검색
-
-
홍콩대, 파킨슨병(PD) 신경퇴행 강력 억제하는 식이요법 보충제 발견
- 홍콩대(HKU) 생명과학부 차오구 정 교수팀이 진행한 연구에서 짧은사슬 지방산(SCFA: 탄소 수 6개 이하의 지방산)인 프로피오네이트가 장과 뇌 사이의 기관 간 신호전달을 조절해 파킨슨병(PD) 신경퇴행을 강하게 억제한다는 사실이 밝혀졌다고 과학 전문 매체 사이테크데일리가 전했다. 프로피오네이트 분해를 억제하거나 식이요법을 통해 프로피오네이트를 보충하면, PD와 관련된 지표가 개선되고 장에서 에너지 생산이 향상돼 단백질 응집체를 분산시킬 필요 없이 신경 건강이 촉진된다는 것이다. 프로피오네이트 수치를 증가시켜 신경퇴행을 대사적으로 막는 것은, 파킨슨 등 신경퇴행성 질환의 치료에 대한 새로운 가능성을 제시한다는 점에서 주목받고 있다. 이 연구 결과는 최근 선도적인 생물학 저널인 '셀리포트(Cell Reports)'에 발표됐다. 연구 배경 뇌의 단백질 응집체를 표적으로 삼아 PD와 알츠하이머병(AD)과 같은 신경퇴행성 질환을 치료하는 전통적인 방법은 지금까지 성공 가능성이 매우 낮았다. 그러나 이번 새로운 연구는 장내 세균에서 유래한 대사산물이 신경퇴행을 조절하는 데 중요한 역할을 한다는 것을 보여 준다. PD는 도파민성 신경세포에 알파시누클레인(알파-신: 뇌세포 사이에 신경 전달을 돕는 단백질로 PD를 일으키는 주요 원인) 단백질이 비정상적으로 축적되고 응집되는 것을 특징으로 하며, 이는 단백질 독성 스트레스와 신경 세포 사망을 유발한다. 실험용 쥐를 대상으로 한 PD 모델에 대한 이전 연구에서는 장내 미생물군이 알파-신 병리학의 운동 결핍 및 신경 염증을 유발하는 것으로 나타났다. 그러나 어떤 미생물이 숙주 신경퇴행에 영향을 미치는지는 대부분 불분명하다. 최근 몇 년 동안 관심을 끌고 있는 박테리아 대사산물의 한 종류는 식이섬유의 발효를 통해 혐기성 박테리아가 생산하는 SCFA(초산, 프로피온산 및 부티르산)이다. 그러나 SCFA가 신경 퇴행에 미치는 영향은 논란의 여지가 있다. 일부 연구에서는 SCFA가 신경 퇴행을 악화시키고 염증을 증가시키는 것으로 나타났다. 반면 다른 연구에서는 SCFA가 신경 퇴행을 방지한다는 사실이 밝혀졌다. 정 교수팀은 이전에 흙 속에 사는 1mm정도 크기의 작은 선형동물(C. elegans) PD 모델을 사용해 전체 게놈을 검사, 여기에서 38개의 신경퇴행성 유전자를 확인했다. 이 박테리아 유전자 중 일부는 숙주에서 프로피오네이트의 분해를 유도하는 비타민 B12의 생합성에 필수적이다. 이에 따라 연구팀은 프로피오네이트의 수치를 높이면 신경퇴행을 억제할 수 있다고 가정했다. 주요 조사 결과 정 교수팀은 PD 질환 동물이 정상 동물보다 프로피오네이트 수치가 낮았으며, 프로피오네이트 분해를 유도하는 식이성 비타민 B12를 제거하거나 프로피오네이트를 직접 보충하면 프로피오네이트 수치를 높이고, 알파-신으로 유발된 신경 세포 사망 및 운동 장애를 막는다는 사실을 발견했다. 놀랍게도 프로피오네이트의 신경보호 효과는 뉴런과 장 사이의 기관 간 신호 전달에 의해 매개됐다. 알파-신의 신경 세포 응집은 장에서 미토콘드리아 전개 단백질 반응(mitoUPR)을 유발해 프로피오네이트 생산을 줄였다. 낮은 프로피오네이트 수치는 지방산 및 아미노산 대사에 관여하는 수많은 프로피오네이트 반응 유전자의 하향 조절을 유발했고, 결국 장의 에너지 생산 결함을 초래했으며, 이는 젖산 및 신경펩티드와 관련된 장-뇌 통신을 통해 신경퇴행을 더욱 악화시켰다. 장에서 프로피오네이트 생산을 유전적으로 강화하거나 프로피오네이트 하류의 주요 대사 조절 인자의 장 발현을 복원하면 신경퇴행이 개선됐다. 이는 장의 대사 상태가 알파-신 유도 신경퇴행을 조절할 수 있음을 시사한다. 중요한 것은 프로피오네이트 보충이 알파-신 응집을 감소시키지 않고 신경퇴행을 억제해 단백질 응집체 하류의 신경 단백질 독성의 대사 구조를 입증한다는 것이다. 이 새로운 연구는 신경퇴행성 질환의 장-뇌 상호작용에 소분자 대사산물이 관여한다는 점을 강조한다. 건강 영향에 미칠 가능성 이 연구는 PD 질환 동물 모델의 실험 결과와 임상 관찰을 연결한다는 점에서 흥미롭다. PD 동물과 마찬가지로 인간 PD 환자도 SCFA를 생성하는 공생 박테리아의 양이 감소하기 때문에 건강한 개인보다 SCFA 수준이 감소한다. 따라서 PD 환자의 낮은 양의 SCFA는 실제로 질병 진행 및 중증도를 초래할 수 있으며, 식이요법을 통해 프로피오네이트를 보충하면 질병을 치료하고 증상을 개선하는 데 도움이 될 수 있다고 정 교수는 강조했다. 정 교수는 SCFA가 장내 식이섬유의 혐기성 발효에 의해 생성되기 때문에 섬유질이 풍부한 식품, 예컨대 씨앗, 견과류, 과일, 야채 등을 식단에 추가하면, 장내 세균에 의한 SCFA 생성도 증가할 수 있으며 뇌 건강에 유익하다고 제안했다.
-
- IT/바이오
-
홍콩대, 파킨슨병(PD) 신경퇴행 강력 억제하는 식이요법 보충제 발견
-
-
알츠하이머병, 수혈 통해 전염 가능
- 캐나다 과학자들이 혈액 수혈을 통해 건강한 사람에게 알츠하이머병이 전염될 수 있다고 발표했다. 네오스콥은 알츠하이머병의 정확한 원인은 아직 완전히 밝혀지지 않았지만, 캐나다 브리티시 컬럼비아 대학 연구팀의 이번 연구 결과는 환경 요인이 질병 발병에 영향을 미칠 수 있다는 점을 지속적으로 시사하고 있다고 지난달 30일(현지시간) 전했다. 최근 학술지 '줄기세포 보고서(Stem Cell Reports)'에 발표된 연구 결과에 따르면 혈액 수혈이나 골수, 장기 등 생체 물질의 이식을 통해 유전성 알츠하이머 환자의 질병이 건강한 사람에게 전염될 가능성이 제기됐다. 연구팀은 쥐와 줄기세포를 이용한 실험을 통해 알츠하이머병이 건강한 사람에게 전염될 수 있다는 결론을 도출했다. 연구팀은 실험을 위해 인간 유전성 알츠하이머병 유전자, 특히 아밀로이드 플라크 생성과 관련된 유전자를 가진 쥐를 배양했다. 그리고 이 쥐의 골수에서 줄기세포를 추출해 건강한 쥐에 주입했다. 그 결과 9개월 만에 정상 쥐들의 뇌에서 인지 기능 저하와 아밀로이드 플라크 축적과 같은 알츠하이머병의 전형적인 징후가 나타났다. '알츠하이머는 유전성' 기존 인식 뒤바꿔 연구 결과는 몇 가지 중요한 시사점을 제공한다. 첫째, 이 연구는 알츠하이머병이 신경 중추계 외의 줄기세포에서 발생할 수 있다는 점을 보여주었다. 이는 기존의 알츠하이머 병 형성에 대한 인식을 뒤바꿨다. 연구팀은 "이 연구의 핵심적인 결과 중 하나는 알츠하이머병 병리학의 기존 중심 교리, 즉 뇌에서 생성된 베타 아밀로이드(Aβ) 축적이 질병의 원인이라는 가설에서 벗어나는 계기가 될 것"이라며 "이 연구는 뇌의 외부에서 생성된 Aβ가 질병 발병에 기여한다는 사실을 입증했다"고 말했다. 둘째, 이 연구는 알츠하이머병의 발병 경로가 크로이츠펠트-야콥병과 유사할 수 있다는 점을 시사한다. 크로이츠펠트-야콥병은 전염성 질환으로 감염된 소고기를 섭취한 사람들에게 발병하는 것으로 알려져 있다. 간단히 말해, 이번 연구 결과는 혈액이나 장기 등 생체 물질의 기증을 통해 알츠하이머병이 건강한 사람에게 전염될 수 있다는 가능성을 제시한다. 이는 잠재적인 기증자에 대한 알츠하이머 질병 검사가 필요하다는 것을 의미한다. 연구팀의 주요 저자인 브리티시 컬럼비아 대학 면역학자인 윌프레드 제프리스 박사는 성명서에서 "이 연구는 뇌의 외부에서 발현되는 아밀로이드가 중추 신경계 병리에 영향을 미치는 전신 질환이라는 알츠하이머병 이론을 뒷받침한다"고 말했다. 제프리스 박사는 "이 메커니즘에 대한 연구를 지속함에 따라 알츠하이머병은 정복될 수 있을 것으로 보인다. 아울러 혈액, 장기 및 조직 이식과 인간 유래 줄기세포 또는 혈액 제품의 이식에 사용되는 기증자에 대한 더욱 엄격한 관리 및 검사가 필요하다"고 강조했다. 한편, 알츠하이머병은 치매 중 가장 흔한 유형으로, 인지 기능의 저하를 특징으로 하는 퇴행성 뇌 질환이다. 전 세계적으로 약 3200만 명이 이 질환으로 고통받고 있으며, 인구 고령화가 진행됨에 따라 이 수치는 증가할 것으로 예상된다. 현재 많은 연구가 이루어지고 있음에도 불구하고, 알츠하이머병의 정확한 원인과 치료법은 아직 완전히 밝혀지지 않았다. 연구자들은 생활 습관, 유전적 요인, 환경적 요인이 이 병의 발병에 복합적으로 영향을 미친다고 보고 있다.
-
- 생활경제
-
알츠하이머병, 수혈 통해 전염 가능
-
-
[신소재 신기술(21)] 홍게껍질로 반도체 및 에너지 저장 기능 갖춘 나노시트 개발
- 일본 과학자들이 홍게의 껍질에 포함된 키토산으로 만든 나노섬유에서 반도체와 에너지 저장 특성을 발견했다. 26일(이하 현지시간) 뉴스마이네비에 따르면 일본 도호쿠대학(東北大學) 연구팀은 홍게 껍질에 포함된 불용성 식이섬유의 일종인 '키토산'으로 만든 나노섬유(ChNF) 조직을 제어해 만든 나노미터 두께의 시트 소재에서 반도체 특성과 에너지 저장 특성을 나타내는 것을 발견했다고 25일 밝혔다. 이번 성과는 도호쿠대 미래과학기술공동연구센터 후쿠하라 미키오 학술연구원, 동 대학 하시타 토시유키 특임교수, 도쿄대 이소카이 아키라 특임교수 등의 공동연구팀에 의해 이루어졌다. 연구 결과는 미국 물리학 협회에서 발행하는 학술지 'AIP-Advances'에 게재됐다. 이번 연구는 친환경적인 반도체와 에너지 저장 소재 개발에 기여할 것으로 기대된다. 반도체는 실리콘으로 대표되는 원소 반도체와 갈륨비소(GaAs) 및 '파이(π) 공액 고분자'와 같은 화합물 반도체로 크게 두 가지로 분류된다. 두 반도체 모두 광물이나 인공 화합물에서 금속을 정제해 만드는데, 생산 과정에서 많은 양의 에너지가 필요하고 환경에 미치는 영향이 크다. 연구팀은 절연체로 인식되는 종이와 셀룰로오스의 나노 크기 미세 구조체인 케나프 식물에서 추출한 셀룰로오스 나노섬유(Cellulose Nanofibers·CNF)를 이용해 전하 분포와 전자 이동을 측정했다. 그 결과, '템포 산화 CNF(TEMPO-oxidized CNF, TEMPO 촉매를 사용해 산화 처리된 셀룰로오스 나노섬유)'는 고전압 단시간 충전 특성을, CNF는 n형 음의 저항을 나타내는 n형 반도체의 다양한 특성을 발견했다. 이 연구에서는 식물 셀룰로오스와 분자 구조가 유사하고 지구상에서 두 번째로 풍부한 바이오매스 화합물인 동물성 키토산에 초점을 맞췄다. 연구팀에 따르면, 키토산에는 케나프(CNF)에서 발현되지 못했던 고속 충전 특성이 발견됨과 동시에 액체 누출 등의 문제를 극복할 수 있는 고체형 축전지를 제공할 수 있는 잠재력을 가지고 있는 것으로 밝혀졌다. 또한 키토산과 같은 자연 유래의 해양 바이오매스 소재를 반도체, 에너지 저장 분야에 활용할 수 있다면 폐기물을 줄여 자원순환형 사회 조성에 기여할 수 있다. 이번 연구에서는 홍게 껍질로 만든 키토산 나노섬유(ChNF)를 대표적인 동물성 소재로 활용하고, 섬유 길이를 300nm 이하로 제어한 ChNF 시트에 Al 전극을 부착한 소자를 제작했다. ChNF 시트 소자의 I(전류)-V(전압) 특성, AC(교류) 임피던스, 주파수 분석, 축전성을 측정한 결과, 전압 제어에 의한 전압 유도 반도체와 같은 특성이 나타나는 것을 확인했다. 또한, ChNF 시트의 -210~+80V 범위에서 동작 속도 1.24V/s의 승강 전압에 대한 I-V 특성에서 음전압 영역에서 전류의 전압 의존성이 역전되는 거동, 이른바 n형 반도체 특성을 보였다. 즉, I-V 특성은 옴의 법칙을 따르지 않고, 전압 상승에 따라 일정 전압 이상에서 전류가 감소하는 음극 저항이 발현된 것이다. 반면, R(저항)-V(전압) 특성을 분석한 결과, 승압 -1V~0V, 강압 +2V~0V 사이에서 3자리 스위칭 효과를 보이는 특성이 관찰됐다. 또한 10~500V에서 2mA의 전류로 5초간 충전한 후 1μA의 정전류로 방전했을 때 충전 전압 대비 저장 용량의 변화를 조사한 결과, 전압 증가에 따라 저장 용량이 선형적으로 증가하며 450V부터 급격히 증가하는 것으로 나타났다. 다음으로 ChNF 시트의 AC 임피던스 특성을 측정한 결과, 저저항과 고저항의 두 개의 반원을 가진 나이키스트 선도(The Nyquist diagram)를 얻었다. 두 개의 반원은 원자간력 현미경 이미지 관찰을 통해 각각 120~350nm의 바늘 모양과 구형으로 이루어진 갑각류 외골격과 세포벽 조직의 기여하는 것으로 추론했다, 이 나이키스트 선도의 특성으로부터 ChNF 시트는 직류와 교류 영역에서 동일한 회로를 가질수 있음을 시사했다. 연구팀은 또한, 반도체 특성의 전자의 기원을 규명하기 위해 ESR 분석을 시도했다. 전자의 기원을 결정하는 단수 대칭의 피크를 관찰했고, 스펙트럼 강도의 선도가 횡축과 교차하는 자기장의 g값을 통해 키토산의 생성 전자는 비정질 키토산에서 발생하는 아미닐 라디칼(NH¯₂)에서 생성된 전자임을 확인했다. 연구팀은 이번 성과에 대해 "저밀도 경량 반도체 및 에너지 저장 장치 제작을 통해 천연 유래의 바이오 소재 자원을 활용함으로써 지구의 생물 순환 시스템을 활용한 바이오 일렉트로닉스가 발전할 수 있을 것으로 기대한다"고 밝혔다.
-
- 포커스온
-
[신소재 신기술(21)] 홍게껍질로 반도체 및 에너지 저장 기능 갖춘 나노시트 개발
-
-
[신소재 신기술(17)] 탄소 배출량 25만 톤 감소! 탄소 네거티브 복합 데크로 건설 산업의 탄소 발자국 줄이기
- 건축 자재에 이산화탄소(CO₂)를 저장해 보다 친환경적인 건축 자재를 만드는 혁신적인 기술이 개발됐다. 건물과 건축에 사용되는 자재의 생산은 일반적으로 지구 온난화와 기후 변화에 영향을 미치는 강력한 온실가스인 이산화탄소를 다량 배출한다. 기술 전문매체 테크익스플로어는 18일(현지시간) 과학자들이 새로 개발한 복합 데크는 제조 과정에서 배출되는 이산화탄소보다 더 많은 이산화탄소를 저장함으로써 탄소 네거티브 특성을 구현했다고 보도했다. 이는 기존 복합 데크의 한계를 극복하는 중요한 성과다. 연구팀은 미국 화학회(ACS) 춘계 회의에서 이번 연구 결과를 발표했다. 이 프로젝트의 수석 연구자 중 한 명인 유기 화학자 데이비드 헬데브란트에 따르면 페록 등 몇 가지 유형의 시멘트를 제외하고는 탄소 네거티브 복합재가 거의 없는 상태다. '페록'은 돌과 철을 결합한 것으로 콘크리트 보다 강도가 5배 높은 친환경 차세대 건축자재다. 시멘트 대용품으로 사용되는 친환경 건축 자재인 페록은 주로 폐철강 분진과 유리 분쇄물에서 나온 실리카 등 재활용 재료로 생산된다. 철강 분진은 이산화탄소와 반응해 탄산철을 생성하고, 이것이 응고되면 페록이 된다. 건축, 전체 탄소 배출량의 11% 차지 헬데브란트는 그의 팀이 개발한 복합 데크는 "사용 기간 동안 이산화탄소를 배출하지 않는 최초의 복합 재료 중 하나"라고 말했다. 데이비드 힐데브란트는 미국 태평양 북서부 국립연구소(PNNL)에서 일하며 CO₂ 포집을 위한 특수 액체를 개발하고 있다. 세계그린빌딩위원회에 따르면 건물 건설에 사용되는 자재와 공정은 전체 에너지 관련 탄소 배출량의 11%를 차지한다. 그로 인해 업계에서는 재활용 또는 식물 유래 제품을 사용하는 등 탄소 배출량을 상쇄할 수 있는 건축 자재를 개발하는 데 많은 노력을 기울이고 있다. 그러나 대부분의 경우 이러한 지속 가능한 건축 자재는 기존 자재보다 비싸거나 강도나 내구성과 같은 특성을 따라갈 수 없는 경우가 많다. 건축 자재의 한 유형인 데크는 수십억 달러 규모의 산업이다. 목재 플라스틱 합성물로 만든 데크 보드는 자외선에 의한 손상이 적고 오래 사용할 수 있기 때문에 목재 보드의 대안으로 인기가 높다. 합성 데크는 일반적으로 목재 칩 또는 톱밥과 고밀도 폴리에틸렌(HDPE)과 같은 플라스틱을 혼합하여 제작한다. 이러한 복합재를 보다 지속가능하게 만들기 위한 대안은 폐기물 또는 태워버릴 수 있는 필러를 사용하는 것이다. 헬데브란트의 동료인 키르티 카파간툴라가는 저품질의 갈탄과 제지 과정에서 남은 목재 유래 제품인 리그닌을 데크 합성물의 충전재로 사용했다. 연구팀은 석탄과 리그닌 입자를 플라스틱과 혼합하여 플라스틱에 부착되게 하기 위해 입자의 표면에 에스테르 기능기를 첨가했다. 헬데브란트는 "에스테르는 본질적으로 카복실산이며, 이는 CO₂가 포집된 상태"라고 설명했다. 연구팀은 이 과정을 검증하기 위해 CO₂와 석탄, 리그닌과 같은 목재 제품에 풍부한 페놀 사이에 새로운 화학 결합을 형성하는 고전적인 화학 반응으로 전환했다. 이 반응을 거친 후 리그닌과 석탄 입자는 무게 기준으로 2~5%의 CO₂를 함유했다. 이어서 연구팀은 이 입자들을 다양한 비율로 고밀도 폴리에틸렌(HDPE)과 혼합해 갈색을 띠는 검은색 복합재를 제작하고 그 성질을 평가했다. 필러를 80%까지 포함한 복합재는 CO₂ 함량을 최대화하면서도 국제적인 건축 자재 규정에 부합하는 강도와 내구성을 보였다. 이 소재는 PNNL의 전단 보조 가공 및 압출(ShAPETM) 기계를 사용해 마찰 압출 공정으로 제조됐다. 연구원들은 이 기술을 이용해 데크나 야외 가구에 적합한, 표준 목재 복합재와 유사한 외형과 질감을 지닌 10피트(약 3m) 길이의 복합재 패널을 제작했다. 이 새로운 합성 데크 재료는 우수한 물리적 성질뿐만 아니라, 상당한 경제적 및 환경적 이점을 제공한다. 이 데크는 표준 합성 데크 재료보다 18% 더 저렴하다. 헬데브란트는 이 데크가 제조 과정과 사용 기간 동안 발생하는 이산화탄소 양보다 더 많은 이산화탄소를 저장할 수 있는 능력을 갖추고 있다고 말했다. 미국, 1년간 목재 데크 판매량은? 미국에서 매년 판매되는 데크의 양은 35억 5000만피트(약 108만 2040km)에 달한다. 헬데브란트는 연구팀이 개발한 CO₂ 네거티브 복합 데크가 이를 대체하게 되면, 연간 약 25만 톤의 CO₂를 격리할 수 있으며, 이는 5만4000대의 자동차가 1년 동안 배출하는 CO₂량과 맞먹는다고 설명했다. 연구팀은 향후 더 다양한 복합재 조합을 개발하고 그 특성을 실험할 계획이다. 또한 울타리나 사이딩(건물 외벽 마감재)과 같은 여러 건축 자재에 대한 탄소 네거티브 복합재를 개발할 수 있을 것으로 기대하고 있다. 동시에, 연구팀은 이 새로운 탄소 네거티브 데크의 상용화를 위해 노력 중이다. 이 혁신적인 데크는 이르면 내년 여름부터 건축 자재 전문 매장에서 판매될 수 있을 것으로 예상된다.
-
- 포커스온
-
[신소재 신기술(17)] 탄소 배출량 25만 톤 감소! 탄소 네거티브 복합 데크로 건설 산업의 탄소 발자국 줄이기
-
-
털매머드 부활하나?...코끼리 줄기세포 배양 성공
- 과학자들이 코끼리 피부 세포로 줄기세포 배양에 성공해 털매머드 부활에 한 발 더 가까이 다가가고 있다. 미국 텍사스 주 댈러스에 있는 멸종 방지 기업이자 DNA 편집 회사인 콜로설 바이오사이언스(Colossal Biosciences)는 6일(현지시간) 털복숭이 매머드 형질을 가진 코끼리를 유전적으로 복원시키기 위해 아시아 코끼리 세포로 줄기세포 배양에 성공했다고 밝혔다. 콜로설은 자사 웹사이트에서 내한성 코끼리를 만들 것이라고 밝히면서 이 동물은 털매머드의 모든 핵심 생물학적 특성을 갖게 될 것이라고 설명했다. 또한 이 회사는 매머드와 유사한 코끼리가 코끼리 내피 친화성헤르페스 바이러스로 인한 매우 치명적인 질병에 저항성을 갖도록 만들 계획이다. 네이처에 따르면 콜로설은 코끼리 세포의 유전자(게놈)을 편집해 매머드와 비슷하게 만들었다. 하지만 살아 있는 매머드 같은 코끼리를 만들려면 편집된 게놈을 포함하는 배아를 생성해야 한다. 이론적으로 이를 수행하는 한 가지 방법은 유전자 편집된 코끼리 세포를 소위 유도만능줄기세포(iPS)로 전환한 다음 이를 난자와 정자 세포로 전환하는 것이다. 뉴사이언티스트에 따르면 유도만능줄기세포는 난자와 정자를 포함한 신체의 모든 세포로 분화할 수 있다. 배아에서 자연적으로 발생하지만 특정 단백질을 추가하여 성체 세포에서 만들 수도 있으므로 '유도'라고 한다. 많은 동물 종에서 유도만능세포가 만들어졌지만 지금까지 코끼리 세포를 유도만능세포로 만드는 데 성공한 사례는 없었다. 유전자 편집 18년 전, 연구자들은 쥐의 피부 세포를 배아 세포처럼 작동하도록 재프로그래밍할 수 있음을 보여줬다. 이러한 유도만능줄기세포는 동물의 모든 세포 유형으로 분화할 수 있다. 이 세포는 멸종된 털매머드(맘무투스 프리미제니우스·Mammuthus primigenius)의 가장 가까운 친척인 아시아 코끼리(엘레푸스 막시무스·Elephus maximus)를 복원하려는 콜로설의 계획에 핵심으로, 털과 지방 및 기타 매머드의 특성을 갖도록 유전적으로 편집됐다. 콜로설은 아시아 코끼리 세포를 유전자 변형해 핵심 단백질을 영구적으로 생산하도록 했다. 그럼에도 불구하고 세포를 유도만능줄기세로로 전환하는데 두 달이 걸렸다고 한다. 콜로설의 생물과학 책임자인 에리오나 히솔리는 "우리는 이 과정을 더 효율적이고 빠르게 만들고 싶었다"고 말했다. 핵심 단백질을 코딩하는 DNA는 쉽게 제거할 수 있다고 그녀는 덧붙였다. 매사추세츠주 보스턴에 위치한 하버드 의과대학의 유전학자이자 이 연구 논문의 공동 저자인 콜로설의 공동 설립자 조지 처치는 "우리는 세계 기록으로 가장 어려운 iPS 세포 수립에 도전하고 있다고 생각한다"고 말했다. 하지만 연구팀은 코끼리 줄기세포를 확립하는 데에도 어려움을 겪고 있다. 멸종 위기 종에 대한 줄기세포 연구의 권위자인 캘리포니아 주 라호야에 있는 스크립스 연구소의 줄기세포 생물학자인 장 로랑(Jeanne Loring) 박사는 "코끼리는 매우 어려운 과제"라고 말했다. 멸종 동물 복원 프로젝트 2011년 잔 로링과 동료들은 멸종 위기 동물에서 최초로 북방 흰코뿔소(Ceratotherium simum cottoni)와 드릴 원숭이(만드릴루스 류코패우스)로부터 iPS 세포를 만들었다. 이후 눈표범(Panthera uncia), 수마트라 오랑우탄(Pongo abelii), 일본뇌조(Lagopus muta japonica) 등 멸종 위기종에서 배아 유사 줄기세포가 만들어졌지만 수많은 팀이 코끼리 iPS 세포 수립 시도에 실패했다. 콜로설의 생물과학 책임자 에리오나 히솔리가 이끄는 연구팀은 처음에 다른 대부분의 iPS 세포주를 만드는 데 사용되는 매뉴얼에 따라 아시아 코끼리 새끼로부터 세포를 재프로그래밍하려고 시도하면서 동일한 문제에 부딪혔다. 이 방법은 2006년 일본 교토 대학의 줄기 세포 과학자인 야마나카 신야(Shinya Yamanaka)가 확인한 네 가지 주요 재프로그래밍 인자를 과잉 생산하도록 세포에 지시하는 것이다. 이 방법이 실패하자 히솔리 박사팀은 다른 연구원들이 사람과 쥐 세포를 재프로그래밍하는 데 사용했던 화학 칵테일을 코끼리 세포에 처리했다. 대부분의 경우 이 처리로 인해 코끼리 세포가 죽거나 분열을 멈추거나 아무런 반응도 보이지 않았다. 하지만 일부 실험에서는 세포가 줄기세포와 유사한 둥근 모양을 띠게 됐다. 히솔리 박사 팀은 이 세포에 네 가지 '야마나카' 인자를 첨가한 다음 성공의 핵심 요소였던 또 다른 단계를 밟았다. 바로 암 억제 유전자인 TP53의 발현을 억제하는 것이다. 유도만능줄기세포 배양 연구팀은 코끼리로부터 네 개의 iPS 세포 라인을 만들었다. 이 세포들은 다른 유기체의 iPS 세포와 비슷하게 보였고, 비슷하게 행동했다. 즉, 척추동물의 모든 조직을 구성하는 세 가지 '배엽'을 형성하는 세포를 만들 수 있었다. 하지만 콜로설이 최초의 유전자 조작 아시아 코끼리를 만드는 계획은 iPS 세포를 필요로 하지 않는 복제 기술을 포함한다. 처치 박사는 새로운 세포 라인은 아시아 코끼리에 매머드 특징을 부여하는 데 필요한 유전적 변화를 식별하고 연구하는 데 유용할 것이라고 말했다. 그는 "우리는 아기 코끼리에게 넣기 전에 미리 테스트하고 싶다"고 말했다. 코끼리 iPS 세포는 수정되어 모발이나 혈액과 같은 관련 조직으로 변형될 수 있다. 그러나 이러한 과정을 확대하기 위해서는 생식 생물학 분야에서 수많은 기술 도약이 필요하다. 그 중 한 가지 방법은 유전자 조직 iPS 세포를 수정된 정자와 암컷 생식 세포로 변형시켜 배아를 만드는 것이다. 쥐 실험에서는 이 방법이 성공했다. 또한 iPS 세포를 직접 실행 가능한 '합성' 배아로 변환하는 것도 가능했다. 콜로설은 자사의 첫 번째 메머드가 2028년에 태어날 것이라고 주장했다. 히솔리는 연구원들이 코끼리 세포에 단지 50~100개의 유전자 편집을 하는 것을 목표로 하고 있으며, 이는 실현하능하다고 말했다. 코끼리의 임신 기간은 2년이기 때문에 배아는 2026년 말께 생성되어 자궁에 이식되어야 2028년에 매머드 탄생이 가능하다. 처치 박사는 배아 배양을 위해 일부는 iPS 세포에서 유래한 인공 자궁을 사용할 것으로 예상했다. 그는 "우리는 멸종 위기 종의 자연적인 번식을 방해하고 싶지 않기 때문에 체외 임신을 확대하려고 노력하고 있다"고 말했다.
-
- IT/바이오
-
털매머드 부활하나?...코끼리 줄기세포 배양 성공
-
-
JN.1 변종, 코로나19 판도 전환
- 2023년 후반 발견된 코로나19 변종 JN.1은 바이러스 진화에 중요한 변곡점을 맞이했다. 이 변종의 등장은 지속적인 글로벌 보건 노력의 중요성을 더욱 강조하고 있다. JN.1 변종은 2023년 8월 처음 발견된 이후 호주를 비롯한 전 세계적으로 급속히 확산됐다. 최근 1년 동안 대부분의 국가에서 관찰된 가장 큰 코로나19 확산의 주범으로 지목되고 있다. 과학기술 전문 매체 사이테크데일리(SciTechDaily)는 세계보건기구(WHO)가 2023년 12월 JN.1을 '관심 변이체'로 분류했고, 1월에는 장기적인 건강 결과를 초래할 우려가 있는 "훨씬 많은" 예방 가능한 질병을 유발하는 지속적인 세계적인 건강 위협이라고 강력하게 언급했다고 전했다. JN.1은 병원체로서 놀랍게도 새로운 버전의 사스-CoV-2(코로나를 일으키는 바이러스)이고 다른 순환 균주(오미크론 XBB)를 빠르게 대체하고 있다. 또한 코로나바이러스의 진화에 대해 언급하고 있기 때문에 중요하다. 일반적으로 사스-CoV-2 변이체는 이전에 있었던 것과 매우 비슷해 보이며, 한 번에 몇 개의 변이만 축적되어 바이러스가 부모보다 의미 있는 이점을 제공한다. 그러나, 2년 전 오미크론(B.1.1.529)이 발생했을 때와 같이, 때때로, 이전에 있었던 것과 현저하게 다른 특징들을 가진, 겉보기에는 변형들이 출현한다. 이것은 질병과 전염에 중대한 영향을 미친다. 지금까지, 특히 꾸준히 진화하는 오미크론 변종의 지속적인 성공을 고려할 때, 이러한 "단계 변화" 진화가 다시 일어날 것이라는 것은 확실하지 않았다. JN.1은 매우 독특하고 새로운 감염의 물결을 일으키기 때문에 많은 사람들이 WHO가 JN.1을 자체 그리스 문자에 대한 다음 우려의 변종으로 인정할지 궁금해하고 있다. 어쨌든 JN.1을 통해 우리는 팬데믹의 새로운 단계에 진입했다. JN.1의 기원은? JN.1(또는 BA.2.86.1.1) 이야기는 2023년 중반경 모 계통 BA.2.86의 출현으로 시작되며, 이는 2022년 오미크론 하위 변종 BA.2에서 유래했다. 몇 달 동안 해결되지 않은 채 지속될 수 있는 만성 감염은 이러한 단계적 변화 변이체의 출현에 한 역할을 할 가능성이 높다. 만성적으로 감염된 사람들에게서 바이러스는 조용히 테스트를 하고 결국 면역을 피하고 그 사람에게서 생존하는 데 도움이 되는 많은 돌연변이를 보유한다. BA.2.86의 경우 스파이크 단백질(SARS-CoV-2 표면에 있는 단백질이 우리 세포에 부착되도록 한다)의 돌연변이가 30개 이상 발생했다. 전 세계적으로 발생하는 엄청난 양의 감염은 바이러스의 대규모 진화를 예고하고 있다. 사스-CoV-2의 변이율은 매우 높기 때문에 JN.1 자체도 이미 변이가 빠르게 진행되고 있다. JN.1와 다른 변종의 차이점 BA.2.86과 현재 JN.1은 두 가지 측면에서 실험실 연구에서 독특하게 보이는 방식으로 행동하고 있다. 첫 번째는 바이러스가 면역을 어떻게 회피하는지에 관한 것이다. JN.1은 스파이크 단백질에서 30개 이상의 돌연변이를 물려받았다. 또한 항체가 바이러스에 결합하고 감염을 예방하는 능력(면역 체계의 보호 반응의 한 부분)을 더욱 감소시키는 새로운 돌연변이 L455S를 얻었다. 두 번째는 JN.1이 우리 세포에 들어가 복제하는 방식에 대한 변화를 포함한다는 것이다. 미국과 유럽의 최근 세간의 이목을 끄는 실험실 기반 연구에서는 분자 세부 사항을 자세히 설명하지 않고 BA.2.86이 델타와 같은 마이크로미크론 이전 변이체와 유사한 방식으로 폐에서 세포로 들어가는 것을 관찰했다. 그러나 이와는 대조적으로 호주의 커비 연구소가 다른 기술을 사용한 예비 연구에서는 오미크론 계통과 더 잘 일치하는 복제 특성을 발견했다. 이러한 다양한 세포 진입 결과를 해결하기 위한 추가 연구는 바이러스가 질병의 심각성과 전염에 영향을 미칠 수 있는 체내 복제를 선호할 수 있는 위치에 영향을 미치기 때문에 중요하다. 이런 연구 결과들은 JN.1 그리고 일반적으로 SARS-CoV-2가 우리의 면역체계를 돌아다닐 수 있을 뿐만 아니라, 세포를 감염시키고 효과적으로 전염시킬 수 있는 새로운 방법들을 발견하고 있다는 것을 보여준다. 우리는 이것이 사람들에게 어떻게 작용하는지, 그리고 그것이 임상 결과에 어떻게 영향을 미치는지에 대해 더 연구할 필요가 있다. JN.1의 면역 회피 기능과 결합된 BA.2.86의 단계적 변화 진화는 이 바이러스에 2023년에 직면한 XBB.1 기반 계통을 훨씬 뛰어넘는 글로벌 성장 이점을 제공했다. 이러한 특징에도 불구하고 우리의 적응 면역 체계가 여전히 BA.286과 JN.1을 효과적으로 인식하고 반응할 수 있다는 증거가 있다. 업데이트된 1가 백신, 테스트 및 치료법은 JN.1에 대해 여전히 효과적이다. '심각도'에는 두 가지 요소가 있다. 첫째는 더 '본질적으로' 심각한 경우(면역력이 없는 감염으로 인해 질병이 더욱 악화됨), 두번 째는 바이러스가 전염성이 더 강해 단순히 감염시키기 때문에 더 큰 질병과 사망을 초래하는 경우다. JN.1은 후자에 속한다. 다음은 어떤 바이러스가 퍼질까? 현재 JN.1 변종이 '차세대 일반 감기'로 진화하는 진화적 궤도에 있는지, 그 진화 과정이 얼마나 걸릴지는 불확하다. 과거 네 가지 역사적인 코로나바이러스의 진화 궤적을 분석함으로써 미래 방향을 어느 정도 예측할 수 있지만, 이는 단순히 하나의 가능성에 불과하다. 우리는 비상사태 이후 새로운 팬데믹 단계에 진입했다. 하지만 코로나 바이러스는 여전히 전 세계적으로 피해를 입히는 주요 전염병으로 남아 있다. 사회적 및 개인적 차원에서 새로운 감염 물결에 대한 위험성을 인지해야 한다. 개인 보호와 주변 사람들 보호를 위한 적극적인 조치가 필요하다. 새로운 위협에 대한 팬데믹 대비를 개선하고 현재의 위기에 대한 대응을 개선하기 위해서는 글로벌 감시를 지속하는 것이 중요하다. 또 저소득 및 중소득 국가는 우려할 만한 사각지대라는 것도 고려해야 할 상황이다. 코로나19는 지난 2019년 11월 중국 후베이성 우한시에서 처음으로 발생하여 보고된 새로운 유형의 변종 코로나바이러스인 SARS-CoV-2에 의해 발병한 급성 호흡기 전염병이다. 2019년 11월부터 중국에서 최초 보고되고 퍼지기 시작해 현재까지 전 세계에서 지속되고 있는 범유행전염병이자 사람과 동물 모두 감염되는 인수공통전염병이다. 또한 제1급 감염병 신종감염병 증후군의 법정 감염병이었다.
-
- IT/바이오
-
JN.1 변종, 코로나19 판도 전환
-
-
[퓨처 Eyes(22)] 초전도체 온-오프 스위치 개발, 혁신적 전력·통신 기술 기대
- 미국 과학자들이 온-오프 스위치가 있는 획기적인 초전도체 발견해 에너지 소비 감소의 길을 열었다. 최근 사이테크데일리 보도에 따르면, 워싱턴 대학교와 미국 에너지부(DOE) 산하 아르곤 국립연구소의 물리학자들이 온-오프 스위치 기능을 갖춘 새로운 초전도체를 발견했다. 초전도체는 특정 온도 아래에서 전기 저항이 완전히 사라지는 물질이다. 이 특징은 실제로는 매우 낮은 온도, 즉 절대 온도에 가까운 온도에서 유지되는데, 이를 초전도 상태라고 한다. 초전도체는 일반적으로 금속, 합금, 반도체 등 다양한 물질로 만들어질 수 있으며, 소수의 원자 또는 분자 구조에서 유래하는 특정한 전자-전자 상호작용이 초전도 상태를 유발한다. 따라서 초전도는 물질이 전류를 제로 저항으로 전달할 수 있는 양자역학적 상태로, 완벽한 전기 전송 효율을 가능하게 한다. 초전도체는 자기공명영상(MRI), 입자 가속기, 핵융합 반응로, 자기부상열차(마그레브 열차)와 같은 다양한 첨단 기술에서 강력한 전자석으로 활용된다. 또한, 초전도체는 양자 컴퓨팅 분야에서도 중요한 역할을 한다. 이 연구팀은 외부 자극에 반응하여 조절 가능한 독특한 특성을 지닌 초전도 물질을 개발, 에너지 효율적인 컴퓨팅과 양자 기술 발전에 기여할 수 있는 가능성을 제시했다. 이러한 발견은 첨단 연구 기법을 활용하여 이루어졌으며, 초전도 특성을 미증유의 방식으로 제어할 수 있는 능력을 통해 다양한 산업 응용 분야에 혁신을 가져올 것으로 기대된다. 해당 물질은 향후 산업용 전자제품에서 초전도 회로로의 응용 가능성을 지니고 있다. 연구팀은 고급 광자 소스를 사용해 이 물질의 희귀한 특성을 검증함으로써 효율적인 대규모 컴퓨팅을 위한 새로운 길을 열었다. 산업용 컴퓨팅에 대한 수요가 증가함에 따라, 이에 대응하는 하드웨어의 크기와 에너지 소비의 증가는 주요 과제로 남아 있다. 이러한 문제에 대한 해결책 중 하나로, 에너지 소비를 크게 줄일 수 있는 초전도 소재의 개발이 주목받고 있다. 거대한 데이터 센터를 운영하는 서버의 온도를 대폭 낮춤으로써, 에너지 효율성을 극대화하여 대규모 컴퓨팅 작업을 수행할 수 있는 가능성을 제시했다. 초전도체란 무엇인가? 초전도체는 저항이 완전히 사라지는 특별한 물질을 말한다. 일반적인 전도체에서는 전기가 흐를 때 내부의 불순물이나 결정 구조 때문에 전자가 충돌하며 에너지를 손실하게 되는데, 이를 전기 저항이라고 한다. 이 저항으로 인해 전기 에너지가 열로 변환되어 손실된다. 그러나 초전도체는 특정 온도(임계 온도) 이하에서 전기 저항이 사라져 전기가 전혀 손실 없이 흐를 수 있게 한다. 초전도 현상은 1911년 헤이케 캄링 온네스에 의해 처음 발견되었으며, 이후 다양한 물질에서 초전도 현상이 관찰됐다. 초전도체는 그 특성으로 인해 많은 고급 기술과 응용 분야에서 중요한 역할을 한다. 예를 들어, 초전도체를 이용하면 에너지 손실 없이 전기를 전송할 수 있으며, 매우 강력한 자기장을 생성할 수 있어 자기공명영상(MRI) 장비나 입자 가속기, 초전도 자석 등에 활용된다. 초전도체를 만드는 데 필요한 임계 온도는 물질에 따라 다르며, 초기에 발견된 초전도체는 극저온에서만 초전도 현상을 보였다. 그러나 1986년에 발견된 고온 초전도체는 비교적 높은 온도에서도 초전도 현상을 나타내 연구와 응용의 범위를 크게 확장시켰다. 고온 초전도체의 발견 이후, 상온에서 초전도 현상을 나타내는 물질을 찾기 위한 연구가 활발히 진행되고 있다. 오늘날의 전자제품은 반도체 트랜지스터를 사용하여 전류를 빠르게 켜고 끄는 방식으로 정보 처리에 사용되는 2진법과 0진법을 생성한다. 이러한 전류는 전기 저항이 유한한 물질을 통과해야 하므로 에너지의 일부가 열로 낭비된다. 이것이 바로 시간이 지남에 따라 컴퓨터가 뜨거워지는 이유다. 초전도에 필요한 낮은 온도(보통 화씨 영하 200도 이상)로 인해 이러한 소재는 휴대용 장치에 사용하기에는 실용적이지 않다. 하지만 산업적 규모에서는 유용할 수 있다. 워싱턴 대학교의 슈아 산체스가 이끄는 연구팀은 뛰어난 조정 능력을 가진 특이한 초전도 물질을 조사했다. 이 결정은 철, 코발트, 비소 원자로 이루어진 초전도 층 사이에 강자성 유로피움 원자가 평평한 시트를 끼워 만든 결정이다. 산체스에 따르면 자연에서 강자성과 초전도를 함께 발견하는 것은 극히 드문 일이며, 일반적으로 한 단계가 다른 단계를 압도하기 때문이다. 산체스는 "초전도 층이 주변 유로피움 원자의 자기장에 의해 뚫리기 때문에 실제로는 매우 불편한 상황"이라며 "이것은 초전도를 약화시키고 전기 저항을 유한하게 만든다"고 말했다. 초전도 기술의 도전과 혁신 산체스는 아르곤에 있는 DOE 과학부 사용자 시설인 미국 최고의 X-선 광원 중 하나인 APS(Advanced Photon Source)에서 1년간 레지던트로 근무했다. 그곳에서 그는 DOE의 과학 대학원생 연구 프로그램의 지원을 받았다. 산체스는 APS 빔라인 4-ID 및 6-ID의 물리학자들과 협력하여 복잡한 물질의 미세한 세부 사항을 조사할 수 있는 포괄적인 특성화 플랫폼을 개발했다. 산체스와 공동 연구자들은 X-선 기술을 조합해 결정에 자기장을 가하면 '유로피움 자기장 선(europium magnetic field line)'이 초전도 층과 평행하도록 방향을 바꿀 수 있다는 것을 보여줄 수 있었다. 이렇게 하면 길항 효과가 제거되고 저항이 0인 상태가 나타난다. 과학자들은 전기적 측정과 X-선 산란 기술을 사용하여 물질의 거동을 제어할 수 있음을 확인할 수 있었다. 논문의 공동 저자인 아르곤의 필립 라이언은 "초전도를 제어하는 독립적인 파라미터의 특성은 이 효과를 제어하는 완전한 방법을 계획할 수 있다는 점에서 매우 매력적"라고 말했다. 라이언은 "이 잠재력은 양자 장치의 전계 감도를 조절할 수 있는 능력을 포함하여 몇 가지 흥미로운 아이디어를 제시한다"고 설명했다. 그런 다음 연구팀은 결정에 응력을 가하여 흥미로운 결과를 얻었다. 연구팀은 자기장의 방향을 바꾸지 않고도 자성을 극복할 수 있을 정도로 초전도가 증가하거나 자기장의 방향을 바꾸어도 더 이상 제로 저항 상태를 만들 수 없을 정도로 약화될 수 있음을 발견했다. 이 추가 매개변수를 통해 자성에 대한 소재의 민감도를 제어하고 맞춤 설정할 수 있다. 산체스는 "이 물질은 여러 위상 간의 경쟁이 치열하고, 작은 응력이나 자기장을 가하면 한 위상을 다른 위상보다 높여서 초전도를 켜고 끌 수 있기 때문에 흥미롭다"고 말했다. 그는 "대부분의 초전도체는 쉽게 전환할 수 없다"고 강조했다. '전기의 고속도로' 초전도체 전기가 물을 통과하는 것처럼, 초전도체는 전기가 저항 없이 흐르도록 하는 '전기의 고속도로'라고 비유할 수 있다. 마찰 없이 움직이는 완벽한 롤러 스케이트처럼, 초전도체는 에너지 손실 없이 전기를 전달한다. 초전도체의 주요 특징은 다음과 같다. 초전도체는 전기 저항이 0이기 때문에 전류가 손실 없이 흐를 수 있다. 또한 초전도체는 외부 자기장을 완전히 배척하는 마이스너 효과를 나타내며, 외부 자기장에 반대되는 방향의 자기장을 형성하는 반자성을 띠고 있다. 앞으로 활용 분야가 다양한 초전도체는 전기 저항이 없기 때문에 전기를 손실 없이 먼 거리까지 효율적으로 송전하는 데 사용될 수 있다. 초전도체를 활용한 MRI 기계는 강력한 자기장을 생성하여 인체 내부를 상세히 이미징할 수 있는 기능을 제공할 수 있다. 또한, 초전도체를 사용한 마그레브 열차는 마찰이 없어 고속으로 운행될 수 있는 가능성을 제시한다. 마그레브 열차는 자기 부상 기술을 사용하여 레일과 접촉 없이 운행하는 열차다. '마그레브(Maglev)'는 '자기부상(Magnetic Levitation)'의 줄임말로, 강력한 자석을 사용하여 열차를 공중에 띄워 마찰을 거의 없애고 이동한다. 이 기술 덕분에 마그레브 열차는 기존의 바퀴를 사용하는 철도 시스템보다 훨씬 더 높은 속도로 운행할 수 있으며, 소음과 진동이 현저히 줄어들어 매우 부드럽고 조용한 탑승 경험을 제공한다. 마그레브 열차는 전기를 사용하여 강력한 전자기장을 생성하고, 이 전자기장이 열차를 들어 올리고, 추진하며, 안내하는 데 사용된다. 세계 여러 나라에서 이 기술을 연구하고 개발해 왔으며, 중국의 상하이 마그레브 열차와 일본의 초고속 마그레브 열차 시스템 등이 실제 운영되고 있는 대표적인 예다. 상하이 마그레브는 공항과 도심을 연결하는 노선으로 사용되며, 시속 430km에 달하는 속도로 운행된다. 양자 컴퓨팅 분야에서는 초전도체가 초전도 비트(큐비트·qubit)의 생성에 필수적인 역할을 한다. 큐비트 또는 퀀텀 비트는 양자 정보시스템에서 사용되는 최소 정보 단위로 0이나 1 뿐만 아니라 0과 1 어느 쪽도 확정 지을수 없는 상태까지 표현가능하다. 비록 초전도체 기술이 개발 초기 단계에 있지만, 이 기술은 미래 사회에 중대한 변화를 가져올 수 있는 높은 잠재력을 지니고 있다. 참조: '스트레인 전환 가능한 전계 유도 초전도' 작성자: Joshua J. Sanchez, Gilberto Fabbris, 최용성, Jonathan M. DeStefano, Elliott Rosenberg, Yue Shi, Paul Malinowski, Yina Huang, Igor I. Mazin, 김종우, 주준호 및 Philip J. Ryan, 2023년 11월 24일, 사이언스 어드밴시스. DOI: 10.1126/sciadv.adj5200
-
- 포커스온
-
[퓨처 Eyes(22)] 초전도체 온-오프 스위치 개발, 혁신적 전력·통신 기술 기대
-
-
해당화·지충이 등 해양생물 추출물, 국제 화장품 원료로 인정
- 해당화와 지충이 같은 해양생물 추출물이 국제적인 화장품 원료로 인정받았다. 국립해양생물자원관은 22일 바닷가 모래땅이나 갯벌 주변 염분이 많은 곳에서 자라는 해당화와 갯메꽃, 그리고 갈조류인 지충이 추출물이 미국화장품협회가 발간하는 국제화장품원료집(ICID)에 정식으로 등재됐다고 밝혔다. 해양생물자원관 소재개발연구실은 해당화가 콜라겐과 엘라스틴 분해효소 활성 억제를 통한 주름 개선 효능, 갯메꽃은 항염증 효능, 지충이는 피부미백 효능을 지녔음을 확인했다. 해양생물자원관의 소재개발연구실에서 실시한 연구에 따르면, 해당화는 콜라겐과 엘라스틴 분해 효소의 활성을 억제해 주름 개선에 효과적임이 입증됐다. 갯메꽃은 항염증 효능을, 지충이는 피부 미백에 효과가 있는 것으로 확인되었다. 지충이는 갈조식물 모자반과의 바닷말로 국내 전 연안의 조간대 암반 및 조수웅덩이, 조하대에 서식한다. 지충이는 수많은 비늘잎으로 둘러싸인 가지가 특징으로 서식 환경에 따라 형태 차이가 크게 나타난다. 최완현 관장은 "해양생명자원에서 유래한 유용한 소재를 발굴하고 그 기능성에 대한 연구를 통해, 이러한 해양소재가 화장품 산업을 비롯하여 다양한 해양바이오 산업에서 광범위하게 활용될 수 있도록 지속적인 노력을 기울이겠다"고 강조했다. 한편, 해양소재를 화장품 원료로 사용하는 것은 지속가능하고 혁신적인 코스메틱 산업의 추세 중 하나다. 갈조류 등 해양 소재들이 그들의 독특한 특성과 효능으로 인해 화장품 원료로 인기를 얻고 있다. 해조류, 특히 갈조류와 녹조류의 추출물은 피부의 수분 보유 능력을 향상시키고, 항염증 및 항산화 효과를 가지고 있다. 이들은 피부 탄력과 수분 공급에 도움을 준다. 진주 분말은 피부에 미네랄을 공급하고, 미백 효과를 제공한다. 또한, 피부 재생과 노화 방지에도 효과적이다. 물고기 비늘 또는 피부에서 추출한 해양 콜라겐은 인간의 피부와 구조가 유사하여 피부 보습과 탄력 향상에 도움을 준다. 바닷물에 포함된 미네랄은 피부의 수분 밸런스를 조절하고, 피부 진정 및 청정 효과를 제공한다. 해양 심층수는 미네랄이 풍부하고 순수한 특성을 가지고 있어 피부 보습과 진정에 도움을 준다. 해양 머드(잠토)는 피부 독소를 제거하고, 모공을 정화하며 피부 진정과 영양 공급에도 효과적이다. 비건 화장품 플랫폼 케이-코스랜드(K-COSland)를 운영하는 김성범 대표는 "해당화, 겟메꽃, 지충이 등의 해양생물 추출물이 국제화장품원료집(ICID)에 정식으로 등재되었다는 사실은 여러 면에서 중요한 의의를 가지고 있다"면서 "ICID에 등재되면 해당 원료에 대한 국제적 인정과 신뢰성이 확보된다. 이는 해당 원료를 사용하는 화장품 제품의 품질과 안전성에 대한 글로벌 인식을 높이는 데 기여할 수 있다"고 말했다. 김 회장은 또 "한국 원료가 국제 시장에서 화장품 원료로서 인정받음으로써 해외수출과 글로벌 시장 진출에 있어서의 접근성이 강화된다"며 "이는 해당 원료를 기반으로 하는 화장품 제품의 수출 증가로 이어질 수 있다"고 기대했다.
-
- 생활경제
-
해당화·지충이 등 해양생물 추출물, 국제 화장품 원료로 인정
-
-
18가지 암 93% 초기 발견 가능 획기적인 혈액검사 개발
- 미국에서 18가지 유형의 암을 초기 단계에서 발견할 수 있는 새로운 혈액검사가 개발됐다. 영국 매체 더 선(THE Sun)은 미국의 생명공학 회사 노벨나(Novelna) 연구팀이 개발한 획기적인 혈액 검사 방법은 18가지 유형의 암을 초기 단계에서 발견할 수 있다고 최근 보도했다. 이 검사 방법은 혈장 내 단백질의 변화를 감지하여 암세포와 정상 세포를 구분한다. 연구진은 이 검사를 이전에 암을 진단받은 440명과 건강한 헌혈자 44명에게 테스트했다. 그 결과, 이 검사는 초기 단계의 암을 '매우 정확하게' 탐지할 수 있었고, 80%의 사례에서 암세포에서 유래한 단백질을 확인했다. 특히, 1단계 암의 경우 남성은 93%, 여성은 84%를 발견할 수 있었다. 하버드 대학의 보그단 버드닉(Bogdan Budnik) 박사는 이 혈액 검사의 중요성을 강조하며, "우리가 개발한 이 혈액 검사는 암의 조기 발견에 매우 효과적이며, 암세포에서 나오는 특정 단백질을 증상이 나타나기 전에 감지할 수 있다"고 밝혔다. 현재 영국에는 약 300만 명의 암 환자가 있는 것으로 추정되며, 전문가들은 이 숫자가 2040년까지 530만 명 이상으로 증가할 것으로 예측하고 있다. 암은 초기 단계에서 발견될 경우 치료가 상대적으로 용이하지만, 현존하는 다양한 암 조기 발견 검사들이 종류별로 분류되어 있어 신속한 진단에 어려움이 있다. 영국의 국가의료제도(National Health Service, NHS)는 현재 갤러리(Galleri) 테스트를 시범 운영 중이다. 갤러리 테스트는 50가지의 암을 탐지할 수 있는 능력이 있다고 알려져 있지만, 최근 개발된 노벨나(Novelna)의 새로운 테스트는 갤러리 테스트보다 더 높은 민감도를 보이는 것으로 평가받고 있다. 이 새로운 검사 방법은 혈장 내에 존재하는 단백질을 분석하여 암을 탐지한다. 암세포는 정상 세포와는 다른 단백질을 생성하기 때문에, 이러한 차이를 통해 암을 조기에 발견할 수 있다는 것이 핵심이다. 이 새로운 혈액 검사는 성별을 고려하여 진행되는데, 이는 일부 암이 남성과 여성에서 다른 연령대에 영향을 미칠 가능성이 높기 때문이다. 암은 증상이 나타나기 전, 몸 안에서 작은 암세포들이 퍼져 나가는 단계에서 발견하기 어렵다. 이 단계에서는 암세포가 아직 크기가 작고 증상이 나타나지 않기 때문이다. 그러나 암세포는 정상 세포와 다른 단백질을 생성하는 특징을 가지고 있다. 이러한 특성 때문에 혈액 검사를 통해 암을 조기에 발견할 수 있다. 현재 영국 국가의료제도에서 시험 중인 갤러리 테스트와 새로 개발된 노벨나의 검사 모두 혈액 내의 단백질을 분석하여 암을 탐지한다. 특히, 노벨나의 새로운 검사는 성별에 따른 암 발생 가능성을 고려하여 검사를 진행함으로써, 보다 정확하고 맞춤화된 진단이 가능하게 하여, 암 진단의 정확도와 효율성을 높이는 데 기여하고 있다. 런던 퀸 메리 대학의 스티븐 더피(Stephen Duffy) 교수는 최근의 연구 결과에 대해 "이 연구는 암을 조기에 발견할 수 있는 높은 가능성을 보여주며, 잘못된 결과를 낼 확률이 낮다는 것을 시사한다"고 말했다. 암은 초기 단계에서 발견되고 적절히 치료될 경우 완치 가능성이 높지만, 증상이 나타나기 전에는 발견하기 어려운 것이 현실이다. 이러한 맥락에서, 이 새로운 혈액 검사의 상용화는 암 조기 발견과 치료에 큰 진전을 가져올 것으로 기대된다.
-
- IT/바이오
-
18가지 암 93% 초기 발견 가능 획기적인 혈액검사 개발
-
-
생수 속 나노플라스틱, 리터당 수천 개…체내 침범 우려
- 연구원들이 생수 속에서 이전 추정치보다 10~100배 더 많은 플라스틱 조각이 포함되어 있다는 사실을 발견했다고 CNN이 8일(현지시간) 보도했다. 미국 컬럼비아 대학의 연구원들은 생수에 있는 나노입자의 화학 구조를 보고, 계산하고, 분석할 수 있는 새로운 기술을 제시했다. 새로운 연구에 따르면, 표준 크기 생수 2개에 해당하는 1리터의 물에는 7가지 유형의 플라스틱에서 평균 24만 개의 플라스틱 입자가 포함되어 있으며, 이 중 90%는 나노플라스틱이고 나머지는 마이크로플라스틱인 것으로 확인됐다. 이 연구 결과는 미국 국립과학원 회보(Proceedings of the National Academy of Sciences) 저널에 이날 발표됐다. 나노 입자는 너무 작아서 현미경으로 볼 수 없다. 전문가들은 인간 머리카락 평균 너비의 1000분의 1인 나노플라스틱은 너무 작기 때문에 소화관이나 폐 조직을 통해 혈류로 이동하여 잠재적으로 유해한 합성 화학 물질을 몸 전체와 세포에 퍼트릴 수 있다고 지적했다. 미세 플라스틱은 0.2인치(5mm) 미만에서 2만5000분의 1인치(1마이크로미터)에 이르는 폴리머 조각이다. 그보다 더 작은 것은 10억분의 1미터 단위로 측정해야 하는 나노 플라스틱이다. 이 연구를 주도한 연구팀은 미국에서 판매되는 인기 생수 브랜드 3곳의 실제 플라스틱 조각 수가 리터당 300개가 아니라 11만 개에서 37만 개 사이라는 사실을 발견했다. 단, 저자들은 어떤 브랜드의 생수를 연구했는지는 언급하지 않았다. 공동 저자이자 환경 화학자인 컬럼비아 대학교 라몬트-도허티 지구 천문대의 부교수인 베이잔 얀(Beizhan Yan)은 "이 새로운 기술은 실제로 물속에서 수백만 개의 나노 입자를 볼 수 있었으며, 이는 무기 나노 입자, 유기 입자 및 우리가 연구한 7가지 주요 플라스틱 유형이 아닌 다른 플라스틱 입자일 수 있다"고 말했다. 이 연구는 나노 플라스틱이 인간 건강에 미치는 잠재적 위험을 탐구하는 새로운 방향을 제시했다. '건강한 아기, 밝은 미래'라는 비영리단체의 연합체에서 일하는 연구 책임자 제인 헐리한은 이 연구에 직접 참여하지는 않았지만, 나노 플라스틱의 인간 건강에 대한 잠재적 위험을 더 깊이 이해하기 위한 추가적인 연구가 필요하다고 강조했다. 이 단체는 아기들이 신경독성 화학물질에 노출되는 것을 줄이기 위해 노력하는 과학자들과 기부자들로 구성되어 있다. 헐리한은 "이 연구는 미세 플라스틱 입자에 대한 광범위한 인체 노출이 거의 연구되지 않은 위험을 초래할 수 있음을 시사한다"고 말했다. 그녀는 "특히 영유아가 이러한 위험에 가장 크게 노출될 수 있는데, 그 이유는 영유아의 발달이 더디기 때문"이라고 덧붙였다. 펜실베이니아주립대 베렌드 캠퍼스의 지속가능성 책임자인 셰리 '샘' 메이슨(Sherri 'Sam' Mason)은 이 연구에 참여하지 않았지만, "이 연구는 인상적이며, 투입된 노력이 매우 심오하다. 나는 이를 획기적이라고 부르고 싶다"라고 평가했다. 이 새로운 발견은 수돗물 유해 물질 노출을 줄이기 위해 유리나 스테인리스 스틸 용기에 담긴 수돗물을 마시라는 오랜 전문가의 조언을 강조한다고 메이슨은 말했다. 이러한 조언은 플라스틱으로 포장된 다른 음식과 음료에도 적용된다고 그녀는 덧붙였다. 메이슨은 9개국 11개 브랜드에서 판매되는 생수 샘플의 93%에서 마이크로플라스틱과 나노 플라스틱의 존재를 처음으로 발견한 2018년 연구의 공동 저자였다. 과거 연구에서 메이슨은 오염된 물 1리터에 인간의 머리카락보다 넓은 평균 10개의 플라스틱 입자와 300개의 작은 입자가 포함되어 있음을 발견했다. 그러나 5년 전인 2018년 기술로는 그 작은 입자를 분석하거나 더 많은 것이 있는지 알아낼 방법이 없었다. 메이슨은 "우리가 나노플라스틱의 존재를 몰랐던 것은 아니다. (당시) 우리는 그것들을 분석할 수 없었다"라고 설명했다. 나노 플라스틱, 인간 건강 위협 전문가들은 나노 플라스틱이 인류 건강에 가장 큰 위협을 주는 플라스틱 오염 유형 중 하나로 지목하고 있다. 이는 나노 플라스틱의 미세 입자가 주요 기관의 세포와 조직을 침입해 세포 활동을 방해하고, 비스페놀, 프탈레이트, 난연제, 과불소화 물질(PFAS), 중금속 등의 내분비 교란 화학물질을 축적할 수 있기 때문이다. 러트거스 대학교 어니스트 마리오 약학대학의 독성학 박사이자 약리학 부교수인 피오피 스태플튼(Phoebe Stapleton) 박사는 쥐를 대상으로 한 연구에서 임신한 쥐가 플라스틱 입자를 섭취하거나 흡입한 후 24시간 만에 그들의 태아의 뇌, 심장, 간, 신장 및 폐에서 플라스틱 화학물질을 발견했다고 보고했다. 스태플튼 박사는 "이 시점에서 인간 태반에서 마이크로플라스틱과 나노 플라스틱이 발견됐다"고 말했다. 그는 "인간의 폐 조직과 인간의 대변, 인간의 혈액에서 (미세 플라스틱이) 발견됐다"고 덧붙였다. 생수에서 나노입자를 식별하는 새로운 연구 방법은 라만 분광법의 개선된 형태에 기반을 두고 있다. 이 기술은 분자가 빛에 반응하여 진동하는 방식을 측정함으로써 세포의 화학적 구성을 분석한다. 이 기술의 공동 발명자이자 컬럼비아 대학교 화학과 교수인 웨이 민(Wei Min) 교수는 “이 변형된 라만 분광법, 자극 라만 산란 현미경(SRS)은 두 번째 레이저를 추가해 이전에는 감지하기 어려웠던 나노입자를 여러 자릿수로 증폭된 신호를 통해 탐지할 수 있다"고 말했다. 민 교수는 2008년 SRS를 공동 개발했다. 민 교수는 "이 연구는 자극 라만 산란 현미경을 나노플라스틱 세계에 적용한 최초의 연구"라고 말했다. SRS는 이미지를 획기적으로 향상시킴으로써 기존 기술에서 몇 시간이 걸리던 나노 입자의 이미지를 마이크로초 단위로 명확하게 식별하고 캡처할 수 있으며, 촬영 대상 조직에 손상을 주지 않고도 이미지를 캡처할 수 있다. 해당 연구에서 개발된 알고리즘은 출판 당시 폴리아미드, 폴리프로필렌, 폴리에틸렌, 폴리메틸메타크릴레이트, 폴리염화비닐, 폴리스티렌, 그리고 폴리에틸렌 테레프탈레이트를 포함한 일곱 가지 주요 플라스틱 유형을 식별할 수 있었다. 컬럼비아 대학교 화학 박사과정 학생이자 이 연구의 수석 저자인 나이신 치안(Naixin Qian)은 "다른 연구들을 통해 우리는 생수에 존재하는 대부분의 미세 플라스틱이 주로 PET(폴리에틸렌 테레프탈레이트) 병에서 누출된 것으로 추정했다"고 말했다. 다양한 유형의 플라스틱 존재 연구팀의 발견에 따르면, 플라스틱 물병 안에는 예상과 달리 다양한 유형의 플라스틱이 존재하며, 각 플라스틱 유형마다 입자 크기가 다르다. 연구팀은 "PET 플라스틱 입자는 크기가 컸지만, 다른 플라스틱 입자는 200나노미터에 불과해 훨씬 더 작았다"고 밝혔다. 연구에 따르면, PET 입자는 병 뚜껑을 반복적으로 여닫거나, 병이 파손되거나, 자동차 안에서 높은 온도에 노출될 때 부서질 수 있는 것으로 밝혀졌다. 컬럼비아 대학교 연구팀은 앞으로 생수에 떠다니는 나노 플라스틱의 출처를 더 깊이 연구할 계획이다. 이들은 나노 플라스틱이 제조 과정 중 오염된 원수에서 유래했을 가능성을 조사하고 있다. 한편, '건강한 아기, 밝은 미래' 재단의 헐리안은 과학이 이와 같은 문제를 탐구하는 동안 사람들이 플라스틱 노출을 줄이기 위해 취할 수 있는 조치들에 대해서도 밝혔다. 그녀는 "플라스틱 용기에 담긴 음식과 음료 섭취를 피하고, 천연 직물로 만든 옷을 입으며, 천연 소재의 소비자 제품을 구매하는 것이 좋다. 일상에서 플라스틱 사용을 줄이고 대안을 찾는 것이 중요하다"고 말했다.
-
- 생활경제
-
생수 속 나노플라스틱, 리터당 수천 개…체내 침범 우려
-
-
벤젠 검출 진통제 스프레이, 전량 리콜
- 제약 회사 인사이트 파마슈티컬스(Insight Pharmaceuticals)가 암을 유발할 수 있는 화학 물질 벤젠에 오염된 것으로 확인된 특정 진통제 스프레이를 리콜하기로 결정했다. 뉴스위크(Newsweek)는 인사이트 파마슈티컬스는 자사의 '아메리칸 20% 벤조카인 국소 마취 스프레이' 제품 일부를 자발적으로 리콜한다고 발표했다고 최근 보도했다. 이 스프레이는 주로 경미한 상처, 긁힌 자국, 화상 및 일광 화상에 대한 통증과 가려움증 완화에 사용되며, 일반적으로는 치질과 염증 관련 증상 완화에도 사용된다. 리콜 발표에 따르면, 오염 원인은 "제품을 캔에서 분사하는 추진제에 존재하는 낮은 수준의 벤젠"으로 밝혀졌다. 벤젠은 백혈병, 골수 혈액암 등 암과 혈액 질환을 유발할 수 있는 발암물질로 알려져 있다. 인사이트 파마슈티컬스는 현재까지 이번 리콜과 관련된 심각한 부작용 보고는 없었다고 밝혔으며, 리콜은 잠재적인 위험을 예방하기 위한 조치로 이루어졌다고 전했다. 회사는 또한 벤젠이 얼마나 흔한 화학 물질인지를 언급하며, "전 세계 사람들이 실내 및 실외 환경에서 다양한 원천으로부터 매일 벤젠에 노출되고 있다"고 공지했다. 이러한 정보는 벤젠 노출에 대한 대중의 인식을 높이는 데 기여할 수 있다. 미국 질병통제예방센터(CDC)에 따르면, 벤젠은 실내 및 실외 공기에서 발견될 수 있으나, 일반적으로 실내에서의 농도가 더 높은 것으로 알려져 있다. CDC는 실내 공기 중의 벤젠이 접착제, 페인트, 가구 왁스, 세제 등의 일상적인 제품에서 유래할 수 있다고 지적했다. 또한, 담배 연기, 주유소, 자동차 배기 가스, 산업 배기 가스 등에서도 낮은 수준의 벤젠이 외부 환경에서 발견될 수 있다고 밝혔다. 회사는 리콜 대상인 오염된 제품 로트에 '코드 1A16420'이 포함되어 있으며, 제품의 용량은 2온스(약 56.7g)라고 설명했다. 회사 측은 이번 리콜 대상에 포함되지 않은 다른 스프레이 제품은 안전하게 사용할 수 있다고 덧붙였다. 인사이트 파마슈티컬스는 오염된 제품을 구입한 소비자들에게 즉시 사용을 중단하고 제품을 폐기할 것을 권고했다. 회사는 "해당 마취 스프레이 제품을 사용하거나 복용한 후 문제가 발생했을 경우 소비자는 즉시 의사나 건강 관리 전문가와 상담해야 한다"고 권고했다. 벤젠에 높은 수준으로 노출되었을 때 나타날 수 있는 즉각적인 증상으로는 졸음, 현기증, 심장 박동의 빠르거나 불규칙한 변화, 두통, 떨림, 혼란, 의식 불명 등이 있으며, 매우 높은 수준의 노출은 사망에 이를 수도 있다고 알려져 있다. 그러나 CDC는 이러한 증상이 나타난다고 해서 반드시 벤젠 노출을 의미하는 것은 아니라고 설명했다. 회사는 소비자들에게 오염된 제품을 버리기 전에 제품 바닥의 사진을 찍어 제출하면 환불을 받을 수 있다고 밝혔다. 인사이트 파마슈티컬스는 자사 제품에 대한 리콜 공지와 관련한 연락처 정보를 미국 식품의약국(FDA)의 웹사이트에 게재한 리콜 통지서에 기재했다.
-
- 산업
-
벤젠 검출 진통제 스프레이, 전량 리콜
-
-
맥주의 두 종류, 에일과 라거 차이점은?
- 연말이 다가오면서 송년회와 같은 모임에서 맥주를 즐기는 사람들이 늘고 있다. 맥주는 다양한 종류와 맛을 자랑하며, 취향에 맞게 선택할 수 있는 폭이 넓다는 점에서 인기를 얻고 있다. 또한, 맥주는 가격이 비교적 저렴해 부담 없이 즐길 수 있어 많은 이들에게 사랑받고 있다. 남성 전문지 더 메뉴얼(THE MANUAL)에 따르면, 맥주는 주로 발효 방식에 따라 에일(ale)과 라거(lager)로 구분된다. 이 발효 방식은 맥주의 맛과 풍미에 중요한 영향을 미친다. 상면발효맥주(上面醱酵麥酒)라고도 하는 에일은 상온에 가까운 15~25℃의 온도에서 상면 발효 효모를 사용하는 반면, 라거는 좀 더 낮은 7~15℃에서 하면 발효 효모를 사용한다. 이러한 차이는 에일과 라거 각각의 독특한 특성과 맛을 만들어낸다. 에일은 높은 온도에서 발효되기 때문에 라거에 비해 더 많은 에스테르를 생성한다. 에스테르는 과일과 같은 풍미를 내는 화합물로, 이로 인해 에일은 라거보다 일반적으로 더 밝고 과일 향이 나는 특징적인 풍미를 가진다. 반면, 라거는 에일에 비해 발효 시간이 더 오래 걸린다. 에일은 보통 2~3주 만에 발효가 완료되는 것에 비해 라거는 발효에 4~6주가 소요된다. 이처럼 발효 시간이 길어지면 맥주의 맛을 더 부드럽고 균형잡힌 풍미를 만들어 준다. 라거의 경우 상대적으로 에일보다 더 맑은 특성을 가지는데, 이는 종종 콜드 컨디셔닝 과정을 거치기 때문이다. 콜드 컨디셔닝은 발효가 완료된 맥주를 저온에서 숙성시키는 과정으로 맥주의 탁한 성분을 제거하는 과정으로, 라거의 맑고 깨끗한 외관을 만들어낸다. 이처럼 발효 방식과 과정의 차이는 에일과 라거 각각의 독특한 맛과 특성을 만들어내며, 맥주 애호가들에게 다양한 선택의 폭을 제공한다. 대표적인 에일과 라거 종류 에일은 다양한 스타일과 맛을 가진 맥주로, 대표적인 종류에는 IPA(인디아 페일 에일), 스타우트, 포터, 고스, 사워 에일, 밀 맥주 등이 있다. IPA는 홉의 강한 풍미와 쓴맛이 특징인 맥주이며, 스타우트는 짙은 색과 깊은 풍미로 잘 알려져 있다. 포터는 스타우트보다 색이 밝고 쓴맛이 덜하며, 고스는 말린 과일이나 허브를 첨가해 독특한 맛을 낸다. 사워 에일은 발효 과정에서 생성되는 젖산 덕분에 신맛이 나고, 밀 맥주는 밀을 사용하여 부드럽고 약간 달콤한 맛이 난다. 라거의 대표적인 종류로는 필스너, 헬레스(Helles) 라거, 멕시코 라거, 쾰쉬(Kölsch) 스타일 맥주, 비엔나 라거 등이 있다. 라거는 또 다른 인기 있는 맥주 종류로, 필스너, 헬레스(Helles) 라거, 멕시코 라거, 쾰쉬(Kölsch) 스타일 맥주, 비엔나 라거 등이 대표적이다. 이들 라거는 발효 과정과 숙성 기간의 차이로 인해 각기 다른 풍미와 특성을 지니고 있다. 필스너는 1842년 체코에서 처음 양조된 맥주로, 맑은 황금색과 깔끔한 맛이 특징이다. 헬레스 라거는 필스너보다 색이 더 밝고 풍미가 더 가볍다. 멕시코 라거는 옥수수가 함유된 맥주로, 상쾌한 맛과 톡 쏘는 탄산이 특징이다. 쾰쉬 스타일 맥주는 독일 코블렌츠 지역에서 유래한 맥주로, 맑은 황금색과 홉의 풍미가 특징이다. 비엔나 라거는 독일 비엔나 지역에서 유래한 맥주로, 붉은빛을 띠는 황금색과 홉의 풍미가 독특하다. 한국, 에일과 라거 양극화 한국의 맥주는 라거가 주류를 이루고 있다. 대표적인 라거 맥주로는 오비맥주의 카스, 하이트진로의 하이트, 롯데칠성음료의 클라우드 등이 있다. 이 맥주들은 모두 맑고 상쾌한 맛을 특징으로 한다. 반면, 에일은 아직까지 소수의 마니아층을 중심으로 사랑받고 있다. 대표적인 에일 맥주로는 제주맥주의 제주 위트, 칭따오, 카프리, 에델바이스 등이 있다. 연말 술자리에서 맥주를 즐길 때는 적당히 마시고, 물을 자주 마셔주는 것이 좋다. 과음은 건강을 해칠 수 있으므로, 주의해야 한다.
-
- 생활경제
-
맥주의 두 종류, 에일과 라거 차이점은?
-
-
새해, 밤하늘 수놓는 '유성우' 등 우주쇼 관측 가능
- 새해 첫 천문현상으로 사분의자리 유성우가 2024년 1월 4일 찾아온다. 18일 한국천문연구원에 따르면 2024년 1월 28일 아침 7시에는 수성과 화성이 0.3도로, 4월 11일 새벽 5시에는 화성과 토성이 0.4도 내로 각각 근접한다. 2024년에는 '3대 유성우'로 불리는 1월 사분의자리 유성우, 8월 페르세우스자리 유성우, 12월 쌍둥이자리 유성우도 볼 수 있다. 새해 가장 먼저 찾아오는 사분의자리 유성우는 1월 4일 밤과 자정을 지나 5일 새벽에 많이 볼 수 있을 것으로 예측된다. 사분의자리 유성우(Quadrantid Meteor Shower)는 매년 1월 초반에 관측할 수 있는 대기중에 떨어지는 유성(별똥별)의 떨어짐을 나타내는 천체 현상이다. 이 유성우는 이름 그대로 '사분의 자리(Quadrans Muralis)'에서 유래한 것으로, 이 자리는 현재는 별자리 목록에서는 없는 별자리이다. 사분의자리 유성우는 대체로 1월 3일에서 4일 사이에 화려한 활동을 보이며, 화려한 유성우의 최고조점은 밤 중에 나타난다. 이 기간 동안 시간당 수십 개의 유성이 하늘에서 떨어질 수 있다. 사분의자리 유성우를 관측하려면 시계방향으로 돌아보면서 하늘을 살피는 것이 좋다. 가능한 어두운 장소에서 관측하면 더 많은 유성을 볼 수 있다. 이 유성우는 북반구에서 더 잘 관측할 수 있다. 페르세우스자리 유성우는 극대 시각이 8월 12일 밤 11시 30분으로, 달도 11시 6분에 지기 때문에 관측 조건이 매우 좋다. 쌍둥이자리 유성우 극대 시각은 12월 14일 오전 10시다. 극대시간이 한낮이고, 밤새도록 달이 떠 있기 때문에 유성우 관측에는 좋지 않은 환경이다. 또 2024년 6월 28일에는 달과 토성이 약 1.1도로 근접하는 모습을 관찰할 수 있다. 2024년 8월 14일 밤 11시에는 화성과 목성이 0.9도로 가까이 있는 모습을 볼 수 있다. 행성 또는 행성과 달의 각도는 관측 장소에서 두 점에 이르는 두 선 사이 각의 크기를 의미한다. 각도가 작을수록 두 천체가 근접하는 것을 말한다. 게다가 4월 9일 개기일식과 10월 3일 금환일식도 있다. 그러나 이 두 번의 일식은 모두 우리나라에서는 관찰할 수 없다. 4월 8일(현지) 개기일식은 멕시코, 미국, 캐나다에서만 관측 가능하고, 10월 2일 금환일식은 칠레와 아르헨티나에서 관측할 수 있다. 2024년 가장 큰 보름달(슈퍼문)은 10월 17일 관측할 수 있다. 반면, 가장 작은 보름달은 2024년 2월 24일 뜨는 달이다.
-
- 생활경제
-
새해, 밤하늘 수놓는 '유성우' 등 우주쇼 관측 가능
-
-
자작나무 잎에서 나노입자 추출…지속가능한 반도체 소재 개발
- 스웨덴 과학자들이 자연 재료로 만든 나노입자를 이용하여 유기 반도체 물질을 개발하는데 성공했다. 과학 기술 전문 매체 테크놀러지 네트웍스는 지난 11월 29일(현지시간) 압력으로 조리된 잎으로 만든 나노입자는 유기 반도체에 사용되는 희귀 원소를 대체할 수 있다며 자작나무 잎에서 나노입자를 추출했다고 보도했다. 이 연구는 덴마크와 중국의 연구자들과의 협업을 통해 진행됐다. 연구진은 고압 가열 방식을 통해 식물 생체질을 나노 크기의 탄소 입자, 즉 탄소 양자점으로 전환하는 데 성공했다. 이 연구 결과는 영국 왕립화학회(Royal Society of Chemistry)의 '그린 케미스트리(Green Chemistry)' 저널에 게재됐다. 이번 연구 결과는 유기 전자 제품 분야에서 획기적인 발전으로 기대된다. 이 매체에 따르면 스웨덴 우메아(Umeå) 대학의 물리학자들이 중국과 덴마크의 연구원들과 협력하여 식물 생물질을 나노 크기의 탄소 입자, 이른바 '탄소 양자점'으로 분해하는 새로운 압력 조리 방법을 개발했다. 이 탄소 양자점은 유기 전자 제품에 사용되는 유기 반도체 물질의 일부 희귀 원소를 대체할 수 있을 만큼 좋은 광학 특성을 가지고 있다. 연구원들은 또한 자작 나무잎에서 유래한 탄소 양자점을 사용하여 생물 기반 반도체 물질을 생산하는 데 성공했다고 보고했다. 유기 반도체의 지속가능성 유기 반도체는 전자 장치에 있어 가장 중요한 기능성 재료 중 하나로, 특히 유기 발광 다이오드(OLED)에서 주목받고 있다. 광전자 분야에서 이러한 반도체는 초박형 밝은 텔레비전과 휴대 전화 화면에 사용되는 유기 발광 다이오드(OLED)를 전원 공급하는 데 가장 유명하다. 그러나 유기 반도체 기술에 대한 수요가 증가함에 따라 큰 문제가 발생한다. 대부분의 유기 반도체는 대부분 지속 가능하지 않은 원료인 석유 화학 물질과 플래티넘, 인듐, 인과 같은 희귀 원소를 사용하여 제조된다. 이러한 소위 '핵심 원료'는 환경에 특히 좋지 않다는 점에서 문제가 있다. 반도체 산업의 지속가능성을 높이기 위해 연구원들은 이러한 핵심 원료를 대체할 수 있는 대체 원료를 조사하기 시작했다. 우메아 대학 물리학과 연구원 지아 왕(Jia Wang) 박사는 "우리 연구의 핵심은 인근 재생 가능 자원을 활용하여 유기 반도체 물질을 생산하는 것이다"라고 말했다. 새로운 연구에서 왕 박사와 그녀의 동료들은 생물 기반 탄소 양자점을 유일한 원료로 사용하는 반도체의 성공적인 생성을 보고했다. 자작나무 잎에서 양자 물질까지 이 새로운 반도체의 합성은 매우 간단하다. 우메아 대학 캠퍼스에서 자라는 자작나무에서 잎을 딴 후, 연구원들은 에탄올 용액을 사용하여 용매열 반응 과정을 통해 잎을 효과적으로 압력 조리했다. 이 용액을 건조하고 추출하면 크기가 약 2나노미터인 탄소 나노 물질로 구성된 양자점인 '탄소 양자점'이 생성된다. 신선한 에탄올 용액에 용해되면 탄소 양자점은 좁은 밴드의 깊은 붉은 빛을 방출한다. 연구원들은 탄소 양자점을 사용하여 새로운 발광 전기 화학 장치를 제조할 수 있었으며, 최대 100 坎델라/제곱미터(cd/m2)의 밝기를 생성할 수 있다. 이것은 일반 컴퓨터 화면에서 발산되는 광량과 동일하다. 왕 박사는 "우리의 방법은 자작 나무잎에 국한되지 않는다는 점에 유의하는 것이 중요하다"라고 덧붙였다. 그는 "우리는 동일한 압력 조리 방법으로 다른 식물 잎을 테스트했으며 모두 유사한 빨간색 방출 탄소 양자점을 생성했다. 이러한 다양성은 이 변환 과정이 다른 위치에서 사용될 수 있음을 시사한다"고 말했다. 상업용 양자점과는 달리, 새롭게 개발된 바이오 기반 탄소점은 석유화학 화합물, 중금속, 또는 중요한 원재료를 포함하지 않는다. 왕 박사는 이러한 바이오매스 기반 탄소점이 고갈되는 석유 화합물 대신 유기 반도체의 원료로 사용될 수 있음을 시사한다고 말했다. 연구팀은 이 바이오 기반 탄소점이 발광 소자를 넘어 다양한 분야에서 응용될 수 있다고 기대했다. 왕 박사는 "이 카본닷은 바이오 이미징, 센싱, 위조 방지 등 여러 응용 분야에서 유망한 소재다. 우리는 이러한 지속 가능하고 발광성 있는 탄소점의 새롭고 흥미로운 용도를 탐구하기 위해 협력을 기대하고 있다'라고 말했다.
-
- IT/바이오
-
자작나무 잎에서 나노입자 추출…지속가능한 반도체 소재 개발
-
-
박테리아, 암세포 DNA 파괴 화합물의 합성 과정 밝혀내
- 미국 플로리다주 주피터에 위치한 허버트 베르트하임 UF 스크립스 생물의학 혁신 및 기술 연구소의 연구팀이 암을 포함한 인간의 질병과의 싸움에 도움이 될 수 있는 새로운 효소를 발견했다고 과학 전문매체 싸이테크데일리가 최근 보도했다. 연구팀이 발견한 '보조 인자 없는 산소 분해 효소'는 박테리아에서 유래되며, 공기 중의 산소를 획득해 화합물에 통합하는 독특한 특성을 보인다. 이러한 과정을 통해 유기체는 방어 물질을 합성하고, 감염이나 침입자에 대항하는 생존적 장점을 갖게 된다. 연구팀에 따르면, 발견된 보조 인자 없는 산소 분해 효소인 TnmJ와 TnmK2는 항생제 및 항암 화합물인 티안시마이신 A의 효능에 대한 의문을 해결하는 데 중요한 역할을 한다. 연구원 춘귀(Chun Gui)와 에드워드 칼크루터(Edward Kalkreuter)는 이러한 발견이 암 치료 및 항생제 개발에 중요한 기여를 할 수 있을 것으로 기대한다고 전했다. 2016년 처음 발견된 티안시마이신 A는 암세포의 DNA를 끊어 죽이는 효과가 있는 화합물로 바이러스나 다른 세균을 죽이는 데에도 효과적이다. 현재 암 표적 항체 치료제 개발에 중요한 요소로 주목받고 있으며, 이 치료제는 항체와 약물을 결합해 암세포에 결합한 후 약물을 방출하여 암세포를 제거한다. 티안시마이신 A는 종양 크기를 크게 줄이는 효과를 나타내며, 쥐를 대상으로 한 실험에서 암 치료제로의 개발 가능성을 시사했다. 이 화합물은 토양에 서식하는 박테리아에서 발견되었으며, 세 개의 탄소-탄소 결합을 끊어 DNA를 손상시키고 탄소-산소로 결합으로 대체하여 DNA를 파괴해 암세포를 파괴할 수 있게 했다. 허버트 베르트하임 UF 스크립스 생물의학 혁신 및 기술 연구소는 천연 제품 컬렉션에서 발견된 다양한 화합물을 연구하고 있으며, 이를 통해 화학적 다양성이 진화한 이유와 그 유용성에 대한 탐구를 진행하고 있다. 이는 앞으로 더 많은 혁신적인 발견을 기대할 수 있게 하는 연구 분야로 주목받고 있다. 세계 최대의 미생물 천연 컬렉션 중 하나인 이 연구소의 천연물 발견 센터를 이끄는 벤 센 박사는 "신약 발견의 역사에 대한 박테리아 화학물질의 기여는 놀랍다"고 말했다. 센 박사는 "시중에 판매되는 FDA 승인 항생제 및 항암제의 거의 절반이 천연 제품이거나 천연 제품이라는 사실을 아는 사람은 거의 없다"고 말했다. 그는 "자연은 이러한 복잡한 천연 제품을 만드는 최고의 화학자다. 우리는 매혹적인 화학과 효소학을 이해하기 위해 현대 게놈 기술과 계산 도구를 적용하고 있으며 이는 전례 없는 속도로 발전하고 있다. 이 효소는 최근의 흥미로운 사례다"라고 설명했다.
-
- IT/바이오
-
박테리아, 암세포 DNA 파괴 화합물의 합성 과정 밝혀내
-
-
美 오크리지 연구소, 양자 생물학과 AI 결합으로 게놈 편집 향상
- 미국의 오크리지 국립연구소(ORNL)에서 양자 생물학과 인공지능(AI)을 결합한 새로운 크리스퍼(CRISPR, 유전자 '가위') 기술을 개발했다고 과학 전문매체 '사이테크데일리(SciTechDaily)'가 보도했다. 이 기술은 미생물의 유전체를 수정해 바이오연료의 생산 효율을 높이거나 새로운 바이오화학 물질을 만들 수 있게 해준다. 오크리지 국립연구소의 과학자들은 양자 생물학, 인공지능, 생물공학 분야의 전문 지식을 결합해 미생물의 유전자를 편집할 수 있는 크리스퍼 캐스9(CRISPR Cas9) 도구의 효율성을 크게 개선했다. '크리스퍼'는 유전자 코드를 변경하여 생물의 기능을 개선하거나 돌연변이를 바로잡는데 사용되는 강력한 생물공학 도구이다. 기존의 모델들은 특정 종에 대한 데이터에 기반을 두고 있어 미생물에 적용될 때 효율성과 일관성이 떨어지는 문제가 있었다. 크리스퍼 시스템은 대부분 크리스퍼 캐스9이라는 특정 유형과 연관되어 있으며, 이 시스템은 박테리아의 면역 체계에서 유래했다. 크리스퍼 캐스9는 가이드 RNA(gRNA)를 사용하여 DNA 내의 특정 위치를 찾고, 캐스9이라는 효소가 DNA를 절단한다. 이 절단은 세포의 자연적인 DNA 수리 메커니즘을 활용하여 유전자를 삭제하거나 수정하는 데 사용된다. 오크리지연구소의 합성 생물학 그룹 리더인 캐리 에커트는 이번 미생물 중심의 크리스퍼 연구에 대해서 "크리스퍼 도구의 많은 부분이 포유동물 세포, 과일파리 또는 다른 모델 종을 대상으로 개발됐다. 미생물과 같이 염색체 구조와 크기가 매우 다른 종에 사용되는 경우, 크리스퍼 캐스 9 기계를 설계하는 모델이 다르게 작동하는 것을 관찰했다. 이 연구는 크리스퍼가 예상대로 작동하는 지 확인하는 것이었다"라고 말했다. 이를 위해, 오크리지연구소의 과학자들은 양자 생물학을 활용하여, 세포 핵에서 유전자물질이 어떻게 동작하는지에 대해 더 깊이 연구했다. 이는 크리스퍼 캐스9 유전 편집 도구의 모델링과 가이드 RNA 설계를 개선하기 위한 노력의 일환이다. 양자 생물학은 DNA와 RNA의 구성 요소인 뉴클레오티드의 전자 구조가 화합물의 화학적 특성과 상호작용에 미치는 영향을 탐구하는 분야로서 분자 생물학과 양자화학을 연결하는 역할을 한다. 오크리지 국립 연구소의 계산 시스템 생물학자 에리카 프라테스에 따르면, 전자가 분자 내에서 어떻게 분포하는지는 캐스 9 효소와 가이드 RNA가 형성하는 복합체가 미생물의 DNA에 얼마나 효과적으로 결합하는지, 그리고 그 구조의 안정성과 반응성에 중요한 영향을 미친다. 과학자들은 여러 간단한 모델을 결합하여 '랜덤 포레스트'라는 강력한 인공지능 모델을 만들었다. 이 모델은 대략 5만 개의 대장균(E. coli) 유전체에 대한 가이드 RNA 데이터를 기반으로 구축되었으며, 양자 화학적 특성도 고려됐다. 이 방법은 '뉴클레익 에이시드 리서치(Nucleic Acids Research)' 저널에 소개됐다. 연구팀은 설명 가능한 인공 지능 모델을 확인하기 위해 E. coli에서 수많은 가이드를 선택한 후 크리스퍼 캐스 9 절단 실험을 수행한 결과 AI 모델이 기존 모델보다 훨씬 더 정확하게 가이드 RNA를 발견 할 수 있었다. ORNL의 연구자들은 인공지능 모델의 정확성을 검증하기 위해 대장균에서 다양한 가이드 RNA를 선택하고 크리스퍼 캐스 9를 사용한 절단 실험을 실시했습니다. 실험 결과, 이 AI 모델이 기존 모델보다 훨씬 더 정확하게 가이드 RNA를 예측할 수 있음을 확인했다. 이 연구의 제1저자인 오크리지 국립연구소의 계산시스템 생물학자인 자클린 노샤이는 "우리는 크리스퍼를 사용하여 특정 생물 영역을 대상으로 하는 의약품 개발 등에서 더 정확한 모델이 필요함을 알고 있었다. 또한, 다양한 미생물 종에 적용가능한 가이드 디자인 규칙을 개선하기 위해 노력했다"고 말했다. 이 연구에 사용된 인공지능 모델은 기능과 반복적 특성을 가지며, DOE 과학국의 오크리지 리더십 컴퓨터 시설(Oak Ridge Leadership Computer Facility/OLCF)에서 지원하는 '써미트(Summit)' 초고속 컴퓨터로 훈련됐다. 에리카 프라테스는 자신의 합성 생물학 팀이 새로운 미생물 크리스퍼 캐스9 모델로 얻은 지식을 가져와 실험실 실험 데이터나 다양한 미생물 종의 데이터를 사용하여 더 발전시키기 위해 오크리지의 계산 과학 동료들과 협력할 계획이라고 말했다. 이 크리스퍼 캐스9 모델의 개선은 유전형과 표현형, 즉 유전자와 생물학적 특성 사이의 연결을 위한 더 높은 처리량의 파이프라인을 제공한다. 이는 기능 유전체학이라고 하는 분야에 대한 함의를 가진다. 이 연구는 예를 들어 바이오에너지 원료 식물 및 바이오매스의 박테리아 발효를 개선하기 위한 ORNL 주도의 생물에너지 혁신 센터(CBI)의 작업과 관련이 있다. 캐리 에커트는 "이 연구의 주요 목표 중 하나는 크리스퍼 도구를 사용하여 더 많은 종의 DNA를 예측적으로 수정할 수 있는 능력을 향상시키는 것"이라고 말했다. 이 크리스퍼 연구는 미국 에너지부(DOE) 과학국이 지원하는 '시큐어 에코시스템 엔지니어링 앤 디자인 사이언스 포커스(SEED SFA)'와 CBI 프로젝트의 일부다. 이 프로젝트는 오크리지 국립 연구소의 안전 생태계 공학 및 설계과학 포커스 영역과 연관되어 있으며, DOE 유전체 과학 프로그램의 폴 아브라함 박사가 이끄는 연구비로 지원됐다. 이 연구는 크리스퍼 기술을 다양한 종에 적용할 수 있는 가능성을 크게 넓혀주었다는 점에서 의미가 있다. 이 기술은 재생 에너지 개발, 약물 개발, 농업 등 다양한 분야에서 활용될 수 있을 것으로 기대된다.
-
- IT/바이오
-
美 오크리지 연구소, 양자 생물학과 AI 결합으로 게놈 편집 향상
-
-
"서남극 빙상 붕괴 피할 수 없다"
- 전 세계가 기후변화로 몸살을 앓고 있다. 특히 빙하가 빠른 속도로 녹아내리고 있어, 많은 과학자들이 온실가스를 감축해 빙하가 녹는 속도를 늦추려고 노력하고 있다. 그런데 남극 대륙 빙하가 녹아 바다로 밀려 내려오는 것을 막는 대형 빙붕(ice shelf)인 서남극 빙상(West Antarctic Ice Sheet)이 녹는 것을 막을 티핑포인트(큰 변화를 불러오는 변곡점)가 이미 지난 것으로 보인다는 연구 결과가 나왔다. 과학 전문매체 라이브사이언스(livescience)에 따르면, 영국 남극연구소(British Antarctic Survey, BAS) 연구원들은 온실가스 배출을 줄이려는 노력과 무관하게, 얼음이 녹아 해수면 상승에 기여하는 속도가 다음 세기에 더욱 가속화될 것이라는 사실을 밝혀냈다. 서남극 빙상의 해빙 속도는 앞으로 수십 년 동안 더욱 가속될 것으로 예상되며, 이는 기후변화의 '피할 수 없는' 결과로 간주되고 있다. 심지어 국가들이 온실가스 배출을 제한하고 지구 기온 상승을 산업화 이전 수준보다 섭씨 1.5℃(화씨 2.7F, 지난 2015년 파리 협약에서 195개국의 세계 지도자들이 채택한 목표)로 제한하더라도 서남극 빙상의 녹는 속도는 다른 지역에 비해 3배 더 빠르게 증가할 것으로 예상되며, 21세기가 20세기보다 더 심한 영향을 받을 것으로 예상된다는 것이다. 영국 남극연구소의 연구원이자 해양·얼음 모델링 전문가인 케이틀린 노턴(Kaitlin Naughten) 박사는 "우리는 서남극 빙상의 녹는 것을 통제할 수 없을 것 같다"며 "역사적인 상태를 보존하려면 수십 년 전에 이미 기후변화 대응이 시작되었어야 했다"고 말했다. 보고서에 따르면, 서남극 빙상에 갇혀 있는 물의 양은 최대 5미터의 해수면 상승을 유발할 수 있는 양이다. 현재 이 지역에서 해수면 상승에 가장 크게 기여하는 요인은 아문센해의 떠다니는 빙하에서 유래한 것으로 보이며, 서남극 지역의 기온 상승으로 인해 빙상의 녹아내림이 진행되고 있다. 노턴과 동료들은 슈퍼컴퓨터를 활용한 시뮬레이션을 통해 온실가스 배출 감소가 빙상 용해를 어느 정도까지 줄일 수 있는지 예측했다. 이들은 엘니뇨(적도 부근의 수면이 상승하는 현상)와 같은 글로벌 기후 현상 및 변동성을 고려하여, 파리 협약에 명시된 네 가지 시나리오를 분석했으나 얼음 손실 속도에는 거의 변화가 없음을 발견했다. 평균 지구 기온의 가장 낮은 상승을 예측하는 세 가지 시나리오[산업화 이전 수준보다 1.5°C, 산업화 이전 수준보다 2°C(3.6F), 산업화 이전 수준보다 2~3°C(2.6~5.4F)]는 아문센해의 녹는 속도에 거의 비슷한 영향을 미쳤다. 이는 즉, 지구 온도 상승을 최소화하는 시나리오라 할지라도 서남극 빙상의 녹는 속도를 크게 감소시키기는 어려울 것으로 보인다. 산업화 이전 수준보다 4.3°C(7.7F) 높은 극단적인 평균 지구 온도 상승을 가정한 시나리오는 하위 세 가지와 달랐지만 2045년 이후에만 얼음이 더 많이 녹을 것으로 예측됐다. '자연 기후 변화(Nature Climate Change)' 저널에 2023년 10월 23일 발표된 연구에 따르면 그 시점까지는 네 가지 시나리오 모두 비슷한 양의 빙하 용해를 보였다. 이 결과는 비록 암울하지만, 기후변화의 잠재적 결과를 예측하는 것은 우리가 이에 대비하는 데 도움이 될 수 있다. 노턴은 "이러한 상황을 미리 알아차림으로써 세계가 향후 발생할 해수면 상승에 적응할 수 있는 시간을 더 확보할 수 있다는 점이 긍정적"이라고 언급했다. 연구 결과에 따르면, 온실가스 배출을 제한하는 조치들이 서남극 빙상의 붕괴를 막는 데에는 시간상으로 충분하지 않을 수 있다. 그러나 이러한 조치들은 해수면 상승의 속도를 늦추는 데 여전히 중요한 역할을 할 수 있다. 노턴 박사는 "서남극 빙상이 녹는 것을 통제할 수 없게 된 것 같다"면서 "이 연구의 긍정적 측면은 이런 상황을 미리 인지해 전 세계가 다가올 해수면 상승에 적응할 시간을 더 많이 가질 수 있다는 것"이라고 말했다. 그는 "하지만 화석 연료에 대한 의존도를 줄이기 위한 노력을 멈추지 말아야 한다"며 "온실가스 배출을 줄이면 장기적으로 해수면 상승 속도를 늦추는 데 도움이 되고 정부와 사회가 그에 적응하기가 쉬워질 수 있다"고 덧붙였다.
-
- 산업
-
"서남극 빙상 붕괴 피할 수 없다"