검색
-
- 지구의 자전축 이동, 지하수 고갈이 원인
- 지하수 고갈이 지구 자전축 이동의 원인이라는 새로운 연구 결과가 나왔다. 미국 매체 인디100(indy100)은 본질적으로 지구의 기울기는 시간이 지남에 따라 변하고 있으며, 몇 년 전 과학자들은 이를 지구 온난화와 극지방의 만년설이 녹는 현상으로 분류했다고 지적했다. 그러나 과학자들은 최근 연구에서 지구 자전축의 이동이 기존에 알려진 원인 이외에 다른 요소로 인해 발생하고 있다는 사실을 발견했다. 이 새로운 연구는 지하수 고갈이 지구의 물리적 균형에 어떻게 영향을 미치는지에 대한 이해를 넓히는데 중요한 역할을 하며, 기후 변화 및 지구 시스템에 대한 우리의 이해를 더욱 심화시킬 것으로 기대된다. 이는 지구의 물 순환 및 환경 관리에 대한 새로운 관점을 제공할 수 있다. 지구의 극은 빙상이 녹는 현상으로 움직일 수 있는 것으로 알려졌지만, 관개로 인한 지하수의 고갈도 같은 일이 일어날 수 있다는 것이다. 북극은 현재 점차 영국 방향으로 느린 속도로 이동하고 있으며, 이론적으로 이러한 극의 이동은 시간이 지나면서 지구의 계절 변화에 영향을 미칠 수 있는 능력을 가지고 있다. 가장 우려되는 점은 최근 '지구물리학 연구 학술지(Geophysical Research Letters)'에 게재된 연구에서 밝혀진 것으로, 지구 천연자원의 소비 방식, 특히 탈수된 땅에서 사용되는 염수와 관련한 연구 결과들이다. 이 연구에 공동으로 참여한 서울대학교 지구과학교육과 서기원 교수는 "지구의 회전 극은 실제로 큰 변화를 겪고 있으며, 우리 연구에 따르면 지하수의 재분배가 지구의 회전 극의 표류에 가장 큰 영향을 미치는 것으로 나타났다"고 우려했다. 서기원 교수가 이끄는 연구팀은 1993년부터 2010년까지 인류가 사용한 지하수의 양이 약 2조 1500톤에 달하며, 이로 인해 해수면이 약 6mm 상승하고, 지구의 자전축이 약 80cm 이동했다고 주장했다. 이 연구는 인간 활동이 해수면 상승에 중요한 영향을 미치고 있음을 시사한다. 지하수 사용이 증가함에 따라 육지의 물은 감소하고, 대신 바닷물이 증가하여 지구의 물질량 분포와 자전축의 위치에 변화를 가져왔다. 이 연구 결과는 물이 지표면에서 천천히 지하로 새어 나가는 현상을 발견한 최근의 과학적 발견에 이어 나온 것이다. 연구에 따르면, 액체는 지각판 아래로 하강하여 약 2900km 이동한 후 지구의 코어에 도달한다. 이 과정은 느리지만 수십억 년에 걸쳐 지구의 외핵 용융 금속과 맨틀 사이에 새로운 표면이 형성되었다. 이러한 발견은 지구과학에서의 중요한 이정표로, 인간 활동이 지구의 물리적 균형과 환경에 미치는 영향을 이해하는 데 중요한 기여를 한다. 지구의 자전축이 변하면 각 지역이 태양에 노출되는 정도에 변화가 생겨, 이로 인해 심각한 기후 변화가 발생할 수 있다. 특히 해수면 상승은 해발고도가 낮은 섬나라와 해안 도시들에게 큰 위협이 되며, 한국도 이러한 위험에서 자유롭지 못하다. 한국 해양수산부의 자료에 따르면, 1991년부터 2020년까지 한국의 평균 해수면은 매년 3.03mm씩 상승하여 총 9.1cm 높아진 것으로 나타났다. 국립해양조사원과 서울대학교의 연구에 따르면, 2100년까지 한국의 해수면은 최대 82cm까지 상승할 것으로 예측되며, 이는 2021년 발표된 예측치보다 10cm 높은 수치다. 전 세계적으로 해수면이 1미터 상승한다면 약 4억 명의 인구가 피해를 입을 것으로 추정된다. 이러한 상황은 우리가 탄소 배출을 줄여야 하는 중요한 이유를 제시한다.
-
- 생활경제
-
- 포스코, 양자컴퓨터 활용해 전기차 배터리 신소재 개발 박차
- 포스코 홀딩스가 양자 컴퓨터를 활용해 전기차 배터리 신소재 개발에 박차를 가하고 있다. 머글헤드 매거진은 한국 기업인 포스코 홀딩스(POSCO Holdings)는 7일(현지시간) 양자 컴퓨터 회사 큐씨웨어 코퍼레이션(QC Ware Corp.)과 파트너십을 맺어 배터리 소재를 시뮬레이션하는 새로운 기술 개발을 발표했다고 이날 보도했다. 전기자동차(EV) 배터리 수요가 급증함에 따라, 기업들은 더 오래 지속되고 충전 시간이 짧은 배터리용 지속가능한 소재를 확보하기 위한 혁신적인 방법을 모색하고 있다. 새로운 배터리 설계는 테스트가 필요하며, 이는 시간과 비용이 많이 든다. 에너지 전환 경쟁에서 양자 컴퓨터는 이 과정을 가속화하고 일부 기업을 앞서가게 하는 도구가 될 수 있다. 컴퓨터는 이미 배터리 설계자가 실행 가능한 소재를 시뮬레이션하는 데 사용되고 있지만, 양자 컴퓨터는 이러한 제한을 없애고 비용을 절약하며 따라서 배터리 설계 프로세스를 가속화할 수 있다. 포스코와 QC웨어는 한국 정부의 보조금을 활용하여 리튬 배터리용 실용적인 고체 전해질을 시뮬레이션할 예정이다. 이후 양자 컴퓨팅 방법과 이미 사용 중인 최고의 방법을 비교하여 새로운 벤치마크를 설정할 계획이다. 과학기술부 산하 한국연구재단(NRF)이 이 연구를 지원하며, 포스코의 AI R&D 연구소가 이 협력을 주도한다. QC웨어의 양자 화학 부문 수석 부사장인 로버트 패리시(Robert Parrish)는 "세계가 다양하고 유연한 에너지 솔루션으로 나아감에 따라 미래의 지속 가능한 에너지 그리드에 통합될 더욱 성능이 뛰어난 배터리를 개발하는 것이 중요하다"고 강조했다. 패리시 수석 부사장은 이어 "계산 시뮬레이션은 새로운 재료 설계에서 점차 중요한 역할을 하고 있으며, 포스코 홀딩스와의 이번 협업은 QC웨어의 사명인 실제 사용 사례에 영향을 미치는 양자 컴퓨터를 위한 양자 알고리즘 개발에 필수적이다"라고 말했다. 양자 컴퓨터란 무엇인가? 양자 컴퓨터는 양자 물리학의 규칙을 사용하여 일반 컴퓨터가 할 수 없는 방식으로 정보를 처리하는 초강력 계산기다. 일반 컴퓨터를 필요한 정보를 찾기 위해 한 번에 한 권의 책을 살펴보는 똑똑한 사서에 비유한다면, 양자 컴퓨터는 동시에 많은 책을 살펴보며 훨씬 빠르게 답을 찾을 수 있다. 양자 컴퓨터는 '양자 비트(quantum bits)' 또는 '큐비트(qubits)'를 사용해 동시에 여러 상태에 있을 수 있기 때문이다. 마치 동시에 여러 페이지가 열리는 마법의 책을 가지고 있는 것과 같다. 이러한 다중 가능성을 동시에 탐색하는 능력은 양자 컴퓨터가 코드를 해독하거나 퍼즐을 푸는 등의 복잡한 문제를 현재 컴퓨터보다 훨씬 빠르게 해결할 수 있게 한다. 양자 컴퓨터 단점은 무엇인가? 그러나 양자 컴퓨터는 몇 가지 도전 과제를 안고 있다. 우선, 양자 컴퓨터는 매우 민감하여 온도 변화나 다른 간섭 요소에 쉽게 영향을 받아 안정적으로 유지하기가 어렵다. 양자 컴퓨터를 사용하는 것은 빌딩 블록의 탑을 균형있게 쌓는 것과 같으며, 어떤 블록이라도 흔들리면 전체가 무너질 수 있다. 또한 양자 컴퓨터는 오류를 발생시킬 수 있으며, 양자 연구자들은 이러한 오류를 수정하는 방법을 찾기 위해 노력하고 있다. 또 다른 문제는 양자 컴퓨터가 매우 낮은 온도에서만 작동해야 한다는 점이다. 이는 마치 냉동고에서만 작동하는 컴퓨터와 같다. 게다가 현재 양자 컴퓨터는 일부 문제에는 유용하지만 모든 문제를 해결할 수 있는 것은 아니므로 연구자들은 양자 컴퓨터가 가장 유용할 수 있는 분야를 계속 연구하고 있다. 양자 컴퓨터는 엄청난 에너지를 소비한다. 세계에서 가장 빠른 컴퓨터인 '프론티어(Frontier)'는 대기 상태에서 8메가와트(MW)의 전력을 소비하는데, 이는 수천 가구에 전력을 공급할 수 있는 수준이다. 대규모 언어 모델을 한 번 훈련시키는 것은 뉴욕에서 샌프란시스코까지 비행하는 것과 같은 양의 탄소 배출을 생성한다. 양자 및 고전 컴퓨팅 소프트웨어 분야의 선도 기업인 QC 웨어는 기계 학습과 화학 시뮬레이션을 전문으로 한다. 이 회사는 정보 처리 방식을 혁신할 양자 컴퓨팅 솔루션 개발에 적극적으로 기여하고 있다. 포스코, 전기차 배터리 선두 주자 지난해 포스코는 충전식 배터리 프로젝트에 200억 달러를 투자하는 계획을 발표했다. 이 계획에는 배터리 재료 회사의 지분 인수, 광물 광산 및 관련 시설에 대한 투자가 포함되어 있다. 이를 통해 포스코는 이를 통해 자체적인 배터리 금속 공급망을 구축하고 중국 회사에 대한 의존도를 줄이려는 목표다. 아울러 포스코는 최근 아르헨티나의 염수 자원에서 이차 배터리 재료를 생산하는 한국 최초의 리튬 수산화물 공장을 가동하기 시작했다. 4억 4500만 달러를 투자한 이 공장은 연간 2만 5000톤의 리튬 수산화물을 생산할 계획이다. 이는 60만 개의 전기차 배터리를 제조할 수 있는 양이다. 2018년에는 아르헨티나의 옴브레 무에르토 염호를 인수하여 리튬 자원을 확보했으며, 현재는 용액에서 리튬 생산의 초기 단계에 착수하고 있다. 회사는 2028년까지 아르헨티나에서의 리튬 사업을 최대 10만 톤까지 확장할 계획이다. 한편, 포스코는 율촌산업단지에서 리튬 광석 공장을 건설 중이다. 포스코그룹은 지난 11월 29일 전남 율촌산업단지에서 포스코필바라리튬 솔루션의 수산화 리튬 공장과 포스코 광양제철소 내 고효율 무방향성 전기강판(Hyper NO·하이퍼엔오) 공장을 준공했다고 밝혔다. 이 공장은 광석리튬에서 수산화리튬을 뽑아내는 상업 생산공장이다. 이날 준공한 수산화리튬공장은 연산 2만1500톤(t)규모로 포스코그룹은 같은 규모의 제2공장을 오는 2024년 준공할 계획이다. 수산화리튬 4만3000톤은 전기차 약 100만 대를 생산할 수 있는 규모다.
-
- 산업
-
- 구리 화학 발견으로 값싼 약품 개발 길 열렸다
- 최근 구리 화학의 발견이 값싼 약품 개발의 새로운 가능성을 열었다. 이제 단 3달러의 비용으로 항암제에 사용될 수 있는 화학 물질을 제조할 수 있게 됐다. 구리는 이미 의학 분야에서 감염과 싸우는 나노 입자 및 임플란트의 형태로 사용되고 있다. 미국의 과학 전문 매체 뉴아틀라스는 미국 캘리포니아대학교 로스앤젤레스(UCLA)의 과학자들이 개발한 새로운 방법으로 간단하고 저렴한 약품 생산이 가능하다고 보도했다. 이 방법은 산소의 한 형태인 오존을 시약으로 사용하고 금속을 촉매로 활용한다. 과학자들은 이를 통해 유기 분자의 탄소-탄소 결합을 끊는데 성공했다. 오존은 이 결합을 알켄, 즉 탄화수소로 분해하고, 구리 촉매는 깨진 결합을 질소와 결합시켜 탄소-질소 결합을 형성한다. 이 결합은 아민이라고 알려진 분자를 형성하게 되는데, 이것이 바로 항암제와 같은 값싼 약품 생산에 필수적인 요소다. 아미노탈알케닐화로 알려진 이 공정은 전통적으로 아민을 생성하는 데 사용되는 다른 유사한 촉매와는 달리 풍부하고 저렴한 금속을 잘 활용하면 된다. 아미노탈알케닐화라고 알려진 이 새로운 공정은 기존의 아민 생성 방법과는 다르다. 이 공정은 전통적으로 사용되는 비싼 금속 촉매 대신에 저렴하고 풍부한 금속을 효과적으로 활용한다. 권오현 유기화학 교수는 이 공정에 대해 설명하면서 "이전에는 이런 방법이 없었다"고 강조했다. 그는 "전통적인 금속 촉매 반응에서는 백금, 은, 금, 팔라듐과 같은 고가의 금속이나 로듐, 루테늄, 이리듐과 같은 귀금속을 사용했지만, 우리는 세계에서 가장 풍부한 비금속 중 하나인 산소와 구리를 사용하고 있다"고 밝혔다. 이러한 접근 방식은 아민을 생성하는 데 필요한 자원과 비용을 크게 줄일 수 있는 가능성을 보여준다. 아민은 의약품과 비료, 농약 생산에 널리 사용되는 중요한 화학물질이다. 이는 식물과 동물에서 발견되는 분자와 강력한 상호 작용을 하며, 암페타민과 도파민과 같은 약물에서도 발견되는 구성 요소다. 이번 연구를 통해 연구팀은 호르몬, 제약 시약, 펩타이드, 뉴클레오시드 등을 아민으로 변형하는 데 성공했다. 이것은 이 새로운 방법이 다양한 분야에 활용될 수 있음을 보여준다. 하지만 권 교수에게 있어서 가장 큰 장점은 훨씬 저렴한 의약품 생산 가능성일 것이다. 일부 항암제에 사용되는 화학물질은 제조 비용이 그램당 약 3200달러(약 412만원)에 달하지만, 연구팀은 그램당 약 3달러(약 3860원)의 비용으로 동일한 약물 분자를 생산할 수 있었다. 기존 12단계 공정 대신 3단계만 사용 연구팀은 항암 c-Jun N-말단 키나제 억제제를 생산하기 위해 기존의 12단계 공정 대신 단 3단계의 화학 과정만을 사용했다. 또한, 이들은 또 다른 실험에서 아데노신이라는 신경 전달 물질과 DNA 구성 요소를 N6-메틸아데노신 아민으로 전환하는 과정을 한 단계만 거쳐서 수행했다. 이 아민은 세포의 유전자 발현, 질병 과정 및 발달에 중요한 역할을 하며, 현재 생산 비용은 그램당 약 103달러(약 13만2,600원)다. 구리는 현재 파운드당 4달러(약 5150원) 미만으로 풍부하게 구할 수 있기 때문에, 과학자들은 은 이 새로운 방법이 아민 기반 의약품과 다른 유기 물질의 생산 비용을 대폭 절감할 수 있기를 기대한다. 한편, 한국원자력연구원(원장 주한규)의 양성자과학연구단은 지난 7월 치료용 방사성동위원소 구리-67(Cu-67)을 고품질로 대량생산할 수 있는 분석법을 개발해 주목을 받았다. 방사성의약품은 방사성동위원소를 포함하여 질병의 진단과 치료에 사용된다. 구리-67은 진단용 감마선과 암세포를 사멸시키는 치료용 베타선을 방출하는 동위원소로, 동시에 진단과 치료가 가능하며, 기존 동위원소보다 반감기가 짧아(2.5일) 체내 피폭 위험도 적다. 이러한 특성으로 인해 구리-67은 높은 활용 가능성을 가지고 있다고 평가된다. 방사성의약품은 암세포에서 발현하는 특정한 단백질을 표적으로 하여 정상세포에는 영향을 주지 않고 암세포만 선택적으로 제거할 수 있다. 이로 인해 강력한 치료 효과와 함께 높은 안전성을 제공한다. 다만, 구리-67은 다른 핵종과 달리 방출하는 감마선 스펙트럼이 불순물인 갈륨-67(이하 Ga-67)과 정확히 겹쳐 물리적인 측정법으로는 이 두 핵종을 구분할 수 없었다. 이에 양성자과학연구단 입자빔이용연구부 박준규 박사 연구팀은 두 핵종의 감마선 방출강도 뿐만 아니라 반감기 차이(Cu-67은 2.5일, Ga-67은 3.2일)까지 고려한 새로운 해석적 분리방법을 제시했다. 연구팀은 구리-67과 Ga-67 각각의 감마선 세기 합이 전체 감마선 세기와 같다는 점과 감마선 방출 강도 비율, 반감기 차이를 이용했다. 이를 통해 화학적 분리 과정 없이도 구리-67의 정확한 핵자료를 얻을 수 있었다. 한국원자력의학원의 김희진, 김정영 연구원은 "구리-67은 방사능 강도가 낮고 담체가 없는(carrier-free) 방사성동위원소로, 이로 인해 효과적인 암 치료가 가능하다"고 말했다. 이 연구팀은 2025년 경주 양성자가속기를 활용해 고품질 구리-67을 본격적으로 대량 생산할 예정이다.
-
- IT/바이오
-
- 자작나무 잎에서 나노입자 추출…지속가능한 반도체 소재 개발
- 스웨덴 과학자들이 자연 재료로 만든 나노입자를 이용하여 유기 반도체 물질을 개발하는데 성공했다. 과학 기술 전문 매체 테크놀러지 네트웍스는 지난 11월 29일(현지시간) 압력으로 조리된 잎으로 만든 나노입자는 유기 반도체에 사용되는 희귀 원소를 대체할 수 있다며 자작나무 잎에서 나노입자를 추출했다고 보도했다. 이 연구는 덴마크와 중국의 연구자들과의 협업을 통해 진행됐다. 연구진은 고압 가열 방식을 통해 식물 생체질을 나노 크기의 탄소 입자, 즉 탄소 양자점으로 전환하는 데 성공했다. 이 연구 결과는 영국 왕립화학회(Royal Society of Chemistry)의 '그린 케미스트리(Green Chemistry)' 저널에 게재됐다. 이번 연구 결과는 유기 전자 제품 분야에서 획기적인 발전으로 기대된다. 이 매체에 따르면 스웨덴 우메아(Umeå) 대학의 물리학자들이 중국과 덴마크의 연구원들과 협력하여 식물 생물질을 나노 크기의 탄소 입자, 이른바 '탄소 양자점'으로 분해하는 새로운 압력 조리 방법을 개발했다. 이 탄소 양자점은 유기 전자 제품에 사용되는 유기 반도체 물질의 일부 희귀 원소를 대체할 수 있을 만큼 좋은 광학 특성을 가지고 있다. 연구원들은 또한 자작 나무잎에서 유래한 탄소 양자점을 사용하여 생물 기반 반도체 물질을 생산하는 데 성공했다고 보고했다. 유기 반도체의 지속가능성 유기 반도체는 전자 장치에 있어 가장 중요한 기능성 재료 중 하나로, 특히 유기 발광 다이오드(OLED)에서 주목받고 있다. 광전자 분야에서 이러한 반도체는 초박형 밝은 텔레비전과 휴대 전화 화면에 사용되는 유기 발광 다이오드(OLED)를 전원 공급하는 데 가장 유명하다. 그러나 유기 반도체 기술에 대한 수요가 증가함에 따라 큰 문제가 발생한다. 대부분의 유기 반도체는 대부분 지속 가능하지 않은 원료인 석유 화학 물질과 플래티넘, 인듐, 인과 같은 희귀 원소를 사용하여 제조된다. 이러한 소위 '핵심 원료'는 환경에 특히 좋지 않다는 점에서 문제가 있다. 반도체 산업의 지속가능성을 높이기 위해 연구원들은 이러한 핵심 원료를 대체할 수 있는 대체 원료를 조사하기 시작했다. 우메아 대학 물리학과 연구원 지아 왕(Jia Wang) 박사는 "우리 연구의 핵심은 인근 재생 가능 자원을 활용하여 유기 반도체 물질을 생산하는 것이다"라고 말했다. 새로운 연구에서 왕 박사와 그녀의 동료들은 생물 기반 탄소 양자점을 유일한 원료로 사용하는 반도체의 성공적인 생성을 보고했다. 자작나무 잎에서 양자 물질까지 이 새로운 반도체의 합성은 매우 간단하다. 우메아 대학 캠퍼스에서 자라는 자작나무에서 잎을 딴 후, 연구원들은 에탄올 용액을 사용하여 용매열 반응 과정을 통해 잎을 효과적으로 압력 조리했다. 이 용액을 건조하고 추출하면 크기가 약 2나노미터인 탄소 나노 물질로 구성된 양자점인 '탄소 양자점'이 생성된다. 신선한 에탄올 용액에 용해되면 탄소 양자점은 좁은 밴드의 깊은 붉은 빛을 방출한다. 연구원들은 탄소 양자점을 사용하여 새로운 발광 전기 화학 장치를 제조할 수 있었으며, 최대 100 坎델라/제곱미터(cd/m2)의 밝기를 생성할 수 있다. 이것은 일반 컴퓨터 화면에서 발산되는 광량과 동일하다. 왕 박사는 "우리의 방법은 자작 나무잎에 국한되지 않는다는 점에 유의하는 것이 중요하다"라고 덧붙였다. 그는 "우리는 동일한 압력 조리 방법으로 다른 식물 잎을 테스트했으며 모두 유사한 빨간색 방출 탄소 양자점을 생성했다. 이러한 다양성은 이 변환 과정이 다른 위치에서 사용될 수 있음을 시사한다"고 말했다. 상업용 양자점과는 달리, 새롭게 개발된 바이오 기반 탄소점은 석유화학 화합물, 중금속, 또는 중요한 원재료를 포함하지 않는다. 왕 박사는 이러한 바이오매스 기반 탄소점이 고갈되는 석유 화합물 대신 유기 반도체의 원료로 사용될 수 있음을 시사한다고 말했다. 연구팀은 이 바이오 기반 탄소점이 발광 소자를 넘어 다양한 분야에서 응용될 수 있다고 기대했다. 왕 박사는 "이 카본닷은 바이오 이미징, 센싱, 위조 방지 등 여러 응용 분야에서 유망한 소재다. 우리는 이러한 지속 가능하고 발광성 있는 탄소점의 새롭고 흥미로운 용도를 탐구하기 위해 협력을 기대하고 있다'라고 말했다.
-
- IT/바이오
-
- 10월 생산·소비·투자 '트리플 감소'⋯반도체 8개월 만에 최대폭 하락
- 10월 산업생산과 소비, 투자 준 산업활동 3대지표가 모두 '마이너스'를 기록한 것으로 나타났다. 3대지표가 모두 감소한 것은 석달만이다. 전산업 생산은 임시공휴일 등의 영향으로 42개월 만에 최대폭으로 줄었다. 반도체 생산 역시 8개월 만에 가장 크게 감소했다. 30일 통계청이 발표한 산업활동동향에 따르면 10월 전(全)산업 생산(계절조정·농림어업 제외) 지수는 111.1(2020년=100)로 전달보다 1.6% 감소했다. 2020년 4월(-1.8%) 이후 3년 6개월 만에 최대폭 감소이다. 지난 8~9월 연속으로 플러스를 나타내며 호조를 이어가다가 반락한 흐름이다. 다만 전년 동월 대비로는 3개월 연속 증가세를 이어갔다. 광공업 생산은 광업 및 제조업, 전기·가스업에서 모두 줄어 전월보다 3.5% 감소했다. 이는 지난해 12월(-3.5%) 이후 10개월 만에 최대 감소폭이다. 제조업 생산은 전자부품(10.4%), 자동차(3.2%), 1차금속(4.0%) 등에서 늘었지만 반도체(-11.4%), 기계장비(-8.3%), 전기장비(-5.8%) 등에서 줄었다. 반도체는 지난 7월(-2.5%) 이후 8월(13.5%), 9월(12.8%) 두 달 연속 두 자릿수로 증가하다 지난달 다시 감소했다. 감소폭은 지난 2월(-15.5%) 이후 8개월 만에 가장 컸다. 제조업 출하는 반도체, 기계장비 등에서 줄어 6.5% 감소했다. 제조업 재고는 반도체, 통신·방송장비 등에서 감소했지만 전자부품, 화학제품 등에서 증가하면서 전월 대비 0.4% 올랐다. 제조업의 재고/출하 비율(재고율)은 122.3%로 전달보다 8.4%포인트(p) 상승했다. 전자부품(41.5%), 화학제품(5.3%), 1차금속(2.2%) 등에서 증가했고, 반도체(-9.6%), 통신·방송장비(-10.3%), 자동차(-2.0%) 등에서 감소했다. 서비스업 생산은 0.9% 줄어 5개월 만에 감소로 전환했다. 정보통신(1.3%), 예술·스포츠·여가(4.2%) 등에서 늘었고, 도소매(-3.3%), 금융·보험(-1.2%) 등에서 줄었다. 소비 동향을 보여주는 소매 판매도 전월보다 0.8% 줄었다. 소매 판매는 지난 8월(-0.3%) 이후 9월(0.1%) 일시적으로 증가했다가 지난달 다시 줄었다. 추석이 낀 9월에 음식료품 등의 소비가 늘었던 것이 사라지면서 소비는 마이너스로 돌아섰다. 의복 등 준내구재(4.3%), 통신기기 및 컴퓨터 등 내구재(1.0%)에서 판매가 늘었으나 음식료품 등 비내구재(-3.1%)에서 판매가 감소했다. 설비투자는 8월(4.1%), 9월(8.7%) 두 달간 증가세를 보이다 전월에는 3.3% 감소했다. 특수산업용기계 등 기계류(-4.1%) 및 자동차 등 운송장비(-1.2%)에서 투자가 모두 줄었다. 이미 이뤄진 공사 실적을 나타내는 건설기성(불변)은 토목(-1.0%)에서 줄고, 건축(1.3%)에서 늘어 전월보다 0.7% 증가했다. 건설수주(경상)는 항만·공항 등 토목(-23.4%)에서 줄었으나 사무실·점포 등 건축(48.6%)에서 늘어 전년 같은 달보다 26.6% 증가했다. 현재 경기 상황을 보여주는 동행 종합지수 순환변동치는 수입에 내수출하가 감소하면서 0.1포인트(p) 하락했으나 앞으로의 경기 상황을 보여주는 선행 종합지수 순환변동치는 0.3p 상승했다. 통계청은 지난달 광공업 생산 지표가 전달 대비 기저효과 등으로 감소했지만 지난해와 비교하면 평균적으로 개선 흐름을 보이고 있다고 지적했다. 김보경 통계청 경제동향통계심의관은 "10월 광공업생산은 8~9월 높은 증가율의 기저효과와 임시공휴일로 조업일수가 줄면서 감소했다"며 "전월 대비로는 감소했지만 전년 동월 대비로는 2개월째 플러스를 유지하고 있어서 회복 흐름을 보이고 있다. 불규칙 요인을 제외하고 최근 3개월간 광공업생산지수의 이동평균비를 보면 플러스 흐름을 나타내고 있다"고 설명했다.
-
- 경제
-
- 벤처천억기업, 869개로 최대…고용 인원 32만 명
- 우리나라 '벤처천억기업'이 869개로 최고치를 기록했다. 중소벤처기업부는 27일, 지난해 말 기준으로 매출 1000억원 이상 달성 '벤처천억기업'이 1년 전보다 130개(17.6%) 증가한 869개로 역대 최대를 기록했다고 밝혔다. 중소벤처기업부와 벤처기업협회는 이날 용산구 몬드리안서울에서 벤처천억기업의 성과를 기념하고 그 위상을 홍보하는 행사를 개최했다. 이 자리에서는 지난해 처음으로 매출 1000억 원을 달성한 134개 기업에 트로피가 수여되었다. 1988년 벤처 기업 제도 도입 이후, 벤처 기업으로 인정받은 총 12만 7851개 기업 중에서 지난해 말 결산 기준으로 매출 1000억 원 이상을 기록한 기업은 전체의 44.1%에 해당하며, 이 중 상당수가 상장사로 나타났다. 이러한 벤처천억기업들은 지난 몇 년간 꾸준한 성장을 보여왔다. 2004년에는 68개 기업이었던 것이 2018년에는 587개, 2019년에는 617개, 2020년에는 633개, 2021년에는 739개로 증가했으며, 지난해에는 800개를 넘어섰다. 매출 1조원 이상 기업 26개 2021년에 이어 2022년에도 매출 1000억 원 이상을 달성한 기업의 수는 674개에 달했다. 또한, 매출 1조 원 이상을 기록한 기업은 총 26개로 집계되었다. 이러한 데이터는 벤처 기업들의 성장과 시장에서의 영향력 증대를 보여주는 지표로 해석될 수 있다. 최근 벤처천억기업 목록에 새롭게 진입한 기업은 총 134개로 집계되었다. 이 중에서 벤처천억기업에서 한 번 제외되었다가 다시 목록에 올라온 기업은 61개에 달한다. 이들 벤처천억기업의 업종 분포를 살펴보면, 기계·자동차·금속 업종이 전체의 24.9%를 차지해 가장 큰 비중을 나타내고 있다. 이어서 컴퓨터·반도체·전자부품 업종이 16.9%, 음식료·섬유·비금속·기타 제조 업종이 14.3%, 도소매·연구개발서비스·기타 서비스 업종이 12.3% 순으로 나타났다. 지역별로는 벤처천억기업의 61.7%가 수도권에 위치하고 있으며, 이들 기업의 평균 업력은 26.0년으로 나타났다. 또한, 매출 1000억 원 달성까지 소요된 평균 기간은 18.2년으로 집계되었다. 이들 기업의 평균 수출액은 592억 원으로, 전체 매출 대비 22.1%를 차지하는 것으로 나타났다. 이러한 데이터는 벤처천억기업들이 국내뿐만 아니라 해외 시장에서도 활발히 활동하고 있음을 보여준다. 벤처천억기업, 고용 인원 32만명 벤처천억기업 고용 인원은 32만명으로 전년 대비 약 2만명(6.8%) 늘었다. 이 기업들의 총 고용 인원은 현재 약 32만 명으로, 이는 전년 대비 약 2만 명(6.8%) 증가한 수치다. 이는 삼성(27만 4000명), 현대차(18만 9000명), LG(15만 7000명), SK(12만 6000명) 등 한국의 주요 4대 그룹의 종사자 수보다 많은 것이다. 이들 벤처천억기업의 매출은 전년 대비 33조 원(16.5%) 증가한 229조 원으로, 이는 삼성(341조 원), 현대차(240조 원)에 이어 재계에서 세 번째로 큰 규모다. 이는 또한 SK(224조 원)와 LG(141조 원)의 매출을 넘어서는 것이다. 더욱 주목할 만한 점은 벤처천억기업들의 매출 증가율이 대기업(15.5%), 중견기업(14.6%), 중소기업(14.4%)보다 모두 높다는 것이다. 이러한 데이터는 벤처천억기업들이 한국 경제에서 중요한 역할을 하고 있으며, 성장 및 고용 창출 면에서 주요 기업 그룹들과 견줄 만한 위치에 있다는 것을 시사한다. 각 벤처천억기업은 평균적으로 104.2개의 산업재산권을 보유하고 있는 것으로 나타났다. 이들 기업의 매출액 대비 연구개발(R&D) 투자 비중은 2.9%로, 중소기업의 평균 0.7%에 비해 약 4배 높은 수준이다. 연 매출 1000억 원 이상의 중소·중견기업과 비교했을 때, 벤처천억기업의 비중은 기업 수에서 33.2%, 매출에서는 27.9%, 종사자 수에서는 23.7%를 차지하는 것으로 집계됐다. 이영 중소벤처기업부 장관은 "최근 어려운 경제 환경 속에서도 신규 벤처천억기업이 134개나 증가했다는 것은 미래를 향한 도전과 혁신의 중심에 벤처기업이 있다는 것을 보여준다"며 "벤처기업이 혁신 성장의 상징으로 지속적으로 성장할 수 있도록 중소벤처기업부도 적극적인 정책적 지원을 제공할 것"이라고 강조했다.
-
- 산업
-
- 전기차 배터리 니켈 기반 음극, 충전 수명 연장 길 열렸다
- 전기자동차(EV) 배터리의 수명을 연장하고 안전한 배터리를 만들 수 있는 새로운 기준이 제시됐다. 현재 전기차 배터리 시장에서 리튬이온 배터리가 가장 널리 사용되고 있지만, 화재 위험과 비싼 비용 문제로 어려움을 겪고 있는 상황이다. 최근 이 분야의 연구가 진전을 보이고 있다. 야후 뉴스에 따르면, 텍사스 대학교(UT) 오스틴캠퍼스 연구팀은 전기자동차용 배터리에서 사용되는 니켈 기반 음극의 균열 원인을 확인했다고 보도했다. 이 발견은 배터리의 충전 수명을 연장하고 더 안전한 배터리를 제작하는 데 중요한 발전으로 평가된다. 니켈 기반 음극은 배터리의 주요 부품 중 하나로, 사이언스다이렉트(ScienceDirect)에 따르면, 사이클 수명에 대한 의문이 있지만 높은 용량과 밀도를 제공하는 것으로 알려져 있다. 전기자동차 배터리의 수명을 단축시키는 음극 균열 문제는 오랜 기간 사용으로 인한 마모로 인해 발생하는 것으로 여겨져 왔다. 이 문제는 대부분의 업계 전문가들에 의해 '필연적'인 현상으로 인식되어 왔다. 그러나 UT 연구팀은 이러한 균열이 전해질과 음극 사이의 반응과 더 밀접한 관련이 있다는 새로운 발견을 했다. 이 발견은 파워 팩의 유용성을 확장하고, 더 나은 화학적 구성을 가진 배터리를 개발하는 데 중요한 기여를 할 수 있을 것으로 보인다. 연구팀의 책임자 아루무감 만티람(Arumugam Manthiram)은 "이 분야의 전반적인 이해에 오류가 있었으며, 우리는 이러한 오해를 바로잡고 전해질에 더 많은 주목을 기울여야 함을 보여주고 싶다"고 말했다. 이러한 연구 결과는 배터리의 안전성을 향상시키고, 이미 성장하고 있는 전기자동차 부문의 확장에 기여할 수 있는 새로운 검사 방법과 업계 노력의 일부로서 중요한 의미를 가진다. 리튬 이온 배터리에서 충전 및 방전 과정 중에 리튬 이온은 양극과 음극 사이를 오가며 이동한다. 미국 에너지부에 따르면, 이 이온들은 전해질이라고 불리는 용액(액체 또는 고체 형태일 수 있음)을 통해 이동한다. UT 연구팀이 최근에 발견한 문제의 핵심은 바로 이 전해질과 관련된 것이다. 연구팀 책임자 아루무감 만티람은 실험실 보고서에서 "전해질이 음극 표면과 반응하여 균열 형성을 증가시킨다는 사실을 발견했다"고 밝혔다. UT 팀은 배터리 작동 중에 가역적인 균열이 발생한다고 보고했는데, 이 보고서에 따르면 전해질은 이러한 균열로 침투하여 음극에서 산소를 제거하고 균열을 고정시킨다. 배터리 전문가들은 리튬 이온 배터리에서 발생하는 문제를 이해하기 쉽게 설명하기 위해 이 과정을 강둑이 침식되는 강에 비유했다. 이들의 견해에 따르면, 전해질이 음극 표면에 미치는 영향이 배터리 열화의 주요 원인으로 지목되고 있다. 이번 발견을 통해, 연구팀은 이제 더 많은 배터리 전문가들이 균열 문제 해결을 위해 전해질과 음극 간의 상호작용에 초점을 맞추기를 기대하고 있다. 실제로, 새로운 양극재를 개발하는 것보다 기존 양극재의 문제를 해결하는 것이 더 효과적일 수 있다는 의견이 제시됐다. 또한, 전 세계의 연구소에서는 최적의 배터리 성능을 달성하기 위해 다양한 금속 혼합을 탐구하고 있다. 이러한 연구에는 철이나 공기와 같은 일반적인 요소들도 포함되어 있으며, 이는 전기자동차 배터리의 성능과 안정성 향상을 위한 중요한 연구 분야로 자리잡고 있다. UT 연구원인 스티븐 리(Steven Lee)는 전해질 사용의 개선이 배터리 수명 연장에 중요한 역할을 할 수 있다고 강조했다. 리는 "상업적인 측면에서 보면, 입증되지 않은 이국적인 구조 수정 방법에 의존하는 것보다 더 나은 전해질을 사용하는 것이 훨씬 더 확장성이 뛰어나다"고 밝혔다. 그는 이어 "우리의 접근법은 배터리 수명을 연장하기 위한 더 쉬운 해법을 제공할 수 있는 새로운 관점으로 배터리 커뮤니티를 교육하는 것"이라고 덧붙였다. 한편, 전문가들은 전기차 사용의 증가와 함께 배터리 안정성이 중요한 경쟁 요소가 될 것으로 전망하고 있다. 이에 따라, 한국은 2023년 9월 여의도 전경련회관 콘퍼런스센터에서 전기차 및 에너지저장시스템(ESS) 화재의 원인 분석과 예방, 진압에 관한 기술 세미나를 개최했다. 전기차 화재의 주요 원인으로는 노화에 따른 성능 저하, 주행 중 배터리의 충격 및 손상 등이 꼽힌다. 대부분의 전기차 화재는 충전 완료 후 2시간에서 5시간 사이에 발생하는데, 특히 셀 간 전압 차를 조정하는 셀밸런싱 과정에서 문제가 발생할 가능성이 높다. 이러한 문제를 해결하기 위해 전기차 충전 기술 기업 차지인의 최영석 대표는 "전기차를 장기간 사용할 경우 화재 발생 위험이 있으므로 노화되고 손상된 배터리를 식별하는 기술이 필요하다"고 강조했다.
-
- 산업
-
- 美 콜럼비아대, 합성 초원자 신소재 발견⋯"세계 최고의 반도체"
- 미국 콜롬비아 대학교(Columbia University)의 화학자 팀은 기존 반도체인 실리콘보다 훨씬 빠른 속도로 정보를 전달할 수 있는 새로운 반도체 물질을 발견했다고 과학 전문매체 톰스하드웨어(Tomshardeware)가 최근 보도했다. 이 물질은 'Re6Se8Cl2'로 명명되며, 레늄(Re), 셀레늄(Se), 염소(Cl)로 이루어진 합성 물질이다. 이 매체는 새로 발견된 신소재가 실리콘을 대체하지는 못하겠지만, 아마도 실리콘을 대체할 길을 열어줄 수도 있다고 전했다. 기존 반도체에는 실리콘이 사용됐다. 실리콘(Si)은 주기율표에 나열된 원소 중 가장 흥미로운 원소 중 하나다. 실리콘은 집적회로(IC)가 존재하는 거의 모든 곳에 존재한다. 실리콘이 없다면 우리가 세상을 이해하고 작동하는 데 사용하는 대부분의 도구와 함께 가상의 모든 것을 잃을 수도 있다고 톰스 하드웨어는 평가했다. 반면, Re6Se8Cl2는 합성 초원자 물질로 자연계에서는 찾을 수 없다. Re6Se8Cl2는 논문 공동저자 중 한 명인 자비에 로이의 실험실에서 제조됐다. Re6Se8Cl2는 기존 반도체와 달리 '엑시톤-폴라론'이라는 새로운 준입자를 이용해 정보를 전달한다. 엑시톤-폴라론은 전자와 포논(원자 구조 진동으로 생성되는 입자)이 결합해서 형성된 입자다. Re6Se8Cl2 내부에서는 엑시톤-폴라론이 거의 산란을 거의 일으키지 않고 직진 경로로 이동한다. 이는 기존 반도체에의 전자 이동 방식, 즉 산란을 일으키며 움직이는 것과는 대조적이다. 이러한 특성 덕분에 Re6Se8Cl2는 기존 반도체보다 훨씬 빠른 속도로 정보를 전달할 수 있다. 연구팀에 따르면 Re6Se8Cl2를 통한 전자의 이동 속도는 실리콘을 통과하는 전자보다 약 2배 빠른 속도로 정보를 전달할 수 있다. Re6Se8Cl2의 발견은 반도체 기술의 미래에 중요한 의미를 갖는다. 이 새로운 물질은 기존 반도체보다 훨씬 빠른 속도로 정보를 전달할 수 있기 때문에, 향후 컴퓨터, 스마트폰, 통신 장비 등의 성능을 크게 향상시킬 수 있을 것으로 기대된다. 또한, Re6Se8Cl2는 기존 반도체와는 다른 물리적 특성을 가지고 있어, 새로운 형태의 전자 장치를 개발에도 활용될 가능성이 있다. 그러나 Re6Se8Cl2의 제조 과정은 레늄, 셀레늄, 염소를 고온에서 반응시켜야 하며, 이는 복잡하고 비용이 많이 드는 작업이다. 특히, 반응에 필요한 레늄은 희귀 금속으로 가격이 높아 대규모 제조에 어려움이 있다. 이에 연구팀은 추후 연구를 통해 Re6Se8Cl2의 제조 효율을 개선하고, 이를 다양한 전자 장치에 적용할 수 있는 방법을 개발할 계획이다. 이번 연구는 과학 저널 '사이언스(Science)'에 게재됐다. 향후 Re6Se8Cl2의 제조 과정이 개선되고, 이 물질을 다양한 전자 장치에 적용할 수 있는 방법이 개발된다면, Re6Se8Cl2는 기존 반도체를 대체할 수 있는 차세대 반도체로서의 위치를 확보할 수 있을 것으로 예상된다.
-
- IT/바이오
-
- [퓨처 Eyes(12)]액체 금속, 화학공학 공정 혁신 '녹색화' 기대
- 호주 시드니 대학교에서 저온에서 촉매 역할을 하는 액체 금속을 개발했다. 액체 금속은 말 그대로 액체 상태인 금속을 의미한다. 이러한 금속들은 특정 온도에서 액체 상태로 존재하며, 그 특성 때문에 로봇공학이나 인공 장기, 핵융합 등 여러 분야에서 다양한 용도로 활용된다. 과학 전문매체 사이키(phys.org)에 따르면 호주 시드니 대학교 화학·생명분자 공학부의 쿠로쉬 칼란타르-자데 교수와 시드니 대학교와 뉴사우스웨일스 대학교에서 활동하는 준마 탕 박사가 이끄는 연구팀은 에너지 대량 소비가 특징인 20세기 초반의 화학 공정을 대체할 새로운 기술인 액체 금속을 테스트했다고 발표했다. '네이처 나노테크놀로지'에 발표된 액체 금속에 대한 최신 연구는 화학 산업의 전환점을 제시하고 있다. 연구팀은 녹는점이 낮은 30도의 액체 갈륨에 녹는점이 높은 주석과 니켈을 용해해 액체 금속을 얻었다. 액체 금속은 높은 전도성, 낮은 점도, 그리고 가변적인 형태를 가지고 있다. 즉, 액체 금속은 고체 금속에 비해 이동성이 높고, 형태를 자유롭게 변형할 수 있다. 대표적인 액체 금속인 수은은 상온에서 액체 상태를 유지한다. 연구팀은 에너지를 대량 소비하는 전통적인 고체 촉매 대신 액체 금속을 사용하는 새로운 방법을 도입했다. 현재 화학 공정으로 금속을 생산하는 것은 전체 온실가스 배출의 약 10~15%를 차지하고 있다. 전 세계 에너지의 10% 이상을 화학 공정에서 사용하는 현재 상황에서 이번 액체 금속 기술 개발은 중요한 의미를 갖는다. 액체 금속을 사용하는 방법은 기존 고체 촉매 기반 공정에 비해 에너지 소비를 크게 줄일 수 있다. 이는 환경에 미치는 부정적인 영향을 감소시키는 동시에 산업 효율성을 향상시킬 수 있다. 이 연구는 화학 산업의 지속 가능한 미래를 위한 중요한 단계로 여겨지며, 화학 공정의 혁신과 환경 보호라는 두 가지 주요 과제를 동시에 해결할 수 있는 가능성을 제시했다. 액체 금속의 특성 액체 금속은 독특한 물리적 성질과 화학적 안정성 덕분에 전자기기와 고체 배터리의 전극 소재, 냉각 시스템, 의료기기, 로봇공학 등 다양한 분야에서 적용될 수 있는 잠재력을 가지고 있다. 액체 금속은 뛰어난 전기 전도성을 가지고 있어, 유연한 전자기기, 인쇄 회로, 연결기기, 센서, 안테나 설계 등에 사용된다. 또한, 액체 금속의 낮은 점도와 높은 표면 장력은 미세 전자기기의 제조에 이상적이다. 아울러 액체 금속은 높은 열 전도성과 낮은 점도를 가지고 있어, 고성능 컴퓨터, 레이저 시스템, 핵 융합 반응기 등에서 발생하는 열을 효과적으로 관리하고 분산시키는 데 사용된다. 액체 금속은 핵 융합 반응기에서 냉각재로 사용되며, 핵 연료 재처리와 폐기물 관리에도 적용될 수 있다. 더 나아가 액체 금속의 생체 적합성과 유연성으로 인해, 의료 장치, 인공 장기, 생체 센서, 약물 전달 시스템 등의 개발에 활용된다. 액체 금속은 유연한 로봇, 착용 가능한 로봇 기술, 소프트 로봇공학에서 구조 및 센서 재료로서의 가능성을 가지고 있다. 액체 금속의 특성은 에너지 저장 시스템, 특히 고온 배터리와 연료 전지에서의 응용에 유리하다. 이러한 다양한 응용 분야는 액체 금속의 유연성과 기능성을 강조하며 미래 기술 발전에서 중요한 역할을 할 것으로 기대된다. 화학 공정 혁신으로 '녹색화' 기대 연구자들은 액체 금속이 기존 화학 산업의 '녹색화'를 앞당겨 화학 공정 혁신을 가져올 것으로 전망했다. 액체 금속 공정은 에너지 집약적인 고체 공정과 달리, 녹는점이 낮은 주석과 니켈을 용해하여 액체 금속의 표면으로 이동시키고 입력 분자인 카놀라유와 반응시킨다. 이 과정을 통해 작은 유기 사슬을 형성하며, 이 중에는 많은 산업에서 중요한 고에너지 연료인 프로필렌도 포함된다. 칼란타르-자데 교수는 "우리의 방법은 화학 산업이 에너지 소비를 줄이고 화학 반응을 녹색화하는 데 전례 없는 잠재력을제공한다"며 "2050년까지 화학 부문의 탄소 배출이 20% 이상을 차지할 것으로 예상되는 가운데, 패러다임 전환이 필수적이다"라고 말했다. 사진=시드니 대학교 연구팀은 녹는점이 높은 니켈과 주석을, 녹는점이 30도인 액체 갈륨 기반의 액체 금속에 용해시켜 액체 금속이라는 새로운 공정을 개발했다. 탕 박사는 "액체 갈륨에 니켈을 용해함으로써, 우리는 매우 낮은 온도에서 '슈퍼' 촉매로 작용하는 액체 니켈을 활용할 수 있게 되었다"고 설명했다. 저온에서 '슈퍼' 촉매 역할 시드니 대학교 화학 및 생명분자 공학부의 아리푸르 라힘 박사와 준마 탕 박사 팀은 액체 금속을 만든 공식을 낮은 온도 공정을 사용하여 다른 금속을 혼합함으로써 다양한 화학 반응에도 적용할 수 있다고 밝혔다. 탕 박사는 "낮은 온도에서 촉매 작용이 이루어지므로 이론적으로 주방 가스레인지에서도 가능하지만, 집에서는 시도하지 않는 것이 좋다"고 권했다. 한편 액체 금속은 다양한 분야에서 활용이 가능하다. 우선 냉각제다. 액체 금속은 열을 잘 전달하기 때문에, 반도체 제조 공정이나 레이저 제조 공정에서 냉각제로 활용된다. 또 액체 금속은 열을 잘 전달하기 때문에, 전자 제품이나 자동차의 냉각 시스템에서 열전도체로 활용된다. 전기를 잘 전달하기 때문에, 전기 회로나 센서의 전기 전도체로도 사용될 수 있다. 아직 연구 초기 단계에 있지만, 이러한 다양한 용도로 인해 액체 금속은 높은 잠재력을 지닌 신소재로 평가 받고 있다.
-
- 포커스온
-
- 혼다, 엔진 결함으로 미국서 25만대 리콜⋯올해 총 300만대 이상 리콜
- 혼다는 미국 도로교통안전국에 제출한 공식 공지에서, 아큐라와 혼다 차량의 일부 모델의 엔진 커넥팅 로드 베어링에 결함이 발견되어 "주행 중에 엔진이 부적절하게 작동하거나 정지하여 화재, 충돌 또는 부상의 위험을 증가시킬 수 있다"고 밝혔다. 리콜 대상에는 2015년부터 2020년까지 제조된 특정 아큐라 TLX(Acura TLX)와 2016년부터 2020년까지 제조된 아큐라 MDX SUV가 포함된다. 또한, 2018년과 2019년형 혼다 오딧세이(odyssey) 미니밴, 2016년과 2018년, 2019년형 파일럿(Pilot), 2017년부터 2019년까지 제조된 리지라인(Ridgeline) 픽업트럭도 잠재적으로 영향을 받을 수 있다. 혼다는 해당 차량 소유자들에게 2024년 1월 2일부 서면 통지를 보내고, 혼다 딜러에서 엔진을 무료로 검사하고 수리 또는 교체할 것이라고 밝혔다. 한편,
-
- 산업
-
- 고에너지 레이저로 3D 프린팅 금속 미세 조정 기술 개발
- 고에너지 레이저로 3D 프린팅 금속을 미세조정하는 기술이 개발됐다. 금속 3D 프린터는 기본적으로 재료를 층층이 쌓아 올리는 일반적인 3D 프린터의 원리를 따른다. 이 과정에서 금속 분말(파우더)을 프린터 바닥에 얇게 펴 바르고, 제품의 형상에 맞게 해당 금속 분말 부위에 고출력, 고정밀 레이저를 적용한다. 레이저의 고열에 의해 금속 파우더가 미세 용융되면서 입자들이 결합한다. 이러한 과정에서 레이저로 금속을 미세 조정하는 기술이 최근 개발되어 주목 받고 있다. 미국 과학 전문 매체 뉴아틀라스(newatlas)는 영국 케임브리지 대학교가 주도하는 연구팀이 고에너지 레이저를 사용해 금속의 복잡한 형태를 손상시키지 않으면서 3D 프린팅 금속의 특성을 미세 조정하는 새로운 기술을 개발했다고 보도했다. 적층 인쇄나 3D 프린팅은 엔지니어링과 제조 분야에서 점점 더 중요한 도구로 자리 잡고 있지만, 여전히 해결해야 할 중요한 단점들이 있다. 이를 극복하기 위한 새로운 접근 방식이 필요하다. 3D 프린팅 금속은 일반적으로 금속 합금의 미세한 분말을 얇은 층으로 놓는 기계를 사용한다. 이 과정에서 디지털 모델에 따라 레이저 또는 전자빔으로 각 층을 녹이거나 소결(분말 입자들이 가열 등의 활성화 과정을 거쳐 하나의 덩어리로 되는 과정)하고, 새로운 층을 추가한다. 프린팅이 완료된 후에는 여분의 파우더를 제거하고 최종 제품을 완성한다. 이 방식을 통해 복잡한 형태를 빠르게 제작할 수 있지만, 금속 제품 제작에는 형태 외에도 고려해야 할 요소가 많다. 금속의 물리적, 화학적, 기계적 특성 간의 복잡한 상호작용이 중요한데, 이를 적절히 제어하지 못하면 최종 제품의 품질이 떨어질 수 있다. 예를 들어, 3D 프린팅으로 제작한 칼은 전통적인 방식으로는 어려운 복잡한 곡선과 정교한 디자인을 구현할 수 있지만, 금속 자체의 특성을 고려하지 않으면 칼날이 쉽게 부러지거나 너무 부드러워질 수 있다. 이는 3D 프린팅의 복잡한 형태 제작에서 해결해야 할 주요 과제다. 금속 작업자들은 수천 년의 경험과 최근 과학의 발전을 바탕으로 금속의 특성을 효과적으로 제어할 수 있는 검증된 기술을 개발해왔다. 금속 가공의 과정에는 금속을 가열하고 두드려 그 결정 구조를 변화시키는 작업이 포함된다. 가열, 냉각, 단조(고체인 금속재료를 해머 등으로 두들기거나 압력을 가하는 기계적인 방법으로 일정한 모양으로 만드는 조작) 과정을 통해 조절함으로써, 금속 조각은 메스에서 I빔(I-Beams)에 이르기까지 다양한 용도에 적합한 구조로 미세 조정될 수 있다. 그러나 이러한 방식은 단순한 모양의 금속 물체에는 적용될 수 있지만, 복잡한 3D 프린팅된 형태에는 적용하기 어렵다. 용광로에 넣거나 망치로 두드리는 방법은 3D 프린팅의 목적에 부합하지 않기 때문이다. 이 문제를 해결하기 위해 싱가포르, 스위스, 핀란드, 호주의 연구원들로 구성된 케임브리지 대학 팀은 현장에서 금속의 특성을 변경하기 위해 레이저를 사용하는 방법을 적용하기로 했다. 이 아이디어의 핵심은 레이저를 사용해 스테인리스 스틸로 만들어진 완성된 물체의 특정 부분을 선택적으로 녹여 결정 구조를 변경하는 것이다. 이 방식을 통해 연구팀은 3D 인쇄된 금속의 취성(매우 적은 변경에도 파괴되는 경우, 이를 '깨지기 쉽다'고 하고 그 정도를 '취성'이라고 함) 문제를 해결하고 금속을 강화하는 데 성공했다. 레이저를 사용한 이러한 미세한 재가열 과정은 전통 금속 가공에서 망치로 쇠를 단련하는 것과 유사하다. 연구팀은 금속을 연마하는 전통적인 기술에 착안하여 3D 프린팅에서 유사한 결과를 얻기로 했다. 예를 들어, 고품질의 칼날을 만드는 전통적인 방법 중 하나는 강철과 철을 사용해 여러 번 용접하고 두드리는 것이다. 이 과정에서 두 금속이 정밀하게 층을 이루며 칼날이 형성된다. 이러한 방법을 통해 칼 대장장이는 칼날 전체의 특성뿐만 아니라 특정 부분의 특성도 제어할 수 있으며, 결과적으로 칼날의 중앙은 유연하고, 가장자리는 날카롭게 유지된다. 케임브리지 대학 연구팀은 레이저로 처리한 부위와 처리하지 않은 부위를 번갈아 가며 대장장이가 구사한 것과 흡사한 기술을 개발했다. 이 기법을 통해 그들은 제품의 최종 속성을 효과적으로 제어할 수 있었다. 케임브리지 공학부의 마테오 세이타(Matteo Seita) 박사는 "이 방법이 금속 3D 프린팅 비용을 줄이고, 결과적으로 금속 제조 산업의 지속 가능성을 향상시킬 수 있다고 생각한다"며 "가까운 미래에 용광로의 저온 처리 과정을 우회하여, 3D 프린팅 부품을 엔지니어링 분야에 사용하기 전에 필요한 단계를 더욱 줄일 수 있기를 바란다"고 말했다. 한편, 최근 미국 캘리포니아 공과대학교(칼텍, Caltech) 연구팀은 독감 바이러스만큼 작은 금속재료로 3D 프린팅에 성공했다. 칼텍의 제조 방법에 따르면 150나노미터(독감 바이러스와 비슷한 크기)의 작은 금속재료를 비슷한 크기의 기존 재료보다 3~5배 더 견고하게 만들 수 있다. 또한 한국의 한국재료연구원은 용접기법을 사용하는 3D 프린팅 과정에서 용융금속의 부피를 제어하는 원천기술을 개발했다. 이를 통해 3차원 공간에서 금속을 자유롭고 연속적으로 프린팅할 수 있는 금속 3D 프린팅 펜 기술을 개발했다. 금속 3D 프린팅 펜 기술의 장점은 3차원 공간에서 용접토치가 움직이는 방향대로 금속을 연속적으로 적층 제조할 수 있다는 것이다. 기존 레이저 기반 금속 3D 프린팅과 비교할 때, 장비 구축 비용이 낮고 상용 용접재료를 사용해 빠르게 적층제조 할 수 있다. 또한 제조시간이 단축되고, 층간 경계가 없으며, 치밀한 미세조직을 형성해 우수한 기계적 성질을 갖는 제품을 만들 수 있다.
-
- 산업
-
- 美 캘텍, 바이러스만큼 작고 강력한 3D 프린팅 금속 개발
- 독감 바이러스보다 작고 내결함성이 크게 향상된 새로운 3D 프린팅 금속이 개발됐다. 현재의 3D 프린터는 완성된 모형의 품질이 기존 제품보다 떨어진다는 단점이 있었다. 과학기술 전문매체 톰스하드웨어(tom’s HARDWARE)는 최근 미국 캘리포니아 공과대학교(캘텍, Caltech) 연구자들이 독감 바이러스만큼 작은 금속재료로 3D 프린팅에 성공한 사례를 소개했다. 캘텍의 제조 방법에 따르면 150나노미터(독감 바이러스와 비슷한 크기)의 작은 금속재료를 비슷한 크기의 기존 재료보다 3~5배 더 견고하게 만들 수 있는 것으로 밝혀졌다. 이 방법으로 금속을 3D 프린팅하는 것이 좋은 이유는 무엇일까. 작은 규모의 재료 제조는 원자 수준에서 복잡한 미세 구조를 가지며, 이는 큰 금속 물체에서 심각한 결함을 일으킬 수 있다. 그러나 나노 규모에서는 상황이 달라진다. 완벽하고 결함이 없는 나노 기둥은 자체적인 접촉으로 인해 무너질 수 있지만, 결함이 많은 나노 기둥은 오히려 결함에 대한 내성이 크게 향상된다. 이번 연구 논문의 주 저자인 웬싱 창(Wenxin Zhang)에 따르면, 나노 구조물 내부의 기공은 전체 구조를 약화시키기보다는 결함을 거의 즉시 중단시킬 수 있다. 이는 무엇을 의미할까. 나노 규모에서 물리학의 법칙이 매우 독특해지며, 이 분야의 기술 발전에 따라 우리는 이러한 비정상적이고 모순적인 현상을 더 자주 목격하게 될 것이다. 더 중요한 것은, 이러한 발견이 나노 크기의 센서, 열 교환기 등과 같이 매우 유용한 다양한 제품을 제조하는 데 사용될 수 있다는 점이다. 비록 기술적으로는 3D 프린팅의 일종이지만, 캘텍 연구소에서 사용되는 나노 스케일 재료의 특수 제작 과정은 소비자용 최고의 3D 프린터에서 구현하기는 거의 불가능할 것이다. 이 과정은 매우 복잡하며, 감광성 혼합물을 만드는 것부터 시작해, 이 혼합물을 레이저로 경화시키고, 니켈 이온이 함유된 용액을 주입하며, 물질을 굽고, 부품에서 화학적으로 산소 원자를 제거하는 단계를 포함한다. 3D 프린팅은 평면의 문자나 그림을 인쇄하는 것이 아니라, 입체적인 형태를 만들어내는 과정이다. 이 기술은 3차원 공간에 실제 사물을 생성하여 의료, 생활용품, 자동차 부품 등 다양한 물건을 제작할 수 있다. 3D 프린터에는 잉크 대신 플라스틱, 나일론, 금속과 같이 입체 도형을 만드는 데 사용되는 재료가 들어 있다. 이러한 재료를 활용하는 기술의 발전으로 이제는 고무, 종이, 콘크리트, 심지어 음식까지 다양한 재료를 이용한 3D 인쇄가 연구되고 있다. 한편, 한국의 정형외과용 임플란트 기업 오스테오닉이 자체 기술로 개발한 3D 프린팅 척추 임플란트 제품인 ‘지니아 3D 프린티드 케이지(ZINNIA 3D Printed Cage)’를 최근 출시했다. 이 제품은 인체 친화적인 티타늄 파우더로 3D 프린팅되어 척추 퇴행성 질환, 디스크 손상 또는 탈출 등의 치료에 사용되는 추간체 유합 보형재다. '지니아 3D 프린티드 케이지'는 인체 뼈의 해면골 구조를 모방한 다공성 설계로, 기존의 추간 유합 보형재와 달리 뼈 형성을 조기에 촉진하는 ‘생체 모방 다공성 스캐폴드’가 특징이다.
-
- 생활경제
-
- 중국, 시멘트 공장 창고 재활용시설 떠 있는 '방주' 공개
- 사용하지 못하는 의미 있는 공장을 개조해 지역 명물인 카페나 식당을 만들거나, 자동차를 고치는 정비소로 활용하는 등 다양한 시도가 이어지고 있다. 물론 한국의 경우에만 국한되는 것은 아니다. 최근 중국에서도 역사적 가치가 있는 공장을 재활용하는 설계 도안이 공개됐다. 미국 매체 뉴아틀라스(newatlas)에 따르면, 중국 매드아키텍스(MAD Architects)는 지금은 사용하지 않은 상하이의 거대한 시멘트 공장 창고 위에 방주를 연상시키는 복합 용도의 건물을 디자인해 눈길을 끌고 있다. 방주 이미지를 구현할 이 시멘트 공장은 중국 상하이에 위치한 장장 시멘트 공장(Shanghai Zhangjiang Cement Factory)으로, 한때 중국 도시에서 가장 큰 시멘트 공장 중 하나로 꼽혔다. 이번 개조 공사는 대규모 창고에 중점을 뒀다. 1971년에 건설된 이 건물은 선박 가공을 위해 시멘트 공장에 원자재를 보내는 첫 번째 정류장 역할을 해왔다. 2013년에 운영을 중단하기까지 약 50년간 상하이의 도시 건설과 발전을 목격했다. 최근, 중국의 건축가들은 역사적인 산업 상징물인 시멘트 사일로, 가마 테일 타워, 1만미터 사일로 등을 포함하는 공장을 보존하기 위한 공원 클러스터 설계를 의뢰받았다. 이러한 역사적 가치가 있는 산업 건물들을 재개발하고 재사용함으로써, 문화와 스포츠, 창의적 상업 지원 시설 등을 갖춘 복합 캠퍼스로 변모시키는 계획이다. 매드가 수행할 개조 공사는 창고 벽의 산업적 미학을 존중하면서도, 지붕은 '아크(ark, 방주)'라는 이름의 새롭고 다양한 기능을 갖춘 복합 건물로 대체될 예정이다. 공동 작업 공간, 연구실, 다목적 홀, 카페, 대형 건물 등이 포함될 예정이며, 공개적으로 접근 가능한 옥상 공원이 설계되었다. 내부는 대형 금속 계단을 통해 접근 가능하며(엘리베이터 설치도 고려 중), 지상 층에는 조경과 판매 공간이 조성될 예정이다. 또한 기존 창고의 서쪽 벽은 유리벽으로 교체해 햇빛이 들어오는 밝은 공간으로 꾸민다. 건축적으로 복잡한 이 구조는 새로운 기둥, 바닥 트러스, 스패닝 트러스, 대형 스패닝 빔을 추가함으로써 방주가 떠 있는 것 같은 부유 효과를 구현한다. 오래된 벽은 스터드, 강철 와이어 메쉬, 강철 프레임을 사용하여 보강할 계획이다. 건물 내부에서 강변의 경치를 즐길 수 있도록, 오래된 공장 건물의 1층은 강변을 따라 개방되어 수변 광장과 통합될 예정이다. 건물 중앙에는 복도가 설치되어 공원 내의 광장과 강둑을 연결하며, 새로 설계된 다리는 강 양안을 연결해 지역민들이 이 새로운 공공 공간을 더욱 편리하게 이용할 수 있도록 할 것이다. 옥상은 추가적인 도시 공공 공간으로 구상됐다. 사람들은 이 공간에 자유롭게 접근할 수 있으며 멀리 천양강의 경치를 즐길 수 있다. 방주의 처마는 완만하게 기울어져, 건물 높이가 추안강 유역에 미칠 수 있는 압박감을 최소화하는 동시에 옥상 테라스에서 바라보는 전망을 최적화한다. 매드에 따르면, 이 프로젝트는 오래된 구조와 새로운 구조를 결합하여 시간과 물리적 차원에서의 3차원적 계층 구조를 구현함으로써 쇠퇴한 산업 현장에 새로운 활력을 불어넣을 것으로 기대한다. 매드의 공동창업자 마 옌쑹(Ma Yansong)은 "산업 유산은 그 안에 담긴 역사적 가치 때문뿐만 아니라 미래에 역사 의식을 주는 중요한 요소로 보존되고 활용되어야 한다"며 "이에 우리는 산업 미학을 단순히 찬양하고 통합하는 것이 아니라 현재와 미래의 정신에 초점을 맞출 필요가 있다"고 강조했다. 현재 방주 프로젝트는 진행 중이며 오는 2026년 완공될 예정이다.
-
- 생활경제
-
- 인도, 초소형 슈퍼커패시터 개발⋯에너지 저장 분야 혁신 기대
- 인도에서 개발된 초소형 슈퍼커패시터(콘덴서)가 에너지 저장 분야에서의 혁신을 예고했다. 과학기술 전문매체 '사이테크 데일리(SciTechDaily)'는 최근 인도 과학 연구소(Indian Institute of Science, IISc)의 응용 물리학부 연구진이 기존의 슈퍼커패시터보다 훨씬 작고 밀도가 높은 초소형 슈퍼커패시터를 개발했다고 보도했다. 화학 분야 학술지 'ACS 에너지 레터(Energy Letters)'에 게재된 최근의 연구에서, 연구원들은 전통적인 커패시터에서 사용되는 금속 전극을 대체하여, 전계 효과 트랜지스터(Field Effect Transistors, FET)를 전하 수집기로 활용해 슈퍼커패시터를 제작했다. 이 연구를 주도한 교신 저자인 아바 미스라(Abha Misra) IAP의 교수는 "FET를 슈퍼커패시터의 전극으로 사용하는 것은 커패시터의 전하 조정 방식에 있어 혁신적인 접근이다"라고 언급했다. 현재 사용되는 커패시터들은 주로 금속 산화물 기반의 전극을 사용하지만, 이는 전자 이동성이 낮다는 한계를 가지고 있다. 이 문제를 해결하기 위해, 미스라 박사 팀은 전자 이동성을 개선하고자 이황화몰리브덴(MoS₂)과 그래핀 층을 몇 원자 두께로 번갈아 가며 금 접점에 연결한 하이브리드 FET를 개발하기로 결정했다. 이들은 두 FET 전극 사이에 고체 젤 전해질을 적용하여 고체 상태의 슈퍼커패시터를 구축했다. 이 전체 구조는 이산화규소와 실리콘 베이스 위에 구축됐다. 미스라 박사는 "두 시스템을 통합하는 것이 설계의 핵심이다"라고 언급했다. 이 두 시스템은 서로 다른 전하 용량을 가진 두 개의 FET 전극과 이온성 매질인 젤 전해질로 구성된다. IAP의 박사 과정 학생이자 연구의 수석 저자 중 한 명인 비노드 판와르(Vinod PanWar)는 트랜지스터의 모든 이상적인 특성을 구현하기 위한 장치 제작이 어려웠다고 말했다. 이 초소형 슈퍼 커패시터는 매우 작아 현미경 없이는 볼 수 없으며, 제작 과정에서는 높은 정밀도와 뛰어난 손기술이 필요하다. 현미경으로 관찰 가능 크기와 무게 면에서 기존 슈퍼커패시터를 능가하는 이 초소형 슈퍼커패시터는 배터리를 대체할 수 있는 새로운 가능성을 제시하고 있다. 연구팀은 전계 효과 트랜지스터(FET)와 이황화 몰리브덴(MoS₂)과 그래핀 층을 통합해 특정 조건에서 전기 용량이 3000% 이상 증가하는 결과를 얻었다. 슈퍼커패시터(콘덴서)는 특히 전기 용량의 성능을 강화하여, 전지처럼 사용할 수 있도록 설계된 부품이다. 전자 회로에서 사용되는 이 커패시터는 전기적으로 충전지와 유사한 기능을 제공한다. 기본적인 원리는 '전력을 저장하여 필요에 따라 방출하는 것'이며, 전자 회로가 안정적으로 작동하도록 하는 데 필수적인 부품 중 하나이다. 초소형 슈퍼커패시터는 기존 슈퍼커패시터보다 훨씬 작고 조밀한 구조를 가진다는 장점이 있다. 이러한 특성은 거리의 가로등부터 전자제품, 전기 자동차, 의료 기기에 이르기까지 다양한 응용 분야에 활용될 수 있는 기회를 제공한다. 현재 이러한 대부분의 장치는 배터리로 작동한다. 하지만 배터리는 시간이 지나면서 전기 저장 능력이 감소하여 제한된 수명을 갖게 된다. 반면, 커패시터는 설계 특성상 훨씬 오래 전기를 저장할 수 있는 장점이 있다. 슈퍼커패시터는 배터리와 커패시터의 장점을 결합하여 대량의 에너지를 저장하고 방출할 수 있는 장치로, 차세대 전자기기에서 매우 중요한 역할을 할 것으로 여겨진다. 이번 연구는 초소형 슈퍼커패시터의 가능성을 보여주는 중요한 성과로 평가된다. 향후 연구가 성공적으로 진행된다면, 초소형 슈퍼커패시터는 기존의 배터리를 대체하여 다양한 전자 기기의 성능과 수명을 향상시키는 데 기여할 것으로 기대된다. 한국, 초소형 슈퍼커패시터 개발 현황 한편, 한국에서도 슈퍼커패시터 관련 연구와 개발을 진행하는 업체가 다수 있다. 에스피지(주)는 고체 전해질 기반의 슈퍼커패시터와 FET를 이용한 초소형 슈퍼커패시터를 개발하고 있다. 포스코케미칼(주)는 그래핀 기반의 초소형 슈퍼커패시터를, LG화학(주)는 전기 자동차용 초소형 슈퍼커패시터를 개발하고 있다. 한국의 슈퍼커패시터 기술은 세계 수준에 도달하고 있다. 이를 바탕으로 국내 업체들이 초소형 슈퍼커패시터 시장에서 글로벌 경쟁력을 확보할 수 있을 것으로 전망된다. 초소형 슈퍼커패시터는 다양한 전자 기기에 적용 가능한 높은 잠재력을 가지고 있다. 특히 전기 자동차, 스마트 워치, IoT 기기 등에서 기존의 배터리를 대체할 수 있는 새로운 솔루션으로 기대를 모으고 있다. 전기 자동차의 경우, 초소형 슈퍼커패시터를 사용하면 배터리의 용량을 줄일 수 있고, 충전 시간을 단축할 수 있다. 또한, 스마트 워치나 IoT 기기에서의 사용은 배터리 수명을 연장할 수 있다. 초소형 슈퍼커패시터 기술의 지속적인 개발과 상용화가 진행된다면, 에너지 저장 분야에서 혁신적인 변화를 이끌 것으로 기대된다.
-
- IT/바이오
-
- 희토류 금속으로 해양 우라늄 저비용 추출 기술 개발
- 희토류 금속으로 더 간단하고 저렴하게 해양 우라늄을 추출하는 기술이 개발됐다고 과학기술 전문매체 IFL사이언스가 최근 보도했다. 바다에는 육지보다 약 1000배 많은 우라늄이 있는 것으로 알려졌다. 우라늄은 1789년 발견된 후 도자기의 착색제로 사용되었지만, 현재는 원자력 산업과 의료 분야에서 널리 사용되고 있다. 우라늄은 금보다 더 풍부하고, 붕괴하면서 방출하는 방사선을 통해 쉽게 찾을 수 있다. 일반적으로 우라늄 공급은 수요를 충족할 수 있지만, 최근에는 이러한 추세가 지속되지 않을 것이라는 우려가 제기됐다. 세계가 화석 연료 대신 원자력과 같은 청정에너지로 전환함에 따라 새로운 우라늄 공급원을 찾아야 하는 시대로 접어든 것. 우라늄은 바다에 많이 존재하지만 추출하기 어렵다는 문제가 있다. 희토류 금속으로 해양 우라늄 추출 연구를 주도한 제시카 벨리섹 캐롤란(Jessica Veliscek Carolan) 박사는 "바다에는 육지보다 천 배 이상 많은 우라늄이 있지만, 희석되어 있어 추출하기가 어렵다"고 말했다. 벨리섹 박사는 "가장 큰 도전 과제는 바닷물, 소금, 철이나 칼슘과 같은 광물에 우라늄보다 훨씬 많은 양의 다른 물질이 존재한다는 것"이라고 지적했다. 연구팀은 우라늄과 금속 추출이 가능한 층상이중수산화물(LDH) 물질을 조사했다. LDH 물질은 특정 물질을 추출하도록 조정할 수 있는 양전하와 음전하 층을 가지고 있다. 연구팀은 바닷물과 같은 조건에서 우라늄을 추출하기 위해 LDH 물질에 네오디뮴을 첨가한 결과, 바다에 풍부한 다른 원소보다 우라늄을 선택적으로 흡수하는 데 특히 효과적임을 발견했다. 이 연구는 '에너지 어드밴시즈(Energy Advances)'에 게재됐다. 이 기술은 새로운 우라늄 수집에 유용할뿐만 아니라 원자력 산업에서 발생하는 방사성 폐수를 정화하는 데에도 사용될 수 있다. 벨리섹 박사는 "이러한 물질은 제조가 쉽고 저렴하다는 장점이 있다"며 "대규모 우라늄 추출을 위한 비용 효율적인 선택이 될 수 있다"고 말했다. 희토류 금속은 첨단 산업에 필수적인 소재로, 중국이 전 세계 생산량의 약 90%를 차지하고 있다. 이에 따라 희토류 금속의 안정적인 공급과 가격 안정이 국제 사회의 주요 관심사 중 하나다. 해양 우라늄은 바닷물에 포함된 우라늄을 추출하는 기술 개발로, 기존의 지층 우라늄 추출 기술에 비해 비용이 저렴하고 환경 친화적이라는 장점이 있다. 이번 연구는 희토류 금속을 활용한 해양 우라늄 추출 기술이 희토류 금속의 안정적인 공급과 가격 안정을 도모할 수 있는 동시에, 해양 우라늄의 경제성 확보에도 기여할 수 있을 것으로 기대된다.
-
- 산업
-
- 리튬이온 전지, 저온 합성법 리튬 세라믹 개발
- 리튬이온 배터리는 에너지 저장장치의 최정점에 서 있지만, 고비용과 화재 위험이 단점으로 지적된다. 특히 원자재 가격의 상승이 이어지면서, 보다 경제적이고 효율적인 리튬이온배터리의 연구개발이 가속화되고 있다. 과학기술·의학전문 매체 '사이언스엑스(Science X)'는 최근 화학 학술지 '앙게반테 케미(Angewandte Chemie)'에 게재된 고체 전해질 역할을 대신할 수 있는 경제적인 저온 합성법 리튬 세라믹 개발 소식을 전했다. 이 연구는 전기자동차의 배터리 개발에 있어서 큰 전환점이 될 것으로 보이며, 기존의 문제점들을 해결하는 데 일조할 것으로 보인다. 전기 자동차용 배터리 개발을 좌우하는 두 가지 요소는 차량 범위를 결정하는 '전력'과 '비용'으로, 이는 내연기관과의 경쟁에서 매우 중요하다. 미국 에너지부는 2030년까지 전기자동차의 배터리 생산 비용을 절감하고, 에너지 밀도를 높이는 것을 목표로 하고 있다. 이를 통해 내연기관 차량에서 전기 차량으로의 전환이 가속화될 것으로 전망되고 있다. 그러나 기존의 리튬이온 배터리만으로는 이 목표를 달성하기 어려울 것으로 보인다. 훨씬 더 작고, 더 가볍고, 강력하며 안전한 배터리를 제작하기 위한 새로운 접근 방식은 흑연 대신 금속 리튬을 사용한 양극 고체 셀을 사용하는 것이다. LLZO합성법 혁신 LLZO를 사용한 리튬이온 배터리 제조 과정에서는 일반적으로 이 물질을 1050°C 이상에서 음극과 함께 소결하여 급속한 리튬 전도성 입방 결정상을 형성하고, 전극에 강력하게 결합시켜야 한다. 그러나 600°C 이상의 고온 조건은 지속 가능한 저코발트 또는 무코발트 양극재의 안정성을 해치며, 생산비용과 에너지 소비 또한 상승시킨다. 이런 문제점을 해결하고자, 보다 경제적이며 지속 가능한 새로운 리튬이온 배터리 생산 방법의 필요성이 대두됐다. 이러한 배경 속에서 미국 케임브리지 MIT와 독일 뮌헨 TU의 연구팀이 새로운 합성 공정을 선보였다. 제니퍼 엘엠 루프(Jennifer LM Rupp) 박사가 이끄는 이 팀은 세라믹 전구체 화합물을 기반으로 하지 않는 새로운 방법을 개발했다. 이 공정은 LLZO를 형성하기 위해 순차적 분해 합성을 통해 직접 치밀화하는 액체 공정을 사용한다. 이를 통해 기존 방법보다 낮은 온도에서도 효율적으로 LLZO를 합성할 수 있게 되어, 생산 과정에서의 에너지 소비와 비용을 절감할 수 있을 것으로 기대된다. 루프 박사와 그의 연구팀은 LLZO의 무정형 형태에서 결정질 형태(cLLZO)로의 다단계 상변환을 분석하기 위해 다양한 방법(라만 분광법, 동적 시차 주사 열량계 등)을 활용했다. 이를 통해 시간-온도-변환 다이어그램을 제작하며, 합성 경로의 조건을 최적화하는데 성공했다. 500도 이하에서 합성 성공 연구팀은 이러한 분석을 바탕으로 500°C라는 상대적으로 낮은 온도에서 10시간 동안 어닐링 과정을 거친 후, cLLZO를 조밀하고 견고한 필름 형태로 만드는 새로운 기술을 선보였다. 이 최적화된 합성 방법을 통해 미래의 배터리 설계에서는 코발트와 같은 사회 경제적으로 중요한 자원을 사용하지 않아도 되며, 지속 가능한 음극과 고체 LLZO 전해질을 통합할 수 있게 됐다. 연구팀은 최근의 연구 성과를 바탕으로 "전고체 배터리의 상용화가 한 걸음 더 가까워졌다"며 "앞으로의 연구를 통해 리튬 세라믹의 성능을 더욱 향상시키고, 다양한 종류의 전고체 배터리에 적용할 수 있을 것"이라고 밝혔다. 한편, 한국원자력연구원 창업기업 내일테크놀로지는 나노 신소재를 이용하여 리튬이온전지의 성능과 안정성을 향상시키는 새로운 기술을 선보였다. 질화붕소 나노튜브(BNNT)를 활용한 이 기술은, 900도 이상의 고온에서도 안정성을 유지하며, 화학적 반응성이 낮은 것이 특징이다. 내일테크놀로지의 이러한 기술은 배터리 제작 공정에 무리 없이 적용될 수 있으며, 배터리의 출력과 용량, 충전과 방전, 그리고 안전성 등 전반적인 성능 향상에 기여할 것으로 예상된다. 이로써, 배터리 관련 기술 분야에서의 혁신과 더불어 에너지 저장장치의 성능 향상이 기대된다.
-
- 산업
-
- MIT, 태양광 발전으로 수소 효율성 향상
- 수소를 공해 없이 보다 효율적으로 생산할 새로운 방법이 연구되고 있다. 매사추세츠 공과대학(MIT)의 엔지니어들은 태양열을 이용하여 물을 분해하고, 이 과정에서 온실가스를 배출하지 않는 수소를 효율적으로 생산하는 '태양열화학수소' 시스템을 개발했다고 산업 전문매체 '오일프라이스(Oil Price)'가 보도했다. 기존의 태양열 열화학 수소 생산 시스템은 효율성이 낮았지만, MIT의 설계는 수소 생산에 태양열을 최대 40%까지 활용할 수 있다. '솔라 에너지 저널(Solar Energy Journal)'에 게재된 이 신기술은 태양열을 활용해 물을 분해하고, 그 과정에서 나온 수소를 청정 연료로 사용할 수 있는 시스템이다. 이렇게 생산된 수소는 장거리 트럭, 선박, 항공기의 연료로 사용될 수 있으며, 온실가스가 전혀 배출되지 않는다. 현재 대부분의 수소 생산 방법은 천연가스나 다른 화석 연료를 사용하는데, 이는 환경에 해를 끼치는 '회색' 에너지원에 가깝다. 그러나 태양열화학수소는 오로지 재생 가능한 태양 에너지만을 사용하여 수소를 생산하므로, 환경에 해롭지 않다. 기존의 태양열화학수소 시스템은 태양광의 약 7%만 수소 생산에 활용할 수 있었고, 이로 인해 효율이 낮고 비용이 높았다는 단점이 있었다. MIT 연구팀은 새로운 설계 방법을 도입하여 태양열의 최대 40%를 수소 생산에 활용할 수 있도록 개선시켰다. 이번 연구를 주도한 아흐메드 고니엠(Ahmed Ghoniem) 교수는 "미래의 주요 연료인 수소를 저렴하게 대량 생산할 방법을 찾아야 한다"고 말했다. 그는 "2030년까지 킬로그램당 1달러로 수소를 생산하는 것이 목표다. 경제성을 개선하려면 효율성을 높이고 수집한 태양 에너지의 대부분을 수소 생산에 활용해야 한다"고 덧붙였다. MIT의 새로운 시스템은 집중형 태양열 발전소(CSP) 방식을 사용하며, 여러 거울을 이용해 태양광을 한 곳에 모아 열을 생성한다. 이렇게 모아진 열은 수소를 생산하는데 사용된다. 이 시스템의 핵심은 2단계의 열화학 반응 과정이다. 첫번째 단계에서는 금속이 증기 형태의 물에 노출되며, 이 금속은 증기에서 산소를 제거하고 수소를 추출한다. 이 과정은 '산화'라고 하며, 물과 반응하여 금속이 산화되는 것과 유사하지만, 이 과정은 훨씬 빠르게 진행된다. 수소가 한 번 분리되고 나면, 산화된 금속은 진공 상태에서 재가열되어 원래 상태로 복원된다. 이 과정에서 금속은 산소를 잃게 되고, 다시 물 증기와 반응하여 추가적인 수소를 생산하게 된다. 이러한 과정을 수없이 반복해 수소를 생산하는 것이다. 이 시스템의 구조는 원형 트랙을 따라 달리는 상자 모양의 원자로 열차와 비슷하게 구성되어 있다. 이 원형 트랙은 태양열을 집중하는 CSP 타워 주변에 배치되어 있으며, 각 원자로는 높은 온도에서 산소를 제거하고, 증기와 반응하여 수소를 생산하는 산화환원 과정을 거친다. 원자로는 먼저 아주 뜨거운 스테이션을 통과하며, 금속은 최대 1500도의 태양열에 노출된다. 이 때 금속은 고온에서 산소를 빠르게 잃고, 이후 약 1000도 정도의 스테이션으로 이동해 증기와 반응하여 수소를 생산한다. 그러나, 이 시스템은 반응기가 냉각되는 과정에서 발생하는 열을 어떻게 효과적으로 관리하고 재활용할 것인지에 대한 과제를 안고 있다. 열 재활용 없이는 시스템의 전체 효율성이 떨어져 실제로 사용하기 어렵게 된다. 또 다른 과제는 금속을 녹을 제거할 수 있도록 에너지 효율적인 진공 상태를 유지하는 것이다. 초기 프로토타입에서는 기계식 펌프를 이용하여 진공을 생성했으나, 이 방법은 대량의 수소를 생산할 때 에너지 소비가 많고 비용이 높았다. 연구팀은 이 문제를 해결하기 위해, 시스템 내에서 발생하는 열을 대부분 회수하는 방안을 마련했다. 원형 트랙의 원자로는 열을 상호 교환할 수 있도록 설계되었으며, 이를 통해 뜨거운 반응기는 냉각되고, 차가운 반응기는 가열되어 시스템 내의 열을 보존한다. 또한, 연구팀은 에너지 소비를 줄이기 위해 첫번째 원자로 열차 주위를 돌면서 반대 방향으로 움직이는 두 번째 원자로 세트를 추가 설치했다. 이 새로운 궤도의 원자로는 보다 낮은 온도에서 작동하며, 기계식 펌프의 도움 없이도 내부 궤도의 높은 온도에서 발생하는 산소를 제거하는 데 사용된다. 외부 반응기는 에너지 집약적인 진공 펌프 없이도 내부 반응기에서 산소를 흡수하여 금속의 원래 상태로 복원하는 데 효과적이다. 두 세트의 반응기는 연속적으로 운영되어, 순수한 수소와 산소를 분리하여 생성한다. 연구팀은 이러한 개념 설계에 대해 상세한 시뮬레이션을 수행했고, 그 결과 태양열을 이용한 열화학 수소 생산 효율이 이전의 7%에서 40%로 크게 향상될 수 있었다. 고니엠 교수는 "시스템의 에너지 효율을 극대화하고 비용을 최소화하기 위해 우리는 모든 에너지 소스와 그 활용 방법을 고려해야 한다"며, "이 새로운 설계를 통해 태양에서 발생하는 열의 대부분을 활용할 수 있음을 확인했다. 이를 통해 태양열의 40%를 수소 생산에 활용할 수 있다"고 설명했다. 연구팀은 내년에 에너지부 연구소의 집중형 태양광 발전 시설에서 테스트할 프로토타입 시스템을 구축할 계획이다. 한편, 한국의 DGIST(대구경북과학기술원)와 단국대학교 연구팀은 친환경적인 양자점을 활용하여 세계 최고 수준의 태양광 수소 생산 기술을 개발했다. 이 기술은 양자점의 물성을 조절하여 광전기화학 소자에 적용, 태양광을 효과적으로 수소 생산에 활용하는 방법을 제공한다. 연구팀은 합성된 친환경 양자점을 광전기화학 소자에 적용하여 태양광 에너지의 전 영역을 효율적으로 이용, 수소를 생산할 수 있었다. 이 연구 결과는 '카본 에너지'라는 학술지에 게재됐다.
-
- 산업
-
- LG에너지솔루션, 인니 배터리 양극재 공장 11월 건설 착공
- LG에너지솔루션과 인도네시아 배터리 회사(IBC) 컨소시엄이 소유한 양극재 공장이 2023년 11월 착공에 들어간다. 인도네시아 매체 IDX채널 닷컴은 25일(현지시간)는 한국 기업 LG에너지솔루션과 인도네시아 배터리 코퍼레이션 간의 지분 협상이 완료돼 2023년 11월 양극재 공장이 착공에 들어간다고 보도했다. 25일 바흐릴 라하달리아(Bahlil Lahadalia) 인니 투자부 장관 겸 BKPM 대표는 자카르타에서 "(지분 협상이) 완료되었으며, 업스트림은 50%, 다운스트림은 국영기업이 35%, 컨소시엄이 75%를 차지할 것"이라고 말했다. 투자부 장관은 "양극재 공장 건설에는 다수의 인도네시아 국영 기업이 참여할 것"이라고 전했다. 라하달리아 장관에 따르면, 자카르타 인근 카라왕 산업단지에 위치한 LG에너지솔루션의 배터리 생산 능력 10기가 와트시(GWh)의 공장은 2024년 2월 1단계 생산을 시작할 예정이다. 아울러 2단계 증설 투자로 2024년 1월에 전기차 배터리 공장을 착공할 예정이다. 이번 합작 공장에서는 LG에너지솔루션의 하이니켈 'NCMA(니켈·코발트·망간·알루미늄)' 배터리셀을 생산한다. 고함량 니켈(N)과 코발트(C), 망간(M)에 출력을 높여주고 화학적 불안정성을 낮춰줄 수 있는 알루미늄(A)을 추가한 고성능 NCMA 리튬이온 배터리셀이다. 2024년부터 생산되는 현대차와 기아 E-GMP기반 전기차와 차세대 전기차에 탑재될 예정이다. 이와는 별도로 LG에너지솔루션은 전기차(EV)용 저가형 리튬인산철(LFP) 배터리를 2026년부터 생산하겠다고 25일 발표했다. 이창실 LG에너지솔루션 최고재무책임자(CFO) 부사장은 이날 3분기 실적발표 컨퍼런스콜에서 "저가형 EV 배터리 시장 대응을 위한 제품 포트폴리오를 확대할 계획"이라고 밝혔다. 이 부사장은 "LFP 기반 제품을 적극 개발 중"이라며 "파우치(배터리)가 가진 셀 무게, 공간 활용률 등의 강점을 결합하고 셀 구조 개선과 공정 혁신 등을 추진해 EV용 LFP·LMFP(리튬망간인산철) 기반 신규 제품을 생산할 것"이라고 말했다. 그는 "이 제품(LFP·LMFP 배터리)은 2026년과 2027년에 연속해서 선보이는 것을 목표로 준비 중"이라며 구체적인 일정을 명시했다. 리튬인산철(LFP) 배터리는 국내 배터리 업계가 주력해온 양극재가 세 종류 금속으로 구성되는 삼원계 'NCM(니켈·코발트·망간)' 배터리보다 전기차 주행 거리는 짧아도 가격이 저렴한 것이 장점이다. 중국 업체인 CATL, 비야디 등이 그동안 LFP 배터리 시장을 주도해왔으며, LG에너지솔루션은 프리미엄 배터리에 집중해왔다. LG에너지솔루션은 최근 글로벌 전기차 업체들이 저가형 모델에 LFP 배터리 채택을 확대하자 중저가 시장 수요 대응에 나선 것. 그러나 최근 유럽 지역 전기차 시장이 느리게 회복하면서 성장 둔화세가 뚜렷해지면서 전기차 배터리 시장에 경고음을 울리고 있다. 이창실 부사장은 "4분기 들어 주요 고객사의 보수적인 전기차 생산 계획에 따른 물량 조정 가능성이 일부 있는 것은 사실"이라며 "4분기에는 3분기에 비해 소폭의 매출 성장이 있을 것으로 보인다"라고 말했다. 이어 "내년 수요는 기대보다 좀 줄어들 가능성이 있다고 본다"며 "그로 인해 내년 매출 성장률은 올해만큼 크지는 않을 것"이라고 전망했다. 다만 그는 "일시적 변동성에 연연하지 않고 장기적 관점에서 사업 준비에 집중하려 한다"며 "북미 중심 성장 모멘텀을 계속 이어 나가되 시장에서 가장 경쟁력 있는 제품을 만들고, 스마트팩토리와 밸류체인 확보 등을 통해 경쟁력을 확보하는 것이 중요하다"고 강조했다.
-
- 산업
-
- 친환경 배터리 재활용 기술로 알루미늄‧리튬 대량 회수
- 스웨덴 샬머스 대학의 연구팀이 전기차 폐배터리 셀로부터 알루미늄 100%와 리튬 98%를 회수할 수 있는 친환경 배터리 재활용 기술을 개발했다고 광업·금속산업 전문지 마이닝 닷컴(MINING.COM)이 보도했다. 이 연구팀은 식물에서 추출한 옥살산이라는 유기 화합물을 이용해 폐자동차 배터리에서 알루미늄과 리튬을 우선적으로 추출했다. 이후 순차적으로 코발트, 니켈, 망간 등 다른 금속도 회수했다. 이번 연구의 주재료인 옥살산은 일반적으로 시금치나 루바브에서 발견되는 유기화합물로 기존의 무기 화학물질에 비해 독성이 낮고 환경에 미치는 영향이 낮다. 한국에서는 익숙하지 않은 채소인 루바브의 세모꼴 이파리는 옥살산이 과다 함유돼 식용으로 사용하지 못하는 것으로 알려졌다. '세퍼레이션 앤드 퓨러퍼케이션 테크널러지(Separation and Purification Technology)' 저널에 실린 논문에 따르면 이 기술은 폐리튬이온 배터리의 내용물을 고체 미립자로 분쇄하는 것으로 시작한다. 여과 과정을 거친 그 결과, 투명한 액체인 옥살산에 용해된 미세하게 분쇄된 흑색 분말이 생성되면서 각종 금속을 회수하는 원리다. 연구원들은 온도와 농도, 시간의 미세한 조절을 통해 옥살산을 활용해 리튬과 코발트 등을 회수하는 새롭고 획기적인 방법을 발견한 것. 수석 연구원 마르티나 페트라니코바(Martina Petranikova)는 "무기 화학 물질에 대한 대안이 절실히 필요하다. 현재 공정에서 가장 큰 장애물 중 하나는 알루미늄과 같은 잔류 물질의 제거다. 이 새로운 방법은 재활용 산업에 혁신적인 대안을 제시하며, 전기차 폐배터리 개발을 방해하는 문제를 해결하는 데 큰 도움이 될 것"이라고 설명했다. 연구원들이 개발한 이 방법은 '습식 제련'이라고 불리며, 전통적인 습식 야금 공정과는 다르다. 습식 야금에서는 전기차 배터리 셀의 모든 금속이 무기산에 용해된다. 그러나 이 새로운 방법에서는 '불순물'로 분류되는 알루미늄과 구리 같은 재료가 제거된 후에, 코발트, 니켈, 망간, 리튬과 같은 귀금속이 분리 회수된다. 기존 방법은 알루미늄과 구리의 잔여량은 적지만, 여러 번의 정제 과정이 필요하며 이 과정에서 리튬의 손실이 발생할 수 있다. 새롭게 개발된 방법은, 일반적인 순서와는 반대로 리튬과 알루미늄을 먼저 회수함으로써 새 배터리 제조에 필요한 귀중한 금속의 낭비를 줄일 수 있다. 이 과정에서 생성되는 검은색 물질의 여과 과정은 마치 커피 추출을 연상시킨다. 여과 과정을 통해 알루미늄과 리튬이 액체 상태로 분리되며, 다른 금속들은 '고체' 상태로 남게 된다. 그 다음 단계는 알루미늄과 리튬을 분리하는 것이다. 논문의 수석 저자인 레아 루케트(Léa Rouquette)는 "각 금속이 매우 다른 특성을 가지고 있어서 분리 작업은 그리 어렵지 않을 것이라 생각한다. 우리의 방법은 배터리 재활용 분야에서 새로운 가능성을 열고 있으며, 더 깊게 연구할 가치가 있다"라고 말했다. 페트라니코바 수석연구원은 "확장 가능한 방법이기 때문에 앞으로 몇 년 동안 이 분야에서 널리 사용될 것으로 기대한다"고 덧붙였다. 한국 배터리 재활용 기술 시장 전망 전기차의 보급이 확대됨에 따라 한국의 배터리 재활용 시장도 성장세가 예상된다. 정부는 2030년까지 배터리 재활용률을 90%로 끌어올리려는 목표를 세우고 있으며, 이를 향한 기술 개발이 활발히 진행 중이다. 포스코케미칼, LG화학, SK이노베이션 등 주요 기업들이 친환경 배터리 재활용 기술 개발에 투자하고 있다. 특히 포스코케미칼은 리튬이온 배터리에서 리튬을 효과적으로 회수하는 새로운 기술을 연구하고 있다. 이 기술은 리튬이온 배터리의 양극재로부터 리튬을 효율적으로 추출하며, 기존 방법에 비해 리튬의 손실을 줄이는데 초점을 맞추고 있다. 또 포스코케미칼은 최근 스웨덴의 리튬 이온 배터리 재활용 회사인 노르드볼트와 양극재 리사이클링 기술 개발에 관한 협약을 맺었다. LG화학은 리튬이온 배터리로부터 코발트와 니켈을 더 효율적으로 회수하기 위한 기술을 연구 중이다. 이 기술은 배터리의 양극재와 음극재를 분리해 코발트와 니켈을 회수하는 과정을 포함하며, 이를 통해 기존 방법에 비해 코발트와 니켈의 회수율을 향상시킬 수 있다. SK이노베이션은 리튬, 코발트, 니켈, 망간을 리튬이온 배터리로부터 회수하는 새로운 기술을 개발하고 있다. 이 기술은 배터리를 고온에서 처리하여 이들 금속을 추출하는 방식으로, 기존 공정보다 에너지 효율이 높다. 한국의 친환경 배터리 재활용 기술은 국제적으로도 주목받고 있는 분야다. 지속적인 기술 개발이 활발하게 진행됨에 따라, 한국은 전기차 배터리 재활용 분야에서 세계적인 선두 위치를 차지할 것으로 예상된다.
-
- 산업
-
- NASA, 금속성분 풍부한 '프시케' 소행성 탐사
- 미국 항공우주국(NASA)은 화성과 목성 사이의 궤도에 있는 프시케(Psyche)라는 금속성분이 풍부한 소행성 탐사를 시작했다. 미국 매체 더 힐에 따르면 프시케는 철과 니켈 등의 금속으로 풍부하며, 길이가 280km에 달하는 거대한 소행성이다. NASA는 이 소행성이 충돌로 인해 표면의 암석이 제거된 채 남아있는 행성 핵으로 보고 있으며, 이를 통해 지구를 포함한 행성들의 핵이 어떻게 형성되었는지에 대한 단서를 찾을 수 있을 것으로 기대하고 있다. NASA의 제트 추진 연구소(JPL)는 지난 10월 13일 프시케 탐사선을 우주로 쏘아 올렸다. 이 탐사선은 약 6년 동안 40억km를 여행해 2029년 8월에 동일한 이름의 목적지인 프시케 소행성에 도착할 예정이다. 그 전에 탐사선은 2026년 5월 화성 근처를 지나며 화성의 중력을 이용해 속도를 증가시키고 방향을 조절한다. 행성에 도착한 후에는 약 26개월 동안 고도 65~700km 상공에서 프시케를 공전하며 지형과 구성 성분, 자기, 중력 등 다양한 정보를 수집할 계획이다. 이번에 탐사를 진행하는 '프시케' 탐사선은 소행성 이름을 따서 붙여졌다. 다중 스펙트럼 이미저, 감마선과 중성자 분광계, 자력계와 X-밴드 중력 과학 조사를 포함한 여러 도구를 탑재하고 있다. 또한 전파가 아닌 레이저를 사용하여 훨씬 더 빠른 속도로 데이터를 지구로 다시 보내는 심우주 광통신 장치를 테스트한다. 프시케 탐사 임무는 태양계의 탄생과 진화에 대한 많은 정보를 밝혀내어 과학에 도움이 될 것으로 기대한다. 아울러 우주의 천연 자원 채굴에 대한 정보도 수집한다. 일부 전문가들은 프시케 소행성의 광물 가치를 약 10조 달러(약 1경3430조원)로 추정하고 있다. '지구 물리학 연구 저널(Journal of Geophysical Research)'의 한 논문은 대략 11.65조 달러로 추정하기도 했다. 정확한 가치는 아직 확인되지 않았지만 미래에 이 소행성의 풍부한 광물을 채굴하려는 많은 시도가 예상된다. 핵 융합 추진 기술 발전 기대 프시케 혹은 다른 소행성에서의 채굴을 시작하기 위해서는 향후 5~6년 동안 새로운 기술 개발이 필요하다. 지구와 프시케 사이의 거리가 매우 멀기 때문에, 현재의 기술로는 소행성에서 광물을 채굴하고 지구로 귀환시키는 데 엄청난 비용이 들 것으로 예상되기 때문이다. 핵 융합 추진 기술이 개발된다면, 지구와 프시케 사이의 이동 시간이 크게 단축될 것으로 보인다. 이 기술을 활용하면 로봇을 이용해 소행성에서 자원을 채굴하고 정제한 후, 채굴된 자원을 우주 산업 인프라로 운송하는 광산 선박의 활용이 가능해질 것이다. 프시케와 같은 태양계의 천체들은 경제적인 이윤을 창출할 수 있으며, 이는 많은 이점을 가지고 있다. 소행성 채굴은 지구에서의 채굴과 달리 환경에 미치는 부정적인 영향이 없다. 저명한 천체 물리학자 닐 드 그래스 타이슨(Neil deGrasse Tyson)은 소행성과 달의 채굴에 대해 긍정적인 견해를 제시했다. 그는 이러한 채굴 활동이 천연 자원에 대한 충돌과 갈등을 줄일 수 있을 것이라고 말했다. 한국, 다누리 탐사 계획 우리나라도 우주 광물 채굴 분야에 뛰어들기 위한 준비를 하고 있다. 한국항공우주연구원은 2029년부터 2031년까지 '다누리'라는 이름의 소행성 탐사선을 개발 중이다. '다누리'는 지구로부터 약 1.5억km 떨어진 '162173 APL' 소행성을 목표로 하고 있다. 이 소행성은 지름이 약 500m이며, 철, 니켈, 황, 규산염 등의 광물이 풍부하다. '다누리'는 2029년 8월에 발사되어 2031년 12월에 APL 소행성에 도착할 예정이며, 그곳의 지형, 구성 성분, 자기장 등을 조사할 계획이다. '프시케'와 '다누리'의 탐사는 우주 광물 채굴의 실현 가능성을 입증하는 중요한 단계가 될 것이다. 우주 광물 채굴이 현실화되면 지구의 자원 문제를 해결하고, 새로운 경제적 기회를 열어줄 것으로 예상된다.
-
- 산업