검색
-
-
[신기술 신소재(4)] 혁신적인 비독성 고품질 산화그래핀 생산 기술 개발
- 스웨덴 과학자들이 가장 일반적인 방법으로 생산되는 물질에 비해 결함이 훨씬 적은 그래핀 산화물을 합성하는 새로운 방법을 발견했다. 과학전문 매체 싸이키ORG는 지난 20일 스웨덴 우메오 대학 연구팀 그래핀 산화물 합성에 새로운 비독성 방법을 개발하여 기존 주요 방법보다 결함이 현저히 적은 물질을 얻는데 성공했다고 보도했다. 이전에는 유사한 품질의 그래핀 산화물을 얻기 위해서는 매우 독성이 강한 발연 질산을 사용하는 위험한 방법밖에 없었다. 그래핀 산화물은 일반적으로 산소를 제거하여 그래핀을 제조하는데 사용된다. 하지만 그래핀 산화물에 구멍이 존재하면 그래핀으로 전환될 때도 구멍이 생기게 된다. 따라서 그래핀 산화물의 품질은 매우 중요하다. 우메오 대학의 알렉산드르 탈리진(Alexandr Talyzin)박사와 그의 연구팀은 안전하게 고품질 그래핀 산화물을 만드는 방법을 발견했다. 이 연구 결과는 '카본(Carbon)' 저널에 게재됐다. 첨단 나노소재인 그래핀은 유연성, 높은 기계적 강도, 전도성 등 뛰어난 특성으로 인해 경이로운 물질로 불린다. 하지만 모든 그래핀 특성은 결함에 영향을 받는다. 그래핀 산화물로부터 제조된 그래핀은 기대보다 훨씬 낮은 기계적 특성과 전도성을 보인다. 많은 연구에 따르면 가장 많이 사용되는 '험머스(Hummers)' 방법으로 합성하면 항상 많은 결함이 생기는 것으로 나타났다. 험머스 방법은 그래핀 옥사이드(GO, graphene oxide) 제조에 널리 활용되는 대표적인 화학적 합성 기술이다. 1958년 윌리엄 험머스(William S. Hummers)와 리처드 오프만(Richard E. Offeman)에 의해 처음 소개된 이 방법은 강력한 산화제를 사용하여 그래파이트(graphite)를 산화시켜 그래핀 옥사이드를 생산하는 과정으로 이루어진다. 기존 방법들에 비해 안전성이 높고, 합성 속도가 빠르며, 환경 친화적이라는 장점을 지녀 대량 생산에 적합하며 널리 활용되고 있다. 구체적인 합성 과정에서는 황산(H2SO4)을 주요 용매로 사용하고 칼륨 퍼망가네이트(KMnO4)를 산화제로 활용한다. 엄격하게 조절된 온도 조건에서 반응을 진행하여 그래파이트를 산화시키고 그래핀 옥사이드를 생성한다. 이렇게 얻어진 그래핀 옥사이드는 물과 같은 용매에 분산될 수 있으며, 이를 통해 다양한 응용 분야와 연구에 활용될 수 있다. 특히 전자 소자, 에너지 저장 장치, 복합 재료 등 여러 분야에서 험머스 방법으로 제조된 그래핀 옥사이드의 활용도가 높아지고 있다. 훨씬 오래된 '브로디(Brodie)' 방법은 거의 구멍이 없는 그래핀 산화물을 제공하지만 아직 어떤 기업도 이 유형의 그래핀 산화물을 생산하지 않고 상업적으로 이용하지 못하고 있다. 탈리진은 "단순히 너무 위험하고 산업 생산에 적합하지 않다"고 말했다. 브로디 방법은 그래핀 옥사이드 합성에 활용되는 고전적인 화학적 방법이다. 1859년 벤저민 콜린스 브로디(Benjamin Collins Brodie)에 의해 처음 소개된 이 방법은 험머스 방법과는 차별화된 접근 방식을 통해 그래핀 옥사이드를 제조한다. 브로디 방법의 핵심은 강력한 산화제인 질산(HNO3)과 염소산(KClO3)을 사용하여 그래파이트(graphite)를 산화시키는 과정이다. 험머스 방법에 비해 긴 반응 시간과 낮은 온도 조건을 특징으로 하며, 이를 통해 높은 수준의 산화와 기능화를 가진 그래핀 옥사이드를 얻을 수 있다. 장점으로는 브로디 방법으로 제조된 그래핀 옥사이드는 험머스 방법으로 제조된 그래핀 옥사이드보다 높은 수준의 산화와 기능화 수준을 가진다. 이는 특정 응용 분야에서 유용할 수 있다. 또한 브로디 방법은 고도로 산화된 그래핀 옥사이드의 제조에 특히 적합하다. 반면, 브로디 방법의 단점은 긴 반응 시간과 위험한 산화제 사용 등이 있다. 험머스 방법에 비해 반응 시간이 길어 대량 생산에 적합하지 않다. 반응 조건을 엄격하게 제어해야 원하는 결과를 얻을 수 있다. 아울러 질산과 염소산은 위험한 산화제이며 취급에 주의가 필요하다. 브로디 방법은 주로 연구 목적으로 사용된다. 특히 고도로 산화된 그래핀 옥사이드가 필요한 경우 선택적으로 사용되고 있다. 이번 연구팀은 험머스 방법의 산(H2SO4)과 브로디 방법의 산화제(염소산 칼륨)를 결합하여 브로디 방법과 동일하게 결함이 적은 그래핀 산화물을 제조할 수 있는 새로운 방법을 발견했다. 하지만 합성 과정은 험머스 산화만큼 간단하다. 탈리진은 "이 방법은 연구팀의 바르토스 구르제다(Bartosz Gurzeda) 연구원의 이름을 따서 구르제다(Gurzeda) 방법으로 명명되어야 한다"라고 주장했다. 탈리진은 결함 없는 그래핀 산화물이 필요한 경우 구르제다 방법이 험머스 방법만큼 널리 사용될 가능성이 높다고 여긴다. 이 방법은 산소 그룹을 제거하여 그래핀을 만들거나 가스 보호 코팅, 반투과성 막, 센서 등 다양한 응용 분야에 활용될 수 있다. 최근 10여 년 동안 그래핀 산화물 자체의 응용 분야에 대한 관심도 높아지고 있다. 층층 구조의 그래핀 산화물 재료는 해수에서 간단한 여과를 통해 식수를 생산하거나 톨루엔과 같은 유해한 유기 오염 물질을 차단하면서 물만 통과시키는 반투과성 보호 코팅 제작을 위한 막 응용 분야에서 집중적으로 연구되고 있다. 탈리진은 "저희는 연구 커뮤니티가 이 새로운 그래핀 산화물을 응용 분야에 적용하여 시험하고 차이를 확인하기를 바란다. 그래핀 산화물은 하나의 물질이 아니라 다양한 특성을 가진 물질 그룹이며 무한한 새로운 응용 가능성을 제공한다"고 말했다. 한편, 그래핀은 탄소 원자가 단원자층 두께의 이차원 결정 격자를 이루며 구성된, 탁월한 특성을 지닌 신소재다. 그래핀은 동일 두께의 다이아몬드보다 강하며, 존재하는 재료 중 최고 수준의 강도를 자랑한다. 약 130GPa의 인장 강도를 가지고 있으며, 얇음에도 불구하고 압도적인 강도를 유지한다. 또한 그래핀은 탁월한 전기 전도성을 지니고 있어, 전자가 거의 무저항으로 빠르게 이동할 수 있다. 이는 그래핀을 전자 소자, 전도성 잉크, 투명 전극 등에 유용하게 활용할 수 있게 한다. 그래핀은 압도적인 열 전도성을 가지고 있어, 열을 매우 효율적으로 전달한다. 이 특성으로 그래핀은 열 관리 분야의 핵심 소재로 주목받고 있다. 그래핀은 놀라운 유연성과 높은 신축성을 동시에 지닌다. 이러한 특징은 그래핀을 플렉서블 전자기기나 착용 가능한 웨어러블 기술에 이상적인 소재로 꼽힌다. 아울러 그래핀은 극도로 높은 투명성을 가지고 있으며, 약 97.7%의 빛을 투과시킨다. 이는 터치스크린, 라이트 패널, 심지어 태양 전지판 등의 응용 분야에서 획기적인 가능성을 제시한다. 그래핀은 뛰어난 화학적 안정성을 지니고 있어, 대부분의 환경에서 산화되거나 분해되지 않는다. 이는 다양한 화학적, 생물학적 환경에서 안심하고 활용할 수 있게 한다. 이러한 그래핀의 탁월한 특성들은 전자, 에너지, 복합 재료, 바이오메디컬 분야 등 다양한 산업 분야에서 혁신적인 변화를 이끌 핵심 동력이 될 것이다.
-
- 포커스온
-
[신기술 신소재(4)] 혁신적인 비독성 고품질 산화그래핀 생산 기술 개발
-
-
NASA 망원경, 빠른 라디오 버스트의 놀라운 비밀 포착!
- 우주에서 전파 폭발이 일어나고 있는 가운데 과학자들은 이 놀라운 현상의 원인을 찾고 있다. 지난 15일(현지시간) 미국 과학전문 매체 싸이테크 데일리에 따르면 최근 미 항공우주국(NASA·나사)의 두 개의 X선 망원경이 빠른 우주 전파 폭발이 발생하기 몇 분 전과 후의 관찰에 성공했다. 이번 관찰은 과학자들이 이러한 전파 폭발을 더 잘 이해하는 데 도움이 될 것으로 기대된다. 빠른 라디오 버스트(FRB)는 1초 미만의 짧은 순간에 태양 1년치 에너지를 방출하는 우주 현상이다. 눈 깜짝할 사이에 거대한 불꽃놀이가 펼쳐지는 것과 비슷하다. 레이저처럼 좁은 방향으로 에너지를 방출하는 빠른 라디오 버스트는 2007년 처음 발견되었지만, 아직 그 원인은 밝혀지지 않았다. 과학자들은 짧은 폭발 시간과 뚜렷한 방향성 때문에 빠른 라디오 버스트의 위치를 정확히 파악하기 어려워 연구에 어려움을 겪고 있다. 2020년 이전에는 먼 은하에서만 관측되었던 빠른 라디오 버스트가 최근 우리 은하계 안에서도 발견됐다. 마그네타라는 강력한 자기장을 가진 별에서 빠른 라디오 버스트가 발생하는 것으로 밝혀졌다. 빠른 라디오 버스트가 마그네타에서 발생하는 이유는 아직 밝혀지지 않았지만 과학자들은 마그네타 표면에서 발생하는 강력한 자기장 재결합, 마그네타 내부의 초유체 붕괴, 마그네타 주변의 플라즈마 와동 등의 가능성을 예상하고 있다. 마그네타는 초신성 폭발 후 남은 죽은 별의 잔해로 이들은 엄청나게 강력한 자기장을 가지고 있다. 이는 태양보다 약 10억 배 이상 강력하다. 마치 거대한 자석과 같은 이 자기장은 주변 환경에 영향을 미치고 심지어 빠른 라디오 버스트를 발생시킬 수도 있다고 과학자들은 지적했다. 2022년 10월, 과학자들은 SGR 1935+2154라는 마그네타에서 또 다른 빠른 라디오 버스트를 관찰했다. 이번 관찰은 국제 우주 정거장(ISS)에 있는 NASA의 니서(Neutron Interior Composition Explorer) 망원경과 낮은 지구 궤도에 있는 뉴스타(Nuclear Spectroscopic Telescope Array/NuSTAR) 망원경의 협력을 통해 자세히 관찰됐다. 이들 망원경은 몇 시간 동안 마그네타를 관찰하해 빠른 라디오 버스트 전후에 소스 물체의 표면과 바로 주변에서 무슨 일이 일어나는지 볼 수 있었다. 연구 결과, 폭발은 마그네타가 갑자기 더 빠르게 회전하기 시작했을 때 두 개의 '글리치(마그네타가 갑작스럽게 회전 속도를 변화시키는 현상)' 사이에서 발생했다는 것을 알게 되었다. SGR 1935+2154는 지름이 약 20km에 불과하며, 초당 3.2회라는 놀라운 속도로 회전하는 마그네타로 이는 표면이 약 11,000km/h의 속도로 움직이고 있는 것과 같다. 이는 서울에서 부산까지 1시간 만에 이동하는 것과 비슷한 속도라고 볼 수 있다. 하지만 2022년 10월 폭발 이후 SGR 1935+2154는 단 9시간 만에 이전 속도보다 느려졌고, 이는 마그네타가 이전보다 약 10배 더 빠르게 속도를 감소시키는 것과 같다. 마치 자동차가 110km/h로 달리다가 9시간 만에 1km/h까지 속도를 줄이는 것과 비슷하다. 연구원들은 이러한 현상이 빠른 라디오 버스트의 생성과 관련이 있을 수 있다고 예상했다. 빠른 라디오 버스트를 생성하는 방법은 아직 밝혀지지 않았지만 과학자들은 여러 가지 가능성을 고려하고 있다. 첫번째로 마그네타가 갑자기 회전 속도를 변화시키는 현상으로, 이 과정에서 에너지가 방출되어 빠른 라디오 버스트를 발생시킬 수 있다. 두번째로 초기 결함으로 인해 마그네타 표면에 균열이 발생하여 화산 폭발처럼 별 내부의 물질이 우주로 방출되었을 수도 있다. 질량을 잃으면 회전하는 물체의 속도가 느려지기 때문에 연구자들은 이것이 마그네타의 급격한 감속을 설명할 수 있다고 생각한다. 세번째로 마그네타의 강력한 자기장 또한 빠른 라디오 버스트의 생성에 영향을 미칠 수 있다. 자기장은 주변 환경에 영향을 미치고, 심지어 입자를 가속하여 에너지 빔을 형성할 수도 있다. 이러한 빔이 다른 물체와 충돌하면 빠른 라디오 버스트를 생성할 수 있다. 그러나 이러한 사건 중 하나만 실시간으로 관찰한 후에도 팀은 이러한 요인(또는 마그네타의 강력한 자기장과 같은 다른 요인) 중 어떤 요인이 빠른 라디오 버스트를 일으킬 수 있는지 확실히 말할 수 없다. 일부는 버스트에 전혀 연결되지 않을 수도 있다. 고다드 우주 비행 센터(Goddard Space Flight Center)의 연구원이자 마그네타 전문 중성자 내부 구성 탐사기(Neutron Interior Composition Explorer) 과학팀의 일원인 조지 유네스(George Younes)는 "빠른 라디오 버스트를 이해하는 데 중요한 것을 의심할 여지 없이 관찰했다"라고 말했다. 그러면서 그는 "하지만 미스터리를 완성하려면 아직 더 많은 데이터가 필요하다고 생각한다"라고 덧붙였다. NASA 망원경은 신비한 심우주 신호 뒤에 숨은 비밀을 밝히는 데 한 걸음 더 다가갔다. 하지만 여전히 많은 미스터리가 남아 있다. 앞으로 더 많은 연구를 통해 빠른 라디오 버스트의 정확한 원인과 메커니즘을 밝혀낼 수 있을 것으로 기대된다.
-
- 산업
-
NASA 망원경, 빠른 라디오 버스트의 놀라운 비밀 포착!
-
-
[퓨처 Eyes(23)] 우주에서 인간을 돕는 로봇, 현실이 되다?
- 미국 항공우주국(NASA·나사)은 우주에서 사용할 휴머노이드 로봇을 연구하고 있다. 나사는 앞으로 수십 년 이내에 인간 우주비행사를 달로 보내고, 달 궤도에 우주 정거장을 건설하고, 달 표면에 영구 기지를 건설하고, 우주 비행사를 화성에 보낼 계획이다. 아울러 심우주 탐사와 외계 거주지를 개발하기 위한 연구의 일환으로 로봇 팔과 멀티 다기능 그리퍼 등도 속속 개발되고 있다. 나사가 연구중인 휴머노이드 로봇 '발키리'는 높이 188cm, 무게 136kg이다. 북유럽 신화에 나오는 여성의 이름을 딴 우주 개발용 휴머노이드 로봇 발키리는 텍사스 휴스턴에 있는 존슨 우주 센터에서 실험 중이다. 나사에 따르면 발키리는 자연재해가 발생한 지역과 같은 '열화되거나 손상된 인체 공학적 환경'에서 작동하도록 설계됐다. 과학자들은 발키리와 같은 휴머노이드 로봇은 언젠가 우주에서 작동할 수 있을 것으로 전망했다. 휴머노이드(humanoid·인간형 로봇)는 일반적으로 인간과 마찬가지로 몸통, 머리, 두 팔, 두 다리를 가지고 있다. 휴머노이드 로봇은 사람의 동작을 모방하거나 일정한 작업을 수행하는 데 사용될 수 있다. 휴머노이드 로봇은 다양한 분야에서 활용될 수 있다. 서비스 분야에서는 응대, 안내, 보조 및 도움을 제공하여 인간의 업무 효율성을 높이고 고객 만족도를 향상시킨다. 또한, 제조업이나 건설 현장과 같은 위험하거나 인간이 작업하기 어려운 환경에서도 활용되어 안전성을 높이고 생산성을 향상시킨다. 인간과의 자연스러운 상호작용 역시 휴머노이드 로봇의 주요 장점이다. 의료 분야에서는 환자 돌봄이나 재활 치료, 교육 분야에서는 맞춤형 학습 환경 제공, 엔터테인먼트 분야에서는 몰입형 경험을 제공한다. 또한 우주 탐사 분야에서 휴머노이드 로봇은 위험한 환경에서 인간 대신 작업을 수행하는 등 다양한 분야에서 활용될 수 있다. 로이터에 따르면 엔지니어들은 올바른 소프트웨어를 활용해 휴머노이드가 인간과 동일한 수준의 인지 능력, 작업 수행 능력, 사회적 상호작용 능력을 달성하도록 돕고 있다. 여기에는 인간과 동일한 언어 사용, 문제 해결 능력, 감정 표현 능력 등을 포함하며, 휴머노이드가 컴퓨터, 스마트폰, 생산 도구, 의료 기기 등 다양한 도구와 장비를 사용할 수 있게 될 것으로 예상된다. 나사의 덱스트로스 로봇공학팀(Dexterous Robotics Team·숙련된 로봇공학팀)의 리더인 숀 아지미(Sean Azimi)에 따르면 휴머노이드는 태양 전지판을 청소하거나 우주선 외부의 결함 있는 장비를 검사하는 것과 같은 우주에서 위험한 작업을 수행할 수 있는 잠재력을 가지고 있다. 아지미는 "우리는 휴머노이드로 인간 우주 비행사를 대체하려는 것이 아니다. 지루하고 더럽고 위험한 일에서 해방시켜 그들이 더 발전된 활동에 집중할 수 있도록 하는 것"이라고 말했다. 또한 나사는 텍사스 오스틴에 본사를 둔 로봇 회사인 앱트로닉(Aptronic)과 파트너십을 맺고 지상용으로 개발된 휴머노이드가 향후 우주에서 어떤 작업을 도울 수 있는지에 대해서도 연구하고 있다. 아폴로 휴머노이드 앱트로닉의 휴머노이드 '아폴로'는 지상의 창고 및 제조 공장에서 상품을 옮기고, 팔레트를 쌓고, 기타 공급망 관련 작업을 수행할 수 있을 것으로 기대된다. 아폴로는 빠르면 2025년 초에 기업에서 사용할 수 있을 것으로 예상된다. 닉 페인(Nick Payne) 앱트로닉 최고기술책임자는 아폴로가 인간과 비교했을 때 내구성과 기타 측면에서 강점을 가지고 있다고 말했다. 페인은 "우리는 이 시스템을 하루 22시간 온라인 상태로 유지하는 것을 목표로 하고 있다"라고 말했다. 그는 "아폴로에는 교체 가능한 배터리가 있어서 4시간 동안 작업하고 배터리를 교체한 다음 계속 작업할 수 있다"라고 설명했다. 제프 카르데나스(Jeff Cardenas) 앱트로닉 최고경영자(CEO)는 새로운 소프트웨어의 개발로 아폴로의 역량이 향상됨에 따라 가능성은 무한하다고 말했다. 카르데나스 CEO는 "우리는 창고와 제조 현장으로 시작했지만 소매, 배송, 심지어 비정형 공간이라고 불리는 구조화되지 않은 공간으로 확장하고 있다"라며 아폴로의 활동 영역이 다양한 분야로 확장가능하다고 설명했다. 나사의 아지미(Azimi) 연구원은 앞으로 몇 년 안에 비정형 영역인 우주에 로봇에 포함될 수 있을 것으로 예상했다. 그는 "아폴로와 같은 로봇은 모듈성을 염두에 두고 설계되어 많은 응용 분야에 적용할 수 있다"라고 말했다. 이어 "나사가 알아내려고 노력하는 것은 바로 이 부분이다. 중요한 부족 부분은 무엇인지, 지상 시스템을 우주로 가져가고 우주에서 작동할 수 있다는 확신을 갖기 위해 미래에 어디에 투자해야 합니까?"라고 되물었다. 멀티 모드 그리퍼 개발 테크 익스플로어에 따르면 하버드 존 A. 폴슨 공학 및 응용과학 대학(SEAS)의 연구원 그룹이 탄력 있고 자율적인 심우주 및 외계 거주지를 개발하기 위한 연구의 일환으로 지난 4년 동안 로봇 팔과 그리퍼 개발을 진행했다. 회복력 있는 외계 서식지 연구소(RETHi)는 퍼듀 대학교가 주도하며, SEAS, 코네티컷 대학교, 샌안토니오 텍사스 대학교와 협력하고 있다. 이 연구소의 목표는 "예상되는 장애와 예상치 못한 장애에 적응하고 흡수하며 신속하게 복구할 수 있는 탄력적인 심우주 서식지를 설계하고 운영하는 것"이다. SEAS의 로봇공학 선임 연구원인 저스틴 워펠은 자율 로봇이 서식지의 손상된 부품을 수리하거나 교체할 수 있는 기술을 개발하는 팀을 이끌고 있다. 워펠은 "임무 수행 중에 운석이 서식지를 침범했는데 승무원이 수리할 수 없다면 어떻게 될까요?"라고 반문했다. 그는 "또는 우주비행사들이 근무하는 시간 중에 이런 일이 발생하면 우주비행사들은 다른 긴급 상황으로 바빠질 수 있다. 일상적인 상황에서도 마찬가지로, 필터 교체부터 청소까지 우주비행사의 소중한 시간을 빼앗는 정기적인 유지보수 작업이 많이 있다. 이는 로봇이 이러한 작업을 수행한다는 것을 의미한다"고 설명했다. 2019년에 프로젝트가 시작된 이래, 로버트 우드, 해리 루이스 및 말린 맥그라스 SEAS 공학 및 응용과학 교수를 포함한 워펠과 그의 팀은 새로운 로봇 팔과 그리퍼, 인간과 로봇의 협업을 개선하는 새로운 시스템, 로봇 친화적인 장비를 설계하는 새로운 방법을 개발해 왔다. 심우주 거주지용 다기능 도구 개발 인공지능(AI) 기반의 습관 형성 앱인 '스마트햅(SmartHab)'을 위한 로봇을 설계할 때 가장 큰 과제 중 하나는 심우주 거주에 필요한 다기능성이다. 자동차나 창고 건설에 사용되는 로봇과 같은 대부분의 산업용 로봇은 고도로 전문화되어 있으며 몇 가지 특정 작업만 수행한다. 하지만 심우주 거주지에는 수십 대의 특수 로봇을 설치할 공간이 없다. 대신 한 대 또는 몇 대의 다기능 로봇이 긴급 수리를 비롯한 다양한 작업을 수행할 수 있어야 한다. 이를 위한 한 가지 프로젝트는 다양한 유형의 물체를 다양한 방식으로 잡을 수 있도록 모양을 바꿀 수 있는 '멀티 모드 그리퍼'를 개발하는 것이었다. 우드는 "사람의 손은 높은 정밀도가 필요하거나 큰 힘을 필요로 하거나 규정 준수를 통해 이점을 얻을 수 있는 등 다양한 기능에 적응할 수 있다"고 말했다. 그는 멀티 모드 그리퍼에 대해 "이 디자인은 이와 유사한 적응형 동작을 포착하여 하나의 그리퍼로 가능한 작업의 범위를 늘리려고 시도한다"고 설명했다. IEEE에 게재된 논문에서 워펠과 하버드 디자인 대학원(HGSD) 및 한국 부산대학교의 공동 연구진이 포함된 연구팀은 손가락의 관절 수를 변경할 수 있도록 재구성할 수 있는 소위 '가위 링크'로 만든 손가락이 달린 그리퍼를 개발했다. 이 그리퍼에는 세 가지 모드가 있다. 첫 번째 모드에서는 손가락이 짧고 구부러지지 않아서 물체를 강력하고 안전하게 잡을 수 있다. 두 번째 모드에서는 손가락에 관절이 생겨 그리퍼가 손으로 조작할 수 있어 물체를 놓지 않고도 이동하고 회전할 수 있다. 마지막 모드에서는 관절이 두 개 더 추가되어 손가락이 물체의 모양에 수동적으로 적응하고 접촉 압력을 분산할 수 있어 불규칙한 모양이나 섬세한 물체를 잡을 때 유용하다. 이처럼 미래 우주 탐사에 필요한 휴머노이드 로봇과, 로봇 팔, 멀티 다기능 그리퍼 등이 속속 개발되고 있다. 그리퍼 관련 논문은 부산대학교의 권정한, SEAS 대학원생인 데이비드 봄바라와 클락 티플, HGSD의 이준행과 척 호버만, 그리고 우드가 공동 저자로 참여했다.
-
- 포커스온
-
[퓨처 Eyes(23)] 우주에서 인간을 돕는 로봇, 현실이 되다?
-
-
일본 혼다, 에어백 결함으로 미국서 75만대 리콜
- 일본 혼다자동차는 6일(현지시간) 에어백과 관련된 결함으로 충돌시 에어백이 적절하게 작동하지 않을 가능성이 있다는 이유로 미국에서 75만 대의 차량을 리콜한다고 밝혔다. 미국 교통부 산하 도로교통안전국(NHTSA)은 이날 조수석의 시트 무게센서에 금이 가 에어백이 임의로 터질 수 있다며 해당 센서를 교체해야 한다고 밝혔다. 혼다자동차 판매점이 중량센서의 교체를 진행한다. 리콜 대상에는 2020~2022년식 혼다 파일럿, 어코드 및 시빅 차량과 2020~2021년식 혼다 CR-V 및 패스포트 차량이 포함된다. 혼다가 NHTSA에 제출한 자료에는 보증청구가 3834건이었다. 혼다는 2020년 6월이후 이번 리콜 문제와 관련된 부상 또는 사망 신고는 없었다며 공급업체가 시트 무게 센서의 인쇄 회로 기판에 있는 기본 재료를 일시적으로 변경해서 해당 문제가 발생했다고 설명했다. 일본 도요타도 같은 문제로 지난해 12월 전 세계적으로 112만 대의 차량을 리콜했으며 혼다는 연료 펌프 고장 위험으로 전 세계적으로 450만 대의 차량을 리콜했다.
-
- 산업
-
일본 혼다, 에어백 결함으로 미국서 75만대 리콜
-
-
중앙대, 그린수소 생산 혁명 루테늄 촉매 개발
- 수소경제 시대를 앞두고 친환경적인 수소 생산 기술 개발이 지속적으로 이루어지고 있다. 이 가운데 최근 중앙대학교 첨단재료공학과 연구팀이 차세대 수소 전극 촉매로 주목받는 루테늄 촉매의 성능을 획기적으로 향상시킨 연구 결과를 발표했다. 미국 과학 전문 매체 사이테크데일리(SciTechDaily)는 중앙대학교 첨단재료공학과 장해성 교수 연구팀이 아연으로 도핑한 루테늄 산화물(SA Zn-RuO2) 촉매를 개발했다고 지난 21일(현지시간) 자세히 소개했다. 아연으로 도핑한 루테늄 산화물 촉매는 기존 루테늄 산화물 촉매에 비해 안정성과 반응성이 향상된 것이다. 수소는 화석연료 대체 에너지원으로 각광받고 있지만, 현재까지 주로 천연가스 개질을 통해 생산되는 '회색 수소'는 환경오염 문제를 해결하지 못하고 있다. 반면, 물과 전기를 이용하여 생산되는 '녹색 수소'는 온실가스 배출 없이 순수한 수소를 확보할 수 있는 친환경 에너지원으로 각국 정부와 기업들의 핵심 투자 분야로 떠오르고 있다. 하지만 현재 녹색 수소 생산 기술은 아직 초기 단계에 머물러 있다. 가장 큰 걸림돌은 산성 전해수를 이용하는 '양극 산화반응(OER)' 촉매의 효율성과 안정성이 부족하기 때문이다. 이 때문에 경제적인 녹색 수소 생산량을 늘리기 어려운 상황이다. 루테늄 촉매로 획기적인 성능 향상 연구팀은 기존 상용 루테늄 촉매에 아연(Zn) 원자를 도핑하는 기술을 개발하여 기존 촉매에 비해 훨씬 높은 반응성과 안정성을 확보했다. 기존 루테늄 촉매는 전류밀도를 높이면 빠르게 성능이 저하되는 반면, 연구팀이 개발한 촉매는 높은 전류밀도에서도 지속적으로 안정적인 수소 생산을 가능하게 한다. 뿐만 아니라, 이 신소재 촉매는 이리듐(Ir)과 같은 귀금속 대신 상대적으로 저렴한 루테늄을 사용함으로써 녹색 수소 생산 비용을 크게 낮출 수 있는 장점도 지니고 있다. 결과적으로 연구팀의 성과는 녹색 수소 경제 실현에 한 걸음 더 다가선 중요한 결과라 할 수 있다. 차세대 전극 촉매의 길을 여는 돌파구 연구팀은 이번 연구 결과를 바탕으로 더욱 효율적이고 안정적인 차세대 촉매 개발에 힘을 쏟을 계획이다. 이를 통해 친환경 수소 생산 기술 발전을 촉진하고 우리나라 수소경제 선두 국가 진출에 밑바탕을 마련할 것으로 기대된다. 연구팀은 기존 루테늄(RuO2) 촉매에 단일 아연(Zn) 원자를 도핑하고 산소 공백을 도입하는 이중 기술을 개발하여 안정성과 활성을 동시에 높이는 데 성공했다. 'SA Zn-RuO2(단일 아연 도핑 루테늄 산화물)' 촉매라고 명명한 신소재는 산소 공백과 Zn-O-Ru(아연 산소 루테늄) 결합을 통해 기존 촉매의 한계를 효과적으로 극복했다. SA Zn-RuO2 촉매는 유기 골격 구조물을 루테늄과 아연 원자로 가열하여 합성하는데, 이 과정에서 산소 공백과 Zn-O-Ru 결합이 형성된다. 이러한 결합은 두 가지 방식으로 촉매를 안정화한다. 첫째, Ru-O 결합을 강화하여 촉매 구조를 지탱한다. 루테늄-산소 결함은 촉매의 구조적 안정성을 높이는 데 중요한 역할을 한다. 루테늄-산소 결합이 강하면 촉매가 쉽게 분해되는 것을 방지할 수 있다. 둘째, 아연 원자로부터 전자를 공급하여 산화 과정에서 루테늄의 과도한 산화를 막는다. 또한 향상된 전자 환경은 반응 물질이 촉매 표면에 흡착하는 데 필요한 에너지를 낮춰 반응 속도를 증진시킨다. 장 교수는 연구 배경에 대해 "산성 전해수를 이용하는 수소 생산 기술에서 효율적이고 저렴한 대체 촉매 개발 필요성에 따라 연구를 시작했다"고 밝혔다. 그는 "이번 연구를 통해 단일 아연 도핑과 산소 공백 도입이라는 이중 기술을 통해 산성 환경에서 안정성과 활성을 균형 있게 높이는 전략을 제안한다"고 덧붙였다. 수소 생산 비용 절감 장 교수 연구팀의 실험 결과 아연으로 도핑한 루테늄 산화물 촉매는 기존 루테늄 산화물 촉매에 비해 과전위가 57mV 낮고, 43시간 동안 안정적으로 작동하는 것으로 나타났다. 과전위는 촉매가 반응을 일으키는 데 필요한 전기 에너지의 양으로, 과전위가 낮을수록 효율이 높아진다. 즉, 아연 도핑 루테늄 산화물 촉매는 기존 루테늄 산화물 촉매에 비해 더 적은 에너지를 사용하여 수소를 생산할 수 있다는 의미이다. 또한, 아연 도핑 루테늄 산화물 촉매는 43시간 동안 안정적으로 작동하는 것으로 나타났는데, 이는 기존 루테늄 산화물 촉매의 수명에 비해 크게 향상된 것이다. 연구팀은 "아연으로 도핑한 루테늄 산화물 촉매는 비용 효율적이고 활성 및 내산성 전기 촉매의 개발에 영향을 미칠 가능성이 있다"며 "이는 수소 생산 비용을 절감하고 녹색 수소 생산을 향상시켜 청정 에너지원으로의 전환과 지속 가능한 기술의 발전에 도움이 될 것"이라고 기대했다. 아연으로 도핑한 루테늄 산화물 촉매의 개발은 지속 가능한 수소 생산에 새로운 돌파구를 마련했다는 평가를 받고 있다. 기존 루테늄 산화물 촉매는 안정성 문제가 있어 실용화 가능성이 낮다는 지적을 받아왔다. 하지만 이번에 개발된 아연으로 도핑한 루테늄 산화물 촉매는 안정성과 반응성이 모두 향상돼 상용화에 한 걸음 더 가까워졌다. 연구팀은 "향후 아연으로 도핑한 루테늄 산화물 촉매의 성능을 개선하고 대량 생산 기술을 개발해 실용화를 앞당길 계획"이라고 밝혔다. 이 연구는 지난 1월 '에너지 화학 저널(Journal of Energy Chemistry)' 88권에 발표됐다.
-
- 산업
-
중앙대, 그린수소 생산 혁명 루테늄 촉매 개발
-
-
에어버스, 수소 항공기 A380 2026년 시험 비행
- 프랑스의 대표 항공업체인 에어버스는 수소 연료전지 시스템인 '아이언 패드'의 테스트에 성공해 제로탄소(ZEROe) 목표에 한 걸음 더 가까워졌다. 항공전문 매체 심플플라잉(simpleflying)은 에어버스가 오는 2026년부터 F-WWOW(테스트기체)로 등록된 에어버스 380의 제로탄소 테스트 베드에 연료전지 추진 시스템을 설치해 기내 테스트를 진행할 계획이라고 지난 22일(현지시간) 보도했다. 항공업계는 탄소제로 목표에 적극적으로 동참하고 있다. 이는 기업 활동에서 발생하는 이산화탄소 배출을 최소화하고, 절감이 어려운 부분은 탄소배출권 매입을 통해 결국 이산화탄소 발생량을 '0'으로 만드는 것을 의미한다. 에어버스 연구팀은 지난해 6월 1.2MW(메가와트)의 최대 전력을 달성하는 수소 연료전지 시스템 테스트에 성공했다. 이어 지난해 말에는 수소 연료전지 시스템과 전기 모터를 결합한 추진 시스템 프로토타입이 뮌헨의 전자 항공기 하우스(E-Aircraft House)에서 1.2MW의 전력으로 구동되는 성과를 보였다. 에어버스의 ZEROe 프로젝트에 대한 최신 업데이트에 따르면, 테스트 및 시연 책임자 마디아스 안드리아미사이나(Mathias Andriamisaina)는 프로토타입이 테스트 중에 1.2MW의 전력에 도달했다고 밝혔다. 이 전력 수준은 에어버스가 A380 기내 시연에서 실시하려는 테스트 전력과도 일치한다. 이러한 성과는 ZEROe 프로젝트 팀이 비행 조건에 적합한 추진 시스템의 크기, 질량 및 사양을 최적화하는 다음 단계로 나아가는 데 중요한 진전이다. 이를 통해 프로젝트의 기내 테스트는 한층 더 구체화되고 가까워졌다고 할 수 있다. ZEROe 프로젝트는 그 이름이 의미하듯이 배출가스 제로를 목표로 하며, 지속 가능한 항공 기술에 대한 수요에 대응하는 에어버스의 중요한 프로젝트이다. 이 프로젝트의 궁극적인 목표는 혁신적인 기술과 개념을 활용하여 2035년까지 수소 동력을 사용하는 상업용 비행기를 생산하는 것이다. 이러한 노력은 항공업계의 지속 가능한 미래로의 전환을 위한 중요한 발판이 될 것으로 기대된다. 에어버스의 첫 ZEROe 비행기에 대한 구체적인 디자인과 콘셉트는 아직 확정되지 않았다. 이는 에어버스가 수소 연소와 수소 연료전지 기술을 포함한 다양한 항공기 콘셉트를 탐구하고 있기 때문이다. 2020년에 제안된 4가지 콘셉트 중 하나인 수소 연료전지 기술은 완전 전기 항공기 유형에 사용될 예정이며, A380 실증기에서 테스트될 계획이다. 특별히 지정된 ZEROe 실증기는 에어버스가 생산한 최초의 A380이자, MSN001이라는 생산 일련번호를 가진다. 이 항공기는 2005년 4월 27일 첫 비행을 시작해, 세계에서 가장 큰 상업용 항공기로서의 역사적 비행을 시작했다. MSN001의 이력은 A380 프로그램만큼이나 매력적이다. 이 항공기는 프로토타입으로서 상용 운용을 위한 기술 테스트와 인증 획득 역할을 수행했다. 물 섭취, 극한의 기후 조건에서의 작동, 고속 이륙 거부 테스트 등이 이에 포함된다. 또한 MSN001은 전 세계를 여행하며 다양한 에어쇼에 참가했고, 때로는 에어버스를 대표하는 특별한 상징으로 등장하기도 했다. A380 프로그램이 시작된 이래, MSN001은 에어버스에 의해 보존되어 왔으며, 다른 많은 초기 프로토타입들과 달리 폐기되지 않았다. 이 항공기는 A350 프로그램의 '트렌트 XWB(Trent XWB)' 엔진 테스트에 있어 핵심적인 역할을 수행했으며, 특히 2번 엔진으로 날개 아래에 트렌트 XWB 엔진을 장착하는 중요한 작업을 담당했다. 트렌트 XWB(Trent XWB)는 영국 롤스로이스엔진이 개발한 대형 항공기용 터보 엔진이다. 영어 'Trent'는 롤스로이스의 항공기용 터보 엔진 브랜드명이며, 'XWB'는 '초대형 동체(Extra Wide Body)'의 약자로 넓은 동체(Wide Body) 항공기에 탑재되는 엔진을 의미한다. 처음에는 A350-900 모델을 위해 트렌트 XWB-84 엔진을 테스트했으며, 이어서 A350-1000 모델을 위한 트렌트 XWB-97 엔진의 테스트를 수행했다. 이러한 과정은 A350 프로그램의 성공적인 발전에 기여했다고 볼 수 있다. 최근에는 MSN001이 지속 가능한 항공 연료(Sustainable Aviation Fuel, SAF) 사용을 위한 여러 차례의 시험 비행에 참여했다. 롤스로이스, 프랫 앤 휘트니와의 협력 하에 진행된 첫 번째 시험 비행에서는 토탈 에너지가 제공한 혼합되지 않은 SAF 27톤을 사용해 3시간 동안의 임무를 수행했으며, 이어서 이착륙 시의 성능에 초점을 맞춘 여러 다른 시험 비행들이 진행됐다. 한편, 한국 항공업계는 친환경 항공유, 즉 지속 가능한 항공연료(SAF)의 도입에 박차를 가하고 있다. 최근 대한항공은 일본의 글로벌 물류 기업 유센로지스틱스와 SAF 사용 활성화를 위한 협약을 체결함으로써 이 분야의 선도적인 역할을 하고 있다. SAF는 동식물성 기름, 해조류, 도시 폐기물 가스 등 지속 가능한 원료를 기반으로 제조된 친환경 항공유로, 기존 화석 연료 기반 항공유에 비해 가격은 높지만, 탄소 배출량을 최대 80% 이상 줄일 수 있는 장점을 가지고 있다. 이러한 특성 때문에 SAF는 항공업계의 지속 가능한 미래를 위한 중요한 대안으로 간주되고 있다. 유럽연합에서는 오는 2025년부터 자국 공항을 이용하는 항공기를 대상으로 SAF 사용을 의무화할 예정이며, 미국에서는 세액 공제 혜택을 제공하는 등 전 세계적으로 도입을 늘리는 추세다. 유럽연합(EU)은 2025년부터 자국 공항을 이용하는 모든 항공기에 대해 SAF 사용을 의무화할 계획이며, 미국에서도 세액 공제 혜택을 통해 SAF 도입을 장려하고 있다. 이러한 국제적인 움직임은 전 세계적으로 친환경 항공연료의 사용 증가 추세를 보이고 있음을 나타낸다.
-
- 산업
-
에어버스, 수소 항공기 A380 2026년 시험 비행
-
-
포스코이앤씨, AI탑재 드론으로 외벽 균열 탐지 솔루션 '포스비전' 개발
- 포스코이앤씨가 드론을 사용해 불과 0.3mm의 미세한 균열을 파악할 수 있는 혁신적인 아파트 외벽 관리 솔루션을 개발했다. 포스코이앤씨는 23일 고화질 영상 장비를 탑재한 드론으로 아파트 외벽을 촬영해 균열을 식별하는 인공지능(AI) 균열 관리 솔루션 '포스-비전'(POS-VISION)을 개발했다고 밝혔다. 아파트 외벽에 발생한 폭 0.3mm의 미세한 균열까지 탐지할 수 있는 능력을 갖추고 있다. 이는 공동주택 하자 판정 기준에서 0.3mm 이상의 균열을 하자로 간주하는 점을 감안한 것이다. 이 시스템은 균열뿐만 아니라 창호 코킹의 불량, 콘크리트 파손 등 다양한 외벽 품질 문제도 감지할 수 있다. 또한, 포스코이앤씨는 이 드론 기반 탐지 기술을 아파트 외에도 고속도로 슬래브 공사, 화력 발전소의 저탄장 공사 등 9개의 다양한 프로젝트에 적용하여 보다 신속한 보수 작업을 수행하는 데에 큰 성과를 거두었다고 밝혔다. 포스코이앤씨는 정밀도를 더욱 향상시키는 동시에 모든 건설 현장에 이 기술을 광범위하게 적용함으로써, 구조물의 건설 품질을 철저히 관리하겠다는 전략을 세웠다. 이 회사는 "최근 사회적으로 주목받는 외벽 품질 결함으로 인한 누수, 철근 노출 등의 문제를 사전에 방지하고, 더 높은 완성도를 자랑하는 아파트를 공급하는 데 기여할 수 있는 혁신적인 기술"이라고 밝혔다. 한편, 드론은 최근 건설 현장의 다양한 분야에서 활용되고 있다. 먼저 드론은 건설 현장의 전반적인 모습을 촬영해 프로젝트의 진행 상황을 실시간으로 모니터링하는 데 사용된다. 이를 통해 프로젝트 관리자는 현장 상황을 쉽게 파악하고 관리할 수 있다. 또한 드론은 고해상도 카메라와 센서를 이용해 정밀한 3D 맵(map, 지도)을 생성할 수 있다. 이는 건설 전 토지의 상태 파악, 계획 수립, 그리고 건설 후 변화의 측정에 유용하다. 게다가 드론은 건설 현장의 안전 검사를 수행하는 데 사용될 수 있으며, 특히 높은 곳이나 접근하기 어려운 지역에서 유용하다. 드론을 사용하여 위험한 지역을 원격으로 조사하고, 잠재적인 안전 문제를 식별할 수 있다. 그밖에 건설 현장의 장비와 자재를 드론을 사용하여 추적하고 관리할 수 있다. 이는 로지스틱스와 인벤토리 관리를 최적화하는 데 도움이 될 수 있다. 앞서 언급한 포스코이앤씨의 예처럼, 드론은 외벽 균열 검사, 콘크리트의 질 점검, 구조물의 안정성 평가 등 품질 관리에도 활용되는 등 향후 다양한 분야에서 쓰임새가 더 커질 전망이다.
-
- 산업
-
포스코이앤씨, AI탑재 드론으로 외벽 균열 탐지 솔루션 '포스비전' 개발
-
-
파킨슨병, 단백질 응집체 분해 메커니즘 규명...치료제 개발 기대
- 독일 과학자들이 α-시누클레인 단백질의 분해 과정에 숨겨진 메커니즘을 발견함으로써 파킨슨병 치료에 새로운 가능성을 제시하고 있다. 독일에서는 약 20만 명이 파킨슨병을 앓고 있다. 이 병은 치매와 같이 퇴행성 신경 질환으로 분류되며, 현재까지는 완치가 어려운 것으로 알려져 있다. 그러나 최근 이루어진 과학적 진전은 파킨슨병을 이해하고 치료하는 데 있어 중요한 단계를 나타낸다고 볼 수 있다. 독일의 매체 24vita는 보흠 루르 대학교(Ruhr University Bochum·RUB)의 연구원들은 α-시누클레인 단백질이 분해되는 과정에서 중요한 메커니즘을 발견했다고 최근 보도했다. 파킨슨병의 주요 특징 중 하나는 특정 뇌 영역에서 단백질 응집체(주로 α-시누클레인 단백질로 구성)가 형성되는 것이다. 막스플랑크학회의 정보에 따르면, 인체 세포 내 노폐물을 처리하는 시스템에 결함이 발생하거나 과부하가 걸리면 이러한 응집체가 축적되기 시작한다. 이는 결국 신경 세포의 기능 상실과 사멸로 이어지며, 궁극적으로 파킨슨병을 유발한다. 학술지 네이처 커뮤니케이션즈(Nature Communications)에 실린 연구 보고서에 따르면, 콘스탄즈 윙클호퍼(Konstanze Winklhofer) 박사는 세포 내 단백질 분해 과정에 관여하는 유비퀴틴 분자 사슬의 존재를 밝혀냈다. 유비퀴틴이라는 작은 단백질이 특정 단백질에 부착되어 그것을 분해 대상으로 식별하는 데 중요한 역할을 한다는 것이다. 유비퀴틴은 76개 아미노산으로 구성된 단백질로, 세포 내에서 다양한 기능을 수행한다. 윙클호퍼 박사는 유비퀴틴 분자 사이의 연결 유형과 유비퀴틴 사슬의 길이 및 구조에 따라 세포의 폐기물 처리 시스템이 어떤 프로세스를 사용해야 할지 결정할 수 있다고 설명했다. 특히, 소위 선형 유비퀴틴 사슬은 신경세포 내 단백질 응집체에 풍부하게 존재하며, 이는 단백질 응집체의 독성을 줄이는 데 도움이 된다. 이러한 보호 메커니즘의 배경에는 과학자들이 밝혀낸 중요한 요소가 있다. 네모(NEMO) 단백질이 단백질 응집체에 존재하는 선형 유비퀴틴 사슬에 결합하여 α-시누클레인 단백질의 분해를 촉진하는 것으로 나타났다. 이러한 발견은 파킨슨병과 같은 신경퇴행성 질환의 치료법 개발에 중요한 단서를 제공할 수 있다. 연구팀에 따르면, 네모(NEMO) 단백질의 보호 효과는 자가포식(autophagy)이라는 세포의 폐기물 처리 과정을 억제함으로써 제한될 수 있다. 자가포식은 세포 내 노폐물과 손상된 구성 요소를 제거하는 중요한 기능을 한다. 연구원들은 네모 단백질이 자가포식 과정에 관여하는 다른 단백질과 상호 작용하는 것을 발견했다. 윙클호퍼 박사는 이번 연구가 미국의 한 신경과 전문의가 치료한 환자의 사례에서 출발했다고 밝혔다. 해당 환자는 40대 초반에 진행성 파킨슨병을 진단받았다. 유전자 검사 결과, 이 환자의 네모 유전자에는 희귀한 돌연변이가 존재했으며, 이 변이된 네모는 선형 유비퀴틴 사슬과 결합할 수 없었다. 결과적으로, 이 돌연변이로 인해 환자의 뇌에서 α-시누클레인 단백질 응집체의 현저한 침착이 관찰됐다. 연구에 따르면, 네모(NEMO) 단백질은 알츠하이머병에서 발생하는 것과 유사한 다른 형태의 단백질 응집체도 감지할 수 있는 능력을 가지고 있다. 윙클호퍼 박사는 "이 발견은 네모와 관련된 질병의 병리학적 과정을 설명하고, 단백질 응집체의 품질 관리에서 네모가 수행하는 일반적인 역할을 강화한다"고 말했다. 한편, α-시누클레인은 140개의 아미노산으로 구성된 작은 단백질로, 주로 뇌에서 발견되며 심장과 근육을 비롯한 다른 조직에서도 소량 발견된다. 특히 파킨슨병이나 치매 환자의 뇌에서는 루이 소체라고 불리는 특정 부위에 섬유소의 형태로 집중되어 나타난다. 이러한 특성 때문에 과학자들은 α-시누클레인과 퇴행성 신경 질환 간의 연관성에 대해 적극적으로 연구를 진행하고 있다. 이 연구는 파킨슨병, 알츠하이머병, 그리고 기타 신경퇴행성 질환의 이해와 치료법 개발에 중요한 기여를 할 수 있다.
-
- 생활경제
-
파킨슨병, 단백질 응집체 분해 메커니즘 규명...치료제 개발 기대
-
-
NASA, '보이저 1호' 컴퓨터 오작동…데이터 전송 중단
- 미국 항공우주국(NASA)은 행성 탐사기 보이저 1호의 컴퓨터에 문제가 발생했다고 밝혔다. 일본 기술 전문매체 IT미디어뉴스는 최근 나사를 인용해 보이저 1호에 탑재된 3대의 컴퓨터 중 하나인 '플라이트 데이터 시스템(Flight Data System·FDS)'에서 문제가 발생했다고 보도했다. 플라이트 데이터 시스템은 관측 장치 및 기타 과학 장비에서 수집한 데이터와 탐사기의 상태에 관한 데이터를 수집하고, 이러한 데이터를 하나의 패키지로 묶어 '텔레메트리 변조 장치(Telemetry Modulator Unit·TMU)'를 통해 지구로 전송한다. 최근 TMU가 1과 0의 반복 패턴을 전송했다. 보이저 팀의 조사에 따르면 탐사기는 지구에서 보낸 명령을 수신하고 실행하고 있지만, 플라이트 데이터 시스템이 텔레메트리 변조 장치와 올바르게 통신하지 못하고 있는 것으로 밝혀졌다. 팀은 플라이트 데이터 시스템을 다시 시작하고 문제 발생 전의 상태로 되돌리려고 시도했지만, 여전히 유용한 데이터는 전송되지 않고 있다고 한다. 1977년 발사된 보이저 1호는 45년 넘게 우주를 탐사해 온 역사상 가장 오래 운용 중인 탐사선이다. 캄퓨터 오작동 문제 해결에는 '현재 발생한 문제를 예상하지 않았던 엔지니어가 쓴, 몇십 년 전의 원래 문서를 참조해야 하는 작업'이 필요한 것으로 알려졌다. 그러나 새로운 명령이 탐사선의 작동에 어떤 영향을 미칠지를 조사해야 하기 때문에 문제 해결을 위한 계획 수립에는 몇 주가 걸릴 것으로 예상하고 있다. 현재 보이저 1호는 지구에서 240억km 이상 떨어진 곳에 있으며, 지구에서 가장 먼 위치에 있는 인공물로 알려져 있다. 지구에서 보낸 명령이 보이저 1호에 도달하는데는 왕복으로 22.5시간이 걸리기 때문에, 엔지니어가 명령을 보내고 결과를 확인하기까지 총 45시간이 필요하다고 한다. 나사는 "보이저 1호의 문제 해결을 위해 최선을 다하고 있다"고 밝혔으며, 엔지니어들이 몇 주 내에 해결책을 찾을 것으로 기대하고 있다. 이번 문제로 보이저 1호의 탐사 활동에 차질이 빚어질 수 있다는 우려가 나오고 있다. 하지만 미국 항공우주국은 "데이터 전송이 재개될 때까지 탐사 활동을 지속할 계획"이라고 밝혔다. 보이저 1호는 1977년 9월 5일 미국 플로리다 케이프 커내버럴 공군기지에서 발사됐다. 목성에 도착한 후, 태양계를 가장 먼저 벗어나며 총 거리 240억km를 기록하는 등 '지구에서 가장 멀리 날아간 탐사선'이다.
-
- 산업
-
NASA, '보이저 1호' 컴퓨터 오작동…데이터 전송 중단
-
-
혼다, 덴소 연료펌프 결함으로 미국내 260만대 리콜
- 일본 자동차회사 혼다는 21일(현지시간) 자동차 부품업체 덴소의 연료펌프가 장착된 미국 내 차량 약 260만 대를 리콜한다고 밝혔다. 로이터통신 등 외신들에 따르면 혼다는 이날 덴소의 연료펌프 결함이 있어 주행중에 엔진고장을 일으킬 우려가 있어 이같이 리콜조치한다고 말했다. 혼다는 엔진펌프 결함으로 인한 사고 보고는 현재까지 없다고 덧붙였다. 덴소가 제작한 연료펌프에 대해서는 내부 임펠러가 변형돼 연료를 보낼 수 없게 된 탓에 엔진 고장을 일으킬 수 있다며 일본 내에서도 자동차 업체들의 리콜이 잇따르고 있다. 혼다는 덴소제 연료펌프와 관련된 리콜은 이번을 포함해 지금까지 전세계에서 약 450만 대를 넘어섰다고 지적했다. 혼다의 미국 리콜은 2017-2020년 사이 제작된 모델이 포함되어 있다. 혼다 브랜드 어코드 세단과 CR-V 스포츠유틸리티차량(SUV) 등 11개 모델과 미국 럭셔리 브랜드 아큐라 MDX, NSX 등 6개 모델이다. 혼다는 내년 2월 고객들에게 이 사실을 알리고 순차적으로 부품을 교체할 예정이다. 일본 자동차 메이커 관계자는 덴소 연료펌프와 관련된 각사의 리콜에 대해 "교체 부품 공급이 한정돼 있고 향후 리콜 규모가 커질 경우 언제 이루어질지 알 수 없다"고 언급했다.
-
- 산업
-
혼다, 덴소 연료펌프 결함으로 미국내 260만대 리콜
-
-
AI, 심장 질환 조기 진단 '게임 체인저'⋯심장마비 예방 가능
- 의료 인공지능(AI)을 활용해 심장 마비를 조기 진단할 수 있다는 연구 결과가 나왔다. 의료 인공지능은 환자의 진단, 치료, 결과 개선을 위해 머신러닝, 자연어처리(NLP), 딥러닝 등의 AI 기술을 활용한다. 미국 폭스뉴스는 의료 인공지능 기술은 이미 미국에서 사용되고 있으며, 미네소타주 로체스터의 메이요 클리닉(Mayo Clinic)에서는 AI를 통한 심장 검사가 일부 생명을 구하는 데 활용되고 있다고 보도했다. 미네소타 덜루스 대학교의 축구팀의 리드 라이언(Reed Ryan)은 운동 후 2023년 11월 21일 심장마비를 겪었다. 당시 22세였던 라이언은 일주일도 채 지나지 않아 희귀 유전적 심장 질환으로 사망했다. 그에 앞서 농구 전설 르브론 제임스(LeBron James)의 아들이자 USC 트로이 목마 대학 농구 선수인 브로니 제임스(Bronny James)는 지난 2023년 7월 운동 연습 중 심장마비를 겪었다. 메이요 클리닉의 마이클 J. 애커먼(Michael J. Ackerman) 박사는 한 달 후 그를 담당한 의사 중 한 명이 되었다. 의료진은 브로니 제임스의 심장마비가 선천성 심장 결함과 관련이 있을 수 있다고 판단했다. 심장마비에 대한 대응의 중요성을 강조하는 옹호론자들은 이것이 공공 장소에서 자동심장충격기(AED)의 수를 늘리고 학교에서 심폐소생술(CPR) 교육을 요구하는 주된 이유라고 말한다. 그러나 선별검사로 심장 질환을 발견하지 못하는 경우에는 빠른 대응만으로는 한계가 있을 수 있다. 애커먼 박사는 "매년 1~35세 사이에서 약 1000~5000명이 급사한다"고 경고하며, "운동선수의 돌연사는 연간 100건 정도에 불과하다"고 말했다. 애커먼 박사는 심장 질환 치료에 사용될 인공지능의 도입이 "게임 체인저"가 될 것으로 기대하고 있다. 의사들은 심장의 전기 활동을 기록하기 위해 12리드 심전도(ECG/EKG)를 사용한다. 애커먼 박사는 인공지능을 훈련시켜 이러한 기록을 스캔하도록 도왔다. AI는 12가지 이상의 심장 상태를 찾을 수 있다. 예를 들어, 치료하지 않으면 심부전으로 이어질 수 있는 약한 심장 펌프를 감지할 수 있다. 애커먼 박사는 익명의 환자의 ECG와 AI 스캔 결과의 예를 폭스뉴스에 공개했다. 그는 일반 심전도 검사에서는 운동과 관련된 호흡 곤란을 호소하는 환자의 비후성 심근병증을 감지하지 못했지만, AI를 사용한 심전도 검사에서는 그 가능성을 확인할 수 있었다고 설명했다. 미국 의과대학 협회에서는 향후 10년 동안 12만 명 이상의 심장 전문의가 부족할 것으로 예측하고 있다. 이에 대해 애커먼 박사는 AI가 심장 문제를 더 빠르고 정확하게 감지함으로써 전문의 부족을 보완할 수 있다고 말했다. 그는 급성 심장사의 위험이 있는 환자를 식별할 수 있는 얼라이브코어(AliveCor)의 카디아모빌(KardiaMobile) 6L EKG 장치를 개발했다. 그는 이 장치는 다양한 심장 상태를 감지하고 긴 QT 증후군 탐지를 위해 미국 식품의약국(FDA)의 승인을 받았다고 말했다. 한편, 메이요 클리닉에서 개발한 AI 기술이 애플워치를 통해 심장의 약한 펌프 기능을 감지하는 데 사용되고 있다. 또한, AI를 지원하는 디지털 청진기를 통해 임신과 관련된 심장병을 감지할 수 있다는 사실도 발견됐다. 이러한 기술 개발은 심부전의 조기 발견과 치료에 중요한 진전을 나타낸다. 전 세계 연구자들과 의사, 그리고 기업은 인공 지능을 활용하여 심부전이 악화되어 병원 입원이 필요해지기 전에 이를 조기에 발견하기 위해 경쟁하고 있다. 이러한 기술은 심부전 환자의 삶의 질을 향상시키고 의료 비용을 절감하는 데 기여할 수 있다. 샌프란시스코의 소프트웨어 회사 비즈AI(Viz.ai)는 비대성 심근병증(HCM)을 탐지하는 AI 알고리즘에 대해 미국 식품의약국(FDA)으로부터 '드 노보(De Novo)' 승인을 받았다. 이는 AI 기반 심장 건강 모니터링 기술의 발전을 증명하는 중요한 이정표다. 피츠버그 대학 의료 센터에서 개발된 새로운 기계 학습 모델은 ECG 판독값을 사용하여 심장마비를 더 빠르고 정확하게 진단하고 분류한다. 이 기술은 아직 직접적인 환자 치료에 사용되지 않았지만, 연구 결과는 매우 희망적이다. 코디오메디컬(Cordio Medical)이 개발한 히어오(HearO) 앱은 최근 긍정적인 임상 연구 결과를 발표했다. 이 앱을 사용하면 환자가 스마트폰에 말하면 AI가 심부전의 악화를 나타낼 수 있는 음성 변화를 감지한다. 이 연구는 미국에서 내년 또는 2년 내에 사용 가능해질 것으로 기대된다. 메이요 클리닉은 12-리드 ECG를 받은 모든 환자가 사용할 수 있는 AI 유도 ECG 기술을 개발하고 있으며, 모바일 장치에서 ECG를 평가하기 위한 알고리즘을 개발하고 검증하는 작업을 진행 중이다. 이러한 기술들은 심장 건강 모니터링 분야에서 혁신을 가져오고 환자 치료에 큰 변화를 가져올 것으로 예상된다.
-
- IT/바이오
-
AI, 심장 질환 조기 진단 '게임 체인저'⋯심장마비 예방 가능
-
-
블루 오리진, 15개월 만에 뉴 셰퍼드 로켓 무인 임무 성공
- 미국의 민간 우주기업 블루 오리진의 24번째 미션이 성공했다고 엔가젯과 CNN 등 다수 외신이 20일(현지시간) 보도했다. 우주 관광 사업을 주력으로 하는 블루 오리진(Blue Origin)은 미국의 민간 우주기업으로, 2000년 아마존의 창업자 제프 베이조스가 설립했다. 블루 오리진은 15개월만인 19일(현지시간) 오전 10시 42분 미 텍사스주 밴 혼 발사장에서 뉴 셰퍼드(New Shepard) 로켓을 발사했다. 뉴 셰퍼드는 발사 후 우주의 경계로 여겨지는 약 107km(약 66.5마일) 고도에 도달한 뒤 부스터와 승무원 캡슐은 안전하게 분리되어 지구로 성공적으로 귀환했다. 로켓은 발사 후 7분 30초 만에 수직으로 착륙했고, 승무원 캡슐은 발사 후 10분 만에 낙하산을 펼치고 성공적으로 착륙했다. 이번 뉴 셰퍼드 로켓 발사는 2022년 9월 이후 15개월 만에 이루어졌다. 앞서 무인 캡슐을 장착한 23번째 뉴 셰퍼드는 텍사스에서 발사된 지 1분 만에 약 8㎞ 상공에서 부스터 엔진이 갑자기 불꽃을 내뿜으며 추락했다. 지난 3월 블루오리진은 해당 로켓 엔진 노즐의 '구조적 결함'이 원인이라고 발표했다. 한편, 이번 임무는 승무원 없이 진행되었지만 33개의 과학 탑재체를 저궤도로 운반했다. 그 중 절반 이상이 미국 항공우주국(NASA)에서 가져온 것이었다. 이번 발사를 통해 연구원들은 몇 분 동안 무중력 상태에서 이러한 탑재체(payload·페이로드)에 대한 원격 연구를 수행할 수 있었다. 예를 들어 허니비 로보틱스의 탑재체는 다양한 중력 조건에서 행성 토양의 강도를 연구했다. 또한 '미래를 위한 클럽' 이니셔티브의 학생 엽서 3만 만8000장도 발송 목록에 포함됐다. 이날 뉴 셰퍼드 로켓은 지상 시스템 문제로 원래 발사가 취소될 예정이었으나 결국 발사에 성공했다. 이날 비행과 관련하여 보고된 문제는 없었지만, 카운트다운이 몇 분간 지연됐다. 이번 임무는 사실상 뉴셰퍼드 부스터의 수소 기반 로켓 엔진의 오작동으로 인해 조기에 종료된 2022년 9월 비행을 재실행하는 것이었다. 이 이상 현상으로 인해 미국 연방항공청(FAA)의 조사가 완료될 때까지 블루 오리진 발사가 중단됐다. FAA의 조사는 지난 9월 종료됐다. 이에 블루 오리진은 기관에서 요구한 일련의 시정 조치를 처리한 후 발사를 재개할 수 있게 됐다. 여기에는 부스터 엔진과 노즐의 재설계, 일부 절차적 변경 등이 포함됐다. 이번 성공으로 블루 오리진은 우주 관광사업 재개에 속도를 낼 계획이다. 블루 오리진은 그동안 여러 차례 상업 비행에 성공했으며, 제프 베이조스도 2021년 7월 이 로켓을 타고 우주 관광을 다녀왔다. 블루 오리진은 향후 승무원 탑승 비행에 대한 공식적인 계획을 발표하지 않았지만 최근 발사 타워에 엘리베이터를 설치했다. 발사 해설자 에리카 와그너는 이날 라이브 스트리밍에서 이는 향후 발사에 "장애인과 더 많은 사람들이 더 쉽게 접근할 수 있도록 하기 위한 것"이라고 말했다. 이를 위해 블루 오리진은 승무원 탑승 항공편의 고객 유치를 위한 프로모션을 강화하기 시작했다. 향후 발사에 페이로드 추가를 신청할 수도 있다. 블루 오리진 뉴 셰퍼드 프로그램 수석부사장인 필 조이스는 "내년에 로켓 발사 횟수를 늘릴 것"이라며 "뉴 셰퍼드에 대한 수요가 지속적으로 증가함에 따라 더 자주 비행할 수 있기를 기대하고 있다"고 말했다. 블루 오리진의 수석 이사인 에리카 와그너도 "우리는 곧 다음 승무원들이 탑승하는 모습을 볼수 있기를 기대하고 있다"고 말했다.
-
- 산업
-
블루 오리진, 15개월 만에 뉴 셰퍼드 로켓 무인 임무 성공
-
-
포르투갈, 해상 풍력 단지 최초 자율주행 로봇 차량 검사 성공
- 포르투갈의 비아나 두 카스텔로 해안에 위치한 윈드플로트 애틀랜틱(WindFloat Atlantic)에서 부유식 해상 풍력 발전 단지의 검사 및 유지 보수를 위한 자율주행 로봇 차량 시연이 성공적으로 이루어졌다고 해상 풍력 뉴스 전문지 오프쇼어윈드닷비즈(offshoreWIND.biz)가 최근 보도했다. 이는 대서양 해상 풍력 발전 단지에서 진행된 첫 번째 시연으로, 자율 주행 차량을 통해 안전하고 신속한 개입을 가능하게 함으로써 재생 에너지 산업의 유지 보수 작업에 새로운 잠재력을 제공할 것으로 기대된다. 이 기술은 또한 운영 비용 절감을 목표로 하고 있다. 이 프로젝트는 INESC TEC가 주도하는 아틀란티스(ATLANTIS) 프로젝트의 일환으로 진행됐다. 아틀란티스 프로젝트는 해상 풍력 발전 단지의 검사 및 유지 보수에 필수적인 자율 로봇 기술 및 솔루션(수중, 지상 및 공중)을 시연하기 위해 비아나 두 카스텔로에 위치한 아틀란티스 테스트 센터(Atlantis Test Center)를 구축했다. 이번 시연에 사용된 자율주행 차량은 육안 검사를 위한 로봇 차량으로, 정교한 기술을 통해 풍력 발전 단지의 상태를 점검했다. 이 차량은 GPS와 자이로스코프를 사용하여 출발 위치를 정확히 설정하고, 센서를 통해 주변 환경을 인지했다. 또한, 경로 계획 알고리즘을 사용해 목적지까지의 경로를 세밀하게 계획하고, 자체 구동 시스템으로 계획된 경로를 따라 이동했다. 목적지에 도착한 후에는 차량에 장착된 카메라와 열화상 카메라를 활용하여 구조물의 열화상 검사를 수행했다. 이 검사는 터빈의 기초 부식, 날개 손상, 계류 라인의 마모 등을 파악하는 데 중요한 역할을 했다. 검사 결과는 데이터베이스에 저장되었으며, 운영자에게 보고됐다. 이 자율 로봇 기술은 해상에서의 접근이 어려운 환경에서도 안전하게 검사를 수행할 수 있음을 입증했다. 또한 인간이 직접 수행하는 검사보다 더 빠르고 효율적일 뿐만 아니라, 첨단 센서를 사용하여 구조물의 결함을 보다 정확하게 감지할 수 있다는 장점이 있다. 아틀란티스(ATLANTIS) 프로젝트는 향후 해상 풍력 발전 단지의 검사 및 유지 보수를 위해 다양한 자율 로봇 기술의 시연을 계획하고 있다. 이는 해상 풍력 발전 단지에서 자율 로봇 기술의 적용 범위를 확대하고 기술 성능을 향상시킬 수 있는 기회를 제공한다. 이 프로젝트를 통해 포르투갈은 해상 풍력 발전 산업의 지속 가능성과 효율성을 높이는 데 기여하며, 재생 에너지 부문에서 첨단 기술 선도국으로서의 입지를 더욱 강화할 것으로 기대된다.
-
- 산업
-
포르투갈, 해상 풍력 단지 최초 자율주행 로봇 차량 검사 성공
-
-
혼다, 엔진 결함으로 미국서 25만대 리콜⋯올해 총 300만대 이상 리콜
- 혼다는 미국 도로교통안전국에 제출한 공식 공지에서, 아큐라와 혼다 차량의 일부 모델의 엔진 커넥팅 로드 베어링에 결함이 발견되어 "주행 중에 엔진이 부적절하게 작동하거나 정지하여 화재, 충돌 또는 부상의 위험을 증가시킬 수 있다"고 밝혔다. 리콜 대상에는 2015년부터 2020년까지 제조된 특정 아큐라 TLX(Acura TLX)와 2016년부터 2020년까지 제조된 아큐라 MDX SUV가 포함된다. 또한, 2018년과 2019년형 혼다 오딧세이(odyssey) 미니밴, 2016년과 2018년, 2019년형 파일럿(Pilot), 2017년부터 2019년까지 제조된 리지라인(Ridgeline) 픽업트럭도 잠재적으로 영향을 받을 수 있다. 혼다는 해당 차량 소유자들에게 2024년 1월 2일부 서면 통지를 보내고, 혼다 딜러에서 엔진을 무료로 검사하고 수리 또는 교체할 것이라고 밝혔다. 한편,
-
- 산업
-
혼다, 엔진 결함으로 미국서 25만대 리콜⋯올해 총 300만대 이상 리콜
-
-
네이처, '상온 초전도물질 개발' 논문 철회…LK-99 제외
- 세계적인 과학 저널인 '네이처(Nature)'가 지난 7일 실온에서 초전도 현상을 보이는 물질에 관한 미국 연구팀의 논문을 신뢰성 문제로 철회하기로 결정했다. 해당 논문은 섭씨 20.5도의 실내온도에서 초전도 현상을 관찰했다고 주장했다. 이 연구는 미국 로체스터대의 기계공학 및 물리학 조교수인 란가 디아스(Ranga Dias) 박사가 이끄는 팀에 의해 수행되었으며, '질소 주입 루테튬 수소화물'(NDLH)이라는 이름의 초전도 물질 개발에 관한 내용을 담고 있었다. 이 논문은 지난 3월 네이처에 게재됐다. 디아스 박사팀은 NDLH에 고압을 가하면 실온에서도 초전도체의 성질을 띠게 된다고 주장했다. 그러나 이 논문에 대한 과학계의 의구심이 제기되었다. 주장된 초전도 현상이 다른 연구실에서 재현되지 않았기 때문이다. 이러한 신빙성 문제로 네이처는 결국 논문의 철회를 결정했다. "초전도체 연구계에서 LK-99는 올해의 부끄러움의 표식으로 여겨질 수 있으나, 실제 상황은 더 복잡하다. 물질과학 분야에서 최근 발견된 특정한 결함이 2023년의 주요 사건으로 보기는 어렵다는 것이 전문가들의 의견이다." 과학기술 전문 매체인 톰스하드웨어(tom’s HARDWARE)는 국제 학술지 '네이처'에 게재되었던 란가 디아스와 그의 공동 저자들의 상온 초전도체 관련 논문 철회 사건을 다루며 이러한 주장을 제기했다. 이번 철회는 뉴욕 로체스터 대학교에서 수행된 디아스의 연구와 네바다 라스베가스 대학교(UNLV)의 물리학자 애쉬칸 살라맛(Ashkan Salamat)의 연구에 대한 과학적 의심의 세 번째 사례로 보인다. 전문가들은 이러한 문제들로 인해 해당 분야의 명성에 타격이 갈 것을 우려하고 있다. 디아스의 논문에는 여러 명의 공동 저자들이 참여했기 때문에, 책임 소재, 신뢰성 문제, 논문 내 오류의 발생 시점과 그 성격을 정확히 파악하는 것이 어렵다는 점이 지적되고 있다. 수소화물 초전도체 논문 철회 사태 수소화물 초전도체 연구에 관한 원래의 논문(현재 철회된)에는 11명의 저자가 있었으며, 이 중 8명이 철회 공지를 제출했다. 톰스하드웨어에 따르면, 이 논문의 결과를 둘러싼 논란이 출판에서 얻을 수 있는 이점보다 더 큰 부정적인 영향을 끼쳤다고 한다. 철회 공지에 따르면, 이 8명의 공동 저자들은 연구에 기여한 연구원으로서, 출판된 논문이 연구에 사용된 재료의 출처, 수행된 실험 측정 및 적용된 데이터 처리 방법을 정확히 반영하지 않는다는 의견을 표명했다. 원래의 논문은 상온, 상압에서 초전도성을 보이는 수소화물에 대해 다뤘다. 수소화물은 추가 전자(기술적으로 음이온을 만드는)를 특징으로 하는 수소 기반 재료이며 재료과학 및 초전도체 연구의 대표적인 소재 중 하나다. 2015년부터 수소화물에서 발견된 여러 초전도체 대부분은 초전도성을 얻기 위해 대기압보다 수백만 배 더 높은 압력이 필요하다는 것이 밝혀졌다. 이는 해당 소재의 실용적인 응용 가능성을 크게 제한하는 요인으로 지적되어 왔다. 초전도체 연구 분야에서의 신뢰 위기 초전도체 및 응집물질 물리학 분야에서 2023년은 특히 일부 전문가들 사이에서 '신뢰의 위기'라고 불리는 해였다. 이러한 위기의 근본 원인은 잘못된 과학적 접근 방식이다. 문제의 핵심은 과학적 연구가 계획대로 진행되더라도 복제가 어렵다는 것이다. 과학적 연구의 요건은 이론적으로 단순하다고 볼 수 있다. 즉, 동일한 조건과 과정에서 검증 가능하고, 독립적으로 복제할 수 있는 원본 연구를 제공해야 한다는 것이다. 톰스하드웨어는 "그러나 네이처의 논문 철회 사례는 과학적 사기로 결론을 내리기까지 어려움을 보여준다"고 전했다. 이 매체는 논문이 철회되었다고 해서 이것이 자동적으로 사기를 의미하는 것은 아니라며 철회 사유는 다양하며, 각 경우에 따라 신중한 검토와 판단이 필요하다는 것이다. 과학계의 신뢰 위기와 악의적인 연구 조작 동일한 이론적 간소함이 악의적인 연구자에 의한 피해를 증가시키고 있다. 매년 수백 개의 연구 그룹이 잘못 기술되거나 때로는 조작된 연구 결과의 복제를 시도하며, 이 과정에서 상당한 시간과 자금을 낭비하게 된다. 과학계 내에서 신뢰의 위기에 대한 논의가 이루어지고 있지만, 최근 10년 동안 철회된 논문 수가 10배 증가한 것은 사실상 더 엄격해진 편집 통제와 강화된 동료 평가 과정의 결과로 볼 수 있다. 이러한 변화는 과학 분야에서의 신뢰성과 정확성을 강화하는 긍정적인 방향으로 해석될 수 있으며, 과학의 배타적인 영역에 국한되지 않는 현상이다. 초전도체의 다양한 분류와 특성 초전도체는 전기 저항이 완전히 0이 되는 물질이다. 이는 전자가 격자 구조의 빈 공간을 자유롭게 이동할 수 있기 때문이다. 초전도체는 고온 초전도체, 저온 초전도체, 상온 초전도체로 나눌 수 있다. 고온 초전도체는 상온(약 300K) 근처에서 초전도성을 나타내는 물질로, YBCO(YBa2Cu3O7-x), LSCO(La2CuO4-x), BSCCO(Bi2Sr2CaCu2O8+x) 등이 대표적인 예이다. 반면, 저온 초전도체는 상온보다 훨씬 낮은 온도에서 초전도 현상을 보이며, Nb3Sn, NbTi, Pb, Hg 등이 이에 속한다. 상온 초전도체는 실온에서 초전도성을 나타낼 수 있는 물질로, 만약 실제로 존재한다면 획기적인 기술 혁신을 가져올 것으로 기대되고 있다. 이 분야는 최근 여러 논란에 휩싸여 주목받고 있다. 현재 많은 연구팀들이 실온 초전도체 개발을 목표로 활발한 연구를 진행하고 있다. 주요 연구 방향은 다음과 같다. △기존 재료에 새로운 물질을 결합하거나 새로운 구조를 도입해 실온에서 초전도성을 갖는 재료를 개발하는 연구, △압력 조절을 통해 실온에서 초전도성을 발휘하는 재료를 개발하는 연구, △자기장 조절을 통해 실온 초전도성을 갖는 재료를 개발하는 연구 등이다. 만약 실온에서 작동하는 초전도체가 발견된다면, 이는 전기 에너지의 효율적 전송, 자기 부상 열차, 의료 장비, 컴퓨터 등 다양한 분야에서 혁명적인 변화를 가져올 것으로 기대된다. 이러한 발견은 기존 기술의 한계를 넘어서는 새로운 가능성을 열어줄 것이다.
-
- 산업
-
네이처, '상온 초전도물질 개발' 논문 철회…LK-99 제외
-
-
美 캘텍, 바이러스만큼 작고 강력한 3D 프린팅 금속 개발
- 독감 바이러스보다 작고 내결함성이 크게 향상된 새로운 3D 프린팅 금속이 개발됐다. 현재의 3D 프린터는 완성된 모형의 품질이 기존 제품보다 떨어진다는 단점이 있었다. 과학기술 전문매체 톰스하드웨어(tom’s HARDWARE)는 최근 미국 캘리포니아 공과대학교(캘텍, Caltech) 연구자들이 독감 바이러스만큼 작은 금속재료로 3D 프린팅에 성공한 사례를 소개했다. 캘텍의 제조 방법에 따르면 150나노미터(독감 바이러스와 비슷한 크기)의 작은 금속재료를 비슷한 크기의 기존 재료보다 3~5배 더 견고하게 만들 수 있는 것으로 밝혀졌다. 이 방법으로 금속을 3D 프린팅하는 것이 좋은 이유는 무엇일까. 작은 규모의 재료 제조는 원자 수준에서 복잡한 미세 구조를 가지며, 이는 큰 금속 물체에서 심각한 결함을 일으킬 수 있다. 그러나 나노 규모에서는 상황이 달라진다. 완벽하고 결함이 없는 나노 기둥은 자체적인 접촉으로 인해 무너질 수 있지만, 결함이 많은 나노 기둥은 오히려 결함에 대한 내성이 크게 향상된다. 이번 연구 논문의 주 저자인 웬싱 창(Wenxin Zhang)에 따르면, 나노 구조물 내부의 기공은 전체 구조를 약화시키기보다는 결함을 거의 즉시 중단시킬 수 있다. 이는 무엇을 의미할까. 나노 규모에서 물리학의 법칙이 매우 독특해지며, 이 분야의 기술 발전에 따라 우리는 이러한 비정상적이고 모순적인 현상을 더 자주 목격하게 될 것이다. 더 중요한 것은, 이러한 발견이 나노 크기의 센서, 열 교환기 등과 같이 매우 유용한 다양한 제품을 제조하는 데 사용될 수 있다는 점이다. 비록 기술적으로는 3D 프린팅의 일종이지만, 캘텍 연구소에서 사용되는 나노 스케일 재료의 특수 제작 과정은 소비자용 최고의 3D 프린터에서 구현하기는 거의 불가능할 것이다. 이 과정은 매우 복잡하며, 감광성 혼합물을 만드는 것부터 시작해, 이 혼합물을 레이저로 경화시키고, 니켈 이온이 함유된 용액을 주입하며, 물질을 굽고, 부품에서 화학적으로 산소 원자를 제거하는 단계를 포함한다. 3D 프린팅은 평면의 문자나 그림을 인쇄하는 것이 아니라, 입체적인 형태를 만들어내는 과정이다. 이 기술은 3차원 공간에 실제 사물을 생성하여 의료, 생활용품, 자동차 부품 등 다양한 물건을 제작할 수 있다. 3D 프린터에는 잉크 대신 플라스틱, 나일론, 금속과 같이 입체 도형을 만드는 데 사용되는 재료가 들어 있다. 이러한 재료를 활용하는 기술의 발전으로 이제는 고무, 종이, 콘크리트, 심지어 음식까지 다양한 재료를 이용한 3D 인쇄가 연구되고 있다. 한편, 한국의 정형외과용 임플란트 기업 오스테오닉이 자체 기술로 개발한 3D 프린팅 척추 임플란트 제품인 ‘지니아 3D 프린티드 케이지(ZINNIA 3D Printed Cage)’를 최근 출시했다. 이 제품은 인체 친화적인 티타늄 파우더로 3D 프린팅되어 척추 퇴행성 질환, 디스크 손상 또는 탈출 등의 치료에 사용되는 추간체 유합 보형재다. '지니아 3D 프린티드 케이지'는 인체 뼈의 해면골 구조를 모방한 다공성 설계로, 기존의 추간 유합 보형재와 달리 뼈 형성을 조기에 촉진하는 ‘생체 모방 다공성 스캐폴드’가 특징이다.
-
- 생활경제
-
美 캘텍, 바이러스만큼 작고 강력한 3D 프린팅 금속 개발
-
-
도요타, 화재 위험으로 RAV4 SUV 180만대 리콜
- 일본 자동차 제조업체 도요타가 화재 위험으로 미국에서 180만대 이상의 RAV4 SUV를 리콜(시정조치)한다. 폭스 비즈니스는 2일(이하 현지시간) 도요타는 화재 위험으로 미국 내 2013~2018년식 스포츠유틸리티차(SUV) RAV4 약 180만대를 리콜한다고 발표했다고 전했다. SUV에 장착된 일부 교체용 배터리는 규격이 맞지 않아 차량이 급회전할 경우 배터리가 흔들리면서 화재가 발생할 수 있다. 도요타는 지난 1일 공지를 통해 안전 리콜은 배터리 교체와 관련된 화재 위험 때문이라고 밝혔다. 이 자동차 제조업체는 "대상 차량에 지정된 크기의 일부 교체용 12볼트 배터리는 상단 크기가 다른 배터리보다 작습니다. 상단 소형 배터리를 교체용으로 사용하고 홀드 다운 클램프를 올바르게 조이지 않으면 차량을 세게 돌릴 때 배터리가 움직일 수 있습니다. 이 움직임으로 인해 양극 배터리 단자가 홀드 다운 클램프에 접촉하여 단락되어 화재 위험이 높아질 수 있습니다"라고 설명했다. 폭스 비즈니스는 도요타는 해결책을 찾기 위해 노력하고 있다고 말했지만 관련 부품과 관련된 화재나 사고가 있었는지 여부는 언급하지 않았다고 전했다. CNN에 따르면 도요타는 배터리 고정 클램프, 배터리 트레이, 양극 단자 커버를 소유자에게 무료로 교체할 수 있는 해결책을 연구 중이라고 밝혔다. 관련 사항은 12월에 공지될 예정이다. 도요타 딜러는 배터리 고정 클램프, 배터리 트레이와 양극 단자 커버를 소유자에게 무료로 '개선된 제품'으로 교체할 계획이다. 해당 도요타 차량을 소유한 고객은 12월 말까지 회사로 연락해야 한다. 이번 리콜은 2013~2018년형 하이브리드(HEV) 또는 플러그인 하이브리드(PHEV) 차량에는 영향을 미치지 않는다. 도요타와 미국 도로교통안전국은 모두 해당 차량에 대한 정보를 제공하는 웹사이트를 운영하고 있으며, 차량 식별 번호(VIN) 또는 번호판 정보를 통해 조회가 가능하다. 한편, 리콜(Recall)은 결함이 있는 제품을 수거·파기 또는 수리나 교환, 환급해주는 제도이다. 리콜의 뜻은 원래 영어로 부적격한 대표를 임기가 끝나기 전에 해임할 수 있도록 한 주민소환제를 의미한다. 이를 확장해 결함 있는 제품을 시장에서 다시 불러들여 고쳐주는 의미로 전환됐다. 미국과 유럽 등 선진국에서는 1960년대부터 리콜 제도가 활성화되었으며 자발적 리콜이 일상화되어 있다. 우리나라는 1992년에 리콜 제도가 도입됐고, 2001년 7월 소비자보호법의 개정으로 리콜 제도가 강화됐다.
-
- 산업
-
도요타, 화재 위험으로 RAV4 SUV 180만대 리콜
-
-
삼성바이오로직스, 미 FDA로부터 국내 공장 결함 지적 받아
- 미국 FDA가 삼성바이오로직스 인천 제조 시설에서 시설 유지 보수 미흡 등 다수의 문제점을 지적했다. 미국 의학전문 매체 피어스 파마(FIERCE Pharma)는 20일(현지시간) 이번 주 후반, 미국 식품의약국(FDA)은 제조 관련 결함으로 삼성바이오로직스와 인도의 넥타 라이프사이언스에 각각 제재를 내렸다며 삼성바이오로직스의 경우, 이는 회사의 눈부신 제조 실적에 드문 오점으로 여겨진다고 보도했다 FDA는 지난 8월과 9월에 삼성바이오로직스의 인천 제조 시설을 점검한 후, 데이터와 생산 통제, 기계 검증 부족, 시설 유지보수 미흡, 품질 통제 부족 등의 문제로 회사에 제재를 가했다. FDA의 조사관들은 삼성의 제조 과학 분석 기술(MSAT) 실험실이 응용 제출 테스트 데이터를 지원하는 데 "데이터 무결성에 대한 적절한 통제가 부족하다"고 지적했다. 삼성바이오로직스는 각 약물 응용에 대해 내부 데이터 무결성 평가를 완료했으나, "모든 테스트 데이터의 신뢰성을 절대적으로 확인할 방법이 없다"고 FDA 관리들은 밝혔다. 또 FDA는 삼성의 시설이 적절하게 유지 관리되지 않고 있다고 경고하면서 천장 포트가 이탈되고 문이 파손되었으며 적재 램프 도크의 씰이 누락되어 "해충이 시설로 유입 될 수있는 잠재적인 진입 지점"을 만들었다고 지적했다. 삼성은 FDA의 우려를 심각하게 받아들이고 있으며, FDA와 협력하여 제조 결함을 신속하게 해결하기 위한 종합적인 계획을 수립했다고 밝혔다. 회사 대변인은 이메일을 통해 "제품의 품질이나 환자의 안전에 영향을 미치지 않을 것"이라며 "우리는 준법을 매우 중요하게 생각하며, 가능한 한 빨리 모든 우려 사항을 해결하기 위해 최선을 다하겠다"고 밝혔다. 삼성바이오로직스는 최근 몇 년 동안 국내에서 엄청난 확장을 이루어왔으며, 인천에 있는 복합 시설에 18만리터의 용량을 추가할 최신 시설인 5번 공장의 건설을 시작할 준비가 되어 있다고 밝혔다. 삼성은 이 프로젝트에 1조9000억원을 투자할 계획이다. 한편, FDA는 지난 3월 2일부터 10일까지 인도 히마찰 프라데시에 위치한 넥타(Nectar)의 시설을 점검하고, 이 회사에 대한 규제 위반을 두 번 지적하는 483 형식의 관찰 결과를 발표했다. FDA는 넥타가 멸균 약품의 미생물 오염 방지를 위한 적절한 서면 절차를 마련하지 않았다고 지적했다. 더불어, FDA는 넥타가 무균 처리 영역에서의 환경 상태를 모니터링할 효과적인 시스템을 구축하지 않았다고 거듭 지적했다. FDA는 이전에 2014년에도 넥타의 공장에서 같은 종류의 문제를 발견했었으며, 이러한 반복된 실패는 의약품 제조에 있어서 경영진의 감독과 통제가 충분하지 않다는 것을 나타낸다고 말했다. FDA는 넥타가 앞으로도 미국 시장을 위한 의약품 생산을 계속하려면, 좋은 제조 관행에 대한 전문가의 조언을 구하는 것이 좋다고 권고했다.
-
- IT/바이오
-
삼성바이오로직스, 미 FDA로부터 국내 공장 결함 지적 받아
-
-
美 도로교통국, 에어백 5200만개 리콜 촉구
- 미국 고속도로교통안전국(NHTSA)은 5일 공개 브리핑에서 잠재적으로 치명적인 폭발과 관련된 5000만 개 이상의 에어백 인플레이터(팽창 장치)에 대한 리콜을 거듭 촉구했다. 미국 자동차 전문매체 오토블로그에 따르면 이 인플레이터는 공급업체인 ARC 오토모티브와 델파이 오토모티브가 생산했다. 2000년부터 2018년 초까지 제너럴 모터스, 포드, 스텔란티스, 테슬라, 도요타, 현대, 기아, 메르세데스 벤츠, BMW, 폭스바겐 등 12개 자동차 제조업체에서 생산한 차량에 장착된 어셈블리에 포함됐다. 해당 제품이 탑재된 차량은 에어백이 전개될 정도로 강한 충격을 받을 경우 에어백 인플레이터가 파열될 우려가 있는 것으로 알려졌다. 이 청문회는 지난 9월에 에어백이 안전에 불합리한 위험을 초래할 수 있다는 초기 결정을 유지해야 하는지에 대한 대중의 의견을 수렴하기 위해 열렸다. 규제 당국은 청문회에서 파열 확률은 높지 않을 수 있지만 그 결과는 "심각하고 잠재적으로 치명적"이라고 말했다. 당국은 현재 에어백 문제는 미국에서 1명의 사망자와 7명의 부상자와 관련이 있다고 밝혔다. NHTSA 관계자는 심각한 부상을 입을 확률은 인플레이터의 에어백 전개 37만 개 중 하나라고 말했다. 그들은 이 문제가 제조 과정에서 인플레이터에 남아 있는 파편이 느슨해져 치명적인 파열을 일으킬 수 있는 것과 관련이 있다고 설명했다. 월스트리트 저널에 따르면 잠재적 리콜 대상 차량 중 최소 2000만 대가 GM에서만 제조된 차량이다. 오토리브의 계열사인 델파이 오토모티브는 2004년까지 약 1100만 개의 인플레이터를 제조했다. 나머지 4100만 개의 인플레이터를 제조한 ARC와의 라이선스 계약에 따라 제조했다. ARC의 한 임원은 청문회에서 수집된 데이터와 광범위한 테스트를 통해 인플레이터와 관련된 7건의 사고가 "고립된" 것이며 "시스템 결함을 나타내는 것이 아니다"라고 말하며 리콜에 반대했다. GM은 지난 3월 ARC 에어백 인플레이터가 파열되어 운전자가 안면 부상을 입은 후 5월에 약 100만 대의 차량을 리콜하기로 합의했다. NHTSA는 9월 성명에서 "전개 명령을 받았을 때 파열되는 에어백 인플레이터는 차량 탑승자를 제대로 보호하지 못할 뿐만 아니라 그 자체로 심각한 부상이나 사망의 불합리한 위험을 초래할 수 있으므로 명백한 결함"이라고 지적다. NHTSA는 ARC가 자발적인 리콜을 거부한 후 공청회 일정을 잡았다. NHTSA는 15년 이상 에어백 인플레이터 파열을 면밀히 조사해 왔다. 지난 10년간 19개 제조업체가 미국에서 6700만 개, 전 세계적으로 1억 개 이상의 타카타 에어백 인플레이터(Takata airbag inflators)를 리콜했으며, 이는 사상 최대 규모의 자동차 안전 리콜이며 전 세계적으로 30명 이상의 사망자와 관련이 있는 것으로 나타났다. 이번 리콜이 진행될 경우 타카타 사태 이후 최대 규모의 에어백 리콜이 될 것이다. 타카타는 지금은 사라진 일본 자동차 부품 기업으로 2014년 당시 메르세데스-벤츠 등 19개 자동차업체가 사용한 7000만개 이상의 에어백이 문제가 됐다. 대량 리콜에 직면한 타카타는 결국 지난 2017년 파산 신청을 했다.
-
- 산업
-
美 도로교통국, 에어백 5200만개 리콜 촉구
-
-
효율성 높은 리튬 배터리, 문제점은 무엇?
- 알카라인, 니켈수소, 리튬 등 여러 종류의 배터리가 시장에 나와 있지만, 리튬이온 배터리가 가장 인기 있고 널리 사용되는 것으로 알려져 있다. 리튬 배터리는 고에너지 밀도와 오래 지속되는 수명 때문에 휴대용 장치에 주로 선호되지만, 최근에는 높은 생산 비용과 화재 위험 등이 문제점으로 부각되고 있다. IT 전문 매체 슬래시기어(Slash Gear)는 영국 패러데이 연구소(Faraday Institution) 비아트리체 브라우닝(Beatrice Browning) 박사를 인용, 리튬이온 배터리의 경우 리튬 이온이 전극 안팎으로 순환할 때 발생하는 전극 구조가 손상되면 배터리 수명이 단축될 수 있다고 보도했다. 또한 영국 왕립화학회(Royal Society of Chemistry)의 연구에 따르면, 온도와 충전상태(SoC), 부하 프로필 등의 외부 스트레스 요인이 배터리 성능 저하에 영향을 미쳤으며 시간이 지남에 따라 용량이 감소하는 모습을 보였다. 뉴어크 일렉트로닉스(Newark Electronics)는 배터리를 사용하지 않아도 지속적인 방전으로 인해 노화될 수 있음을 확인했다. 또 제조 결함과 같은 여러 제어 불가능한 이유로 치명적인 결과를 초래할 수도 있다고 지적했다. 배터리는 과충전 혹은 부적절한 전압 사용으로 문제가 발생할 수 있으며, 이러한 문제는 잠재적으로 위험을 수반한다. 실제로 2019년 뉴저지와 2021년 캘리포니아에서는 애플 배터리의 부풀림 이슈 때문에 집단소송이 제기됐다. 물론, 애플 외에도 리튬이온 배터리를 사용하는 많은 다른 전자 제품 회사들이 같은 문제를 겪고 있다. 에너지 효율성과 가벼운 특성으로 오늘날 많은 자동차 제조업체에서 선택하고 있는 리튬이온 배터리는 여전히 화재의 위험이 있다. 미국 환경보호국(Environmental Protection Agency)에 따르면 2013년부터 2020년까지 미국의 64개 지자체 폐기물 시설에서 240건 이상의 리튬이온 배터리 화재가 발생했다. 특히, 2016년에는 삼성이 설계 결함으로 갤럭시 노트7 라인 생산을 영구 중단하는 등 미국 내 190만 대의 갤럭시 노트7을 리콜했다. 더 큰 문제는 리튬 배터리를 처분하는 방법에 여전히 제한이 있다는 점이다. 이러한 배터리는 화재 위험이 있어 운송 과정에서부터 실제 폐기물 처리 장소에 도착해서도 문제를 일으킬 수 있다. 미국 환경보호국은 리튬이온 배터리 단자를 테이프로 감싸고 플라스틱 봉지에 보관하는 것을 권장하고 있다. 슬래시기어는 "리튬을 재활용하는 새로운 방법이 발견되었지만, 가정용 배터리 제품을 적절히 처분하는 것은 많은 노력이 필요하다”며 “모든 사람이 인증된 전자 제품 재활용업자에 가는 시간과 여력이 있지는 않다"고 지적했다. 또한, 비싼 생산 비용도 걸림돌이다. 미국환경보호국에 따르면, 2021년 기준 리튬 배터리의 가격은 1kWh 당 약 132달러(약 17만5810원) 정도로 다른 배터리에 비해 높다. 리튬이온 배터리는 여전히 많은 종류의 전자 제품에서 최고의 선택이지만, 미래에는 보다 더 효율적인 배터리 구성 요소가 필요하다. 이에 업계에서는 리튬 기반 배터리보다 빠르게 충전되는 알루미늄 이온 배터리와 같은 새로운 배터리 기술을 개발하고 있다.
-
- IT/바이오
-
효율성 높은 리튬 배터리, 문제점은 무엇?