검색
-
-
자폐증·ADHD와 비스페놀 A 간의 연관성 발견
- 플라스틱 병 등에서 흔히 발견되는 환경호르몬 비스페놀 A(BPA)가 자폐증 등에 영향을 미치는 것으로 밝혀졌다고 영국 매체 데일리메일이 최근 보도했다. 미국의 뉴저지 로완(Rowan)대학교와 럿거스(Rutgers) 대학교의 연구자들은 자폐증과 주의력 결핍 과잉행동 장애(ADHD)를 가진 어린이들의 몸에 비스페놀 A(BPA)라고 알려진 화학 물질이 더 많이 남아있음을 밝혀냈다. BPA는 호르몬이 성적 문제와 관련이 있어 '젠더-벤딩' 화학 물질로 분류되는 화학 화합물로 알려져 있다. BPA는 플라스틱 용기, 물병, 식품 캔 내부, 그리고 영수증과 같은 다양한 제품에서 발견된다. 이 화학 물질은 1960년대부터 특정 종류의 플라스틱 제조에 사용되어왔으며, 극소량의 BPA가 포장재를 통해 음식과 음료로 전달될 수 있다. BPA는 남성의 낮은 정자 수, 생식 문제, 유방암이나 전립선 암과 연관이 있는 것으로 알려져 있다. 유럽에서는 BPA를 유아용 병과 플라스틱 영수증에서 사용 금지하고 있다. 프랑스는 이를 음식 포장재, 컨테이너와 식기 전체에서 사용을 금지했다. BPA는 '내분비 교란물질'로 분류되어 있어, 체내의 호르몬을 모방하고 에스트로겐과 같은 천연 호르몬의 생성과 반응에 방해를 일으킬 수 있다. 자폐증·ADHD, BPA 배출 저조해 연구 팀은 3세에서 16세 사이의 66명의 자폐증 어린이와 46명의 ADHD 어린이, 37명의 정상 어린이를 대상으로 BPA와 같은 화학 물질을 배출하는 속도, 즉 해독 효율을 측정했다. 연구 결과에 따르면 자폐증을 가진 어린이가 BPA를 몸에서 배출하는 능력이 10% 부족하고, ADHD를 가진 어린이는 이 화학 물질을 배출하는 능력이 17% 부족하다는 것이 확인됐다. 이번 연구는 이들 어린이가 BPA를 배출하는 데 어려움을 겪고 있음을 나타냈고, 자폐증과 ADHD와의 관련성을 제시했다. 이번 연구는 미국 과학·의학 저널 'PLOS One'에 발표됐다. 미국, 자폐증 발병률 52% 증가 미국 식품의약국(FDA)이 높은 수준의 BPA 허용량을 유지하고 있는데 비해, 유럽은 최대 허용량을 2만 배까지 대폭 감소시켰다. 미국에서는 여전히 높은 BPA 노출이 지속되고 있으며, 그로 인해 자폐증과 ADHD 발병률이 상당히 높아졌다. 특히 자폐증 발병률은 2017년 이후 52% 증가한 것으로 나타났다. 연구팀은 이러한 결과가 BPA 노출이 자폐증과 ADHD 발병 위험을 높일 수 있음을 시사하며, 향후 더 많은 연구가 필요하다고 강조했다. 자폐증과 ADHD의 정확한 원인은 알려져 있지 않지만, 유전적 및 환경적 요인의 조합으로 발생할 가능성이 있다. 자폐증은 초기 뇌 발달에 영향을 미치는 요인으로 여겨지며, 사회적 의사소통과 상호작용 능력, 반복적인 행동 등의 문제를 포함한다. ADHD는 주로 어린 시절에 진단되는 주의력 결핍과 과잉행동으로, 주의를 집중하지 못하고 과잉행동 혹은 충동적 행동 등의 증상을 포함한다. ADHD의 주요 치료법 중 하나는 각성제(스티뮬런트) 약물을 사용하는 것이다. 이러한 약물은 뇌에서 도파민 농도를 조절하여 주의력과 집중력을 향상시키는데 사용된다. 성인도 ADHD 진단 증가 추세 최근에는 성인들도 ADHD 진단과 치료가 증가하고 있다. 코로나바이러스 팬데믹 동안 여성과 남성의 처방전 발급이 크게 증가했다. 이로 인해 학부모와 의료진 간의 대안적 해결책을 모색하는 과정에서 어린이의 학습과 집중 능력에 대한 우려가 커지고 있다. 이번 연구 결과는 BPA 규제와 어린이의 건강에 대한 중요한 고려 요소가 될 것으로 예상된다. 향후 더 많은 연구가 필요하며, BPA와 자폐증, ADHD 사이의 상세한 관계에 대한 근본적인 이해가 높아질 것으로 기대된다.
-
- 생활경제
-
자폐증·ADHD와 비스페놀 A 간의 연관성 발견
-
-
지중해 환경 지킴이 로봇, 카탈루냐 항구 폐기물‧탄화수소 흡입
- 지중해 연안 카탈루냐 항구에 환경 지킴이 로봇이 탄생해 대량의 폐기물과 탄화수소를 효율적으로 제거하며 바다를 지키고 있다. 프랑스 매체 디펜던스에 따르면, 에밀리앙 페롱(Emilien Pérron)을 비롯한 세 명의 전문가들이 'DPOL'이라는 이름의 오염 제거 로봇을 개발해 지중해 환경 오염과 맞서고 있다. 프랑스 친환경 기업 에코폴(EKKOPOL)이 제작한 이 로봇은 주로 탄화수소와 플라스틱 같은 부유 폐기물 수거에 효과적으로 사용되고 있다. 현재 100대 이상의 로봇이 프랑스의 프로방스-알프-코트다쥐르(PACA) 지역에서 활약 중이며, 이 기술을 남프랑스 루시용 지역을 비롯해 오크시타니아와 스페인 항구 등으로 확장할 계획이다. 로봇 'DPOL'은 실제로 환경을 지키는데 기여하고 있다. 개발자 에밀리앙 피에론(Emilien Pierron)은 비너스(Vénus) 항구에 이 로봇을 배치한 결과, 단 몇 시간 만에 800리터의 다양한 종류의 폐기물이 로봇에 의해 회수되었다고 밝혔다. 이러한 활약으로 지중해의 환경 보호에 큰 도움을 주고 있다. 에코폴에서 개발한 'DPOL' 로봇은 이미 세계 여러 항구에서 그 효과를 입증하며 긍정적인 반응을 얻고 있다. 코르시카, 코트 다쥐르, 이탈리아, 심지어 키프로스의 50여 개 항구에서 활발하게 활약하고 있는 이 로봇은 해양을 오염시키는 부유 폐기물 제거의 새로운 방법을 제시하고 있다. DPOL은 부유하는 폐기물을 효과적으로 수집하기 위해 강한 전류를 생성하는 기술로, 마치 진공청소기처럼 움직이지 않고도 쓰레기를 빨아들여 그물에 저장한다. 이 장비는 전자 기기가 포함되어 있지 않고, 비용도 4000유로(약 570만원)로 저렴해 작은 항구에도 쉽게 설치하여 사용할 수 있다. 최근 환경 오염에 대한 관심이 높아짐에 따라 DPOL과 같은 친환경적인 오염 제거 기술에 대한 수요도 크게 증가하고 있다. 이러한 기술의 도입과 활용이 확대됨에 따라, 항구 주변의 부유 폐기물이 효과적으로 관리되어 해양 생태계의 보호와 오염 예방에 크게 기여할 것으로 전망된다.
-
- 생활경제
-
지중해 환경 지킴이 로봇, 카탈루냐 항구 폐기물‧탄화수소 흡입
-
-
일본 스타트업, 로봇 '건담' 개발·판매
- '기동전사 건담'은 현재까지도 인기리에 방영 중인 일본의 공상과학영화(SF) 애니메이션 시리즈다. 다양한 건담 시리즈는 플라스틱 모델로도 출시되며, 그 인기는 마니아층에서 대단하다. 건담 팬들에게 희소식이 전해졌다. 일본의 한 스타트업이 실제 건담을 제작해 판매할 계획이다. 독일 매체 '윈퓨처(WinFuture)'에 따르면, 실제로 만들어진 건담 로봇 중 가장 애니메이션 시리즈에 가까운 모델 '아칵스'가 300달러(약 40만4500원)에 판매될 예정이다. 로봇 '아칵스(Archax)'는 도쿄의 스타트업 츠바메인터스트리즈(Tsubame Industries)의 제품이다. 아칵스는 그 동안의 시도 중에서도 가장 전문적인 로봇으로 평가된다. 비록 과거에 팬들의 손에 의해 건담 로봇이 만들어진 적이 있으나, 인상적인 크기에도 불구하고 애니메이션 시리즈와의 연관성을 찾기가 어려웠다. 츠바메인터스트리즈는 2023년 10월 말 재팬 모빌리티 쇼(Japan Mobility Show)에서 아칵스의 세부 사항을 발표할 계획이었으나, 외신을 통해 먼저 그 모습이 공개됐다. 아칵스는 높이가 약 4.5m, 무게는 3.5톤이며, 직립형 로봇 모드와 차량 모드 두 가지 형태로 변환 가능하다. 차량 모드에서는 두 축 간의 거리가 늘어나 운전이 더욱 편리하다. '축'은 로봇이 건담처럼 걷지 않고 서 있는 것을 의미하며, 이러한 메카닉은 어려운 작업임을 인정해야 한다는 것이 윈퓨처의 설명이다. 츠바메인터스트리즈의 창립자이자 CEO인 요시다 료(Ryo Yoshida)와 그의 팀은 현재 5대의 아칵스를 SF 팬들에게 판매할 계획을 세우고 있지만, 미래에는 아칵스나 그 후속 모델이 재난 구호나 우주 산업에서 활용될 수 있길 희망하고 있다. 아칵스의 조종은 조종사가 로봇의 가슴 부위에 위치한 조정석에서 진행하며, 차량 모드로 변환할 경우 최대 시속 10km로 이동할 수 있다. 요시다 료 CEO는 "일본은 애니메이션, 게임, 로봇, 자동차 등 여러 분야에서 세계적으로 뛰어나다. 이러한 분야의 특성을 하나의 제품에 담고자 했으며, '진정한 일본의 제품'이라고 말하고 싶었다"라고 밝혔다.
-
- 산업
-
일본 스타트업, 로봇 '건담' 개발·판매
-
-
화장지의 종말이 가까워지고 있다
- 환경을 위해 화장지를 사용하지 않는 시대가 가까워지고 있다. 화장지는 환경에 대한 재앙으로 여겨진다. 오염시키는 플라스틱, 중독시키는 화학물질, 사라지는 나무, 고통받는 동물 사이에서 화장지는 이제 과거의 물건이 될 수도 있다. 프랑스 매체 '르포르타주 포토(reportages photos)'에 따르면 프랑스인들은 19세기부터 화장지를 사용하기 시작했다. 현대식 화장지의 발명은 클라렌스와 어빈 스콧['스카티(scott)' 화장지 창립자] 형제 덕분이다. 화장지는 오랜 역사를 갖고 있다. 중국인들은 천 조각을 사용해 몸을 닦았다. 그리스인들은 매우 매끄러운 세라믹 돌을 사용했다. 로마인들은 '자일로스폰지움(xylospongium)'이라는 도구를 사용했는데 스펀지가 달린 막대기 끝에 젖은 스폰지가 달려 있었다. 다른 문화에서는 비슷한 목적으로 동물 가죽을 사용했다. 19세기가 되어서야 비로소 현대판 화장지가 빛을 보기 시작했다. 1857년에 미국 기업가 조셉 가야티(Joseph Gayetti)가 최초로 화장지 롤을 시장에 출시했다. 그는 알로에를 주입하고 민감한 피부를 진정시키는 화장지를 치료상의 이점을 약속하는 이름인 '가야티의 의료용 휴지(Gayetty's Medicated Paper)'라고 불렀다. 이후 클라렌스와 어빈 스콧 형제가 개발한 화장지는 어떤 경쟁 업체도 이것을 대체할 수 없었다. 스콧 형제는 화장지를 더 실용적이고 쉽게 보관할 수 있도록 롤 형태로 만드는 아이디어를 생각해 냈다. 그리하여 대부분의 서구 국가에서 필수적인 위생 제품인 화장지가 탄생했다. 그러나 환경적 영향 때문에 이제는 롤 형태의 화장지를 불가피하게 대체해야 할 필요성이 대두됐다. 화장지는 실용적이지만 이를 제조하려면 수천 그루의 나무를 베어야 하므로 많은 자연 서식지가 파괴된다. 잎의 재활용 여부에 관계없이 목재 섬유를 처리하기 위해 생산에 많은 양의 물이 필요하다는 것은 말할 것도 없다. 화장지 롤이 완성되면 잎은 배수구로 흘러가는 경우가 많으며, 배수구에서 유해 물질이 폐수로 배출 될 수 있다. 플라스틱 오염은 화장지 롤과 관련된 또 다른 문제다. 화장지는 대부분 비닐랩으로 포장되어 있다. 또 완전히 생분해되는 화장지 롤도 매우 드물다. 19세기 혁신 기술 화장지 화장지는 상대적으로 최근의 발명이며, 역사를 통틀어 모든 문명에서 보편적으로 사용되지는 않았다. 우리가 오늘날 알고 있는 화장지의 등장은 19세기로 거슬러 올라가 클라렌스와 어빈 스콧 형제의 노력 덕분에 1890년에 혁신적인 제품이 탄생했다. 그런 다음 분리 가능한 셀룰로오스시트를 사용했다. 그 이후로는 어떤 대안도 그것을 대신할 수 없었다. 그러나 아시아에서는 종이를 사용하면 배수관이 막히기 때문에 화장실 사용 후 개인 위생을 위해 비데가 일반적으로 사용되기도 한다. 이 방법은 더 위생적으로 여겨지지만, 사람들은 화장지를 다른 것으로 바꾸려는 변화를 싫어한다. 화장지 대체품은 무엇? 화장지를 대체하기 위한 제안 중 하나는 재사용 가능한 대체품을 사용하는 것이다. 이 경우, 화장지를 화장실에 버리는 대신 사용 후에 세척해야 한다. 물론 실수로 변기에 버리지 않아야 하며, 그렇게 하면 배관이 막힐 수 있다. 그러나 이 대안은 효과와 위생에 대한 질문이 제기된다. 화장지는 효율성 측면에서 비데와 비교할 때 매우 부족한 면이 많다. 종이는 잔여물과 대변을 충분히 제거하지 못할 수 있다. 게다가 민감한 피부를 가진 사람들 중에서 화장지를 자주 사용하면 피부 자극을 일으킬 수 있다. 일본은 화장지 대신 워시렛을 사용한다. 종이 없이도 깨끗하게 씻을 수 있는 물세척 기능을 갖춘 최첨단 변기다. 환경에 대한 인식이 증가하면서 생태학과 지구 보전에 관심 있는 사람이라면 변화를 고려하는 것이 필수적이다. 우리의 생태계를 보존하기 위해서는 화장지 대체품을 찾는 신속한 조치가 필요하다.
-
- 산업
-
화장지의 종말이 가까워지고 있다
-
-
폐플라스틱 업사이클링 비누 제작 성공
- 버지니아 공대에서 플라스틱 폐기물로 비누를 만드는 기술이 개발됐다. 폐플라스틱을 비누와 세제와 같은 계면활성제로 재활용하는 방법이 개발됐다. 미국 과학 전문매체 사이테크데일리에 따르면 버지니아 공대의 연구원들은 플라스틱을 비누, 세제 등을 만드는 데 사용되는 계면활성제라는 귀중한 화학 물질로 업사이클링하는 새로운 기술을 개발했다. 플라스틱과 비누는 질감, 모양, 사용 방법면에는 공통점이 거의 없다. 하지만 분자 수준에서 이 둘 사이에는 놀라운 연관성이 있다. 오늘날 세계에서 가장 일반적으로 사용되는 플라스틱 중 하나인 폴리에틸렌의 화학 구조는 비누의 화학 전구체로 사용되는 지방산의 화학 구조와 놀랍도록 유사하다. 두 물질 모두 긴 탄소 사슬로 이루어져 있지만 지방산은 사슬 끝에 원자 그룹이 하나 더 있다. 버지니아 공과대학의 류궈량(Guoliang 'Greg' Liu) 화학 부교수는 폴리에틸렌의 구조와 지방산의 유사성에 주목했다. 그는 이러한 유사성을 기반으로 폴리에틸렌을 지방산으로 변환하면, 몇 가지 추가 과정을 통해 비누를 제조할 수 있을 것이라는 아이디어를 장기간 갖고 있었다. 문제는 긴 폴리에틸렌 사슬을 적절한 길이의 여러 사슬로 분리하고, 그 과정을 효율적으로 진행하는 것이었다. 류 교수는 이 방법을 통해 저렴한 플라스틱 폐기물을 가치 있는 제품으로 업사이클링하는 높은 잠재력을 인식했다. 류 교수는 벽난로 앞에서 겨울 저녁을 즐기다가 벽난로에서 나오는 연기가 나무 연소 중 생성되는 작은 입자로 이루어져 있다는 점에 착안했다. 안전과 환경상의 이유로 플라스틱을 벽난로에서 태워서는 안 되지만, 류 교수는 안전한 실험실 환경에서 폴리에틸렌을 태울 수 있다면 어떤 일이 일어날지 궁금해지기 시작했다. 폴리에틸렌이 불완전 연소하면 나무를 태울 때처럼 '연기'가 발생할까. 만약 누군가가 그 연기를 포집한다면, 그 연기는 무엇으로 만들어질까. 화학과 블랙우드 생명과학 주니어 교수 펠로우십의 류 교수는 "장작은 주로 셀룰로오스 같은 폴리머로 구성되어 있다. 연소 시 이 폴리머는 짧은 사슬로 분해되며, 결국 작은 기체 분자로 변한 뒤 이산화탄소로 완전히 산화된다"고 말했다. 그는 또 "합성 폴리에틸렌 분자도 비슷한 방식으로 분해할 수 있는데, 작은 기체 분자로 완전히 분해되기 전 단계에서 그 과정을 멈추면 짧은 사슬의 폴리에틸렌과 유사한 분자를 얻을 수 있다"고 덧붙였다. 연구실의 화학과 박사과정 학생인 젠 쉬(Zhen Xu)와 에릭 무냐네자(Eric Munyaneza)의 도움으로 류 박사는 온도 구배 열분해라는 공정으로 폴리에틸렌을 가열할 수 있는 오븐과 같은 작은 반응기를 만들었다. 아래쪽의 오븐은 폴리머 사슬을 끊을 수 있을 만큼 충분히 높은 온도를 유지하고, 위쪽의 오븐은 더 이상의 분해를 멈출 수 있을 만큼 낮은 온도로 냉각되는 구다. 열분해가 끝난 후 잔여물을 확인하니 '단쇄 폴리에틸렌', 더 정확하게는 왁스로 구성되어 있었다. 류 박사는 이것은 플라스틱을 비누로 업사이클링하는 방법을 개발하는 첫 번째 단계였다고 말했다. 비누화 등 몇 가지 단계를 더 추가한 후, 연구팀은 세계 최초로 플라스틱으로 비누를 만들었다. 이 과정을 계속 진행하기 위해 연구팀은 컴퓨터 모델링, 경제 분석 등의 전문가들의 도움을 받았다. 이들 전문가 중 일부는 버지니아 공대의 고분자 혁신 연구소와의 연계를 통해 팀에 합류했다. 이 그룹은 함께 업사이클링 프로세스를 문서화하고 개선해 과학계와 공유할 준비가 될 때까지 연구를 진행했다. 이 연구는 최근 사이언스 저널에 게재됐다. 논문의 수석 저자인 젠 쉬는 "우리 연구는 새로운 촉매나 복잡한 절차를 사용하지 않고도 플라스틱 업사이클링을 위한 새로운 경로를 보여준다. 이 연구에서 우리는 플라스틱 재활용을 위한 탠덤 전략의 잠재력을 보여주었다"고 말했다. 그는 "앞으로 사람들이 더 창의적인 업사이클링 절차를 개발할 수 있는 계기를 마련할 것"이라고 기대했다. 비록 폴리에틸렌이 이 프로젝트에 영감을 준 플라스틱이었지만, 이 업사이클링 방법은 다른 유형의 플라스틱인 폴리프로필렌에도 작용할 수 있다. 이 두 재료는 제품 포장, 식품용기, 직물 등 일상에서 소비자가 많이 접하는 플라스틱의 대부분을 차지한다. 업사이클링 기술의 또 다른 장점은 플라스틱과 열이라는 매우 간단한 재료만 있으면 가능하다는 점이다. 공정의 후반 단계에서는 왁스 분자를 지방산과 비누로 전환하기 위해 몇 가지 추가 성분이 필요하지만, 플라스틱의 초기 변형은 간단한 반응이다. 따라서 이 방법은 비용 효율성이 높고 환경에 미치는 영향이 비교적 적다. 업사이클링이 대규모로 효과적으로 이루어지려면 최종 제품이 공정 비용을 감당할 수 있을 만큼 가치가 있어야 하며, 다른 재활용 옵션보다 경제적으로 더 매력적이어야 한다. 대규모로 업사이클링이 효과적으로 이루어지려면 최종 제품은 프로세스 비용을 상환하고 대안 재활용 옵션보다 경제적으로 더 유리하게 만들 수 있을 정도로 가치 있어야 한다. 비록 비누가 처음에는 특별히 비싼 상품으로 보이지 않을 수 있지만, 실제로 무게로 비교할 때 플라스틱의 두 배 이상의 가치가 있을 수 있다. 현재 비누와 세제의 평균 가격은 톤 당 약 3550달러(약 478만원)이고 폴리에틸렌은 톤 당 약 1150달러(약 155만원)다. 류 교수는 이 연구는 사용한 플라스틱을 다른 유용한 재료의 생산으로 전환하여 폐기물을 줄일 수 있는 새로운 방법의 토대를 마련했다고 말했다. 그는 시간이 지나면 전 세계의 재활용 시설에서 이 기술을 도입할 수 있기를 기대했다. 젠 쉬는 "플라스틱 오염은 특정 국가의 문제가 아니라 전 세계적인 과제임을 인지해야 한다. 복잡한 촉매나 시약 대신 간단한 공정은 많은 나라에서 더 쉽게 적용될 수 있다"라며, "이 방법이 플라스틱 오염 문제 해결의 좋은 시작이 되길 바란다"고 말했다.
-
- 산업
-
폐플라스틱 업사이클링 비누 제작 성공
-
-
플라스틱 먹는 '효소' 연구 활성화⋯고비용 과제
- 플라스틱을 먹는 효소가 개발이 활성화돼 폐플라스틱 처리에 힘을 보탤 전망이다. 환경오염 주범으로 꼽히는 지구를 뒤덮은 폐플라스틱을 재활용하기 위해 수 많은 연구팀들은 다양한 해결책을 찾고 있다. 특히, 벌집나방 애벌레와 같은 생물학적 자원 활용은 소각이나 매립보다 환경친화적으로 플라스틱을 처리하는 유용한 도구가 될 수 있다. 미국 생화학·분자 생물학 매거진 'ASBMB 투데이'에 따르면, 스페인 생물학자 페데리카 베르토치니(Federica Bertocchini)는 약 10년 전 벌집나방의 애벌레가 플라스틱의 일종인 폴리에틸렌을 먹어 치운다는 사실을 발견했다. 폴리에틸렌은 플라스틱 용기 등을 만드는 데 흔하게 이용되지만, 잘 분해 되지 않는 특성이 있어 폐기가 어렵다는 단점이 있다. 최근 과학자들은 매립지나 자동차폐차장 등을 찾아다니면서 플라스틱을 분해할 수 있는 유기체를 찾고 있다. 이를 채취해 플라스틱의 구성 요소를 회수하는 효율적인 방법을 찾길 기대하고 있는 것. 이후 새로운 재료를 조합해 ‘무한 재활용’이 가능하도록 한다는 계획이다. 영국 포츠머스대 효소혁신센터 존 맥기한(John McGeehan)은 "놀랍게도 전 세계의 수백 개 그룹과 수천 명의 과학자들이 이 문제를 연구하고 있다"고 설명했다. 폐플라스틱, 환경오염 주범 플라스틱은 1950년대 들어 본격적으로 생산됐고 생산량도 급증했다. 매년 약 4억6000만 톤에 가까운 플라스틱이 생산되는 것으로 추정된다. 하지만 이렇게 생산된 플라스틱은 아쉽게도 소각하거나 매립지에 묻히고 있다. 플라스틱은 지구상의 심해나 극지방을 비롯해 비를 타고 내려오거나, 심지어 태반이나 모유, 사람의 혈액에서도 흔적이 보고 되는 등 우리 눈에 보이지 않는 구석구석까지 침투했다. 이처럼 플라스틱은 건강과 환경 문제와 직접 연결되어 있다. 그럼에도 수요는 줄어들지 않고 있으며, 생산량은 오는 2050년까지 10억 톤을 넘길 것으로 예상된다. 플라스틱은 가볍고, 형태를 잡기 쉬운 특성 때문에 이를 대체할 마땅한 소재가 없기 때문이다. 현실적으로 모든 플라스틱을 교체하거나 재활용할 수 없다는 점에서 차선책은 덜 만드는 것이다. 또 약 9%에 불과한 전 세계 플라스틱 재활용률을 높이는 것이 과제다. 하지만, 재활용 과정에서 유해한 화학물질을 흡수할 수 있으며, 수천 가지의 플라스틱 유형에는 각각 고유한 구성과 화학 첨가물이나 착색제가 들어 있어 대다수는 재활용할 수 없는 것이 문제다. 효소 재활용 회사 버치 바이오사이언스(Birch Biosciences) 공동 창립자이자 합성 생물학자인 요한 커스(Johan Kers)는 "우리는 심각한 플라스틱 순환성 문제를 안고 있다"며 "알루미늄과 종이 등은 재활용할 수 있지만 플라스틱 재활용은 힘들다"고 지적했다. '자연'에서 착안한 '효소' 주목 캘리포니아대학교 버클리 캠퍼스 고분자 과학자 팅 쉬(Ting Xu)는 "효소를 통한 접근법은 폐플라스틱을 폐기물의 원천이 아닌 귀중한 자원으로 전환시킬 수 있다"고 설명했다. 이미 1970년대에 플라스틱을 먹는 효소에 대한 연구가 시작됐다. 그러다가 2016년 일본 과학자팀이 사이언스 학술지에 플라스틱을 먹는 획기적인 박테리아의 새로운 변종에 대한 논문을 발표하면서 효소 연구에 다시 불을 지폈다. 교토공과대학 미생물학자 코헤이 오다(Kohei Oda)가 이끄는 연구팀은 이데오넬라 사카이엔시스(Ideonella sakaiensis) 201-F6이라고 불리는 미생물이 음료수병과 섬유에 널리 사용되는 폴리에스터인 PET 플라스틱을 주요 에너지와 식품 공급원으로 사용한다는 사실을 발견했다. 그 이후로 과학자들은 독일 라이프치히 묘지의 퇴비 더미, 그리스 하니아(Chania) 해변 등 전 세계 여러 장소에서 플라스틱을 먹는 미생물을 발견했다. 그리고 바다, 북극 툰드라 표토, 사바나 및 다양한 숲을 포함한 환경에서 자유롭게 떠다니는 DNA에서 발견된 2억 개 이상의 유전자에 대한 대규모 분석을 통해 플라스틱 분해 가능성이 있는 3만 개의 다양한 효소가 있다는 것을 찾아냈다. 맥기한은 콜로라도를 포함해 다른 지역의 국립 재생 에너지 연구소(National Renewable Energy Laboratory)의 동료들과 함께 이데오넬라 사카이엔시스의 플라스틱 섭취 능력을 담당하는 두 가지 효소를 조작해 성능을 높이고 연결해 플라스틱을 분해할 수 있는 효소 칵테일을 만들었다. 그 결과 이전보다 6배 더 빠르게 PET를 분해할 수 있었다. 최근 과학자들은 인공지능(AI)을 사용해 플라스틱을 더 빠르게 해중합[해중합은 유색 페트(PET)병이나 폴리에스터 섬유 등 플라스틱 분자를 화학적으로 분해하는 기술]하고, 표적 기질에 대해 덜 까다롭고, 더 높은 온도를 견딜 수 있는 효소를 찾아내고 있다. 초기 데이터에 따르면 생물학적 효소를 이용한 재활용은 플라스틱을 새로 만드는 것보다 탄소 배출량이 더 적은 것으로 알려졌다. 탄소와 산소가 얽혀 있는 PET 재활용 플라스틱은 생물학적 재활용에 가장 적합하다. 영국 포츠머스 대학교의 분자 생물물리학자 앤디 픽포드(Andy Pickford)는 이 물질이 '일종의 아킬레스건'이라고 말했다. PET은 탄소가 산소와 얽혀 있다. 직물과 음료수병에서 흔히 발견되며 매년 생성되는 플라스틱의 약 5분의 1을 차지하는 PET는 생물학적 재활용 업체들 사이에서 인기 있는 대상이자 상업적으로 이용 가능한 제품이기도 하다. 실제로 프랑스 회사 카르비오(Carbios)는 연간 5만 톤의 PET 폐기물을 재활용하는 것을 목표로 2025년 프랑스 북부에 바이오 재활용 공장을 열 계획이다. 호주에 본사를 둔 삼사라에코(Samsara Eco)는 2024년 멜버른에 PET에 초점을 맞춘 2만 톤 규모의 재활용을 계획하고 있다. 플라스틱 유형을 연구하고 있는 픽퍼드(Pickford)는 "PET와 유사한 화학적 구성을 가진 폴리아미드와 폴리우레탄도 본질적으로 효소에 의해 분해되기 쉬워 효소 재활용의 유망한 대상"이라고 말했다. 삼사라에코는 합성 폴리아미드의 일종인 나일론을 연구하고 있다. 지난 5월 버려진 옷으로 '세계 최초의 무한 재활용' 나일론-폴리에스테르 의류를 생산하기 위해 인기 운동복 브랜드 룰루레몬(Lululemon)과 다년간의 파트너십을 발표했다. 아직은 연구가 미진하지만 연구원들은 폴리우레탄을 분해하는 미생물에 대해서도 연구 중이다. '슈퍼웜' 유충 활용 기술 향상 효소 재활용은 순수 탄소 골격을 가진 플라스틱의 경우 전망은 흐리다. 비닐봉지를 만드는 데 사용되는 폴리염화비닐(PVC), 폴리비닐알코올(PVA), 폴리스티렌 및 폴리에틸렌을 포함하는 제품은 기름기가 많아 투입된 효소를 붙잡을 수 없기 때문이다. 그런데 페데리카 베르토치니는 데메트라(Demetra)와 세레스(Ceres)라는 이름을 붙인 왁스 벌레 타액에서 플라스틱 분해 효소를 확인했다. 이 효소는 탄소 골격에 산소를 주입해 실온에서 몇 시간 내에 폴리에틸렌을 분해하는 것으로 나타났다. 폴리스티렌을 연구하는 호주 퀸즈랜드 대학교의 미생물학자 크리스 린케(Chris Rinke) 박사는 '슈퍼웜(Superworm)'이라고 불리는 미국왕딱지벌레(Zophobas morio) 유충을 발견했다. 플라스틱을 기계적으로 작은 조각으로 파쇄하고 산소 원자를 투입해 '노화'한 다음 특수 기술을 사용해 해당 조각을 해중화하는 두 가지 과정을 통해 폴리스티렌을 분해한다. 린케 박사는 "곤충에서 발견되는 효소가 열쇠를 쥐고 있을 수 있다"고 말했다. 반면, 일부 전문가들은 생물학적 재활용 전망에 대해 낙관적이지 않다. 픽포드는 "아직 폴리에틸렌, 폴리프로필렌, PVC와 같은 폴리올레핀이 대규모 효소 재활용을 위한 현실적인 목표가 될 것이라고 확신하지 못했다"며 "이런 경우 재활용이 가능한 새로운 플라스틱을 만드는 방향으로 전환하는 것이 더 현실적"이라고 말했다. 한국의 경우, 2020년 포스텍의 차형준 교수 팀은 '산맴돌이거저리(Plesiophthalmus davidis)'라고 불리는 검은 딱정벌레의 유충에서 폴리스티렌 소화 능력을 부여한 장내 세균인 '세라티아 폰티콜라(Serratia Fonticola)'에 대해 보고했다. 또 다른 그룹은 PLA를 포함한 특정 유형의 생분해성 플라스틱을 분해할 수 있는 두 가지 저온 적응성 곰팡이 균주[고산 토양과 북극 해안에서 분리된 라크네룰라(Lachnellula)와 네오데브리에시아(Neodevriesia)]를 발견했다고 보고했다. 하지만 효소를 활용하는 프로세스를 확장하는 것이 얼마나 쉬울지, 그리고 확장된 환경이 어떤 모습일지는 불분명하다. 한편, UN은 오는 2024년 세계 최초의 글로벌 플라스틱 오염 조약을 만들 예정이다. 플라스틱 오염을 억제하는 것을 목표로 하며, 특히 재활용을 더 쉽게 하기 위해 플라스틱 제품의 생산 과 설계에 대한 새로운 규칙을 도입할 것으로 예상된다. 다음 해에는 워싱턴과 캘리포니아, EU에서 플라스틱 용기와 음료수병 재료의 25%를 재활용 플라스틱으로 규정하는 법률이 시행될 예정이다. 그러나 추가적인 변화와 인센티브가 없다면 이러한 노력은 물거품이 될 수도 있다는 지적이다. 화석 연료의 저렴한 가격으로 인해 순수 플라스틱이 저렴하게 유지되는 한 생물학적 효소 활용은 비용 면에서 경쟁력이 없기 때문이다. 맥기한은 "과거 석유 및 가스 산업이 혜택을 누렸던 방식으로 PET 또는 기타 생분해성 공정에 인센티브를 부여해야 한다"며 "생물학적 재활용 기술이 향상되면 새로운 플라스틱과 경쟁할 수 있을 만큼 비용면에서 효율적일 것"이라고 강조했다. 그럼에도 그는 "효소가 전체 플라스틱 문제를 해결하지 못하지만 이제 막 첫 걸음을 뗐다"며 향후 발전에 기대감을 드러냈다.
-
- IT/바이오
-
플라스틱 먹는 '효소' 연구 활성화⋯고비용 과제
-
-
미로 자율 탐색하는 '뇌 없는 로봇' 탄생
- 미로를 탐색할 수 있는 뇌가 없는 소프트 로봇이 탄생했다. 과학 전문 매체 뉴로사이언스에 의하면, 노스캐롤라이나 주립대학(NCSU)의 연구원들은 물리적 지능을 사용해 미로와 같은 복잡한 환경을 자율적으로 탐색할 수 있는 '뇌 없는' 소프트 로봇을 설계했다. NCSU가 유튜브를 통해 공개한 '뇌 없는' 소프트 로봇의 모습은 팔이나 다리 머리가 없으며, 나선형 파스타 '로티니(Rotini)'를 연상시키는 정교하게 꼬인 생소한 이미지로 눈길을 사로잡았다. 이전 모델과는 달리 이 로봇은 장애물이 없어도 자체적으로 회전할 수 있다. 이러한 독특한 움직임은 한쪽 절반이 지면에 더 많은 힘을 가하도록 설계된 비대칭적인 디자인 덕분이다. 그로 인해 이 로봇은 둥글게 호를 그리며 움직이고 동적 미로를 횡단하며 평행한 물체 사이에 끼이지 않고 피해 갈 수 있다. 이 소프트 로봇은 '물리적 지능'을 통해 작동한다. 이는 구조적 설계와 재료에 따라 동작이 결정되므로 컴퓨터나 사람의 지시가 필요하지 않다. 이 로봇은 리본 모양의 '액정 엘라스토머'로 만들어져 있으며, 주변 공기보다 더 뜨거운 표면에 놓이면 움직이기 시작한다. 표면이 더 뜨거울수록 로봇은 더 빨리 움직인다. 역동적인 환경 탐색 가능 이 연구팀은 인간이나 컴퓨터의 지시 없이 간단한 미로를 탐색할 수 있는 소프트 로봇을 이미 제작했다. 이들은 이제 그 작업을 기반으로 더 복잡하고 역동적인 환경을 탐색할 수 있는 '두뇌가 없는' 소프트 로봇을 만들었다. '뇌 없는' 소프트 로봇에 관한「물리적으로 지능적인 자율 로봇 미로 탈출기」라는 논문은 사이언스 어드밴스(Science Advances) 저널에 지난 8일 게재됐다. 이 연구는 국립과학재단(National Science Foundation)이 지원했다. 이 논문의 공동 저자이자 노스캐롤라이나 주립대학교 기계 및 항공우주 공학부의 지에 인(Jie Yin) 교수는 "우리의 초기 연구에서 소프트 로봇이 매우 간단한 장애물 코스를 통해 비틀거나 돌릴 수 있다는 것을 보여주었다"며 "그러나 이전 모델은 장애물에 부딪히지 않으면 회전하지 못했다. 실용적인 측면에서 이는 로봇이 때때로 평행한 장애물 사이에 갇혀서 앞뒤로 튕길 수 있음을 의미한다"고 말했다. 그는 "이번에 우리는 스스로 회전할 수 있는 새로운 소프트 로봇을 개발했다. 이 로봇은 구불구불한 미로를 통과할 수 있으며, 움직이는 장애물을 우회할 수도 있다. 이런 모든 행동은 컴퓨터의 안내가 아닌 물리적 지능을 사용해서 이루어진다"고 설명했다. 여기서 물리적 지능은 소프트 로봇과 같은 역동적인 물체를 말하며, 그 동작은 컴퓨터나 인간의 개입으로 지시되지 않고 구조 설계와 구성 재료에 의해 제어되는 것을 의미한다. 온도에 반응하는 로봇 새로운 소프트 로봇은 이전 버전과 마찬가지로 리본 모양의 액정 엘라스토머로 제작됐다. 이 로봇을 주변 공기보다 뜨거운 섭씨 55도(화씨 131도) 이상의 표면에 놓아두면 움직이기 시작한다. 작동 원리는 표면에 닿는 리본 부분은 수축하지만 공기에 노출된 리본 부분은 수축하지 않는 것을 이용했다. 이것은 롤링 모션을 유도하며 표면이 따뜻할수록 로봇이 더 빨리 굴러간다. 이전 버전의 소프트 로봇은 대칭 디자인이지만 새 로봇에는 두 개의 별개의 반쪽이 있다. 다시 말하면, 로봇의 절반은 직선으로 뻗어 있는 꼬인 리본 모양이고 나머지 절반은 나선형 계단처럼 더 촘촘하게 꼬인 리본 모양이다. 이 비대칭적인 디자인 때문에 로봇의 한쪽 끝이 다른 쪽 끝보다 표면에 더 많은 힘을 가할 수 있다. 연구진은 바닥보다 입구가 넓은 플라스틱 컵을 예로 들었다. 이 컵은 테이블을 가로질러 굴리면 직선으로 구르지 않고 둥글게 호를 그리며 굴러가는 데, 컵이 비대칭적인 모양을 하고 있기 때문이다. 비대칭 디자인이 특징 논문의 제 1 저자이자 NCSU의 야오 자오(Yao Zhao) 연구원은 "우리의 새로운 로봇이 탄생한 배경에 있는 개념은 꽤 간단하다. 비대칭적인 디자인 덕분에 물체에 접촉하지 않고도 회전할 수 있다"고 말했다. 그는 "따라서 물체와 접촉할 때는 방향을 바꾸어 미로를 탐색할 수 있지만 평행한 물체 사이에 갇히지는 않는다. 대신, 호를 그리며 움직일 수 있는 능력은 본질적으로 자유롭게 움직일 수 있게 해준다"고 설명했다. 연구진은 비대칭 소프트 로봇 설계가 움직이는 벽이 있는 미로를 포함하여 더 복잡한 미로를 탐색하고 신체 크기보다 좁은 공간을 통과할 수 있는 능력 등을 테스트했다. 더 나아가 이들 연구원은 새로운 로봇 디자인을 서로 다른 환경인 금속 표면과 모래에서도 테스트했다. Yin은 "이 작업은 소프트 로봇 설계에 대한 혁신적인 접근법을 개발하는 데 도움이 되는 또 다른 진전이다. 특히 소프트 로봇이 환경에서 열에너지를 얻을 수 있는 응용 프로그램에 대한 것이다"라고 말했다. 로봇이 사람처럼 머리가 있고 팔과 다리가 있어야 한다는 선입견을 깬 이번 연구는 다양한 형태의 무궁무진한 로봇의 탄생을 예고했다.
-
- IT/바이오
-
미로 자율 탐색하는 '뇌 없는 로봇' 탄생
-
-
美 샌디아 국립연구소, 내구성 높인 분자 개발 성공⋯장단점은?
- 미국 샌디아 국립연구소(Sandia National Laboratories)의 연구팀이 내구성을 높인 획기적인 분자 구조를 개발했다. 일반적으로 열을 가하면 팽창하는 대부분의 재료와 달리, 이 새로운 분자는 열을 가할 경우 수축한다는 놀라운 특성을 보인다. 과학 및 기술 전문 매체 '사이테크데일리(SciTechDaily)'에 따르면, 이 연구팀이 개발한 분자는 폴리머와 결합될 경우 뛰어난 내구성을 발휘한다. 이러한 특성 덕분에 휴대폰 케이스부터 미사일에 이르기까지 다양한 분야에서 활용 가능성이 높아 보인다. 폴리머는 작은 분자들이 결합해 만들어진 고분자로, 섬세한 구성 요소를 보호하는 이상적인 재료로 알려져 있다. 그러나 재료가 오래 사용되거나 다양한 환경에 노출될 경우 성능이 저하되는 문제가 있다. 이와 관련해 대부분의 물질이 가열될 때 팽창하고, 냉각될 때 수축하는 반면, 이 새로운 분자는 그렇지 않다. 일반적으로 폴리머는 가장 높은 팽창률과 수축률을 보이며, 금속이나 세라믹은 상대적으로 낮은 수준을 보인다. 샌디아 연구팀의 이번 발견은 물질의 온도에 따른 변화율을 조절할 수 있는 새로운 가능성을 열어놓았다. 이로써 다양한 산업 분야에서의 응용이 기대된다. 샌디아 연구팀을 이끄는 재료 과학자 에리카 레드라인(Erica Redline)은 "많은 제품들이 플라스틱, 유리, 금속 등 여러 재료로 구성되어 있는데, 이 재료들이 서로 다른 속도로 팽창하거나 수축하기 때문에 시간이 지날수록 제품이 갈라지거나 뒤틀리는 현상이 발생한다"고 지적했다. 레드라인은 이 문제점을 극복하기 위한 새로운 아이디어를 생각하게 되었고, 그 아이디어를 팀원들과 함께 실제로 구현하는 데 성공했다고 말했다. 그는 "우리 팀은 고분자와 잘 결합하면서 그 특성을 바꿀 수 있는 새로운 분자를 개발했다. 이 분자는 흥미롭게도 가열될 때 팽창하는 대신 수축하는 특징을 가진다"고 설명했다. 레드라인은 "이 분자를 폴리머에 첨가하면, 폴리머의 팽창과 수축이 금속과 유사한 수준으로 조절되게 된다. 실제로 금속과 같은 특성을 갖게 만든 이 분자의 개발은 큰 도전이었다"고 강조했다. 이 새로운 분자는 다양한 방식으로 활용될 수 있는 잠재력을 보여주고 있다. 폴리머는 전자부터 통신 시스템, 태양광 패널, 자동차 부품, 인쇄 회로 기판, 항공우주 응용, 국방 시스템, 바닥재 보호 코팅에 이르기까지 광범위한 분야에서 사용되는데, 이 분자가 그 활용성을 더욱 확장시킬 것으로 보인다. 화학 엔지니어인 제이슨 더거(Jason Dugger)는 "이 분자는 국방 시스템에서 특히 큰 잠재력을 발휘할 것"이라며 미래의 혁신을 위한 길을 열 것으로 기대하고 있다. 더거는 또 3D 프린팅 분야에서의 활용성에 대해서도 언급했다. 그는 "하나의 영역에서는 특정한 열적 반응을 보이는 반면, 다른 영역에서는 다른 열적 반응을 보이게끔 인쇄하는 것이 가능하다"며 "재료의 무게를 줄일 수 있어 위성 등에도 적용될 수 있다"고 덧붙였다. 또한, 한 에폭시 제조 회사가 이 분자를 접착제로 활용하려는 시도를 했다는 소식이 전해졌다. 물론, 이 기술에도 단점이 있다. 유기 화학자 샤드 스티커(Chad Staiger)에 따르면, 7~10그램(g)의 분자를 합성하는데 약 10일이 소요된다. 이런 점은 대량 합성 시에 추가적인 시간과 비용이 들 수 있다는 것을 의미한다. 현재 연구팀은 시장에 출시될 제품을 준비하는 과정에서 10만 달러(한화 약 1억3276만원)를 투자해 분자 합성 시간을 단축시키는 연구에 집중하고 있다. 이 분자의 활용 가능성은 무궁무진해 보인다.
-
- 산업
-
美 샌디아 국립연구소, 내구성 높인 분자 개발 성공⋯장단점은?
-
-
효율성 높은 리튬 배터리, 문제점은 무엇?
- 알카라인, 니켈수소, 리튬 등 여러 종류의 배터리가 시장에 나와 있지만, 리튬이온 배터리가 가장 인기 있고 널리 사용되는 것으로 알려져 있다. 리튬 배터리는 고에너지 밀도와 오래 지속되는 수명 때문에 휴대용 장치에 주로 선호되지만, 최근에는 높은 생산 비용과 화재 위험 등이 문제점으로 부각되고 있다. IT 전문 매체 슬래시기어(Slash Gear)는 영국 패러데이 연구소(Faraday Institution) 비아트리체 브라우닝(Beatrice Browning) 박사를 인용, 리튬이온 배터리의 경우 리튬 이온이 전극 안팎으로 순환할 때 발생하는 전극 구조가 손상되면 배터리 수명이 단축될 수 있다고 보도했다. 또한 영국 왕립화학회(Royal Society of Chemistry)의 연구에 따르면, 온도와 충전상태(SoC), 부하 프로필 등의 외부 스트레스 요인이 배터리 성능 저하에 영향을 미쳤으며 시간이 지남에 따라 용량이 감소하는 모습을 보였다. 뉴어크 일렉트로닉스(Newark Electronics)는 배터리를 사용하지 않아도 지속적인 방전으로 인해 노화될 수 있음을 확인했다. 또 제조 결함과 같은 여러 제어 불가능한 이유로 치명적인 결과를 초래할 수도 있다고 지적했다. 배터리는 과충전 혹은 부적절한 전압 사용으로 문제가 발생할 수 있으며, 이러한 문제는 잠재적으로 위험을 수반한다. 실제로 2019년 뉴저지와 2021년 캘리포니아에서는 애플 배터리의 부풀림 이슈 때문에 집단소송이 제기됐다. 물론, 애플 외에도 리튬이온 배터리를 사용하는 많은 다른 전자 제품 회사들이 같은 문제를 겪고 있다. 에너지 효율성과 가벼운 특성으로 오늘날 많은 자동차 제조업체에서 선택하고 있는 리튬이온 배터리는 여전히 화재의 위험이 있다. 미국 환경보호국(Environmental Protection Agency)에 따르면 2013년부터 2020년까지 미국의 64개 지자체 폐기물 시설에서 240건 이상의 리튬이온 배터리 화재가 발생했다. 특히, 2016년에는 삼성이 설계 결함으로 갤럭시 노트7 라인 생산을 영구 중단하는 등 미국 내 190만 대의 갤럭시 노트7을 리콜했다. 더 큰 문제는 리튬 배터리를 처분하는 방법에 여전히 제한이 있다는 점이다. 이러한 배터리는 화재 위험이 있어 운송 과정에서부터 실제 폐기물 처리 장소에 도착해서도 문제를 일으킬 수 있다. 미국 환경보호국은 리튬이온 배터리 단자를 테이프로 감싸고 플라스틱 봉지에 보관하는 것을 권장하고 있다. 슬래시기어는 "리튬을 재활용하는 새로운 방법이 발견되었지만, 가정용 배터리 제품을 적절히 처분하는 것은 많은 노력이 필요하다”며 “모든 사람이 인증된 전자 제품 재활용업자에 가는 시간과 여력이 있지는 않다"고 지적했다. 또한, 비싼 생산 비용도 걸림돌이다. 미국환경보호국에 따르면, 2021년 기준 리튬 배터리의 가격은 1kWh 당 약 132달러(약 17만5810원) 정도로 다른 배터리에 비해 높다. 리튬이온 배터리는 여전히 많은 종류의 전자 제품에서 최고의 선택이지만, 미래에는 보다 더 효율적인 배터리 구성 요소가 필요하다. 이에 업계에서는 리튬 기반 배터리보다 빠르게 충전되는 알루미늄 이온 배터리와 같은 새로운 배터리 기술을 개발하고 있다.
-
- IT/바이오
-
효율성 높은 리튬 배터리, 문제점은 무엇?
-
-
미래 에너지원 수소, '나노 섹션'으로 저비용 생산 가능
- 수소는 미래의 에너지 시스템의 핵심요소로 주목받고 있다. 전기 저장과 운송에 사용되는 수소는 트럭과 선박 추진 시스템을 기후 친화적으로 전환하거나, 산업 공정에서 천연가스 대체제로 사용될 수 있다. 전기분해를 통해 친환경적인 방식으로 수소를 생산하는 데 사용할 수 있지만 먼저 친환경 전기 확보가 필수적이다. 광촉매에서는 햇빛을 이용해 직접 물을 수소로 전환하기도 한다. 독일 기술 전문 매체 퓨처 존에 따르면 비엔나 공과대학교는 광촉매를 활용해 물을 수소로 직접 전환해 수소를 저렴하게 생산하는 새로운 솔루션을 개발했다. 광촉매의 효율과 비용은 사용되는촉매의 재료에 따라 달라진다. 특히 금속-유기 프레임워크(MOF)는 효과적인 촉매로서의 가능성이 확인됐다. 이 MOF는 넓은 범위의 태양광을 효율적으로 활용하는 데 탁월하다. 티타늄 와플 재료화학연구소의 도미니크 에더 교수가 이끄는 비엔나 공과대학교 연구팀은 티타늄과 탄소층으로 구성된 MOF를 개발했다. 이 물질은 특히 효율적으로 물을 수소로 전환할 수 있다. 이 개발 연구의 제1저자인 파블로 아얄라는 "전자 현미경으로 MOF를 보면 마치 매너 섹션(manner section)처럼 보인다"고 말했다. 그는 "즉, 와플은 금속(티타늄)이고 층을 서로 접착하는 초콜릿 처럼 보이는 것은 유기 부분(탄소)"이라고 설명했다. 나노 컷, 전자 현미경으로 관찰 여기에서 '나노 컷(cuts)'은 길쭉하지 않고 입방체 모양이며 너무 작아서 육안으로 볼 수 없다. 대체로 크기가 수 나노미터(nm)에 불과한 작은 입자는 분말을 생성한다. 아얄라에 따르면, 이 분말을 물이 있는 용기에 넣고 햇빛을 비추면, 유기-금속 부분에서 물이 산소와 수소로 나뉜다. 밀폐된 용기 안에서 위로 부풀어 오르는 가스는 멤브레인을 통해 간단하게 분리할 수 있다. 낮은 무게, 높은 수율 실험 결과에 따르면 개발된 소재는 상대적으로 낮은 무게로 많은 양의 수소를 생산한다. 아얄라는 "가장 잘 알려진 MOF 중 하나는 동일한 조건에서 우리보다 10배 적은 수소를 생산한다"고 말했다. 비엔나 공대 팀은 MOF로 기록적인 결과를 달성했다. 하지만 아얄라는 이에 대해 "프로세스는 지속적으로 개선되고 있다. 이 주제에 대한 새로운 연구가 거의 매주 발표되고 있다"고 말했다. 그러나, 효율성 측면 즉 태양 에너지가 궁극적으로 얼마나 많은 수소로 변환되는지에 관한 한 비엔나 공과대학교의 MOF를 사용한 광촉매 공정은 1퍼센트에 불과했다. 반면, 몇 달 전 미시간 대학의 연구팀은 9%라는 놀라운 수치를 발표했다. 지속가능한 수소 생산이 관건 수소 생산에서 비용은 매우 중요하다. 하지만 아얄라는 "태양은 에너지원으로서 생산성이 매우 높기 때문에 최고 효율이 필요하지 않다. 중요한 것은 지속 가능성을 유지하는 것"이라며 비용이 결정적인 요소가 아니라고 선을 그었다. 게다가 물에서는 일부 물질의 성능이 급격히 저하되는 단점이 있다. 아얄라에 따르면 "나노 컷" 분말은 몇 주 동안 좋은 전환 결과를 달성했다. 그러나 장기적인 연구는 아직 수행되지 않았다. 아얄라는 "5~10년 안에 첫 번째 애플리케이션이 등장할 수 있을 것"이라며 이러한 유형의 수소 생산 원리가 발전할 것으로 기대했다. 한편, 이러한 과정을 거쳐 생산된 수소가 어떤 유형의 플랜트에 적용될지는 아직 예측할 수 없다. 어쨌든 광촉매는 소금물이나 폐수를 포함한 모든 형태의 물에서 작동하는 것이 목표다. 광촉매를 사용하면 미래에는 수소 외에도 완전히 다른 것이 생산될 수도 있다. 예를 들어 비엔나 공과대학교에서는 이미 수중에 떠다니는 미세 플라스틱을 녹이는 데 광촉매를 사용하는 방법에 대한 연구가 진행 중이다.
-
- 산업
-
미래 에너지원 수소, '나노 섹션'으로 저비용 생산 가능
-
-
우산부터 프라이팬까지⋯일상 속 '암 유발' 독성 화학물질 6가지
- 한국의 장마철에는 많은 비가 쏟아진다. 6월 말부터 시작되는 장마철을 대비해 미리 튼튼한 우산을 준비하기도 한다. 그러나 대부분의 사람들이 몰랐던 충격적인 사실이 밝혀졌다. 그 바로 우산에 '암 유발' 위험을 가진 '잔류성 독성 화학물질(Perfluoroalkyl Sulfonate 과불화옥테인술폰산)'이 숨어있다는 것. 그게 끝이 아니다. 음식물이 타지 않도록 코팅 처리된 프라이팬과 심지어 화장품에도 독성 화학물질이 들어 있다. 잔류성 독성 화학물질은 우리 주변 곳곳에 있으나, PFAS와 PFOA(perfluorooctanoic acid 과불화옥탄산)와 같은 물질들은 자연환경이나 인체에서 쉽게 분해되지 않아, 영구적으로 남는 위험이 있다. 야후 뉴스는 최근 이 같은 위험한 화학물질이 함유되어 있을 가능성이 있는 제품 6가지를 소개했다. 다양한 용도를 자랑하는 PFAS와 PFOA는 많은 기업들이 애용하고 있다. 조리용 팬에 적용하면 매끄러운 표면이 형성되며, 셔츠의 얼룩 제거에도 탁월한 효과를 보인다. 일부 규제 기관들은 잔류성 독성 화학물질이 건강에 미치는 영향을 파악하기 위해 지속적인 모니터링을 진행하고 있다. 그러나 해당 물질의 사용을 제한하자, 다른 대체 분자를 개발해 새로운 화학물질이 등장하고 있는 현실이다. 코팅 팬에는 PFAS와 같은 화학물질의 잔류 가능성이 높다. 이들 물질은 고혈압, 심장마비, 뇌졸중, 간 기능 약화, 신장암 및 고환암의 위험성이 증가한다. 심할 경우 불임 문제까지 초래할 수 있다. 유해물질추방국제네트워크(IPEN, International Pollutants Elimination Network) 과학 고문 사라 브로쉐(Sara Brosché) 박사는 "이 물질은 생식력 및 내분비 장애 문제와 관련이 있다"며 "환경 오염으로 인해 부분적으로 발생하는 출산 위기와 관련돼 있다"고 주장했다. 편리함 때문에 자주 이용하는 전자레인지용 팝콘 봉지도 가급적 사용하지 않는 것이 좋다. IPEN이 2023년 3월 발표한 연구자료에 따르면, 전자 레인지용 팝콘 봉지에는 PFBA(perfluorobutanoic acid)와 PFHxA(perfluorohexanoic acid), FTOH(플루오로텔로머 알코올), 오르텔로머 알코올(FTOHs)이 종종 함유됐다. 또 국제적인 환경 분야 학술지 '종합환경과학(Science of the Total Environment)'의 2022년 연구 결과에 따르면, 테프론 코팅 팬에서 발생하는 단 하나의 표면 균열로 인해 최대 9100개의 플라스틱 입자가 인체 내로 들어갈 수 있다고 밝혀졌다. 물건을 구입할 때 받는 영수증도 안전하다고 볼 수 없다. 이런 영수증은 광택이 나며 미끄러운 느낌이 있는데, 그 이유는 내분비계를 교란시킬 수 있는 BPS(비스페놀S)라는 독성 화학물질이 포함되어 있기 때문이다. 패스트푸드의 포장지에도 PFAS가 함유되어 있다. 우산은 방수 효과를 높이기 위해 PFAS 같은 물질이 사용되고 있다. 또한, 로션, 면도크림, 파운데이션, 립스틱, 아이라이너, 아이샤도우, 마스카라와 같은 일부 화장품에도 PFAS가 포함되어 있다. 카펫과 가구에도 내구성을 향상시키기 위해 이 물질이 사용된다. 이처럼 우리가 일상 속에서 흔히 접하게 되는 다양한 제품에 잔류성 독성 화학 물질이 함유되어 있기 때문에 특별한 주의가 요구된다.
-
- 생활경제
-
우산부터 프라이팬까지⋯일상 속 '암 유발' 독성 화학물질 6가지
-
-
美 미시간 주립대, 생분해성 플라스틱 대체재 개발
- 미국 미시간 주립대학교의 연구원들이 퇴비화하기 쉬운 새로운 생분해성 플라스틱 대체재를 개발했다. USA투데이에 따르면 이 대학 포장학부 연구팀은 8월 초 동료 심사를 거친 ACS 출판 저널에 가정과 산업 환경 모두에서 퇴비화가 가능한 바이오 기반 폴리머 블렌드를 개발했다고 게재했다. 이 연구팀은 10년 넘게 포장재에 사용되어 온 폴리락트산(PLA)을 연구했다. PLA는 석유 대신 식물성 당분을 사용하여 물, 이산화탄소, 젖산으로 분해된다. 고온의 산업용 퇴비기에서 분해 가능 하지만 PLA는 고온의 산업용 퇴비기에서만 분해될 수 있으며, 가정용 퇴비기에서는 분해되지 않는 단점이 있다. 산업용 퇴비기에서도 PLA가 단 시간에 완전히 분해되는 것은 아니다. 연구자들은 산업용 퇴비 환경에서 미생물에 의해 PLA가 분해되기 시작하기까지 최대 20일이 걸릴 수 있다고 말했다. 이 과정을 가속화하기 위해 연구팀은 '열가소성 전분'이라고 불리는 것을 PLA에 혼합했다. 이 탄소 기반 전분은 퇴비 속 미생물이 바이오 플라스틱을 더 쉽게 분해하도록 도와준다. 연구원들은 열가소성 전분을 첨가해도 PLA의 강도, 투명도와 같은 품질이 손상되지 않고 유지된다고 말했다. 또한 이 바이오 플라스틱은 음식물 찌꺼기와 함께 퇴비화할 수 있다. 즉, 일회용 용기나 컵에 담긴 음식이나 음료를 따로 버리지 않아도 함께 분해된다. 이 연구는 퇴비화 가능한 바이오 기반 플라스틱 포장이 가능하다는 것을 보여 주지만, 실제로 적용하기에는 어려움이 있을 것으로 예상된다. 연구팀을 이끈 라파엘 아우라스는 "사실 많은 산업 퇴비화 업체는 여전히 PLA와 같은 바이오 플라스틱을 받아들이는 것을 꺼리고 있다"고 지적했다. 생분해 플라스틱 연구 사례 지난달 워싱턴 대학의 한 연구팀은 '스피룰리나'라고도 알려진 청록색 남조류 세포로 가정용 퇴비통에서 바나나 껍질이 분해되는 것과 같은 시간 안에 분해되는 바이오 플라스틱을 만들었다고 발표했다. 그보다 앞서 2021년 캘리포니아 버클리 대학교는 연구진이 생분해성 플라스틱을 더 빨리 분해할 수 있는 방법을 발명했다고 밝혔다. 연구진은 퇴비화 과정에서 발생하는 열과 물 등의 조건에서 플라스틱이 분해되는 데 도움이 되는 폴리에스테르를 먹는 효소를 바이오 플라스틱 자체에 삽입했다. 그렇지만 이같은 연구 결과가 우리가 쓰레기를 함부로 버려도 괜찮다는 것을 의미하는 것은 아니다. 연구팀은 퇴비화할 수 있는 플라스틱은 어떤 조건에서도 무조건 생분해된다는 것은 일반적인 오해라며 우려했다. 아우라스는 "우리가 생분해성 물질을 개발했기 때문에 사람들이 쓰레기를 함부로 버릴 수 있다고 생각하면 문제가 더 악화될 것"이라고 말했다. 그러면서 아우라스는 "생분해성 바이오 플라스틱은 빨대나 물병과 같은 일회용 플라스틱으로 인한 폐기물을 줄일 수 있다"면서 이번 연구가 플라스틱 폐기물을 줄이기 위한 전 세계적인 노력에 기여할 수 있기를 희망한다고 말했다.
-
- 생활경제
-
美 미시간 주립대, 생분해성 플라스틱 대체재 개발