검색
-
-
하버드대 연구팀, 고체 배터리 재충전 10분대로 단축
- 미국 스타트업이 가격이 저렴하면서도 충전 시간을 획기적으로 줄인 전기자동차(EV)용 전고체 배터리를 개발했다. 현대 사회에서 탄소 중립을 향한 움직임이 활발해지면서, 전세계 에너지 기업들은 화석 연료에 대한 의존도를 줄이는 데 집중하고 있다. 이러한 상황에서 전기차용 배터리의 중요성이 더욱 강조되고 있으며, 특히 환경 친화적이고 에너지 효율이 높은 전고체 배터리 개발이 업계의 중요한 과제로 부상했다. 기술 전문 매체 클린테크니카(cleantechnica)는 최근 하버드 대학의 스핀오프 기업인 아덴 에너지(Adden Energy)가 충전 시간을 10분대로 낮춘 새로운 전고체 배터리를 개발했다고 보도했다. 이 배터리는 최대 6000사이클 동안 사용 가능하며, 재충전 시간은 단 10분에 불과하다. 이는 연료 탱크를 채우는 시간과 유사하다고 한다. 비용에 대한 구체적인 언급은 없었으나, 이 회사의 배터리는 수명이 길어 전기차의 제조 비용을 줄이는 데 크게 기여할 것으로 전망된다. 새로운 고체 에너지 저장 기술은 기존 리튬 이온 배터리의 액체를 폴리머, 첨단 세라믹 또는 기타 고체 재료로 대체하는 차세대 기술이다. 리튬 이온이 고체를 통과해 이동하게 하는 것은 어려운 기술이지만, 그로 인해 더 긴 사용 범위와 더 빠른 충전 시간을 제공한다. 새로운 고체 에너지 저장 기술은 기존 리튬 이온 배터리에서 사용되는 액체 전해질을 폴리머, 첨단 세라믹, 또는 다른 고체 재료로 대체하는 혁신적인 접근법이다. 리튬 이온이 고체를 통과해 이동하는 것은 기술적으로 어려운 과제이지만, 이를 통해 배터리의 사용 가능 범위를 확장하고 충전 시간을 단축할 수 있다. 아덴 에너지는 여러 고체 배터리 혁신 기업 중 하나로, 이온 이동의 장애를 극복하는 데 중점을 두고 있다. 특히 이 회사는 리튬 이온 배터리의 양극에서 발생하는 수상돌기 문제에 대한 강력한 해결책을 제시했다. 덴드라이트(일종의 수지상의 골격을 형성한 결정)는 리튬 이온 배터리의 양극에서 발생하는 작은 양치류의 돌기처럼 생긴 현상으로, 배터리 성능을 저하시키고 화재 위험을 증가시키는 요인이다. 2018년, 아덴 에너지는 국제 학술지 네이처 커뮤니케이션즈(Nature Communications)에 황화물 기반의 고체 전해질 연구 결과를 발표하며 고체 배터리 분야에서 중요한 발전을 이루었다. 아덴 에너지는 "우리 논문의 목표는 LGPS와 LSPS라는 두 가지 유형의 결정질 황화물 고체 전해질의 미세 구조를 조절하고 수정함으로써 전압 안정성을 향상시킬 수 있다는 점을 입증하는 것이다"라며 두 가지 유형의 결정질 황화물 고체 전해질에 대해 밝혔다. 더 나아가, 회사는 "황화물 고체 전해질의 미세 구조와 성능 간의 기본 메커니즘을 밝히는 것이 중요하다"며 "이는 미래 재료 및 배터리 셀 설계에 대한 지침이 될 수 있다"고 기대했다. 덴드라이트 현상은 과거에는 주로 액체 전해질을 사용하는 배터리에서만 관찰되었지만, 최근 연구에 따르면 고체 배터리에서도 문제가 될 수 있음이 밝혀졌다. 이 문제를 해결하기 위한 여러 방법이 연구되고 있는 가운데, 하버드 대학 SEAS(John A. Paulson School of Engineering and Applied Sciences)의 재료과학 부교수 신 리(Xin Li) 팀은 이 현상을 완전히 멈추는 데 성공했다. 하버드 대학의 언론 담당자 레아 버로우스(Leah Burrows)는 리 팀의 새로운 연구에 대해 "연구팀은 리튬화 반응을 제어하고 균일한 리튬 금속층의 도금을 촉진하기 위해 양극에 마이크론 크기의 실리콘 입자를 사용하여 덴드라이트 형성을 방지했다"고 설명했다. 버로우스는 "이 코팅된 입자가 전류 밀도가 균일하게 분포되는 표면을 만들어 덴드라이트의 성장을 막는다"고 설명했다. 또한, "이런 설계 덕분에 도금과 박리 과정이 평평한 표면에서 더 빠르게 일어날 수 있어 배터리를 약 10분 만에 재충전할 수 있다"고 덧붙였다. 리 부교수는 "우리의 설계에서 리튬 금속이 실리콘 입자를 감싸는 것은 초콜릿 트러플에 있는 헤이즐넛 코어를 단단한 초콜릿 껍질이 감싸는 것과 유사하다"라고 비유했다. 이 혁신적인 새 배터리는 현재 상업적 생산을 위한 확장 단계에 있다. 연구팀은 우표 크기의 파우치 셀을 사용하여 이번 실험을 진행했다. 이는 일반적인 대학 연구실에서 만들어진 배터리보다 10~20배 정도 크며, 실제 사용 환경에서의 데이터 수집에 충분한 크기라고 할 수 있다. 버로우스는 이 배터리의 내구성에 대해서도 언급했다. 그녀는 "배터리가 6000사이클을 거친 후에도 초기 용량의 80%를 유지하며, 이는 현재 시장에 나와 있는 다른 파우치 셀 배터리보다 우수한 성능을 나타낸다"고 말했다. 한편, 아덴 에너지는 2022년에 하버드 대학교의 기술개발실(Office of Technology Development)로부터 이 기술에 대한 독점 라이선스를 획득했다. 또한, 회사는 515만 달러(한화 약 68억원)의 시드 자금을 조달하는 데 성공했다. 이 자금은 창업 아이템을 구체화하고 개발하여 시제품을 생산하는 과정에 사용될 예정이다. 회사 측은 라이선스 획득과 벤처 자금 조달을 통해 하버드 대학의 실험실 프로토타입을 상업적 규모로 확장할 수 있게 되었다고 설명했다. 이를 통해 아덴 에너지는 전기자동차(EV) 시장에 빠르게 충전되고 안정적인 고체 리튬-금속 배터리를 제공할 수 있게 될 것으로 기대된다. 아덴 에너지는 2022년에 손바닥 크기의 파우치 셀을 개발하는 것을 첫 단계로 삼고, 향후 3~5년 이내에 전기자동차(EV)용 풀사이즈의 전고체 배터리 개발을 목표로 하고 있다. 이 회사는 2030년 이전에 이러한 배터리를 시장에 출시될 것으로 예상하고 있다. 리 부교수는 전기차의 중요성에 대해 강조하며, "전기차가 말 그대로 도로 위의 1%에 불과한 단순한 고급 패션 아이템으로 여겨져서는 안 된다"고 말했다. 그는 "청정에너지 미래를 향해 나아가기 위해서는 전기차가 일반 대중에게도 접근 가능해야 한다"고 강조했다. 그는 또한 "만약 전기차 배터리가 3년에서 5년만 지속된다면, 미국은 중고차 시장을 갖지 못할 것"이라고 지적했다. 이어 "기술은 모든 사람이 접근할 수 있어야 하며, 우리가 하고 있는 것처럼 배터리 수명을 연장하는 것은 그 과정에서 매우 중요한 부분이다"라고 덧붙였다.
-
- 산업
-
하버드대 연구팀, 고체 배터리 재충전 10분대로 단축
-
-
삼성SDI, 북미 전기차 배터리 소재 확보 나선다
- 삼성의 배터리 제조 부문인 삼성SDI가 캐나다에서 니켈 채굴에 나선다. IT 전문 매체 샘모바일(SamMobile)에 따르면, 삼성SDI가 이차 전지 제조에 필요한 핵심 소재 확보를 위해 캐나다니켈과 투자 계약을 체결했다고 잔했다. 지난 15일(현지시간) 캐나다 토론토 증권거래소 홈페이지에 게시된 캐나다니켈 발표에 따르면 삼성SDI는 1850만달러(약 245억원) 규모의 캐나다니켈 지분을 인수하는 계약을 최근 이 회사와 체결했다. 이에 따라 삼성SDI는 캐나다니켈 지분 8.7%(1560만주)를 보유하게 된다. 캐나다니켈은 캐나다 온타리오주에서 니켈 광산을 개발하는 '크로퍼드 프로젝트'를 진행하고 있다. 이차 전지, 또는 충전식 배터리는 에너지를 전기 형태로 저장하고 필요할 때 다시 사용할 수 있는 장치다. 이차 전지는 화학적 에너지를 전기 에너지로 변환하고, 이 과정을 반복할 수 있다. 이차 전지의 가장 큰 특성은 재충전이 가능하다는 점이다. 이는 일회용 배터리(일차전지)와는 다른 점으로 여러 번 충전하여 반복해서 사용할 수 있다. 이차 전지의 발전은 화석 연료 의존도를 줄이고, 재생 가능 에너지의 활용을 증가시키는 데 중요한 역할을 하고 있다. 이를 통해 에너지 효율성을 향상시키고, 탄소 배출을 줄이는 데 기여하고 있다. 이차 전지 기술의 지속적인 발전은 미래 에너지 시스템에 중대한 영향을 미칠 것으로 예상된다. 이전에는 니켈-카드뮴 배터리가 널리 사용되었지만, 중금속인 카드뮴의 독성으로 인해 사용이 줄어들고 있다. 최근에는 비교적 긴 수명과 환경 친화성으로 인해 니켈-수소 배터리가 하이브리드 자동차 등에서 사용되고 있다. 이차 전지는 휴대용 전자기기, 전기자동차(EV), 에너지 저장 시스템, 비상 전원 공급 장치 등 다양한 분애에서 활용된다. 북미 전기차 배터리 소재 확보 샘모바일에 따르면, 삼성SDI는 온타리오에 위치한 캐나다 니켈의 크로포드(Crawford) 프로젝트로부터 니켈-코발트 10% 생산량도 확보하게 된다. 또 15년 동안 생산량의 20%에 대한 권리를 갖게 되며, 이는 기업 간의 상호 합의를 통해 연장 가능하다고 삼성SDI는 설명했다. 삼성SDI는 그동안 배터리 생산공장을 북미로 이전하려고 노력해 왔으며, 이차 전지 생산에 필요한 소재 확보 움직임을 보이고 있다. 또한 삼성 SDI는 미국에 전기 자동차용 배터리 공장을 짓기 위해 스텔란티스(Stellantis)와 대규모 계약을 체결했으며, 양사는 미국에 두 번째 배터리 공장 건설을 시작했다. 김익현 삼성SDI 부사장은 "이번 기회를 통해 캐나다니켈과 협력을 시작하게 되어 기쁘다"며 "배터리 제조업계의 성장에 캐나다니켈과 함께 기여할 수 있기를 기대한다"고 밝혔다. 마크 셀비(Mark Selby) 캐나다니켈 최고경영자(CEO)는 삼성SDI 투자 이후 메이저 광산회사가 회사를 인수할 수도 있다고 말했다. 캐나다니켈은 온타리오 북동부 티민스-코크레인 지역에 위치한 광산 캠프에서 대규모 노천 니켈 및 코발트 광산 건설을 계획 중이다. 이 광산에서 생산되는 재료는 전기차용 배터리 제조에 사용될 예정이다. 이러한 협력은 전기차 배터리 공급망 강화에 중요한 역할을 할 것으로 보인다.
-
- 산업
-
삼성SDI, 북미 전기차 배터리 소재 확보 나선다
-
-
레이저 가공 HEA, 3D 프린팅으로 강도·연성 향상
- 최근 레이저와 3D 프린팅 기술을 활용해 강도가 높고 유연성을 갖춘 새로운 형태의 합금을 개발하는 데 성공했다. 합금이란, 기본 금속에 다른 금속을 섞어 고온에서 녹인 후 식혀 만들어진, 원래 금속과는 다른 성질을 가진 새로운 금속 물질을 말한다. 이러한 합금을 제작하는 주된 목적은 기계적 성질을 개선하고, 부족한 특성을 보완하여 금속의 기능을 증진시키기 위함이다. 과학기술 전문 매체 사이테크데일리(SciTechDaily)는 레이저 기반 적층 제조 방식을 이용하여 더 강력하고 파손 가능성이 낮은 고엔트로피 합금(HEA)을 만드는 방법을 소개했다. '고엔트로피 합금(HEA:High entropy alloys)'은 기존의 합금 제조 방식과 비교했을 때 뛰어난 강도와 내구성을 제공하며, 합금의 적용 범위를 확장시킬 수 있는 잠재력을 가지고 있다. HEA는 심각한 마모, 극한의 온도, 방사선 및 높은 압력과 관련된 응용 분야에서 사용가능하다. 3D 프린팅, 또는 적층 가공(AM)으로 알려진 기술을 사용해 만들 수 있는 합금은 일반적으로 연성이 부족하다는 단점을 가지고 있다. 이는 3D 프린팅을 통해 제작된 고엔트로피 합금이 형태를 유지하는 데 어려움을 겪고, 하중을 받을 때 충분히 변형되거나 늘어나지 않아 쉽게 파손될 수 있다는 것을 의미한다. 그러나 최근 과학자들은 레이저 기반의 적층 가공 방식을 사용하여, 이러한 연성 문제를 개선한 더욱 강하고 연성이 뛰어난 고엔트로피 합금을 개발하는 데 성공했다. 이들은 이러한 성능 향상의 기본 메커니즘을 더 깊이 이해하기 위해 중성자와 X선 산란, 그리고 전자 현미경과 같은 고급 분석 기술을 활용했다. 이러한 연구 결과는 3D 프린팅 합금의 사용 범위를 확장하고, 그것이 적용될 수 있는 산업 분야를 다양화하는 데 기여할 수 있을 것으로 기대된다. 특히, 연성과 강도가 모두 향상된 새로운 형태의 합금은 더욱 까다로운 응용 분야에서도 활용될 수 있을 것으로 전망된다. 잠재적인 산업 응용과 에너지 효율성 산업계는 미래에 제조 과정에서 더욱 강력하고 형태를 쉽게 잡을 수 있는 고엔트로피 합금을 사용 가능할 것으로 기대하고 있다. 이러한 HEA를 산업 응용 분야에 사용하기 위해서는 가벼우면서도 복잡한 형태의 HEA 부품에 대한 높은 내구성, 신뢰성, 그리고 파손 저항성이 요구된다. 새로운 합금은 더 안전하고 연료 효율적인 차량의 제조, 더 강한 제품의 생산, 그리고 더 오래 지속되는 기계의 개발을 가능하게 하여, 소비자와 산업계 모두에 혜택을 가져올 것으로 기대된다. 또한, 레이저를 사용하여 분말 합금을 고체 금속 형태로 융합하는 레이저 기반의 적층 가공 방식은 에너지 효율성이 매우 높다는 점에서, 새로운 유형의 HEA 생산에 있어 매력적인 방법으로 여겨진다. 이는 에너지 소비를 줄이면서도 고품질의 합금 부품을 생산할 수 있는 방법으로, 지속 가능한 제조 및 공정 효율성 측면에서 중요한 역할을 할 것으로 예상된다. 나노 라멜라 구조와 기계적 특성 레이저 기반 적층 가공 공정은 나노미터 두께의 나노 라멜라(얇은 판층) 구조를 생산할 수 있다. 이 공정은 높은 강도를 제공하면서도, 나노 라멜라의 뚜렷한 가장자리가 일정 수준의 미끄러짐(연성)을 허용하여 유연성을 보장한다. 이러한 나노 라멜라는 평균 약 150나노미터 두께의 면심 입방체(FCC) 결정 구조와 평균 약 65나노미터 두께의 체심 입방체(BCC) 결정 구조의 교차 층으로 구성된다. 개발된 새로운 고엔트로피 합금은 약 1.3기가파스칼(인장강도 단위)의 높은 항복 강도를 나타내며, 이는 가장 강한 티타늄 합금의 강도를 능가하는 수준이다. 또한, 이 HEA는 약 14%의 연신율을 제공하는데, 이는 동일한 항복 강도를 가진 다른 AM 금속 합금보다 높은 수치다. 연신율은 재료가 파손되지 않고 얼마나 많은 굽힘을 견딜 수 있는지를 나타내는 지표로, 재료의 유연성과 내구성을 측정하는 중요한 요소다. HEA 첨단 연구기술 및 시설 한편, 미국 테네시주에 위치한 오크리지 국립연구소(ORNL: Oak Ridge National Laboratory)의 연구원들은 에너지부(DOE) 산하 과학 사용자 시설인 파쇄 중성자원(Spallation Neutron Source)을 통해 변형 상태에서 HEA 샘플의 내부 기계적 부하 분배를 조사할 수 있었다. 이 시설의 중성자 데이터는 합금 내부의 상세한 구조적 정보를 제공함으로써 HEA의 기계적 특성에 대한 깊은 이해를 가능하게 했다. 또한, 연구팀은 ORNL 내의 다른 DOE 과학 사용자 시설인 나노입자 재료 과학(Nanophase Materials Sciences) 센터에 위치한 원자 프로브 장비를 활용하여, 교대로 층을 이루는 나노 라멜라 구조 및 미세 구조의 상세한 3D 이미지를 캡처했다. 이와 별개로, 미국 일리노이주에 위치한 시카고 아르곤 국립연구소(Argonne National Laboratory)의 첨단방사광가속기(Advanced Photon Source)는 어닐링 과정을 거친 다양한 HEA 샘플의 단계를 연구하는 데 사용되었다. 이 시설에서의 X선 회절 분석은 합금의 열처리 과정이 그 성질에 어떻게 영향을 미치는지를 평가하는 데 중요한 역할을 했다. 미국 내 첨단 연구기술 및 시설의 활용은 HEA의 개발과 응용에 있어 중요한 도약점을 제공하며, 합금의 구조적 및 기계적 특성에 대한 포괄적인 이해를 가능하게 한다. 이러한 첨단 연구는 HEA의 미래 적용 가능성을 확장하고, 재료 과학 분야에서의 혁신적 발전을 촉진할 것으로 기대된다. 연구소들의 고도화된 기술과 시설은 재료의 기본 구조부터 그 성능에 이르기까지 광범위한 분석을 허용함으로써, 합금의 특성을 극대화하고 다양한 산업 분야에 적용할 수 있는 새로운 기회를 열어준다.
-
- 산업
-
레이저 가공 HEA, 3D 프린팅으로 강도·연성 향상
-
-
노년층 제조업 취업자 60만명 육박⋯청년층 첫 추월
- 제조업 취업자의 연령대가 빠르게 높아지면서 노년층 취업자 수가 60만명에 육박해 처음으로 청년층을 넘어섰다. 30~40대는 크게 줄었다. 14일 통계청 경제활동인구조사에 따르면 지난해 제조업 취업자 가운데 60세 이상은 전년보다 5만1000명 늘어난 59만9000명으로 집계됐다. 20대 이하는 전년보다 3만3000명 줄어든 55만5000명이었다. 60세 이상에 비해 4만4000명 적었다. 제조업에서 60세 이상 취업자가 10∼20대보다 많은 건 2014년 산업 분류 개편 이후 처음이다. 60세 이상 취업자는 2014년 23만1000명에서 작년 59만9000명으로 36만8000명 급증했다. 전체에서 차지하는 비중도 2014년 5.2%에서 지난해는 13.4%로 나타났다. 다양한 제조업 분야 가운데 60세 이상은 주로 식료품 제조업이나 기타 기계·장비, 금속 가공제품 등에서, 대기업보다는 중소기업에서 일하는 것으로 전해졌다. 50대도 2014년 103만6000명에서 작년 108만4000명으로 4만8000명 늘었다. 경제 주축이 되는 30대와 40대는 큰 폭으로 감소했다. 30대 취업이 가장 많이 줄었다. 30대는 2014년 124만7000명에서 작년 105만7000명으로 19만명 감소했다. 40대도 9년 새 15만4000명 줄어 작년 116만5000명을 기록했다. 20대 이하는 2014년 62만5000명에서 작년 55만5000명으로 7만명 감소했다. 오랜 기간 청년 최다 취업 업종으로 꼽혔던 제조업은 청년의 제조업 기피 현상, 고졸 취업 청년의 감소 등으로 취업자가 줄고 있다. 지난해 20대 제조업 취업자는 54만5000명으로 숙박·음식점업 취업자(57만4000명)에 밀렸다.
-
- 경제
-
노년층 제조업 취업자 60만명 육박⋯청년층 첫 추월
-
-
미국 SEC, 비트코인 현물ETF 승인⋯가상화폐 투자 쉬워졌다
- 미국 증권거래위원회(SEC)가 10일(현지시간) 대표적인 가상화폐인 비트코인 현물을 기초자산으로 하는 상장지수펀드(ETF) 출시를 승인했다. 이에 따라 개인투자자들과 기관투자자들이 가상화폐를 투자하기 쉬워지고 가상화폐 투자가 확대될 것으로 전망된다. 이날 로이터통신 등 외신들에 따르면 SEC가 블랙록, 그레이 스케일, 비트와이즈, 해시덱스 등 11개의 비트코인 현물 ETF를 승인했다. SEC의 이번 승인으로 모두 11개의 비트코인 ETF가 이르면 11일부터 뉴욕증시에 상장돼 거래를 시작할 수 있게 됐다. 게리 겐슬러 SEC 위원장은 이날 발표한 성명에서 "오늘 위원회는 다수의 상장지수 상품(ETP)의 상장과 거래를 승인했다"고 말했다. 겐슬러 위원장은 "법원은 SEC가 그레이스케일이 신청했던 비트코인 현물 ETF를 불허한 이유를 적절히 설명하지 못한다고 판결했다"며 "이런 배경과 신청 내용을 자세히 검토한 사항을 바탕으로 비트코인 현물 ETP 주식의 상장 및 거래를 승인하는 것이 가장 지속 가능한 길이라고 생각한다"고 승인 배경을 설명했다. 겐슬러 위원장이 언급한 ETP는 ETF의 다른 표현이다. 이번 승인은 타일러와 카메론 윙클보스 형제가 2013년 처음으로 비트코인 ETF 출시를 SEC에 신청한 이후 10년 만에 내려친 첫 허가다. 하지만 겐슬러 위원장은 이번 승인을 확대 해석하지 말라고 당부했다. 이번 승인이 가상자산 자체를 미국 정부가 인정했다는 의미가 아니며, 비트코인 외 다른 가상자산의 현물 ETF 출시 가능성에 영향을 미치는 것도 아니라는 지적이다. 겐슬러 위원장은 "SEC는 가상자산에 대해 가치 중립적이지만 금속 ETP의 기초자산은 대체로 소비나 산업용으로 사용되는 반면 비트코인은 주로 투기적이고 변동성이 큰 자산으로 렌섬웨어나 자금 세탁, 제재 회피, 테러자금 조달 등 불법 활동에도 사용된다는 점에 주목하고 싶다"며 "이에 SEC가 비트코인 현물 ETP 주식의 상장 및 거래를 승인했지만, 비트코인을 승인하거나 보증하는 것은 아니다"라고 경고했다. SEC의 비트코인 ETF 승인으로 비트코인과 이더리움도 상승세를 나타냈다. 글로벌 코인시황 중계사이트인 코인마켓캡에서 비트코인은 24시간 전보다 0.83% 상승한 4만5880 달러에 거래됐다. 시총 2위 이더리움은 24시간 전보다 8.34% 급등한 2519 달러를 기록했다.
-
- IT/바이오
-
미국 SEC, 비트코인 현물ETF 승인⋯가상화폐 투자 쉬워졌다
-
-
생수 속 나노플라스틱, 리터당 수천 개…체내 침범 우려
- 연구원들이 생수 속에서 이전 추정치보다 10~100배 더 많은 플라스틱 조각이 포함되어 있다는 사실을 발견했다고 CNN이 8일(현지시간) 보도했다. 미국 컬럼비아 대학의 연구원들은 생수에 있는 나노입자의 화학 구조를 보고, 계산하고, 분석할 수 있는 새로운 기술을 제시했다. 새로운 연구에 따르면, 표준 크기 생수 2개에 해당하는 1리터의 물에는 7가지 유형의 플라스틱에서 평균 24만 개의 플라스틱 입자가 포함되어 있으며, 이 중 90%는 나노플라스틱이고 나머지는 마이크로플라스틱인 것으로 확인됐다. 이 연구 결과는 미국 국립과학원 회보(Proceedings of the National Academy of Sciences) 저널에 이날 발표됐다. 나노 입자는 너무 작아서 현미경으로 볼 수 없다. 전문가들은 인간 머리카락 평균 너비의 1000분의 1인 나노플라스틱은 너무 작기 때문에 소화관이나 폐 조직을 통해 혈류로 이동하여 잠재적으로 유해한 합성 화학 물질을 몸 전체와 세포에 퍼트릴 수 있다고 지적했다. 미세 플라스틱은 0.2인치(5mm) 미만에서 2만5000분의 1인치(1마이크로미터)에 이르는 폴리머 조각이다. 그보다 더 작은 것은 10억분의 1미터 단위로 측정해야 하는 나노 플라스틱이다. 이 연구를 주도한 연구팀은 미국에서 판매되는 인기 생수 브랜드 3곳의 실제 플라스틱 조각 수가 리터당 300개가 아니라 11만 개에서 37만 개 사이라는 사실을 발견했다. 단, 저자들은 어떤 브랜드의 생수를 연구했는지는 언급하지 않았다. 공동 저자이자 환경 화학자인 컬럼비아 대학교 라몬트-도허티 지구 천문대의 부교수인 베이잔 얀(Beizhan Yan)은 "이 새로운 기술은 실제로 물속에서 수백만 개의 나노 입자를 볼 수 있었으며, 이는 무기 나노 입자, 유기 입자 및 우리가 연구한 7가지 주요 플라스틱 유형이 아닌 다른 플라스틱 입자일 수 있다"고 말했다. 이 연구는 나노 플라스틱이 인간 건강에 미치는 잠재적 위험을 탐구하는 새로운 방향을 제시했다. '건강한 아기, 밝은 미래'라는 비영리단체의 연합체에서 일하는 연구 책임자 제인 헐리한은 이 연구에 직접 참여하지는 않았지만, 나노 플라스틱의 인간 건강에 대한 잠재적 위험을 더 깊이 이해하기 위한 추가적인 연구가 필요하다고 강조했다. 이 단체는 아기들이 신경독성 화학물질에 노출되는 것을 줄이기 위해 노력하는 과학자들과 기부자들로 구성되어 있다. 헐리한은 "이 연구는 미세 플라스틱 입자에 대한 광범위한 인체 노출이 거의 연구되지 않은 위험을 초래할 수 있음을 시사한다"고 말했다. 그녀는 "특히 영유아가 이러한 위험에 가장 크게 노출될 수 있는데, 그 이유는 영유아의 발달이 더디기 때문"이라고 덧붙였다. 펜실베이니아주립대 베렌드 캠퍼스의 지속가능성 책임자인 셰리 '샘' 메이슨(Sherri 'Sam' Mason)은 이 연구에 참여하지 않았지만, "이 연구는 인상적이며, 투입된 노력이 매우 심오하다. 나는 이를 획기적이라고 부르고 싶다"라고 평가했다. 이 새로운 발견은 수돗물 유해 물질 노출을 줄이기 위해 유리나 스테인리스 스틸 용기에 담긴 수돗물을 마시라는 오랜 전문가의 조언을 강조한다고 메이슨은 말했다. 이러한 조언은 플라스틱으로 포장된 다른 음식과 음료에도 적용된다고 그녀는 덧붙였다. 메이슨은 9개국 11개 브랜드에서 판매되는 생수 샘플의 93%에서 마이크로플라스틱과 나노 플라스틱의 존재를 처음으로 발견한 2018년 연구의 공동 저자였다. 과거 연구에서 메이슨은 오염된 물 1리터에 인간의 머리카락보다 넓은 평균 10개의 플라스틱 입자와 300개의 작은 입자가 포함되어 있음을 발견했다. 그러나 5년 전인 2018년 기술로는 그 작은 입자를 분석하거나 더 많은 것이 있는지 알아낼 방법이 없었다. 메이슨은 "우리가 나노플라스틱의 존재를 몰랐던 것은 아니다. (당시) 우리는 그것들을 분석할 수 없었다"라고 설명했다. 나노 플라스틱, 인간 건강 위협 전문가들은 나노 플라스틱이 인류 건강에 가장 큰 위협을 주는 플라스틱 오염 유형 중 하나로 지목하고 있다. 이는 나노 플라스틱의 미세 입자가 주요 기관의 세포와 조직을 침입해 세포 활동을 방해하고, 비스페놀, 프탈레이트, 난연제, 과불소화 물질(PFAS), 중금속 등의 내분비 교란 화학물질을 축적할 수 있기 때문이다. 러트거스 대학교 어니스트 마리오 약학대학의 독성학 박사이자 약리학 부교수인 피오피 스태플튼(Phoebe Stapleton) 박사는 쥐를 대상으로 한 연구에서 임신한 쥐가 플라스틱 입자를 섭취하거나 흡입한 후 24시간 만에 그들의 태아의 뇌, 심장, 간, 신장 및 폐에서 플라스틱 화학물질을 발견했다고 보고했다. 스태플튼 박사는 "이 시점에서 인간 태반에서 마이크로플라스틱과 나노 플라스틱이 발견됐다"고 말했다. 그는 "인간의 폐 조직과 인간의 대변, 인간의 혈액에서 (미세 플라스틱이) 발견됐다"고 덧붙였다. 생수에서 나노입자를 식별하는 새로운 연구 방법은 라만 분광법의 개선된 형태에 기반을 두고 있다. 이 기술은 분자가 빛에 반응하여 진동하는 방식을 측정함으로써 세포의 화학적 구성을 분석한다. 이 기술의 공동 발명자이자 컬럼비아 대학교 화학과 교수인 웨이 민(Wei Min) 교수는 “이 변형된 라만 분광법, 자극 라만 산란 현미경(SRS)은 두 번째 레이저를 추가해 이전에는 감지하기 어려웠던 나노입자를 여러 자릿수로 증폭된 신호를 통해 탐지할 수 있다"고 말했다. 민 교수는 2008년 SRS를 공동 개발했다. 민 교수는 "이 연구는 자극 라만 산란 현미경을 나노플라스틱 세계에 적용한 최초의 연구"라고 말했다. SRS는 이미지를 획기적으로 향상시킴으로써 기존 기술에서 몇 시간이 걸리던 나노 입자의 이미지를 마이크로초 단위로 명확하게 식별하고 캡처할 수 있으며, 촬영 대상 조직에 손상을 주지 않고도 이미지를 캡처할 수 있다. 해당 연구에서 개발된 알고리즘은 출판 당시 폴리아미드, 폴리프로필렌, 폴리에틸렌, 폴리메틸메타크릴레이트, 폴리염화비닐, 폴리스티렌, 그리고 폴리에틸렌 테레프탈레이트를 포함한 일곱 가지 주요 플라스틱 유형을 식별할 수 있었다. 컬럼비아 대학교 화학 박사과정 학생이자 이 연구의 수석 저자인 나이신 치안(Naixin Qian)은 "다른 연구들을 통해 우리는 생수에 존재하는 대부분의 미세 플라스틱이 주로 PET(폴리에틸렌 테레프탈레이트) 병에서 누출된 것으로 추정했다"고 말했다. 다양한 유형의 플라스틱 존재 연구팀의 발견에 따르면, 플라스틱 물병 안에는 예상과 달리 다양한 유형의 플라스틱이 존재하며, 각 플라스틱 유형마다 입자 크기가 다르다. 연구팀은 "PET 플라스틱 입자는 크기가 컸지만, 다른 플라스틱 입자는 200나노미터에 불과해 훨씬 더 작았다"고 밝혔다. 연구에 따르면, PET 입자는 병 뚜껑을 반복적으로 여닫거나, 병이 파손되거나, 자동차 안에서 높은 온도에 노출될 때 부서질 수 있는 것으로 밝혀졌다. 컬럼비아 대학교 연구팀은 앞으로 생수에 떠다니는 나노 플라스틱의 출처를 더 깊이 연구할 계획이다. 이들은 나노 플라스틱이 제조 과정 중 오염된 원수에서 유래했을 가능성을 조사하고 있다. 한편, '건강한 아기, 밝은 미래' 재단의 헐리안은 과학이 이와 같은 문제를 탐구하는 동안 사람들이 플라스틱 노출을 줄이기 위해 취할 수 있는 조치들에 대해서도 밝혔다. 그녀는 "플라스틱 용기에 담긴 음식과 음료 섭취를 피하고, 천연 직물로 만든 옷을 입으며, 천연 소재의 소비자 제품을 구매하는 것이 좋다. 일상에서 플라스틱 사용을 줄이고 대안을 찾는 것이 중요하다"고 말했다.
-
- 생활경제
-
생수 속 나노플라스틱, 리터당 수천 개…체내 침범 우려
-
-
알래스카 해저서 발견된 신비의 황금 구체, 그 정체는?
- 미국 국립해양대기청(NOAA)의 과학자들이 알래스카 해저에서 신비로운 황금 구체를 발견했다. 필리핀 매체 인쿼러넷(INQUIRER.NET)에 따르면, 이 구체는 금속성 노란색으로 빛나며, 자세히 보면 부드러운 질감을 가지고 한쪽에 너비 약 10cm의 구멍이 있다. 과학자들은 이것이 알려지지 않은 종의 알일 수도 있다고 추측하고 있다. 미국 국립해양대기청에서 진행한 실시간 탐사 중계에 참여한 연구원은 "이것을 어떻게 이해해야 할지 모르겠다. 크고 오래된 구멍이 있어 무언가가 들어오거나 나갔을 것 같다"고 말했다. 다른 전문가는 "무언가가 나오지 않기를 바란다"고 했다. 심해 생태학자 케리 하웰(Kerry Howell)은 황금 구체의 질감에 대해 "달걀처럼 부드럽지만, 살이 붙은 느낌이 들며 뚜렷한 해부학적 구조는 없었다"고 말했다. 그는 또 "구멍이 있어 무언가가 들어오거나 나갔을 것으로 보이지만, 내가 본 어떤 달걀과도 다르다"고 덧붙였다. 알래스카 해저에서 발견된 수수께끼 같은 황금 구체에 대한 연구원들의 추가 연구가 진행 중이다. 연구원들은 흡입 장치를 사용하여 이 황금 구체를 수집했다. DNA 검사를 통해 이 구체를 생성한 유기체를 확인할 계획이다. 과학자들은 이 황금 구체가 알일 가능성이 높다고 추정하고 있다. 그러나 구체의 크기가 10cm에 이르기 때문에, 이를 낳은 생물은 상당히 큰 크기일 것으로 예상된다. 러시아, 수중에서 좀비 바이러스 발견 한편, 러시아에서는 수중에서 좀비 바이러스가 발견되는 등 또 다른 수중 발견이 이어지고 있어 과학계를 긴장시켰다. 과학자들은 러시아 콜리마 강의 얼음 댐 아래에서 수천 년 동안 얼어있던 '좀비 바이러스'를 발견했다. 이 바이러스는 약 2만7000년에서 4만8500년 전에 얼어붙은 것으로 추정된다. 좀비 바이러스는 아메바에 감염되어, 감염된 아메바가 다른 생물체에 바이러스를 전파할 수 있다. 감염된 생물체는 의식을 잃고 움직임을 멈추며 결국 사망에 이를 수 있다. 장 미셸 클라베리(Jean-Michel Claverie) 교수는 실험을 통해 이 바이러스가 여전히 활성 상태임을 확인했다. 클라베리 교수는 "수천 년 동안 살아남은 이 바이러스는 놀라운 일이며, 기후 변화로 영구 동토층이 녹아내리면서 고대 병원균이 더 많이 방출될 수 있다"고 경고했다. 이 좀비 바이러스는 인류와 생태계에 잠재적인 위협이 될 수 있다. 클라베리 교수는 "이 바이러스가 인간에게 전염될 수 있는지는 아직 확실하지 않지만, 그 가능성을 배제할 수 없다. 만약 인간에게 전염된다면, 심각한 질병이나 사망을 초래할 수 있다"고 말했다. 좀비 바이러스는 생태계에도 위협이 될 수 있다. 이 바이러스가 다른 동물에게 전염되면, 그 동물들의 개체수 감소나 멸종을 초래할 수 있다. 과학자들은 좀비 바이러스에 대한 대응책을 마련하기 위해 노력하고 있다. 클라베리 교수는 "이 바이러스에 대한 백신이나 치료법을 개발하는 것이 중요하며, 영구 동토층이 녹는 것을 방지하기 위한 노력도 필요하다"고 말했다. 좀비 바이러스와 황금 구체 모두 인류에게 새로운 위협이 될 가능성이 있는 중요한 발견들이다. 과학자들은 이러한 발견들을 심각하게 받아들이고 이에 대응하기 위해 끊임없이 노력해야 할 것이다.
-
- IT/바이오
-
알래스카 해저서 발견된 신비의 황금 구체, 그 정체는?
-
-
암세포, 근적외선 분자에 99% 파괴
- 과학자들은 근적외선을 사용해 아미노시아닌 분자를 활성화시키면, 이 분자가 진동하여 암세포의 막을 파괴하는 방법을 개발했다. 이 기술은 라이스 대학교, 텍사스 A&M 대학교, 텍사스 대학교의 연구팀에 의해 개발되었으며, 과학 전문 매체 '사이언스얼럿(ScienceAlert)'을 통해 보도됐다. 이 연구는 학술지 '네이처 케미스트리(Nature Chemistry)'에 게재됐다. 아미노시아닌 분자는 이미 바이오이미징 분야에서 합성 염료로 사용되고 있다. 암 탐지를 위해 저용량으로 사용하는 이 물질은 물속에서 안정적으로 유지되고 세포 외부에 부착하는 데 효과적이다. 라이스 대학교의 화학자 제임스 투어(James Tour)는 이 기술을 "분자 착암기"라고 부르며, "완전히 새로운 세대의 분자 기계로 이전의 페링가형 모터보다 기계적 움직임이 100만 배 이상 빠르고, 가시광선이 아닌 근적외선으로 활성화할 수 있다"고 강조했다. 연구팀은 근적외선이 신체 깊은 부분까지 도달할 수 있어, 뼈나 장기의 암을 수술 없이 치료할 수 있는 가능성을 열어준다고 설명했다. 이러한 발견은 암 치료 분야에 중요한 발전을 의미한다. 실험실에서 배양된 암세포에 대한 실험 결과, '분자 착암기'라는 새로운 방법이 세포를 파괴하는 데 99%의 높은 효율을 보였다. 또한 흑색종 종양이 있는 쥐에게 테스트한 결과, 실험에 참여한 쥐의 절반에서는 암이 사라졌다. 아미노시아닌 분자의 구조와 화학적 특성은 근적외선과 같은 적절한 자극이 있을 때 유지된다는 것을 의미한다. 이 분자가 움직일 때, 내부의 전자들은 플라스몬을 형성하고, 이는 전체 분자에 걸쳐 이동을 유도하는 집합적으로 진동하는 실체를 만든다. 라이스 대학의 화학자 키케론 아얄라 오로즈코(Ciceron Ayala-Orozco)는 "중요한 점은 우리가 이 분자들이 어떻게 작동할 수 있는지에 대한 새로운 이해를 얻었다는 것"이라고 강조했다. 그는 또한 "이 방법으로 분자 전체를 흥분시켜 특정 목표를 달성하는 데 사용되는 기계적 작용을 생성하기 위해 분자 플라즈몬을 사용한 것은 이번이 처음이다. 이 경우에는 암세포의 막을 파괴하는 것이 목표였다"고 덧붙였다. 플라스몬은 분자의 한쪽에 있는 팔을 통해 진동의 움직임으로 인해 분자를 암세포의 막에 연결하는 데 도움을 준다. 이 연구는 아직 초기 단계에 있지만, 이와 같은 초기 발견들은 매우 희망적인 결과를 보여주고 있다. 이 기술은 암세포가 어떤 종류의 방어 메커니즘을 진화시키기 어렵게 만드는 간단하고 생체역학적인 접근법이다. 연구팀은 이와 유사하게 작동할 수 있는 다른 종류의 분자들을 탐색하는 것이 다음 목표다. 아얄라 오로즈코는 "이 연구는 분자 차원에서 기계적 힘을 활용하여 암을 치료하는 새로운 방법에 대한 것"이라고 말했다. 이러한 접근은 암 치료 분야에서 새로운 잠재력을 열어줄 수 있는 중요한 발전이다. 한편, 플라스몬(plasmon)은 금속에서 발견되는 자유 전자의 집합적인 진동을 나타내는 물리학적 개념이다. 금속의 전자들은 특정 조건에서 집단적으로 진동할 수 있으며, 이러한 진동은 전기장과 상호작용하여 플라스몬을 생성한다. 플라스모닉스(plasmonics)라는 분야에서는 이러한 플라스몬의 고유한 성질을 이용하여 다양한 응용을 연구하고 있다. 플라스몬은 나노기술, 광학, 센서 기술 등에서 중요한 역할을 한다. 예를 들어, 플라스몬을 이용한 나노입자는 의료 영상, 암 치료, 화학 센서 등에서 사용된다. 특히, 플라스몬의 능력으로 빛의 파장보다 작은 구조에서도 빛을 조작하고 집중시킬 수 있기 때문에, 고해상도의 광학적 기술 개발에 중요한 기초가 된다.
-
- IT/바이오
-
암세포, 근적외선 분자에 99% 파괴
-
-
도시바, 코발트 대체 신형 리튬이온배터리 개발
- 도시바가 코발트를 사용하지 않는 새로운 형태의 이차전지를 개발하는 데 성공했다. 일본 매체 이타임스(eetimes)는 도시바가 코발트를 사용하지 않는 5V급 고전위 양극재를 활용한 새로운 리튬이온 이차전지를 개발했다고 최근 보도했다. 코발트는 지각에서 주로 화합물 형태로 존재하며, 철운석에서 소량의 합금 형태로 발견된다. 코발트는 특히 배터리의 양극재 원료로 사용되며, 중국이 이를 가장 많이 생산하는 것으로 알려져 있다. 이러한 상황 속에서 일본의 도시바가 코발트를 사용하지 않는 신형 리튬이온 배터리 개발에 성공한 것은 주목할 만한 사건이다. 도시바는 오는 2028년 이 기술을 상용화해 미래 자동차 애플리케이션으로 확장하는 것을 목표로 하고 있다. 이 리튬이온 이차전지의 시제품은 3V 이상의 출력전압, 5분 만에 80%까지 충전할 수 있는 고속 충전 성능, 60°C의 고온에서 우수한 수명 특성을 보여준다고 회사 측은 밝혔다. 이러한 이차전지 개발 배경은 탄소 중립 달성을 위해 산업 장비와 상용차의 전기화가 시급한 상황이기 때문이다. 승용차와 달리, 버스, 트럭, 중장비와 같은 상용차량은 긴 운행 시간과 열악한 환경에서 사용된다. 기존의 리튬이온 배터리는 충전 시간이 짧다는 단점이 있고, 열악한 환경에서 수명이 단축되어 상용차의 전기화 요건을 만족시키기 어렵다. 또한, 기존의 리튬 이온 배터리는 재료 공급망에서도 문제를 가지고 있다. 코발트와 같은 희귀 금속은 수요 증가, 생산국의 불균형, 채굴 및 정제 과정에서의 환경적 문제로 인해 공급 부족과 비용 변동의 문제에 직면해 왔다. 이로 인해 세계 각국은 양극재의 코발트 사용을 줄이려고 노력하고 있다. 이러한 상황 속에서, 코발트를 사용하지 않는 5V급 고전위 양극재에 대한 관심이 높아지고 있다. 리튬 이온 배터리의 전압은 양극과 음극 사이의 전위차에 의해 결정되므로, 높은 양극 전위는 전압을 증가시키고 전력 성능을 향상시키는 데 기여할 수 있다. 그러나 높은 전극 전위는 실제로 몇 가지 문제를 야기한다. 이는 전해질과 반응하여 가스를 생성하는 것뿐만 아니라, 금속 이온이 양극에서 전해질로 용해되는 현상을 포함한다. 전해질의 내산화성을 개선하려는 시도들이 있었지만, 가스 생성을 억제하고 리튬 이온의 전도성을 유지하는 것 사이의 상충관계로 인해 이러한 문제를 해결하기 어려웠다. 5V급 고전위 음극 전해질 분해 메커니즘 밝혀 도시바는 5V급 고전위 양극이 전해질을 분해하는 메커니즘을 분석했다. 연구에서는 전해액이 음극 입자의 표면에서 분해되어 가스를 발생시키고, 음극에서 용출된 금속 이온이 음극 표면에 작용하여 가스 발생을 증가시키는 것을 발견했다. 이 연구를 바탕으로, 도시바는 양극의 입자 표면을 변형시켜 금속의 용출을 줄이는 기술과 음극 표면에서 용출된 이온을 중화하는 기술을 개발했다. 이 두 가지 기술의 결합을 통해, 기존 전해질을 사용하면서도 5V급 고전위 양극에서 발생하는 가스 문제를 크게 줄일 수 있었다. 니오븀-티타늄 산화물 양극과 결합 도시바는 이 음극을 니오븀-티타늄 산화물 양극과 결합하여 리튬 이온 이차전지를 개발했다. 산화물 음극은 수명이 길고 안전성이 높아 빠르게 충전할 수 있는 특징이 있어, 도시바는 이를 'SCiB'로 상품화했지만, 전위가 높기 때문에 배터리의 전압이 낮다는 단점이 있다. 이번 연구에서는 고전위 5V급 고전위 양극과 조합하여 양극과 음극의 전위차를 증가시켜 배터리 전압을 향상시켰다. 충방전 사이클 테스트에서의 도시바의 성능 시연은 흥미로운 결과를 보였다. 가스 발생 억제 기술이 적용되지 않은 배터리에서는 가스 발생으로 인한 팽창이 관찰되었으나, 가스 발생 억제 기술이 적용된 배터리에서는 팽창이 전혀 관찰되지 않았다. 이러한 결과는 새로운 기술의 효과성을 입증하는 것으로 볼 수 있다. 평균 출력 전압이 3.15V인 이 배터리는 기존 SCiB보다 높은 전압을 제공한다. 또한, 이 배터리는 5분 만에 80%까지 급속 충전이 가능한 성능을 보유하고 있다고 한다. 고온 환경에서의 내구성 또한 뛰어나, 60°C의 환경에서 100회의 충방전 후에도 용량 유지율이 99.2%에 달했다. 도시바 나노소재 및 프론티어 연구소 R&D센터의 선임연구원 하라다 야스히로(原田康弘)는 "5V급 고전위 양극을 가진 기존 전해액을 사용하는 배터리로서는 탁월한 성능"이라며 고온 내구성에 대한 자신감을 드러냈다. 도시바는 이 기술을 2028년 실용화하는 것을 목표로 하고 있으며, 향후 용량을 더욱 늘리기 위해 검증을 실시할 예정이다.
-
- 산업
-
도시바, 코발트 대체 신형 리튬이온배터리 개발
-
-
美 MIT, 미생물 비료 코팅 개발…재생농업 촉진
- 미국 매사추세츠 공과대학(MIT) 화학자들은 지속 가능한 대안으로 질소 고정 박테리아를 사용해 화학 비료의 탄소 배출량을 줄이고 있다. 과학 전문 매체 사이테크데일리(SciTechDaily)는 MIT 화학 엔지니어들이 박테리아 세포의 성장이나 기능을 방해하지 않으면서 세포를 손상으로부터 보호하는 금속-유기 코팅을 개발해 종자 발아율을 크게 향상시켰다고 보도했다. 이러한 혁신은 미생물 비료의 접근성을 높이고 재생 농업을 촉진할 수 있다. 이 코팅은 박테리아 세포의 표면에 금속과 폴리페놀로 구성된 삼각형 모양의 구조를 형성한다. 이러한 구조는 박테리아 세포를 둘러싸고 보호막을 형성하여 열이나 습도, 건조 등의 손상으로부터 박테리아 세포를 보호해주어 미생물 비료의 안정성을 향상시킬 수 있다. 화학 비료 생산은 전 세계 온실 가스 배출량의 약 1.5%를 차지한다. MIT 화학자들은 일부 화학 비료를 보다 지속 가능한 공급원인 박테리아로 대체하여 탄소 발자국을 줄이는 데 도움이 되기를 기대하고 있다. 질소 가스를 암모니아로 전환할 수 있는 박테리아는 식물에 필요한 영양분을 제공할 뿐만 아니라 토양을 재생하고 해충으로부터 식물을 보호하는 데 도움이 될 수 있다. 그러나 이러한 박테리아는 열과 습도에 민감하기 때문에 대량 생산해서 농장으로 배송하기가 어렵다. 박테리아 민감성 극복 이러한 장애물을 극복하기 위해 MIT 화학 엔지니어들은 박테리아 세포의 성장이나 기능을 방해하지 않으면서 손상으로부터 세포를 보호하는 금속-유기 코팅을 개발했다. 새로운 연구에서 MIT 연구진은 이러한 코팅 박테리아가 옥수수와 청경채와 같은 채소를 포함한 다양한 종자의 발아율을 향상시킨다는 사실을 발견했다. 코팅된 박테리아로 처리한 씨앗은 코팅되지 않은 신선한 미생물로 처리한 씨앗에 비해 발아율이 150% 증가했다. 연구를 주도한 MIT 화학 공학과 아리엘 퍼스트(Ariel Furst) 박사는 "이 코팅은 농부들이 미생물을 비료로 배치하는 것을 훨씬 쉽게 만들 수 있다. 건조 공정으로부터 박테리아를 보호하고, 액체가 아닌 건조 분말이기 때문에 훨씬 더 쉽고 더 적은 비용으로 유통할 수 있다. 또한 섭씨 55.55도(화씨 132도)까지 견딜 수 있으므로 이러한 미생물을 냉장 보관을 사용할 필요가 없다"라고 말했다. 연구진은 이 기술은 화학 비료 사용을 줄여 환경 오염을 감소시킬 수 있고 토양의 영양분을 보충하고 토양을 건강하게 유지하는 데 도움이 될 수 있어 농업의 지속 가능성을 높이기를 기대한다. 이번 연구는 최근 '미국 화학학회지 Au'에 게재됐다. 미생물 보호 코팅 화학 비료는 공기 중의 질소와 수소를 결합하여 암모니아를 만드는 데 매우 높은 압력을 사용하는 에너지 집약적인 하버-보쉬 공정을 통해 제조된다. 화학 비료의 또 다른 단점으로는 이 과정에서 상당한 탄소 발자국이 발생한다는 점 외에도 장기간 사용하면 결국 토양의 영양분이 고갈된다는 것이다. 토양을 복원하기 위해 일부 농부들은 작물 순환과 퇴비화 등 다양한 전략을 사용해 토양을 건강하게 유지하는 '재생 농업'으로 전환하고 있다. 질소 가스를 암모니아로 전환하는 질소 고정 박테리아가 이러한 접근 방식에 도움이 될 수 있다. 퍼스트 박사는 열과 동결 건조로부터 미생물을 보호하기 위해 이전에 소화관으로 전달되는 치료용 박테리아를 보호하는 등 다른 용도로 미생물을 캡슐화하기 위해 개발한 금속-페놀 네트워크(MPN)라는 코팅을 적용하기로 결정했다. 이 코팅에는 금속과 폴리페놀이라는 두 가지 유기 화합물 성분이 포함되어 있어 스스로 조립되어 보호막을 형성할 수 있다. 철, 망간, 알루미늄, 아연 등 코팅에 사용되는 금속은 식품첨가물로서 안전한 것으로 간주된다. 식물에서 흔히 발견되는 폴리페놀은 탄닌과 오트 등의 분자를 포함한다. 퍼스트 박사는 "우리는 그 자체로 효능이 있는 것으로 알려진 천연 식품 등급의 화합물을 사용하여 미생물을 보호하는 작은 갑옷을 만들고 있다라고 말했다. 이 연구를 위해 연구팀은 12가지 MPN을 만들어 유해한 곰팡이와 기타 해충으로부터 식물을 보호하는 질소 고정 박테리아인 슈도모나스 클로로라피스를 캡슐화하는 데 사용했다. 연구진은 모든 코팅이 최대 섭씨 50도(화씨 122도)의 온도와 최대 48%의 상대 습도로부터 박테리아를 보호한다는 사실을 발견했다. 또한 코팅은 동결 건조 과정에서도 미생물의 생존을 유지했다. 종자 발아 향상 연구팀은 망간과 에피갈로카테킨 갈레이트(EGCG)라는 폴리페놀의 조합인 가장 효과적인 MPN으로 코팅된 미생물을 사용하여 실험용 접시에서 종자 발아를 돕는 능력을 테스트했다. 또 연구팀은 코팅된 미생물을 접시에 넣기 전에 50°C로 가열한 후 코팅되지 않은 신선한 미생물과 동결 건조된 코팅되지 않은 미생물을 비교했다. 연구 결과 코팅된 미생물은 발아율을 150% 향상 시켰다. 퍼스트 박사는 "기술을 개발할 때는 의도적으로 저렴하고 접근하기 쉽도록 설계해야 하는데, 이 기술이 바로 그런 기술이다. 이 기술은 재생 농업의 대중화에 도움이 될 것이다라고 말했다. 퍼스트 박사는 이 기술을 상용화하기 위해 세이아 바이오(Seia Bio)라는 회사를 설립했다. 세이아 바이오는 현재 이 코팅을 적용한 미생물 비료를 농업 현장에 적용하는 데 대한 연구를 진행하고 있다.
-
- 산업
-
美 MIT, 미생물 비료 코팅 개발…재생농업 촉진
-
-
루테늄 나노 입자로 녹색 수소 생산 비용 절감
- 최근 전 세계적으로 탄소 중립을 위한 노력이 활발해지면서, 녹색 수소의 중요성이 더욱 커지고 있다. 녹색 수소는 태양광, 풍력 등 재생 가능 에너지를 이용해 물을 전기분해하여 생산한 수소로, 생산 과정에서 이산화탄소를 배출하지 않는 친환경 에너지원이다. 그러나 기존의 녹색 수소 생산 기술은 백금이나 이리듐과 같은 귀금속을 촉매로 사용하기 때문에 생산 비용이 높아, 대규모 생산과 활용에 어려움이 있었다. 이에 따라, 저렴한 촉매를 사용하여 녹색 수소 생산 비용을 낮추기 위한 연구가 활발히 진행되고 있다. 최근 에너지 전문매체 오일프라이스(OILPRICE)에 따르면 이탈리아의 이노바티브 테크놀로지 연구소(Istituto Italiano di Tecnologia, IIT)와 스핀오프 기업 비디멘션즈(BeDimensions)는 작은 루테늄 입자와 태양열 전해조를 이용한 녹색 수소 생산 기술을 개발했다고 발표했다. 기존의 녹색 수소 생산 방법은 백금이나 이리듐과 같은 귀금속을 촉매로 사용하기 때문에 생산 비용이 높다는 단점이 있다. 반면, 이번에 개발된 기술은 루테늄만을 사용하기 때문에 생산 비용이 크게 낮아질 것으로 기대된다. IIT와 비디멘션즈의 연구진은 루테늄 나노 입자를 전해조 음극의 활성상으로 사용해 전체 전해조의 효율성을 향상시켰다. 루테늄 나노 입자는 백금과 유사한 촉매 작용을 하지만 가격은 백금의 약 3분의 1로 저렴하다. 따라서 킬로와트당 40mg의 루테늄만을 사용하면 기존의 양이온 교환막(Proton Exchange Membrane,PEM) 전해조에 비해 생산 비용을 약 75% 절감할 것으로 예상된다. 녹색 수소 생산이 중요한 이유 녹색 수소는 태양광, 풍력 등 재생 가능 에너지를 이용해 물을 전기분해하여 생산한 수소를 말한다. 화석 연료를 이용해 생산한 수소(회색 수소, 파란 수소)와 달리 생산 과정에서 이산화탄소를 배출하지 않는다. 녹색 수소는 탄소 중립 사회로의 전환을 위한 핵심 에너지원으로 주목받고 있다. 수소는 연료전지, 연료 저장, 화학 공정 등 다양한 분야에서 활용될 수 있다. 이번에 개발된 기술은 녹색 수소 생산 비용을 낮추는 데 기여할 것으로 기대된다. 이는 녹색 수소의 대규모 생산과 활용을 앞당기는 데 도움이 될 것으로 보인다. 에너지 단위당 수소 생산량은? IIT와 비디멘션즈의 연구진은 이번 기술이 기존의 양이온 교환막 전해조에 비해 에너지 단위당 수소 생산량이 높다고 밝혔지만, 구체적인 수치는 언급하지 않았다. 에너지 단위당 수소 생산량은 녹색 수소 생산 비용의 중요한 요소 중 하나다. 따라서 이 기술이 상용화될 경우 에너지 단위당 수소 생산량이 얼마나 되는지 확인하는 것이 중요하다. 루테늄 공급량은 충분할까? 루테늄은 백금 추출의 부산물로 얻어지기 때문에 연간 생산량이 백금의 7분의 1 수준이다. 따라서 이번에 개발된 기술이 상용화될 경우 루테늄의 수요가 증가할 것으로 예상된다. 루테늄의 수요 증가에 따라 가격이 상승할 가능성도 있다. 따라서 루테늄의 공급과 수요를 고려해 기술의 경제성을 평가하는 것이 필요하다. 한국, 루테늄 개발 사업 추진 한국도 루테늄 개발을 위해 노력하고 있다. 과학기술정보통신부 산하 한국과학기술연구원(KIST)은 2021년부터 루테늄의 효율적인 추출 및 정제 기술 개발을 추진하고 있다. 이 기술이 개발되면 루테늄의 생산량과 품질을 크게 향상시킬 수 있을 것으로 기대된다. 또한, 한국수소산업진흥협회는 루테늄의 국내 자급률을 높이기 위한 연구개발(R&D) 사업을 추진하고 있다. 이 사업을 통해 루테늄의 국내 생산 기술을 개발하고, 루테늄의 수요를 창출하기 위한 노력을 기울이고 있다. 이러한 기술 개발을 통해 우리나라도 녹색 수소 생산 비용을 낮추고, 루테늄의 국산화를 추진할 수 있을 것으로 기대된다. 이번에 개발된 기술은 녹색 수소 생산 비용을 크게 낮추는 데 기여할 것으로 기대된다. 이는 녹색 수소의 대규모 생산과 활용을 앞당기는 데 도움이 될 것으로 보인다. 그러나 에너지 단위당 수소 생산량과 루테늄 공급 문제 등은 추가적인 연구와 개발이 필요하다.
-
- 산업
-
루테늄 나노 입자로 녹색 수소 생산 비용 절감
-
-
중국, 안보 우려로 반도체관련 희토류 등 가공기술 수출 금지
- 중국정부는 21일(현지시간) 희토류의 추출과 분리기술의 수출을 금지했다. 이날 로이터통신 등 외신들은 중국정부가 반도체 재료가 되는 갈륨∙게르마늄 등 희토류에 대한 수출규제에 이어 수출금지에 나선 것은 전략적 광물에서 지배적 지위를 유지하기 위한 조치로 보인다고 보도했다. 중국 상무부는 지난해 12월에 희토류의 가공기술에 대해 국가안전보장과 공공의 이익을 보호하기 위한 목적으로 한 '수출금지∙제한기술 목록'에 추가하는 방향으로 일반국민 의견을 모아왔다. 희토류 금속∙합금재료의 생산기술과 일부 희토류 자석 제조기술의 수출도 금지했다. 미국과 유럽국가들은 독자 희토류 가공산업을 진흥시키는데 힘을 쏟아왔다. 하지만 이번 금수조치는 전기자동차(EV)의 모터와 의료기기, 무기에 사용돼 중국이 사실상 독점상태에 있는 소위 ‘중희토류’에 대한 영향이 크게 미칠 것으로 판단된다. 컨설팅회사 벤치마크 미네랄 인텔리전시는 중국이 전세계 희토류 99.9%의 분리를 차지하고 있으며 미국과 유럽이 신설하고 있는 가공설비는 주로 네오디뮴과 프라세요디뮴 등 경희토류를 다루고 있다. 중국은 올해 8월에 반도체지료의 갈륨과 게르마늄의 수출규제를 도입했다. 12월 1일부터는 EV의 주요재료인 그라파이트(흑연) 제품의 일부도 수출 허가제를 적용했다. 미국 와이오밍주에서 희토류의 광산을 개발하는 아메리칸 레어 어스의 돈 슈월츠 최고경영자(CEO)는 "중국이 시장의 지배적입장의 유지를 밀어붙이고 있다"고 지적했다. 중국은 미국과 유럽의 희토류기업이 고전하고 있는 희토류 정제를 위한 용매추출 공정을 확립하고 있다. 다만 그 기술이 실제로 어느 정도 수출되고 있는지는 분명치 않다. 캐나다의 희토류기업 네오퍼포먼스머티리얼스의 전 CEO 콘스탄틴 칼야노포로스는 "중국정부가 몇년전부터 희토류기술의 수출을 제한해왔다"면서 "모두가 이미 알고 있는 사실이 정식으로 발표된 것 뿐"이라고 말했다.
-
- 산업
-
중국, 안보 우려로 반도체관련 희토류 등 가공기술 수출 금지
-
-
뮌헨공대, 태양광 수소 생산 세계 최고…경제성 확보 과제
- 독일 뮌헨대학교 연구팀이 태양광 수소 생산 분야에서 세계 기록을 경신했다. 이들은 햇빛을 활용하여 포름산으로부터 수소를 생산하는 플라즈몬 나노구조를 개발하여 녹색 수소 개발에 획기적인 발전을 이루어냈다. 산업 전문매체 '오일프라이스(Oil Price)'는 뮌헨대학교 연구팀의 이 발견이 획기적이라면서도 고가의 원자재를 사용하는 한계로 인해 경제적인 측면에서 더 효과적인 대안을 모색해야 한다고 지적했다. 뮌헨대학교 연구팀은 녹색 수소 생산 분야에서 세계적인 기록을 경신했으며, 이러한 성과를 이루어낸 고성능 나노구조를 개발했다. 뮌헨대학교 실험물리학 및 에너지 변환 교수인 에밀리아노 코르테스(Emiliano Cortés)는 나노우주로의 도약을 이루어냈다. 코르테스 교수는 "태양광의 고에너지 입자가 원자 구조와 상호 작용하는 지점에서 연구가 시작되었다"라며 "태양에너지를 더 효율적으로 활용하기 위한 소재 솔루션을 연구 중"이라고 설명했다. 이러한 발견은 새로운 태양전지와 광촉매의 가능성을 열어두고 있다. 그러나 코르테스 교수는 "햇빛이 희석돼 지구에 도달하기 때문에 면적당 에너지가 상대적으로 낮다"는 문제에 직면하고 있다고 말했다. 헤란 박사는 "먼저, 우리는 플라즈몬 금속(우리 경우에는 금)에서 10~200나노미터 범위의 입자를 생성했다"라며 "이 크기에서 가시광선은 금 전자와 매우 강하게 상호작용하여 공명 진동을 유발한다"라고 설명했다. 이러한 현상을 통해 나노입자는 더 많은 햇빛을 포착하고, 매우 높은 에너지의 전자로 변환할 수 있다는 것을 밝혔다. 헤란 박사는 "이러한 과정에서 매우 국지적이고 강한 전기장이 핫스팟에서 발생한다"고 말했다. 이러한 핫스팟은 금 입자 사이에서 형성되며, 따라서 두 사람은 백금 나노입자를 이러한 핫스팟 사이 공간에 직접 배치하는 아이디어를 얻었다. 오늘날 수소는 주로 화석 연료, 주로 천연가스에서 생산된다. 그러나 두 사람은 "플라즈몬 금속과 촉매 금속의 결합을 통해 이산화탄소를 유용한 물질로 변환하는 등 다양한 산업 응용 분야를 위한 강력한 광촉매를 개발 중이다"라고 밝혔다. 이들은 이미 이러한 물질 개발에 대한 특허를 취득했다. 또한, 이전에 매사추세츠 공과대학(MIT)의 엔지니어들이 태양열을 활용하여 온실가스 배출 없이 수소를 효율적으로 생산하는 '태양열화학수소' 시스템을 개발했다. MIT, 태양열 최대 40% 활용 기존의 태양열 열화학 수소 생산 시스템은 효율성이 낮았지만, MIT의 설계는 태양열을 최대 40%까지 효율적으로 활용할 수 있다. 이 시스템은 태양열을 활용하여 물을 분해하고, 이 과정에서 생성된 수소를 청정 연료로 사용할 수 있게 한다. 이렇게 생산된 수소는 장거리 트럭, 선박, 항공기의 연료로 사용될 수 있으며, 온실가스가 전혀 배출되지 않는다. MIT의 새로운 시스템은 집중형 태양열 발전소(CSP) 방식을 사용하며, 다수의 거울을 활용하여 태양광을 집중시켜 열을 발생시킨다. 이렇게 집중된 열은 수소 생산에 활용된다. 한국의 DGIST(대구경북과학기술원)와 단국대학교 연구팀은 친환경적인 양자점을 활용하여 세계 최고 수준의 태양광 수소 생산 기술을 개발했다. 이 기술은 양자점의 물성을 조절하여 광전기화학 소자에 적용, 태양광을 효과적으로 수소 생산에 활용하는 방법을 제공한다. 게다가 한국의 DGIST(대구경북과학기술원)와 단국대학교 연구팀은 친환경적인 양자점을 활용하여 세계 최고 수준의 태양광 수소 생산 기술을 개발했다. 이 기술은 양자점의 물성을 조절하여 광전기화학 소자에 적용함으로써, 태양광을 효과적으로 수소 생산에 활용할 수 있는 방법을 제시한다.
-
- 산업
-
뮌헨공대, 태양광 수소 생산 세계 최고…경제성 확보 과제
-
-
큰돌고래, '전기 감각'으로 사냥 성공률 높인다
- 우리 말로 '물돼지'라고도 알려진 돌고래, 특히 큰돌고래에 대한 흥미로운 연구 결과가 미국의 유명 매거진 스미스소니안(Smithsonian)을 통해 보도됐다. 큰돌고래는 지능이 높고 긴 주둥이를 가지고 있으며, 머리의 정수리 부분에 있는 '멜론'이라는 지방 기관을 통해 다양한 초음파를 생성하여 의사소통을 한다고 알려져 있다. 이 돌고래는 예리한 시력과 청각, 그리고 반향정위라는 고유한 음파 탐지 시스템으로 먹이를 사냥한다. 최근 익스페어리멘탈 바이올로지 저널(Journal of Experimental Biology)에 게재된 연구에 따르면, 큰돌고래는 전기펄스 감지라는 또 다른 감각을 활용하고 있는 것으로 밝혀졌다. 연구에 따르면, 큰돌고래의 주둥이에는 전기를 감지할 수 있는 '진동 구덩이'라는 보조개가 존재하며, 이는 물고기 사냥과 바다 주변 탐색에 큰 도움을 주고 있다. 더욱이, 갓 태어난 돌고래의 이 구덩이에는 수염이 있는데, 이는 기존 연구자들이 생각했던 것과 달리 중요한 기능을 할 수 있다는 새로운 관점을 제공한다. 이번 발견은 큰돌고래가 희귀한 전기 수용 능력을 가진 작은 포유류 그룹에 포함될 수 있음을 시사한다. 현재까지 이 특이한 감각을 지닌 것으로 알려진 포유류는 오리너구리와 바늘두더지 뿐이다. 반면, 상어와 같은 연골 어류 그룹은 전기장에 대한 민감성이 매우 높은 것으로 알려져 있다. 특히 일부 상어 종은 ㎠당 50억분의 1볼트 정도의 매우 약한 전류도 감지할 수 있는 능력을 가지고 있다. 해양 포유류의 이러한 능력을 테스트하기 위해, 연구자들은 조련사와 협력하여 돌리(Dolly)와 도나(Donna)라는 두 마리의 포획된 큰돌고래에게 금속 막대에 대한 전기 충격을 감지하는 방법을 가르쳤다. 이를 위해 연구원들은 맞춤형 전기장 발생기에 연결된 전극을 사용하여 다양한 강도의 전기장을 전달했다. 독일 뉘른베르크 동물원의 생물학자 팀 휘트너(Tim Hüttner)는 "이것은 인간이 청력 검사를 받는 것과 유사하며, 돌고래들은 실험에서 정확하게 반응했다"고 말했다. 도나는 더 높은 감도를 보여주었다. 도나는 ㎝당 2.4㎶ 만큼 낮은 직류(DC)를 감지할 수 있었다. 반면 돌리의 임계값은 ㎝당 5.5㎶에 그쳤다. 바이오로지스(The Company of Biologists)는 돌고래에 대한 직류(DC) 전기장 실험에 이어, 교류(AC) 전기장을 인지하는 능력도 테스트했다. 연구에 따르면, 모든 수중 유기체는 정적인 직류 장을 생성하지만, 물고기와 같은 일부 유기체는 아가미 움직임에 따라 펄스 형태의 교류 장을 생성한다고 한다. 연구 팀은 초당 1회, 5회, 그리고 25회의 펄스를 가진 다양한 주파수의 AC 전기장을 실험했다. 연구 결과, 두 돌고래 모두 DC 전기장에 대해 더 민감한 반응을 보였으나, 저주파 AC 전기장에도 잘 반응하는 것으로 나타났다. 독일 로스토크 대학의 해양 생물학자인 귀도 덴하르트(Guido Dehnhardt)는 "약한 전기장에 대한 돌고래의 민감성이 물고기를 사냥할 때, 특히 퇴적물에 숨어 있는 먹이를 찾는 데 도움이 될 수 있다"고 말했다. 하지만, 큰돌고래가 이 능력을 실제로 야생에서 어떻게 활용하는지는 아직 명확히 알려지지 않았다. 이 전기 감각은 먹이 사냥뿐만 아니라, 지구 자기장의 변화를 감지해 탐색하는 데에도 유용할 수 있다. 연구팀은 앞으로 돌고래의 움직임과 이 감각 사이의 관계를 더 연구할 계획이다. 이전의 연구에서는 태양 폭풍이 일으키는 행성 자기장의 변화와 돌고래 및 고래의 대량 좌초 사이의 연관성을 제시했다. 새로운 연구는 이 현상에 대한 설명을 시작할 것으로 기대된다.
-
- 생활경제
-
큰돌고래, '전기 감각'으로 사냥 성공률 높인다
-
-
[퓨처 Eyes(15)] 20m 미만 소형 입자 가속기, 의료·반도체 혁신 예고
- 미국 텍사스대학교(UT) 오스틴 캠퍼스 연구원들이 전자 에너지가 높고 공간도 적게 차지하는 소형 입자 가속기를 개발했다. '입자 가속기'는 우주를 구성하는 기본 입자들의 속성과 상호작용을 연구하는 데 필수적인 장치다. 현대 물리학의 중심에 서 있는 이 기술은 반도체 응용 분야, 의료 영상 및 치료, 재료, 에너지 및 의학 연구에 큰 잠재력을 가지고 있다는 평가다. 특히 기존 가속기는 수 킬로미터에 달하는 넓은 공간을 차지해 가격이 비싸고 소수의 국립연구소와 대학에서만 사용할 수 있었다. 미국 과학 기술 매체 사이테크데일리에 따르면, UT 연구팀이 개발한 소형 입자 가속기는 길이 20m 미만으로, 기존 가속기보다 훨씬 콤팩트하다. 또한, 100억 전자볼트(10 GeV)의 에너지를 가진 전자빔을 생성할 수 있어, 기존 가속기와 동일한 수준의 성능을 갖는다. 현재 미국 내에서 이와 같은 높은 전자 에너지 수준에 도달할 수 있는 가속기는 단 두 대에 불과하며, 둘 다 길이가 약 3km에 달한다. 이 연구의 공동 저자인 비요른 마누엘 헤겔리히(Bjorn "Manuel" Hegelich) UT 물리학 부교수는 "우리는 이제 이러한 에너지 수준에 매우 가까운 거리, 약 10cm 내에서 전자 빔에 도달할 수 있다"고 말했다. 이번 연구는 입자 가속기 기술의 발전에 중요한 진전을 의미하며, 향후 다양한 과학적, 의료적 응용에 사용될 수 있다. 헤겔리히 교수는 저널 '극한에서의 물질과 방사선(Matter and Radiation at Extremes)'에서 "우리의 가속기는 우주 장치의 방사선 내성 테스트, 새로운 반도체 칩의 3D 내부 구조 이미지화, 심지어 혁신적인 암 치료법과 고급 의료 영상 기술 개발에 활용될 수 있다"고 말했다. 또한, 이 가속기는 X선 자유 전자 레이저 구동에도 사용될 수 있다. 이 레이저는 원자나 분자 수준에서 일어나는 프로세스를 슬로우 모션으로 촬영하는 데 이용 가능하다. 가속기 기술의 혁신 '소형 입자 가속기' 입자 가속기는 원자와 같은 작은 입자들을 매우 높은 속도로 가속시켜, 이들을 서로 충돌시키거나 특정 표적에 충돌시킴으로써 그 속성을 탐구한다. 이러한 과정을 통해 과학자들은 입자들과 이를 구성하는 힘에 대해 깊이 있게 연구할 수 있다. 입자 가속기는 주로 하전 입자의 속도를 증가시키는 데 사용된다. 양성자, 원자핵, 전자와 같은 양전하나 음전하를 지닌 입자들이 이에 해당한다. 이 입자들은 때때로 빛의 속도에 근접한 속도로 가속된다. 입자가 표적 물질이나 다른 입자와 충돌할 때, 다양한 현상이 발생한다. 충돌로 인해 에너지가 방출되고, 핵 반응이 일어나며, 입자가 산란되고 새로운 입자가 생성된다. 예를 들어, 중성자와 같은 다른 입자들이 이러한 충돌에서 생겨날 수 있다. 이 과정을 통해 과학자들은 원자, 원자핵, 핵자를 결합하는 힘과 '하이그스 보손(Higgs boson)'과 같은 특별한 입자들의 성질을 연구할 수 있다. 하이그스 보손, 우주 기본 입자의 질량 부여하는 '신의 입자' '하이그스 보손'은 기본 입자 물리학의 중요한 개념 중 하나로, 입자들이 질량을 갖게 되는 메커니즘을 설명하는 데 핵심적인 역할을 한다. 이 입자는 1964년 물리학자 피터 하이그스와 다른 몇몇 이론 물리학자들에 의해 처음으로 제안됐다. 2012년 유럽입자물리연구소(CERN)의 대형 강입자 충돌기(LHC)에서 처음 발견됐다. 하이그스 보손은 매우 무거운 입자로, 질량은 약 125GeV이다. 이는 약 125억 전자볼트와 같다. 하이그스 보손은 또한 매우 불안정한 입자로, 평균 수명은 약 1.56x10¯²²초로 추정된다. 이는 하이그스 보손이 생성된 직후 거의 즉시 다른 입자들로 붕괴한다는 것을 의미한다. 하이그스 보손의 발견은 물리학 연구에 새로운 동력을 불어넣었다. 이로 인해 피터 하이그스와 프랑수아 앵글레르는 2013년 노벨 물리학상을 수상했다. 이 발견은 우주의 근본적인 성질에 대한 이해를 크게 향상시켰으며, 여전히 많은 연구가 진행 중이다. 입자 가속기 활용 분야 입자 가속기는 우주의 기원과 구조, 물질의 기본 구성 요소, 자연법칙 등을 연구하는 데 사용된다. 입자 가속기를 이용하여 새로운 입자를 발견하거나, 기존 입자의 성질을 연구할 수 있다. 또한 입자 가속기는 생물학, 의학, 재료과학, 나노기술 등 다양한 분야의 응용과학 연구에 활용된다. 입자 가속기를 이용하여 새로운 약물이나 치료법을 개발하거나, 새로운 재료나 소재를 개발할 수 있다. 예를 들어, 암 치료를 위한 정밀 방사선 요법이나 새로운 재료의 연구에 활용될 수 있다. 종양을 제거하거나 염증을 치료하는 방사선 치료를 수행할 수 있다. 입자 가속기를 사용하여 의료용 동위원소를 생산할 수도 있다. 의료용 동위원소는 암 진단, 치료, 방사선 치료 등 다양한 의학 분야에서 사용된다. 입자 가속기는 반도체 제조, 금속 재료 연구, 환경 오염 측정 등 산업 분야에도 다양한 용도로 활용되고 있다. 입자 가속기를 이용하여 반도체의 미세 회로를 제조할 수 있다. 또 식품이나 의약품을 살균하거나, 디스플레이 등을 제조할 수 있다. 아울러 새로운 물리학 이론을 탐구할 수 있다. 표준 모델 이외의 이론, 예를 들어 초대칭성, 여분의 차원, 양자 중력 이론 등을 실험적으로 탐구하는 것이 다음 세대 가속기의 중요한 목표 중 하나가 될 것이다. 또한 대규모 입자 가속기 프로젝트는 국제적 협력을 필요로 한다. 이러한 협력은 물리학뿐만 아니라 정치적, 경제적, 교육적 측면에서도 광범위한 영향을 미칠 것으로 보인다. 웨이크필드 레이저 가속기 웨이크필드 레이저 가속기는 1979년에 처음으로 개념이 제시된 이후 괄목할 만한 발전을 거듭해왔다. 이 기술은 강력한 레이저를 헬륨 가스에 충돌시켜 플라즈마 상태로 가열하고, 이 과정에서 고에너지 전자 빔이 가스의 전자를 밀어내며 파동을 생성한다. 지난 수십 년간 여러 연구 그룹이 이 기술을 발전시켜 더욱 강력한 버전을 개발했다. 헤겔리히 교수와 그의 연구팀은 나노기술을 이용해 주요 발전을 이루었다. 부가적인 레이저가 가스 셀 내의 금속판과 충돌하면, 금속 나노입자들이 흘러나와 파동에서 전자로 에너지 전달을 증가시키는 역할을 한다. 이 과정은 보트가 호수를 가로질러 나아가며 남기는 항적과 유사하며, 전자는 서퍼가 파도를 타는 것처럼 이 플라즈마 파동을 타고 이동한다. 이러한 혁신적인 접근 방식은 웨이크필드 레이저 가속기 기술의 효율성과 성능을 높이는 데 크게 기여하고 있다. 앞으로도 이 분야의 연구와 개발에 중요한 역할을 할 것으로 예상된다. 헤겔리히 교수는 웨이크필드 가속기의 원리를 비유를 통해 설명했다. 그는 "웨이크 서핑을 하려면 큰 파도에 들어가기 어렵기 때문에 서퍼들은 제트 스키에 끌려들어간다"고 비유했다. 이어서 "우리 가속기에서는 제트 스키와 유사한 역할을 하는 것이 적절한 시간과 위치에서 전자를 방출하는 나노입자이다. 이를 통해 파도 위에 더 많은 전자를 끌어들여 가속하는 것이 우리의 '비밀 소스'"라고 부연했다. 이 실험을 위해 연구팀은 세계에서 가장 강력한 펄스 레이저 중 하나인 '텍사스 페타와트 레이저(Texas Petawatt Laser)'를 사용했다. 이 레이저는 UT에 설치되어 있으며, 매시간 한 번씩 초강력 빛 펄스를 발사한다. 단일 페타와트 레이저 펄스의 전력은 미국 전력의 약 1000배에 달하지만, 지속 시간은 150펨토초에 불과하다. 이는 번개 방전의 10억분의 1도 안 되는 짧은 시간이다. 웨이크필드 레이저 가속기는 강력한 레이저를 헬륨 가스에 충돌시켜 플라즈마 상태로 가열하고, 이 과정에서 고에너지 전자 빔이 가스의 전자를 밀어내며 파동을 생성한다. 전자는 이 플라즈마 파동을 타고 이동하면서 에너지를 얻게 된다. 헤겔리히 교수와 그의 연구팀은 나노기술을 이용해 주요 발전을 이루었다. 부가적인 레이저가 가스 셀 내의 금속판과 충돌하면, 금속 나노입자들이 흘러나와 파동에서 전자로 에너지 전달을 증가시키는 역할을 한다. 소형 입자 가속기 연구의 의미와 전망 UT 연구팀의 이번 연구는 소형 입자 가속기 기술의 발전에 중요한 진전을 이루었다는 점에서 의미가 있다. 소형 입자 가속기는 기존 가속기의 단점인 비용과 공간 제약을 극복할 수 있어 다양한 분야에서 활용될 가능성이 높다. 연구팀은 향후 현재 개발중인 소형 입자 가속기를 테이블 위에 올려 놓고 초당 수천 번 반복적으로 발사할 수 있는 레이저로 시스템을 구동하여 기존 가속기보다 훨씬 더 콤팩트하고 훨씬 더 넓은 환경에서 사용할 수 있는 가속기를 만드는 것을 목표로 하고 있다. 한편 현재 세계 각국은 입자 가속기의 성능을 향상시키기 위한 연구에 박차를 가하고 있다. 유럽입자물리연구소(CERN)는 현재 운영 중인 대형 강입자 충돌기(LHC)의 성능을 개선하기 위한 작업을 진행하고 있다. 또한, 미국, 중국, 일본 등에서도 새로운 입자 가속기의 건설을 추진하고 있다. 이러한 노력을 통해 입자 가속기는 우주와 물질의 기본 법칙을 이해하고 새로운 기술을 개발하는 데 더욱 중요한 역할을 할 것으로 기대된다.
-
- 포커스온
-
[퓨처 Eyes(15)] 20m 미만 소형 입자 가속기, 의료·반도체 혁신 예고
-
-
도시바, 코발트 프리 5V급 리튬 이온 배터리 개발
- 도시바에서 코발트 사용을 배제한 코발트 프리 5V급 리튬이온 배터리를 개발했다. 리튬 이온 배터리는 휴대폰, 노트북 등의 다양한 전자기기의 저원으로 널리 사용되고 있다. 전기차에도 사용되면서 리튬 이온 배터리 시장은 꾸준하게 성장을 하고 있다. 최근에는 코발트 프리 배터리, 실리콘 음극 배터리, 고속 충전 배터리 등 새로운 기술이 개발되고 있다. 폴란드 매체 메디아24(M'edia24)에 따르면 도시바가 코발트 프리 5V(볼트)급 리튬 이온 배터리를 최근 개발했다. 이 배터리는 코발트와 니켈이 함유되지 않아 희귀 금속에 대한 의존도를 줄이고 비용을 절감할 수 있다. 또한, 5분 만에 80%까지 충전할 수 있는 고속 충전 성능을 갖추고 있다. 코발트는 고성능 배터리 제작에 필수적이지만 채굴 과정에서 환경적, 윤리적 문제가 발생할 수 있다. 코발트 프리 배터리는 이러한 문제를 해결하기 위해 개발됐다. 도시바에서 개발한 배터리는 5볼트급 고전압을 제공해 기존 배터리보다 더 높은 에너지 밀도와 효율성을 달성할 수 있다. 이는 장거리 주행이 필요한 전기차나 고성능을 요구하는 전자 기기에 유리하다. 도시바의 새로운 리튬 이온 배터리는 음극에 코발트가 없는 니켈 환원 물질을 사용한다. 기존의 리튬 이온 배터리에서 음극에 코발트가 사용되는 이유는 코발트가 음극을 안정화하고 전압을 높이는 역할을 하기 때문이다. 하지만 코발트는 희귀 금속이며 가격이 비싼 편이다. 도시바는 음극 표면에 전해액과 반응을 억제하는 기술과 부극 표면에서 용출 이온을 무해화하는 기술을 개발하여 일반적으로 사용되는 전해액에서 가스 발생을 억제했다. 이를 통해 코발트 없이도 안정적인 고전압 배터리를 만들 수 있었다. 도시바는 1.5Ah급의 라미네이트형 배터리 프로토타입을 제작하여 성능을 테스트한 결과 이 배터리는 3V 이상의 고전압, 5분간 80% 급속 충전 성능, 그리고 6000회 이상의 충전·방전을 반복해도 초기 상태에 비해 80% 이상의 용량을 유지하는 내구성을 입증했다. 도시바는 새로 개발된 리튬 이온 배터리를 2028년 실용화하는 것을 목표로 하고 있다. 전동 공구나 산업 기기 등 소형으로 고전압을 필요로 하는 용도부터 장차 자동차용 배터리까지 다양한 분야에 적용할 계획이다. 한국, 코발트 프리 배터리 개발 박차 한국에서도 코발트 프리 배터리 개발에 박차를 가하고 있다. 삼성SDI는 니켈·망간·코발트(NMC) 배터리에서 코발트 함량을 50%까지 낮춘 'NCM523' 배터리를 개발했다. 이 배터리는 기존 NMC 배터리 대비 코발트 사용량을 30% 줄일 수 있다. LG에너지솔루션은 코발트 함량을 10% 이하로 줄인 'NCM811' 배터리를 개발하고 있다. 이 배터리는 기존 NMC 배터리 대비 코발트 사용량을 90% 줄일 수 있다. SK이노베이션은 코발트 없이 니켈과 망간만을 사용한 'NMx' 배터리를 개발 중이다. 이 배터리는 코발트 사용량을 100% 없앨 수 있다. 이번 도시바의 코발트 프리 배터리 개발은 리튬 이온 배터리의 성능과 지속 가능성을 높이는 데 기여할 것으로 기대된다. 희귀 금속에 대한 의존도를 줄이고 고속 충전 성능을 향상시킴으로써 전기차 등 친환경 자동차의 보급을 촉진할 수 있을 것으로 보인다.
-
- 산업
-
도시바, 코발트 프리 5V급 리튬 이온 배터리 개발
-
-
11월 취업자, 석달만에 20만명대로 축소⋯제조업 11개월 연속 줄어
- 11월 취업자 수 증가 폭이 석 달 만에 20만명대로 다소 축소됐다. 제조업 취업자는 지난해와 비교해 11개월 연속 줄었다. 통계청이 13일 발표한 '2023년 11월 고용동향'에 따르면 지난달 취업자 수는 2869만8000명으로 1년 전보다 27만7000명(1.0%) 늘었다. 2021년 3월부터 33개월 연속 증가세다. 다만 증가 규모는 8월(26만8000명), 9월(30만9000명), 10월(34만6000명)까지 확대됐다가 지난달 4개월 만에 축소됐다. 취업자 수는 지난 4월부터 증가폭이 둔화하더니 지난 7월(21만1000명)에는 2년 5개월 만에 가장 적게 늘었다. 그러다가 8월(26만8000명) 5개월 만에 반등한 데 이어 9월과 10월에도 증가폭이 확대됐으나 지난달 다시 둔화했다. 연령대로 보면 60세 이상에서 29만1000명 증가했다. 고령층 일자리를 제외하면 취업자 수는 오히려 1만4000명 감소한 셈이다. 30대와 50대도 각각 8만명, 3만6000명 늘었다. 하지만 사회 초년생인 20대와 경제 허리층인 40대에서 각각 4만4000명, 6만2000명 감소했다. 20대 취업자는 지난해 11월부터 1년 1개월째, 40대는 지난해 7월부터 1년 5개월째 감소세다. 15~29세 청년층 취업자도 1년 전보다 6만7000명 감소하며 지난해 11월부터 13개월 연속 뒷걸음질했다. 고용률은 46.3%로 0.2%포인트(p) 오르며 10개월 만에 증가 전환했다. 산업별로 보면 전문과학 및 기술서비스업(8만9000명·6.8%), 보건업 및 사회복지 서비스업(8만5000명·3.0%) 분야에서 취업자가 늘었다. 정보통신업(5만4000명·5.4%) 예술, 스포츠 및 여가 관련 서비스업(3만명·6.0%) 등에서도 증가했다. 반면 교육서비스업(-5만7000멍·-3.0%), 부동산업(-3만명·-5.4%), 협회 및 단체, 수리 및 기타 개인 서비스업(-1만6000명·-1.4%) 등에서 쪼그라들었다. 제조업 취업자도 1만1000명(-0.3%) 감소하며 11개월 연속 감소세를 지속했다. 제조업 취업자가 11개월 연속 감소한 건 2020년 3월~2021년 3월 이후 이번이 처음이다. 지난해 기저효과로 취업자가 줄었지만, 감소폭은 축소됐다. 자동차가 지속 증가하고 있는 데다가 금속, 반도체 관련 전자전기 취업자 감소폭이 둔화됐다고 통계청은 설명했다. 종사자별 지위로 보면 임금근로자 중 상용근로자는 41만9000명(2.6%), 임시근로자는 2만5000명(0.5%) 증가했으나 일용근로자는 10만7000명(-9.2%) 감소했다. 상용직이 증가하면서 임시·일용직은 감소하는 추세를 보이고 있다. 비임금근로자 중 고용원이 있는 자영업자는 8만1000명(5.9%) 증가했으나 고용원이 없는 자영업자는 7만8000명(-1.8%) 줄며 3개월 연속 뒷걸음질했다. 무급가족 종사자도 6만3000명(-6.5%) 줄며 44개월 연속 감소했다. 취업 시간대로 보면 36시간 이상 취업자는 2204만6000명으로 45만4000명(2.1%) 증가했지만 36시간 미만 취업자는 629만5000명으로 13만6000명(-2.1%) 감소했다. 일시 휴직자는 4만명(-10.1%) 줄었다. 제조업이나 전문, 과학 및 기술서비스업에서 일시 휴직이 줄어든 영향이다. 15세 이상 인구 중 취업자가 차지하는 비율인 전체 고용률은 63.1%로 전년보다 0.4%p 상승했다. 1982년 7월 관련 통계가 작성된 이래 같은 달 기준으로 역대 최대다. 경제협력개발기구(OECD) 비교 기준인 15~64세 고용률은 1년 전보다 0.6%p 오른 69.6%로 집계됐다. 같은 달 기준으로 1989년 1월부터 관련 통계 작성 시작 이후 가장 높다. 지난달 실업자는 67만7000명으로 전년 동월 대비 1만1000명(1.7%) 증가했다. 실업자가 증가한 건 2021년 3월 이후 32개월 만에 처음이다. 경제활동인구 중 실업자가 차지하는 비율인 실업률은 2.3%로 지난해와 같았다. 실업률은 1999년 6월 통계 개편 이래 11월 기준 가장 낮다. 취업자도 실업자도 아닌 비경제활동인구는 1610만1000명으로 전년 동월 대비 13만명(-0.8%) 줄며 33개월 연속 감소세를 지속했다. 비경제 활동 중 '쉬었음' 인구는 224만1000명으로 8000명(-0.3%) 감소했다. 연령별로는 30대에서 3만5000명(14.4%), 40대 1만명(3.8%) 늘었으며 다른 연령층은 감소했다. 구직단념자는 36만4000명으로 전년보다 2만6000명 줄었다. 서운주 통계청 사회통계국장은 "코로나19 일상 회복 이후 계속해서 증가해 왔던 숙박 및 음식점업 취업자 증가폭이 둔화하면서 취업자 증가폭이 축소됐다"면서 "경제·산업에 전반적으로 정보화가 활성화되고 산업의 디지털화에 따라 정보통신업 취업자가 늘었다"고 설명했다.
-
- 경제
-
11월 취업자, 석달만에 20만명대로 축소⋯제조업 11개월 연속 줄어
-
-
美 노스웨스턴대 "바다 쓰레기 주범 나일론, 촉매로 순식간에 '분해'"
- 바닷속 쓰레기로 전 세계가 몸살을 앓고 있다. 특히, 어망 등이 고래나 바다거북, 물개 등 해양생물을 칭칭 감싸고 있는 모습은 충격을 던져줬다. 나일론 어망 등은 뛰어난 내구성 때문에 자연 분해가 불가능해 해양동물과 산호초, 새, 바다 등을 위험에 빠뜨리고 있다. 해양 환경에 유입된 이들 물질은 분해되지 않고 수천 년 동안 머무를 수 있어 더욱 큰 폐해가 예상되고 있다. 그러나 최근 미국 노스웨스턴대학교 연구팀이 나일론을 분해하는 새로운 촉매를 개발해 이 같은 해양오염을 크게 줄일 수 있을 것으로 기대된다. 이 촉매는 몇 분 만에 내구성 높은 플라스틱 오염을 완전히 분해하는 것으로 알려졌다. 과학기술 전문 매체 '사이테크데일리(SciTechDaily)'는 미국 노스웨스턴 대학 연구팀이 개발한 새로운 나일론 분해 촉매에 대해 최근 보도했다. 연구팀은 유해한 부산물을 생성하지 않고 몇 분 만에 나일론-6을 빠르고 깨끗하며 완전히 분해하는 새로운 촉매를 개발했다. 더 좋은 점은 이 공정에는 독성 용매, 고가의 재료 또는 극한 조건이 필요하지 않아 일상적인 응용 분야에 실용적이라는 점이다. 연구팀은 이 촉매를 활용해 해양 플라스틱 오염을 줄이는 것은 물론, 폐기물 재활용과 순환경제 활성화에도 기여할 수 있을 것으로 기대하고 있다. 이번 연구 결과는 국제 학술지 '켐(chem)'에 게재됐다. 이번 연구의 수석 저자인 노스웨스턴 대학의 토빈 마크스(Tobin Marks) 교수는 "전 세계가 플라스틱 문제의 심각성을 인식하고 있다"며 "우리는 플라스틱을 재활용하기 위해 폴리머를 분해하여 원래 형태로 되돌려 재사용할 수 있는 촉매를 개발하고 있다"고 말했다. 어망, 태평양 쓰레기 46% 차지 나일론-6은 의류, 카펫, 안전벨트 등 매일 사용되는 다양한 제품에 사용되는 소재다. 하지만 사용 후에는 매립되거나 해양을 포함한 환경에 방치되는 경우가 많다. 세계야생생물연맹(World Wildlife Federation) 보고에 따르면 매년 약 45만3592kg(약 100만 파운드)의 낚시 장비가 해양에 버려지며, 이 중 나일론-6로 만들어진 어망이 태평양의 거대한 쓰레기 더미에서 차지하는 비율이 최소 46%에 이른다. 현재 나일론-6 처리 방법은 주로 매립에 의존하고 있다. 나일론-6가 연소될 때는 질소산화물 같은 독성 오염물질을 배출해 조기 사망과 온실가스인 이산화탄소 배출 등의 문제를 야기한다. 마크스 교수는 플라스틱을 분해하는 과정에서 발생하는 오염물질 문제를 지적하며, 친환경 용매의 사용이 중요하다고 강조했다. 그는 "플라스틱을 분해하면 오염된 물이 남게 되며, 친환경 용매의 사용은 필수적"이라며 "어떤 종류의 용매가 환경에 더 적합한지 연구해야 한다"고 말했다. 업사이클링을 위한 나일론 복구 마크스 교수와 연구팀은 실험실에서 새로운 촉매를 개발했다. 이 촉매는 이트륨(지구상에 풍부한 경제적인 금속)과 란탄족 이온을 활용한다. 나일론-6를 녹는 온도까지 가열한 뒤 촉매를 추가하자, 용매 없이도 플라스틱이 분해되어 부산물 없이 원래의 빌딩 블록으로 복구됐다. 마크스 교수는 이 과정을 목걸이와 진주에 비유하며 설명했다. 그는 "폴리머는 목걸이와 같으며, 각 진주는 하나의 단위체, 즉 단량체다. 우리는 이 목걸이를 해체하여 진주, 즉 빌딩 블록을 회수하는 방법을 찾은 것"이라고 말했다. 실험을 통해 연구팀은 플라스틱의 원래 모노머를 99% 회수할 수 있었다. 원칙적으로 이러한 모노머는 현재 강도와 내구성에 대한 수요가 높은 고부가가치 제품으로 재활용될 수 있다. 이 실험을 통해 연구팀은 나일론의 원래 모노머를 99% 회수하는 데 성공했다. 이러한 모노머는 내구성과 강도가 높은 고부가가치 제품으로 재활용될 수 있다. 마크스 교수는 재활용된 나일론이 일반 나일론보다 경제적 가치가 더 높다고 강조했다. 나일론-6를 효율적으로 타깃팅 새롭게 개발된 촉매는 높은 수율의 단량체 회수뿐만 아니라, 선택성도 뛰어나 나일론-6 중합체에만 작용한다. 이는 폐기물 중에서도 나일론-6를 효과적으로 분리해낼 수 있다는 것을 의미하며, 업계에 대량의 분류되지 않은 폐기물에도 적용 가능함을 보여준다. 마크스 교수는 이 과정의 경제성과 효율성을 강조했다. 그는 "나일론 폐기물을 사람이 일일이 분류하는 것은 비용이 많이 들고 비효율적이다. 하지만 이 촉매가 나일론만을 대상으로 하고 다른 물질은 그대로 두기 때문에 효율적이다"라고 설명했다. 이 기술을 통해 회수된 모노머를 재활용하면 신규 플라스틱 생산의 필요성도 줄어들 수 있다. 마크스 교수와 연구팀은 이 새로운 공정에 대한 특허를 출원했으며, 이미 여러 산업 파트너로부터 관심을 받고 있다. 이들은 자신들의 촉매가 대규모로 활용되어 글로벌 플라스틱 문제 해결에 기여하기를 기대한다. 현재 이 연구는 폴리머 재활용 및 지속 가능한 재료 관리 분야에서 중요한 진전을 보이고 있다. 이러한 접근 방식은 현재 재활용 기술의 중요한 격차를 해결하고 나일론 폐기물 문제에 대한 실용적이고 효율적인 솔루션을 제공한다. 이는 플라스틱의 환경 발자국을 줄이고 순환경제에 기여하는 데 영향을 미칠 것으로 기대된다.
-
- 생활경제
-
美 노스웨스턴대 "바다 쓰레기 주범 나일론, 촉매로 순식간에 '분해'"
-
-
NASA 프시케, 8주간 성공적 임무 수행
- 미국항공우주국(NASA)의 프시케(Psyche) 탐사선이 순항 중이다. 지난 2023년 10월 13일 지구를 떠난 후 8주 동안 과학 장비의 전원을 켜고 데이터를 지구로 전송하고 전기 추진기로 심우주 기록을 세우는 등 성공적인 작업을 차례로 수행했다. 프시케는 이미 지구에서 2,600만km 떨어져 있으며 2029년에 화성과 목성 사이에 있는 주 소행성대에 있는 소행성 프시케(Psyche)에 도착할 예정이라고 학술지 사이언스 어드밴스(Science Advances)가 보도했다. 이미지 장비, 정상 작동 확인 프시케의 이미지 장비는 물고기자리 별자리의 별장 내에서 총 68개의 이미지를 캡처했다. 이미지 팀은 데이터를 사용해 적절한 명령, 원격 측정 분석 및 이미지 보정을 확인했다. 애리조나 주립대학교의 프시케 이미지 장비 책임자인 짐 벨(Jim Bell) 교수는 "이 초기 이미지는 단지 시작을 알리는 것일 뿐"이라며 "이 정교한 장비를 설계하고 운영하는 팀에게 첫 번째 빛은 스릴이다"라고 밝혔다. 이어 "우리는 이와 같은 별 이미지가 포함된 카메라를 확인하기 시작해 2026년에 탐사선이 비행하는 동안 화성의 테스트 이미지를 촬영할 것"이라며 "마지막으로 2029년에 우리는 목표 소행성 프시케(Psyche)의 가장 흥미로운 이미지를 얻게 될 것이며, 이 모든 영상을 대중과 공유하기를 기대한다"고 말했다. 이미지는 여러 색상 필터를 통해 사진을 찍으며, 이 필터는 모두 초기 관찰에서 테스트됐다. 필터를 통해 팀은 인간의 눈에 보이는 빛과 보이지 않는 빛의 파장의 사진을 사용해 금속이 풍부한 소행성 프시케의 구성을 결정하는 데 도움을 줄 것으로 보인다. 자력계, 소행성 형성 과정 규명에 기여할 듯 프시케는 임무 초기인 10월 말에 자력계의 전원을 켰다. 자력계는 소행성이 어떻게 형성되었는지 결정하는 데 도움이 되는 중요한 데이터를 제공할 것으로 기대된다. 프시케는 태양 폭발을 감지하는 등 예상치 못한 선물도 안겼다. 팀은 탐사선이 소행성으로 이동하는 동안 우주 날씨를 계속 모니터링할 예정이다. 자력계 데이터를 통해 팀은 소행성의 자기장이 매우 작지만 정확하게 감지할 수 있음을 확인했다. 또한 탐사선이 자기적으로 ‘조용함’을 확인했다. 전기 추진기, 심우주 기록 세우다 프시케는 11월 8일 과학 장비를 사용한 모든 작업 중에 4개의 전기 추진기 중 2개를 발사해 깊은 우주에서 홀 효과 추진기를 최초로 사용하는 기록을 세웠다. 또한 일주일도 채 지나지 않은 11월 14일에는 심우주 광학 통신(DSOC)이라는 실험인 탐사선에 내장된 기술 시연을 자체적으로 하는 기록도 세웠다. DSOC는 달 너머 멀리서 광학 데이터를 주고받아 최초의 빛을 얻었다. 이 장비는 거의 1,600만km 떨어진 곳에서 테스트 데이터로 인코딩된 근적외선 레이저를 발사했는데, 이는 광통신의 가장 먼 시연이기도 했다. 중성자 감지센서, 소행성 표면 물질 구성 규명에 기여 프시케 팀은 또한 세 번째 과학 장비인 감마선 및 중성자 분광계의 감마선 감지 구성 요소를 성공적으로 가동했다. 다음으로, 장비의 중성자 감지 센서는 12월 11일 주에 켜질 것으로 예상된다. 이 기능은 팀이 소행성 표면 물질을 구성하는 화학 원소를 결정하는 데 도움이 될 전망이다. 프시케 팀은 "모든 과학 장비가 예상대로 작동하고 있다는 사실에 매우 기쁘다"라며 "이러한 성공은 프시케가 소행성 프시케에 대한 중요한 발견을 할 수 있는 잠재력을 보여준다"고 말했다.
-
- 산업
-
NASA 프시케, 8주간 성공적 임무 수행
-
-
지구의 자전축 이동, 지하수 고갈이 원인
- 지하수 고갈이 지구 자전축 이동의 원인이라는 새로운 연구 결과가 나왔다. 미국 매체 인디100(indy100)은 본질적으로 지구의 기울기는 시간이 지남에 따라 변하고 있으며, 몇 년 전 과학자들은 이를 지구 온난화와 극지방의 만년설이 녹는 현상으로 분류했다고 지적했다. 그러나 과학자들은 최근 연구에서 지구 자전축의 이동이 기존에 알려진 원인 이외에 다른 요소로 인해 발생하고 있다는 사실을 발견했다. 이 새로운 연구는 지하수 고갈이 지구의 물리적 균형에 어떻게 영향을 미치는지에 대한 이해를 넓히는데 중요한 역할을 하며, 기후 변화 및 지구 시스템에 대한 우리의 이해를 더욱 심화시킬 것으로 기대된다. 이는 지구의 물 순환 및 환경 관리에 대한 새로운 관점을 제공할 수 있다. 지구의 극은 빙상이 녹는 현상으로 움직일 수 있는 것으로 알려졌지만, 관개로 인한 지하수의 고갈도 같은 일이 일어날 수 있다는 것이다. 북극은 현재 점차 영국 방향으로 느린 속도로 이동하고 있으며, 이론적으로 이러한 극의 이동은 시간이 지나면서 지구의 계절 변화에 영향을 미칠 수 있는 능력을 가지고 있다. 가장 우려되는 점은 최근 '지구물리학 연구 학술지(Geophysical Research Letters)'에 게재된 연구에서 밝혀진 것으로, 지구 천연자원의 소비 방식, 특히 탈수된 땅에서 사용되는 염수와 관련한 연구 결과들이다. 이 연구에 공동으로 참여한 서울대학교 지구과학교육과 서기원 교수는 "지구의 회전 극은 실제로 큰 변화를 겪고 있으며, 우리 연구에 따르면 지하수의 재분배가 지구의 회전 극의 표류에 가장 큰 영향을 미치는 것으로 나타났다"고 우려했다. 서기원 교수가 이끄는 연구팀은 1993년부터 2010년까지 인류가 사용한 지하수의 양이 약 2조 1500톤에 달하며, 이로 인해 해수면이 약 6mm 상승하고, 지구의 자전축이 약 80cm 이동했다고 주장했다. 이 연구는 인간 활동이 해수면 상승에 중요한 영향을 미치고 있음을 시사한다. 지하수 사용이 증가함에 따라 육지의 물은 감소하고, 대신 바닷물이 증가하여 지구의 물질량 분포와 자전축의 위치에 변화를 가져왔다. 이 연구 결과는 물이 지표면에서 천천히 지하로 새어 나가는 현상을 발견한 최근의 과학적 발견에 이어 나온 것이다. 연구에 따르면, 액체는 지각판 아래로 하강하여 약 2900km 이동한 후 지구의 코어에 도달한다. 이 과정은 느리지만 수십억 년에 걸쳐 지구의 외핵 용융 금속과 맨틀 사이에 새로운 표면이 형성되었다. 이러한 발견은 지구과학에서의 중요한 이정표로, 인간 활동이 지구의 물리적 균형과 환경에 미치는 영향을 이해하는 데 중요한 기여를 한다. 지구의 자전축이 변하면 각 지역이 태양에 노출되는 정도에 변화가 생겨, 이로 인해 심각한 기후 변화가 발생할 수 있다. 특히 해수면 상승은 해발고도가 낮은 섬나라와 해안 도시들에게 큰 위협이 되며, 한국도 이러한 위험에서 자유롭지 못하다. 한국 해양수산부의 자료에 따르면, 1991년부터 2020년까지 한국의 평균 해수면은 매년 3.03mm씩 상승하여 총 9.1cm 높아진 것으로 나타났다. 국립해양조사원과 서울대학교의 연구에 따르면, 2100년까지 한국의 해수면은 최대 82cm까지 상승할 것으로 예측되며, 이는 2021년 발표된 예측치보다 10cm 높은 수치다. 전 세계적으로 해수면이 1미터 상승한다면 약 4억 명의 인구가 피해를 입을 것으로 추정된다. 이러한 상황은 우리가 탄소 배출을 줄여야 하는 중요한 이유를 제시한다.
-
- 생활경제
-
지구의 자전축 이동, 지하수 고갈이 원인