아 유사 줄기세포가 만들어졌지만 수많은 팀이 코끼리 iPS 세포 수립 시도에 실패했다. 콜로설의 생물과학 책임자 에리오나 히솔리가 이끄는 연구팀은 처음에 다른 대부분의 iPS 세포주를 만드는 데 사용되는 매뉴얼에 따라 아시아 코끼리 새끼로부터 세포를 재프로그래밍하려고 시도하면서 동일한 문제에 부딪혔다. 이 방법은 2006년 일본 교토 대학의 줄기 세포 과학자인 야마나카 신야(Shinya Yamanaka)가 확인한 네 가지 주요 재프로그래밍 인자를 과잉 생산하도록 세포에 지시하는 것이다. 이 방법이 실패하자 히솔리 박사팀은 다른 연구원들이 사람과 쥐 세포를 재프로그래밍하는 데 사용했던 화학 칵테일을 코끼리 세포에 처리했다. 대부분의 경우 이 처리로 인해 코끼리 세포가 죽거나 분열을 멈추거나 아무런 반응도 보이지 않았다. 하지만 일부 실험에서는 세포가 줄기세포와 유사한 둥근 모양을 띠게 됐다. 히솔리 박사 팀은 이 세포에 네 가지 '야마나카' 인자를 첨가한 다음 성공의 핵심 요소였던 또 다른 단계를 밟았다. 바로 암 억제 유전자인 TP53의 발현을 억제하는 것이다. 유도만능줄기세포 배양 연구팀은 코끼리로부터 네 개의 iPS 세포 라인을 만들었다. 이 세포들은 다른 유기체의 iPS 세포와 비슷하게 보였고, 비슷하게 행동했다. 즉, 척추동물의 모든 조직을 구성하는 세 가지 '배엽'을 형성하는 세포를 만들 수 있었다. 하지만 콜로설이 최초의 유전자 조작 아시아 코끼리를 만드는 계획은 iPS 세포를 필요로 하지 않는 복제 기술을 포함한다. 처치 박사는 새로운 세포 라인은 아시아 코끼리에 매머드 특징을 부여하는 데 필요한 유전적 변화를 식별하고 연구하는 데 유용할 것이라고 말했다. 그는 "우리는 아기 코끼리에게 넣기 전에 미리 테스트하고 싶다"고 말했다. 코끼리 iPS 세포는 수정되어 모발이나 혈액과 같은 관련 조직으로 변형될 수 있다. 그러나 이러한 과정을 확대하기 위해서는 생식 생물학 분야에서 수많은 기술 도약이 필요하다. 그 중 한 가지 방법은 유전자 조직 iPS 세포를 수정된 정자와 암컷 생식 세포로 변형시켜 배아를 만드는 것이다. 쥐 실험에서는 이 방법이 성공했다. 또한 iPS 세포를 직접 실행 가능한 '합성' 배아로 변환하는 것도 가능했다. 콜로설은 자사의 첫 번째 메머드가 2028년에 태어날 것이라고 주장했다. 히솔리는 연구원들이 코끼리 세포에 단지 50~100개의 유전자 편집을 하는 것을 목표로 하고 있으며, 이는 실현하능하다고 말했다. 코끼리의 임신 기간은 2년이기 때문에 배아는 2026년 말께 생성되어 자궁에 이식되어야 2028년에 매머드 탄생이 가능하다. 처치 박사는 배아 배양을 위해 일부는 iPS 세포에서 유래한 인공 자궁을 사용할 것으로 예상했다. 그는 "우리는 멸종 위기 종의 자연적인 번식을 방해하고 싶지 않기 때문에 체외 임신을 확대하려고 노력하고 있다"고 말했다.
-
- IT/바이오
-
털매머드 부활하나?...코끼리 줄기세포 배양 성공
-
-
펩타이드 NT-B2R, 암세포 성장 억제 효과 입증…신약 개발 기대
- 최근 연구에서 펩타이드 화합물(NT-B2R)이 암세포의 성장을 억제하는 데 탁월한 능력을 보이며, 신약 개발에 대한 기대감을 높이고 있다. 건강한 세포에서 정상적인 기능을 수행하는 MYC 단백질이 암세포에서는 과도하게 활성화되어 암의 확산을 돕지만, 이를 효과적으로 제어할 방법을 과학자들은 연구해왔다. 과학 전문 매체 '사이언스얼럿(ScienceAlert)’은 캘리포니아대학교 리버사이드(UCR) 연구팀이 MYC 단백질과 결합하거나 상호작용하여 이를 조절할 수 있는 펩타이드 화합물 개발에 성공했다고 최근 보도했다. 이 획기적인 발견은 암세포의 비활성화 및 성장 억제 메커니즘을 이해하는 데 중요한 진전을 의미한다. 이번 연구는 '미국화학회지(Journal of the American Chemical Society)'에 게재됐다. MYC는 핵 안에서 DNA에 결합하는 단백질을 생성하는 암 유발 유전자 중 하나로, 그 통제가 암 치료 연구에서 중요한 문제 중 하나로 손꼽힌다. MYC 단백질의 도전적인 특성 중 하나는 구체적인 형태가 없어, 약물이 효과적으로 식별하고 정상적인 기능을 유지하게 하는 것이 어렵다는 점이다. UCR의 생화학자 쉐 밍(Min Xue) 교수는 MYC를 암세포에 대한 '음식'보다는 암의 급속한 성장을 촉진하는 '스테로이드'에 비유했다. 이 비유는 MYC가 인간 암 사례의 약 75%에 관여하는 주요 원인임을 강조헸다. 정상적인 상황에서 MYC의 활동은 엄격하게 조절되지만, 암세포 내에서는 이러한 조절 메커니즘이 실패하여 과잉 활동을 보인다. 이러한 문제를 해결하기 위해 UCR 연구팀은 MYC에 결합할 수 있는 펩타이드 라이브러리를 개발하기로 했다. 이 과정에서 MYC 단백질의 드물게 발견되는 구조적 요소를 연구하고, 특히 MYC를 비활성화하는 데 뛰어난 능력을 보인 펩타이드인 NT-B2R을 확인할 수 있었다. 이 발견은 MYC 관련 암 치료법 개발에 있어 중대한 진전을 의미한다. NT-B2R 펩타이드는 인간 뇌암 세포 배양 실험에서 MYC 단백질에 성공적으로 결합하여 암세포의 유전자 조절 메커니즘을 변화시키고, 신진대사 및 세포 증식을 줄이는 효과를 보인 것으로 나타났다. 이는 NT-B2R이 암 치료에 있어 유망한 후보임을 보여주는 중요한 발견이다. 이번 연구의 핵심 돌파구는 연구진이 펩타이드의 구조와 형태가 변화함에 따라 MYC와 같은 비정형 단백질과의 상호작용을 개선할 수 있음을 발견한 이전 연구에 기반한다. 연구팀의 쉐 밍 박사는 펩타이드가 다양한 형태와 위치를 취할 수 있지만, 특정 구조로 고정되면 다른 형태를 취할 수 없게 되어 결합 과정에서의 무작위성이 줄어들고 이것이 결합 효율을 높이는 데 기여한다고 설명했다. 쉐 밍 박사는 추가로, 이 펩타이드의 결합 능력을 이전 연구 대비 2배 향상시킴으로써 약물 개발 목표에 한층 더 다가섰다고 밝혔다. 이러한 진보는 암 치료 연구에서 펩타이드 기반 치료법의 가능성을 한층 더 확장하는 결과를 가져왔다. 암 치료 연구에서 나타난 초기 성과에도 불구하고, NT-B2R 펩타이드의 암세포 억제 효과를 실제 치료에 적용하기까지는 해결해야 할 과제가 많이 남아 있다. 현재 이 펩타이드는 지질 나노입자, 즉 지방 구체를 통해 전달되고 있는데, 이 방식은 임상적 약물 투여에는 적합하지 않아 대체 전달 방식에 대한 연구가 필요한 상황이다. 또한, 이러한 연구 결과를 인간에게 적용하기 위해서는 엄격한 임상 시험을 거쳐야 하며, 이 과정에서 암세포가 건강한 생물학적 과정을 이용하는 것을 억제하는 새로운 방법을 확인할 수 있을 것으로 기대된다. 쉐 밍박사는 MYC의 비정형 구조와 그로 인한 혼란, 그리고 다양한 암 유형에 대한 그것의 직접적 영향으로 인해, 이 펩타이드 기반 치료법이 암 치료 연구의 중요한 돌파구가 될 수 있다고 말했다. "MYC는 그 구조가 부족하다는 기본적인 특성 때문에 많은 암 유형에 영향을 미친다. 이로 인해 이 약물은 항암제 개발의 중요한 목표가 되었다. 이제 이 중요한 치료법이 우리의 연구로 인해 현실화되고 있다는 사실에 큰 기대를 갖고 있다"고 밝혔다.
-
- IT/바이오
-
펩타이드 NT-B2R, 암세포 성장 억제 효과 입증…신약 개발 기대