검색
-
-
[먹을까? 말까?(11)] 생강, 항산화와 항염증 효과⋯혈액 응고 방해
- 생강이 혈액 응고를 방해하는 효과가 있는 것으로 나타났다. 생강은 알싸한 매운 맛과 톡 쏘는 향이 특징이다. 생강은 생선의 비린내와 돼지고기나 닭고기 등의 잡내를 잡아 준다. 또한 각종 음식에 풍미를 더해 주고 향신료, 약재 등 다양한 용도로 사용되는 다재다능한 식재료다. 아시아가 원산인 다년생 초본인 생강은 땅속 줄기를 이용해 식용이나 약용으로 재배한다. 생강의 땅속 줄기는 괴경으로 불리며 식용이나 약용으로 사용된다. 생강은 차로 마시거나 수정과, 쿠키나 케이크, 푸딩과 같은 디저트에도 사용된다. 땅속 줄기 뿐만 아니라 초록색의 생강 잎은 차나 양념으로 사용된다. 또한 생강은 항산화 및 항염증 효과가 있다. 생강은 3000년 이상 여러 나라의 전통 의학에서 두통, 메스꺼움, 구토, 생리통, 설사, 감기 등을 치료하는 데 사용되어 왔다. 최근 연구에 따르면 생강은 콜레스테롤과 혈압을 낮추고 혈당을 조절하여 심장을 보호하는 데 도움이 될 수 있다고 한다. 그러나 생강 섭취가 오히려 혈압이나 혈당 강하제, 항부정맥제 등의 약효를 방해하는 것으로 나타났다. 생강은 특정 약물과 상호작용할 수 있으며, 혈압이나 혈당 강하제를 복용 중이라면 생강 섭취에 특히 주의해야 한다. 생강은 혈액 희석 효과가 있어, 혈액 응고 과정을 방해할 수 있기 때문에 수술 환자 등에게는 권하지 않는다. 이팅웰이 소개한 건강 전문가들이 말하는 '생강이 약물에 영향을 미치는 4가지 방법'을 정리했다. 1. 혈액 희석제 생강에 함유된 항산화 화합물(진저롤, 쇼가올, 징기베렌, 비사보렌)은 생강의 향을 내는 성분으로 혈액 희석 효과도 있다. 미네소타 대학교 의료 센터의 임상 약사인 하비 응고-해밀턴 약학 박사(RPh)는 이러한 화합물은 트롬복산이라는 물질을 방해할 수 있다고 설명했다. 응고-해밀턴 박사는 "트롬복산은 혈소판이라고 하는 작은 혈액 세포에서 생성된다. 출혈이 발생하면 트롬복산은 혈소판이 서로 뭉쳐서 부상 부위에 혈전을 형성하도록 유도한다"고 설명했다. 이 물질은 또한 혈관을 수축시켜 부상 부위로 가는 혈류를 감소시킨다. 생강의 항산화 화합물은 트롬복산을 방해해 자연적인 혈액 응고 과정을 방해할 수 있으므로 출혈의 위험이 증가한다. 즉, 생강과 생강 보충제는 혈액 희석 효과가 있을 수 있으며 와파린(쿠마딘), 아스피린, 클로피도그렐(플라빅스), 리바록사반(자렐토)과 같은 혈액 희석제와 함께 복용하면 출혈 위험이 높아질 수 있다. 2. 당뇨병 치료제 생강은 제2형 당뇨병 환자의 공복 혈당 수치를 낮추고 인슐린 감수성과 A1C 수치를 개선하는 것으로 보고됐다. 하지만 이미 메트포르민이나 인슐린과 같은 혈당 강하제를 복용 중인 경우 생강을 추가하면 혈당 수치가 더 낮아질 수 있다. 응고-해밀턴 박사는 생강에 존재하는 화합물이 탄수화물 분해를 담당하는 효소를 방해해 당뇨병 약물의 효과를 악화시킬 수 있다고 말했다. 아울러 생강을 과도하게 섭취하면 저혈당을 유발할 수 있다. 3. 항부정맥제 응고-해밀턴 박사는 부정맥이 있거나 비정상적인 심장 박동이 있는 경우 생강이 아미오다론(파세론, 코다론)과 같은 항부정맥제와 상호작용할 수 있다고 말했다. 심장 세포에는 심장의 수축 능력을 지원하는 칼슘 채널이 있다. 생강에 존재하는 화합물은 칼슘이 심장 세포로 들어가는 것을 차단해 잠재적으로 혈압을 낮출 수 있다. 4. 혈압 약물 생강은 혈압 약물의 효과를 향상시킬 수 있다. 반면, 생강은 체내 혈압과 체액 수치를 조절하는 호르몬인 안지오텐신을 방해할 수 있다. 장기적으로는 혈관을 이완시켜 저혈압을 유발할 수 있다. 생강 1일 섭취량은? 생강은 위에서 언급한 약물과 상호 작용할 뿐만 아니라, 함께 복용하면 약물의 효과를 증폭시킬 수 있다. 따라서 생강을 먹거나 생강 보충제를 약물과 함께 복용한 뒤 발한(땀이 분비되는 현상), 떨림, 긴장, 불안, 현기증과 같은 부작용이 나타나면 즉시 의사의 도움을 받아야 한다. 그렇다면 하루에 생강을 얼마나 섭취하는 것이 안전할까. 식품 영양 관련 기업 엔타이어리 너리시드(EntirelyNourished)의 예방 심장학 영양사인 미셸 루텐스타인(Michele Routhenstein, M.S., RD, CDCES)은 생강을 소량 함유한 식품을 섭취하는 것은 일반적으로 안전하며 심각한 약물 상호작용을 일으킬 가능성은 거의 없다고 말했다. 기저 질환이 없는 한, 천연 생강 뿌리를 매일 최대 4g까지 섭취하는 것은 안전한 것으로 간주된다. 루텐스타인은 "이 양은 가루 생강 2티스푼 또는 강판에 간 생강 4티스푼에 해당하는 양"이라고 말했다. 그러나 응고-해밀턴 박사는 생강 뿌리를 다량 섭취하면 메스꺼움, 경련, 복부 팽만감, 설사, 속쓰림, 입이나 목의 자극을 유발하여 위장 시스템을 자극할 수 있다고 말했다. 피드몬트 헬스케어(Piedmont Healthcare)의 임상 영양사 메건 허프(Megan Huff, RDN)는 천연 생강은 초밥이나 포크볼에 곁들이거나 요리할 때 가루 생강을 사용하는 등 적당히 섭취하는 것이 가장 좋다고 말했다. 앞에서 거론한 약물을 복용하고 있는 경우, 특히 생강 보충제를 함께 복용하려는 경우 자신에게 적합한 생강의 양이 얼마인지 의사와 상담하는 것이 좋다. 허프는 "건강 상태와 복용 중인 약물에 따라 개인마다 (생강 보충제) 복용량이 다를 수 있다"고 말했다. 생강 보충제를 피해야 하는 경우 생강 알레르기가 있거나, 출혈 장애, 수술 중인 사람은 생강 보충제를 피해야 한다. 또한 위장이 민감하거나 소화기 질환을 앓은 적이 있는 경우에도 생강 보충제를 제한하는 것이 좋다. 생강에는 혈액 희석 성분이 있으므로 출혈 장애가 있거나 혈액 희석제를 복용 중인 경우 의사와 상의해야 한다. 생강과 같은 특정 식이 보충제는 수술 전, 수술 중, 수술 후에 사용되는 마취제 및 약물과 상호작용할 수 있으므로 의사가 수술 예정일 2~3주 전에 생강 보충제 복용을 중단할 것을 권고할 수 있다. 생강 보충제는 어린이에 대한 안전성과 효과에 대한 연구가 제한적이므로 어린이에게 권장되지 않는다.
-
- 생활경제
-
[먹을까? 말까?(11)] 생강, 항산화와 항염증 효과⋯혈액 응고 방해
-
-
[먹을까? 말까?(10)] 식물성 식단, 전립선암 전이 47% 감소
- 과일과 야채, 견과류가 풍부한 식물성 식단은 전립선암의 전이 가능성을 거의 절반으로 줄일 수 있다는 연구 결과가 나왔다. 캘리포니아 대학교 샌프란시스코캠퍼스 소속 연구팀에 따르면 식물성 식품을 많이 섭취한 남성들은 전립선암이 자라거나 뼈로 전이되거나 암으로 사망할 가능성이 적게 나타났다고 영국 일간지 데일리 메일이 온라인 판에서 전했다. 연구팀은 이러한 결과는 과일과 채소에 풍부하게 함유된 항산화 물질과 항염증 화합물 때문일 가능성이 있다고 추정했다. 이러한 물질은 전립선암으로부터 인체를 보호하는 것으로 알려져 있다. 연구 결과는 저 위험성 전립선암 환자들이 식습관을 간단히 변화시킴으로써 건강한 삶을 유지할 수 있음을 시사한다. 이 연구는 1999년부터 2018년까지 전이되지 않은 국소화된 전립선암으로 진단받은 2000명 이상의 미국 남성들을 대상으로 진행됐다. 연구 참여자들은 식습관과 생활 방식에 대한 설문 조사를 했으며 평균 6.5년 동안 추적 관찰했다. 참여자 가운데 식물성 식품을 가장 많이 섭취한 집단은 채소 1.9인분, 과일 1.6인분, 통곡물 0.9인분을 더 많이 섭취했다. 반대로 가장 적게 섭취한 집단은 유제품(치즈 포함) 1인분, 동물성 지방 0.4인분, 계란 약간, 육류를 조금 덜 섭취했다. 연구 결과 식물성 식품 섭취가 가장 많은 집단에서 전립선암 재발이나 추가 치료 등 전립선암 진행 위험이 47% 감소한 것으로 나타났다. 연구팀은 "연구 결과는 주로 식물성 식품으로 구성된 식단이 전립선암 환자들의 전립선암 특이적 건강 결과와 연관이 있을 수 있음을 시사한다. 동물성 식품 섭취를 약간 줄이고 영양가가 풍부한 식물성 식품 섭취를 늘리는 것이 유익할 수 있다"고 밝혔다. 이 연구는 국소화된 전립선암 환자에서 지중해 식이 요법(지방이 많은 생선 포함)이 종양 진행 속도를 늦추는 것과 관련이 있다는 이전 연구 결과를 바탕으로 진행됐다. 또한 육류와 유제품 섭취를 줄이면 발기 부전과 방광 기능 저하 등 전립선암 환자들에게 흔히 나타나는 부작용 감소와 관련이 있는 것으로 나타났다. 과학자들은 이번 연구를 통해 전립선암 검진으로 구명할 수 있는 남성 수를 두 배로 늘리고 사망률을 약 40% 감소시켜 국가적 검진 프로그램 도입으로 이끌 것으로 확신하고 있다. 영국 전립선암 협회 연구 책임자인 매튜 홉스 박사는 "이 연구는 영국에서만 매년 수천 명의 남성들의 생명을 구할 수 있다. 또한 영국뿐만 아니라 전 세계적으로 의료 행위를 바꿀 수 있는 시대 변혁적인 연구가 될 것"이라고 평가했다.
-
- 생활경제
-
[먹을까? 말까?(10)] 식물성 식단, 전립선암 전이 47% 감소
-
-
왜 쓰레기를 화산에 던져서 태워버릴 수 없을까
- 쓰레기를 용암이 끓고 있는 화산에 던져서 태우지 않는 이유는 무엇일까. 화산의 용암이 일부 쓰레기를 태울 정도로 뜨거운 것은 사실이다. 지난 2018년 하와이 빅아일랜드에서 킬라우에아 화산이 폭발했을 때, 용암류는 섭씨 1100도 이상이었다. 이는 금성 표면보다 더 뜨거운 온도다. 암석을 충분히 녹일 정도로 높은 온도였다. 쓰레기를 태우는 폐기물 소각로의 온도가 섭씨 1000~1200도임을 감안하면, 화산의 용암류로도 쓰레기를 태울 수 있을 것이라는 짐작을 하게 된다. 그러나 야후 테크에 실린 정보에 따르면 실제는 그렇지 않다. 모든 화산 용암이 그렇게 높은 온도인 것은 아니다. 하와이에서의 킬라우에아 화산 폭발은 현무암이라고 불리는 일종의 용암을 생성한다. 현무암은 다른 화산에서 분출되는 용암보다 훨씬 뜨겁고 더 유동적이다. 워싱턴주의 세인트 헬렌스 산에서 분출한 화산 등 일반적인 화산의 경우 현무암보다 더 두꺼운 데이사이트 용암(석영안산암 화산암)이다. 세인트 헬렌스 산에서 2004~2008년까지 분출된 화산은 표면 온도가 섭씨 704도 미만의 용암 돔을 생성했다. 다시 말해 쓰레기를 완전히 태울 충분한 고온이 형성되지 않는다는 의미다. 온도 외에도, 화산에서 쓰레기를 태울 수 없는 이유가 몇 가지 더 있다. 첫 번째로, 섭씨 1100도 온도의 용암은 음식물 찌꺼기, 종이, 플라스틱, 유리 및 일부 금속 등을 녹일 수는 있지만, 강철, 니켈 등 특수한 일부 물질들은 녹이지 못한다. 둘째, 지구에는 쓰레기를 버릴 수 있는 용암 호수나 용암으로 가득 찬 그릇 모양의 분화구가 있는 화산이 많지 않다. 지구상에 있는 수천 개의 화산 중, 과학자들이 발견한 활화산 용암 호수는 남극의 킬라우에아, 에레부스 산, 콩고민주공화국의 니라공고 등을 포함해 8개에 불과하다. 대부분의 활화산은 세인트 헬렌스 산과 같이 바위와 냉각된 용암으로 채워진 분화구이거나 오레곤주의 크레이터 호수처럼 물로 채워진 분화구들이다. 세 번째는 활성 용암 호수라 해도 이곳에 쓰레기를 버리는 것은 매우 위험하다는 사실이다. 용암 호수는 냉각된 용암의 지각으로 덮여 있지만, 그 지각 바로 아래는 용암이 녹아 있어 온도가 매우 높다. 암석이나 다른 물질들이 용암 호수의 표면으로 떨어지면 지각이 깨지고, 밑에 있는 용암의 흐름을 방해해 폭발을 일으키게 된다. 2015년 킬라우에아에서 이런 사태가 일어났다. 분화구 가장자리의 암석 덩어리가 용암 호수로 떨어져 큰 폭발을 일으켰고, 암석과 용암이 분화구 위로 분출됐다. 사람이 용암 호수에 쓰레기를 버린다면 불타 오르는 쓰레기와 폭발하는 용암을 피해 도망치는 방법을 고안해야 할 것이다. 화산에 쓰레기 버리면 유독가스 방출 용암 호수에 쓰레기를 안전하게 버릴 수 있다고 가정한다면 어떻게 될까. 플라스틱, 쓰레기, 그리고 금속이 연소되면 많은 유독 가스가 방출된다. 화산은 이미 황, 염소, 그리고 이산화탄소 등 수많은 유독 가스를 배출하고 있다. 유황 가스는 ‘보그(vog)’라고 부르는 산성 안개를 생성한다. 이는 식물을 죽이고 근처에 거주하는 사람들에게 호흡기 질환을 일으킬 수 있다. 이처럼 위험한 화산 가스에 쓰레기를 태울 때 발생하는 다른 가스가 섞이면 화산 근처의 사람과 식물에 더욱 해로울 것이다. 마지막으로, 많은 원주민 공동체는 화산을 신성한 장소로 여긴다. 예를 들어, 킬라우에아에 있는 할레마우마우 분화구는 하와이 원주민이 섬기는 불의 여신 펠레의 고향으로 여겨지고 있으며, 분화구 주변은 하와이 원주민에게는 신성한 지역이다. 화산에 쓰레기를 버리는 것은 그들에게는 큰 모욕이 될 것이다.
-
- IT/바이오
-
왜 쓰레기를 화산에 던져서 태워버릴 수 없을까
-
-
한은 "코로나19로 '산업구조 서비스화' 가속…공산품 비중 축소"
- 한국의 산업구조가 코로나19 팬데믹 기간을 거치면서 공산품 비중이 줄고 서비스화가 가속화한 것으로 나타났다. 한국 경제에서 의료·비대면 서비스를 중심으로 서비스가 차지하는 비중이 확대되고 공산품 비중이 축소되면서 구조 변동이 빨라진 것으로 분석된다. 한국은행이 29일 발표한 '2020년 기준년 산업연관표 작성 결과'에 따르면, 산출액 기준 서비스 비중은 49.3%로 직전 조사 때인 2015년(44.9%)보다 4.4%포인트(p) 상승했다. 금번 실측 작업은 11차 KSIC(한국표준산업분류) 개정을 선반영한 부문 분류 개편. 상장성이 기대되는 전기 승용차 등 신상품 세분화, 정부부문 국민계정과의 일원화 등에 중점을 두고 추진됐다. 같은 기간 공산품 비중은 44.5%에서 40.2%로 4.3%p 즐었다. 부가가치 기준으로도 서비스 비중이 59.9%에서 63.8%로 3.9%p 증가했지만 공산품 비중은 29.5%에서 26.0%로 3.5%p 낮아졌다. 정영호 한은 투입산출팀장은 "코로나19 시기 의료 및 비대면 관련 서비스 시장이 크게 성장했다"며 "산업구조의 서비스화가 지속되고 있는 것"이라고 설명했다. 대외거래 비중은 축소되고 수입의존도도 줄었다. 한국 경제의 재화와 서비스 총공급(총수요)은 2020년 5221조2000억원으로 2015년(4457조6000억원)보다 17.1% 증가했다. 이 중 수출(717조6000억원)과 수입(663조9000억원)을 합한 대외거래는 1381조5000억원으로 총공급의 26.5%를 차지했다. 한국은행은 이는 2015년의 30.1%에 비해 3.6%p 줄어든 수치로, 코로나19로 인해 세계 경제가 위축되고 상품 교역이 감소한 것이 주된 원인이라고 설명했다. 또한, 최종 수요에서는 소비(46.6→49.4%)와 투자(21.6→24.0%) 비중이 나란히 확대된 반면, 수출(31.7→26.6%)은 크게 줄어들었다. 소비 면에 있어서는 민간소비(35.6→36.4%)와 정부소비(11.1→13.0%)의 역할이 동시에 증가했 커졌다. 총산출액 대비 수출을 나타내는 수출률은 15.7%로 2015년(18.7%)보다 3.0%p 떨어졌다. 총산출액 중 중간재 수입액을 뜻하는 수입의존도도 10.7%로 1.8%p 낮아졌다. 국산품에 대한 최종수요가 1단위 발생했을 때 유발되는 생산의 크기를 나타내는 생산유발계수는 2020년 1.804로 5년 전(1.813)보다 약간 하락했다. 국제유가가 하락함에 따라 중간재 국산화율이 높아졌지만, 중간투입률 자체가 낮아진 영향이다. 부가가치율이 상대적으로 높은 서비스 비중이 확대된 덕분에 부가가치유발계수는 0.806으로 0.032p 상승했다. 다만, 미국(0.944), 일본(0.903), 영국(0.873) 등 주요국과 비교하면 부가가치유발계수가 여전히 낮은 수준이라고 한은은 부연했다. 수입유발계수는 수입의존도가 완화되고 국제유가도 하락하면서 0.246으로 0.030p 하락했다. 서비스의 전방연쇄효과도 상대적으로 커졌다. 한 산업의 발전에 그 산업의 생산물을 사용하는 다른 산업의 발전으로 유발되는 효과를 의미한다. 이 효과의 정도를 나타내는 감응도 계수는 서비스(2.015→2.211)가 상승했고, 공산품(2.040→1.925)은 하락했다. 실측 산업연관표는 우리나라에서 발생한 모든 재화와 서비스의 생산 및 처분 내역을 일정한 원칙과 형식에 따라 기록한 통계다.
-
- 경제
-
한은 "코로나19로 '산업구조 서비스화' 가속…공산품 비중 축소"
-
-
[우주의 속삭임(3)] 화성 잉카시티에서 거미 수백 마리 위성 사진에 포착?
- 화성에서 거미 이미지가 위성 사진에 포착됐다. 그러나 거미 공포증이 있는 사람들이 이를 두려워할 필요는 없다. 유럽우주국(ESA)이 포착한 이 거미 이미지는 실제로는 화성에서 이산화탄소 가스의 분출을 보여주는 이미지라고 과학 전문 매체 라이브사이언스가 전했다. 거미 이미지는 화성의 남극 지역에 있는 잉카시티(Inca City)로 알려진 지층에서 발견되었다. ESA의 마스 익스프레스(Mars Express) 궤도선과 엑소마스 가스 추적(ExoMars Trace Gas) 궤도선이 찍은 이 사진은 매우 작은 다리를 가진 새끼 거미들이 옹기종기 모여 있는, 다수의 점들의 어두운 무리를 보여주고 있다. 이 지층은 실제로는 폭이 50m~1km 정도인 가스 채널이다. 지층은 화성이 봄을 맞이하는 동안 남반구에서 날씨가 따뜻해지면, 이산화탄소가 다량 포함된 얼음층이 녹을 때 발생한다. 따뜻한 기온으로 인해 가장 낮은 층에 있는 얼음이 가스로 변해 승화하는 것이다. 가스가 팽창하고 상승하면서 얼음층에서 폭발하고, 단단한 표면의 어두운 먼지를 운반한다. 이 먼지는 얼음에서 간헐적으로 분출되어 최상층으로 쏟아져 지표면에 내려앉으면서, 작은 다리가 달린 거미 모양의 패턴을 만든다. ESA에 따르면, 어떤 곳에서는 폭발은 1m 두께의 얼음을 뚫고 솟아오른다. 잉카시티는 앵거스투스 미로(Angustus Labyrinthus)로도 알려져 있다. 잉카시티는 한때 석화된 사구 또는 고대 화성 빙하의 잔재로 여겨졌던 선형의 폐허 같은 능선 때문에 붙여진 이름이다. 이 능선이 높은 퇴적물 벽을 남겼을 것으로 추정된다. 그러나 2002년 화성 궤도선은 잉카시티가 대략 86km 폭의 원형 지형의 일부임을 밝혀 냈다. 이 지형은 오래된 충돌 분화구일 수도 있는데, 이는 기하학적 능선이 퇴각한 우주 암석에 부딪힌 후 금이 가고 가열된 화성의 지각을 통해 솟아오른 마그마 침입일 수도 있음을 시사한다. 이 분화구는 퇴적물로 채워졌을 것이며, 퇴적물은 이후 침식되어 고대 유적을 연상시키는 마그마 층을 부분적으로 드러냈다.
-
- IT/바이오
-
[우주의 속삭임(3)] 화성 잉카시티에서 거미 수백 마리 위성 사진에 포착?
-
-
인공지능, 기후변화 대처하는 식물 설계에 활용
- 과학자들이 인공지능(AI)을 활용해 기후 변화에 견딜 수 있는 식물을 설계하고 있다. 인공지능은 과학자들이 기후변화와 싸우고 지구 온도 상승을 억제하기 위해 식물을 개량하는 데 도움을 주고 있다고 웹사이트 피지스(phys. org)와 어스닷컴 등이 전했다. 기후변화 패널(IPCC)은 기후변화와 지구 온도 상승을 제한하기 위해서는 대기 중 이산화탄소를 제거하는 것이 필수적이라고 밝혔다. 미국 캘리포니아 라호야에 위치한 생명과학연구기관 솔크 연구소(Salk Institute) 과학자들은 기후 변화에 대응하기 위해 식물의 뿌리 시스템을 최적화해서 더 많은 이산화탄소를 더 오랜 기간 저장할 수 있는 식물의 자연적인 이산화탄소 흡수 능력 활용에 주목했다. 이 연구소의 '식물 활용 이니셔티브(Harnessing Plants Initiative)' 소속 과학자들은 기후변화 완화 식물을 설계하기 위해 'SLEAP'이라는 첨단 연구 도구를 사용하고 있다. 인공지능 SLEAP, 뿌리 성장 특징 추적 SLEAP은 사용하기 쉬운 인공지능 소프트웨어로서 다양한 뿌리 성장 특징을 추적한다. 솔크의 펠로우인 탈모 페레이라(Talmo Pereira)가 개발한 SLEAP은 당초 실험실에서 동물의 이동을 추적하기 위해 설계됐다. 페레이라는 현재 식물 과학자인 동료 연구원 볼프강 부쉬(Wolfgang Busch) 교수와 협력해 SLEAP을 식물에 적용하고 있다. 최근 '식물 게놈연구(Plant Phenomics)' 저널에 발표된 연구에서 부쉬 박사와 페레이라는 SLEAP을 사용해 식물 뿌리 형태 분석을 위한 새로운 프로토콜을 선보였다. 이 프로토콜은 뿌리가 얼마나 깊고 넓게 자라고, 뿌리 시스템이 얼마나 커지는 등 이전에는 측정하기 어려웠던 기타 물리적 특징을 분석한다. SLEAP을 식물에 적용한 결과 연구원들은 현재까지 가장 광범위한 식물 뿌리 시스템 형태 카탈로그를 구축할 수 있었다. 더욱이, 이러한 물리적 뿌리 시스템 특징을 추적하면 과학자들이 해당 특징과 관련된 유전자를 찾는 데 도움이 되며, 여러 뿌리 특징이 동일한 유전자에 의해 결정되는지 아니면 독립적으로 결정되는지를 판단할 수 있다. 이를 통해 솔크 연구팀은 식물 설계에 가장 유익한 유전자를 결정할 수 있다. 페레이라는 "이번 협업은 솔크 연구소의 과학이 특별하고 영향력 있는 이유를 실제로 보여주는 좋은 예"라고 말했다. 그는 "우리는 단순히 다른 분야의 지식을 '빌려오는' 것이 아니라, 더 큰 성과를 창출하기 위해 서로 동등한 위치에서 연구하고 있다"고 전했다. SLEAP을 사용하기 전에는 식물과 동물 모두의 물리적 특징을 추적하는 데 많은 노동이 필요했으며 이는 과학적 과정을 지연시켰다. 이전에는 연구원들이 식물 이미지를 분석하기 위해서는 이미지에서 식물 부분과 그렇지 않은 부분을 프레임 단위, 부분 단위, 픽셀 단위로 수작업으로 표시해야 했다. 그래야만 이전의 AI 모델을 적용해 이미지를 처리하고 식물 구조에 대한 데이터를 수집할 수 있었다. SLEAP의 독특한 점은 컴퓨터 시각(컴퓨터가 이미지를 이해하는 능력)과 딥 러닝(AI가 인간 뇌처럼 배우고 작업하도록 컴퓨터를 훈련하는 방법)을 모두 활용한다는 점이다. 이러한 조합을 통해 연구원들은 픽셀 단위로 이동하지 않고도 이미지를 처리할 수 있으며, 중간에 노동 집약적인 단계를 건너뛰고 이미지 입력에서 정의된 식물 특징으로 바로 넘어갈 수 있다. 부쉬 연구실의 생물정보학 분석가인 엘리자베스 베리건(Elizabeth Berrigan) 제1 저자는 "우리는 다양한 식물 유형에서 검증된 강력한 프로토콜을 개발했다. 이 프로토콜은 분석 시간과 인적 오류를 줄이고 접근성과 사용 편의성이 크며 실제 SLEAP 소프트웨어를 변경할 필요가 없었다"고 말했다. SLEAP의 기본 기술을 수정하지 않고 연구원들은 슬립 루트(sleap-roots)라는 SLEAP용 다운로드 가능한 도구킷을 개발했다. 슬립 루트는 오픈 소스 소프트웨어로 무료로 사용 가능하다. 슬립 루트를 사용하면 SLEAP는 뿌리 깊이, 질량, 성장 각도와 같은 뿌리 시스템의 생물학적 특성을 처리할 수 있다. 연구팀은 슬립 루트(sleap-roots) 패키지를 다양한 식물에서 테스트했다. 여기에는 대두, 쌀, 카놀라와 같은 농작물뿐만 아니라 모델 식물 종인 아라비도프시스 탈리아나(Arabidopsis thaliana)도 포함된다. 깊은 뿌리 시스템을 만드는 유전자 이해 높여 다양한 식물에서 시험한 결과 이 새로운 SLEAP 기반 방법은 기존 방법보다 1.5배 빠르게 주석을 달고, AI 모델을 10배 빠르게 훈련하고, 새로운 데이터에 대한 식물 구조를 10배 빠르게 예측하며, 모두 동일하거나 더 나은 정확도를 제공했다. 이러한 표형 데이터(예: 식물의 뿌리 시스템이 유난히 깊게 자라는 것)는 대규모 게놈 시퀀싱 노력과 함께 많은 숫자의 작물 품종에서 유전형 데이터를 밝히는 데 사용해 특히 깊은 뿌리 시스템을 만드는 유전자를 이해할 수 있다. 표형과 유전형을 연결하는 이 단계는 솔크 연구소의 목표인 더 많은 이산화탄소를 더 오랫동안 유지하는 식물을 만드는 데 중요하다. 이러한 식물은 더 깊고 더 강력한 뿌리 시스템을 설계해야 한다. 이 정확하고 효율적인 소프트웨어를 구현하면 식물 활용 이니셔티브는 원하는 표형을 표적 유전자에 아주 쉽고 획기적인 속도로 연결할 수 있다. 솔크의 식물 과학 부문 헤스 의장인 부쉬 박사는 "우리는 현재까지 가장 광범위한 식물 뿌리 시스템 형태 카탈로그를 만들 수 있었다. 이는 기후 변화와 싸우는 탄소 포집 식물을 만드는 연구를 실제로 가속화하고 있다"라고 말했다. 부쉬 박사는 "SLEAP은 탈모의 전문적인 소프트웨어 설계 덕분에 적용하고 사용하기 매우 쉬웠으며 앞으로 제 연구실에서 필수적인 도구가 될 것이다"라고 말했다. 페레이라가 SLEAP과 슬립 루트(sleap-roots)를 만들 때 접근성과 재현성을 가장 중요하게 고려했다. 연구원들은 NASA 과학자들과 토론을 시작하여 슬립 루트를 사용해 지구에서 탄소 포집 식물을 안내할 뿐만 아니라 우주에서 식물을 연구하는 데 도움이 되기를 기대한다. 솔크 연구소에서는 이미 SLEAP를 사용해 3D 데이터를 분석하는 새로운 도전에 착수하고 있다. SLEAP 및 슬립루트(sleap-roots)를 개선하고 확장하며 공유하는 노력은 앞으로 수년 동안 계속될 것이다. 솔크 연구소의 식물 활용 이니셔티브에서의 활용은 식물 설계를 가속화하고 연구소가 기후 변화에 대응하는 데 도움이 되고 있다.
-
- IT/바이오
-
인공지능, 기후변화 대처하는 식물 설계에 활용
-
-
[먹을까? 말까?(6)] 달걀 섭취 중단하면 혈압에 어떤 변화가 일어날까?
- 달걀은 영양이 풍부하고 양질의 동물성 단백질이 풍부하며, 노른자에는 비타민 A, 비타민 D, 비타민 E, 인, 칼슘 등이 포함되어 있다. 달걀의 구조는 노른자위(난황), 흰자위(난백), 껍데기(난각)로 이루어져 있다. 알 껍질은 주로 탄산칼슘으로 이루어져 있으며 바깥으로부터 산소를 받아들여 안에서 호흡한 뒤 바깥으로 이산화탄소를 내보낼 수 있게 되어 있다. 또한 달걀은 무게에 따라 왕란(68g 이상), 특란(60g 이상~68g 미만), 대란(52g 이상~60g 미만), 중란(44g 이상~52g 미만), 소란(44g 미만)으로 분류하기도 한다. 그런데 달걀과 고혈압의 관계가 종종 논란이 되기도 한다. 중년이 되면 고혈압을 멈추기 위한 식이요법인 대시(DASH) 다이어트를 주목하게 된다. DASH 다이어트는 미국 국립보건원(NIH) 산하 국립심장폐혈액연구소( National Heart, Lung, and Blood Institute )가 추진하는 고혈압 조절 다이어트다. DASH 다이어트는 혈압에 미치는 영향과 더불어 일반 대중을 위한 균형 잡힌 식사 접근 방식으로 설계됐다. DASH 다이어트에는 과일, 야채, 통곡물, 저지방 유제품이 풍부하게 포함된다. 여기에는 고기, 생선, 가금류, 견과류, 콩을 추천하며 설탕이 첨가된 식품 및 음료, 붉은 고기, 첨가된 지방 등은 제한된다. 헬스 다이제스트에 따르면 고혈압은 미국에서 가장 큰 사망 원인인 심장병의 원인이다. 미국 질병통제예방센터(CDC)에 따르면 미국 인구의 거의 절반이 혈압이 130/80mmHg 이상이지만 고혈압 환자 중 4분의 1만이 이를 치료하기 위한 조치를 취하고 있다. 증상이 나타나지 않기 때문에 많은 사람들은 자신이 고혈압이 있다는 사실조차 모르는 경우가 많다. 그렇기 때문에 40세가 넘었거나 다른 건강 질환이 있는 경우 매년 혈압을 검사해야 한다. 혈압을 효과적으로 관리할 수 있는 방법 중 하나는 다이어트다. 앞서 설명했듯이 DASH 다이어트에는 칼륨, 칼슘, 마그네슘, 섬유질, 단백질이 풍부한 음식에 중점을 두고 설탕, 나트륨, 포화 지방이 함유된 음식은 제한한다. 그렇다면 달걀 섭취를 중단하면 우리 몸에 어떤 일이 일어날까? 2020년 '현대 고혈압 보고서(Current Hypertension Reports)'에 따르면 15개의 무작위 대조 시험을 분석한 결과, 달걀 섭취와 혈압 사이의 연관성을 발견하지 못했지만 시간이 지남에 따라 너무 많은 달걀을 섭취하면 혈압이 상승할 수 있다는 점이 발견됐다. 왕란이나 특란 등 큰 달걀 1개에는 일일 섭취량의 62%에 해당하는 186mg의 콜레스테롤이 들어 있다. 2020년 영양학 학술지 '뉴트리언트(Nutrients)'에 발표된 연구에서는 고령 여성의 달걀, 콜레스테롤, 고혈압의 관계를 심층적으로 분석했다. 연구진은 연구 시작 시점에 여성들이 얼마나 많은 달걀과 총 콜레스테롤을 섭취했는지 조사했다. 몇 년 후, 전체 식단에서 콜레스테롤이 더 많은 여성은 고혈압에 걸릴 확률이 22% 더 높았다. 일주일에 달걀을 7개까지 먹은 여성은 고혈압 발병 가능성이 14% 더 높았다. 그러나 연구진이 총 콜레스테롤을 통계적으로 조정했을 때 달걀은 혈압 위험을 높이지 않았다. 즉, 음식에 함유된 콜레스테롤이 고혈압을 유발했을 가능성이 높았다. 2021년 '유럽 영양 저널(European Journal of Nutrition)'에 발표된 연구에 따르면 달걀의 위험성에서 완전히 벗어난 것은 아니다. 일주일에 달걀을 4개 이상 섭취하면 일주일에 1개 미만을 섭취할 때보다 전체 사망 위험이 50%, 심혈관 질환 사망 위험이 75%, 암으로 인한 사망 위험이 52% 높아지는 것으로 나타났다. 일주일에 달걀을 2~4개만 먹어도 모든 원인으로 인한 사망 위험이 22%, 심혈관 질환으로 인한 사망 위험이 43% 증가한다. 연구진은 달걀의 식이 콜레스테롤이 사람들의 혈중 콜레스테롤 수치보다 사망률과의 연관성을 더 많이 설명한다고 말했다. 달걀에는 영양이 풍부하기 때문에 식단에서 완전히 배제하고 싶지 않을 수도 있다. 큰 달걀 1개에는 72칼로리, 약 5g의 지방, 6g의 단백질이 들어 있다. 달걀에는 칼륨이나 칼슘이 일일 필요량의 2% 미만으로 많지 않지만 셀레늄과 충분한 양의 인을 섭취할 수 있다. 또한 달걀에는 비타민 A, 리보플라빈(B2), B5, B6, 엽산(B9), B12, D, E가 들어 있다. 시력에 도움이 되는 루테인과 제아잔틴이 함유되어 있다. 달걀은 또한 뇌와 신경계 기능을 유지하는 데 필요한 콜린이 일일 권장량의 27%가 함유되어 있다. 미국 국립보건원(NIH)에 따르면 콜린은 혈압을 낮추는 데도 도움이 될 수 있다. 전문가들은 달걀 섭취를 중단한다고 해서 혈압이 떨어지지는 않지만 대신 어떤 음식을 먹을지 고려해야 한다고 조언했다. 좋은 약은 입에는 쓰다는 말이 있다. DASH 다이어트의 일부인 과일, 야채, 콩류, 저지방 유제품, 통곡물을 먹을까. 아니면 짭쪼롬한 베이컨에 달달한 고당 에너지 음료, 그리고 버터를 얹은 풍미 가득한 커다란 블루베리 머핀을 먹을까. 가공육, 단 음료, 설탕과 나트륨 함량이 높은 음식은 혈압을 낮추는 가장 현명한 선택이 아니다. 달걀 1개나 달걀 흰자를 사용하는 것이 오히려 건강에 더 나을 수도 있다.
-
- 생활경제
-
[먹을까? 말까?(6)] 달걀 섭취 중단하면 혈압에 어떤 변화가 일어날까?
-
-
[먹을까? 말까?(4)] 질산염, 어떻게 섭취하는 것이 좋을까?
- 식품으로부터 섭취하는 질소화합물은 유형에 따라 우리 몸에 이롭기도 하고 해롭기도 하다. 가공육류에 첨가되는 질소화합물과 채소에 들어있는 질소화합물은 서로 다른 영향을 미친다. 질산염은 질소와 산소로 구성된 화합물이다. 보건 전문가들이 가공육에 질산염의 존재를 경고하기 시작하면서 대중의 관심을 끌게 됐다. 발색제와 보존료로 사용되는 질산염은 가공육류 제조 과정에 흔히 첨가된다. 제조업체에서는 핫도그, 베이컨, 햄, 소시지, 페퍼로니, 육포, 델리미트 등 가공육에 질산나트륨이나 질산칼륨 등 질소화합을 첨가해 품질을 보존하고 부패를 방지하는 경우가 많다. 질산염은 열에 노출되면 아질산염으로 변환될 수 있으며, 아질산염은 특정 암 발생 위험을 증가시키는 것으로 알려져 있다. 즉, 아질산염은 고열에 노출되면 고기 단백질의 아미노산과 결합해 니트로사민(nitrosamine)을 형성할 수 있다. 이러한 새로운 화합물은 특정 암, 특히 위와 결장암의 위험을 증가시킬 수 있다. 바로 이것이 2015년 세계보건기구(WHO) 보고서에서 가공육이 인간에게 암을 유발할 가능성이 있는 것으로 간주한 이유 중 하나라고 더 시애틀 타임스는 15일(현지시간) 지적했다. 가공육 섭취하면 대장암 위험 증가 WHO에 따르면 가공육을 매일 50g(베이컨 4조각 또는 핫도그 1개 정도) 섭취할 때마다 평생 대장암 위험이 18% 증가한다. 이는 이미 가지고 있는 위험의 18%가 추가로 증가하는 것이다. 유전이나 기타 요인으로 인한 대장암 발병 위험은 각각 3%와 3.54%다. 반면, 식물에 포함된 천연 질소화합물(질산염)은 우리 몸에 유익하다. 질산염은 식물성 식품, 특히 잎채소, 무, 비트, 셀러리, 마늘에도 함유되어 있다. 이러한 식물성 질산염을 섭취하면 체내에서 산화질소로 전환되어 심혈관 질환 및 기타 만성 질환을 예방하는 데 도움이 된다는 연구 결과가 있다. 산화질소는 혈압을 조절하고 혈액 순환을 개선하는 데 도움이 될 수 있다. 식물의 질산염은 특히 고강도 운동 중에 신체 능력을 향상시킬 수 있으므로 일부 운동선수는 비트나 비트 주스를 섭취하기도 한다. 식물의 질산염, 신체 능력 향상 식물에는 비타민과 미네랄 외에도 파이토케미컬이 풍부하며, 그중 일부는 항염증 효과가 있다. 염증은 심혈관 질환, 암 및 기타 만성 건강 상태의 한 요인이다. 채소에는 비타민 C와 기타 항산화 물질도 풍부하여 가공육과 함께 섭취하면 가공육의 잠재적인 부정적인 영향을 상쇄하는 데 도움이 될 수 있다. 이것이 일부 제조업체가 절인 육류에 비타민 C를 첨가하기 시작한 이유 중 하나다. 채소를 조리하면 질산염이 니트로사민으로 변할 수 있는가? 대답은 "그렇지 않다"이다. 채소에는 비타민 C와 최소한의 단백질이 함유되어 있으며, 육류보다 낮은 온도에서 조리하는 경향이 있다. 가공육을 낮은 온도에서 조리하면 니트로사민 형성을 약간 줄일 수 있지만, 가장 좋은 방법은 섭취를 완전히 제한하는 것이다. 이는 '천연 가공육', '비경화' 또는 '질산염이 없는' 가공육 제품에도 적용된다. 가공육은 셀러리 주스, 셀러리 파우더 또는 다른 천연 질산염 공급원을 사용하여 제조되는 경우가 많다. 셀러리는 '첨가된' 질산염으로 간주되지 않지만, '천연' 가공육에는 여전히 질산염이 함유되어 있으며 때로는 기존 가공육보다 더 많이 함유되어 있어 여전히 니트로사민을 생성할 수 있다. 베이컨 등 구매시 라벨 확인 필수 따라서 질산염이 첨가되지 않은 베이컨을 구매할 때는 라벨을 확인해 질산나트륨, 아질산나트륨, 질산칼륨 또는 아질산칼륨이 포함되어 있지 않은지, 셀러리 소금, 주스 또는 분말이 포함되어 있지 않은지 확인하는 것이 좋다. 질산염 함량이 낮은 가공육은 냉장 보관 수명이 짧을 수 있으므로 금방 사용하지 않을 것은 냉동 보관하는 것이 좋다. 건강을 위하여 가공육류 섭취를 제한하는 것이 좋다. "천연"이나 "질산염 무첨가)" 라고 표기된 가공육류도 여전히 질산염을 함유할 수 있으므로 주의해야 한다. 채소는 천연 질산화합물뿐만 아니라 비타민, 미네랄, 항염증 효과가 있는 식물 화학 물질 등 다양한 영양소를 함유하고 있으므로 충분히 섭취하는 것이 중요하다.
-
- 생활경제
-
[먹을까? 말까?(4)] 질산염, 어떻게 섭취하는 것이 좋을까?
-
-
[신소재 신기술(32)] 획기적인 '종이 기반' 배터리 개발⋯"식물에서 영감 얻어"
- 일본에서 희귀 금속이 필요 없는 종이 기반의 물로 활성화되는 배터리가 개발됐다. 일본 도호쿠대학(東北大學)의 재료연구소(AIMR) 연구진은 GPS 센서나 맥박 산소 측정기 센서에 사용할 수 있는 종이 기반의 고성능 마그네슘-공기(Mg-air) 배터리를 개발했다고 오일 프라이스가 14일(현지시간) 보도했다. 이변 연구는 종이의 재활용성과 가벼운 특성을 활용해 보다 환경 친화적인 에너지원으로 발전할 수 있는 가능성을 제시했다. 연구 보고서 논문 '희귀 금속이 없는 고성능 물 활성화 종이 배터리: 웨어러블 센싱 장치를 위한 일회용 에너지원'은 'RSC 인터페이스 응용(RSC Applied Interfaces)' 저널에 게재됐다. 종이는 지난 2000년 동안 인류 문명의 필수품이었다. 종이는 일반적으로 중국 후한 시대 105년 경에 채륜이 발명했다고 알려져 있다. 하지만 최근 중국에서 기원전 2세기 경으로 거슬러 올라가는 종이가 발견되기도 해 종이의 정확한 기원은 알 수가 없다. 글 쓰기를 통해 그동안 인류 역사를 기록해온 종이가 이제는 배터리에 활용돼 친환경적인 미래를 여는 중요한 역할을 하게 됐다. 가볍고 얇은 종이 기반 디바이스는 금속이나 플라스틱 소재에 대한 의존도를 낮추는 동시에 폐기하기도 더 쉽다. 이 연구의 교신 저자인 히로시 야부(Hiroshi Yabu) 교수는 "우리는 식물의 호흡 메커니즘에서 이 장치에 대한 영감을 얻었다"고 말했다. 야부 교수는 "광합성은 배터리의 충전 및 방전 과정과 유사하다. 식물이 태양 에너지를 이용해 땅의 물에서 설탕을, 공기에서 이산화탄소를 합성하는 것처럼, 우리 배터리는 마그네슘을 기질로 활용해 산소와 물에서 전력을 생성한다"고 설명했다. 연구팀은 배터리를 제작하기 위해 마그네슘 호일을 종이에 접착하고 음극 촉매와 가스 확산층을 종이 반대편에 직접 추가했다. 종이 배터리는 1.8V(볼트)의 개방 회로 전압, 100mA/cm²의 1.0V 전류 밀도, 103mA/cm²의 최대 출력을 달성했다. 야부 교수는 " 이 배터리는 인상적인 성능 결과를 보여줬을 뿐 아니라 독성 물질을 사용하지 않고 엄격한 평가를 통과한 탄소 음극과 안료 전기 촉매를 사용해서 작동한다"라고 덧붙였다. 연구팀은 맥박 산소 측정기 센서와 GPS 센서에서 이 배터리를 테스트해 웨어러블 디바이스에 대한 다용도성을 입증했다.
-
- 포커스온
-
[신소재 신기술(32)] 획기적인 '종이 기반' 배터리 개발⋯"식물에서 영감 얻어"
-
-
[먹을까? 말까?(3)] 탈곡물 음료 '오트젬픽'의 실체⋯과연 다이어트 효과는?
- 최근 미국에서 인기몰이하는 다이어트 트렌드 중 하나로 '오트젬픽(oatzempic)'이라는 음료가 있다. 이는 귀리 가루, 물, 라임 주스를 섞어 만드는 간단한 음료지만, 짧은 기간에 체중 감량 효과가 크다는 주장으로 화제가 되고 있다. 하지만 이러한 트렌드에 대해 전문가들은 신중하게 접근할 것을 권고힌다. '오트젬픽'의 이름은 체중 감량 효과로 잘 알려진 당뇨병 처방약 '오젬픽'에서 따온 것이다. 오트젬픽은 두 달 만에 40파운드(약 18kg)까지 감량할 수 있다는 주장이 제기되면서 틱톡과 같은 플랫폼에서 많은 관심을 받고 있다. 공인 영양사이자 마이 인디안 테이블(My Indian Table)의 저자이자 영양사인 반다나 셰스는 "오트젬픽 트렌드는 간편함과 빠른 체중 감량 가능성으로 인해 매력적으로 보일 수 있지만, 신중하게 접근해야 한다"고 말했다고 야후가 전했다. 오트젬픽이란? 오트젬픽은 생귀리 가루 반 컵, 물 1컵에 라임 반 개를 짜낸 것을 믹서기에 넣고 부드럽게 될 때까지 갈아 마시는 음료다. 하루 1~2회 공복 상태에서 섭취하며, 계피 가루나 꿀을 조금 넣어도 좋다. 꿀은 당분과 칼로리가 추가된다는 사실을 기억해야 한다. 귀리 자체는 항산화 물질을 함유하고 있으며 심혈관 질환 위험 감소, 콜레스테롤 저하, 혈당 조절 개선과 연관이 있다. 또한 귀리는 베타-글루칸이라는 가용성 식이섬유가 풍부해 소화를 늦추고 배가 더 빨리 차는 느낌을 주어 전체적인 식사 섭취량을 줄일 수 있다. 귀리 반 컵에는 5g의 단백질과 4g의 섬유질, 다양한 비타민과 미네랄이 들어 있다. 귀리는 수용성 식이섬유, 특히 베타-글루칸의 훌륭한 공급원으로 소화를 늦추고 음식물과 노폐물을 장으로 이동시키며 규칙적인 배변을 촉진하는 데 도움이 된다. 라임 주스가 핵심 재료인 이유는 명확하지 않지만, 많은 사람들은 주로 백악질로 묘사되는 음료의 풍미를 향상시키기 위한 것으로 추정하고 있다. 또한 라임 주스는 항산화 비타민 C 제공한다. 체중 감량 효과는? 귀리 반 컵이 들어간 오트젬픽은 한 잔에 약 150칼로리에 불과해 칼로리 제한을 통해 일시적인 체중 감량을 유발할 수 있다. 그러나 오트젬픽은 영양 균형이 부족해 단일 식단 대체 식품으로는 부적합하다. 단백질, 지방 등 필수 영양소가 부족하며 장기적으로 섭취하면 영양 실조를 초래할 수 있다. 극단적인 방법으로 빠른 체중 감량을 목표로 하다 보면 근육량 감소, 호르몬 불균형, 탈모 등의 부작용이 있을 수 있다. 또한 정상적인 식습관으로 돌아갈 때 다시 체중이 증가하는 요요 현상 경험할 수 있다. 게다가 극도로 제한적인 식단은 장애 있는 식사 습관을 조장할 수 있다. 전문가들은 지속 가능한 체중 관리를 위해 급격한 변화보다는 식단과 라이프스타일에 점진적이고 지속 가능한 변화를 도입하는 것이 중요하다고 강조한다. 균형잡힌 식사로 장기적인 체중관리해야 일반적으로 식사 대용으로 섭취할 때는 오트밀 1회 제공량(단백질 5g, 150 칼로리)보다 단백질은 약 15~30g, 칼로리는 최소 2배 이상 높은 것을 목표로 해야 한다. 전문가들은 "단백질, 섬유질, 건강한 지방 등을 포함하는 균형 잡힌 식사를 섭취하는 것이 장기적인 건강과 체중 관리에 더 효과적이다"라고 강조했다. 일부 사람들은 오트젬픽에 단백질 파우더를 추가하고 좋은 오일을 섞는 등 변형해서 먹기도 한다. 이러한 첨가물은 단순한 오트젬픽이 아닌 균형 잡힌 아침 식사에 더 가깝다. 아침에 오트젬픽을 마시는 대신 과일, 씨앗(햄프, 치아, 아마), 견과류(호두, 아몬드)를 넣어 단백질, 섬유질, 지방을 추가한 오트밀로 든든한 아침 식사를 하는 것이 좋다. 음료 버전을 선호한다면 우유 대신 물을 넣거나 너트 버터를 추가하는 것도 좋다. 오트젬픽은 간단하게 만들 수 있는 음료이긴 하지만, 지속 가능하고 건강한 다이어트 방법이라고 보기는 어렵다. 체중 감량만으로 건강이 좋아지는 것은 아니며, 전반적인 식습관 개선과 건강한 라이프스타일을 유지하는 것이 중요하다. 전문가들은 "오트젬픽을 마시면 섬유질과 수준 섭취량이 증가할 수 있지만, 체중 감량이 목표라면 지속 ㄱ5ㅏ능한 습관으로ㅓ 전반적인 건강과 웰빙을 우선시하는 것이 가장 좋다"고 조언헸다.
-
- 생활경제
-
[먹을까? 말까?(3)] 탈곡물 음료 '오트젬픽'의 실체⋯과연 다이어트 효과는?
-
-
미세 플라스틱, 인간 소변서도 발견⋯자궁내막증과 연관 시사
- 플라스틱이 인체에 미치는 다양한 연구가 진행되는 가운데. 인간의 소변에서 매우 강한 독성을 지닌 미세 플라스틱이 검출됐다. 과학 전문매체 더 쿨다운은 과학자들이 건강한 참가자와 자궁 내막 조직이 자궁 밖에서 자라는 만성 질환인 자궁내막증 환자의 소변 샘플에서 모든 종류의 미세한 입자(미세 플라스틱입자)를 검출했다고 지난 10일(현지시간) 보도했다. 이 연구는 4월 1일 '생태독성학 및 환경 안전 저널(Ecotoxicology and Environmental Safety)'에 게재됐다. 연궈 결과 두 집단 간의 미세 플라스틱 수치는 큰 차이가 없었지만, 검출된 미세 플라스틱의 종류는 달랐다. 건강한 사람의 경우 폴리에틸렌(27%)이 주를 이루었고, 자궁내막증 환자는 폴리테트라플루오로에틸렌(PTFE, 59%)이 가장 많았다. 또한 건강한 사람의 검체에서는 폴리스티렌(16%), 레진(12%), 폴리프로필렌(12%) 등이 검출됐다. 연구에 따르면 폴리에틸렌은 자궁내막증 참가자의 샘플에서 발견된 미세 플라스틱의 16%를 차지했다. 자궁내막증 환자의 금속 카테터에서 두 번째 샘플 세트를 채취한 결과, 미세 플라스틱의 크기는 약 32 마이크로미터에서 22 마이크로미터로 다른 검체보다 상당히 작았다. 일반적인 미세 플라스틱 크기는 평균 177 x 117 마이크로미터이다. 1마이크로미터는 0.001밀리미터이다. 연구팀은 "미세 플라스틱은 모든 환경에서 발견되며 인체 음식 사슬에도 존재하고 최근 여러 인체 조직에서 검출됐다"고 밝혔다. 자궁내막증은 알려진 원인이 없으며, 과학자들은 미세 플라스틱 수치가 질병과 관련이 있는지, 염증을 유발하거나 화학 물질을 체내로 침출시키는지 여부를 조사했다. 연구팀은 "미세 플라스틱이 신체 내 이동 경로와 이러한 입자의 크기가 신장 사구체 여과 시스템을 통과하기에는 너무 큰 것으로 보이지만 어떻게 이 기관을 통과하거나 우회했는지, 그리고 이러한 미세 플라스틱 존재로 인한 잠재적인 생물학적 영향에 대한 중요한 새로운 질문을 제기한다"라고 밝혔다. 연구팀은 "이는 미세플라스틱의 체내 이동과 신장 사구체 여과 시스템을 통과하거나 우회하는 방법, 그리고 이러한 장기를 통과하기에는 너무 커 보이는 크기로 인해 잠재적인 생물학적 영향과 관련하여 중요한 새로운 의문을 제기한다"고 말했다. 또한 연구팀은 미세 플라스틱이 인체 내에서 어떻게 이동하는지 살펴본 결과, 미세 플라스틱의 크기와 모양도 문제라고 말했다. 또한 오염 물질이 "이론적으로는 신장의 작은 모세혈관을 따라 방광에 도달하기에는 너무 크다"고 지적했다. 이 논문은 미세 플라스틱이 인간에게 미치는 영향은 알려지지 않았지만 "폴리머 특성 분석과 절차적 공백을 설명하는 인간 소변의 미세 플라스틱 오염에 대한 최초의 증거"를 제공했다고 밝혔다. 연구팀은 "그러나 높은 수준의 미세 플라스틱과 염증성 질환, 특히 장 질환 간의 관련성이 나타나고 있다"고 말했다. 또한 "이전 세포 기반 노출 실험에서 불규칙한 모양의 미세 플라스틱이 특히 독성이 강한 것으로 나타났다"면서 "'염증 및 산화 스트레스 유형의 영향'이 자궁 내막증 환자에게도 유사하게 영향을 미칠 수 있다"고 지적했다. 미세 플라스틱과 더 작은 나노 플라스틱은 플라스틱으로 만든 물병이나 식품 용기 등이 시간이 지남에 따라 분해될 때 생성된다. 미세 플라스틱의 양을 줄이는 가장 좋은 방법은 플라스틱 소비를 줄이는 것이다. 예를 들어 영국과 프랑스에서는 대부분의 패스트푸드와 테이크아웃 음식점에서 플라스틱 식기류의 사용을 금지했다. 인도는 2022년에 일회용 플라스틱 사용을 금지했다. 워싱턴 포스트는 다른 연구 결과를 인용하여 미세 플라스틱이 암과 알츠하이머병 위험을 증가시키고 출산 문제를 유발할 수 있다고 보도했다. 또한 이러한 영향은 나이가 들면서 더욱 악화될 수도 있다. 또다른 연구에 따르면 미세 플라스틱은 심장마비와 뇌졸중 발병에도 연관되어 있다. 세계자연보호연맹(IUCN)에 따르면 매년 약 4억톤 이상의 플라스틱이 생산되고 있다. 프랑스 파리의 에펠탑 무게는 약 1만톤이다. 매년 에[펩탑 4만 개 이상에 해당되는 플라스틱이 생산되고 있는 셈이다. 그러나 전 세계적으로 재활용되는 플라스틱은 약 9%에 불과하다. 매일 더 많은 플라스틱이 생산되고 있기 때문에 기업이 플라스틱에 대한 의존도를 낮추는 것이 중요하다. 소비자는 유리나 스테인리스 재질로 된 재사용 가능한 물병을 구입하고 플라스틱을 사용하지 않는 브랜드를 지지하는 등의 노력을 기울일 수 있다. 또한 기술 개발로 식수에서 미세 플라스틱을 제거할 수 있다. '예방이 치료보다 낫다'는 말이 있다. 플라스틱을 줄이기 위한 이러한 작은 실천이 모여 더 안전하고 깨끗한 미래를 만들 수 있다.
-
- 생활경제
-
미세 플라스틱, 인간 소변서도 발견⋯자궁내막증과 연관 시사
-
-
[신소재 신기술(29)] 물 엔진, 역사적 첫 작동! 수소 엔진 능가하는 성능 기록
- 역사상 최초로 움직이는 물 엔진(Water engine·수력 엔진)이 오스트리아에서 개발됐다. 오스트리아의 레이싱 기업 AVL 레이스텍(AVL Racetech)은 물을 주입하는 분사 시스템을 통해 강력한 수소 연소 엔진을 개발했다고 에코뉴스가 전했다. 최근 수소는 경제의 탈탄소화 과정에서 주목받는 대안 에너지원으로 부상하고 있다. 수소 생산에 대한 투자는 전 세계적으로 증가하고 있으며, 스페인의 경우 2022년 1분기에 세계 신규 수소 프로젝트의 20%를 차지했다. 하지만 기존 수소 연소 엔진은 출력 문제가 있었다. 이러한 문제를 해결하기 위해 AVL 레이스텍은 헝가리의 훔브다(HUMDA) 연구소와 협력해 혁신적인 수소 연소 엔진을 개발했다. 이 엔진은 물 분사 시스템을 통해 기존 수소 연소 엔진의 문제점을 개선했다. 이 수소 연소 엔진은 더 나아가 레이싱카에 사용될 가능성도 있다. 물 분사 시스템 통한 성능 향상 AVL 레이스텍은 기존의 물 주입 방식인 PFI(포트 액체 분사)를 사용해 엔진의 공기 흡입 시스템에 물을 주입했다. 이를 통해 부품 손상을 유발할 수 있는 조기 점화를 방지하고 안정적인 연소를 촉진한다. 회사 측은 이는 '린번 엔진(lean-burn engine)'의 잠재적인 단점을 보완할 수 있다고 설명했다. 린번 엔진은 공연비(공기와 연료의 비율)가 일반적인 엔진보다 훨씬 높다. 이는 엔진이 연료 대비 더 많은 양의 공기를 사용해 연소시키는 것을 의미하며, 결과적으로 연료 효율이 개선되고 배출가스 중 일부 오염 물질의 양이 줄어든다. 린번 방식은 특히 질소산화물(NOx) 같은 오염물질의 배출을 줄이는 데 효과적일 수 있으며, 이는 환경에 미치는 부정적 영향을 감소시키는 데 도움이 된다. 하지만 이 기술은 연소 과정에서 고온이 발생할 수 있어, 질소산화물의 생성을 억제하기 위한 추가적인 기술이나 장치가 필요할 수 있다. 린번 엔진은 주로 가솔린 엔진에 적용되지만, 디젤 엔진에서도 유사한 원리의 연소 방식이 사용된다. 수소 연소 엔진의 미래 물 주입 방식인 PFI분사와 같은 개선을 통해 분당 3000~4000회 회전에서 410hp(마력)과 500Nm(뉴터 미터)의 토크를 내는 2리터 수소 엔진이 탄생했다. 이 엔진 리터당 약 205마력(리터당 150kW)의 특정 출력 밀도를 달성했다. 실제 테스트 결과 이 엔진은 하이 레벨 모터 레이싱 대회에서도 경쟁력을 갖출 것으로 예상된다. 모터스포츠 AVL 디렉터이자 전 프로 레이싱 드라이버인 엘렌 로어(Ellen Lohr)는 "H2 레이싱 엔진으로 얻은 결과는 이 기술로 매우 경쟁력 있는 패키지를 제공할 수 있다는 것을 확인시켜 주었다"고 설명했다. AVL 레이스텍은 이번 개발을 통해 모터스포츠의 지속 가능성 확보에도 기여하고자 한다. 이 수소 연소 엔진은 레이싱뿐만 아니라 일반 자동차의 탈탄소화 전환에도 활용될 수 있으며, 수소 에너지의 자동차 산업 활용 가능성을 한층 더 높였다. 이처럼 수소의 잠재력은 지금까지 우리가 가지고 있었던 자동차의 수소 개념을 바꾸고 있다.
-
- 포커스온
-
[신소재 신기술(29)] 물 엔진, 역사적 첫 작동! 수소 엔진 능가하는 성능 기록
-
-
[먹을까? 말까?(1)] 뇌 건강에 도움 되는 '나쁜' 탄수화물
- 흰 쌀밥. 파스타 등 백색 탄수화물은 일반적으로 건강에 좋지 않다고 알려져 있다. 그러나 일부 탄수화물은 뇌 건강에 도움이 되는 것으로 밝혀졌다. 두뇌 건강을 유지하는 것은 신체 건강을 유지하는 것 만큼이나 중요할 수 있다. 뇌가 제대로 기능하지 못하면 기억력 감퇴 등의 위험이 있다. 반면, 뇌를 잘 관리하면 특정 신경 퇴행성 질환의 발병 위험을 줄일 수 있다. 생선, 호두, 아마씨에 풍부하게 함유된 오메가-3 지방산은 두뇌 발달과 기능에 중요한 역할을 하며 알츠하이머병의 위험을 낮출 수 있다. 비타민 C와 E와 같은 항산화제는 뇌세포를 손상시킬 수 있는 산화 스트레스와 싸우는 데 도움이 된다. 특히 비타민 B6, B12, 엽산은 신경전달물질 생성을 지원하고 뇌 노화와 기분 장애의 위험을 완화할 수 있다. 이팅웰이 전한 다이어트를 하는 사람들에게 나쁜 탄수화물로 알려졌지만 실제로는 뇌 건강에 좋은 건강 전문가가 추천하는 탄수화물 6가지를 정리했다. 탄수화물, 뇌 건강에 나쁜가? 키토제닉 다이어트(ketogenic Diet, 일명 키토 다이어트)와 같은 저탄수화물 다이어트의 인기로 인해 탄수화물은 건강에 좋지 않다는 오해를 받기도 한다. 키토 다이어트는 '저탄수화물 고지방 다이어트(저탄고지, Low carb-high fat diet, LCHF)'를 말한다. 열량의 총 섭취량은 유지하면서 섭취 비중 가운데 탄수화물이 들어간 음식을 줄이고 지방이 들어간 음식을 늘려 체내 인슐린 저항성을 추는 것을 목표로 한다. 뇌 건강 영양 전문가이자 베스트셀러인 「마인드 다이어트(The MIND Diet)」의 저자인 매기 문(Maggie Moon) 영양학 석사이자 공인 영양사는 "기본적으로 탄수화물은 뇌가 선호하는 에너지원인 포도당으로 분해되기 때문에 뇌는 탄수화물을 필요로 한다"라고 설명했다. 그녀는 뇌는 신진대사가 활발하고 영양분을 빨리 소모한다고 덧붙였다. 매기는 "뇌는 체중의 약 2%에 불과하지만 일일 칼로리의 최대 20%를 소비한다. 뇌에 포도당(당질)이 충분하지 않으면 뉴런 간의 통신이 중단되고 사고, 학습 및 기억을 포함한 인지 기능이 저하될 수 있다"고 말했다. 반드시 섭취해야 하는 '나쁜' 탄수화물 하지만 모든 탄수화물이 뇌 건강에 도움이 되는 것은 아니다. 설탕이 다량 첨가된 식품(구운 식품, 쿠키, 사탕, 일반 탄산음료 등)은 만성 염증과 산화 스트레스의 위험을 증가시켜 뇌세포를 손상시키고 정기적으로 섭취할 경우 인지 기능에 부정적인 영향을 미칠 수 있다. "'흰 색 탄수화물'은 피하라" 혹은 "천연 설탕이 함유된 탄수화물은 식탁에서 멀리해야 한다"는 말을 들어본 적이 있을 것이다. 이런 말들로 인해 탄수화물은 '해로운 것'으로 분류되는 경향이 있다. 그러나 실제로는 일부 탄수화물이 우리 식단에서 픽요핝 중요한 영양소를 제공하는 데 도움이 될 수 있다. 1. 흰 쌀(백미) 흰 쌀밥은 전세계 많은 문화권에서 주식으로 먹는 음식이며, 결코 '유해한' 탄수화물은 아니다. 가공 과정에서 섬유질이 대부분 제거되기는 하지만, 백미에는 몇 가지 주목할만한 영양 성분이 있다. 우선 백미는 지방 함량이 낮고 설탕과 나트륨이 첨가되지 않았다. 또한 칼슘, 철분, 마그네슘 등 다양한 미량의 영양소가 풍부하게 함유되어 있다. 미국 농무부의 푸드데이터 센트럴에 따르면 백미, 현미, 생쌀, 비정제 쌀 등은 엽산을 포함해 다양한 미량 영양소를 풍부하게 함유하고 있어 영양소 요구량을 충족하는 데 도움이 된다. 쌀은 자연적으로 글루텐이 없으므로 셀리악병 환자(celiac disease)에게 안전한 식품이다. 백미를 많이 섭취하는 것이 모든 사람의 식단에 적합하지는 않지만, 일반적으로 건강한 사람들에게는 영양학적으로 균형잡힌 식단의 일부가 될 수 있다. 2. 빵 빵은 샌드위치 등 다양한 용도로 사용되는 포만감을 주는 식품이다. 유행하는 다이어트 방식에서 종종 '금지 식품'으로 분류될 수도 있지만, 통곡물 빵 등 영양이 풍부한 빵을 섭취한다면 균형 잡힌 식단이 될 수 있다. 빵의 종류에 따라 영양 성분에 차이가 있을 수 있다. 예를 들어 통곡물 빵은 정제된 흰 빵에 비해 식이섬유가 더 풍부하고, 강화된 빵은 비강화된 식빵보다 비타민 B가 더 많이 함유되어 있다. 사워도우 빵(Sourdough bread, 천연발효빵)은 만드는 과정 덕분에 몇 가지 독특한 건강상의 이점을 제공할 수 있다. 일부 데이터에 따르면 사워도우 빵을 매일 섭취하면 대장 미생물의 대사를 촉진할 수 있으며, 혈당 조절과 포만감 증진에 긍정적인 영향을 미칠 수 있다. 3. 파스타 파스타는 독특한 단백질 구조를 가진 정제 탄수화물로, 흰 빵과 같은 식품보다 소화 속도가 더 느리다. 이 느린 소화 과정으로 인해 흰 빵과 비교할 때 파스타를 섭취했을 때보다 혈당 반응이 더 낮을 수 있다. 대부분의 파스타는 혈당 지수가 낮거나 중간 정도로 간주된다. 혈당 지수는 음식이 혈당을 얼마나 신속하게 올리는 지 측정하는 지표다. 따라서 혈당 지수가 높은 식품에 비해 낮은 식품은 혈당 상승 속도를 더디게 한다. 폐경기 여성을 대상으로 한 연구에 따르면 매주 파스타를 3인분 이상 먹는 사람은 뇌졸중과 죽상 경화성 심혈관 질환의 위험이 감소하는 것으로 나타났다. 또한 다른 연구 데이터에 따르면 파스타를 섭취하는 사람은 파스타를 먹지 않는 사람에 비해 식단의 질이 더 좋은 경향이 있는 것으로 나타났다. 특히 파스타를 섭취하는 사람들은 그렇지 않은 사람들에 비해 엽산, 섬유질, 철분, 마그네슘을 더 많이 섭취하는 경향이 있다. 4. 옥수수 옥수수는 수분이 풍부해 건강에 도움이 되지만 조리시 사용하는 버터의 양은 주의가 필요하다. 노란색 옥수수는 눈 건강에 도움이 되는 두 가지 카로티노이드인 루테인과 제아잔틴의 천연 공급원으로 황반변성 위험을 줄이는 데 도움이 될 수 있다. 옥수수에는 섬유질, 단백질 및 아연, 구리, 마그네슘 등 다양한 영양소도 함유되어 있다. 자색 옥수수는 안토시아닌이 풍부하게 함유되어 있다. 5. 바나나 바나나는 섬유질 함량 때문에 인터넷과 소셜 미디어에서 '나쁜' 과일로 평가되기도 한다. 하지만 이러한 주장은 과학적 근거가 부족하다. 오히려 바나나는 필수 영양소를 제공해 건강한 식단의 일부가 될 수 있다. 바나나는 설탕이 전혀 첨가되지 않았으며, 영양가가 매우 높은 식품이다. 중간 크기의 바나나 한 개는 칼로리가 100kal에 불과하며 식이섬유가 3g, 칼륨, 마그네슘, 비타민 C와 같은 미량 영양소가 풍부하다. 바나나는 심장 건강을 지원하는 필수 영양소인 칼륨의 좋은 공급원이다. 실제로 건강한 혈압을 유지하는 데 가장 좋은 식단 중 하나로 꼽히는 '대시 식단(DASH Diet)'에서는 칼륨 섭취를 강조한다. 고혈압을 관리하는 대표적인 식사법인 대시 식단의 기본은 저염, 저당, 저지방이다. 완전히 익기 전에 먹으면 바나나가 제공하는 프리바이오틱 식이섬유를 추가로 섭취할 수 있다. 덜 익은 바나나에는 건강한 장내 미생물을 지원하는 데 도움이 될 수 있는 저항성 전분이 더 많이 함유되어 있다. 6. 감자 감자는 단순히 탄수화물을 공급하는 것을 넘어 섬유질, 비타민 C, 칼륨의 천연 공급원이기도 하다. 연구 데이터에 따르면 감자는 당뇨병 환자에게도 건강한 식단의 일부로 포함될 수 있는 안전한 선택이 될 수 있다. 특히, 한 연구에서는 껍질을 벗긴 감자를 저녁 식사로 섭취한 성인 제2형 당뇨병 환자가 저혈당성 바스마티 쌀(low-glycemic basmati rice)을 포함한 식사를 한 사람보다 야간 혈당 반응이 더 낮았다. 물론, 개인마다 필요한 영양소가 다르고, 모든 음식이 균형 잡힌 영양 섭취의 일환으로 교려될 수 있기 때문에 식품을 단순히 '좋은 식품' 혹은 '나쁜 식품'으로 분류하는 것은 적절하지 않다. "나쁘다"고 지속적으로 언급되는 탄수화물도 특별한 건강 문제가 없는 한 유익한 식단이 될 수 있다. 특히 전반적으로 건강한 사람들에게는 균형 잡힌 식단에 포함될 수 있다. 단백질과 채소를 곁들인 구운 감자나 신선한 바나나를 올린 시리얼과 같은 탄수화물을 포함한 식사는, 기저 질환이 없는 경우, 맛과 영양을 향상시킬 수 있는 훌륭한 식단 선택이 될 수 있다.
-
- 생활경제
-
[먹을까? 말까?(1)] 뇌 건강에 도움 되는 '나쁜' 탄수화물
-
-
반도체 칩 실장하는 기판도 전기 변화에 반응…소재 연구 획기적 전기 마련
- 컴퓨터 칩 설계에서 크게 고려되지 않는 재료가 실제 정보 처리에서는 중요한 역할을 하며, 이는 더 빠르고 효율적인 디바이스로 이어질 수 있다는 연구 결과가 나와 주목된다고 기술 전문지 테크익스플로어가 전했다. 펜실베이니아 주립대 연구진이 이끈 국제 연구팀은 반도체 칩을 실장하는 기판이 기판에 꽂히는 반도체 칩과 마찬가지로 전기 변화에 반응한다는 사실을 발견했다. 연구팀이 분석에 적용한 것은 고급 이미징 기술과 반도체 재료인 이산화바나듐이었다. 이산화바나듐은 바나듐과 산소가 1대 2 배율로 결합된 산화물 반도체 재료로, 전자 스위치로서 큰 가능성을 보여주었다. 팀은 또 이산화바나듐이 기판을 구성하는 물질인 이산화티타늄과 어떻게 상호작용하는지를 분석했는데, 그 결과는 놀라운 것이었다. 반도체가 전기가 흐르지 않게 하는 절연체와 전기가 흐르게 하는 금속 사이로 전환할 때 기판이 반도체 칩과 유사한 동작을 보여, 기판 자체에도 활성층이 있을 가능성이 높다는 사실을 발견한 것. 연구 책임자 펜실베이니아 대학 벤카트라만 고팔란 교수는 "기판이 반도체 공정에서 적극적인 역할을 할 수 있다는 사실은 미래의 재료와 장치를 설계하는 데 매우 중요하다"고 말했다. 이 연구 결과는 '어드밴스트머티리얼즈'에 실렸다. 고팔란은 "무어의 법칙을 극복하기 위해서는 더 작고 빠른 디바이스에 대한 새로운 아이디어가 필요하다"며 "주목되는 아이디어는 1조분의 1초 안에 금속(디지털 신호 1의 상태)과 절연체(0의 상태) 사이를 전환할 수 있는 이산화바나듐과 같은 물질이다"라고 설명했다. 금속-절연체 트랜지스터로서의 이산화바나듐의 가능성은 이미 밝혀졌으며, 이 물질은 에너지 소비가 특히 적어 반도체 기술에 유망하다. 그러나 이산화바나듐의 특성은 아직 완전히 풀리지 않았으며, 지금까지는 실제 디바이스에서 작동하기 보다는 격리된 상태에서 관찰하는 것이 일반적이었다. 이산화바나듐은 전자 효과와 밀접한 상관관계가 있다. 전자 사이의 반발력이 디바이스를 방해하기 때문에 현재의 실리콘계 디바이스에서 발생하는 것처럼 무시할 수 없다. 이런 특성 때문에 고온 초전도 및 강화된 자기 특성과 같은 새로운 기능의 재료를 만들 수 있다. 고팔란은 "이산화바나듐의 근본적인 물리적 성질은 아직 충분히 이해되지 않았으며 디바이스의 기하학적 구조에서의 성능도 마찬가지"라고 말했다. 그는 "만약 우리가 이산화바나듐을 제대로 동작시킬 수만 있다면, 전자공학의 르네상스가 일어날 것이다. 특히 신경망 컴퓨터인 뉴로모픽 컴퓨팅은 이 디바이스를 사용함으로써 엄청난 성과를 거둘 수 있다"고 강조했다. 연구팀은 이산화바나듐을 디바이스에 전압을 가하여 절연 상태에서 전도성 상태로 전환하는 과정에서의 변화를 조사했다. 이를 위해 강력한 X선 빔을 주사할 수 있는 아르곤 국립연구소의 첨단 광자원(APS: Advanced Photon Source)를 사용했다. 절연-전도성 전환에 대한 재료의 공간적, 시간적 반응을 매핑하면서 연구팀은 기판의 구조에 대한 예상치 못한 변화가 일어난 것을 관찰했다. 이산화바나듐 필름이 금속으로 변하면서 전체 필름 채널이 부풀어 오른 것. 일반적으로는 축소되어야 했는데, 반대 현상이 일어나 필름 구조에서 뭔가 다른 일이 벌어지고 있었던 것이다. APS X선은 이산화바나듐 필름을 통과하여 전기적, 기계적으로 수동적 물질인 이산화티타늄 기판에서 박막을 성장시켰다. 기판은 전기 펄스를 받아 이산화바나듐 필름이 절연체에서 금속으로 전환될 때 매우 활동적이고 완전히 새로운 방식으로 움직이고 반응했다. 펜실베이니아 대학 수학 및 공학팀은 이에 대한 이론 정립을 위해 시뮬레이션과 함게 이론적인 프레임워크도 개발했다. 연구진은 과거 수동적으로 반도체 칩만 실장하는 용도로 사용됐던 이산화티타늄 기판에서 아직 발견되지 않은 잠재적인 현상을 포함해 이산화바나듐의 숨겨진 기능을 파악하는 데도 큰 도움이 될 것이라고 기대했다. 이 연구는 10년에 걸쳐 진행됐는데, 앞으로도 추가 연구와 분석을 진행할 계획이다.
-
- IT/바이오
-
반도체 칩 실장하는 기판도 전기 변화에 반응…소재 연구 획기적 전기 마련
-
-
[신소재 신기술(27)] 전고체배터리 스타트업 타이란신에너지, 초고에너지밀도 셀 공개
- 중국의 신재생 에너지 기업 타이란신에너지(太藍新能源·Talent New Energy)가 초고에너지 밀도를 갖춘 새로운 전고체 배터리 셀을 공개했다. 중국 전기차 전문매체 CNEV포스트는 전고체 리튬배터리 스타트업 타이란신에너지(이하 타이란)는 단일 셀 용량이 120Ah이고 실제 에너지 밀도가 720Wh/kg인 자동차 등급 전고체 리튬 금속 배터리 시제품을 세계 최초로 개발하는 데 성공했다고 지난 3일(현지시간) 보도했다. 타이란은 지난 2일 성명에서 이 수치가 리튬 배터리의 단일 셀 용량과 에너지 밀도 부분에서 새로운 업계 기록이라고 밝혔다. 참고로 전기차 제조사 니오(Nio)의 150kWh 반고체 배터리 팩은 베이징 위리온 뉴 에너지 테크놀로지(위리온)의 셀을 사용하며, 용량은 360Wh/kg이다. 니오는 지난달 이 반고체 배터리 팩이 2분기에 출시될 예정이며, 니오 차량에 탑재돼 1회 충전으로 최대 주행 거리(단일 충전 기준)를 1000km 이상으로 늘릴 것이라고 밝혔다. 타이란의 전고체 배터리는 위리온의 반고체 배터리보다 에너지 밀도가 두 배 높기 때문에 대량 생산이 가능하다면 전기차의 주행 가능 거리가 약 2000km에 달할 것으로 예상된다. 전고체 배터리와 반고체 배터리는 모두 차세대 에너지 저장 기술로 주목받고 있다. 두 배터리 기술의 주된 차이점은 전해질의 상태에 있다. 전고체 배터리는 액체나 젤 형태의 전해질 대신 고체 전해질을 사용한다. 고체 전해질은 일반적으로 폴리머, 세라믹 또는 복합체로 만들어진다. 고체 전해질은 불연성이기 때문에 전통적인 리튬 이온 배터리보다 화재나 폭발 위험으로부터 더 안전하다. 또한 고체 전해질을 사용함으로써 더 높은 에너지 밀도를 달성할 수 있다. 즉, 더 적은 공간에 더 많은 에너지를 저장할 수 있다. 반고체 배터리는 고체와 액체 성분을 혼합한 전해질을 사용한다. 즉, 부분적으로는 고체 물질을 포함하지만 액체 성분이 일부 존재한다. 반고체 배터리는 전고체 배터리로의 전환을 위한 중간 단계로 볼 수 있다. 타이란은 성명에서 초박막 고밀도 복합 산화물 전고체 전해질, 고용량 양극 및 음극 소재, 전고체 배터리 성형 공정 등 전고체 리튬 배터리의 여러 핵심 기술에서 혁신을 이뤄냈다고 밝혔다. 새로 발표된 배터리의 양극은 고용량, 수명이 긴 리튬이 풍부한 망간 기반 소재를 사용하고 음극은 초광대폭, 초박막이며 높은 사이클 안정성과 다양한 이점을 갖춘 리튬 금속 기반 복합 소재를 사용한다고 회사 측은 설명했다. 타이란은 또 양극 내 이온 및 전자 수송 네트워크를 효율적으로 구축해 양극 내부의 하전 입자 이동을 개선했다고 밝혔다. 아울러 자체 개발한 유연한 층 소재를 통해 배터리의 종합적인 성능 향상을 실현했으며, 이는 기존 리튬 이온 배터리의 주행거리와 안전성 문제 등을 근본적으로 해결할 수 있을 것으로 기대된다고 전했다. 2018년에 설립된 타이란은 전고체 리튬 배터리 및 소재 기술 개발에 주력하고 있다. 2022년 3월 중국 부동산 개발업체 비구이위안(碧桂園·컨트리 가든)으로부터 투자를 유치한 바 있다. 타이란은 산화물 시스템을 기반으로 고체 전해질과 고체 리튬 배터리를 개발했으며 다양한 소재와 반고체 및 전고체 배터리에 대한 기술 파이프라인을 완성했다. 지난해 보도자료에 따르면 1세대 반고체 배터리의 에너지 밀도는 최대 400Wh/kg, 2세대 준고체 배터리는 400Wh/kg에서 500Wh/kg의 에너지 밀도를 달성했다. 타이란은 이러한 1세대 및 2세대 배터리는 여전히 액체 전해질을 포함하고 있으며, 2023년 7월에 3세대 전고체 배터리는 더 이상 액체 전해질을 포함하지 않을 것이라고 말했다.
-
- 포커스온
-
[신소재 신기술(27)] 전고체배터리 스타트업 타이란신에너지, 초고에너지밀도 셀 공개
-
-
일본, 연합 반도체기업 라피더스에 모두 8.2조원 지원 결정
- 반도체강국 부활을 노리는 일본 정부가 자국 대기업 연합 반도체 기업인 라피더스에 모두 8조2000억원가량을 지원할 방침이다. 2일(현지시간) 교도통신에 따르면 일본 정부는 라피더스의 첨단 반도체 개발에 최대 5900억엔(약 5조2700억원)을 추가 지원키로 결정했다. 이에 앞서 일본 정부는 라피더스에 3300억엔(약 2조9363억원)을 지원키로 했다. 일본정부의 이번 추가 지원에 따라 지원금은 모두 9200억엔(약 8조2000억원)으로 늘어난다. 사이토 겐(齋藤健) 일본 경제산업상은 이날 각의(국무회의) 이후 기자회견에서 라피더스 추가 지원에 대해 "차세대 반도체는 일본 산업 경쟁력의 열쇠를 쥔다"며 "경제산업성도 프로젝트 성공을 위해 전력을 다하겠다"고 밝혔다. 일본정부는 일본의 남쪽지방 규슈(九州)에서는 대만 TSMC가, 북쪽 홋카이도(北海道)에선 라피더스가 일본 반도체 부활을 견인하는 모양새로 반도체 강국의 부활을 노리고 있다. 라피더스는 도요타, 키옥시아, 소니, NTT, 소프트뱅크, NEC, 덴소, 미쓰비시UFJ은행 등 일본 대표 대기업 8곳이 첨단 반도체 국산화를 위해 2022년 설립한 회사다. 이 회사는 최첨단 2나노 제품을 2025년에 시험 생산하고, 2027년부터 양산한다는 목표를 추진 중이다. 최근 라피더스는 캐나다의 텐스토렌트와 2나노 공정의 인공지능(AI) 반도체 생산을 위한 계약을 맺었다. 양사는 2나노 공정 기반의 AI용 반도체를 공동 개발, 2028년 양산하는 것을 목표로 협력하기로 했다. 라피더스는 현재 홋카이도 지토세에 공장을 짓고 있다. 정부 지원은 공장 건설비와 반도체 제조 장비 도입 등에 사용된다. 이와 관련해 니혼게이자이신문(닛케이)은 "보조금 5900억엔 중 500억엔 이상이 후공정 기술 연구개발(R&D)에 사용된다"고 보도했다. 일본 정부가 후공정 기술 개발을 지원하는 것은 이번이 처음이다. 일본 당국은 라피더스 이외에도 국내외 반도체 기업에 거액의 보조금을 제공하고 있다. 일본 정부는 자국 반도체 산업의 부활을 위해 2021년 '반도체·디지털 산업전략'을 수립했다. 이에 따라 약 4조엔(약 35조원) 규모의 지원 예산을 확보하는 등 반도체 기업에 보조금을 늘리고 있다. 지난 2월 양산 단계에 돌입한 TSMC의 규슈 구마모토(熊本)현 제1공장에는 최대 4760억엔(약 4조2341억원)의 보조금을 제공하기로 했다. 이 공장에선 한달에 5만5000장 가량의 12형 웨이퍼를 생산할 수 있다. 12~28나노 반도체 칩으로 가전제품부터 자동차까지 다양한 용도에 사용될 것으로 보인다. 기세를 몰아 TSMC는 연내 구마모토에 제2공장 건설을 건설, 2027년 가동을 시작할 예정이다. 월 생산능력은 제1공장과 합해 10만장 이상이 된다. TSMC의 첫번째 해외 '기가 팹'(월 10만장 이상)이 일본에서 만들어지는 것이다. 일각에서는 TSMC가 일본에 제3공장 건설도 검토 중이라는 보도가 나온다.
-
- IT/바이오
-
일본, 연합 반도체기업 라피더스에 모두 8.2조원 지원 결정
-
-
[신소재 신기술(26)] 암석의 혁신, '지질학적 수소' 생산 가능
- 지속 가능한 에너지 환경에 획기적인 변화를 가져올 암석 기반 수소 생산 연구가 활발하게 진행되고 있다. 미국 텍사스 대학교 오스틴 캠퍼스 연구팀은 철분이 풍부한 암석에서 이산화탄소 배출 없이 수소 가스를 생산하는 천연 촉매 개발에 힘쓰고 있다고 과학 전문매체 사이테크데일리가 전했다. 기존 방식에 비해 저탄소 대안을 제공하는 이 기술은 미래 에너지 시장의 주역으로 주목받고 있다. 이 프로젝트가 성공한다면 '지질학적 수소'라는 새로운 산업 분야를 창출하며 에너지 전환에 혁신을 가져올 것으로 기대된다. UT 잭슨 지구과학대학 경제지질학국의 연구 부교수이자 이 프로젝트의 수석 연구원 토티 라슨 박사는 "우리는 암석에서 수소를 생산하고 있다"고 말했다. 라슨은 "철분이 풍부한 암석에서 수소를 비화석 연료로 생산하는 것은 산업적 규모로 시도된 적이 없는 일종의 비화석 연료 생산이다"라고 설명했다. 수소는 연료로 연소할 때 이산화탄소 가스를 배출하지 않기 때문에 에너지 전환에서 중요한 역할을 한다. 유일한 부산물은 물뿐이다. 그러나 오늘날 대부분의 수소는 천연가스에서 생산되며 이 과정에서 CO₂도 배출한다. 라슨은 철분이 풍부한 암석에서 지질학적 수소를 생산하면 탄소 배출량이 적기 때문에 에너지 전환에 큰 변화를 가져올 수 있다고 지적했다. 이 과정은 지질학적 현상인 '사문석화'를 촉진하는 원리다. 사문석화 과정에서 철분이 풍부한 암석은 화학 반응의 부산물로 수소를 생성한다. 사문석화는 일반적으로 고온에서 일어난다. 연구팀은 현재 기술로 쉽게 접근할 수 있는 낮은 온도와 심도에서 수소 생산을 촉진하기 위해 니켈과 백금족 원소 등을 포함하는 천연 촉매 물질을 활용하고 있다. 즉, 철이 풍부한 암석에서 천연 촉매를 사용해 수소를 생산하면 전 세계적으로 수소 생산량을 크게 늘릴 수 있는 잠재력이 있다. 기존의 대부분 수소 생산 방식은 천연가스를 이용하며 이산화탄소를 배출한다. 지질학적 수소 생산은 저탄소 배출 특징을 지니고 있어 에너지 전환에 획기적인 진전을 가져올 수 있다. 잭슨 스쿨의 연구 부교수이자 이 프로젝트의 공동 연구자인 에스티 우카르 박사는 "전 세계에서 지질학적 수소의 자연 축적이 발견되고 있다. 탐사가 계속되고 있지만 대부분의 경우 규모가 작고 경제성이 없다"며 "자연에서 수백만 년이 걸리는 반응을 유도해 이러한 암석에서 더 많은 양의 수소를 생산할 수 있다면 지질학적 수소는 정말 획기적인 기술이 될 수 있다고 생각한다"고 말했다.
-
- 포커스온
-
[신소재 신기술(26)] 암석의 혁신, '지질학적 수소' 생산 가능
-
-
매립지 메탄가스, 지구 온난화의 원인
- 매립지에 쌓이는 쓰레기는 단지 눈에 거슬리는 존재를 넘어선다. 지구를 온난화시키는 엄청난 양의 메탄가스를 배출하는 기후의 악몽이기도 하다. 미국 전역 수백 곳의 매립지에서 메탄 오염을 측정한 새로운 연구에 따르면, 문제가 이전에 생각했던 것보다 훨씬 더 심각하다고 사이언스 온라인판이 전했다. 이 소식은 CNN 등 주요 매체에도 비중 있게 보도됐다. 과학자들은 2018~2022년까지 18개 주에 걸쳐 200개 이상의 매립지를 항공 조사했다. 이는 미국 매립지에 대한 측정 조사 중 최대 규모이다. 사이언스 저널에 발표된 연구에 따르면, 조사 결과 평균 메탄 배출량이 공식적으로 보고된 것보다 훨씬 높은 것으로 나타났다. 눈에 보이지 않고 냄새가 없는 가스인 메탄은 이산화탄소에 비해 대기중에 머무는 시간이 짧지만 80배 이상의 온난화 효과를 지니며, 다양한 부문에서 생산된다. 그 중 가장 큰 부문은 석유, 가스, 농업이다. 매립지는 잘 알려지지 않은 메탄 발생원인이지만, 전 세계 메탄 배출량의 약 20%를 차지해 큰 영향을 미친다. 매립지는 음식물 쓰레기, 종이, 목재 등의 유기 폐기물을 산소 없이 분해하면서 메탄을 생성하는 박테리아가 살기에 완벽한 환경을 조성한다. 미국의 대부분의 매립지는 연방 정부에서 휴대용 센서를 사용한 보행 조사를 통해 1년에 4회 메탄 배출량을 측정하도록 규정하고 있다. 연구에 따르면 보행자들은 가파른 경사면이나 쓰레기가 자주 버려지는 곳 등 안전하지 않은 지역을 피하는 경향이 있기 때문에 조사의 정확성을 기하기 어렵고 결과도 다르다. 연구를 담당한 비영리 기관 카본매퍼(Carbon Mapper)의 과학자인 다니엘 커스워스(Daniel Cusworth)는 "보행에 의한 측정은 정확하지 않고 단지 메탄 발생의 핫스팟을 감지하는 것일 뿐”이라고 지적한다. 따라서 매립지 메탄 배출량 추정은 직접 측정보다는 모델을 기반으로 하는 경향이 있으며 이는 데이터에 격차가 있음을 의미한다. 보고서는 항공기, 드론, 위성 등의 원격 감지를 사용하는 고급 모니터링 시스템이 보다 정확하고 포괄적인 상황을 제공할 수 있다고 주장한다. 과학자들은 공중 영상 분광계를 사용하여 측정한 매립지의 52%에서 대량의 메탄 방생을 발견했다. 보고서는 이는 석유 및 가스 부문에 대해 수행된 항공 연구의 메탄 검출 비율을 훨씬 초과한다고 지적한다. 분석 결과는 환경보호국의 온실가스 보고 프로그램(GHGRP)과 같은 현재의 보고 시스템에 메탄 발생원이 대거 누락되어 있음을 보여준다고 연구팀은 지적했다. 보고서는 매립지의 평균 메탄 배출량은 GHGRP에 보고된 것보다 1.4배 더 높았다고 밝혔다. 또한 매립지 메탄 배출이 일반적으로 석유 및 가스 생산으로 인한 배출보다 훨씬 지속적이며 60%가 수개월, 심지어 수년 동안 지속된다는 사실도 발견했다. 스탠포드대학의 환경과학 교수 롭 잭슨(Rob Jackson)은 CNN과의 인터뷰에서 매립지가 ‘슈퍼 메탄 방출자’라며 "항공 데이터는 우리가 수십 년 동안 지적해 왔던 사실을 입증한다"고 말했다. 매립 문제가 조만간 사라질 것 같지는 않다. 커스워스는 “화석연료에 의존하지 않는 미래에도 인간이 버리는 폐기물은 계속 발생할 가능성이 높다. 더 깨끗한 연료로 전환하더라도 우리는 여전히 폐기물 관리 문제를 다룰 것”이라고 말했다. 과학자들은 메탄의 급격한 감소가 기후 변화를 늦추는 가장 효과적인 방법 중 하나라고 말한다. 그러나 미국의 대부분의 메탄 정책은 석유 및 가스 산업을 대상으로 한다. 커스워스는 "기후 목표를 달성하려면 석유와 가스만으로는 메탄 배출량을 줄일 수 없으며, 매립지는 석유나 가스와 마찬가지로 주목을 받아야 한다"라고 주장했다.
-
- IT/바이오
-
매립지 메탄가스, 지구 온난화의 원인
-
-
[신소재 신기술(21)] 홍게껍질로 반도체 및 에너지 저장 기능 갖춘 나노시트 개발
- 일본 과학자들이 홍게의 껍질에 포함된 키토산으로 만든 나노섬유에서 반도체와 에너지 저장 특성을 발견했다. 26일(이하 현지시간) 뉴스마이네비에 따르면 일본 도호쿠대학(東北大學) 연구팀은 홍게 껍질에 포함된 불용성 식이섬유의 일종인 '키토산'으로 만든 나노섬유(ChNF) 조직을 제어해 만든 나노미터 두께의 시트 소재에서 반도체 특성과 에너지 저장 특성을 나타내는 것을 발견했다고 25일 밝혔다. 이번 성과는 도호쿠대 미래과학기술공동연구센터 후쿠하라 미키오 학술연구원, 동 대학 하시타 토시유키 특임교수, 도쿄대 이소카이 아키라 특임교수 등의 공동연구팀에 의해 이루어졌다. 연구 결과는 미국 물리학 협회에서 발행하는 학술지 'AIP-Advances'에 게재됐다. 이번 연구는 친환경적인 반도체와 에너지 저장 소재 개발에 기여할 것으로 기대된다. 반도체는 실리콘으로 대표되는 원소 반도체와 갈륨비소(GaAs) 및 '파이(π) 공액 고분자'와 같은 화합물 반도체로 크게 두 가지로 분류된다. 두 반도체 모두 광물이나 인공 화합물에서 금속을 정제해 만드는데, 생산 과정에서 많은 양의 에너지가 필요하고 환경에 미치는 영향이 크다. 연구팀은 절연체로 인식되는 종이와 셀룰로오스의 나노 크기 미세 구조체인 케나프 식물에서 추출한 셀룰로오스 나노섬유(Cellulose Nanofibers·CNF)를 이용해 전하 분포와 전자 이동을 측정했다. 그 결과, '템포 산화 CNF(TEMPO-oxidized CNF, TEMPO 촉매를 사용해 산화 처리된 셀룰로오스 나노섬유)'는 고전압 단시간 충전 특성을, CNF는 n형 음의 저항을 나타내는 n형 반도체의 다양한 특성을 발견했다. 이 연구에서는 식물 셀룰로오스와 분자 구조가 유사하고 지구상에서 두 번째로 풍부한 바이오매스 화합물인 동물성 키토산에 초점을 맞췄다. 연구팀에 따르면, 키토산에는 케나프(CNF)에서 발현되지 못했던 고속 충전 특성이 발견됨과 동시에 액체 누출 등의 문제를 극복할 수 있는 고체형 축전지를 제공할 수 있는 잠재력을 가지고 있는 것으로 밝혀졌다. 또한 키토산과 같은 자연 유래의 해양 바이오매스 소재를 반도체, 에너지 저장 분야에 활용할 수 있다면 폐기물을 줄여 자원순환형 사회 조성에 기여할 수 있다. 이번 연구에서는 홍게 껍질로 만든 키토산 나노섬유(ChNF)를 대표적인 동물성 소재로 활용하고, 섬유 길이를 300nm 이하로 제어한 ChNF 시트에 Al 전극을 부착한 소자를 제작했다. ChNF 시트 소자의 I(전류)-V(전압) 특성, AC(교류) 임피던스, 주파수 분석, 축전성을 측정한 결과, 전압 제어에 의한 전압 유도 반도체와 같은 특성이 나타나는 것을 확인했다. 또한, ChNF 시트의 -210~+80V 범위에서 동작 속도 1.24V/s의 승강 전압에 대한 I-V 특성에서 음전압 영역에서 전류의 전압 의존성이 역전되는 거동, 이른바 n형 반도체 특성을 보였다. 즉, I-V 특성은 옴의 법칙을 따르지 않고, 전압 상승에 따라 일정 전압 이상에서 전류가 감소하는 음극 저항이 발현된 것이다. 반면, R(저항)-V(전압) 특성을 분석한 결과, 승압 -1V~0V, 강압 +2V~0V 사이에서 3자리 스위칭 효과를 보이는 특성이 관찰됐다. 또한 10~500V에서 2mA의 전류로 5초간 충전한 후 1μA의 정전류로 방전했을 때 충전 전압 대비 저장 용량의 변화를 조사한 결과, 전압 증가에 따라 저장 용량이 선형적으로 증가하며 450V부터 급격히 증가하는 것으로 나타났다. 다음으로 ChNF 시트의 AC 임피던스 특성을 측정한 결과, 저저항과 고저항의 두 개의 반원을 가진 나이키스트 선도(The Nyquist diagram)를 얻었다. 두 개의 반원은 원자간력 현미경 이미지 관찰을 통해 각각 120~350nm의 바늘 모양과 구형으로 이루어진 갑각류 외골격과 세포벽 조직의 기여하는 것으로 추론했다, 이 나이키스트 선도의 특성으로부터 ChNF 시트는 직류와 교류 영역에서 동일한 회로를 가질수 있음을 시사했다. 연구팀은 또한, 반도체 특성의 전자의 기원을 규명하기 위해 ESR 분석을 시도했다. 전자의 기원을 결정하는 단수 대칭의 피크를 관찰했고, 스펙트럼 강도의 선도가 횡축과 교차하는 자기장의 g값을 통해 키토산의 생성 전자는 비정질 키토산에서 발생하는 아미닐 라디칼(NH¯₂)에서 생성된 전자임을 확인했다. 연구팀은 이번 성과에 대해 "저밀도 경량 반도체 및 에너지 저장 장치 제작을 통해 천연 유래의 바이오 소재 자원을 활용함으로써 지구의 생물 순환 시스템을 활용한 바이오 일렉트로닉스가 발전할 수 있을 것으로 기대한다"고 밝혔다.
-
- 포커스온
-
[신소재 신기술(21)] 홍게껍질로 반도체 및 에너지 저장 기능 갖춘 나노시트 개발
-
-
실데나필, 알츠하이머 발병 위험 50% 감소
- 발기부전 치료에 사용되는 미국 식품의약국(FDA) 승인 의약품 비아그라가 알츠하이머 병의 발병 위험을 줄인다는 연구 결과가 나왔다. 과학 전문 매체 사이언스 얼럿은 25일(현지시간) 미국 클리블랜드 클리닉 연구팀은 '비아그라'라는 브랜드로 흔히 판매되는 실데나필의 유전적 및 신경학적 효과에 대한 실험실 조사와 함께 의료 보험 데이터를 분석, 실데나필이 뇌 신경 세포의 중요한 단백질이 엉키는 것을 방지하는 잠재력을 검증했다고 보도했다. 신경 가소성 관련 효소 억제제의 역할 연구 결과에 따르면 포스포디에스테라아제(PDE) 억제제라는 효소 차단제가 음경의 혈류를 촉진할 뿐만 아니라 치매의 원인이 되는 신경 퇴화를 예방할 수 있다는 사실이 여러 연구에서 입증됐다. 이는 PDE5가 신경 가소성(neuroplasticity)에 영향을 미치는 신경 신호 경로에 관여한다는 사실과 연관이 있다. 동물 모델 연구에서 PDE5 억제제인 실데나필은 신경 세포에서 '타우' 단백질의 과도한 인산화를 줄여 독성 응집체 형성을 억제하고, 이를 통해 인지 기능과 기억력 향상에 도움이 되는 것으로 나타났다. 하지만 모든 연구 결과가 긍정적인 것은 아니며, 일부 연구에서는 실데나필의 인구 집단 수준 효과를 확인하지 못했다. 또한 실데나필의 신경계 작용 메커니즘은 아직 완전히 규명되지 않았다. 줄기 세포 뉴런 모델을 통한 치료 효과 연구 이번 연구에서는 알츠하이머 환자로부터 기증받은 줄기 세포로 만들어진 신경 세포 배양을 이용해 실데나필의 치료 효과를 뒷받침하는 대사 및 유전 활동을 지도했다. 연구팀은 5일간 실데나필을 투여한 결과 실험실에서 배양한 뉴런은 과도한 농도의 인을 첨가했을 때 타우 단백질 수치가 현저히 낮아져, 실데나필이 뇌세포를 보호하는 데 탁월한 효과가 있음을 확인했다. 세포의 DNA에서 생성되는 메시지를 통해 염증, 신경 간 통신 장애 및 신경 세포 구조의 안내와 관련된 유전자 발현에 수백 가지의 변화가 발견됐다. 그러나 이러한 영향이 알츠하이머 병에 어떻게 관여하는지 정확히 파악하려면 추가 연구가 필요하다. 이 연구는 인공지능(AI)을 사용해 실데나필이 인구 수준에서 작용하는 징후를 찾는 것이다. 이전 연구에서는 의료 보험 데이터를 사용해 실데나필이 알츠하이머병의 위험을 최대 60%까지 낮출 수 있다는 사실을 발견했다. 연구팀은 데이터 분석에 PH에 일반적으로 처방되는 네 가지 치료법을 포함시켜 실데나필이 알츠하이머 위험을 약 60% 감소시키는 것을 확인했다. 그럼에도 이번 연구는 단일 보험 데이터베이스에만 의존했기 때문에 다른 변수를 놓쳤을 가능성이 있다는 지적이 제기됐다. 또한, 이 연구에서는 폐 고혈압 또는 폐 고혈압(PH) 치료를 받는 환자의 치매 위험 감소가 동일하게 나타나지 않는 것으로 나타났다. 클리블랜드 클리닉 생의학 정보학자이자 공동 제1저자인 페이시옹 쳉(Feixiong Cheng)은 "방대한 양의 데이터를 컴퓨터로 통합한 후, 실데나필이 인간 신경세포에 미치는 영향과 실제 환자 치료 결과를 확인하게 되어 보람을 느낀다"고 말했다.
-
- 생활경제
-
실데나필, 알츠하이머 발병 위험 50% 감소