검색
-
-
[신소재 신기술(49)] 비건 가죽, 박테리아로 만든다?
- 유전자 변형 박테리아를 이용해 동물 가죽이 없이도 비건 가죽 소재를 배양하는 새로운 기술이 개발됐다. 영국 임페리얼 칼리지 런던 과학자들은 유전자 조작 박테리아를 이용해 비건 가죽을 배양해 신발 시제품을 제작했다고 더쿨다운이 지난 21일(현지시간) 보도했다. 미생물을 이용해 친환경적인 원단을 만드는 것은 새로운 것이 아니지만 연구팀은 패션 업계에서 가장 환경에 해로운 공정중 하나인 합성 화학 염료가 필요없는 자가 염색 가죽을 생산할 수 있도록 한 것은 이번이 처음이라고 인터레스팅엔지니어링은 전했다. 가죽은 지속가능한 패션 산업 내에서 많은 논쟁의 진원지였다. 가죽을 생산하려면 동물 가죽을 적절하게 가공하고, 염색하기 위해서 유해한 화학 물질을 사용해야 한다. 그로 인해 동물 학대나 환경 오염 등의 논란이 꾸준히 제기됐다. 가장 일반적인 비건 가죽 대체품은 원단이나 코팅에 석유 기반 폴리머(플라스틱)이 포함된다. 이는 동물 사육이나 화학적 처리의 필요성은 없지만 생분해가 되지 않아 플라스틱 페기물 문제에 대한 우려를 불러일으키기도 했다. 임페리얼 칼리지 연구원들은 미생물에서 기능성 직물을 얻는 소재 디자이너인 젠 케인(Jen Keane)과 협력해 박테리아 셀룰로스 시트를 활용해 가죽 시제품을 만들었다. 박테리아로 자가 염색 가죽 제작 임페리얼 칼리지에 따르면 연구팀은 내구성과 유연성이 뛰어나 섬유에 완벽하게 작용하는 미생물 셀룰로오스 시트를 생산하는 박테리아의 일종으로 자가 염색 가죽을 만들었다. 그런 다움 연구팀은 유전자를 변형해 가죽을 성장사키는 미생물이 검은 색소를 생산하도록 지시해 염색 과정을 대체했다. 연구팀은 박테리아를 '신발 모양 용기'에서 2주 동안 배양해 신발의 갑피 부분을 성장 시켰다. 셀룰로오스가 신발과 비슷해지면 연구팀은 86도에서 부드럽게 흔들어 박테리아의 검은색을 활성화해서 가죽 안쪽부터 염색했다. 연구팀은 또 신발 이외에도 정사각형 모양의 셀롤로오스 시트 2장을 함께 꿰매 검은색 지갑을 제작했다. 임페리얼은 연구팀이 "이 박테리아가 다른 미생물의 유전자를 사용해 다양한 패턴, 색상 및 캐시미어와 면과 같은 기타 직물을 생산하도록 조작할 수 있었다"고 밝혔다. 이번 연구의 공동 저자인 케네스 워커 박사는 "우리의 기술은 시제품에서 볼 수 있듯이 실제 제품을 만들 수 있을 만큼 큰 규모로 작동한다"고 말했다. 워커 박사는 "이 연구는 또한 과학자와 디자이너가 함께 작업할 때 발생할 수 있는 시너지 효과를 보여준다"고 덧붙였다. 지속가능한 패션 산업 기대 패션 산업의 친환경 미래를 위한 연구팀의 시도는 여기서 멈추지 않았다. 현재 연구팀은 가죽을 성장시키는 박테리아가 어떤 색소를 만들수 있는 지를 연구하고 있다. 연구팀과 협력자들은 영국의 생명 공학 및 생물과학 연구위원회로부터 250만달러의 자금을 지원받아 합성 생물학을 사용해 패션 산업의 폐기물 절감 연구를 계획하고 있다. 그동안 몇몇 스타트업이 버섯을 활용한 비건 가죽이나 파인애플 잎, 선인장을 사용해 플라스틱이 없는 식물성(비건) 가죽을 만들었지만 대량 생산으로 이어진 사례는 거의 없다. 이번 연구의 제1저자인 톰 엘리스 교수는 "지속가능한 자가 염색 가죽 대체품을 생산할 수 있는 새롭고 빠른 방법을 개발한 것은 중요한 성과"라고 평가했다. 엘리스 교수는 "박테리아의 셀룰로오스는 본질적으로 비건이다. 박테리아 셀룰로오스의 성장에는 가죽을 생산하기 위해 소를 사육하는 데 필요한 탄소 배출량, 물, 토지 사용량 중의 극히 일부분만 필요하다. 박테리아 셀룰로오스는 플라스틱 기반의 가죽 대체제와 달리 석유화학 물질 없이도 가죽을 생산할 수 있으며, 안전하고 무독성으로 생분해된다"고 말했다.
-
- 포커스온
-
[신소재 신기술(49)] 비건 가죽, 박테리아로 만든다?
-
-
미세 플라스틱, 인간과 개 고환 조직에서도 발견⋯생식 기능 저하 우려
- 미세 플라스틱이 인간 태반과 생쥐의 뇌뿐만 아니라 인간과 개의 생식기에서도 발견됐다. 미국 뉴멕시코주 앨버커키에 있는 뉴멕시코대학(UNM) 연구팀은 인간과 개의 고환 조직에서 미세 플라스틱을 다량 검출했다고 밝혀 미세 플라스틱이 인간의 생식 건강에 미칠 수 있는 영향에 대한 우려가 커지고 있다. 앞서 수행된 연구에서 미세 플라스틱은 인간의 태반과 장기, 생쥐의 뇌에서도 검출됐다. 지난 4월 10일 '환경 건강 관점(Environmental Health Perspectives)'에 발표된 연구 중 하나는 건강한 쥐에게 폴리스티렌 마이크로스피어(polystyrene microspheres)를 4~8주 동안 먹이는 실험이었다. 이후 과학자들은 폴리스티렌 마이크로스피어를 섭취한 쥐의 경우 뇌, 간, 신장 등의 조직에서 미세 플라스틱 조각이 검출된 것을 확인했다. 또한 미세 플라스틱을 먹은 쥐에게서 담석증 형성이 가속화됐다는 연구 결과도 나왔다. 세계보건기구(WHO)에 따르면, 미세 플라스틱은 일반적으로 크기가 5mm 이하인 불용성 고체 고분자 입자를 말한다. 그보다 더 작은 1㎛(마이크로미터) 이하의 입자는 일반적으로 미세 플라스틱이 아닌 나노 플라스틱으로 불린다. UNM 간호대학 교수인 샤오중 '존' 유(Xiaozhong 'John' Yu) 박사가 이끄는 연구팀은 '독성 과학(Toxicological Sciences)' 저널에 발표한 새로운 논문에서 사람 23명과 개 47마리의 고환에서 12종의 미세 플라스틱을 발견했다고 보고했다. 유 박사는 "우리 연구에서는 모든 인간과 개의 고환에 미세플라스틱이 존재한다는 사실이 밝혀졌다"고 말했다. 연구팀은 새로운 분석 방법을 사용해 조직 검체에서 미세 플라스틱의 양을 정량화할 수 있었으며, 특정 플라스틱 종류와 개의 정자 수 감소 간의 상관관계를 밝혀냈다. 인체 생식계에 미치는 다양한 환경 요인을 연구하는 유 박사는 최근 들어 중금속, 농약, 내분비계 교란 물질 등이 전 세계적으로 사람들의 정자 수 및 질적 저하에 관련이 있다고 말했다. 유 박사는 인간 태반에서 미세 플라스틱 존재를 입증한 매튜 캠펜 박사(뉴멕시코 대학교 약대 교수)와의 대화를 통해 미세 플라스틱의 인체 검출에 다른 원인이 있을지도 모른다는 의문을 갖게 됐다고 한다. 이를 계기로 유 박사는 캠펜 박사의 연구실에서 태반 연구에 사용했던 것과 동일한 실험 방법을 사용해 연구를 설계했다. 연구팀은 뉴멕시코 검시관 사무소로부터 익명 처리된 인체 조직(7년 보관 후 폐기)을 입수했으며, 개 조직은 앨버커키시 동물 보호소와 중성화 수술을 시행하는 사설 동물 병원에서 제공했다. 연구팀은 시료를 화학적으로 처리해 지방과 단백질을 분해하고 각 시료를 초원심 분리기로 회전시켜 플라스틱 덩어리를 얻었다. 그런 다음 금속 컵에 담긴 플라스틱 펠릿을 섭씨 600도까지 가열했다. 연구팀은 질량 분석기를 사용해 특정 온도에서 다양한 종류의 플라스틱이 연소할 때 배출되는 가스를 분석했다. 개의 경우 고환 조직에서 미세 플라스틱의 평균 농도는 1g당 122.63μg(마이크로그램, 1g의 백만분의 1)였다. 인체 조직에서는 329.44μg/g으로 개보다 거의 3배 높았다. 이는 캠펜 박사가 태반 조직에서 발견한 미세 플라스틱 평균 농도보다도 훨씬 높았다. 유 박사는 "처음에는 미세 플라스틱이 생식 기관에 침투할 수 있을지 의문이 들었다"라면서도 "개에 대한 결과를 처음 받았을 때 저도 놀랐다. 인간에 대한 결과를 받았을 때는 더욱 놀랐다"고 말했다. 폴리에틸렌(PE) 최다 검출 연구팀에 따르면 인간과 개의 조직에서 가장 흔하게 발견되는 폴리머는 폴리에틸렌(PE)이었다. 이는 플라스틱 가방과 병 제조에 사용된다. 개에게는 산업, 도시 및 가정용 배관과 여러 다른 용도로 사용되는 PVC가 그 뒤를 이어 검출됐다. 유 박사는 연구팀은 화학적으로 보존된 인간 시료에서는 정자 수를 세어볼 수 없었지만, 개의 경우 시료의 정자 수를 셀 수 있었으며, 조직 내 PVC 농도가 높을수록 정자 수가 적다는 상관관계를 발견했다고 말했다. 하지만 PE 조직 농도와는 관련성이 없었다. 그는 "플라스틱 종류에 따라 잠재적인 기능과 상관관계가 있을 수 있다"며 "PVC는 정자 생성을 방해하는 많은 화학물질을 방출할 수 있으며, 내분비계 교란을 일으키는 화학물질을 포함하고 있다"고 말했다. 이 연구는 몇 가지 이유로 인간과 개의 조직을 비교했는데, 그 중 하나는 개가 사람과 함께 살고 환경을 공유하기 때문이다. 또한 개와 사람은 생물학적 특징도 일부 공유하고 있다. 유 박사는 "쥐나 다른 동물에 비해 개는 인간에 더 가깝다"고 말했다. 이어 "생리적으로 그들의 정자 생성은 인간에 더 가깝고 농도도 인간과 더 유사하다"면서 개의 정자 수도 감소하는 것으로 보인다고 전했다. 그는 "개와 인간이 정자 수 감소에 기여하는 공통적인 환경 요인을 공유하고 있는 것 같다"고 부연했다. 미세플라스틱은 플라스틱이 햇빛의 자외선에 노출되어 매립지에서 분해될 때 발생한다. 바람에 날리거나 인근 수로로 운반될 수 있으며, 일부 조각은 나노미터(10억 분의 1미터) 단위로 측정될 정도로 매우 작다. 매년 강과 바다호 흟러드는 플라스틱 폐기물은 800만톤에 달하는 것으로 알려졌다. 전 세계적으로 플라스틱 사용이 계속 증가함에 따라 플라스틱은 이제 환경에 어디에나 존재한다. 심지어 남극 대륙의 크릴 새우에도 미세 플라스틱이 발견됐다. 유 박사는 OMI 부검 시료에 포함된 남성의 평균 연령이 35세로, 플라스틱 유통량이 적었던 수십 년 전부터 플라스틱에 노출되기 시작했다는 점에 주목했다. 그는 "그 어느 때보다 많은 플라스틱이 환경에 존재하는 지금이 젊은 세대에게 더 큰 악 영향을 미칠까 우려스럽다"고 말했다. 그는 이번 연구 결과가 미세 플라스틱이 고환의 정자 생산에 어떤 영향을 미칠 수 있는지 이해하기 위한 추가 연구의 길을 제시한다고 말했다. 유 박사는 "아직 밝혀지지 않은 것이 많다. 우리는 잠재적인 장기적인 영향이 무엇인지 살펴볼 필요가 있다"면서 "미세 플라스틱이 정자 감소에 기여하는 요인 중 하나인 걸까요?"라고 반문했다. 유 박사는 "우리는 사람들을 겁주고 싶지 않다"며 이번 연구 결과에 대해 사람들이 당황하지 않기를 바란다고 밝혔다. 그는 "우리는 과학적으로 데이터를 제공하고 사람들에게 미세 플라스틱이 많다는 사실을 알리고 싶다. 우리는 플라스틱 노출을 피하고, 생활 방식을 바꾸고, 행동을 바꾸기 위해 스스로 선택할 수 있다"며 플라스틱의 폐해를 줄이자고 강조했다.
-
- 생활경제
-
미세 플라스틱, 인간과 개 고환 조직에서도 발견⋯생식 기능 저하 우려
-
-
[기후의 역습(3)] 베네수엘라, 기후 변화로 빙하 모두 사라진 최초 국가
- 남미 국가 베네수엘라가 기후 변화로 빙하가 모두 사라진 최초의 국가로 기록될 전망이다. 베네수엘라는 최근 남아있던 훔볼트(Humboldt) 빙하가 더 이상 빙하로 분류되지 않게 되면서, 현대 역사상 최초로 모든 빙하를 잃게 된 나라가 될 위기에 처했다고 영국 방송매체 BBC가 9일(현지시간) 보도했다. 국제 빙권 기후 연구 기구 (ICCI)는 남미의 안데스 산맥에 위치한 베네수엘라 유일의 빙하였던 훔볼트 빙하가 "빙하라고 분류하기에는 너무 작아졌다"고 밝혔다. 과학 옹호 단체인 국제 빙권 기후 이니셔티브(ICCI)는 남미 국가에 유일하게 남아 있는 안데스 산맥의 훔볼트 또는 라 코로나(La Corona)빙하가 "빙하로 분류하기에는 너무 작아졌다" 고 소셜미디어 X(구 '트위터')에서 말했다. 베네수엘라는 지난 1세기 동안 최소 6개의 다른 빙하를 잃었다. 저지대는 연중 기온이 섭씨 28도인 열대 기후에 속하지만 고원 지역은 연중 섭씨 8도로 빙하가 남아 있었다. 기후 변화로 얼음 손실 증가 기후 변화로 인해 지구 평균 기온이 상승함에 따라 얼음 손실이 증가하고 있으며, 이는 전 세계 해수면 상승에 기여하고 있다. 영국 더럼 대학의 빙하학자인 캐롤라인 클레이슨 박사는 "2000년대 이후 베네수엘라 마지막 빙하에는 얼음 덮개가 많지 않았다"면서 "이제 더 이상 얼음이 추가되지 않는 빙원으로 재분류됐다"고 설명했다. 콜롬비아 로스 안데스 대학 연구원들은 3월 AFP 통신에 빙하가 450헥타르(여의도 면적의 약 54% 크기)에서 겨우 2헥타르로 줄어들었다고 전했다. 2헥타르는 표준 축구장(0.714㏊) 크기로 따지만 역 2개에 해당한다. 이 대학의 루이스 다니엘 람비 생태학자는 가디언지에 빙하가 현재 그보다 더 줄어들었다고 말했다. 미 랑공우주국(나사·NASA)에 따르면 훔볼트 빙하는 1910년 10㎢의 면적에 걸쳐 있었다. 2018년 나사는 이 빙하 지역은 1%만 남아 있으며, 베네수엘라의 마지막 다년생 얼음인 훔볼트 빙하가 계속해서 후퇴하고 있나는 것은 베네수엘라에서 곧 빙하가 사라질 수 있음을 의미한다고 경고했다. 빙하로 인정받기 위해 필요한 최소 얼음 크기에 대한 세계 표준은 없지만, 미국 지질 조사국(US Geological Survey)은 일반적으로 인정되는 지침이 약 10헥타르라고 밝혔다. 2020년 발표된 한 연구는 훔볼트 빙하가 2015년과 2016년 사이에 10헥타르 이하로 줄어들었다고 지적했다. 하지만 NASA는 2018년에도 이를 베네수엘라 마지막 빙하로 간주했다. ICCI와 국제 통합 산악 개발 센터의 빙하학자인 제임스 커크햄 박사와 미리엄 잭슨 박사는 "빙하학자들은 빙하를 자체 무게로 인해 변형되는 얼음 덩어리로 인정한다"고 설명했다. 그들은 BBC와의 공동 성명에서 "빙하학자들은 종종 0.1km² [10헥타르]의 기준을 일반적인 정의로 사용하지만, 그 크기 이상의 얼음 덩어리라 할지라도 여전히 자체 무게로 인해 인식한다"고 말했다. 그들은 최근 몇 년 동안 훔볼트 빙하에 접근하는 데 문제가 있어, 이로 인해 측정값 공개가 지연되었을 가능성이 있다고 말했다. 유니버시티 칼리지 런던의 지구 시스템 과학 교수인 마크 마스린 교수는 "훔볼트 빙하와 같은 빙원(축구장 약 2개의 넓이)은 '빙하가 아니다'"라고 말했다. 그는 "빙하는 골짜기를 채우는 얼음이다. 이것이 빙하의 정의다. 따라서 저는 베네수엘라는 빙하가 전혀 없다고 말하고 싶다다"고 밝혔다. 열 담요로 빙하 보호 프로젝트 발표 지난해 12월 베네수엘라 정부는 해빙 과정을 막거나 역전시키기 위해 남은 얼음을 열 담요로 덮는다는 프로젝트를 발표했다. 그러나 스페인 신문 엘 파이스(El Pais)에 따르면 이러한 조치는 현지 기후 과학자들로부터 비판을 불러일으켰다. 그들은 덮개가 분해되면서 주변 서식지를 플라스틱 입자로 오염시킬 수 있다고 경고했다. 마스린 교수는 산악 빙하 손실은 "직접적으로 되돌릴 수 없는" 것이라고 말했다. 여름철을 견디기 위해서는 햇빛을 반사하고 주변 공기를 시원하게 유지할 수 있을 만큼 충분한 얼음이 필요하기 때문이다. 그는 "일단 빙하가 사라지면 햇빛이 땅을 가열하고 훨씬 더 따뜻하게 만들어 실제로 여름철에 얼음을 다시 형성할 가능성이 훨씬 낮아진다"라고 말했다. 베네수엘라 빙하 손실은 단순히 환경적 손실 그 이상을 의미한다. 빙하는 수력 발전, 관개 및 식수 공급을 포함해 지역 사회에 중요한 물의 공급원을 제공한다. 빙하가 사라지면 이러한 공동체는 물 부족과 가뭄에 더 취약해질 수 있다. 베네수엘라는 빙하 손실의 영향을 가장 먼저 경험하는 나라가 될 수 있지만 혼자가 아닐 것이다. 극한 기후 연구원인 막시밀리아노 헤레라(Maximiiliano Herrera)는 X에 빙하가 사라질 가능성이 있는 다음 국가는 인도네시아, 멕시코, 슬로베니아라고 적었다. 마슬린 교수는 이들 국가는 적도에 상대적으로 가깝고 저지대 산이 있어 만년설이 지구 온난화에 더 취약하기 때문에 "논리적으로 타당하다"고 말했다. 커크햄 박사와 잭슨 박사는 "상당한 지역 차이는 있지만 최신 예측에 따르면 배출 경로에 따라 2100년까지 전 세계 빙하의 20~80%가 손실될 것으로 나타났다"고 말했다. 그들은 "이 손실의 일부가 이미 고정되어 있다"고 하더라도 CO₂ 배출량을 빠르게 낮추면 다른 빙하 퇴적물을 절약할 수 있으며 "이는 생계와 에너지, 물 및 식량 안보에 막대한 이익을 가져다 줄 것"이라고 말했다. 멕시코 등 빙하 손실 위기 국가로 거론 다음은 빙하 손실로 인해 위협받는 다른 국가들이다. 인도네시아는 적도에 가까워 빙하가 상대적으로 낮은 고도에 위치한다. 이는 기후 변화로 인해 더욱 취약해질 수 있음을 의미한다. 멕시코는 19세기 이후 70% 이상의 빙하를 잃었다. 이 추세가 지속된다면 멕시코의 많은 산맥에서 빙하가 사라질 수 있다. 슬로베니아는 알프스 산맥에 위치한 작은 나라다. 이 나라는 빙하 손실로 인해 특히 심각한 영향을 받을 가능성이 높다. 빙하는 슬로베니아의 물 공급과 관광 산업에 중요한 역할을 한다. 빙하 손실을 막기 위해서는 지구 온난화를 늦추는 것이 필수적이다. 이를 위해서는 온실 가스 배출량을 줄이고 재생 가능한 에너지원으로 전환해야 한다. 개인과 기업, 정부는 모두 이러한 탄소 제로 운동에 참여해야 한다. 베네수엘라 빙하 손실은 우리에게 기후 변화의 심각성을 경고하는 신호다. 지금 행동하지 않으면 다른 많은 빙하와 그에 의존하는 공동체를 잃게 될 것이다.
-
- 생활경제
-
[기후의 역습(3)] 베네수엘라, 기후 변화로 빙하 모두 사라진 최초 국가
-
-
[신소재 신기술(42)] 플라스틱 폐기물 90% 분해하는 혁신 기술
- 과학자들은 우리 시대 가장 심각한 환경 문제 중 하나인 플라스틱 오염을 해결하기 위한 독창적인 방법을 제시했다. 미국 캘리포니아 대학교 연구팀이 플라스틱을 먹는 매우 강한 포자가 함유된 플라스틱이 매립지에서 스스로 분해되는 기술을 개발했다고 네이처닷컴과 BBC, 뉴아틀라스 등 다수 외신이 집중 조명했다. 이 연구에서는 고온 용융 압출을 사용해 폴리머 분해 박테리아의 포자를 열가소성 폴리우레탄에 통합하는 바이오 복합재 제작을 시연했다. 플라스틱의 한 종류인 폴리우레탄은 강도와 탄성이 뛰어나 휴대폰 케이스부터 운동화까지 모든 제품에 사용되지만 재활용이 까다로워 주로 매립된다. 플라스틱에 첨가되는 박테리아의 종류는 식품 첨가물 및 프로바이오틱스로 널리 사용되는 고초균(枯草菌)으로 영문으로는 바실러스 서브틸리스(Bacillus subtilis)로 불린다. 고초균은 토양과 발효식품 등 다양한 환경에서 발견되는 세균이다. 또한 바실러스 서브틸리스 포자로 채워진 열가소성 폴리우레탄의 전반적인 인장 특성이 크게 개선되어 인성이 매우 향상됐다. 캘리포니아대학교 샌디에이고 라호야 캠퍼스의 김한솔 연구원은 "자연에서 플라스틱 오염을 완화할 수 있다는 희망이 있다"고 말했다. 공동 연구원 존 포코르스키는 "우리의 공정은 소재를 더욱 견고하게 만들어 플라스틱의 수명을 연장한다"고 말했다. 그는 "그리고 이 공정이 완료되면 폐기 방법에 관계없이 환경으로부터 플라스틱을 제거할 수 있다"고 설명했다. 포코르스키 연구원은 "이 플라스틱은 현재 실험실에서 연구 중이지만 제조업체의 도움을 받으면 몇 년 안에 실제 환경에 적용될 수 있을 것"이라고 덧붙였다. 플라스틱은 강하고 다양한 용도로 사용되는 소재지만, 이러한 장점은 폐기 처리를 어렵게 만드는 요인이기도 하다. 플라스틱은 분해되는 데 수십 년 또는 수백 년이 걸리기 때문에 엄청난 양의 플라스틱 쓰레기가 매립지와 바다를 오염시키고 있는 실정이다. 연구팀은 플라스틱에 플라스틱 분해 박테리아 포자를 넣어 매립지에 폐기될 때 활성화되도록 만들었다. 이를 통해 5개월 만에 플라스틱 물질의 90%가 생분해되는 것이 확인됐다. 게다가 '플라스틱 분해 박테리아 포자'를 넣은 플라스틱은 실제로 사용하는 동안 일반 플라스틱보다 더욱 견고하고 강했다. 최근 몇 년 동안 과학자들은 플라스틱을 분해하는 능력을 갖춘 박테리아를 발견하고, 이 과정을 담당하는 효소를 분리하여 효율성을 높였다. 이를 통해 효소와 박테리아로 플라스틱을 처리하는 더 효율적인 재활용 시설이 구축될 수 있다. 하지만 재활용 시설로 옮겨지지 않는 플라스틱은 어떻게 될까. 앞서 지적했듯이 열가소성 폴리우레탄(TPU)은 신발, 스포츠 용품, 휴대폰 케이스, 자동차 부품 등을 만드는데 일반적으로 사용되는 견고한 플라스틱 유형이지만 현재 재활용이 불가능하다. 연구팀은 TPU 폐기 처리를 위해 플라스틱 분해 박테리아 바실러스 서브틸리스의 포자를 플라스틱 자체에 직접 넣는 새로운 방법을 연구했다. 또한 연구팀은 포자를 넣은 플라스틱 제품이 너무 일찍 분해되지 않고, 정상적인 기간 동안 사용한 뒤 매립지나 자연 환경에서 폐기될 때만 생분해가 시작되도록 설계했다. 내열성 미생물로 온도 한계 극복 먼저 극복해야 할 문제는 플라스틱 제조에 사용되는 높은 온도였다. 플라스틱 가공시 사용되는 고온으로 인해 대부분의 박테리아 포자가 죽는다. 연구팀은 이를 극복하기 위해 내열성 미생물을 유전공학적으로 제작했으며, 플라스틱 가공 온도인 135°C(275°F)에서 변형된 박테리아의 96~100%가 생존하는 것을 확인했다. 변형되지 않은 박테리아의 경우 생존율은 겨우 20%에 불과했다. 다음으로 연구팀은 박테리아가 플라스틱을 얼마나 잘 분해하는지 테스트했다. 이 과정은 토양의 영양분과 수분에 의해 시작된다. 플라스틱 무게의 최대 1% 농도에서 박테리아는 퇴비에 묻힌 후 5개월 이내에 플라스틱 물질의 90% 이상을 분해했다. 이 새로운 플라스틱은 사용 중 강도가 약화될 것으로 추정했지만, 실제로는 그 반대 효과가 나타났다. 포자를 넣어 만든 플라스틱은 일반 폴리우레탄(TPU)보다 최대 37% 더 강하고 인장 강도가 최대 30% 더 높은 것으로 나타났다. 연구팀은 포자가 강화 충전재 역할을 하는 것으로 추정했다. 연구팀은 이 기술은 확장 가능성이 높으며, 사용 중 더욱 견고하고 강하면서 재활용이 불가능한 TPU를 폐기 처리하는 새로운 방법을 열 수 있다고 말했다. 이를 다른 몇 가지 방법과 함께 사용한다면 플라스틱 오염 문제 해결에 진전을 이룰 수 있을 것으로 보인다. 플라스틱의 약 80%가 재활용되지 않고 매립지나 자연 환경에 축적되고 있는 실정다. 또한 폴리우레탄(PU)은 세계에서 6번째로 많이 생산되는 플라스틱이지만 재활용을 위한 거버넌스는 없다. PU 폐기물은 수지 식별 코드의 카테고리 7(PETE, HDPE, PVC, LDPE, PP, PS 이외의 기타 플라스틱)에 따라 잠재적으로 수거될 수 있지만, 미국에서는 일반적으로 이 카테고리의 플라스틱 중 0.3%만이 재활용되고 있다. 플라스틱 분해 과정에 박테리아 포자를 결합시킨 것은 산업 공정에서 재생 가능한 폴리머 충전재로서 살아있는 세포를 도입할 수 있는 흥미로운 기회를 제공했다는 평가를 받고 있다. 연구진은 잠재적으로 확장 가능한 이 기술이 재활용할 수 없는 TPU를 폐기하는 새로운 방법을 제시하는 동시에 사용 중에 더 튼튼하고 강하게 만들 수 있다고 말했다. 이 기술을 다른 몇 가지 방법과 결합하면 플라스틱 오염 문제를 해결하는 데 어느 정도 진전을 이룰 수 있을 것으로 기대된다. 이 연구는 '네이처 커뮤니케이션스(Nature Communications)' 저널에 발표됐다.
-
- 포커스온
-
[신소재 신기술(42)] 플라스틱 폐기물 90% 분해하는 혁신 기술
-
-
왜 쓰레기를 화산에 던져서 태워버릴 수 없을까
- 쓰레기를 용암이 끓고 있는 화산에 던져서 태우지 않는 이유는 무엇일까. 화산의 용암이 일부 쓰레기를 태울 정도로 뜨거운 것은 사실이다. 지난 2018년 하와이 빅아일랜드에서 킬라우에아 화산이 폭발했을 때, 용암류는 섭씨 1100도 이상이었다. 이는 금성 표면보다 더 뜨거운 온도다. 암석을 충분히 녹일 정도로 높은 온도였다. 쓰레기를 태우는 폐기물 소각로의 온도가 섭씨 1000~1200도임을 감안하면, 화산의 용암류로도 쓰레기를 태울 수 있을 것이라는 짐작을 하게 된다. 그러나 야후 테크에 실린 정보에 따르면 실제는 그렇지 않다. 모든 화산 용암이 그렇게 높은 온도인 것은 아니다. 하와이에서의 킬라우에아 화산 폭발은 현무암이라고 불리는 일종의 용암을 생성한다. 현무암은 다른 화산에서 분출되는 용암보다 훨씬 뜨겁고 더 유동적이다. 워싱턴주의 세인트 헬렌스 산에서 분출한 화산 등 일반적인 화산의 경우 현무암보다 더 두꺼운 데이사이트 용암(석영안산암 화산암)이다. 세인트 헬렌스 산에서 2004~2008년까지 분출된 화산은 표면 온도가 섭씨 704도 미만의 용암 돔을 생성했다. 다시 말해 쓰레기를 완전히 태울 충분한 고온이 형성되지 않는다는 의미다. 온도 외에도, 화산에서 쓰레기를 태울 수 없는 이유가 몇 가지 더 있다. 첫 번째로, 섭씨 1100도 온도의 용암은 음식물 찌꺼기, 종이, 플라스틱, 유리 및 일부 금속 등을 녹일 수는 있지만, 강철, 니켈 등 특수한 일부 물질들은 녹이지 못한다. 둘째, 지구에는 쓰레기를 버릴 수 있는 용암 호수나 용암으로 가득 찬 그릇 모양의 분화구가 있는 화산이 많지 않다. 지구상에 있는 수천 개의 화산 중, 과학자들이 발견한 활화산 용암 호수는 남극의 킬라우에아, 에레부스 산, 콩고민주공화국의 니라공고 등을 포함해 8개에 불과하다. 대부분의 활화산은 세인트 헬렌스 산과 같이 바위와 냉각된 용암으로 채워진 분화구이거나 오레곤주의 크레이터 호수처럼 물로 채워진 분화구들이다. 세 번째는 활성 용암 호수라 해도 이곳에 쓰레기를 버리는 것은 매우 위험하다는 사실이다. 용암 호수는 냉각된 용암의 지각으로 덮여 있지만, 그 지각 바로 아래는 용암이 녹아 있어 온도가 매우 높다. 암석이나 다른 물질들이 용암 호수의 표면으로 떨어지면 지각이 깨지고, 밑에 있는 용암의 흐름을 방해해 폭발을 일으키게 된다. 2015년 킬라우에아에서 이런 사태가 일어났다. 분화구 가장자리의 암석 덩어리가 용암 호수로 떨어져 큰 폭발을 일으켰고, 암석과 용암이 분화구 위로 분출됐다. 사람이 용암 호수에 쓰레기를 버린다면 불타 오르는 쓰레기와 폭발하는 용암을 피해 도망치는 방법을 고안해야 할 것이다. 화산에 쓰레기 버리면 유독가스 방출 용암 호수에 쓰레기를 안전하게 버릴 수 있다고 가정한다면 어떻게 될까. 플라스틱, 쓰레기, 그리고 금속이 연소되면 많은 유독 가스가 방출된다. 화산은 이미 황, 염소, 그리고 이산화탄소 등 수많은 유독 가스를 배출하고 있다. 유황 가스는 ‘보그(vog)’라고 부르는 산성 안개를 생성한다. 이는 식물을 죽이고 근처에 거주하는 사람들에게 호흡기 질환을 일으킬 수 있다. 이처럼 위험한 화산 가스에 쓰레기를 태울 때 발생하는 다른 가스가 섞이면 화산 근처의 사람과 식물에 더욱 해로울 것이다. 마지막으로, 많은 원주민 공동체는 화산을 신성한 장소로 여긴다. 예를 들어, 킬라우에아에 있는 할레마우마우 분화구는 하와이 원주민이 섬기는 불의 여신 펠레의 고향으로 여겨지고 있으며, 분화구 주변은 하와이 원주민에게는 신성한 지역이다. 화산에 쓰레기를 버리는 것은 그들에게는 큰 모욕이 될 것이다.
-
- IT/바이오
-
왜 쓰레기를 화산에 던져서 태워버릴 수 없을까
-
-
[먹을까? 말까?(7)] 미세 플라스틱이 가장 많이 들어 있는 음식은?
- 아침 밥과 점심, 저녁 식사로 우리는 얼마나 많은 플라스틱을 먹었을까? 이는 공상 과학 영화에 등장하는 내용이 아니다. 즉석 조리 음식과 배달 음식이 넘쳐나는 현재 우리 식탁을 점검해야 할 때가 되었다. 최근 외신에서는 미세 플라스틱이 인체에 미치는 폐해에 대한 보도가 넘쳐나고 있다. "놀랍게도 소금 대체재로 알려진 히말라야 소금에 미세 플라스틱이 엄청나게 함유돼 있다는 사실을 알고 있는 사람은 드물다. 새우와 과일, 당근 등 각종 채소, 즉석밥은 물론 쌀에도 미세 플라스틱이 들어 있다"고 CNN은 22일 보도했다. 2024년 2월 발표된 연구에 따르면 동식물성 단백질 샘플의 90%에서 0.2인치(5mm) 미만에서 2만5000분의 1인치(1마이크로미터)에 이르는 미세한 폴리머 조각인 미세플라스틱 양성 반응이 나왔다. 1마이크로미터보다 작은 것은 나노 플라스틱으로 10억 분의 1미터 단위로 측정해야 한다. 2021년에 발표된 한 연구에 따르면 채식주의자조차도 미세 플라스틱을 피해갈 수 없다. 플라스틱 크기가 아주 작으면 과일과 채소는 뿌리 시스템을 통해 미세 플라스틱을 흡수하여 식물의 줄기, 잎, 씨앗, 열매에까지 이들 미세 플라스틱을 옮길 수 있다. 다시 말하면 육안으로 확인할 수 없지만 우리가 먹는 과일과 채소 등 식용 식물들의 잎이나 뿌리, 열매 등에 이미 다량의 미세 플라스틱이 포함되어 있다는 의미다. 일상 생활에서 흔히 접하지만 미처 인식하지 못했던 미세 플라스틱이 함유된 음식을 다음과 같이 정리했다. 소금·설탕·과일·채소, 전부 미세 플라스틱 함유 소금도 플라스틱이 함유돼 있다. 2023년에 발표된 연구에 따르면 땅에서 채굴한 굵은 히말라야 핑크 소금에 미세 플라스틱이 가장 많았고, 그다음으로 검은 소금과 해양 소금이 그 뒤를 이었다. 2022년 연구에 따르면 설탕도 "인간이 미세 오염 물질에 노출되는 중요한 경로"로 밝혀졌다. 대부분 플라스틱으로 만들어진 티백도 엄청난 양의 플라스틱을 배출할 수 있다. 캐나다 퀘벡의 맥길 대학교 연구진은 플라스틱 티백 하나를 끓일 때 약 116억 개의 미세 플라스틱과 31억 개의 나노 플라스틱 입자가 물로 방출된다는 사실을 발견했다. 동양인들의 주식인 쌀도 미세 플라스틱을 지니고 있다. 호주 퀸즐랜드 대학교의 연구에 따르면 사람들이 밥 100g(1/2컵)을 먹을 때마다 3~4밀리그램의 플라스틱을 섭취한다. 특히 플라스틱 용기에 들어 있는 인스턴트 밥(즉석밥)의 경우 1회 제공량당 미세 플라스틱 섭취량은 13밀리그램으로 증가한다고 한다. 연구원들은 쌀을 씻으면 플라스틱 오염을 최대 40%까지 줄일 수 있다고 말했다. 또한 쌀에 많이 함유되어 있는 비소도 줄일 수 있다고 한다. 생수도 미세 플라스틱 오염을 벗어날 수 없다. 2024년 3월 발표된 연구에 따르면 표준 크기의 생수 두 병에 해당하는 1리터의 물에는 나노 플라스틱을 포함한 7가지 유형의 플라스틱 입자가 평균 24만 개 포함되어 있는 것으로 나타났다. 산모의 태반과 모유에도 미세 플라스틱 발견 미세 플라스틱은 이미 사람의 폐, 산모와 태아의 태반 조직, 모유, 사람의 혈액에서 발견됐다. 그러나 안타깝게도 최근까지 이러한 폴리머가 신체의 장기와 기능에 어떤 영향을 미치는지에 대한 연구는 거의 없었다. 2024년 3월 발표된 연구에 따르면 목의 동맥에 미세 플라스틱이나 나노 플라스틱이 있는 사람은 그렇지 않은 사람보다 향후 3년 동안 심장마비, 뇌졸중 또는 어떤 원인으로든 사망할 확률이 두 배나 높다고 한다. 전문가들은 인체 건강에 가장 우려스러운 플라스틱 오염 물질은 바로 '나노 플라스틱'이라고 지적했다. 그 이유는 아주 미세한 플라스틱 입자가 인체의 주요 장기의 개별 세포와 조직에 침입해 세포 과정을 방해하고 비스페놀, 프탈레이트, 난연제, 과불화화합물 또는 PFAS(자연 상태에서 절대 분해되지 않는 '영원한 화학물질')와 같은 내분비 교란 화학물질과 중금속을 침착시킬 수 있기 때문이다. 펜실베이니아주 이리에 위치한 펜 스테이트 베렌드의 지속가능성 책임자인 셰리 "샘" 메이슨은 이전 CNN 인터뷰에서 "이러한 화학물질은 모두 플라스틱 제조에 사용되므로 플라스틱이 우리 몸에 들어오면 그 화학물질도 함께 들어오는 것"이라고 말했다. 메이슨은 "체온이 외부보다 높기 때문에 이러한 화학 물질은 플라스틱에서 이동go 우리 몸속으로 들어가게 된다"면서 "이러한 화학 물질은 간과 신장, 뇌로 전달될 수 있으며 심지어 태반 경계를 넘어 태아에게까지 전달될 수 있다"고 설명했다. 반면, 국제생수협회 대변인은 앞서 CNN에 "현재 나노 및 미세 플라스틱 입자의 잠재적인 건강 영향에 대한 과학적 합의는 없다. 따라서 가정과 추측에 근거한 언론 보도는 대중을 불필요하게 겁주는 것 이상도 이하도 아니다"라고 말했다. 소고기 등 모든 유형의 단백질도 오염돼 지난 2월 '환경 연구(Environmental Research)'에 게재된 연구에서 연구진은 소고기, 빵가루를 입힌 새우, 닭 가슴살과 너겟, 돼지고기, 해산물, 두부, 명태 피쉬 스틱, 갈은 소고기와 유사한 식감의 식물성 크럼블, 식물성 생선 스틱 등 여러 식물성 육류 대체품을 포함해 일반적으로 소비되는 12가지 이상의 단백질에 대해 조사했다. 연구 결과에 따르면 빵가루 입힌 새우에는 1회 제공량당 평균 300개 이상의 미세 플라스틱 조각이 발견돼, 미세한 플라스틱이 가장 많이 함유된 식품으로 이름을 올렸다. 그 뒤를 이어 식물성 너겟이 1회 제공량당 100개 미만으로 2위를 차지했고, 치킨 너겟, 명태 피쉬 스틱, 최소한의 가공을 거친 화이트 걸프 새우, 갓 잡은 키웨스트 핑크 새우, 식물성 생선 스틱이 그 뒤를 이었다. 가장 오염이 적은 단백질은 닭 가슴살이었으며, 돼지 등심과 두부가 그 뒤를 이었다. 연구 결과를 소비자 소비 데이터와 비교한 결과, 미국 성인의 미세 플라스틱 평균 노출량은 연간 11,000~29,000개이며, 연간 최대 380만 개의 미세 플라스틱에 노출될 것으로 추정된다. 사과와 당근, 미세 플라스틱 가장 많이 오염돼 바다는 플라스틱으로 가득 차 있으며, 이들 플라스틱이 우리가 먹는 해산물에 어떻게 유입되는지는 여러 연구를 통해 밝혀졌다. 그러나 2020년 8월 발표된 한 연구에 따르면 채소와 소, 돼지 등 육상 동물 단백질과 미세 플라스틱에 대한 연구는 거의 이루어지지 않았다. 학술지 '환경 과학(Environmental Science)'에 발표된 이 연구에서는 다양한 과일과 채소에서 10㎛(1마이크로미터는 빗방울 지름 정도) 미만의 플라스틱 입자가 5만2050~23만3000개 발견됐다. 연구 결과에 따르면 사과와 당근은 각각 그램당 10만개 이상의 미세 플라스틱을 함유해, 가장 오염된 과일과 채소였다. 가장 작은 미세 플라스틱 입자는 당근에서 발견되었고, 가장 큰 플라스틱 조각은 양상추에서 발견됐다. 참고로 양상추는가장 오염이 적은 채소였다. 플라스틱으로 가득찬 세계 최근 분석에 따르면 오늘날 전 세계에는 엄청난 수의 플라스틱이 존재한다. 그 중 최소 4200종에서 인체와 환경에 '매우 유해한' 것으로 간주되는 1만6000개의 플라스틱 화학물질이 존재한다. 이러한 화학물질은 환경에서 분해되면서 미세 플라스틱으로 변한 다음 나노 플라스틱으로 변할 수 있는데, 이 입자는 너무 작아 수십 년 동안 과학계에서 이를 발견하는 데 어려움을 겪었다. 새로운 기술을 활용한 최근 연구에 따르면 미국에서 판매되는 인기 생수 브랜드 3곳의 나노플라스틱 수가 리터당 11만개~37만 개에 달하는 것으로 나타났다. 앞서 말했듯이 1리터는 약 16온스(약 480ml, 음료에서 일반적인 그란데 사이즈) 생수 두 병에 해당하는 양이다. 연구 저자들은 어떤 브랜드의 생수를 연구했는지는 밝히지는 않았다. 이전 기술을 사용한 연구에서는 같은 양의 생수에서 더 큰 미세 플라스틱과 함께 약 300개의 나노 플라스틱만 확인됐다. 플라스틱 오염을 줄이는 방법 메이슨은 생수에서 발견되는 플라스틱 오염의 노출을 줄이기 위해 유리 또는 스테인리스 스틸 용기에 담긴 수돗물을 마시라는 오랜 전문가의 조언을 거듭 지적했다. 이러한 조언은 플라스틱으로 포장된 다른 음식과 음료에도 적용된다고 그녀는 덧붙였다. 메이슨은 "사람들은 플라스틱을 흘린다고 생각하지 않지만 실제로는 흘린다"면서 "우리가 피부 세포를 끊임없이 벗겨내는 것과 거의 같은 방식으로 플라스틱은 상점에서 구입한 샐러드나 플라스틱으로 포장된 치즈의 플라스틱 용기를 열 때 등 깨진 작은 조각을 끊임없이 포장된 내용물에 흘리고 있다"고 설명했다. 전문가들에 따르면 우리가 섭취하는 플라스틱에 대해 과학이 더 많은 내용을 밝혀주기까지 사람들은 플라스틱 노출을 줄이기 위해 노력해야 한다. 먼저 플라스틱 용기에 보관된 음식은 먹지 않도록 하는 것이 좋다. 대신 유리, 에나멜 또는 호일에 보관된 식품을 찾아보라고 전문가는 권했다. 또한 천연 섬유로 만든 옷을 입고 천연 소재로 만든 소비재를 구입하는 것이 좋다. 특히 플라스틱 용기에 음식을 담아 전자레인지에 돌리지 말고, 유리 용기에 담아 전자레인지를 돌리는 것이 좋다. 또한 가스레인지에서 음식을 가열해서 데우는 방법도 있다. 전문가들은 "가능한 한 신선한 식품을 많이 섭취하고, 플라스틱으로 포장된 가공식품 및 초가공식품의 구매를 제한하는 것이 바람직하다"고 강조했다.
-
- 생활경제
-
[먹을까? 말까?(7)] 미세 플라스틱이 가장 많이 들어 있는 음식은?
-
-
미세 플라스틱, 뇌에서도 발견
- 미세 플라스틱이 인간의 장기와 생쥐의 뇌에서도 검출됐다. 최근 실시된 두 개의 새로운 연구에서 미세 플라스틱이 인간의 장기와 심지어 생쥐의 뇌에까지 도달할 수 있다는 사실이 밝혀졌다고 폭스뉴스가 17일(현지시간) 보도했다. 지난 4월 10일 '환경 건강 관점(Environmental Health Perspectives)'에 발표된 연구 중 하나는 건강한 쥐에게 4~8주 동안 폴리스티렌 마이크로스피어(polystyrene microspheres)를 먹이는 실험이었다. 이후 과학자들은 쥐의 다양한 장기가 미세플라스틱에 오염된 것을 발견했다. 연구 결과 마이크로스피어를 섭취한 쥐의 경우 뇌, 간, 신장 등 멀리 떨어진 조직에서 폴리스티렌 마이크로스피어가 검출됐다. 논문에는 아울러 "또한 대장, 간, 뇌에서 발생한 대사적 차이에 대해 보고했는데, 이는 마이크로스피어 노출의 농도와 유형에 따라 다른 반응을 보였다"고 적었다. 미세 플라스틱 먹은 쥐, 담석 형성 가속화 지난 4월 5일 '위험 물질(Hazardous Materials)' 저널에 발표된 또 다른 연구에서는 인간과 쥐를 대상으로 실험했다. 연구팀은 50세 미만 환자의 담석(담낭에 있는 담즙이 굳어져 생긴 돌)에서 독성 물질이 훨씬 더 많이 검출된다는 사실을 발견했다. 미세 플라스틱을 먹인 후 실험에 참여한 쥐는 담석이 더 빠른 속도로 형성됐다. 논문은 "우리 연구는 인간 담석에 미세 플라스틱이 존재한다는 사실을 밝혀냈으며, 미세 플라스틱이 큰 콜레스테롤-미세 플라스틱 이종 응집체를 형성하고 장내 미생물을 변화시켜 담석증을 악화시킬 수 있다는 가능성을 보여주었다"라고 설명했다. 미세 플라스틱이 인간에게 미치는 영향은 현재 조사 중이며, 특히 대부분의 미국인이 평생 동안 미세 플라스틱에 노출되어 왔기 때문에 광범위한 우려를 불러일으키고 있다는 것. 자넷 네셰이왓 박사는 폭스 뉴스 디지털과의 인터뷰에서 미세 플라스틱은 "어디에나 존재한다"고 말했다. 네셰이왓 박사는 "우리는 무의식적으로 전례 없는 수준으로 미세 플라스틱을 섭취하고 흡입하고 있다"며 "특히 높은 수준의 미세 플라스틱은 신체에 염증을 일으킨다"라고 설명했다. 그녀는 "미세 플라스틱과 같은 이물질은 체내에 축적되어 정상적인 세포 기능을 방해하고 장기 손상을 증가시킬 수 있는 자극과 염증을 유발할 수 있다"고 덧붙였다. 네셰이왓은 미세 플라스틱이 어느 장기에 도달하느냐에 따라 유해한 영향이 뚜렷하게 나타난다고 말했다. 그러면서 미세 플라스틱 섭취를 줄이려면 플라스틱 제품 대신 유리 제품을 사용하고 미세 플라스틱 오염이 적은 식품을 선택할 것을 권장했다. 그녀는 "미세 플라스틱은 스트레스와 염증을 유발하고 간 기능을 손상시켜 간에 영향을 미칠 수 있다"면서 "뇌에서는 신경 염증을 일으키고 뇌 신호를 방해한다"라고 말했다. "비만·운동 부족이 건강에 더 해로워" 반면, 의학 기고가인 마크 시겔 박사는 폭스 뉴스에 미세 플라스틱이 인간에게 미치는 영향은 아직 알려지지 않았다고 말했다. 시겔 박사는 "이를 추적할 필요가 있지만, 세포 내 미세 플라스틱이 건강에 좋지 않은 결과를 초래한다는 직접적인 증거는 아직 없다"라면서 "더 많이 축적되면 잘못된 것으로 판명될 수 있으며, 화학물질 유출이나 오염된 물 또는 폐기물이 제대로 보관되지 않은 지역에서 발생하는 암 위험은 분명히 우려하고 있다"고 덧붙였다. 그는 "동시에 가장 큰 건강 위험은 좌식 생활, 비만, 치료되지 않은 고혈압, 수면 부족, 운동 부족에서 비롯된다"고 강조했다. 워싱턴 포스트는 다른 연구 결과를 인용해 미세 플라스틱이 암과 알츠하이머병 위험을 증가시키고 출산 문제를 유발할 수 있다고 보도했다. 또한 이러한 영향은 나이가 들면서 더욱 악화될 수도 있다는 전언이다. 또 다른 연구에 따르면 미세 플라스틱은 심장마비와 뇌졸중 발병에도 연관되어 있다고 한다. 미세 플라스틱과 더 작은 나노 플라스틱은 플라스틱으로 만든 물병이나 식품 용기 등이 시간이 지남에 따라 분해될 때 생성된다. 일반적인 미세 플라스틱 크기는 평균 177 x 117 ㎛(마이크로미터)이다. 1마이크로미터는 0.001밀리미터이다. 세계보건기구(WHO)에 따르면, 미세 플라스틱은 일반적으로 크기가 5mm 이하인 불용성 고체 고분자 입자를 말한다. 1㎛(마이크로미터) 이하의 입자는 일반적으로 미세 플라스틱이 아닌 '나노 플라스틱'으로 불린다. 매년 강과 바다로 800만톤의 플라스틱 폐기물이 유입되고 있다고 폭스 뉴스는 전했다. 미세 플라스틱의 양을 줄이는 가장 좋은 방법은 플라스틱 소비를 줄이는 것이다. 예를 들어 영국과 프랑스에서는 대부분의 패스트푸드와 테이크아웃 음식점에서 플라스틱 식기류의 사용을 금지했다. 인도는 2022년에 일회용 플라스틱 사용을 금지했다. 또한 일회용 수저나 플라스틱 빨대 등을 거절하면 쓰레기를 줄일 수 있다. 재활용품은 제대로 분류해서 버리고 업사이클링 제품을 사용하는 것도 플라스틱 오염을 줄일 수 있는 방법이다.
-
- IT/바이오
-
미세 플라스틱, 뇌에서도 발견
-
-
[신소재 신기술(32)] 획기적인 '종이 기반' 배터리 개발⋯"식물에서 영감 얻어"
- 일본에서 희귀 금속이 필요 없는 종이 기반의 물로 활성화되는 배터리가 개발됐다. 일본 도호쿠대학(東北大學)의 재료연구소(AIMR) 연구진은 GPS 센서나 맥박 산소 측정기 센서에 사용할 수 있는 종이 기반의 고성능 마그네슘-공기(Mg-air) 배터리를 개발했다고 오일 프라이스가 14일(현지시간) 보도했다. 이변 연구는 종이의 재활용성과 가벼운 특성을 활용해 보다 환경 친화적인 에너지원으로 발전할 수 있는 가능성을 제시했다. 연구 보고서 논문 '희귀 금속이 없는 고성능 물 활성화 종이 배터리: 웨어러블 센싱 장치를 위한 일회용 에너지원'은 'RSC 인터페이스 응용(RSC Applied Interfaces)' 저널에 게재됐다. 종이는 지난 2000년 동안 인류 문명의 필수품이었다. 종이는 일반적으로 중국 후한 시대 105년 경에 채륜이 발명했다고 알려져 있다. 하지만 최근 중국에서 기원전 2세기 경으로 거슬러 올라가는 종이가 발견되기도 해 종이의 정확한 기원은 알 수가 없다. 글 쓰기를 통해 그동안 인류 역사를 기록해온 종이가 이제는 배터리에 활용돼 친환경적인 미래를 여는 중요한 역할을 하게 됐다. 가볍고 얇은 종이 기반 디바이스는 금속이나 플라스틱 소재에 대한 의존도를 낮추는 동시에 폐기하기도 더 쉽다. 이 연구의 교신 저자인 히로시 야부(Hiroshi Yabu) 교수는 "우리는 식물의 호흡 메커니즘에서 이 장치에 대한 영감을 얻었다"고 말했다. 야부 교수는 "광합성은 배터리의 충전 및 방전 과정과 유사하다. 식물이 태양 에너지를 이용해 땅의 물에서 설탕을, 공기에서 이산화탄소를 합성하는 것처럼, 우리 배터리는 마그네슘을 기질로 활용해 산소와 물에서 전력을 생성한다"고 설명했다. 연구팀은 배터리를 제작하기 위해 마그네슘 호일을 종이에 접착하고 음극 촉매와 가스 확산층을 종이 반대편에 직접 추가했다. 종이 배터리는 1.8V(볼트)의 개방 회로 전압, 100mA/cm²의 1.0V 전류 밀도, 103mA/cm²의 최대 출력을 달성했다. 야부 교수는 " 이 배터리는 인상적인 성능 결과를 보여줬을 뿐 아니라 독성 물질을 사용하지 않고 엄격한 평가를 통과한 탄소 음극과 안료 전기 촉매를 사용해서 작동한다"라고 덧붙였다. 연구팀은 맥박 산소 측정기 센서와 GPS 센서에서 이 배터리를 테스트해 웨어러블 디바이스에 대한 다용도성을 입증했다.
-
- 포커스온
-
[신소재 신기술(32)] 획기적인 '종이 기반' 배터리 개발⋯"식물에서 영감 얻어"
-
-
미세 플라스틱, 인간 소변서도 발견⋯자궁내막증과 연관 시사
- 플라스틱이 인체에 미치는 다양한 연구가 진행되는 가운데. 인간의 소변에서 매우 강한 독성을 지닌 미세 플라스틱이 검출됐다. 과학 전문매체 더 쿨다운은 과학자들이 건강한 참가자와 자궁 내막 조직이 자궁 밖에서 자라는 만성 질환인 자궁내막증 환자의 소변 샘플에서 모든 종류의 미세한 입자(미세 플라스틱입자)를 검출했다고 지난 10일(현지시간) 보도했다. 이 연구는 4월 1일 '생태독성학 및 환경 안전 저널(Ecotoxicology and Environmental Safety)'에 게재됐다. 연궈 결과 두 집단 간의 미세 플라스틱 수치는 큰 차이가 없었지만, 검출된 미세 플라스틱의 종류는 달랐다. 건강한 사람의 경우 폴리에틸렌(27%)이 주를 이루었고, 자궁내막증 환자는 폴리테트라플루오로에틸렌(PTFE, 59%)이 가장 많았다. 또한 건강한 사람의 검체에서는 폴리스티렌(16%), 레진(12%), 폴리프로필렌(12%) 등이 검출됐다. 연구에 따르면 폴리에틸렌은 자궁내막증 참가자의 샘플에서 발견된 미세 플라스틱의 16%를 차지했다. 자궁내막증 환자의 금속 카테터에서 두 번째 샘플 세트를 채취한 결과, 미세 플라스틱의 크기는 약 32 마이크로미터에서 22 마이크로미터로 다른 검체보다 상당히 작았다. 일반적인 미세 플라스틱 크기는 평균 177 x 117 마이크로미터이다. 1마이크로미터는 0.001밀리미터이다. 연구팀은 "미세 플라스틱은 모든 환경에서 발견되며 인체 음식 사슬에도 존재하고 최근 여러 인체 조직에서 검출됐다"고 밝혔다. 자궁내막증은 알려진 원인이 없으며, 과학자들은 미세 플라스틱 수치가 질병과 관련이 있는지, 염증을 유발하거나 화학 물질을 체내로 침출시키는지 여부를 조사했다. 연구팀은 "미세 플라스틱이 신체 내 이동 경로와 이러한 입자의 크기가 신장 사구체 여과 시스템을 통과하기에는 너무 큰 것으로 보이지만 어떻게 이 기관을 통과하거나 우회했는지, 그리고 이러한 미세 플라스틱 존재로 인한 잠재적인 생물학적 영향에 대한 중요한 새로운 질문을 제기한다"라고 밝혔다. 연구팀은 "이는 미세플라스틱의 체내 이동과 신장 사구체 여과 시스템을 통과하거나 우회하는 방법, 그리고 이러한 장기를 통과하기에는 너무 커 보이는 크기로 인해 잠재적인 생물학적 영향과 관련하여 중요한 새로운 의문을 제기한다"고 말했다. 또한 연구팀은 미세 플라스틱이 인체 내에서 어떻게 이동하는지 살펴본 결과, 미세 플라스틱의 크기와 모양도 문제라고 말했다. 또한 오염 물질이 "이론적으로는 신장의 작은 모세혈관을 따라 방광에 도달하기에는 너무 크다"고 지적했다. 이 논문은 미세 플라스틱이 인간에게 미치는 영향은 알려지지 않았지만 "폴리머 특성 분석과 절차적 공백을 설명하는 인간 소변의 미세 플라스틱 오염에 대한 최초의 증거"를 제공했다고 밝혔다. 연구팀은 "그러나 높은 수준의 미세 플라스틱과 염증성 질환, 특히 장 질환 간의 관련성이 나타나고 있다"고 말했다. 또한 "이전 세포 기반 노출 실험에서 불규칙한 모양의 미세 플라스틱이 특히 독성이 강한 것으로 나타났다"면서 "'염증 및 산화 스트레스 유형의 영향'이 자궁 내막증 환자에게도 유사하게 영향을 미칠 수 있다"고 지적했다. 미세 플라스틱과 더 작은 나노 플라스틱은 플라스틱으로 만든 물병이나 식품 용기 등이 시간이 지남에 따라 분해될 때 생성된다. 미세 플라스틱의 양을 줄이는 가장 좋은 방법은 플라스틱 소비를 줄이는 것이다. 예를 들어 영국과 프랑스에서는 대부분의 패스트푸드와 테이크아웃 음식점에서 플라스틱 식기류의 사용을 금지했다. 인도는 2022년에 일회용 플라스틱 사용을 금지했다. 워싱턴 포스트는 다른 연구 결과를 인용하여 미세 플라스틱이 암과 알츠하이머병 위험을 증가시키고 출산 문제를 유발할 수 있다고 보도했다. 또한 이러한 영향은 나이가 들면서 더욱 악화될 수도 있다. 또다른 연구에 따르면 미세 플라스틱은 심장마비와 뇌졸중 발병에도 연관되어 있다. 세계자연보호연맹(IUCN)에 따르면 매년 약 4억톤 이상의 플라스틱이 생산되고 있다. 프랑스 파리의 에펠탑 무게는 약 1만톤이다. 매년 에[펩탑 4만 개 이상에 해당되는 플라스틱이 생산되고 있는 셈이다. 그러나 전 세계적으로 재활용되는 플라스틱은 약 9%에 불과하다. 매일 더 많은 플라스틱이 생산되고 있기 때문에 기업이 플라스틱에 대한 의존도를 낮추는 것이 중요하다. 소비자는 유리나 스테인리스 재질로 된 재사용 가능한 물병을 구입하고 플라스틱을 사용하지 않는 브랜드를 지지하는 등의 노력을 기울일 수 있다. 또한 기술 개발로 식수에서 미세 플라스틱을 제거할 수 있다. '예방이 치료보다 낫다'는 말이 있다. 플라스틱을 줄이기 위한 이러한 작은 실천이 모여 더 안전하고 깨끗한 미래를 만들 수 있다.
-
- 생활경제
-
미세 플라스틱, 인간 소변서도 발견⋯자궁내막증과 연관 시사
-
-
"파리 올림픽, 역대 최고의 지속 가능한 행사 될 것"
- 올여름 개최되는 파리 올림픽 및 패럴림픽 대회는 지속 가능성이라는 명제의 새로운 기준을 세울 것이라고 파리 올림픽 조직위원회가 호언했다고 세계경제포럼(WEF)이 홈페이지를 통해 전했다. 800회의 스포츠 경기, 1만 5000명의 선수, 4만 5000명의 자원봉사자, 1300만 끼에 달하는 식사 등 올림픽의 세부 내용에서 최고의 지속 가능성을 성취한다는 것은 만만치 않은 일이다. 실제로 주최 측은 이를 인류의 '가장 큰 도전'이라고 묘사했다. 그렇다면 파리 올림픽이 최고의 지속 가능한 행사가 되도록 주최측은 어떻게 준비할까. WEF는 주최 측이 밝힌 다양한 구상을 소개하고 있다. 지속 가능한 올림픽 구상 파리 올림픽은 지금까지의 준비상황만 놓고 보아도 올림픽 역사상 가장 친환경적인 대회로 평가받고 있다. 주최 측은 이번 대회에서 탄소 배출량을 과거 올림픽 평균의 절반으로 줄이겠다고 약속했다. 파리 2024 조직위원회는 "가장 지속 가능한 올림픽을 개최한다는 의미에서 탄소 배출량을 약 175만 톤으로 제한할 것“이라고 말했다. 2020 도쿄 올림픽, 2016 리우 올림픽, 2012 런던 올림픽을 포함한 이전 하계 올림픽에서는 평균 350만 톤의 탄소가 배출되었다고 한다. 특히 탄소 배출을 줄이는 것 외에도 전 세계의 환경 및 사회 프로젝트에 투자해 탄소 상쇄까지 도모한다. 재생에너지부터 어망 재활용까지 과거에는 올림픽 개최로 인해 일반적으로 새로운 경기장에 막대한 비용이 지출되었다. 그러나 파리에서는 95%의 경기를 기존 경기장이나 임시 인프라에서 개최한다. 신규 경기장 건설을 극소화한다는 의미다. 지난 1998년 월드컵 축구를 진행하기 위해 지어진 스타드 드 프랑스(Stade de France)에서 대부분의 행사가 개최될 예정이다. 올해 올림픽을 위해 건설하는 새로운 경기장은 생드니의 아쿠아틱스 센터뿐이다. 건설되는 센터도 자연 친화적인 태양열로 구동되며, 천연 바이오 기반 건자재와 재활용 자재를 사용하고 있다. 선수촌에서 소모하는 전기도 지열이나 태양광 발전 등 신재생에너지 생산을 통해 충당한다는 방침이다. 선수들은 재활용 어망으로 만든 매트리스와 강화 판지로 만든 침대에서 수면한다. 생물 다양성을 위해 선수촌 옥상에는 곤충과 새를 수용할 수 있는 울타리와 개구부가 설치돼 있다. 다양한 종을 유치하기 위해 선수촌 주변에 9000여 그루의 나무도 심었다. 2800동의 선수촌 아파트는 올림픽 경기가 모두 끝난 후 주택으로 개조될 예정이다. 지속 가능한 여행과 음식 지속 가능한 올림픽을 위한 또 다른 특징은 1000km의 자전거 도로와 거리에 새로 심은 20만 그루에 달하는 나무다. 선수 및 관계자들은 물론 관람객들까지 배려한다는 것이다. 파리 관광청은 자전거 도로의 증설로 3000대의 자전거가 추가로 이용할 수 있게 되었으며, 대부분의 올림픽 경기장은 대중교통으로 접근 가능하다고 밝혔다. 올림픽 기간 동안 약 1500만 명의 방문객이 파리를 방문할 것으로 예상된다. 또한 탄소 배출을 줄이고 폐기물을 줄이기 위해 제공되는 식물성 식품의 양을 두 배로 늘리고 일회용 플라스틱의 양을 절반으로 줄이겠다고 약속했다. WEF는 최신 '글로벌 위험 보고서 2024'에서 "대규모 집단이 채식과 지속 가능한 여행 등 다양한 저탄소 생활을 영위할 때 큰 변화를 가져올 수 있다"고 지적했다. WEF는 파리 올림픽이 이 같은 노력을 실천한다면 시장을 변화시키고 ‘기후 변화 완화에 대한 다이얼을 더 빨리 돌릴 수 있다’고 기대했다.
-
- 생활경제
-
"파리 올림픽, 역대 최고의 지속 가능한 행사 될 것"
-
-
남극 연안 크릴새우, 미세 플라스틱 오염 심각
- 바다의 플라스틱 오염으로 인해 가장 작은 해양 동물조차 위험에 처해 있다. 크릴새우가 대표적이다. 시에라 클럽 매거진인 시에라(Sierra)의 보도에 따르면, 남극 대륙 근처의 남극해에 대한 두 가지 연구에서 남극 크릴새우가 다양한 유형의 미세 플라스틱, 특히 의류 및 기타 직물의 섬유를 섭취하는 것으로 나타났다. 이번 발견은 플라스틱 사용이 남극과 같은 외딴 해양도 미세 플라스틱이 큰 영향을 받을 수 있음을 보여준다.. 연구팀의 중국 항저우의 저장공과대학교 항비아오 진 교수는 "연구 결과 극지 환경조차도 미세 플라스틱 오염으로부터 자유롭지 않은 것으로 밝혀졌다"고 밝혔다. 진 교수팀은 남극 두 지역, 사우스셰틀랜드 제도와 사우스오크니 제도에서 크릴새우를 채집하고 연구했다. 연구팀은 26개 샘플링 장소에서 채집된 크릴새우를 조사한 결과 각 장소의 크릴에서 미세 플라스틱을 발견했다. 연구원들은 '종합환경과학(Science of the Total Environment)'에 연구 결과를 발표하고 남극 크릴새우 내에 존재하는 플라스틱의 다양한 유형, 크기 및 색상을 보고했다. 영국 왕립오픈사이언스(Royal Society Open Science)의 과학자들이 발표한 연구에서는 크릴새우와 살파라고 불리는 해파리 같은 생물 모두에서 미세 플라스틱이 측정되었다. 두 동물 모두에서 미세 플라스틱이 발견되었고, 살파의 경우 크릴새우보다 적은데도 더 큰 미세 플라스틱 입자가 포함되어 있었다고 한다. 이번 연구에서는 특히 수많은 미세 플라스틱 섬유가 발견되었으며, 섬유 관련 미세 플라스틱이 전체 미세 플라스틱 입자의 4분의 3 이상을 차지한 것으로 밝혀졌다. 플라스틱 섬유는 일반적으로 의류, 커튼, 카펫 및 기타 직물에서 떨어져 나오며, 단일 세탁물을 사용하면 백만 개 이상의 미세 플라스틱 섬유가 방출된다. 호주 연방과학산업연구기구(Commonwealth Scientific and Industrial Research Organization)의 생태독성학자 아만다 도슨은 "이들은 우리가 생각하는 유형의 플라스틱보다 훨씬 더 많을 것"이라고 추정했다. 크릴새우가 중요한 이유 남극 크릴새우는 바다 생태계의 존립에 필수적인 존재로 고래를 비롯한 여러 어종의 먹이이다. 크릴새우는 지구상에서 가장 풍부한 동물 중 하나이며, 이들의 총 질량은 4억 톤 이상으로 추산된다. 크릴새우는 특히 탄소 제거에 중요한 역할을 하는데, 탄소를 수중 깊은 곳에 가두어 기후 변화를 완화한다. 바다의 갑각류, 벌레, 물고기, 바다거북, 물개 등 수백 종의 해양 동물에서 미세 플라스틱이 발견되고 있는 가운데, 남극해와 같은 원격으로 고립된 해양 환경에서 플라스틱을 섭취하는 동물을 발견했다는 점은 매우 우려된다는 지적이다. 인간 활동의 영향이 매우 제한적인 비교적 깨끗한 지역인 극지방에서 플라스틱 오염이 만연하다는 사실은, 미세 플라스틱이 널리 퍼져 있으며 대기와 해류를 통해 먼 거리를 이동해 양극 지방에 도달할 수 있음을 시사한다. 연구팀원이자 영국 남극조사국(British Antarctic Survey)의 해양 생태학자인 에밀리 롤랜드는 남극 대륙 주변에는 매우 강한 해류가 존재하기 때문에 보호받을 수 있다고 가정했지만, 이번 결과를 보면 광범위하게 오염의 영향권에 있음이 드러났다고 우려했다. 해양동물 플라스틱 독성 연구 지속 진 교수팀은 이번 발견을 계기로 향후 플라스틱이 크릴새우 같은 작은 동물부터 물고기, 펭귄, 물개 같은 큰 동물에 이르기까지 남극 먹이사슬을 통해 어떻게 이동하는지, 해양동물의 플라스틱 독성 영향에 관해 조사를 이어갈 계획이다. 플라스틱 오염은 일회용 플라스틱 사용을 줄이고 정화 노력을 기울임으로써 줄일 수 있다. 남극과 같은 지역에서도 작은 변화 하나하나가 모든 생물을 위한 건강한 바다와 안전한 환경조성에 기여할 수 있다. 롤랜드는 "우리가 일상생활에서 플라스틱을 소비하는 것이 남극과 같이 세계에서 가장 고립된 지역에까지 연결돼 영향을 미친다”고 강조했다.
-
- 생활경제
-
남극 연안 크릴새우, 미세 플라스틱 오염 심각
-
-
미세 플라스틱, 세포 분열 중에 딸세포로 전달
- 미세 플라스틱이 세포 분열 중에 전달된다는 충격적인 사실이 밝혀졌다. 케미스트리월드닷컴 뉴스는 지난 25일(현지시간) 오스트리아와 독일 연구진의 새로운 연구에 따르면 위암 세포가 흡수한 미세 플라스틱과 나노 플라스틱이 세포 분열 중에 전달된다고 보도했다. 또한 0.25μm(마이크로미터) 크기의 미세 플라스틱 입자는 세포의 이동 속도를 증가시키고 암세포의 전이 촉진 효과가 있는 것으로 추정된다. 0.25μm는 초미세먼지의 기준이다. 이 프로젝트를 공동 주도한 비엔나 의과대학의 병리학자 루카스 케너(Lukas Kenner) 박사는 "세포가 플라스틱을 흡수할 뿐만 아니라 세포 분열 후에도 플라스틱이 남아 있다는 사실이 매우 놀라웠다"고 말했다. 연구진은 4개의 위장암 세포주를 0.25, 1, 10μm의 다양한 농도의 폴리스티렌 입자에 노출시켰다. 위장관은 마이크로 및 나노 플라스틱에 매일 노출되는 주요 진입점 중 하나이기 때문에 이 세포들을 연구한 것. 연구팀의 분석에 따르면 0.25μm와 1μm의 작은 입자는 모든 세포주에서 흡수된 반면, 큰 입자는 세포층에 부착되지 않고 세포 주변에만 분포되어 있어 더 큰 미세 플라스틱이 세포에 덜 해로울 수 있다는 이전 연구 결과에 무게를 실어줬다. 연구팀은 또한 나노 플라스틱이 세포 과정에 어떤 영향을 미칠 수 있는지도 조사했다. 미세 플라스틱이 몸 전체에 퍼져 세포를 손상시킬 수 있다는 사실은 널리 알려져 있지만, 과학자들은 아직 그 메커니즘을 완전히 이해하지 못하고 있다. 의학자 푸야 욘템(Fulya Yöntem)은 "지금 우리는 그(미세 플라스틱) 영향을 보고 있고, 그 끝을 보고 있지만, 어떻게 그것이 거기에 도달하는지는 알지 못한다"라고 말했다. 케너의 연구팀은 폴리스티렌 입자가 세포 이동에 어떤 영향을 미치는지 조사했다. 세포 전이는 (암 세포)전이의 첫 단계이므로 케너는 이러한 플라스틱이 암 세포의 공격성에 영향을 미칠 수 있는지 알아보려고 했다. 연구팀은 0.25μm 입자가 나노 플라스틱에 노출되지 않은 세포에 비해 세포 이동 속도를 증가시킨다는 사실을 발견했다. 플라스틱이 세포 골격의 변화를 유도하고 이러한 변화가 세포 이동에 영향을 미칠 수 있다는 것이 연구팀의 이론이다. 또한 연구팀은 세포 분열 과정에서 나노 플라스틱 입자가 모세포와 딸세포 사이에 분포하는 것을 확인했다. 연구팀은 플라스틱 입자가 세포 분열을 가속화하고 모세포에서 딸 세포로 전달되기 때문에 이러한 플라스틱이 (암세포) 전이 촉진 효과를 가질 수 있다고 말했다. 이 아이디어는 암세포가 증식에 도움이 되는 물질을 보유하는 경향이 있다는 관찰에서 비롯됐다. 케너 박사는 "종양 세포는 항상 복제를 원하고 더 악성화되기를 원한다"라고 설명했다. 그는 "따라서 세포 내에 유지되는 모든 물질은 이론적으로는 이를 달성하는 데 도움이 된다"고 부연했다. 미국 빙엄턴 대학교의 유체-고체 인터페이스 전문가인 신 용(Xin Yong)은 이 연구가 귀중한 모델을 제공하지만 미세 플라스틱이 실험실 외부의 생물학적 세포와 어떻게 상호작용하는지에 대한 완전한 그림을 제공하지는 못한다고 지적했다. 그는 "이 결과는 매우 중요함에도 불구하고 이번 연구는 플라스틱의 주요 특성을 나타내지 않는 상업적으로 이용 가능한 폴리스티렌 나노 및 마이크로 플라스틱에 국한되어 있다"고 말했다. 환경 속의 마이크로 플라스틱과 나노 플라스틱은 플라스틱 물체가 분해되어 형성되거나 산업 제품에서 직접 방출된다. 신 용은 "결과적으로 이러한 입자는 매우 불규칙한 모양을 가지고 있으며, 연구자들은 이러한 다양한 형태가 플라스틱이 세포와 상호 작용하는 방식에 어떤 영향을 미치는지 이해해야 한다"고 설명했다. 그는 "우리는 이제 겨우 표면을 긁었을 뿐이다"라면서 "폴리스티렌은 다양한 입자 중 하나일 뿐이다. 실제 세계에서는 한 입자뿐만 아니라 여러 입자의 영향을 동시에 받는다"라고 지적했다. 미세 플라스틱과 나노 플라스틱이 세포 건강에 미치는 영향에 대한 욘템의 새로운 메타 분석에서도 미세 플라스틱에 대한 연구는 특정 유형의 플라스틱에만 집중하는 경향이 있는 것으로 나타났다. 욘템은 플라스틱 종류와 플라스틱 농도 측면에서 실제 환경을 더 잘 모방하는 실험이 시급히 필요하다고 설명했다. 그녀는 "연구자들은 일상적인 플라스틱 병에서 나오는 미세 플라스틱과 나노 플라스틱을 사용해 연구를 시작해야 한다"고 말했다. 참고 자료: 브린작-슈라이버 외, 화학, 2024, DOI: 10.1016/j.chemosphere.2024.141463 F D 옌템과 M A 아바브, 캠브리지 프리즘: 플라스틱, 2024, DOI: 10.1017/plc.2024.6
-
- 생활경제
-
미세 플라스틱, 세포 분열 중에 딸세포로 전달
-
-
손소독제 등 가정용 화학용품, 자폐증 유발 가능성 제기
- 손소독제나 세탁 세제 등 개인 위생용품과 가구에서 발견되는 화학물질을 포함한 특정 가정용 화학물질은 뇌 건강에 위험을 초래해 잠재적으로 다발성 경화증과 자폐증을 유발할 수 있다는 연구 결과가 나왔다. 25일(현지시간) 뉴로사이언스뉴스닷컴에 따르면 미국 오하이오주의 케이스 웨스턴 리저브 대학교 의과대학 연구팀은 1800가지 화학물질을 조사한 결과 가구에서 헤어 제품에 이르기까지 다양한 품목에서 발견되는 일반 가정용 화학물질이 다발성 경화증과 자폐 스펙트럼 장애와 관련이 있을 수 있다고 주장했다. 연구팀은 일부 가정용 화학물질이 신경 세포 보호에 필수적인 역할을 하는 뇌의 희소돌기아교세포(올리고덴드로세포·oligodendrocytes)를 손상시킨다는 사실을 규명했다. 생쥐 실험에서 세 가지 4차 화합물 중 하나를 경구 투여한 새끼는 며칠 후 뇌 조직에서 해당 화학 물질이 검출 가능한 수준으로 나타났다. 이는 해당 화합물이 혈류와 뇌 세포 사이의 보호 요새인 혈액 뇌 장벽을 통과할 수 있음을 시사한다. 신경학적 문제는 수백만 명의 사람들에게 영향을 미치지만 유전적 요인만으로 설명할 수 있는 경우는 극히 일부에 불과하다. 이는 알려지지 않은 환경적 요인이 신경 질환의 중요한 원인임을 나타낸다. 이 연구의 수석 연구자인 폴 테사르(Paul Tesar) 도널드 앤드 루스 웨버 굿맨 혁신 치료학 교수 겸 의과대학 신경교과학연구소 소장은 "희소돌기아교세포의 손실은 다발성 경화증 및 기타 신경 질환의 기초가 된다"고 말했다. 테사르 소장은 "이번 연구는 소비자 제품의 특정 화학물질이 희소돌기아교세포에 직접적으로 해를 끼칠 수 있으며, 이는 이전에는 인식되지 않았던 신경 질환의 위험 요인이라는 것을 보여준다"고 설명했다. 1800가지 화학물질 분석 연구팀은 '화학물질이 뇌 건강에 미치는 영향에 대한 철저한 연구가 충분히 이루어지지 않았다'는 전제하에 인간에게 노출될 수 있는 1800여 가지 화학물질을 분석했다. 연구 결과 유기인산계 난연제와 소독제 성분의 제4급 암모늄 화합물 등 두 종류의 가정용 화학물질이 희소돌기아교세포에 더욱 유해한 것으로 밝혀졌다. 유기인산 난연제는 플라스틱의 내연소성을 높이기 위해 추가하는 첨가제다. 특히 제4 암모늄 화합물은 최근 코로나19 대유행과 함께 소독제 사용량 증가로 인해 노출 가능성이 급격히 높아졌다. 연구팀은 이들 화학물질이 희소돌기아교세포의 성숙을 저해하거나 직접 세포 사멸을 유발한다는 사실을 규명했다. 희소돌기아교세포는 뇌 신경 세포를 보호하는 절연막 생성에 중요한 역할을 하는 세포다. 연구팀은 실험실에서 세포 및 오가노이드 시스템을 사용해 제4급 암모늄 화합물이 희소돌기아교세포를 사멸시키는 반면 유기인산염 난연제는 희돌기아교세포의 성숙을 막는다는 것을 보여줬다. 코로나19 후 손소독제 등 사용증가 또한 연구팀은 동일한 화학물질이 생쥐의 발달 중인 뇌에서 희돌기아교세포를 어떻게 손상시키는지 확인했다. 아울러 화학물질 중 하나에 대한 노출이 어린이들의 신경학적 결과 저하와 관련있다는 사실도 밝혀냈다. 소독제인 제4급 암모늄 화합물의 사용이 증가하면서 특히 어린이의 신경학적 결과와 연관된 맥락에서 뇌에 미치는 장기적인 영향에 대한 우려가 커지고 있다. 케이스 웨스턴 리저브 의과대학 의료 과학자 훈련 프로그램의 수석 저자이자 대학원생인 에린 콘(Erin Cohn)은 "우리는 다른 뇌 세포가 아닌 희소돌기아교세포가 제4급 암모늄 화합물과 유기인산염 난연제에 놀랍도록 취약하다는 사실을 발견했다"고 말했다. 콘 연구원은 "이러한 화학 물질에 대한 인간의 노출을 이해하면 일부 신경계 질환이 어떻게 발생하는지에 대한 누락된 연결 고리를 설명하는 데 도움이 될 수 있다"고 설명했다. 연구에서 콘과 동료 연구팀은 2013년부터 2018년까지 미국 CDC의 국민건강영양조사에서 수집한 어린이 소변 샘플에서 한 가지 난연제 대사산물인 BDCIPP의 수순을 연구해 난연제 수치를 분석했다. 3~11세 어린이 1763명 중 거의 모두의 소변에서 BDCIPP가 발견됐다. 가장 높은 수준의 사람들은 노출이 낮은 사람들보다 운동 기능 장애나 교육 지원 요구 사항과 같은 부정적인 신경 발달 결과를 경험할 가능성이 2배, 6배 더 높았다. 그러나 관찰 데이터는 직접적인 원인이 아닌 연관성을 가리킬 뿐이다. 이 연구처럼 대부분의 데이터가 동물과 세포에서 나온 것이기 때문에 이러한 화학물질이 인간에게 미치는 영향에 대한 이해에는 여전히 큰 차이가 있다. 연구팀은 그렇기 때문에 특히 어린이를 대상으로 이러한 화합물이 건강에 미치는 영향을 지속적으로 조사해야 한다고 주장했다. 이들은 "발달 중인 중추신경계는 환경에 특히 민감하며, 화학물질 노출이 중요한 발달 시기에 발생하면 어린이에게 특히 해로울 수 있다"고 말했다. 전문가, 추가 조사 필요성 강조 한편, 전문가들은 이러한 화학물질에 대한 인체 노출과 뇌 건강에 미치는 영향 사이의 연관성에 대해서는 추가 조사가 필요하다고 경고했다. 이 획기적인 연구는 이러한 화학물질이 신경계 질환에 미치는 영향에 대한 추가 조사의 필요성을 시사하며 공중 보건을 위해 보다 엄격한 조사와 규제가 필요하다는 점을 강조한다. 향후 연구에서는 성인과 어린이의 뇌에서 화학물질 수준을 추적하여 질병을 유발하거나 악화시키는 데 필요한 노출의 양과 기간 등을 밝혀내야 한다. 테사르 소장은 "우리의 연구 결과는 이러한 일반적인 가정용 화학물질이 뇌 건강에 미치는 영향에 대한 보다 포괄적인 조사가 필요하다는 것을 시사한다"고 말했다. 그는 "우리의 연구가 화학물질 노출을 최소화하고 인간의 건강을 보호하기 위한 규제 조치 또는 행동 개입에 관한 정보에 입각한 결정에 기여할 수 있기를 바란다"고 말했다. 이번 연구는 뇌 질환 발생에 미치는 환경적 요인의 중요성을 다시 한 번 확인시켜주며, 신경 질환 예방을 위한 화학물질 규제 및 사용 제한 필요성을 제안한다. 케이스 웨스턴 리저브 의과대학과 미국 환경보호청의 벤자민 클레이튼, 마유르 마다반, 크리스틴 리, 사라 야콥, 유리 페도로프, 마리사 스카부조, 케이티 폴 프리드먼, 티모시 셰퍼 등이 이 연구에 추가로 참여했다. 이번 연구 결과는 '네이처 뉴로사이언스(Nature Neuroscience)'에 게재됐다.
-
- 생활경제
-
손소독제 등 가정용 화학용품, 자폐증 유발 가능성 제기
-
-
[신소재 신기술(17)] 탄소 배출량 25만 톤 감소! 탄소 네거티브 복합 데크로 건설 산업의 탄소 발자국 줄이기
- 건축 자재에 이산화탄소(CO₂)를 저장해 보다 친환경적인 건축 자재를 만드는 혁신적인 기술이 개발됐다. 건물과 건축에 사용되는 자재의 생산은 일반적으로 지구 온난화와 기후 변화에 영향을 미치는 강력한 온실가스인 이산화탄소를 다량 배출한다. 기술 전문매체 테크익스플로어는 18일(현지시간) 과학자들이 새로 개발한 복합 데크는 제조 과정에서 배출되는 이산화탄소보다 더 많은 이산화탄소를 저장함으로써 탄소 네거티브 특성을 구현했다고 보도했다. 이는 기존 복합 데크의 한계를 극복하는 중요한 성과다. 연구팀은 미국 화학회(ACS) 춘계 회의에서 이번 연구 결과를 발표했다. 이 프로젝트의 수석 연구자 중 한 명인 유기 화학자 데이비드 헬데브란트에 따르면 페록 등 몇 가지 유형의 시멘트를 제외하고는 탄소 네거티브 복합재가 거의 없는 상태다. '페록'은 돌과 철을 결합한 것으로 콘크리트 보다 강도가 5배 높은 친환경 차세대 건축자재다. 시멘트 대용품으로 사용되는 친환경 건축 자재인 페록은 주로 폐철강 분진과 유리 분쇄물에서 나온 실리카 등 재활용 재료로 생산된다. 철강 분진은 이산화탄소와 반응해 탄산철을 생성하고, 이것이 응고되면 페록이 된다. 건축, 전체 탄소 배출량의 11% 차지 헬데브란트는 그의 팀이 개발한 복합 데크는 "사용 기간 동안 이산화탄소를 배출하지 않는 최초의 복합 재료 중 하나"라고 말했다. 데이비드 힐데브란트는 미국 태평양 북서부 국립연구소(PNNL)에서 일하며 CO₂ 포집을 위한 특수 액체를 개발하고 있다. 세계그린빌딩위원회에 따르면 건물 건설에 사용되는 자재와 공정은 전체 에너지 관련 탄소 배출량의 11%를 차지한다. 그로 인해 업계에서는 재활용 또는 식물 유래 제품을 사용하는 등 탄소 배출량을 상쇄할 수 있는 건축 자재를 개발하는 데 많은 노력을 기울이고 있다. 그러나 대부분의 경우 이러한 지속 가능한 건축 자재는 기존 자재보다 비싸거나 강도나 내구성과 같은 특성을 따라갈 수 없는 경우가 많다. 건축 자재의 한 유형인 데크는 수십억 달러 규모의 산업이다. 목재 플라스틱 합성물로 만든 데크 보드는 자외선에 의한 손상이 적고 오래 사용할 수 있기 때문에 목재 보드의 대안으로 인기가 높다. 합성 데크는 일반적으로 목재 칩 또는 톱밥과 고밀도 폴리에틸렌(HDPE)과 같은 플라스틱을 혼합하여 제작한다. 이러한 복합재를 보다 지속가능하게 만들기 위한 대안은 폐기물 또는 태워버릴 수 있는 필러를 사용하는 것이다. 헬데브란트의 동료인 키르티 카파간툴라가는 저품질의 갈탄과 제지 과정에서 남은 목재 유래 제품인 리그닌을 데크 합성물의 충전재로 사용했다. 연구팀은 석탄과 리그닌 입자를 플라스틱과 혼합하여 플라스틱에 부착되게 하기 위해 입자의 표면에 에스테르 기능기를 첨가했다. 헬데브란트는 "에스테르는 본질적으로 카복실산이며, 이는 CO₂가 포집된 상태"라고 설명했다. 연구팀은 이 과정을 검증하기 위해 CO₂와 석탄, 리그닌과 같은 목재 제품에 풍부한 페놀 사이에 새로운 화학 결합을 형성하는 고전적인 화학 반응으로 전환했다. 이 반응을 거친 후 리그닌과 석탄 입자는 무게 기준으로 2~5%의 CO₂를 함유했다. 이어서 연구팀은 이 입자들을 다양한 비율로 고밀도 폴리에틸렌(HDPE)과 혼합해 갈색을 띠는 검은색 복합재를 제작하고 그 성질을 평가했다. 필러를 80%까지 포함한 복합재는 CO₂ 함량을 최대화하면서도 국제적인 건축 자재 규정에 부합하는 강도와 내구성을 보였다. 이 소재는 PNNL의 전단 보조 가공 및 압출(ShAPETM) 기계를 사용해 마찰 압출 공정으로 제조됐다. 연구원들은 이 기술을 이용해 데크나 야외 가구에 적합한, 표준 목재 복합재와 유사한 외형과 질감을 지닌 10피트(약 3m) 길이의 복합재 패널을 제작했다. 이 새로운 합성 데크 재료는 우수한 물리적 성질뿐만 아니라, 상당한 경제적 및 환경적 이점을 제공한다. 이 데크는 표준 합성 데크 재료보다 18% 더 저렴하다. 헬데브란트는 이 데크가 제조 과정과 사용 기간 동안 발생하는 이산화탄소 양보다 더 많은 이산화탄소를 저장할 수 있는 능력을 갖추고 있다고 말했다. 미국, 1년간 목재 데크 판매량은? 미국에서 매년 판매되는 데크의 양은 35억 5000만피트(약 108만 2040km)에 달한다. 헬데브란트는 연구팀이 개발한 CO₂ 네거티브 복합 데크가 이를 대체하게 되면, 연간 약 25만 톤의 CO₂를 격리할 수 있으며, 이는 5만4000대의 자동차가 1년 동안 배출하는 CO₂량과 맞먹는다고 설명했다. 연구팀은 향후 더 다양한 복합재 조합을 개발하고 그 특성을 실험할 계획이다. 또한 울타리나 사이딩(건물 외벽 마감재)과 같은 여러 건축 자재에 대한 탄소 네거티브 복합재를 개발할 수 있을 것으로 기대하고 있다. 동시에, 연구팀은 이 새로운 탄소 네거티브 데크의 상용화를 위해 노력 중이다. 이 혁신적인 데크는 이르면 내년 여름부터 건축 자재 전문 매장에서 판매될 수 있을 것으로 예상된다.
-
- 포커스온
-
[신소재 신기술(17)] 탄소 배출량 25만 톤 감소! 탄소 네거티브 복합 데크로 건설 산업의 탄소 발자국 줄이기
-
-
'바이오플라스틱' 환경 문제의 해답인가, 새로운 문제의 시작인가?
- 생분해성 혹은 식물 기반의 바이오 플라스틱은 급성장하고 있지만 여전히 기후 및 화학 물질에 대한 우려가 제기됐다. 환경건강뉴스(EHN)은 지난 11일(현지시간) 바이오 플라스틱은 미국 멕시칸 푸드 프랜차이즈 치폴레의 퇴비화 가능한 부리또 그릇부터 코카콜라의 식물성 병, 슈퍼마켓의 불투명한 농산물 봉투에 이르기까지, 식품 산업 전반에 걸쳐 확산되고 있다며 이같이 보도했다. 바이오 플라스틱은 그 외에도 자동차 쿠션, 전자제품, 의류, 건축 자재 등에도 사용되고 있다. EHN에서 소개한 바이오 플라스틱의 정의와 장점과 단점을 다음과 같이 정리했다. 전 세계 바이오 플라스틱 산업은 2023년 87억 달러(약 11조 4031억원)에서 2030년 310억 달러(약 40조 6317억 원)로 급성장세를 보이고 있다. 이는 전통적인 플라스틱 산업보다 빠른 성장률이다. 바이오 플라스틱은 전체 플라스틱 시장의 1%에 불과하지만, 일각에서는 바이오 플라스틱이 플라스틱의 지속 가능한 미래라고 선전하고 있다. 오는 4월, 플라스틱 오염 문제에 대한 해결책을 모색하기 위해 개최되는 국제 조약 회담을 앞두고 있는 대표단 중 일부는 바이오 플라스틱을 조약의 대안 및 대체품으로 포함시키려는 움직임을 보이고 있다. 유럽 바이오플라스틱 협회는 웹사이트에서 "바이오플라스틱이 플라스틱의 진화를 주도하고 있다"고 주장하며 바이오플라스틱의 장점으로 기존 플라스틱에 비해 '탄소 중립성'과 특정 조건에서의 생분해성을 꼽았다. 그러나 바이오 플라스틱이 분해 속도가 빠르고, 더 안전한 소재일 뿐만 아니라 탄소 발자국이 적다는 주장은 과장된 면이 있다. 전문가들은 바이오 플라스틱이 다양한 해결책 중 하나가 될 잠재력을 가지고 있음을 인정하면서도, 제품의 수명 종료 시 관리 및 화학적 안전성을 설계에 포함시키고, 기업의 그린워싱을 방지할 수 있는 더 강력한 표준과 규제의 필요성을 강조했다. 그린워싱(Greenwashing)은 기업이나 조직이 자신들의 제품, 서비스, 정책이 환경에 미치는 영향이 실제보다 훨씬 친환경적이거나 지속 가능하다는 인상을 주기 위해 마케팅 전략이나 홍보 활동을 하는 행위를 말한다. 이러한 행위는 대중에게 오해를 불러일으키거나 잘못된 정보를 제공하여, 실제로는 환경에 해를 끼칠 수 있는 제품이나 서비스를 친환경적인 것처럼 포장하는 것을 포함할 수 있다. 바이오 플라스틱 폐기물 규제 없어 노르웨이 과학기술연구소의 마틴 와그너 생물학 부교수는 바이오 기반 플라스틱을 안전한 방법으로 제조할 수 있다면, 물론 이는 매우 큰 전제이지만, 우려되는 화학 물질을 배제하고, 나노 및 미세 플라스틱의 생성을 최소화하는 방식으로 생산될 경우, 바이오 기반 플라스틱이 해결책의 한 부분이 될 수 있다고 말했다. 와그너의 연구에 따르면, 환경에 우호적인 것으로 여겨지는 퇴비화 가능한 그릇과 식물 기반 음료수 병이 전통적 플라스틱 제품에서 발견되는 것과 같은 수준의 건강에 해로운 화학 물질을 방출할 수 있다는 사실이 밝혀졌다. 또한, 생분해성 바이오 플라스틱이 플라스틱 쓰레기 문제를 근본적으로 해결하지 못한다는 지적도 있다. 바이오 플라스틱은 사용 후 적절한 관리가 필요함에도 불구하고, 바이오 플라스틱 폐기물을 산업적으로 퇴비화하거나 안전하게 관리할 수 있는 인프라나 규정이 아직 충분히 마련되지 않았다. 그로 인해 과학자들과 플라스틱을 지지하는 이들은 플라스틱 사용을 줄이는 것이 플라스틱 위기에 대응하는 가장 핵심적인 해법이라고 강조했다. 특히, 일회용 바이오플라스틱의 사용이 문제를 야기한다고 우려를 표명했다. 플라스틱 재사용을 지지하는 단체인 업스트림(Upstream)의 전무이사 크리스탈 드리스바흐 전무이사는 "지구에서 자원을 수십억 번 채취하고 제조해 단 한 번 사용한 뒤 버리는 행위 자체가 문제의 본질이다"라고 말함으로써, 지속 가능성에 대한 근본적인 접근 필요성을 강조했다. 바이오 플라스틱의 오해 바이오 플라스틱은 생분해성 또는 바이오 기반과 같은 용어가 명확하지 않아 많은 오해를 불러일으킨다는 지적이 있다. 해양 생물학 교수이자 플리머스 대학교 해양 연구소의 리처드 톰슨 소장은 "냉소적인 시각으로 보면 바이오플라스틱은 혼란을 일으키기 위해 의도적으로 만들어진 용어라고 생각한다"고 꼬집었다. 많은 사람들이 모든 바이오 플라스틱이 환경에서 생분해되거나 분해된다고 잘못 알고 있다는 지적이다. 또한 많은 사람들이 바이오 플라스틱이 식물 기반이라고 생각하지만, 폴리부틸렌 아디페이트 테레프탈레이트(PBAT)와 같이 화석 연료로만 만들어진 제품도 있다. 업계에서는 PBAT와 같은 물질을 바이오 플라스틱이라고 부르는데, 이는 화학 결합의 유형과 환경 조건에 따라 식물 기반 바이오 플라스틱과 마찬가지로 분해되도록 설계됐기 때문이다. 또한 업계에서는 바이오 플라스틱을 주로 생분해성 플라스틱과 비생분해성 플라스틱으로 나누며, 이들 각각의 범주 안에서 식물 기반 플라스틱과 화석 연료 기반 플라스틱을 동일한 그룹으로 분류하는 경향이 있다. 전 세계적으로 생산되는 플라스틱은 대체로 이 두 범주로 구분된다. 퇴비화 가능한 바이오 플라스틱은 업계 표준에 따라 산업 퇴비화 시설에서 12주 이내에 완전히 분해될 수 있는 생분해성 바이오플라스틱의 특정 부류에 속한다. 다른 한편으로, 비생분해성 바이오 플라스틱에는 사탕수수, 사탕무, 당밀, 또는 옥수수 등에서 추출된 바이오 기반의 폴리에틸렌(바이오-PE), 바이오 기반 폴리에틸렌 테레프탈레이트(바이오-PET), 폴리아미드(나일론) 등이 포함된다. 이 바이오 플라스틱들은 사탕수수 등 천연 자원에서 추출되었음에도 불구하고, 기존의 화석 연료 기반 플라스틱과 유사한 기능성을 제공하도록 설계됐다. 가장 흔히 사용되는 생분해성 바이오플라스틱 중 하나는 폴리락트산(PLA)으로, 옥수수와 같은 전분 기반의 폴리에스테르로 제조된다. 또한, 셀룰로오스 기반의 바이오 플라스틱 섬유도 이 범주에 포함되며, 농업 부산물, 해조류, 효모, 박테리아에서 추출한 폴리하이드록시알카노에이트(PHA)와 폴리부틸렌숙신산염(PBS)으로 제작된 바이오플라스틱도 동일한 범주 안에 속한다. '3세대' 바이오플라스틱은 농업 폐기물, 음식물 쓰레기, 다시마, 스위치그래스, 폐유, 박테리아, 목재 폐기물 등 다양한 원료를 활용하여 제작되며, 식량 작물을 사용하지 않기 때문에 보다 지속 가능한 대안으로 간주된다. 이러한 3세대 바이오플라스틱 제품들은 이미 시장에 출시되어 있지만, PLA나 바이오 폴리아미드를 사용한 제품들의 규모에는 아직 미치지 못하고 있다. 바이오 플라스틱 사용 용도는? 플라스틱 산업 협회의 지속 가능성 담당 매니저 헤더 노츠는 일회용 바이오 플라스틱 음료 용기, 퇴비화 가능한 식품 서비스 용기, 소매 포장, 그리고 기타 식품 산업 관련 제품이 바이오 플라스틱 사용의 약 43%를 차지한다고 말했다. 그중에서도 PLA와 바이오 PET의 사용이 가장 많다. 노츠에 따르면, 생분해성 멀치 필름 및 기타 농업용 제품이 주로 PLA와 PHA로 제조되어 전체 바이오 플라스틱 사용량의 약 21%를 차지한다. 또한, 안경, 섬유, 컵, 아이폰 케이스, 커피 포드 등의 소비재들은 전체 사용량의 13%를 차지하며, 이들 제품은 생분해성 및 비생분해성 다양한 바이오 플라스틱으로 제작된다. 자동차 산업도 바이오 플라스틱의 또 다른 중요한 소비자 군이다. 자동차 쿠션, 대시보드, 범퍼, 배터리 커버 및 기타 부품들이 점점 더 바이오 기반의 폴리아미드 및 바이오 PP로 제작되고 있다. 바이오 플라스틱의 사용은 또한 건축 및 건설, 전자, 코팅 산업에서도 확장되고 있지만, 상대적으로 더 적은 비율을 차지한다. 대규모 바이오 플라스틱 제조업체들은 대부분 화석 연료 기반 플라스틱을 생산하는 대형 석유화학 회사의 내부 사업부이거나, 이러한 대기업에서 독립한 분사 회사들이다. 그럼에도 불구하고, 어떤 회사가 시장에서 선도적인 위치를 차지하고 있는지에 대해서는 재무 분석가들 사이에 의견이 분분하다. 예를 들어, 인사이더 몽키는 바이오 플라스틱 부문이 전체 시가총액에서 차지하는 비중이 비록 작지만, 전체 시가총액 기준으로 BASF SE, 다우, 라이온델바젤 인더스트리, LG화학, 셀라니즈를 상위 5대 제조업체로 지목했다. 반면, 다른 분석가들은 석유화학 기업에 인수되었거나, 석유화학 기업과의 합작 투자를 통해 성장한 기업들을 시장의 선두 주자로 보는 경향이 있다. 이러한 기업으로는 네덜란드 암스테르담에 본사를 둔 다국적 식품 및 바이오케미컬 기업 코비온(Corbion), 영국 옥스퍼드에 본사를 둔 바이오플라스틱 생산 및 개발회사 바이옴 바이오플라스틱(Biome Bioplastics), 텐마크 코펜하겐의 플랜틱(Plantic), 미국 미시건 주의 네이처웍스(NatureWorks), 태국 방콕에 본사를 둔 바이오플라스틱 및 바이오케미컬 회사 PTT MCC바이오케미(PTT MCC Biochem) 등이 포함된다. 환경과 건강에 미치는 영향 바이오플라스틱은 전통적인 플라스틱과 유사한 제조 공정을 거쳐 생산된다. 이 폴리머는 최소한 부분적으로 식물 재료에서 추출한 화학 물질을 기반으로 하며, 때로는 화석 연료에서 완전히 추출한 화학 물질로 구성된다. 제품의 유연성, 내구성, 색상 및 기타 특성을 조정하기 위해 다양한 화학적 충전재, 첨가제 및 염료가 첨가된다. 세계자연기금(WWF)의 플라스틱 폐기물 및 사업 책임자인 에린 사이먼 부사장은 바이오 플라스틱이 여전히 독성 화학 물질을 포함할 수 있다고 말했다. 사이먼은 “PET를 제조할 때, 오래된 탄소 또는 새로운 탄소를 사용하더라도, 궁극적으로 같은 제품을 만들기 때문에 많은 가공 화학 물질이 여전히 필요하다”며, 바이오 플라스틱 생산 과정에서도 화학 물질의 사용이 불가피함을 지적했다. 와그너의 2020년 연구에 따르면 PLA, PBAT, PHA, PBS, 바이오 PE 및 바이오 PET로 만든 43개의 일상적인 바이오 플라스틱 제품이 기존 제품과 마찬가지로 독성이 있는 것으로 나타났다. 이 중 3분의 2가 환경 내 다양한 생명체에 유해할 가능성이 있는 것으로 나타났으며, 42%는 DNA 손상을 유발할 수 있는 자유 라디칼을 생성하는 화학물질의 존재로 인해 산화 스트레스를 일으키는 것으로 조사됐다. 또한, 4분의 1의 샘플에서는 호르몬 교란 특성이 관찰됐다. 분석된 개별 바이오 플라스틱 샘플에는 평균적으로 1000개에서 최대 2만965개에 이르는 다양한 화학적 특성이 포함되어 있었다. 연구를 주도한 와그너는 "이런 종류의 연구를 진행하면서 가장 충격적인 발견은 개별적인 플라스틱 제품에 엄청나게 많은 화학 물질이 존재한다는 사실이었다"고 말했다. 이 연구 과정에서 발견된 다수의 화학 물질들 중 상당수는 특정되지 않았지만, 와그너는 프탈레이트 같은 '자주 지목되는 화학물질들'은 검출되지 않았다고 말했다. 그는 "바이오플라스틱을 기능적으로 제조하는 데 쓰이는 화학물질들에 대한 우리의 이해가 상당히 제한적임을 발견했다. 폴리머의 화학 구조가 다르기 때문에, 사용되는 첨가제 역시 다를 가능성이 있다"고 밝혔다. 바이오 플라스틱과 기후 변화 바이오플라스틱을 옹호하는 주요 주장 중 하나는 이들이 이론상으로 재생 가능한 자원에서 탄소를 추출할 때 순 이산화탄소 배출량이 증가하지 않으므로, 전체 수명주기 동안 전통적 플라스틱에 비해 훨씬 적은 온실가스를 배출한다는 것이다. 예컨대, 유럽 바이오플라스틱 협회는 전 세계적으로 화석 연료 기반의 폴리에틸렌 수요를 바이오 PE로 대체할 경우, 연간 약 8000만 톤의 이산화탄소 배출을 절감하여 마치 매년 2000만 번의 항공 여행을 줄인 것과 동등한 효과를 가져올 수 있다고 주장한다. 2017년 진행된 연구에서는 미국 내 기존 플라스틱을 옥수수 기반의 PLA로 대체할 경우, 미국 플라스틱 산업에서 발생하는 온실가스 배출량을 25% 감소시킬 수 있을 것으로 추정했다. 이 연구는 또한 화학 산업이 재생 가능 에너지 및 스위치그래스와 같은 더 지속 가능한 원료로 전환함으로써 더 큰 탄소 배출 감소 효과를 달성할 수 있다고 제시했다. 앞서 설명했듯이 바이오 플라스틱 샘플에는 평균적으로 1,000개에서 최대 2만965개에 이르는 다양한 화학적 특성이 포함되어 있음이 밝혀졌다. 드레이스바흐는 세라믹, 스테인리스 스틸, 유리로 만든 재사용 가능한 용기는 수명 기간 동안 일회용 바이오 플라스틱보다 이산화탄소 배출량이 3~10배 적다고 말했다. 하지만 바이오플라스틱이 가져올 수 있는 이산화탄소 절감의 잠재적 이점은, 비료와 살충제의 사용 증가, 그리고 옥수수나 사탕수수 같은 원료의 생산을 위한 토지 개간과 산림 태우기로 인해 일부 상쇄될 수 있다. 또한, 생분해성 플라스틱이 매립지에 매립될 경우, 분해 과정에서 메탄 같은 강력한 온실가스가 배출되어 환경에 또 다른 부담을 줄 수 있다. 바이오 플라스틱 폐기물 규정은? 생분해성 바이오플라스틱의 폐기물 관리는 생분해성을 정의하는 명확한 규정이 부재하기 때문에 복잡한 과제로 남아있다. 업계 자발적 기준에 따르면, 생분해성 제품은 대부분 6개월 이내에 자연적으로 분해되어야 하지만, 생분해성이라고 표시된 일부 제품은 완전히 분해되기까지 수년이 걸릴 수 있다. 예를 들어, 한 연구에 따르면 토양에 묻힌 생분해성 비닐봉지가 3년 후에도 여전히 분해되지 않은 채 발견됐다. 이러한 물질이 퇴비 시설에 매립되면 오염 물질이 되어 걸러내야 한다. 톰슨에 따르면, 재활용 시설에서도 이런 종류의 폐기물은 전체 재활용 플라스틱의 품질을 저하시킬 수 있어 기피 대상이다. 게다가 많은 지역에서는 산업 퇴비화 시설이나 도로변 수거 시설이 부족해, 퇴비화 가능한 포장재와 운반 용기가 결국 매립지나 소각장으로 향하는 경우가 많다. 퇴비화되지 않는 플라스틱이 퇴비화 가능한 플라스틱으로 잘못 인식되는 경우가 빈번하여, 라벨링이 명확하지 않을 때 혼란이 가중된다. 미국 퇴비화 위원회의 린다 노리스-월트 부국장은 이러한 문제를 “그린워싱, 모조품, 짝퉁”이라고 지칭했다. 다수의 퇴비화 업체들이 이러한 재료로 인해 퇴비화 가능한 식품 포장을 기피하며, 이는 업체의 수익성에 부정적인 영향을 미친다. 노리스-월트는 이 문제를 두 가지 주요 요인으로 설명했다. 첫 번째는 처리 과정에서 발생하는 노동력 문제이며, 두 번째는 최종 퇴비 제품의 품질 저하로 인해 농장, 조경업체, 골프장 등의 시장에 미치는 영향이다. 따라서, 바이오플라스틱은 퇴비를 오염시키는 원인이 될 수 있다. 생분해성 인스티튜트(BPI)와 유럽의 대응 기관인 OK컴포스트(OK Compost)는 퇴비화 업체들의 우려에 대응하기 위하여 퇴비화 가능한 포장을 위한 자발적 인증 표준을 마련했다. 이 인증을 획득하기 위해서는 바이오플라스틱 제조업체가 제품의 분해 속도를 증명하는 ASTM 기준을 만족시켜야 하며, PFAS(영구적 화학 물질)를 포함하지 않고, 일반적인 토양 생태독성 테스트를 통과해야 한다. 그러나 노리스-월트는 이러한 인증 프로그램이 퇴비 중 미세 플라스틱 문제를 충분히 고려하지 않는다고 지적했다. 이에도 불구하고, 미국 퇴비화 위원회의 최근 조사 결과, 조사 대상 173개 퇴비업체 중 오직 46개 업체만이 퇴비화 가능한 식품 포장의 사용을 허용하는 것으로 나타났다. 혁신을 위한 기회 전문가들은 바이오플라스틱이 여러 어려움에도 불구하고, 화학적 안전성과 수명이 제품 설계에 주요 고려사항으로 포함될 경우, 농업용 멀치 필름과 같은 특정한 용도에 대해 적합한 대안이 될 수 있다고 지적했다. 린 프로덕션 액션의 마크 로시 전무이사는 플라스틱 사용이 필수적인 상황에서는 바이오플라스틱의 활용을 고려해야 한다고 말했다. 그는 "모든 재료에는 잠재적 문제가 존재한다. 우리는 이러한 재료를 인간의 건강과 안전을 고려하여 어떻게 최적화할 수 있을까?"라고 의문을 제기했다. 플라스틱 산업 내에서 바이오플라스틱은 특정 시장에서의 성장 가능성을 가지고 있지만, 광범위한 대체재로는 여겨지지 않는다. 로시는 바이오플라스틱이 대규모로 기존 플라스틱을 대체할 수 있는 해법이 아니라고 명확히 했다. 다시마나 농업 폐기물로 제작된 차세대 바이오플라스틱은 식량 작물을 원료로 사용함으로써 발생하는 환경적 문제를 어느 정도 해결했으나, 여전히 독성 문제에 대한 해결책을 마련해야 한다는 지적이 있다. 클린 프로덕션 액션은 제조업체들이 자사 제품에서 수천 가지의 유해 화학물질을 식별하고 제거할 수 있도록 돕기 위해, 일회용 식품 포장과 재사용 가능한 용기에 적용할 수 있는 독립적인 표준인 그린스크린(GreenScreen)을 개발했다. 주요 PLA 제조업체 중 하나인 네이처웍스(NatureWorks)는 그린스크린 평가를 통해 자사의 원료가 유해 화학물질을 포함하지 않음을 공식적으로 인증받았다. 그러나 업계 전반에 걸친 변화를 이끌기 위해서는 더 많은 제조업체들이 이러한 제품 인증 과정을 통과해 한다. 노리스-발트는 캘리포니아나 콜로라도에서 시행된 것과 같은 엄격한 라벨링 기준과 법률의 존재가 퇴비화 가능한 바이오플라스틱이 실제로 산업 퇴비화 시설로 올바르게 전달되기 위해 필수적이라고 강조했다. 그녀는 "실수든 의도적이든 시리얼을 퇴비화할 수 있다고 잘못 표시하는 비양심적 기업들에 대해 소송을 제기하는 것만으로도 이러한 오해를 빠르게 중단시킬 수 있다. 여기서 중요한 것은 법의 집행이다"라고 말했다. 전 세계적으로 전문가들은 바이오플라스틱이 현재 직면한 플라스틱 오염 문제에 대응하기 위한 국제적 합의에서 중요한 역할을 하고 있음에 동의하며, 이러한 재료는 기존 플라스틱과는 다르게 관리되어야 한다는 점에 대해 합의했다. 톰슨은 단순히 대안이나 대체재를 찾는 것 이상이 필요하다고 말했다. 그는 "우리가 직면한 문제를 해결할 뿐만 아니라 더 우수한 성능을 제공할 수 있음이 입증된 대안과 대체재가 필요하다"고 강조했다. 톰슨과 와그너가 활동하는 국제적 단체인 '효과적인 글로벌 플라스틱 조약을 위한 과학자 연합'은 플라스틱이 화학물질을 적게 포함하도록 재설계되고, 재료 회수를 간소화할 인센티브를 조약에 포함시키길 바란다. 와그너는 "업계가 1만가지의 화학 물질을 포함하지 않는 제품을 설계하길 바란다"고 말해, 제품 설계 시 화학물질 사용을 대폭 줄이는 것을 목표로 하고 있음을 밝혔다.
-
- 생활경제
-
'바이오플라스틱' 환경 문제의 해답인가, 새로운 문제의 시작인가?
-
-
[신소재 신기술(10)] 쓰레기 아닌 자원! 세탁 세제로 플라스틱 용기 재활용 시대 열리다
- 영국에서 액체 세탁 세제로 플라스틱을 재활용하는 기술이 개발됐다. 과학 기술 전문매체 더쿨다운(TCD)은 10일(현지시간) 영국 킹스 칼리지 런던의 과학자들이 세탁 세제를 사용해 플라스틱을 분해하여 재활용할 수 있는 새로운 방법을 개발했다고 보도했다. 이 연구는 일회용 플라스틱의 일반적인 유형인 폴리락틱산(PLA)에 초점을 맞췄다. 킹스 칼리지 런던의 연구원들은 극한의 열을 사용하지 않고도 PLA를 분해할 방법을 찾던 중 대부분의 세탁 세제에서 흔히 발견되는 칸디다 안타르크티카 리파제 B(Candida antarctica lipase B·CALB)라는 효소를 발견하고 이를 변형해서 이온성 액체에 용해시켰다. 연구팀은 CALB 용액에 플라스틱 컵을 담근 후 24시간이 지나면 플라스틱이 완전히 녹는 것을 확인했다. 이 연구 결과는 과학 저널 셀 물리 과학 보고서(Cell Reports Physical Science)에 게재됐다. 폴리락틱산(Polylactic Acid, PLA)은 옥수수 전분과 사탕수수와 같은 식물성 자원에서 추출한 락틱산을 중합하여 만들어지는 가장 일반적인 상업용 생분해성 플라스틱이다. 그러나 일단 플라스틱으로 바뀌면 생분해되지 않고 매립지를 막거나 바다에 버려지게 된다. PLA는 석유 기반 플라스틱과 달리 식물로부터 얻어지므로 재생 가능한 자원을 사용하며, 사용 후에는 자연 조건 하에서 미생물에 의해 분해되어 이산화탄소와 물로 환원되는 특성을 갖는다. 이로 인해 환경 친화적인 대안으로 주목받으며, 일회용품, 포장재, 섬유, 의료 분야 등 다양한 용도로 사용돼 왔다. 하지만, PLA의 분해 속도는 환경 조건(온도, 습도, 미생물의 존재)에 따라 크게 달라질 수 있다. PLA는 산업적 규모의 퇴비화 시설에서는 빠르게 분해되지만, 자연 상태에서는 분해되는 데 수년이 걸릴 수 있다. 또한, PLA의 생산 과정에서 사용되는 식물 자원이 식량으로 사용될 수 있는 농작물을 사용한다는 점에서 지속 가능성에 대한 논쟁이 뜨거웠다. 연구팀은 "환경에 플라스틱 쓰레기가 쌓이는 것은 생태학적 재앙이며, 이를 해결하기 위해 다양한 접근 방식이 필요하다"고 설명했다. 인류세(Anthropocene)에 따르면 연구팀 중 한 명인 알렉스 브로건 화학과 교수는 "폴리락틱산은 제대로 재활용할 방법이 없기 때문에 선택했다"고 말했다. 브로건 교수는 "우리의 (기술) 개발로 90°C에서 40시간 이내에 플라스틱을 구성 요소로 전환할 수 있게 되었다"고 설명했다. 다음 연구 단계는 CALB 용액에 용해된 플라스틱을 재활용하기 위해 용도를 변경하는 방법을 알아내는 것이다. 브로건 교수는 "현재 엔지니어들과 협력하여 파쇄와 같은 보다 정밀한 전처리를 통해 이 공정을 개선하여 더 큰 규모로 작업할 수 있는 방법을 모색하고 있다"고 말했다. 그는 이어 "우리가 보여줘야 할 주요 개선 사항은 분해된 플라스틱으로 실제로 플라스틱을 다시 만들 수 있다는 점이며, 이를 통해 순환 고리를 끊는 것"이라고 강조했다.
-
- 포커스온
-
[신소재 신기술(10)] 쓰레기 아닌 자원! 세탁 세제로 플라스틱 용기 재활용 시대 열리다
-
-
벤조일 과산화물 여드름 치료제에 발암 물질 검출
- 벤조일 과산화물 여드름 치료제에 발암 물질인 벤젠이 다량 포함될 수 있다는 의견이 제기됐다. 미국 경제매체 폭스 비즈니스는 6일(현지시간) 미국의 독립시험기관인 밸리슈어(Valisure)는 특정 온도에서 관리 또는 보관된 일반의약품 벤조일 과산화물 여드름 치료제에 발암물질인 벤젠이 다량 생성될 수 있다고 밝혔다고 보도했다. 이에 따라 Valisure는 연방 보건 당국에 해당 제품 리콜을 촉구했다. 실험 결과에 따르면, Valisure는 크림, 로션, 젤, 세안제, 액체, 바 형태 등 66가지 벤조일 과산화물 여드름 치료제를 검사했다. Valisure 공동 설립자인 데이비드 라이트는 연구 결과 클리어실, 프로액티브, 타겟 업 & 업 브랜드, 클리니크 등 유명 브랜드 제품에서 'FDA 규제 한계치의 수백 배'에 달하는 벤젠이 생성될 수 있다고 성명을 통해 밝혔다. 현재 이 시험기관은 연구 결과에 따르면 "현재 시장에 판매되고 있는 벤조일 과산화물 제품 전반에 걸쳐 광범위하게 적용될 가능성이 높다"고 밝혔다. 미 식품의약국 (FDA)은 극한적인 경우 의약품 내 벤젠 허용 기준을 100만 분의 2 미만으로 설정하고 있다. 하지만 실험 결과는 벤조일 과산화물 제품을 섭씨 50도에 보관할 경우 벤젠 함유량이 이 기준치의 800배 이상, 실온 보관 시에도 최대 9배까지 상승할 수 있다는 사실을 보여줬다. 발암물질인 벤젠은 제품 내부뿐만 아니라 외부 공기 중에도 검출됐다. 이에 Valisure는 통보문을 통해 "일부 제품 포장에서 벤젠이 누출되어 흡입 흡수 위험을 야기할 수 있다"고 밝혔다. 미국 환경보호국(EPA)은 대기 중 벤젠 기준치를 설정하고 있다. 이 기관에 따르면 표준 규제 수준에서 암 발생 위험이 증가하기 시작하는 농도는 10억 분의 0.4(ppb)다. Valisure가 벤젠 대기 오염 결과를 계산한 바에 따르면 일부 경우 EPA 기준치의 1270배에 달하는 수치가 검출됐다. Valisure는 지난 5일 FDA에 벤조일 과산화물 함유 제품에 대한 조사 및 시장 회수를 요청하는 청원서를 제출했다. 벤젠 생성 양상에 대한 라이트의 설명은 선크림, 손 소독제와 같은 다른 소비자 제품에서 발견된 이전 연구 결과와 "실질적으로 다르다"고 한다. 라이트는 "우리가 선크림 및 기타 소비자 제품에서 발견한 벤젠은 오염된 성분에서 기인하는 불순물이었다. 하지만 벤조일 과산화물 제품에서 검출된 벤젠은 벤조일 과산화물 자체에서 생성되며, 때로는 FDA 규제 한계치의 수백 배에 달할 수 있다"고 설명했다. FDA 웹사이트에 따르면 벤젠은 염료와 세제부터 일부 플라스틱까지 광범위한 산업 제품 생산에 사용된다. 또한 담배 연기와 자동차 배출 가스, 석탄 및 기름 연소를 통해 대기 중으로 방출된다. 하지만 최근 몇 년 동안 드라이 샴푸, 손 소독제, 선크림 등 여러 제품에서 과도한 수준의 벤젠이 검출되어 리콜되는 사례가 발생했다. 클리어실 브랜드를 소유한 레킷은 "모든 클리어실 제품은 라벨에 지시된 대로 사용하고 보관할 때 안전하다"고 주장하며 "제품의 안전성과 유효성을 확보하기 위해 전 세계 규제기관과 긴밀하게 협력한다"고 밝혔다. 타겟은 "고객의 안전을 매우 중요하게 생각하며, 현재 관련 문제를 파악하고 있다"고 말했다. 에스티 로더 컴퍼니스는 "발암 물질 검출에 대한 소식을 인지하고 있으며, 관련 제품의 안전성을 검증하기 위해 FDA와 협력하고 있다"고 발표했다. 프로액티브는 아직 공식 입장을 내지 않고 있다. FDA는 "발암 물질 검출 보고에 대해 주시하고 있으며, 관련 제품의 안전성을 평가하고 있다"고 밝혔다. 미국 피부과 학회는 "벤조일 과산화물은 여드름 치료에 효과적인 성분이지만, 잠재적인 건강 위험도 존재한다"고 밝히며 "환자들은 의료 전문가와 상담하여 자신에게 적합한 치료 방법을 선택해야 한다"고 조언했다. FDA는 벤조일 과산화물 여드름 치료제에 대한 안전성 평가 결과를 바탕으로 후속 조치를 취할 것으로 예상된다. 벤조일 과산화물 제품의 안전성에 대한 논란이 지속될 것으로 보이며, 이에 따라 제품 개선 또는 리콜 등의 조치가 취해질 가능성도 있다. 벤조일 과산화물 여드름 치료제의 안전성에 대한 논란은 이번이 처음이 아니다. 2019년에도 일부 연구에서 벤조일 과산화물이 DNA 손상을 유발할 수 있다는 가능성이 제기된 바 있다. 벤조일 과산화물은 여드름 치료에 효과적인 성분이지만, 잠재적인 건강 위험도 존재한다는 점을 인지하고 사용하는 것이 중요하다.
-
- 생활경제
-
벤조일 과산화물 여드름 치료제에 발암 물질 검출
-
-
미세 플라스틱, 심장마비·뇌졸중·사망 위험까지 높인다?
- 미세 플라스틱이 우리 몸에 미치는 해악을 보여주는 새로운 연구 결과가 나왔다. 심장에 미세 플라스틱이 있는 사람은 심장마비와 뇌졸중, 사망 위험이 더 높다는 사실이 밝혀졌다. 6일(현지시간) 패스트컴퍼니에 따르면 이탈리아 연구진은 동맥 막힘을 유발하는 경동맥 플라크 절제 수술을 받는 257명 환자의 플라크 샘플을 채취해서 분석한 결과, 이같은 사실을 발견했다. 미세 플라스틱은 크기가 5mm 미만인 플라스틱 조각을 의미한다. 경동맥 플라크는 경동맥에 축적되는 지방 물질이다. 경동맥은 뇌로 가는 혈관이며 플라크가 축적되면 혈관이 좁아지고 뇌로 가는 혈류가 감소할 수 있다. 이는 뇌졸중과 심장마비, 기타 심각한 건강 문제로 이어질 수 있다. 연구 결과, 거의 60%의 환자 시료에서 미세 플라스틱과 나노 플라스틱이 검출됐다. 심지어 다른 특정 종류의 미세 플라스틱도 발견됐다. 과학자들은 미세 플라스틱이 인체에 침투할 수 있다는 사실을 오랫동안 알고 있었다. 하지만 지금까지는 이 작은 플라스틱 입자가 인체 건강에 어떤 영향을 미치는지는 알지 못했다. 이 연구에 따르면 심장에 미세 플라스틱이 있는 사람은 심장마비, 뇌졸중, 사망 위험이 더 높았다. 폴리에틸렌 58% 발견 특히, 세계에서 가장 많이 사용되는 플라스틱 종류인 폴리에틸렌은 58%의 시료에서 발견됐다. 폴리염화비닐 또는 PVC는 약 12%에서 발견됐다. 또한 플라크에 미세 플라스틱이 포함된 환자 그룹에서 염증 마커 수치가 더 높았으며, 이는 미세 플라스틱이 염증을 촉진한다는 기존 연구 결과와 일치했다. 연구팀은 이러한 충격적인 결과 외에도 환자의 건강 상태 추이를 관찰했다. 3년 후 추적 조사 결과, 플라크 샘플에 미세 플라스틱이 검출된 환자는 다른 환자 그룹에 비해 심근경색, 뇌졸중, 사망 위험이 두 배나 높다는 사실을 발견했다. 이번 연구 결과는 '뉴 잉글랜드 의학 저널(New England Journal of Medicine)'에 게재됐다. 이 연구에 참여하지 않은 보스턴 칼리지의 역학자이자 생물학 교수인 필립 랜드리건 박사는 "이것은 매우 중요한 연구 결과다. 오랫동안 미세 플라스틱이 우리 몸속에 존재한다는 사실은 알려졌지만 어떤 역할을 하는지 알지 못했다"라고 말했다. 이번 연구 결과는 더 많은 의문을 제기했다. 왜 일부 환자만 플라크에 미세 플라스틱이 축적됐을까. 미세 플라스틱은 인체에 어떻게 유입된 것일까. 특정 집단이 다른 집단보다 더 취약할까. 심장과 순환계 외에도 폐, 비장, 태반 등 미세 플라스틱이 검출된 장기에 어떤 영향을 미칠까? 등등이다. 랜드리건 박사는 "(미세 플라스틱이) 심장에 유입될 수 있다면 뇌나 신경계에도 들어갈 수 있지 않을까?"라면서 "치매 또는 기타 만성 신경 질환에 미치는 영향은 어떨까?"라고 반문했다. 미세 플라스틱이 심장 질환 발병 위험을 증가시키는 원인에 대해서는 아직 명확하지 않다. 이번 연구 결과는 인과 관계를 입증하지 못하고 단지 연관성만을 시사한다. 연구진은 대신 잠정적인 가설을 제시했다. 논문 공동 저자이며 나폴리 이탈리아 대학교 내과 및 노인학 교수인 주세페 파올리소 박사는 "플라크 자체의 취약성이 문제의 핵심이라고 생각한다. 미세 플라스틱과 나노 플라스틱을 포함하는 플라크는 염증 수치가 더 높아 손상되기 쉽고, 깨지면 혈류로 유입될 수 있다고 추측한다"라고 설명했다. 랜드리건 박사는 이번 연구 결과를 바탕으로 의료 전문가들이 미세 플라스틱 노출을 심혈관 질환 위험 인자로 고려해야 한다고 제안했다. 일상 생활에서 플라스틱이 범람하는 상황에서 노출을 제한하는 것은 쉽지 않다. 유럽 플라스틱 산업 협회인 플라스틱스유럽(Plastics Europe)에 따르면, 2020년 세계 플라스틱 생산량은 2018년보다 800만 톤 증가한 3억 6700만 톤에 달했다. 프랑스 파리 에펠탑의 무게는 약 1만톤에 달한다. 2020년 전 세계 플라스틱 생산량은 에펠탑이 3만6700개가 만들어진 것과 맞먹는 양이다. 전 세계 플라스틱 생산량은 2040년까지 두 배, 2060년까지 세 배로 증가할 것으로 예상되며, 그 증가분의 대부분은 일회용 플라스틱에서 발생한다. 랜드리건은 뉴잉글랜드 의학 저널에 실린 연구 논평에서 "플라스틱의 저렴한 비용과 편리함이 기만적이며 실제로는 큰 해를 가리고 있다는 사실을 인식해야 한다"며 "우리는 환자들이 플라스틱, 특히 불필요한 일회용품 사용을 줄이도록 장려해야 한다"고 적었다. 그는 의료 전문가들과 의료기관들이 유엔 글로벌 플라스틱 협약을 지지하고 전 세계적으로 플라스틱 생산의 상한선 설정을 촉구하는 데 동참할 것을 요청했다. 그는 또한 플라스틱 증가의 주된 책임을 화석 연료 회사들에게 돌렸다. 랜드리건은 "화석 연료 사용이 감소하고 있는 추세를 화석 연료 회사들도 인식하고 있으며, 이들이 보유한 방대한 석유와 가스를 어떻게 활용할지 고민하고 있다. 그 해결책으로 플라스틱 생산으로 방향을 전환하고 있다"고 지적했다. 이 새로운 연구는 우리 몸이 플라스틱으로 오염된 환경에서 어떤 영향을 받고 있는지 더 깊이 이해하려는 시도의 일환이다. 랜드리건은 "이 연구 결과를 다른 심장 질환 연구팀들도 재현하려 시도할 것이며, 이 논문이 향후 더 많은 연구의 발판이 될 것이라고 기대한다"고 말했다. 한편, AMI 컨설팅의 새로운 보고서에 따르면 기계 플라스틱 재활용 생산량은 2022년 전 세계적으로 5400만톤을 넘어섰다. 2030년까지는 약 5500만톤에 이를 것으로 예상된다. 이 회사의 '기계식 플라스틱 재활용-글로벌 시장'보고서에 따르면 2022년에 3600만톤 이상의 재활용품이 생산됐다. 보고서는 전세계 범용 플라스틱 재활용률은 2030년까지 16.5%에 불과할 것으로 예상했다. 보고서에 따르면 지역적으로 유럽과 동북아시아가 플라스틱 재활용 분야의 선두를 달리는 반면 아프리카, 인도, 기타 지역에서는 플라스틱 사용이 증가하는 양상을 보였다.
-
- 생활경제
-
미세 플라스틱, 심장마비·뇌졸중·사망 위험까지 높인다?
-
-
수돗물 끓이면 미세플라스틱 해결 가능⋯생수 1리터에 24만개 플라스틱 입자 함유
- 수돗물을 끓여 마시는 것이 미세 플라스틱을 제거할 수 있는 해결책이 될 수 있다는 연구 결과가 발표됐다. 지난 2월 28일(현지시간) 미국 매체 더 힐에 따르면 뉴욕주 컬럼비아 대학 연구원들이 수돗물을 끓이면 물에 존재하는 가장 일반적인 세 가지 플라스틱 화합물(폴리스티렌, 폴리에틸렌, 폴리프로필렌)의 최소 80% 이상을 분해할 수 있음을 밝혀냈다. 이 연구 결과는 이미 동아시아 국가에서 흔히 사용하는 끓인 수돗물을 마시는 것이 플라스틱 병에 든 물을 마시는 것보다 더 안전할 수 있음을 시사한다. 컬럼비아 대학의 연구팀은 지난 달 연구에서 플라스틱 병에 든 물 1 리터당 최대 25만 개의 나노 플라스틱 조각이 포함될 수 있다고 밝혔다. 연구팀은 지난 1월 생수 내 나노입자의 화학 구조를 관찰, 계산, 분석할 수 있는 새로운 기술을 개발했다. 이 기술에 대한 연구 결과는 '미국 국립과학원 회보(Proceedings of the National Academy of Sciences)' 저널에 1월 8일 발표됐다. 당시 연구에 따르면, 표준 크기의 생수 1리터의 물에는 평균 24만 개의 플라스틱 입자가 포함되어 있으며, 이 중 90%가 나노플라스틱으로 구성되고 나머지 10%는 마이크로플라스틱으로 확인됐다. 나노입자는 그 크기가 매우 작아 현미경으로는 볼 수 없는 것으로 알려져 있다. 전문가들은 인간 머리카락의 평균 너비보다 1000배 더 작은 나노플라스틱이 소화기관이나 폐 조직을 통해 혈류로 이동, 전신과 세포에 잠재적으로 유해한 화학 물질을 퍼뜨릴 수 있다고 경고했다. 미세 플라스틱은 0.2인치(약 5mm) 미만에서 2만 5000분의 1인치(약 1마이크로미터)에 달하는 다양한 크기의 폴리머 조각을 말한다. 이보다 훨씬 작은 나노플라스틱은 10억분의 1미터(나노미터) 단위로 측정된다. 이 연구를 이끈 팀은 미국에서 판매되는 인기 있는 생수 브랜드 세 개에서 리터당 300개가 아닌 11만 개에서 37만 개 사이의 실제 플라스틱 조각이 포함되어 있다는 것을 발견했다. 그러나 연구자들은 어떤 브랜드의 생수를 분석했는지 구체적으로 밝히지 않았다. 공동 저자이자 환경 화학자인 컬럼비아 대학교 라몬트-도허티 지구 천문대의 부교수인 베이잔 얀(Beizhan Yan)은 지난 1월CNN에 "이 새로운 기술을 통해 실제로 물속에서 수백만 개의 나노 입자를 볼 수 있었으며, 이는 무기 나노 입자, 유기 입자 및 우리가 조사한 7가지 주요 플라스틱 유형 외에도 다른 플라스틱 입자일 수 있다고 말했다. 끓인 물, 플라스틱 제거 효과 컬럼비아 대학교 연구팀은 이번에는 폴리스티렌, 폴리에틸렌, 폴리프로필렌 등 물에서 발견되는 세 가지 화합물에 대한 끓인 물의 영향을 조사했다. 이 화합물들은 완전히 분해되지 않기 때문에 바이러스 크기와 비슷한 나노 플라스틱으로 분해되어 인체 세포 기관과 장벽을 통과하며 위해를 끼칠 수 있다. 테스트된 화합물 중 가장 우려되는 것은 장에 염증을 일으키고 적혈구를 죽일 수 있는 폴리스티렌이다. 나머지 두 가지 화합물은 대체로 안전하다고 여겨지지만, 내분비학자들은 플라스틱의 안전성 여부를 판단하는 방법론에 심각한 문제가 있다고 주장했다. 연구에서 과학자들은 이 세 가지 플라스틱 화합물을 탄산 칼슘과 마그네슘 함량이 높은 미국 일반적인 담수 유형인 "경수"에 넣었다. 이러한 화합물은 주로 탄산 칼슘으로 구성된 지하 석회암 퇴적층의 공동에서 뽑아낸 지하수의 특징이다. 플라스틱이 포함된 물을 끓이면 이 탄산칼슘이 대부분의 미세 플라스틱 주위에 작은 덩어리를 형성하여 플라스틱을 캡슐화하고 무해하게 만든다. 연구 보고서는 "이 간단한 끓인 물 전략은 가정 수돗물에서 나노 및 미세 플라스틱(NMP)을 '제염'할 수 있으며 수돗물 섭취를 통한 인체 섭취를 무해하게 완화시킬 수 있는 잠재력이 있다"고 기술했다. 모든 플라스틱 폴리머 제거가 과제 하지만 이 연구에는 상당한 한계가 있다. 과학자들은 세 가지 가장 일반적인(폴리에틸렌과 폴리프로필렌의 경우 가장 안전한) 플라스틱 폴리머만 조사했다. 지난달 연구에서 병에 든 물에서 발견된 심각한 우려 대상인 염화비닐은 연구에 포함되지 않았다. 또한 물을 끓여도 모든 폴리머를 제거하지 못했다. 내분비학회는 지난 26일 보고서에서 플라스틱 입자는 많은 중요한 생물학적 시스템을 실행하는 화학 메신저와 매우 유사하고 이러한 시스템은 매우 민감하기 때문에 안전한 노출 수준이 없을 수 있다고 밝혔다. 게다가 내분비학회와 같은 과학자들은 플라스틱 화합물 자체를 넘어서는 위험 외의 사항에 주목하고 있다. 이러한 폴리머는 종종 내분비, 순환 및 생식 시스템에 피해를 입힐 수 있는 BPA, PFAS 및 프탈레이트와 같은 '가소제'와 혼합된다는 사실에 점점 더 초점을 맞추고 있는 것. 끓는 물로 이러한 물질이 분해되는지는 확실하지 않다. 이 연구는 플라스틱 폴리머만 조사했을 뿐 이러한 잠재적 첨가제는 조사하지 않았다. 또한 물을 끓여서 미세플라스틱을 제거하는 방법을 사용하려면 경수 또는 탄산칼슘을 첨가해야 하는데, 이는 보편적이지 않은 방법이다. 그럼에도 불구하고 지난달 생수 속 미세 플라스틱에 대한 연구 결과를 종합하면, 이본 연구는 적어도 일부 형태의 플라스틱 오염으로부터 보호하는 방법에 대한 잠재적인 해답을 제시했다. 이번 연구는 2월 28일 '환경 연구 편지(Environmental Research Letters)'에 게재됐다.
-
- 생활경제
-
수돗물 끓이면 미세플라스틱 해결 가능⋯생수 1리터에 24만개 플라스틱 입자 함유
-
-
[퓨처 Eyes(24)] 숨겨진 위험, 태반에서 미세 플라스틱 발견…우리 몸은 얼마나 오염되었을까?
- 인체 태반 조직에서 미세 플라스틱이 발견됨에 따라 현재와 미래 세대의 건강에 대한 깊은 염려가 일고 있다. 크기가 5mm 미만인 미세 플라스틱은 주변 환경뿐만 아니라, 현재까지 검사된 인체의 거의 모든 부위에서 발견되어 충격을 주고 있다. 20일(현지시간) 어스닷컴(EARTH.com)에 따르면, 뉴멕시코 대학교 보건과학 대학의 리전트 교수인 매튜 캄펜(Matthew Campen) 박사 연구팀은 62명의 개인의 태반 샘플을 면밀하게 분석한 결과, 모든 샘플에서 미세 플라스틱이 검출되었다고 발표했다. 태반 샘플 조사 결과, 놀랍게도 모든 시료에서 미세 플라스틱이 발견됐다. 검출량은 g당 6.5~790마이크로그램에 달하며, 상당한 차이를 보였다. 캠펜 박사는 "초반에는 수치가 미미해 보일 수 있지만, 환경 내 미세 플라스틱 양의 지속적인 증가는 인체 건강에 상당한 영향을 미칠 수 있다"고 강조했다. 연구팀은 최첨단 분석 방법을 활용하여 인체 조직 내 미세 플라스틱을 정확하게 정량화했다. 검출된 플라스틱 중 가장 높은 비율을 차지한 것은 폴리에틸렌(54%)이었으며, 폴리염화비닐(PVC)과 나일론 등이 각각 10% 가량 차지했다. 연구팀은 1950년대 이후 급증한 플라스틱 사용으로 인해 엄청난 양의 플라스틱 쓰레기가 발생했으며, 이것이 미세 플라스틱으로 분해되어 생태계를 오염시키고 있다고 지적했다. 특히, 태반은 단 8개월만에 형성 및 발달하는 기관임에도 불구하고 미세 플라스틱이 검출된 것은 플라스틱 오염 문제의 심각성을 여실히 보여주는 증거이다. 연구팀은 향후 미세 플라스틱의 인체 건강 영향에 대한 연구를 지속할 계획이지만, 즉각적인 조치가 시급하다고 강조했다. 플라스틱 생산량은 10~15년마다 두 배로 증가할 전망이어서 상황은 더욱 악화될 것으로 예상된다. 인체 태반에서 미세 플라스틱이 검출된 것은 플라스틱 오염의 심각성을 여실히 보여주는 사건이며, 인체 건강에 미칠 수 있는 영향에 대한 경고로 작용한다. 이 중요한 연구 결과는 미세 플라스틱이 우리 몸에 미치는 영향을 부각시키고, 플라스틱 쓰레기를 줄이고 지속 가능한 대안을 모색하기 위한 집단적 노력의 필요성을 강조했다. 전체 연구는 톡시로지컬 사이언스(Toxicological Sciences) 저널에 게재됐다. 건강과 경제에 미치는 플라스틱의 숨겨진 비용 플라스틱에 포함된 유해 화학 물질이 경제 및 건강에 심각한 영향을 미치면서 미국에서는 연간 약 2500억 달러의 비용이 지출되고 있다고 EHN이 보도했다. 연구의 주도는 소아과 의사이자 뉴욕대학교 전염병 및 환경 건강 과학부 교수인 레오나르도 트라산데(Leonardo Trasande) 박사가 맡았다. 간단히 말해서, 이 연구는 PFAS, 프탈레이트, BPA와 같은 화학 물질의 위험성을 강조하며, 이러한 화학 물질이 호르몬 파괴 및 질병 위험 증가를 포함한 다양한 건강 문제와 연결되어 있음을 지적한다. 연구자들은 이러한 건강 위험을 완화하기 위해 플라스틱 사용을 줄이고 재활용 방법을 개선해야 할 긴급한 필요성을 강조한다. 경제적 피해에는 직접적인 의료 비용과 건강 문제로 인한 생산성 감소뿐만 아니라 환경 오염 정화 비용, 의료 시스템 부담 증가 등 광범위한 사회적 영향이 파급된다. 레오나르도 트라산데, 소아과 의사이자 NYU 환경 위험 조사 센터 소장은 "우리 모두는 우리 몸 속에 태평양 쓰레기 지대를 조금씩 가지고 있습니다. 그것은 우리에게 해를 끼치고 호르몬을 교란시키며 질병과 장애를 유발합니다"고 말했다. 나노플라스틱, 바다에서 처음 발견 TCD는 과학자들이 미세 플라스틱보다 더 작은 플라스틱 입자인 나노플라스틱을 바다에서 처음으로 직접 관찰했다고 발표했다. 새로운 연구에서는 새로운 첨단 탐지 기술을 사용하여 바닷물에서 나노플라스틱(길이가 1마이크로미터 미만인 플라스틱 입자)의 존재를 증명했다. 퓨처리티는 연구팀이 중국, 한국, 미국, 멕시코만 연안의 바닷물에서 이 작은 나노 입자의 선명한 이미지를 확보했다고 자세히 설명했다. 퓨처리티에 따르면 연구팀은 나일론, 폴리스티렌, 폴리에틸렌 테레프탈레이트(PET)로 만든 나노플라스틱을 발견했다. 이러한 폴리머는 식품 포장, 물병, 의류, 어망에 사용되는 소재다. 이 연구는 나노플라스틱이 이미 우리 식생활에 깊숙이 스며들었다는 사실을 보여주는 중요한 증거다. 최근 연구에 따르면 생수에는 리터당 수십만 개의 나노플라스틱이 포함되어 있는 것으로 나타났다. 또 다른 과학자 팀은 해산물, 돼지고기, 닭고기, 소고기, 두부를 포함한 단백질의 90%에서 나노플라스틱과 더 큰 미세 플라스틱 입자를 발견했다. 나노플라스틱의 위협: 인체와 생태계에 미치는 심각한 영향 블룸버그는 나노 입자가 인체 세포를 뚫고 혈류에 들어갈 수 있을 만큼 작기 때문에 내부 장기에 영향을 미칠 가능성이 있다고 보도했다. 또한 이 작은 입자는 태반을 통과하여 태아의 몸속으로 들어갈 수 있다. 하지만 나노플라스틱의 위험에 처한 대상은 인간뿐만이 아니다. 국제자연보호연맹에 따르면 매년 최소 1400만 톤의 플라스틱 쓰레기가 바다로 유입되고 있다. 플라스틱이 분해되면서 미세 플라스틱과 나노 플라스틱으로 변해 해양 동물과 생태계를 위협할 수 있다. 퓨처리티의 연구원 중 한 명인 텅페이 루오(Tengfei Luo)는 "나노 플라스틱은 더 큰 플라스틱 입자보다 잠재적으로 더 독성이 강합니다"라고 말했다. 루오는 "크기가 작기 때문에 살아있는 유기체의 조직에 더 잘 침투할 수 있다"고 설명했다. 예를 들어, 국제원자력기구에서 2020년 요약한 연구에 따르면 미세 플라스틱과 나노 플라스틱이 물고기의 행동 및 신경 기능, 신진대사, 장내 미생물 다양성, 장 투과성 등 생물학적 기능에 영향을 미치는 것으로 나타났다. 나노플라스틱 문제 해결을 위한 노력: 개인과 과학의 협력 세계자연보호연맹(IUCN)에 따르면 매년 4억 톤 이상의 플라스틱이 생산되고 있다. 에펠탑의 무게는 약 1만 톤이다. 플라스틱 4억 톤은 에펠탑 4만개가 만들어지는 것과 같은 양이다. 생산된 플라스틱 중 상당량이 바다로 유입된다. 이러한 플라스틱은 분해되어 미세 플라스틱과 나노 플라스틱으로 변해 인체와 생태계에 심각한 위협을 가한다. 페트병은 다른 플라스틱 용기로 대여섯 번 재활용 할 수 있지만 재활용 폴리에스터로 만든 티셔츠나 스커트는 두 번 다시 재활용 할 수 없다. 나노 플라스틱 문제를 해결하기 위해서는 개인과 과학의 협력이 필요하다. 개인은 플라스틱 소비를 줄이는 노력을 실천해야 한다. 가루 비누와 세제로 바꾸기, 빈 제품 용기의 재활용, 일회용 플라스틱 물병과 비닐 식료품 봉투 사용하지 않기 등의 작은 노력들이 모여 큰 변화를 만들 수 있다. 과학자들은 플라스틱 문제를 해결할 수 있는 창의적인 기술을 개발하고 있다. 예를 들어, 최근 연구자들은 일회용 플라스틱 병을 만드는 데 흔히 사용되는 폴리에틸렌 테레프탈레이트를 분해하는 인공 슈퍼 단백질을 개발했다. 이러한 기술 개발은 나노플라스틱 오염 문제 해결에 중요한 역할을 할 것으로 기대된다.
-
- 포커스온
-
[퓨처 Eyes(24)] 숨겨진 위험, 태반에서 미세 플라스틱 발견…우리 몸은 얼마나 오염되었을까?