검색
-
-
[퓨처 Eyes(30)] 한국형 인공태양, 1억도 플라즈마 세계 신기록 수립
- 한국 핵융합에너지연구원(핵융합연·KFE) 연구팀은 인공태양 연구에서 획기적인 성과를 달성하며 과학 역사에 찬란한 족적을 남겼다. 바로 1억도 플라즈마를 48초간 유지하는 놀라운 기록을 세운 것이다. 이는 핵융합 에너지 실현이라는 꿈에 한 발짝 더 다가선 뜻깊은 성과이다. KSTAR(한국 초전도 토카막 핵융합 연구장치)라는 인공태양 핵융합로를 활용한 이번 연구는 한국 과학자들의 탁월한 기술력을 여실히 보여준다. 1억도라는 극한의 온도를 48초간 유지하는 것은 쉬운 일이 아니다. 이는 핵융합 에너지 개발 분야에서 세계 최고 수준의 기술력을 자랑하는 한국 과학의 위상을 더욱 굳건히 하는 계기가 되었다. 토카막(Tokamak)은 태양처럼 핵융합 반응이 일어나는 환경을 만들기 위해 초고온의 플라즈마를 자기장을 이용해 가두는 핵융합장치다. 플라즈마를 구속하는 D자 모양의 초전도 자석으로 자기장을 만들어 플라즈마가 도넛 모양의 진공용기 내에서 안정적인 상태를 유지하도록 제어한다. 1억도 플라즈마 48초간 유지 KFE는 한국의 '인공태양'으로 불리는 KSTAR가 최근 실험에서 핵심 부품을 업그레이드해 태양 중심핵 온도의 7배에 해당하는 1억도의 플라즈마를 48초 동안 연속 운전하는데 성공했다고 지난 3월 27일 밝혔다. 이는 2022년 기록했던 30초를 크게 뛰어넘는 놀라운 발전이며, 핵융합 기술의 지속적인 진보를 보여주는 명확한 증거이다. 플라즈마는 높은 온도에서 전자와 양이온이 분리되어 형성되는, 전기적으로 중성인 기체 상태이다. 이는 태양과 별의 뜨거운 심장부에서 발견되는 특별한 물질 상태이며, 핵융합 반응의 필수적인 요소이다. KSTAR는 한국 초전도 토카막 첨단연구의 정식 명칭으로, 2022년에 1억도 플라즈마를 30초간 유지하는 기록을 세웠다. 텅스텐 디버터로 안정성 향상 2023년 12월 31일부터 3개월간 진행된 최근 테스트에서 KSTAR은 텅스텐 디버터를 사용해 플라즈마의 안정성을 크게 향상시키고 유지 시간을 48초까지 늘리는 데 성공했다. 이는 이전 기록 30초를 크게 뛰어넘는 성과다. 또한 저감속 모드보다 안정적인 고성능 플라즈마 운전 모드인 'H 모드(H-mode)'를 102초 동안 장시간 유지하며 기록을 경신했다. H-모드는 토카막형 핵융합 장치 운전시 특정 조건 하에서 플라즈마의 가둠 성능이 약 2배 증가하는 현상이다. 이는 핵융합 연구 분야에서 획기적인 진보를 의미하며, 미래 에너지 문제 해결에 중요한 기여를 할 것으로 기대된다. 1억도 운전을 추진한 고성능시나리오연구팀 한현선 박사는 "1억도 초고온 이온 플라즈마(High-Ti shot) 운전을 기존 30초에서 48초간 유지 달성하며 우리의 운전 방식이 40초대에서도 유효함을 확인했다. 지난해에는 플라즈마를 충분히 가열하고 유지할 파워가 부족해 실험이 어려웠다. 이번에는 중성자빔 가열장치의 성능 향상이 48초 유지의 바탕이 됐다"며 1억도 플라즈마의 장시간 운전은 초고온 플라즈마에 대한 이해를 높일 수 있는 자료이자 향후 핵융합 발전로에 쓰일 새로운 운전 모드 연구의 기반이 된다고 말했다. 텅스텐 재질 디버터(divertor)의 도입이 이러한 획기적인 성과를 가능하게 했다. 디버터는 핵융합 반응에서 발생하는 열과 불순물을 제거해 플라즈마 오염을 최소화하고 주변 장벽을 보호하는 역할을 한다. 텅스텐은 기존 탄소 재질보다 녹는점이 훨씬 높아 열 부하에 대한 내구성이 뛰어나다. 실험 결과, 텅스텐 디버터는 동일한 열 부하 상황에서 표면 온도 상승률이 25% 감소했다. KSTAR 연구 본부 고성능시나리오팀 김현석 선임연구원은 "디버터는 플라즈마의 열속이 집중되는 부분이다. 이번 테스트를 준비하면서 KSTAR처럼 토카막 내벽을 텅스텐으로 교체한 해외 융합 장치들의 사례를 토대로 KSTAR의 새로은 텅스텐 환경이 기본 카본 환경과 크게 다르지 않을 것으로 에상했다. 하지만 초기 실험에서 무언가 달랐다"고 전했다. 김 연구원은 "초기에 토카막 내벽 온도가 잘 안 올라갔다. 디버터는 소재만 바뀐 게 아니라 아랫부분의 구조(형상)도 기존 직선형에서 고래꼬리 형태로 바뀌었다. 형상과 소재 두 가지 요인이 복합적으로 작용해서 플라즈마 성질이 바뀌었는데, 바뀐 형태에서 어떻게 해야 좋은 성능을 발휘할 수 있을지 고민했다. 샷이 발생하면 과거의 형상을 만드는 것에서 시작해서 플라즈마 성능을 잠시 유지하고 안정이 되면 바뀐 디버터 형상으로 바꾸어 유리하는 전략으로 운전하며 기존 성능을 재현할 수 있엇다"고 설명했다. 핵융합은 두 개의 가벼운 원자핵이 합쳐져 더 무거운 원자핵을 만들면서 엄청난 양의 에너지를 방출하는 과정이다. 모든 금속 중 가장 높은 녹는점(3422°C)을 자랑하는 텅스텐은 핵융합 반응의 극한 환경에서도 흔들림 없이 자리한다. 또한 낮은 불순물 형성은 플라즈마 오염을 최소화하여 핵융합 반응의 순도를 높이는 데 기여한다. 프랑스에 건설 중인 ITER 실험로는 핵융합 에너지의 실현 가능성을 검증하는 국제 핵융합 연구의 중심 무대이다. 텅스텐 다이버터를 사용하는 ITER 실험로는 내년 첫 플라즈마 생성을 목표로 하고 있다. KSTAR의 이번 성과는 ITER 실험로의 성공적인 운영에 중요한 데이터를 제공할 것으로 기대된다. 한국핵융합연구소 소장은 이번 성과가 미래 핵융합 발전 시설 개발에 필요한 핵심 기술 확보에 중요한 발걸음이라고 강조했다. 연구팀은 앞으로 ITER 운영 및 미래 핵융합 발전 시설에 필수적인 핵심 기술 확보에 집중할 계획이다. 연구팀은 '토카막'이라 불리는 도넛 모양의 핵융합로 안에 뜨거운 플라즈마를 가두어 물을 가열하고 터빈과 발전기를 사용하여 생성된 증기를 전기로 전환함으로써 반응에서 순 양의 에너지를 획득할 수 있기를 희망한다. 토카막 융합로의 다양한 성과 한편, 전 세계 다른 토카막 핵융합로 또한 최근 몇 년 동안 중대한 성과를 거두었다. 지난해에는 중국 과학자들이 실험용 첨단 초전도 토카막 내부에 플라즈마를 403초 동안 유지하는 데 성공했다. 또한 영국은 JET(Joint European Torus) 장치를 사용해 핵융합 에너지 세계 기록을 수립했다. 뉴사이언티스트에 따르면 단 5초 동안이지만 약 1만 2000가구에 전력을 공급할 수 있는 69메가줄의 에너지를 생산했다. 미국 로렌스 리버모어 국립 연구소는 재래형 토카막 설계와는 크게 다른 레이저 기반 핵융합로인 내셔널 이그니션 퍼실리티(National Ignition Facility)에서 투입한 에너지의 두 배를 얻었다고 주장했다. 하지만 이러한 모든 연구 결과가 핵분열 원자로를 완전히 대체할 수 있는 핵융합 에너지 혁명으로 이어질지 여부는 아직 불확실하다. 위에서 언급한 것처럼 프랑스 남부 생폴레즈듀랑스 카다라쉬에 다국적 거대 핵융합 연구 시설 'ITER(국제핵융합실험로·International Thermonuclear Experimental Reactor)'가 건설되고 있다. ITER 총 사업 기간은 2007~2042년으로 건설과 운영, 방사능감쇄, 해체 등 4단계를 포함한다. 총건설비는 약 117.7억유 한국을 비롯해 중국, 인도, 일본, 유럽연합(EU·29개국) 등 35개국이 참여하는 이 프로젝트는 핵융합 에너지 상용화의 가능성을 판단하는 중요한 단계이며, 현재까지 건설된 토카막 핵융합로 중 가장 큰 규모를 자랑한다. 2007년 설립된 ITER는 2025년 완공 예정이다. 현재 우리가 사용하는 화석 연료 대신 안전하고 지속 가능한 에너지원 개발 가능성을 가진 ITER는 완공 후 핵융합 실험을 통해 핵융합 에너지의 실현 가능성을 평가할 계획이다. 프랑스의 ITER 시설이 완공되면 인공태양으로 불리는 핵융합에너지에 대한 실용성과 타당성 등에 대한 중요한 답변을 얻을 수 있을 것으로 기대된다.
-
- 포커스온
-
[퓨처 Eyes(30)] 한국형 인공태양, 1억도 플라즈마 세계 신기록 수립
-
-
[퓨처 Eyes(26)] 소형 원자로 건설 혁명, 획기적인 전자빔 용접으로 1년 공정 하루로 단축
- 소형 모듈 원자로(SMR) 건설에서 1년 걸리는 공정을 하루 만에 끝낼 수 있는 획기적인 전자빔 용접 기술이 개발됐다. 영국 대형 제조회사 셰필드 포지마스터스(Sheffield Forgemasters)는 풀사이즈 소형 모듈형 원자로(SMR) 용기를 일반적인 공정 기간인 12개월이 아닌 단 24시간 만에 용접에 성공하면서 소형 원자로 건설 시장이 급변하고 있다. 이 획기적인 기술은 소형 원자로 보급에 엄청난 파급력을 가져올 것으로 예상된다. 소형 원자로(Small Modular Reactor, SMR·소형 모듈 원전)는 그 이름처럼 작은 크기의 원자로를 의미하며, 경제성, 유연성, 안전성, 확장성 등의 장점을 지닌다. 특히, 최근 급격한 기후 변화의 위협으로 탄소 배출을 최소화하는 에너지원에 대한 수요가 급증하면서 미래의 주요 전력 공급 수단으로 주목받고 있다. 소형 원자로는 기존 대규모 토목 프로젝트 형태의 원자력 발전소 건설 방식을 공장 생산 방식으로 전환해 원자력 산업에 혁명을 일으킬 수 있는 잠재력을 가지고 있다. 모듈형 원자로는 표준화된 설계로 대량 생산이 가능하며, 지역 수요에 맞게 필요한 수만큼 설치할 수 있다는 장점을 가지고 있다. 또한, 기존 원자로와 달리 엄청나게 비싼 건물이 필요하지 않아 경제성이 높다. 소형 원자로는 원자력 연료 재사용 기술을 통해 연료 수명을 연장하고 방사성 폐기물 발생량을 감소시킨다. 이는 지속 가능한 에너지 공급을 위한 중요한 기술로 평가된다. 또한, 초기 투자 비용이 상대적으로 적기 때문에 소규모 전력 시장과 개발도상국에서도 원자력 발전 도입이 용이해진다. 소형 원자로는 크기와 디자인의 유연성을 바탕으로 외딴 지역, 도시 인근, 심지어 산업 시설 내부에도 설치가 가능하다. 대부분의 부품은 공장에서 사전 제작되어 현장 설치 과정을 빠르고 효율적으로 진행할 수 있다. 필요에 따라 여러 개의 소형 원자로를 한 지역에 설치해 발전 용량을 조절할 수 있어, 전력 수요 변동에 유연하게 대응하고 안정적인 전력 공급을 가능하게 한다. 소형 원자로는 앞서 언급된 장점들로 인해 투자자들에게 상업적으로 매력적인 대안으로 떠오르고 있다. 특히, 전통적인 대형 원자로에 비해 빠른 수익 회수가 가능하다는 점에서 투자 가치가 높게 평가된다. 혁신적인 국소 전자빔 용접(LEBW) 기술 모든 규모의 원자로 건설에서 발생하는 주요 과제는 원자로 노심을 담는 용기를 용접하여 외부 환경과 격리하는 것이다. 기존 용접 기술은 이 작업에 1년 이상 소요되었지만, 셰필드 포지마스터스는 국소 전자빔 용접(LEBW) 기술을 통해 하루 만에 완료하는 획기적인 결과를 달성했다. 국소 전자빔 용접은 국소 진공 상태에서 고출력 전자총을 사용해 고에너지 밀도 융합 공정을 통해 두 개의 금속 조각을 용접하는 혁신적인 기술이다. 기존 용접 방식에 비해 작업 효율을 95% 향상시키고, 깊은 침투와 높은 깊이 대 너비 비율을 구현할 수 있다. 셰필드 포지마스터스는 지난 2월 20일 국소 전자빔 용접 기술을 이용해 직경 3미터, 두께 200밀리미터(8인치)의 벽을 결함 없이 저렴하게 용접하는데 성공했다고 밝혔다. 또한, 혁신적인 슬로핑 인 및 아웃 기술을 통해 용접 시작과 마무리 과정을 개선했다. '슬로핑 인(Sloping In)'은 원자로 용기 내부의 핵연료봉을 용기 벽면에서 중심부로 향해 경사지게 배치하는 방식이다. 핵연료봉 간 간격을 넓히고 중심부 밀도를 높여 핵연료 활용도를 극대화하고, 냉각재 흐름 개선으로 냉각 효율을 높여 과열 위험을 낮춘다. 핵출력 증가 또한 가능하다. '슬로핑 아웃(Sloping Out)'은 '슬로핑 인'과 반대로 핵연료봉을 배치하는 방식이다. 핵연료봉 간 간격 확대로 냉각 효율을 높이고 핵연료봉 밀도 감소로 핵출력을 조절하여 안전성을 강화한다. 또한, 용기 내부 공간 확보에도 유리하다. 셰필드 포지마스터스의 수석 개발 엔지니어이자 프로젝트 책임자인 마이클 블랙모어는 "이 기술이 원자력 산업에 미치는 영향은 기념비적이며, 잠재적으로 고비용의 용접 공정을 없앨 수 있다"고 강조했다. 블랙모어는 "LEBW 기술은 용접 접합부가 모재(parent material, 원물질)를 완벽하게 복제하기 때문에 용접 검사의 필요성을 줄일 수 있다는 점에서 획기적이다. 또한 영국과 전 세계 SMR 원자로의 상용화 속도를 크게 높일 수 있다"고 설명했다. 세계 최초로 성공적인 전자빔 용접 시연을 완료한 셰필드 포지마스터스는 수십 년 동안 정체되었던 영국 원자력 산업에 새로운 활력을 불어넣을 것으로 기대된다. 이 기술은 앞으로 핵잠수함용 원자로, 시범 발전소, 핵연료 처리 분야뿐만 아니라 SMR 원자로 건설에도 적용될 수 있다. 영국 정부는 이제 롤스로이스가 건설할 모듈형 원자로 15기를 포함한 새로운 원전 건설 계획을 통해 원자력 르네상스를 이끌 계획이다. 셰필드 포지마스터스의 혁신적인 전자빔 용접 기술은 이러한 계획의 성공적인 실행에 중요한 역할을 할 것으로 기대된다. 한국 소형원자로 건설 현황 원전 강국인 한국도 세계적인 추세인 소형 모듈 원전 건설을 주도하고 있다. 우리나라 원전 산업의 중심지인 경상남도는 지난 2월 28일 정부의 원전 산업 집중 육성 방침에 발맞춰 핵심 전략을 담은 '경상남도 원전 산업 육성 방안'을 발표했다. 이에 앞서 2월 22일 윤석열 대통령은 경남도청에서 열린 '다시 뛰는 원전산업, 활력 넘치는 창원·경남'이라는 주제의 14번째 민생토론회에 참석했다. 이 자리에서 정부는 원전 생태계 완전 복원, 소형 모듈 원자로(SMR) 독자기술 개발, 경남도·창원시를 글로벌 SMR 클러스터로 육성한다는 구체적인 계획을 공개했다. 경상남도는 정부의 정책 방향에 적극적으로 호응하며, 정부 지원과 별도로 지역 원전 기업에 대한 경영 및 시설 자금 중심의 금융 지원을 강화하겠다는 방침을 밝혔다. 이는 지역 원전 산업의 경쟁력 강화와 지속가능한 성장을 위한 중요한 발걸음이 될 것이다. 경상남도는 SMR 제조 기술, 신형로 설계, 친환경 원전 해체 기술 등 6개 원전 기술을 조세 특례 제한법에 명시된 '국가 전략 기술'로 지정해 달라고 정부에 건의할 예정이다. 또한 경상남도는 SMR 혁신 제작 기술 정부 공모 사업에 지역 업체 참여를 추진하는 등 SMR 독자 기술 확보를 위해 적극적인 노력을 기울일 계획이다. 이를 통해 지역 기업의 경쟁력 강화와 SMR 산업 발전을 동시에 도모할 수 있을 것으로 보인다. 아울러 경상남도는 창원 방위·원자력 융합 국가 산업 단지 조속 추진, 원자력 산업 종합 지원 센터 신설, 원자력 연구원 분원 및 글로벌 SMR R&D 센터 유치 등을 통해 글로벌 SMR 클러스터로 발돋움할 수 있는 구체적인 청사진을 제시했다. 경상남도는 창원시를 중심으로 세계 유일하게 원자력 발전소 주기기 일괄 생산이 가능한 창원 국가 산업 단지 내 두산 에너빌리티를 비롯해 300여 개 협력 업체가 자리잡고 있다. 원자력 발전소 주기기는 원자로, 증기발생기, 터빈, 발전기, 냉각 시스템 등 원자력 발전의 핵심 과정에서 주요한 역할을 하는 장치들을 말한다. 걍상남도는 이러한 유리한 조건을 바탕으로 차세대 원전의 글로벌 제조 거점으로 도약할 수 있는 잠재력을 갖추고 있다. 류명현 경남도 산업국장은 "대통령이 참석한 경남 민생 토론회의 핵심은 경남도·창원을 글로벌 SMR 클러스터로 육성한다는 것이었다"며 "정부 정책에 맞춰 경남이 차세대 원전 글로벌 제조 거점이 되도록 노력하겠다"라고 밝혔다.
-
- 포커스온
-
[퓨처 Eyes(26)] 소형 원자로 건설 혁명, 획기적인 전자빔 용접으로 1년 공정 하루로 단축
-
-
한수원, 미국 센트루스와 원전연료 공급 협력 강화
- 한국수력원자력(이하 한수원)이 미국 핵 연료 공급업체와 손잡고 원전 연료 공급 다각화에 나섰다. 한수원은 26일(현지시간) 미국 워싱턴 D.C.에서 핵연료 공급업체 센트루스(Centrus Energy Corp.)와 안정적인 원전 연료 공급을 위한 협력 의향서(LOI)를 체결했다고 발표했다. 이번 협력의향서에는 원자력 사업에서의 협력 체계 구축과 양사의 구체적인 사업 목표가 포함되어 있다. 원자력 사업 협력체계 구축을 위한 양사의 구체적 사업 목표가 담겼다. 한수원은 이 의향서 체결을 통해 농축 우라늄 공급처를 다양화함으로써 원전 연료의 수급 안정성을 강화할 것으로 기대하고 있다. 센트루스는 미국 원자력안전위원회(NRC)로부터 차세대 원전과 소형모듈원자로(SMR) 등 연료로 사용되는 고순도저농축우라늄(HALEU) 생산 허가를 받은 유일한 기업이다. 센트루스는 미국 및 전 세계 원자력 발전소에 안정적인 핵연료 공급을 목표로 하며, 고객에게 핵연료 사이클의 여러 단계에 걸친 서비스를 제공한다. 주요 사업 영역은 저농축 우라늄의 생산, 판매 및 핵연료의 물리적, 기술적 관리를 포함한다. 이 회사는 고순도저농축우라늄(HALEU) 생산에 특히 주목을 받고 있다. HALEU는 현재 및 미래의 고급 원자로 기술, 특히 소형모듈원자로(SMR) 및 기타 첨단 원자로 설계에 필요한 핵연료다. 이러한 우라늄은 기존의 저농축 우라늄보다 높은 농축도를 가지며, 원자로의 효율을 향상시키고 연료 교체 주기를 연장할 수 있는 잠재력을 가지고 있다. 소형모듈원자로(Small Modular Reactor, SMR)는 전통적인 대형 원자력 발전소에 비해 규모가 작은 원자력 발전 시스템으로 미래 전력으로 주목받고 있다. 이러한 SMR은 일반적으로 300MW(메가와트) 이하의 전기를 생산한다. 반면, 전통적인 원자력 발전소는 생산할 수 있는 수천 메가와트를 생산할 수 있다. SMR의 주요 장점은 비교적 낮은 초기 자본 비용과 접근성 그리고 안전성 향상 등을 들 수 있다. 고순도 저농축 우라늄(High-Assay Low-Enriched Uranium, HALEU)은 우라늄-235의 농도가 전통적인 저농축 우라늄(LEU)보다 높지만 고농축 우라늄(HEU)보다는 낮은 형태의 우라늄이다. HALEU는 우라늄-235의 농도가 대략 5%에서 20% 사이인 우라늄을 말한다. 이에 비해, 전통적인 원자력 발전소에서 사용되는 저농축 우라늄은 우라늄-235의 농도가 약 3%에서 5% 사이다. HALEU의 주요 도전 과제 중 하나는 생산과 공급이다. 현재 HALEU의 상업적 규모 생산은 제한적이며, 많은 국가들이 이러한 고급 핵연료의 생산과 공급을 확대하기 위한 노력을 기울이고 있다. HALEU는 핵에너지 산업의 미래에 있어 지속 가능하고 탄소 배출이 낮은 에너지 솔루션을 제공할 수 있는 잠재력을 가지고 있다. 황주호 한수원 사장은 "이번 협력의향서 체결을 계기로 안정적 원전 연료 공급에 대한 구체적 논의를 시작하겠다"며 "앞으로 원전 연료 공급망 협력 사업을 확대하고, 사업 협력 분야를 지속적으로 탐색하며 발전시켜 나갈 계획"이라고 말했다.
-
- 산업
-
한수원, 미국 센트루스와 원전연료 공급 협력 강화
-
-
체코 신규원전 입찰, 한수원· 프랑스 2파전
- 체코 정부가 추진 중인 신규 원전 사업 입찰이 한국과 프랑스의 양국 기업 간 대결 구도로 정리됐다. 이번 경쟁에서 한국수력원자력과 프랑스의 EDF만이 남게 되며, 미국의 원전 기업 웨스팅하우스는 입찰 과정에서 탈락한 것으로 확인됐다. 지난달 31일(현지시간) 로이터·AP·AFP 통신에 따르면 체코 정부는 체코 정부는 신규 원전 사업의 원자로 수를 당초 계획했던 1기에서 4기로 확대하겠다고 발표했으며, 이에 따라 한국수력원자력과 프랑스 전력공사(EDF)에 입찰 참여를 요청했다. 한국에게는 이번 발표가 원전 사업 수주의 긍정적 신호로 받아들여지고 있다. 체코 정부는 원래 한수원, EDF, 그리고 웨스팅하우스 3곳이 입찰에 참여한 가운데, 웨스팅하우스는 체코 정부의 입찰 조건을 충족시키지 못해 최종적으로 경쟁에서 배제됐다고 밝혔다. AFP는 "체코 원자로 입찰에서 웨스팅하우스가 받은 모욕"이라는 제목의 기사를 통해 체코 정부가 신규 원전 프로젝트에 대해 법적 구속력 있는 입찰을 원했으나, 웨스팅하우스가 이러한 요건을 만족시키지 못한 것이 탈락의 주된 이유라고 분석했다. 체코의 요제프 시켈라 산업통상부 장관은 언론과의 만남에서 웨스팅하우스의 입찰 제안이 법적 구속력을 갖추지 못해 요구 조건을 충족시키지 못했다고 밝혔다. 그는 "체코 정부는 한국수력원자력(한수원) 및 프랑스 전력공사(EDF)와의 협력을 계속 이어갈 것"이라며 두 기업과의 작업을 우선시할 뜻을 명확히 했다. 이와 관련하여, 웨스팅하우스는 2022년 한수원의 독자적인 원전 수출을 저지하기 위해 미국 연방법원에 법적 조치를 취한 전례가 있다. 웨스팅하우스는 한수원이 폴란드와 체코로 수출하려는 한국형 원전이 미국의 원자력에너지법에 의해 규제되는 웨스팅하우스 기술을 사용했다고 주장하며, 미국 정부의 허가 없이는 해당 원전을 수출할 수 없도록 요청하는 소송을 제기했다. 그러나 법원은 웨스팅하우스가 소송을 제기할 적합한 주체가 아니라며 이를 기각했다. 그러자 웨스팅하우스는 "미국 연방법원의 판결은 수출통제 집행 권한이 미국 정부에 있다고 판결한 것에 불과하다"며 각하 판결에 대한 항소장을 작년 10월에 제출했다. 웨스팅하우스는 법원의 기각 결정에 대해 "미국 연방법원의 결정은 단지 수출통제의 집행 권한이 미국 정부에 있음을 확인한 것일 뿐"이라며, 기각 결정에 불복해 지난해 10월 항소장을 제출했다고 밝혔다. 이러한 법적 공방은 국제 원전 시장에서의 경쟁 구도와 각국의 기술 수출 관련 법적 요구 사항의 복잡성을 드러내는 사례로 평가되고 있다. 체코 정부는 당초 두코바니 지역에 1200메가와트(MW) 규모의 가압 경수로 원전 1기 건설을 계획했었다. 1200MW 규모의 발전기는 대규모 전력 생산 설비에 속하며, 큰 도시나 여러 도시들을 포함한 광역 지역의 전력 수요를 충당할 수 있는 상당히 큰 용량이다. 예를 들어, 1200MW의 발전 용량은 대략 100만 가구 이상에 전력을 공급할 수 있으며, 이는 가구당 평균 전력 소비량을 고려했을 때의 추정치이다. 이러한 규모의 발전기는 주로 대형 화력 발전소, 원자력 발전소, 혹은 대규모 수력 발전소에서 볼 수 있다. 원자력 발전소의 경우, 하나의 원자로가 1200MW 이상의 출력을 낼 수도 있으며, 이는 고출력으로 안정적인 기저(load) 전력을 공급하는 데 적합하다. 기저 전력은 전력망이 24시간 동안 안정적으로 작동하도록 지속적으로 공급되어야 하는 기본 전력을 의미한다. 1200MW 발전기가 있는 발전소는 고도의 기술과 안전 관리가 요구되며, 전력망에 대한 중요한 기여를 하는 핵심 설비로 간주된다. 체코가 계획하고 있는 1200MW 원자로 4기는 약 400만 가구에 전력을 공급할 수 있는 규모이다. 이날 페트르 피알라 체코 총리는 "입찰 과정을 통해 공급 업체를 선정한 뒤 추가 원자로 건설 여부를 결정하겠다"고 말했다. 피알라 총리는 "입찰 발표 이후 에너지 시장의 변화를 고려할 때, 단 1기의 신규 원자로로는 불충분하다"며 원자로 수 증가 필요성을 강조했다. 이에 따라 체코 정부는 원자로를 4기까지 늘릴 경우, 원자로당 건설 비용을 크게 절감할 수 있을 것으로 기대하고 있다. 이러한 계획의 일환으로, 체코 정부는 한수원과 EDF에 오는 4월 15일까지 입찰 수정안을 제출할 것을 요청했다고 밝혔다. 이는 체코가 에너지 안보와 지속 가능한 발전을 위해 원전 건설을 중요한 전략으로 보고 있음을 시사한다. 앞서 한수원은 2022년 11월, 체코 두코바니에 계획된 신규 원전 건설 사업에 참여하기 위해 초기 입찰서를 제출한 이후, 작년 10월 최종 입찰서를 제출했다. 외신에 따르면 체코 정부는 오는 5월 말까지 입찰 평가를 완료하고 6월 중에는 원전 건설 프로젝트의 수행 업체를 선정할 예정이라고 밝혔다. 추가로 계획된 3기의 원자로 건설에 대한 결정은 그 이후에 이루어질 것으로 전망된다. 새로운 원전은 2036년 가동 개시를 목표로 하고 있다. 체코는 석탄 화력 발전소의 폐쇄 및 노후 발전소 교체 과정에서 증가하는 전력 수요를 충족시키는 동시에 탈화석연료 전환을 가속화하는 과제에 직면해 있다. 이러한 배경에서 체코 정부는 원자로 수를 기존 계획된 1기에서 4기로 확대할 계획을 발표했다. 요제프 시켈라 산업통상부 장관은 "2050년까지 우리의 전력 소비는 최대 66%까지 증가할 수 있으며, 이러한 증가분을 충당하기 위해 저탄소 에너지원인 원자력의 역할이 중요하다. 이를 위해서는 최소 1기 이상의 신규 원자로가 필요하다"고 강조했다.
-
- 산업
-
체코 신규원전 입찰, 한수원· 프랑스 2파전
-
-
[퓨처 Eyes(22)] 초전도체 온-오프 스위치 개발, 혁신적 전력·통신 기술 기대
- 미국 과학자들이 온-오프 스위치가 있는 획기적인 초전도체 발견해 에너지 소비 감소의 길을 열었다. 최근 사이테크데일리 보도에 따르면, 워싱턴 대학교와 미국 에너지부(DOE) 산하 아르곤 국립연구소의 물리학자들이 온-오프 스위치 기능을 갖춘 새로운 초전도체를 발견했다. 초전도체는 특정 온도 아래에서 전기 저항이 완전히 사라지는 물질이다. 이 특징은 실제로는 매우 낮은 온도, 즉 절대 온도에 가까운 온도에서 유지되는데, 이를 초전도 상태라고 한다. 초전도체는 일반적으로 금속, 합금, 반도체 등 다양한 물질로 만들어질 수 있으며, 소수의 원자 또는 분자 구조에서 유래하는 특정한 전자-전자 상호작용이 초전도 상태를 유발한다. 따라서 초전도는 물질이 전류를 제로 저항으로 전달할 수 있는 양자역학적 상태로, 완벽한 전기 전송 효율을 가능하게 한다. 초전도체는 자기공명영상(MRI), 입자 가속기, 핵융합 반응로, 자기부상열차(마그레브 열차)와 같은 다양한 첨단 기술에서 강력한 전자석으로 활용된다. 또한, 초전도체는 양자 컴퓨팅 분야에서도 중요한 역할을 한다. 이 연구팀은 외부 자극에 반응하여 조절 가능한 독특한 특성을 지닌 초전도 물질을 개발, 에너지 효율적인 컴퓨팅과 양자 기술 발전에 기여할 수 있는 가능성을 제시했다. 이러한 발견은 첨단 연구 기법을 활용하여 이루어졌으며, 초전도 특성을 미증유의 방식으로 제어할 수 있는 능력을 통해 다양한 산업 응용 분야에 혁신을 가져올 것으로 기대된다. 해당 물질은 향후 산업용 전자제품에서 초전도 회로로의 응용 가능성을 지니고 있다. 연구팀은 고급 광자 소스를 사용해 이 물질의 희귀한 특성을 검증함으로써 효율적인 대규모 컴퓨팅을 위한 새로운 길을 열었다. 산업용 컴퓨팅에 대한 수요가 증가함에 따라, 이에 대응하는 하드웨어의 크기와 에너지 소비의 증가는 주요 과제로 남아 있다. 이러한 문제에 대한 해결책 중 하나로, 에너지 소비를 크게 줄일 수 있는 초전도 소재의 개발이 주목받고 있다. 거대한 데이터 센터를 운영하는 서버의 온도를 대폭 낮춤으로써, 에너지 효율성을 극대화하여 대규모 컴퓨팅 작업을 수행할 수 있는 가능성을 제시했다. 초전도체란 무엇인가? 초전도체는 저항이 완전히 사라지는 특별한 물질을 말한다. 일반적인 전도체에서는 전기가 흐를 때 내부의 불순물이나 결정 구조 때문에 전자가 충돌하며 에너지를 손실하게 되는데, 이를 전기 저항이라고 한다. 이 저항으로 인해 전기 에너지가 열로 변환되어 손실된다. 그러나 초전도체는 특정 온도(임계 온도) 이하에서 전기 저항이 사라져 전기가 전혀 손실 없이 흐를 수 있게 한다. 초전도 현상은 1911년 헤이케 캄링 온네스에 의해 처음 발견되었으며, 이후 다양한 물질에서 초전도 현상이 관찰됐다. 초전도체는 그 특성으로 인해 많은 고급 기술과 응용 분야에서 중요한 역할을 한다. 예를 들어, 초전도체를 이용하면 에너지 손실 없이 전기를 전송할 수 있으며, 매우 강력한 자기장을 생성할 수 있어 자기공명영상(MRI) 장비나 입자 가속기, 초전도 자석 등에 활용된다. 초전도체를 만드는 데 필요한 임계 온도는 물질에 따라 다르며, 초기에 발견된 초전도체는 극저온에서만 초전도 현상을 보였다. 그러나 1986년에 발견된 고온 초전도체는 비교적 높은 온도에서도 초전도 현상을 나타내 연구와 응용의 범위를 크게 확장시켰다. 고온 초전도체의 발견 이후, 상온에서 초전도 현상을 나타내는 물질을 찾기 위한 연구가 활발히 진행되고 있다. 오늘날의 전자제품은 반도체 트랜지스터를 사용하여 전류를 빠르게 켜고 끄는 방식으로 정보 처리에 사용되는 2진법과 0진법을 생성한다. 이러한 전류는 전기 저항이 유한한 물질을 통과해야 하므로 에너지의 일부가 열로 낭비된다. 이것이 바로 시간이 지남에 따라 컴퓨터가 뜨거워지는 이유다. 초전도에 필요한 낮은 온도(보통 화씨 영하 200도 이상)로 인해 이러한 소재는 휴대용 장치에 사용하기에는 실용적이지 않다. 하지만 산업적 규모에서는 유용할 수 있다. 워싱턴 대학교의 슈아 산체스가 이끄는 연구팀은 뛰어난 조정 능력을 가진 특이한 초전도 물질을 조사했다. 이 결정은 철, 코발트, 비소 원자로 이루어진 초전도 층 사이에 강자성 유로피움 원자가 평평한 시트를 끼워 만든 결정이다. 산체스에 따르면 자연에서 강자성과 초전도를 함께 발견하는 것은 극히 드문 일이며, 일반적으로 한 단계가 다른 단계를 압도하기 때문이다. 산체스는 "초전도 층이 주변 유로피움 원자의 자기장에 의해 뚫리기 때문에 실제로는 매우 불편한 상황"이라며 "이것은 초전도를 약화시키고 전기 저항을 유한하게 만든다"고 말했다. 초전도 기술의 도전과 혁신 산체스는 아르곤에 있는 DOE 과학부 사용자 시설인 미국 최고의 X-선 광원 중 하나인 APS(Advanced Photon Source)에서 1년간 레지던트로 근무했다. 그곳에서 그는 DOE의 과학 대학원생 연구 프로그램의 지원을 받았다. 산체스는 APS 빔라인 4-ID 및 6-ID의 물리학자들과 협력하여 복잡한 물질의 미세한 세부 사항을 조사할 수 있는 포괄적인 특성화 플랫폼을 개발했다. 산체스와 공동 연구자들은 X-선 기술을 조합해 결정에 자기장을 가하면 '유로피움 자기장 선(europium magnetic field line)'이 초전도 층과 평행하도록 방향을 바꿀 수 있다는 것을 보여줄 수 있었다. 이렇게 하면 길항 효과가 제거되고 저항이 0인 상태가 나타난다. 과학자들은 전기적 측정과 X-선 산란 기술을 사용하여 물질의 거동을 제어할 수 있음을 확인할 수 있었다. 논문의 공동 저자인 아르곤의 필립 라이언은 "초전도를 제어하는 독립적인 파라미터의 특성은 이 효과를 제어하는 완전한 방법을 계획할 수 있다는 점에서 매우 매력적"라고 말했다. 라이언은 "이 잠재력은 양자 장치의 전계 감도를 조절할 수 있는 능력을 포함하여 몇 가지 흥미로운 아이디어를 제시한다"고 설명했다. 그런 다음 연구팀은 결정에 응력을 가하여 흥미로운 결과를 얻었다. 연구팀은 자기장의 방향을 바꾸지 않고도 자성을 극복할 수 있을 정도로 초전도가 증가하거나 자기장의 방향을 바꾸어도 더 이상 제로 저항 상태를 만들 수 없을 정도로 약화될 수 있음을 발견했다. 이 추가 매개변수를 통해 자성에 대한 소재의 민감도를 제어하고 맞춤 설정할 수 있다. 산체스는 "이 물질은 여러 위상 간의 경쟁이 치열하고, 작은 응력이나 자기장을 가하면 한 위상을 다른 위상보다 높여서 초전도를 켜고 끌 수 있기 때문에 흥미롭다"고 말했다. 그는 "대부분의 초전도체는 쉽게 전환할 수 없다"고 강조했다. '전기의 고속도로' 초전도체 전기가 물을 통과하는 것처럼, 초전도체는 전기가 저항 없이 흐르도록 하는 '전기의 고속도로'라고 비유할 수 있다. 마찰 없이 움직이는 완벽한 롤러 스케이트처럼, 초전도체는 에너지 손실 없이 전기를 전달한다. 초전도체의 주요 특징은 다음과 같다. 초전도체는 전기 저항이 0이기 때문에 전류가 손실 없이 흐를 수 있다. 또한 초전도체는 외부 자기장을 완전히 배척하는 마이스너 효과를 나타내며, 외부 자기장에 반대되는 방향의 자기장을 형성하는 반자성을 띠고 있다. 앞으로 활용 분야가 다양한 초전도체는 전기 저항이 없기 때문에 전기를 손실 없이 먼 거리까지 효율적으로 송전하는 데 사용될 수 있다. 초전도체를 활용한 MRI 기계는 강력한 자기장을 생성하여 인체 내부를 상세히 이미징할 수 있는 기능을 제공할 수 있다. 또한, 초전도체를 사용한 마그레브 열차는 마찰이 없어 고속으로 운행될 수 있는 가능성을 제시한다. 마그레브 열차는 자기 부상 기술을 사용하여 레일과 접촉 없이 운행하는 열차다. '마그레브(Maglev)'는 '자기부상(Magnetic Levitation)'의 줄임말로, 강력한 자석을 사용하여 열차를 공중에 띄워 마찰을 거의 없애고 이동한다. 이 기술 덕분에 마그레브 열차는 기존의 바퀴를 사용하는 철도 시스템보다 훨씬 더 높은 속도로 운행할 수 있으며, 소음과 진동이 현저히 줄어들어 매우 부드럽고 조용한 탑승 경험을 제공한다. 마그레브 열차는 전기를 사용하여 강력한 전자기장을 생성하고, 이 전자기장이 열차를 들어 올리고, 추진하며, 안내하는 데 사용된다. 세계 여러 나라에서 이 기술을 연구하고 개발해 왔으며, 중국의 상하이 마그레브 열차와 일본의 초고속 마그레브 열차 시스템 등이 실제 운영되고 있는 대표적인 예다. 상하이 마그레브는 공항과 도심을 연결하는 노선으로 사용되며, 시속 430km에 달하는 속도로 운행된다. 양자 컴퓨팅 분야에서는 초전도체가 초전도 비트(큐비트·qubit)의 생성에 필수적인 역할을 한다. 큐비트 또는 퀀텀 비트는 양자 정보시스템에서 사용되는 최소 정보 단위로 0이나 1 뿐만 아니라 0과 1 어느 쪽도 확정 지을수 없는 상태까지 표현가능하다. 비록 초전도체 기술이 개발 초기 단계에 있지만, 이 기술은 미래 사회에 중대한 변화를 가져올 수 있는 높은 잠재력을 지니고 있다. 참조: '스트레인 전환 가능한 전계 유도 초전도' 작성자: Joshua J. Sanchez, Gilberto Fabbris, 최용성, Jonathan M. DeStefano, Elliott Rosenberg, Yue Shi, Paul Malinowski, Yina Huang, Igor I. Mazin, 김종우, 주준호 및 Philip J. Ryan, 2023년 11월 24일, 사이언스 어드밴시스. DOI: 10.1126/sciadv.adj5200
-
- 포커스온
-
[퓨처 Eyes(22)] 초전도체 온-오프 스위치 개발, 혁신적 전력·통신 기술 기대
-
-
중앙대, 그린수소 생산 혁명 루테늄 촉매 개발
- 수소경제 시대를 앞두고 친환경적인 수소 생산 기술 개발이 지속적으로 이루어지고 있다. 이 가운데 최근 중앙대학교 첨단재료공학과 연구팀이 차세대 수소 전극 촉매로 주목받는 루테늄 촉매의 성능을 획기적으로 향상시킨 연구 결과를 발표했다. 미국 과학 전문 매체 사이테크데일리(SciTechDaily)는 중앙대학교 첨단재료공학과 장해성 교수 연구팀이 아연으로 도핑한 루테늄 산화물(SA Zn-RuO2) 촉매를 개발했다고 지난 21일(현지시간) 자세히 소개했다. 아연으로 도핑한 루테늄 산화물 촉매는 기존 루테늄 산화물 촉매에 비해 안정성과 반응성이 향상된 것이다. 수소는 화석연료 대체 에너지원으로 각광받고 있지만, 현재까지 주로 천연가스 개질을 통해 생산되는 '회색 수소'는 환경오염 문제를 해결하지 못하고 있다. 반면, 물과 전기를 이용하여 생산되는 '녹색 수소'는 온실가스 배출 없이 순수한 수소를 확보할 수 있는 친환경 에너지원으로 각국 정부와 기업들의 핵심 투자 분야로 떠오르고 있다. 하지만 현재 녹색 수소 생산 기술은 아직 초기 단계에 머물러 있다. 가장 큰 걸림돌은 산성 전해수를 이용하는 '양극 산화반응(OER)' 촉매의 효율성과 안정성이 부족하기 때문이다. 이 때문에 경제적인 녹색 수소 생산량을 늘리기 어려운 상황이다. 루테늄 촉매로 획기적인 성능 향상 연구팀은 기존 상용 루테늄 촉매에 아연(Zn) 원자를 도핑하는 기술을 개발하여 기존 촉매에 비해 훨씬 높은 반응성과 안정성을 확보했다. 기존 루테늄 촉매는 전류밀도를 높이면 빠르게 성능이 저하되는 반면, 연구팀이 개발한 촉매는 높은 전류밀도에서도 지속적으로 안정적인 수소 생산을 가능하게 한다. 뿐만 아니라, 이 신소재 촉매는 이리듐(Ir)과 같은 귀금속 대신 상대적으로 저렴한 루테늄을 사용함으로써 녹색 수소 생산 비용을 크게 낮출 수 있는 장점도 지니고 있다. 결과적으로 연구팀의 성과는 녹색 수소 경제 실현에 한 걸음 더 다가선 중요한 결과라 할 수 있다. 차세대 전극 촉매의 길을 여는 돌파구 연구팀은 이번 연구 결과를 바탕으로 더욱 효율적이고 안정적인 차세대 촉매 개발에 힘을 쏟을 계획이다. 이를 통해 친환경 수소 생산 기술 발전을 촉진하고 우리나라 수소경제 선두 국가 진출에 밑바탕을 마련할 것으로 기대된다. 연구팀은 기존 루테늄(RuO2) 촉매에 단일 아연(Zn) 원자를 도핑하고 산소 공백을 도입하는 이중 기술을 개발하여 안정성과 활성을 동시에 높이는 데 성공했다. 'SA Zn-RuO2(단일 아연 도핑 루테늄 산화물)' 촉매라고 명명한 신소재는 산소 공백과 Zn-O-Ru(아연 산소 루테늄) 결합을 통해 기존 촉매의 한계를 효과적으로 극복했다. SA Zn-RuO2 촉매는 유기 골격 구조물을 루테늄과 아연 원자로 가열하여 합성하는데, 이 과정에서 산소 공백과 Zn-O-Ru 결합이 형성된다. 이러한 결합은 두 가지 방식으로 촉매를 안정화한다. 첫째, Ru-O 결합을 강화하여 촉매 구조를 지탱한다. 루테늄-산소 결함은 촉매의 구조적 안정성을 높이는 데 중요한 역할을 한다. 루테늄-산소 결합이 강하면 촉매가 쉽게 분해되는 것을 방지할 수 있다. 둘째, 아연 원자로부터 전자를 공급하여 산화 과정에서 루테늄의 과도한 산화를 막는다. 또한 향상된 전자 환경은 반응 물질이 촉매 표면에 흡착하는 데 필요한 에너지를 낮춰 반응 속도를 증진시킨다. 장 교수는 연구 배경에 대해 "산성 전해수를 이용하는 수소 생산 기술에서 효율적이고 저렴한 대체 촉매 개발 필요성에 따라 연구를 시작했다"고 밝혔다. 그는 "이번 연구를 통해 단일 아연 도핑과 산소 공백 도입이라는 이중 기술을 통해 산성 환경에서 안정성과 활성을 균형 있게 높이는 전략을 제안한다"고 덧붙였다. 수소 생산 비용 절감 장 교수 연구팀의 실험 결과 아연으로 도핑한 루테늄 산화물 촉매는 기존 루테늄 산화물 촉매에 비해 과전위가 57mV 낮고, 43시간 동안 안정적으로 작동하는 것으로 나타났다. 과전위는 촉매가 반응을 일으키는 데 필요한 전기 에너지의 양으로, 과전위가 낮을수록 효율이 높아진다. 즉, 아연 도핑 루테늄 산화물 촉매는 기존 루테늄 산화물 촉매에 비해 더 적은 에너지를 사용하여 수소를 생산할 수 있다는 의미이다. 또한, 아연 도핑 루테늄 산화물 촉매는 43시간 동안 안정적으로 작동하는 것으로 나타났는데, 이는 기존 루테늄 산화물 촉매의 수명에 비해 크게 향상된 것이다. 연구팀은 "아연으로 도핑한 루테늄 산화물 촉매는 비용 효율적이고 활성 및 내산성 전기 촉매의 개발에 영향을 미칠 가능성이 있다"며 "이는 수소 생산 비용을 절감하고 녹색 수소 생산을 향상시켜 청정 에너지원으로의 전환과 지속 가능한 기술의 발전에 도움이 될 것"이라고 기대했다. 아연으로 도핑한 루테늄 산화물 촉매의 개발은 지속 가능한 수소 생산에 새로운 돌파구를 마련했다는 평가를 받고 있다. 기존 루테늄 산화물 촉매는 안정성 문제가 있어 실용화 가능성이 낮다는 지적을 받아왔다. 하지만 이번에 개발된 아연으로 도핑한 루테늄 산화물 촉매는 안정성과 반응성이 모두 향상돼 상용화에 한 걸음 더 가까워졌다. 연구팀은 "향후 아연으로 도핑한 루테늄 산화물 촉매의 성능을 개선하고 대량 생산 기술을 개발해 실용화를 앞당길 계획"이라고 밝혔다. 이 연구는 지난 1월 '에너지 화학 저널(Journal of Energy Chemistry)' 88권에 발표됐다.
-
- 산업
-
중앙대, 그린수소 생산 혁명 루테늄 촉매 개발
-
-
용융염 원자로, 안전하고 경제적인 차세대 에너지 솔루션
- 탄소 배출을 줄이기 위한 친환경 에너지원에 대한 세계적인 관심이 높아지고 있다. 이와 관련하여 비스니스 인사이더(BUSINESS INSIDER)는 미국이 기존의 원자로와는 다른 새로운 유형인 용융염 원자로 건설을 허가 했다고 보도했다. 이 용융염 원자로는 전통적인 원자로와 달리, 고온으로 녹인 액체 소금을 냉각재로 사용한다. 일반적인 원자로가 물을 이용하여 증기압으로 터빈을 돌려 전기를 생산하는 반면, 이 새로운 원자로는 물이 아닌 액체 소금을 사용함으로써 물의 증발 위험이 없다. 액체 소금의 끓는점이 약 1500도로 매우 높아, 원자로에 사고가 발생하더라도 냉각재의 증발로 인한 노심의 용융 가능성이 크게 낮아진다. 용융염 원자로의 독특한 점은 연료봉 대신 액체 핵연료를 사용한다는 것이다. 이 액체 핵연료는 매우 소형화되어 있어, 원자로를 더 작은 크기로 설계할 수 있으며, 연료 교체 시 원전의 가동을 멈출 필요가 없다. 이 특성 덕분에 용융염 원자로는 기존 원자로보다 크기가 작고 건설이 용이하며, 선박이나 외딴 지역과 같은 전력망이 부족한 곳에도 적합하다. 미국 원자력규제위원회(Nuclear Regulatory Commission, NRC)는 최근 미국 카이로스파워(Kairos Power)의 용융염 원자로 건설 프로젝트에 대해 승인했다. 카이로스파워는 2027년까지 테네시주 오크리지에 '에르메스(Hermes)'라 명명된 시험용 원자로를 건설할 계획이다. 이 프로젝트의 초기 버전은 전기를 생산하지 않겠지만, 그 후속 모델인 '헤르메스 2'는 2028년부터 전력 생산을 시작할 것으로 예상된다. 용융염 원자로는 1950년대부터 연구되었지만, 안전 문제와 재료의 부식 문제 등으로 인해 상용화에는 어려움을 겪어왔다. 그러나 최근의 기술 발전으로 이러한 문제들이 해결되면서, 용융염 원자로는 안전성과 경제성 측면에서 크게 개선되어 새롭게 주목받고 있다. 용융염 원자로 기술은 미국에서뿐만 아니라 중국, 영국 등 여러 국가에서도 적극적인 개발이 진행 중이다. 한국의 용융염 원자로 개발 2023년부터 한국 정부는 용융염 원자로 개발을 국가 연구개발 프로젝트로 지정하고 지원하고 있다. 이 프로젝트는 2026년까지 핵심 기술 개발을 목표로 하며, 인증 과정을 거쳐 2030년대에 해양용 원자로 첫 번째 모델의 건설을 목표로 하고 있다. 한국원자력연구원은 이 분야에서 민간 기업들과 협력하여 해양플랜트 및 선박 추진 시스템에 적용될 용융염 원자로 개발에 집중하고 있다. 우리나라의 용융염 원자로 개발은 아직 초기 단계에 있지만, 정부의 적극적인 지원과 민간 기업의 참여로 순조롭게 진행되고 있다. 우리나라가 용융염 원자로 개발에 성공한다면, 세계 최초로 해양용 원자로를 상용화하는 국가가 될 것으로 기대된다. 용융염 원자로가 상용화될 경우 기존의 원자로보다 안전하고 경제적인 방식으로 전력을 생산할 수 있는 가능성을 제시할 것이다.
-
- 산업
-
용융염 원자로, 안전하고 경제적인 차세대 에너지 솔루션
-
-
원자력연, 한국형 소형 원전 해외진출 본격화
- 한국원자력연구원이 독자 개발해 세계 최초로 표준설계인가를 획득한 소형모듈원자로(SMR)인 SMART(System-integrated Modular Advanced ReacTor)를 상용화하기 위해 민간기업 현대 엔지니어링과 협업한다. 원자력연구원은 한국형 소형원전 SMART 수출을 본격화하기 위해 현대엔지니어링과 업무협약을 체결했다고 11일 밝혔다. 원자력연구원은 원자로 설계 및 현지 인허가 업무를, 현대엔지니어링은 SMART 실증 및 상용화를 위한 사업 개발을 담당할 예정이다. 원자력연은 지난 4월 캐나다 앨버타주와 탄소 감축을 위한 SMART 활용 업무협약을 체결했다. 이후 9월에는 캐나다원자력공사(AECL)와 협력 양해각서(MOU)를 체결하며, 앨버타주와 온타리오주에서 SMART 실증과 상용화 노력을 해왔다. 원자력연과 현대엔지니어링은 SMART 실증·건설사업이 속도를 낼 수 있도록 캐나다 현지 사업 기반을 강화할 계획이다. 두 기관은 지난 9월 캐나다원자력연구소(CNL)의 다양한 SMR 기술을 실증하는 'SMR 실증 프로그램'에 신청서를 공동 제출했다. 내년에는 캐나다 파트너사 확보 및 현지 사업체계 등을 구축할 계획이다. 소형 일체형 원자로인 SMART는 발전 용량이 기존 대형 원전의 10분의 1 규모이다. 용기 하나에 원자로, 증기발생기, 가압기, 냉각재 펌프가 모두 포함돼 있어 SMR 중 가장 빨리 실증 배치가 가능한 것으로 평가되고 있다. 주한규 한국원자력연구원장은 최근 현대엔지니어링과의 업무협약과 관련하여, 이 협약이 한국 고유의 소형모듈원자로(SMR)인 SMART 기술을 활용하여 국내 기업이 주도적으로 사업을 개발하는 시작점이 될 것이라고 말했다. 한편, '소형 원자로(SMR)'는 전통적인 대형 원자로와 달리 작은 크기로 경제성과 유연성, 안전성, 확장성 등의 장점을 갖고 있다. 최근 급격한 기후 변화의 위협으로, 탄소배출을 최소화하는 에너지원에 대한 수요가 크게 증가하고 있다. 소형 원자로는 이러한 배경 속에서 미래의 주요 전력 공급 수단으로 주목받고 있다. SMR은 원자력 연료의 재사용 기술로 연료 수명을 연장하며, 방사성 폐기물의 양도 줄인다. 초기 투자 비용이 적기 때문에, 소규모 전력 시장과 개발 도상국도 원자력 발전을 채택하기 쉽다. 또한 SMR의 크기와 디자인은 유연성을 높여주며, 원격 지역, 도시 인근, 심지어 산업 시설 안에도 설치가 가능하다. 대부분의 부품은 공장에서 미리 제작되므로 현장에서의 설치도 빠르고 효율적이다. 필요에 따라 여러 개의 SMR을 한 지역에 설치해 발전 용량을 조절할 수 있어, 수요 변동에 유연하게 대응한다. 이러한 특징들로 인해 투자자들에게 상업적으로 매력적이며, 전통적인 대형 원자로보다 빠른 수익 회수가 가능하다.
-
- 산업
-
원자력연, 한국형 소형 원전 해외진출 본격화
-
-
GH파워, 그린 수소 생산 원자로 개발
- 캐나다 기업이 재활용 알루미늄 캔을 활용해 그린 수소를 생산하는 원자로를 선보였다. 수소는 지구 전체 에너지 구성의 90%를 차지하는 중요한 자원이지만, 현재 대부분 화석 연료에서 추출되어 환경에 큰 부담을 주고 있다. 전 세계적으로 재생 가능 에너지를 활용하여 생산한 그린 수소에 대한 관심이 증가하고 있다. 그린 수소는 탄소 배출이 없는 친환경 에너지원으로서 미래의 에너지원으로 각광받고 있다. 그러나 기존의 그린 수소 생산 방식은 높은 비용과 낮은 효율성이라는 문제를 안고 있었다. 이에 대한 해결책으로, 캐나다에서 새로운 원자로 설계가 개발되어 이 분야에서 큰 주목을 받고 있다. 최근 에너지 전문 매체 오일프라이스(OILPRICE)의 보도에 따르면, 캐나다 기업 지에이치 파워(GH Power)가 개발한 원자로는 재활용 알루미늄과 물만을 사용하여 수소, 알루미나, 열을 생산하는 방식해 주목받고 있다. GH파워의 원자로는 기존의 그린 수소 생산 방식보다 비용이 60% 저렴하고 효율성이 85% 높다는 장점이 있다. 이 혁신적인 원자로 설계는 모듈식으로 제작되어, 소규모 설비에서부터 대규모 발전소까지 확장 가능하다. 이는 그린 수소 시장의 확장에 중요한 기여를 할 것으로 기대된다. GH 파워는 현재 온타리오주 해밀턴에 2MW 규모의 실증 상업용 원자로를 건설 중이며, 이는 내년 2분기부터 수익을 창출할 것으로 예상된다. 또한, 회사는 북미와 유럽에서 대규모 수소 발전소 건설하기 위해 우량 전략 파트너와 협력 관계를 구축하고 있다. GH 파워는 캐나다와 독일 정부가 후원하는 독일의 RWTH 아헨 대학교(RWTH Aachen University)와의 협력을 통해 이 기술을 개발했고, 녹색 기술 보조금을 받는 등 세계적으로 기술력을 인정받았다. GH 파워의 기술은 재활용 알루미늄을 원자로에서 열을 발생시키는 연료로 사용하며, 물은 알루미늄과 반응하여 수소와 산화알루미늄을 생성한다. 이렇게 생성된 수소는 연료로 사용되거나 다른 화합물의 제조에 활용될 수 있다. 또한, 산화알루미늄은 재활용되어 다시 원자로에서 연료로 사용될 수 있어, 자원 순환을 통한 지속 가능한 생산 체계를 구축하는 데 중요한 역할을 한다. 저비용 수소 GH 파워의 원자로 기술은 기존 화석 연료와의 가격 경쟁력을 갖춘 점에서 혁신적이다. 현재 전기 분해를 통해 생산되는 녹색 수소는 천연 가스에서 추출된 수소보다 약 3배 비싼 반면, GH 파워의 기술은 기존 전기 분해 방법으로 생산하는 것보다 이미 60% 저렴한 비용으로 수소를 생산할 수 있다. 이 원자로는 두 가지 중요한 녹색 출력물을 생산한다. 첫 번째는 발열이며, 이 열은 수소 생산뿐만 아니라 지역난방이나 산업용 열원으로도 활용될 수 있다. 두 번째는 녹색 알루미나로, 기존의 알루미나 생산 공정이 염산을 사용하여 알루미늄을 추출하는 방식에서 발생하는 염산 누출과 대기 오염 문제를 해결한다. GH 파워의 기술은 물과 재활용 알루미늄을 주요 원료로 하여, kg당 약 1.50달러(약 1960원)의 저렴한 비용으로 수소를 생산한다. 이는 기존의 염산 침출 및 가수분해 공정에 비해 약 85% 저렴한 비용으로, 수소 생산의 경제성을 크게 높인다. 27MW 규모의 발전소는 연간 약 120만 톤의 탄소 상쇄를 생산할 수 있는데, 이는 탄소 상쇄 비용이 톤당 40달러(약 5만2300원)에서 80달러(약 10만4600원) 사이인 것을 고려할 때, 상당한 탄소 상쇄 수익 잠재력을 의미한다. 수소 산업은 아직 초기 단계에 있지만, 급속한 성장세를 보이고 있다. 글로벌 시장조사기관 리서치앤마켓(Research and Markets)의 보고에 따르면, 수소 산업의 시장 규모는 2022년 1230억달러(약 160조 7610억원)에서 2030년에는 5580억달러(729조 3060억원)로 성장할 것으로 예측되며, 이는 연평균 11.4%의 성장률을 의미한다. 수소 산업의 주목받는 기업들 수소 산업은 다양한 분야의 기업들이 진출하고 있다. 그 중에서도 주목할 만한 기업으로는 다음과 같은 기업들이 있다. 에어 프로덕츠 앤 케미칼스(Air Products and Chemicals, Inc.)는 산업용 가스 부문에서 확고한 입지를 구축한 기업으로, 현재 수소 시장에서 상당한 발전을 이루고 있다. 발라드 파워 시스템즈(Ballard Power Systems Inc.)는 연료 전지 산업의 선구자로, 첨단 양성자 교환막(PEM) 기술로 잘 알려져 있다. 쉘(Shell)은 전통적인 석유 메이저에서 다각화된 에너지 회사로 전환한 기업으로, 수소 이니셔티브에 대한 그들의 진출은 지속 가능성과 혁신을 향한 광범위한 변화를 반영하는 중요한 부분이다. BP는 과거 회사명을 '브리티시 페트롤리움(British Petroleum)'에서 '비욘드 페트롤리움(Beyond Petroleum)'으로 리브랜딩을 통해 변화를 상징한다. 이러한 기업들은 모두 그린 수소 생산 분야에서 혁신적인 기술과 비즈니스 모델을 개발하고 있으며, 향후 이 시장의 성장을 주도할 것으로 기대된다. 한국의 수소 기업들 한국원자력연구원(KAERI)은 한국 최초의 원자로를 개발한 연구기관으로, 다양한 원자력 기술을 연구하고 개발하고 있다. 한국원자력연구원은 재활용 알루미늄과 물을 사용하여 수소를 생산하는 원자로 개발을 추진하고 있다. 이 원자로는 지에이치 파워의 원자로와 마찬가지로 두 가지 녹색 출력물인 발열과 녹색 알루미나를 생산한다. 한국원자력연구원의 원자로는 현재 개발 초기 단계에 있으며, 2025년경 실증 상업용 원자로를 건설할 계획이다. 이외에도 한국에는 수소 생산을 위한 다양한 기술을 개발하고 있는 기업들이 있다. 대표적으로 현대자동차, SK그룹, 포스코 등이 있다. 현대자동차는 수소연료전지 자동차를 생산하는 기업으로, 수소 생산 기술 개발에도 적극적으로 투자하고 있다. SK그룹은 수소 생산, 저장, 운송, 활용 등 수소 산업의 전 분야에 진출하고 있으며 포스코는 풍력, 태양광 등 재생 에너지를 활용한 수소 생산 기술을 개발하고 있다. 수소 산업, 투자의 기회 될까 수소 산업은 빠른 성장이 기대되는 산업인 만큼, 투자의 기회가 될 수 있다는 분석도 나온다. 실제로, 수소 산업 관련 기업의 주가는 최근 들어 상승세를 보이고 있다. 그러나, 수소 산업은 아직 초기 단계인 만큼, 투자 시에는 신중한 접근이 필요하다는 지적도 있다. 수소 생산, 저장, 운송, 활용 등 다양한 분야에서 기술 개발이 진행 중이며, 시장이 성숙하기까지는 시간이 걸릴 것으로 예상된다. 또한, 수소 산업은 정부의 정책에 영향을 받는 산업이기도 하다. 정부의 정책 변화에 따라 시장의 성장 속도나 방향이 달라질 수 있기 때문에, 투자 시에는 정부 정책을 면밀히 살펴볼 필요가 있다. 수소 산업은 미래 에너지원으로서 주목받고 있으며, 그 성장 잠재력이 높은 산업이다. 그러나 수소 산업은 아직 초기 단계에 있기 때문에, 이 분야에 대한 투자는 신중한 접근이 필요하다.
-
- 산업
-
GH파워, 그린 수소 생산 원자로 개발
-
-
영국 스타트업, 핵융합 원자로로 암 치료 새 지평 열어
- 의학 및 약학 기술의 발달로 '암'이 더 이상 치료 불가능한 질병으로 여겨지지 않는 가운데, 영국의 한 스타트업이 핵융합 기술을 활용한 새로운 암 치료법을 개발해 주목을 받고 있다. 최근 미국 IT 전문지 '인터레스팅 엔지니어링'은 영국의 스타트업인 아스트랄 시스템즈(Astral Systems)가 암세포를 직접적으로 치료할 수 있는 혁신적인 핵융합 원자로 기술을 공개했다고 보도했다. 아스트랄 시스템즈는 브리스톨 대학에서 설립된 회사로, 최초의 다중 상태 핵융합(MSF) 원자로를 개발했다고 한다. 이 원자로는 암 방사선 치료와 진단 영상 촬영에 필수적인 의료용 동위원소를 생산하는 데 중점을 두고 설계됐다. 의료용 동위원소는 방사선 치료 중 암세포를 효과적으로 파괴하는 데 사용되는 방사성 물질로, 표적 암 치료에 있어 중요한 역할을 한다고 이 매체는 전했다. 아스트랄 시스템즈의 공동 창립자이자 브리스톨대학교의 객원 연구원 탤몬 퍼스톤(Talmon Firestone) CEO는 "핵의학은 의료계가 암을 스캔하고 종양과 암세포를 근원지에서 직접 치료할 수 있도록 함으로써 수십 년 동안 생명을 구하는 데 크게 기여했다"라고 말했다. 또한 신체 내에서 '방사성 추적자' 역할을 해 영상을 통해 의학적 상태를 쉽게 감지할 수 있다. 이러한 동위원소는 신체 내에서 방사선을 생성하여 의료 전문가에게 장기와 조직의 구조 및 기능에 관한 중요한 정보를 검출하고 정량화할 수 있게 해준다. 현재 전 세계 의료용 동위원소의 대부분은 제한된 수의 핵분열로에 의존하고 있는 상황이다. 이러한 의존성은 특히 의료용 동위원소 공급 부족이 임박한 상황에서 더욱 두드러진다. 영국 정부의 평가에 따르면, 세계적으로 의료용 동위원소 공급의 대다수가 노후화된 소수의 핵분열로에 의존하고 있으며, 이들 중 대부분은 2030년까지 폐쇄될 예정이다. 이는 중요한 의료 자원의 향후 가용성에 대한 우려를 야기한다. 새로운 MSF 원자로는 이러한 과제에 대한 컴팩트한 솔루션을 제공합니다. 이는 중요한 의료 자원의 미래 가용성에 대한 심각한 우려를 낳고 있다. 이에 대응하여, 아스트랄 시스템즈가 개발한 새로운 다중 상태 핵융합(MSF) 원자로는 이러한 도전과제에 대한 혁신적이고 컴팩트한 해결책을 제시하고 있다. 아스트랄 시스템즈는 영국을 비롯한 전 세계 여러 지역에 소형 핵융합로를 전략적으로 설치할 계획을 가지고 있다. 이러한 분산형 전략은 보다 유연하고 비용 효율적인 방식으로 방사성 샘플을 공급할 수 있게 해줄 것으로 기대된다. 이 회사는 소규모 원자로 건설을 통해 몇몇 대형 원자로에 대한 의존성을 줄이고, 이에 따른 위험을 완화하려는 목표를 가지고 있다. 이를 통해 의료용 동위원소의 지속 가능하고 안정적인 생산을 보장할 수 있을 것으로 전망하고 있다. 퍼스톤은 "우리 시스템은 훨씬 더 빠르게 개발되었으며 대체 기술보다 훨씬 작은 규모로 동위원소를 생산할 수 있다“며 ”이는 거대한 국제 핵분열 공장에 의존하지 않고도 병원 허브 근처 또는 내부에서 의료용 동위원소를 생산할 수 있음을 의미한다"고 말했다. 퍼스톤 CEO는 '우리의 시스템은 대체 기술에 비해 빠르게 개발되었으며, 훨씬 작은 규모로 동위원소를 생산할 수 있다'고 말했다. 그는 이어 '이는 병원 허브 근처나 내부에서도 의료용 동위원소를 생산할 수 있다는 것을 의미하며, 이는 임상의가 사용할 수 있는 진단 및 치료 기술을 극적으로 향상시킬 것이다. 또한 병원 대기 시간과 비용을 줄이고 치료의 질을 높일 것이다'고 강조했다. 2021년 브리스톨 대학교는 아스트랄 시스템즈 및 STFC(과학 기술 위원회)와 협력하여 마이크로노바(MicroNOVA)라는 프로젝트를 통해 MSF 반응기 기술을 최적화하고 상용화하기 위해 100만 파운드(약 16억5038만원)의 연구 보조금을 확보했다. 회사 공동 창립자 월래스 스미스는 "우리의 MSF 원자로는 의료용 방사성 동위원소를 안전하고 보다 효율적으로 개발할 수 있는 메커니즘을 제공할 뿐만 아니라, 본격적인 핵융합 발전소의 모습과 작동 중 어떻게 작동할지 이해하기 위한 이상적인 테스트베드도 제공한다"라고 말했다. 모든 것이 계획대로 진행된다면 이 기술은 암 치료 및 의료용 동위원소 생산의 새로운 시대를 열 것으로 전망된다. 한편, 한국의 원자력연구원은 벨기에 원자력연구소에서 '연구로 핵연료' 최종 검증에 돌입했다. 이 핵연료는 우라늄을 70% 이상 연소하는 극한의 조건에서도 방사능 누출이 없는 것으로 확인되었으며, 핵연료의 안전성이 건전하게 유지됨으로써 뛰어난 안전성을 입증했다고 알려졌다. 원자력연구원은 현재 2단계 성능 검증 단계에 진입했으며, 이 단계는 핵연료 공급자가 시장 진입 전에 거쳐야 하는 마지막 검증 과정이다. 2025년 말까지 이 핵연료를 포함한 집합체 성능검증을 마치면 벨기에의 핵연료 공급 입찰 자격을 획득할 수 있다. 이는 연구로에서 중성자를 생산하기 위해 우라늄을 활용하는 것과 관련이 있다. 연구로는 열을 활용하면 원전이 되고, 중성자만을 활용하면 연구로로 작동한다는 원리를 따른다. 더욱이, 원자력연구원은 고밀도 저농축 '우라늄실리사이드 판형핵연료'(U3Si2)를 개발했다. 이는 저농축 우라늄을 사용하는 3세대 핵연료로, 핵연료 집합체는 곡면형으로 설계되어 핵분열 시 중성자를 중심부로 집중시키는 장점을 가지고 있다. 이러한 핵연료는 의료용 동위원소나 고품질 반도체 웨이퍼 제작 등 다양한 분야에 활용될 수 있는 가능성을 가지고 있다.
-
- IT/바이오
-
영국 스타트업, 핵융합 원자로로 암 치료 새 지평 열어
-
-
LG화학 AVEO 온콜로지, 2년 연속 '매사추세츠 최고의 직장' 선정
- LG화학의 미국 자회사인 AVEO 온콜로지(Oncology)가 2년 연속 보스턴 글로브의 '매사추세츠 최고의 직장' 목록에 이름을 올렸다. 지난달 30일(현지시간) 미국 매체 pr뉴스와이어에 따르면 AVEO 온콜로지는 중형 기업(100-249명 직원) 부문에서 이번 영예를 안았다. 보스턴 글로브의 '최고의 직장' 리스트는 리더십, 감사, 혜택, 기업 사회적 책임 등에 대한 익명 직원 설문조사를 바탕으로 선정된다. 이번 조사에는 380개 이상의 회사에서 약 10만 명의 직원이 참여했다. 마이클 베일리 AVEO 온콜로지 대표는 "매사추세츠 최고의 직장 중 하나로 다시 한번 선정된 것을 매우 기쁘게 생각한다"며 "이 인정은 LG화학에 인수된 후 가장 어려울 수 있는 시기에 이루어져 더욱 값지다. AVEO 팀이 환자 중심의 사명과 비전을 지속적으로 추구해 준 것과 LG화학 팀이 두 회사의 원활한 통합을 위해 열심히 노력한 데 대해 감사하다"고 말했다. LG화학은 2022년 10월 바이오 제약회사인 AVEO 온콜로지 인수를 발표했고, 거래는 2023년 1월에 공식적으로 마무리됐다. AVEO와 LG화학은 함께 암 환자의 삶을 개선하는 혁신적인 해결책을 제공하고, 세계적인 종양 치료제 시장의 선두주자가 되겠다는 공동의 사명과 비전을 가지고 있다. AVEO와 LG화학은 종양 치료제 개발과 관련된 공동의 사명뿐만 아니라 지역 사회 서비스 문화도 공유하고 있다. 올해 초 모든 직원 회의에서 두 회사의 직원들은 허리케인 이안으로 피해를 입은 플로리다 남서부 주민들을 위한 비상 키트를 조립, 포장했다. AVEO는 또한 지역 사회에 기여하는 것에 열정적이며 지난 2년 동안 다나-파버 암 연구소(Dana-Farber Cancer Institute)에서 환자 치료와 혁신적인 암 연구를 지원하는 지미 펀드(Jimmy Fund) 및 보스턴 레드 삭스의 '암 퇴치(Strike Out Cancer)' 이니셔티브의 최고 기업 후원자로 자리매김했다. 이러한 핵심 원칙은 AVEO의 생동감 넘치고 통합되고 목적 중심의 기업 문화를 강화하며, 보스턴 글로브의 '최고 직장' 인정으로 2년 연속 확인됐다. 카티 맥카시(Katie McCarthy) AVEO 온콜로지의 마케팅 책임자는 "AVEO 온콜로지에서 근무한 수년 동안 암 환자와 그 가족의 삶을 개선하기 위한 공통된 사명에 참여할 수 있어 영광이었다"라고 말했다.
-
- 산업
-
LG화학 AVEO 온콜로지, 2년 연속 '매사추세츠 최고의 직장' 선정
-
-
尹 대통령, 영국 국빈방문…원전 등 '탄소 중립 파트너' 기대
- 윤석열 대통령이 한·영 수교 140주년을 맞아 찰스 3세 국왕 초청으로 20∼23일 영국을 국빈 방문한다. 윤 대통령의 이번 방문 기간 동안 양국 간 '탄소 중립 협력'이 강조될 것으로 예상된다. 한국과 영국 간의 상업 교류는 작년 기준으로 63억 달러에 불과하지만, 탄소 중립을 추구하는 새로운 협력 기회가 열릴 것으로 기대된다. 특히 영국 정부가 중점적으로 추진하는 해상풍력 프로젝트, 신규 원전 건설, 소형모듈원자로(SMR) 개발 프로젝트 등에서 협력 가능성이 높게 평가된다. 또한, 바이오와 반도체 등 첨단 기술 분야에서도 양국 간의 시너지 효과를 기대할 수 있을 것으로 전망된다. 20일 한국무역협회에 따르면, 지난해 기준으로 영국과의 교역 규모는 크지 않았으며 수출액은 63억 달러로 20위, 수입액은 85억 달러로 27위에 해당한다. 우리나라의 영국 수출 품목 중 주요한 항목으로는 전기차(15.9%), 기타 자동차(12.7%), 무선전화기(7.9%) 등이 상위에 있었다. 반면, 주요 수입 품목은 원유(17.2%), 승용차(8.6%), 의약품(6.9%) 순으로 나타났다. 윤 대통령의 국빈 방문을 계기로 한국과 영국 간의 교역이 '탄소 중립 파트너'로 한 단계 높아질 가능성이 큰 것으로 기대된다. 또한, 영국은 탄소중립 정책을 적극적으로 추진하고 있어, 이와 관련한 협력 가능성이 높게 평가되고 있다. 영국은 2019년 세계 최초로 '2050년 온실가스 배출량 제로(0)', 일명 넷제로를 법적 목표로 도입한 국가다. 또한, 2021년 제26차 기후변화협약 당사국 총회(COP26)에서 의장국을 맡아 전 세계에 탄소중립 노력을 촉구하며 탄소중립 시대를 주도하고자 하고 있다. 영국은 환경 및 탄소 중립에 대한 앞장서는 역할을 하며 ESG(환경, 사회, 지배구조) 수준 역시 비교적 높다. 2020년 11월에 시작된 '녹색산업혁명을 위한 10대 중점계획'을 출발로, 2020년 12월에 '에너지백서 2020(Energy White Paper)'를 발표하고, 2022년 4월에 '에너지안보 전략(Energy Security Strategy)'을 공개하며, 2023년 4월에 '에너지안보 계획(Powering up Britain: Energy Security Plan)'을 발표하는 등 많은 중장기 계획을 제시하고 있다. 또한, 세계 주요 증권거래소에서 상장된 기업들의 ESG 리스크를 분석한 결과, 영국과 프랑스가 ESG 리스크가 가장 낮다는 평가를 받았다. 특히 영국의 FTSE 100 기업 중 54%가 ESG 위원회를 보유하고 있는 등 ESG 경영에 앞선 노력을 기울이고 있다. 더불어, 영국 재무부는 ESG 경영을 더욱 투명하게 촉진하기 위해 2021년에 '녹색금융: 지속가능한 투자 로드맵(Greening Finance: A Roadmap to Sustainable Investing)'을 발표했다. 이 로드맵은 금융 제공기관들로 하여금 금융 활동이 환경에 미치는 영향, 제품의 지속가능성 수준, 투자 전략 이행 여부 등을 의무적으로 공개하도록 규정하고 있다. 기업들은 이 로드맵에서 제시한 환경 보전 항목 중 하나 이상에 실질적인 기여를 증명해야 한다. 이 외에도 영국 정부는 플라스틱 포장세(Plastic packaging Tax), 플라스틱 빨대 공급 금지, 2030년 내연기관차 판매 금지 조치 등 환경에 해를 가하는 기업의 경제활동을 법적으로 금하고 있다. 이처럼 영국에서는 탄소중립이 에너지 안보와 성장 전략의 중요한 요소 중 하나로 고려되고 있다. 대한무역투자진흥공사(코트라)에 따르면, 영국 정부는 지난 3월에 발표한 '에너지 안보 및 넷제로 성장 계획'에서 신규 원전·SMR 기술 선발·차세대 원자로(AMR) 실증(원자력) 및 해상풍력·태양광(신재생에너지) 그리고 탄소포집 및 활용(CCUS), 저탄소 수소 생산·수소 수송 및 저장(수소에너지)을 핵심 전략으로 제시했다. 이러한 전략은 한국에게도 기술 개발 분야에서 큰 기회를 제공하는 분야와 관련이 있다. 원전 분야 협력 기대 특히 한국과 영국 간의 원전 분야에서의 협력은 세계적인 경쟁력을 지닌 분야로 주목할 만하다. 코트라의 '탄소중립을 위한 영국 원전산업 정책 동향' 보고서에 따르면, 영국 정부는 2050년까지 총 24기가와트(GW) 용량의 원자력 발전을 목표로 하고 있지만, 현재 가동 중인 원전 발전량은 7GW 수준으로 적극적인 투자가 필요한 상황이다. 양국 정부는 원전산업 협력 논의를 오랫동안 진행해 왔으며, 지난 4월에는 원자력 발전과 청정에너지 분야에서의 협력 확대를 위한 공동선언문을 발표했다. 이 선언문에는 영국 신규 원전 건설 참여 가능성을 모색하는 내용이 포함되어 있다. 또한, 지난 3월에는 영국원자력청(GBN) 출범을 계기로 한국전력이 영국 신규 원전 건설에 참여하는 방안을 논의하기로 합의한 일도 있었다. 한국전력은 2016∼2017년에 영국 무어사이드 원전 사업에 참여를 검토했지만, 경제성 문제로 추진을 중단한 적이 있다. 코트라는 "단기적으로는 한국 정부가 영국 대형 원전 건설 프로젝트에 참여하고, 한국의 원전 기자재 기업이 영국 시장에 원전 기자재를 수출하는 것을 모색하는 것이 중요하다"고 말했다. 그리고 앞으로는 영국 원전 운영사(EDF) 등과의 기업 네트워크를 구축하거나 에이전트 기업을 활용해 원전 기자재 기업의 독자적인 수출이 가능할 것으로 보인다.
-
- 경제
-
尹 대통령, 영국 국빈방문…원전 등 '탄소 중립 파트너' 기대
-
-
SK그룹, 베트남과 신재생에너지·자원순환 사업 협력 강화
- 29일 SK그룹에 따르면, 최태원 SK그룹 회장은 지난 27~28일 베트남 하노이를 방문해 팜 민 찐 총리, 브엉 딘 후에 베트남 국회의장 등 고위급 인사와 만나 그린 비즈니스 협력을 심도 있게 논의했다. 최 회장은 행사에서 "수소, 탄소포집·저장·활용(CCUS), 소형모듈원자로(SMR), 에너지 솔루션 등 첨단 기술을 활용해 베트남의 청정에너지 전환을 지원하고, 넷제로(탄소 중립) 달성에 협력할 계획"이라며 "현지 정부, 파트너들과 함께 생산에서 소비에 이르는 전 과정에서 친환경 생태계를 구축하는 것이 목표"라고 밝혔다. 이번 방문은 최 회장이 지난 16~18일 프랑스 파리에서 열린 'SK 최고경영자(CEO) 세미나' 이후 첫 글로벌 현장 점검이다. 이번 방문에는 조대식 SK수펙스추구협의회 의장, 추형욱 SK E&S사장, 박경일 SK에코플랜트 사장, 박원철 SKC 사장 등 그린, 에너지 분야 주요 경영진이 대거 동행했다. 베트남은 정치·안보적 외풍에서 비교적 자유롭고 현지 정부, 기업과 오랜 기간 신뢰를 쌓아온 데다, 한국의 3대 교역국으로 인프라가 잘 갖춰져 있어 SK가 동남아 거점으로 삼아온 국가다. 특히 베트남 정부가 '2050년 넷제로'를 국가적 핵심 과제로 추진하고 있어 SK의 그린 비즈니스 사업과 ESG(환경·사회·지배구조) 경영 방침과도 시너지를 기대하고 있다. SK는 이번 방문을 통해 현지에서 친환경 사업을 확대할 전망이다. SK E&S는 281메가와트(MW) 규모의 태양광·해상 풍력발전소를 현지에 준공해 상업 운영 중인 것에 더해 756MW 규모의 육상풍력발전소를 추가 구축하고, 청정수소·액화천연가스(LNG) 사업도 추진할 계획이다. SKC는 베트남 하이퐁에 2025년 가동을 목표로 세계 최대 규모의 생분해 소재 생산시설을 건설하고 있고, SK에코플랜트는 베트남 북부 박닌 소각설비에 인공지능(AI) 기술을 적용한 데 이어 현지 자원순환 기업들과 폐기물 처리·폐배터리 재활용 사업을 모색하고 있다. 최 회장은 베트남 방문 기간 파트너십을 여러 차례 강조하며 지난 30년간 다져온 신뢰를 이어가며 앞으로도 베트남의 산업 전환과 새로운 변화를 함께 하겠다는 의지를 드러냈다. 베트남이 산업 구조 진화에 속도를 내는 가운데 SK는 국가혁신센터 건립에 3000만달러(약 400억원)를 지원하는 등 스타트업 육성과 기술 혁신에 힘을 보탰다. SK는 국가혁신센터 개관 첫 행사로 다음 달 1일까지 열리는 '베트남 국제 혁신 엑스포(VIIE) 2023'에 전시관을 마련하고, 첨단 미래도시로 변한 약 30년 후 하노이를 가상현실로 선보여 큰 호응을 얻기도 했다. SK 관계자는 "베트남은 1990년대 최종현 선대회장이 현지 원유개발 사업을 시작한 이래 다양한 사업, 사회활동을 함께한 상징적인 협력국"이라며 "그린 비즈니스 외에도 디지털, 첨단산업 영역에서 지속가능한 성장을 위한 협업을 확대해 나갈 것"이라고 밝혔다. 최 회장과 SK 경영진은 현장을 점검하며 현지 직원을 격려하고, 동남아 사업 방향에 대한 열띤 토론을 펼쳤다. 이를 마지막으로 파리에서 시작해 아프리카, 베트남까지 이어진 10월 해외 출장 일정을 마무리했다. 최 회장은 파리에서 열린 'SK CEO 세미나'에서 "대격변 시대를 헤쳐 나가기 위한 방법론으로 경제블록별 조직화, 에너지·AI·환경 관점의 솔루션 패키지 마련 등 글로벌 전략을 논의했다"고 밝혔다. 이러한 글로벌 전략에 따라 SK는 베트남을 동남아 지역 거점으로 삼고, 신재생에너지, 자원순환 등 그린 비즈니스 분야에서 협력을 강화해 나갈 계획이다. 특히, SK E&S는 베트남에서 태양광, 풍력, 수소 등 다양한 신재생에너지 사업을 추진하고 있다. SKC는 세계 최대 규모의 생분해 소재 생산시설을 건설하고 있으며, SK에코플랜트는 폐기물 처리, 폐배터리 재활용 사업을 모색하고 있다. SK는 이러한 사업을 통해 베트남의 청정에너지 전환과 넷제로 달성에 기여하고, 동시에 글로벌 그린 비즈니스 시장에서 경쟁력을 강화해 나갈 것으로 기대된다. 한편, 최 회장은 이번 베트남 방문을 통해 현지 정부와 기업과의 관계를 강화하고, 동남아 지역에서 SK의 글로벌 성장 기반을 다지는 계기를 마련했다. 최 회장은 "베트남은 SK의 중요한 비즈니스 파트너이자 동반자"라며 "앞으로도 양국의 협력을 통해 지속가능한 성장을 이루고, 지역 경제 발전에 기여해 나가겠다"고 밝혔다.
-
- 산업
-
SK그룹, 베트남과 신재생에너지·자원순환 사업 협력 강화
-
-
MIT, 태양광 발전으로 수소 효율성 향상
- 수소를 공해 없이 보다 효율적으로 생산할 새로운 방법이 연구되고 있다. 매사추세츠 공과대학(MIT)의 엔지니어들은 태양열을 이용하여 물을 분해하고, 이 과정에서 온실가스를 배출하지 않는 수소를 효율적으로 생산하는 '태양열화학수소' 시스템을 개발했다고 산업 전문매체 '오일프라이스(Oil Price)'가 보도했다. 기존의 태양열 열화학 수소 생산 시스템은 효율성이 낮았지만, MIT의 설계는 수소 생산에 태양열을 최대 40%까지 활용할 수 있다. '솔라 에너지 저널(Solar Energy Journal)'에 게재된 이 신기술은 태양열을 활용해 물을 분해하고, 그 과정에서 나온 수소를 청정 연료로 사용할 수 있는 시스템이다. 이렇게 생산된 수소는 장거리 트럭, 선박, 항공기의 연료로 사용될 수 있으며, 온실가스가 전혀 배출되지 않는다. 현재 대부분의 수소 생산 방법은 천연가스나 다른 화석 연료를 사용하는데, 이는 환경에 해를 끼치는 '회색' 에너지원에 가깝다. 그러나 태양열화학수소는 오로지 재생 가능한 태양 에너지만을 사용하여 수소를 생산하므로, 환경에 해롭지 않다. 기존의 태양열화학수소 시스템은 태양광의 약 7%만 수소 생산에 활용할 수 있었고, 이로 인해 효율이 낮고 비용이 높았다는 단점이 있었다. MIT 연구팀은 새로운 설계 방법을 도입하여 태양열의 최대 40%를 수소 생산에 활용할 수 있도록 개선시켰다. 이번 연구를 주도한 아흐메드 고니엠(Ahmed Ghoniem) 교수는 "미래의 주요 연료인 수소를 저렴하게 대량 생산할 방법을 찾아야 한다"고 말했다. 그는 "2030년까지 킬로그램당 1달러로 수소를 생산하는 것이 목표다. 경제성을 개선하려면 효율성을 높이고 수집한 태양 에너지의 대부분을 수소 생산에 활용해야 한다"고 덧붙였다. MIT의 새로운 시스템은 집중형 태양열 발전소(CSP) 방식을 사용하며, 여러 거울을 이용해 태양광을 한 곳에 모아 열을 생성한다. 이렇게 모아진 열은 수소를 생산하는데 사용된다. 이 시스템의 핵심은 2단계의 열화학 반응 과정이다. 첫번째 단계에서는 금속이 증기 형태의 물에 노출되며, 이 금속은 증기에서 산소를 제거하고 수소를 추출한다. 이 과정은 '산화'라고 하며, 물과 반응하여 금속이 산화되는 것과 유사하지만, 이 과정은 훨씬 빠르게 진행된다. 수소가 한 번 분리되고 나면, 산화된 금속은 진공 상태에서 재가열되어 원래 상태로 복원된다. 이 과정에서 금속은 산소를 잃게 되고, 다시 물 증기와 반응하여 추가적인 수소를 생산하게 된다. 이러한 과정을 수없이 반복해 수소를 생산하는 것이다. 이 시스템의 구조는 원형 트랙을 따라 달리는 상자 모양의 원자로 열차와 비슷하게 구성되어 있다. 이 원형 트랙은 태양열을 집중하는 CSP 타워 주변에 배치되어 있으며, 각 원자로는 높은 온도에서 산소를 제거하고, 증기와 반응하여 수소를 생산하는 산화환원 과정을 거친다. 원자로는 먼저 아주 뜨거운 스테이션을 통과하며, 금속은 최대 1500도의 태양열에 노출된다. 이 때 금속은 고온에서 산소를 빠르게 잃고, 이후 약 1000도 정도의 스테이션으로 이동해 증기와 반응하여 수소를 생산한다. 그러나, 이 시스템은 반응기가 냉각되는 과정에서 발생하는 열을 어떻게 효과적으로 관리하고 재활용할 것인지에 대한 과제를 안고 있다. 열 재활용 없이는 시스템의 전체 효율성이 떨어져 실제로 사용하기 어렵게 된다. 또 다른 과제는 금속을 녹을 제거할 수 있도록 에너지 효율적인 진공 상태를 유지하는 것이다. 초기 프로토타입에서는 기계식 펌프를 이용하여 진공을 생성했으나, 이 방법은 대량의 수소를 생산할 때 에너지 소비가 많고 비용이 높았다. 연구팀은 이 문제를 해결하기 위해, 시스템 내에서 발생하는 열을 대부분 회수하는 방안을 마련했다. 원형 트랙의 원자로는 열을 상호 교환할 수 있도록 설계되었으며, 이를 통해 뜨거운 반응기는 냉각되고, 차가운 반응기는 가열되어 시스템 내의 열을 보존한다. 또한, 연구팀은 에너지 소비를 줄이기 위해 첫번째 원자로 열차 주위를 돌면서 반대 방향으로 움직이는 두 번째 원자로 세트를 추가 설치했다. 이 새로운 궤도의 원자로는 보다 낮은 온도에서 작동하며, 기계식 펌프의 도움 없이도 내부 궤도의 높은 온도에서 발생하는 산소를 제거하는 데 사용된다. 외부 반응기는 에너지 집약적인 진공 펌프 없이도 내부 반응기에서 산소를 흡수하여 금속의 원래 상태로 복원하는 데 효과적이다. 두 세트의 반응기는 연속적으로 운영되어, 순수한 수소와 산소를 분리하여 생성한다. 연구팀은 이러한 개념 설계에 대해 상세한 시뮬레이션을 수행했고, 그 결과 태양열을 이용한 열화학 수소 생산 효율이 이전의 7%에서 40%로 크게 향상될 수 있었다. 고니엠 교수는 "시스템의 에너지 효율을 극대화하고 비용을 최소화하기 위해 우리는 모든 에너지 소스와 그 활용 방법을 고려해야 한다"며, "이 새로운 설계를 통해 태양에서 발생하는 열의 대부분을 활용할 수 있음을 확인했다. 이를 통해 태양열의 40%를 수소 생산에 활용할 수 있다"고 설명했다. 연구팀은 내년에 에너지부 연구소의 집중형 태양광 발전 시설에서 테스트할 프로토타입 시스템을 구축할 계획이다. 한편, 한국의 DGIST(대구경북과학기술원)와 단국대학교 연구팀은 친환경적인 양자점을 활용하여 세계 최고 수준의 태양광 수소 생산 기술을 개발했다. 이 기술은 양자점의 물성을 조절하여 광전기화학 소자에 적용, 태양광을 효과적으로 수소 생산에 활용하는 방법을 제공한다. 연구팀은 합성된 친환경 양자점을 광전기화학 소자에 적용하여 태양광 에너지의 전 영역을 효율적으로 이용, 수소를 생산할 수 있었다. 이 연구 결과는 '카본 에너지'라는 학술지에 게재됐다.
-
- 산업
-
MIT, 태양광 발전으로 수소 효율성 향상
-
-
세계 최고 슈퍼컴 '오로라', 원자로 시뮬레이션 투입
- 미국 아르곤 국립연구소에서 설치하고 있는 '오로라'는 현존하는 슈퍼 컴퓨터보다 50배 강력한 시스템이다. 현존하는 슈퍼컴퓨터 보다 성능이 50배 이상 더 강력한 슈퍼컴퓨터가 등장한다. 기술 전문매체 인터레스팅엔지니어링(InterestingEngineering)은 미국 아르곤 국립연구소(ANL) 과학자들이 세계에서 가장 강력한 슈퍼컴퓨터인 '오로라(Aurora)'를 설치 중이라고 보도했다. 오로라는 미국이 이미 'TOP500'기준으로 세계에서 가장 빠른 수퍼컴퓨터를 보유하고 있는 상황에서, 이전 원자로보다 더 효율적이고 안전한 새로운 원자로의 시뮬레이션을 돕기 위해 설치되고 있다. TOP500은 세계에서 알려진 가장 강력한 500대(비분산형)의 컴퓨터 시스템의 500대 순위를 나열하고 자세히 설명하는 프로젝트다. 이들 슈퍼컴퓨터는 다양한 계산 작업에 사용된다. 앞서 이 매체는 2023년 9월 슈퍼컴퓨터로 미군의 핵 비축량을 확인할 계획인 로스 앨러모스 국립연구소(Los Alamos National Laboratory, LANL)에 대해 보도했다. LANL은 지난 1943년 설립된 세계적으로 가장 큰 규모의 기술과학 연구소로, 인류 최초로 핵폭탄을 제조한 맨해튼 프로젝트를 진행했다. 다만, 오로라는 LANL 슈퍼컴퓨터와는 매우 다른 역할을 수행하기 위해서 계획됐다. 오로라는 현재 미국 전기 공급량의 5분의 1을 공급하는 원자로 내 핵분열 과정을 개선하는 것이 목표로 한다. 더 중요한 것은 원자력 공급이 탄소 배출을 절반 이상 감소시킬 수 있다는 점이다. ANL은 시뮬레이션을 위해 초당 44천조 개의 계산을 수행할 수 있는 44 페타플롭(초당 1000조번의 수학 연산처리를 뜻하는 말) 머신인 폴라리스(Polaris) 슈퍼컴퓨터를 사용하고 있다. 반면, 오로라는 2 엑사플롭(초당 100경번을 연산하는 말) 이상의 계산 용량을 제공하도록 설계돼 현존하는 시스템보다 50배 더 강력한 초당 200경 계산을 수행할 수 있다. 이 시스템은 제조상의 문제로 인해 완성이 지연되었으나, 오로라가 작동 준비를 마치면 미국 오크릿지 국립연구소의 프론티어를 대체해 세계에서 가장 빠른 슈퍼컴퓨터가 될 것으로 예상된다. ANL의 원자력 엔지니어인 딜론 세이버 박사는 "오로라의 차별화된 특징은 우리가 수행할 수 있는 시뮬레이션의 규모와 다양성"이라고 말했다. 세이버와 그의 팀은 오로라의 뛰어난 계산 능력을 이용하여, 시뮬레이션에서 수십억 개의 변수를 처리할 계획이다. 이 팀은 원자로 코어 내의 복잡한 과정을 상세하게 캡처해, 비용이 많이 드는 실험 없이도 새로운 원자로 설계를 개발하는 데 도움을 줄 것으로 보인다. 이러한 능력은 원자로 건설 업체들이 설계의 타당성을 확인하고 승인을 받는 데 있어 매우 유용하게 사용될 것으로 예상된다. 이 시뮬레이션에서 연구자들은 연료 핀 주변의 열 소용돌이와 난류, 그리고 열 전달 특성을 모델링할 예정이다. 난류의 증가는 열 전달을 촉진할 수 있지만, 이 과정은 추가적인 에너지를 필요로 한다. 소듐 냉각 원자로에서는 난류가 열의 미세한 소용돌이, 즉 열 소용돌이를 형성할 가능성이 있으며, 이는 연료 핀이 진동하는 원인이 될 수 있다. 연구팀은 원자로와 연료의 성능에 영향을 미치는 구조 역학뿐만 아니라 열 교환 특성도 시뮬레이션에서 고려하여 모델링할 계획이다. 연구팀은 다양한 연구자들이 모델링과 시뮬레이션을 수행할 수 있도록 다중물리 객체 지향 시뮬레이션 환경(MOOSE)을 사용할 계획이다. MOOSE를 활용하면 시뮬레이션을 빠르게 완료할 수 있으며, 오로라의 계산 능력과 결합하여 NekRS라는 전산 유체 역학 솔버를 사용하면 더욱 세밀한 시뮬레이션도 가능하다. 세이버는 "이런 미세한 역학적 요소들은 원자로의 열 전달에 대한 거시적인 행동을 파악하는 데 결합되어 매우 중요한 역할을 한다"고 설명했다. 한편, 2023년 5월에 발표된 T500 순위에 따르면, 한국은 삼성종합기술원의 SSC-21, SSC-21 Scalable Module, 기상청의 구루와 마루, SKT의 타이탄, 광주과학기술원의 드림-AI, 그리고 KT의 KT DGX SuperPOD 등 총 8대의 슈퍼컴퓨터를 보유하고 있다. 성능 기준으로는 8위, 보유 대수 기준으로는 9위에 올랐다.
-
- 산업
-
세계 최고 슈퍼컴 '오로라', 원자로 시뮬레이션 투입
-
-
지구 내부 핵 신비 밝히다
- 지구는 여러 층으로 구성되어 있으며, 이는 바깥층의 지각에서 시작해 상부 맨틀, 하부 맨틀, 외부 핵, 그리고 내부 핵으로 이어진다. 기존의 연구에서는 지구의 내부 핵은 엄청난 온도와 압력 때문에 매우 단단하다고 여겨졌다. 그러나 독일 매체 프랑크푸르트 런스차우(Frankfurter Rundschau)에 따르면, 이러한 견해는 부분적으로만 옳다는 새로운 사실이 발견됐다. 지구 어디에서도 내부 핵만큼의 극단적인 온도와 압력을 찾아볼 수 없다. 이러한 강한 압력은 철 원자를 굳게 압축하여 지구의 내부 핵을 형성하게 한다. 미국과 중국의 연구원들이 지구 중심부의 철 원자 일부가 놀랄 만큼 빠르게 이동할 수 있다는 사실을 발견했다. 이들 원자는 기본 금속 구조를 유지하면서도 단 몇 초 만에 위치를 바꿀 수 있다. 이런 현상은 '집단 운동'이라고 알려져 있으며, 새 떼나 동물 무리의 움직임에서 볼 수 있다. 지구 코어 원자의 빠른 이동 연구원들은 지구 내부 핵의 고온과 고압 때문에 직접 조사할 수 없다고 말했다. 그러나 실험실 실험과 이론 모델을 통해, 연구원은 지구 중심부의 원자들이 기존에 생각했던 것보다 훨씬 더 활발하게 움직이고 있음을 발견했다. 이러한 발견은 지구의 자기장 형성 등, 지구 핵에 관한 수많은 신비를 이해하는데 도움이 될 것으로 보인다. 텍사스 대학교의 주 연구원 정-후 린은 "이제 우리는 지구 내부의 동적 과정과 발전을 이해하는데 도움이 될 기본적인 메커니즘을 파악했다"고 말했다. 이 연구 결과는 미국 국립과학원 회보(Proceedings of the National Academy of Sciences)에 발표됐다. 지구 핵의 축소판 재현 미국과 중국 연구팀은 지구 핵의 미니 버전을 실험실에서 재현하여 철 원자의 집합적 움직임을 관찰했다. 연구팀은 먼저 빠르게 움직이는 발사체를 가진 작은 철판을 사용했으며, 여기서 온도, 압력, 속도와 관련된 데이터를 획득했다. 이 데이터는 기계 학습에 사용되어 지구 내부 원자의 시뮬레이션을 위한 컴퓨터 모델을 구축하는데 적용됐다. 연구팀은 인공지능(AI)을 활용하여 약 3만 개의 원자로 구성된 '슈퍼 셀'을 생성하고, 이를 통해 원자의 행동을 보다 정확하게 예측할 수 있었다. 예상보다 더 유연한 코어 이번 연구 결과로 인해 지구의 내부 핵이 예상보다 더 부드럽고 유연하다는 사실이 밝혀졌다. 연구팀은 이러한 철 원자의 놀라운 움직임이 지구의 내부 핵의 지진 측정값이 고압 상태에서 예상보다 더 부드러움과 유연함을 보이는 이유를 설명할 수 있을 것이라고 말했다. 이 연구의 공동저자인 장유준(Suchan University) 교수는 "지구 깊은 곳의 철이 놀라울 정도로 부드럽게 움직이는 것이 가장 큰 발견이다. 원자가 우리가 상상했던 것보다 훨씬 더 활발하게 움직이기 때문이다. 이런 활발한 움직임은 내부 핵을 덜 단단하게 만들어 전단력에 대해 더 약하게 만든다"라고 설명했다. 이번 연구는 지구 내부 핵에 대한 이해를 한 단계 더 발전시키는 결과를 가져왔으며, 지구의 자기장 형성과 내부 구조 및 작동 방식에 중요한 영향을 미치는 핵심 요소로 평가되고 있다. 이번 연구는 지구 내부 핵에 대한 이해를 크게 발전시킨 것으로 평가된다. 지구 내부 핵은 지구의 자기장을 형성하고, 지구의 내부 구조와 작동 방식에 중요한 역할을 미치는 핵심 부분이다. 이로써 지구의 자기장 변화와 지구의 내부 구조 변화를 더 잘 예측할 수 있을 것으로 기대된다.
-
- 산업
-
지구 내부 핵 신비 밝히다
-
-
[퓨처 Eyes(5)] 소형 원자로, 미래 전력 급부상
- 소형 원자로(Small Modular Reactor, SMR, 소형 모듈 원전)가 미래 전력으로 주목받고 있다. 소형 원자로는 그 이름에서 알 수 있듯이 작은 크기의 원자로를 의미한다. 최근 급격한 기후 변화의 위협으로, 탄소 배출을 최소화하는 에너지원에 대한 수요가 크게 증가하고 있다. 소형 원자로는 이러한 배경 속에서 미래의 주요 전력 공급 수단으로 각광받고 있다. '소형 원자로(SMR)'는 전통적인 대형 원자로와 달리 작은 크기로 경제성과 유연성, 안전성, 확장성 등의 장점을 갖고 있다. 미국 오픈AI의 창업자 샘 알트먼은 지난 7월 삼각형 모양의 특이한 목조 건물의 사진을 SNS에 게재했다. 얼핏 보면 휴양지 펜션이나 별장으로 보이는 이 건물은 사실 알트먼의 스타트업 오클로(Oklo)가 개발 중인 '소형모듈원자로'의 모형이다. 알트먼은 월가의 은행 거물 마이클 클라인과 함께 설립한 기업인수목적회사(SPAC)와 오클로를 합병했고, 그 사실을 알리기 위해 SNS에 이 사진을 올린 것. 오클로의 기업가치는 합병으로 8억5000만 달러(약 1200억 원)로 평가됐다. 오클로의 이름은 아프리카 가보니에서 발견된 20억 년 전의 자연 원자로에서 따온 것이며, 이 원자로는 자연 발생 원자로 현상을 기반으로 설계됐다. 그동안 원자로는 1986년 체르노빌 원전 사고, 2011년 일본 후쿠시마 원전 사고와 최근 러시아군의 우크라이나 위협 등을 고려하면 부정적인 이미지를 갖기도 했다. 특히 우리나라의 경우 일본이 지난 8월 후쿠시마 원전 처리 오염수 약 7800만톤(t)을 1차 방류한 데 이어 5일 비슷한 양의 2차 방류를 시작해 더욱 민감하게 받아들이고 있다. 차세대 원자로 SMR의 장점 '차세대 원자로'로 불리는 소형 원자로는 작은 크기로 설계되어 경제성이 뛰어나다. 이는 전통적인 원자로에 비해 적은 자원으로 건설할 수 있기 때문이다. 오클로와 같은 SMR들은 패시브 안전 시스템이 포함되어 있어, 비상 상황에서도 자동으로 안전하게 종료될 수 있다. 또한, SMR은 원자력 연료의 재사용 기술로 연료 수명을 연장하며, 방사성 폐기물의 양도 줄인다. 초기 투자 비용이 적기 때문에, 소규모 전력 시장과 개발 도상국도 원자력 발전을 채택하기 쉽다. SMR의 크기와 디자인은 유연성을 높여주며, 원격 지역, 도시 인근, 심지어 산업 시설 안에도 설치가 가능하다. 대부분의 부품은 공장에서 미리 제작되므로 현장에서의 설치도 빠르고 효율적이다. 필요에 따라 여러 개의 SMR을 한 지역에 설치해 발전 용량을 조절할 수 있어, 수요 변동에 유연하게 대응한다. 이러한 특징들로 인해 투자자들에게 상업적으로 매력적이며, 전통적인 대형 원자로보다 빠른 수익 회수가 가능하다. 알래스카 공군기지에 소형원자로 활용 실제로 미국 공군은 지난 8월 31일 알래스카 아일슨 공군기지에 오클로 원자로를 사용할 계획을 발표했다. 이 계획이 실행되면 미국 내에서 연방정부가 상업용 SMR을 사용하는 첫 사례가 될 것으로 보인다. 또 미국 원자력규제위원회(NRC)는 지난 9월 7일 미국 최초의 소형 모듈식 원자로(SMR) 프로젝트 중 하나에 대한 초기 건설 활동을 시작하기 위해 탄소 없는 전력 프로젝트(Carbon Free Power Project)의 신청을 검토하기로 합의했다 . 승인되면 회사는 뉴스케일파워의 기술을 사용하여 아이다호의 제안된 부지에 6모듈 소형 모듈식 원자로 발전소를 건설할 예정이다. 첫 번째 전력 모듈은 2029년까지 작동될 것으로 예상된다. 그밖에 SMR에 대한 활동과 투자자들의 관심은 지속적으로 증가하고 있다. 마이크로소프트의 창업자 빌 게이츠가 투자한 테라파워(Terra Power)도 2008년부터 신형 원자로를 개발하고 있다. 테라파워는 4세대 원전으로 분류되는 소듐고속도(SFR, Sodium Fast Reactor, 물 대신 소듐을 냉각재로 사용)인 NATRUMTM을 개발중이며 2030년 상용화를 목표로 하고 있다. 한국의 이창양 산업통상부 장관은 지난 7월 7일 미국의 소형모듈원전 개발 기업인 테라파워의 크리스 르베크(Chris Levesque) 대표와 만났다. 이 회동은 테라파워가 지난 4월 국빈 방미 때 한국수력원자력과 체결한 소형모듈원전 관련 업무 협약을 체결하는 등 국내 기업과 활발한 협력의 연장선 상에 있다. 미국 뉴스케일 파워도 SMR 개발에 나서고 있다. 이 회사는 지난해 SPAC와의 합병을 통해 상장했고, 최근 루마니아의 SMR 공장 건설 계획을 위해 여러 정부로부터 총 2억7500만 달러의 투자와 융자를 확보했다. 또한 미국 제너럴일렉트릭(GE)과 히타치제작소의 합작회사인 미국 GE히타치 뉴클리어 에너지는 캐나다에 SMR 플랜트를 건설하고 있다. 영국 롤스로이스 등 거대 산업체들도 속속 SMR 사업에 진출하고 있다. 게다가 영국은 지난 7월 "2050년까지 영국 전력의 4분의 1을 국내 원자력 에너지로 확보하겠다"고 선언하고, 가장 우수한 SMR 설계를 겨루는 국제 공모전을 시작했다. AI 등 신기술로 전력 수요 급증 이처럼 국제적으로 소형 원자로가 주목받는 배경으로는 첫째, 세계 경제의 성장과 인공지능(AI)과 같은 신기술에 대한 막대한 전력 수요때문이다. 전력 수요는 앞으로 몇 년 내에 크게 증가할 것으로 예상되고 있다. 이 때문에 저렴하고 안전한 청정 에너지에 대한 수요가 절실한 상황이다. 둘째, 전력 생산을 위한 화석 연료 의존은 지구 온난화 문제를 악화시킨다. 축전 기술의 진전 없이는 풍력이나 태양광 같은 재생 에너지만으로는 수급 차이를 해소하기 어렵다. 셋째, 원자력 기술의 진화다. 20세기에는 막대한 비용과 시간이 소요되는 거대한 발전소에서 에너지를 생산했다. 그러나 SMR은 크기가 작고, 공장에서 제작된 부품들을 현장에서 조립하기 때문에 건설에 드는 비용과 시간이 훨씬 적고, 전력 수요지 인근에 설치할 수 있다. 오클로와 테라파워와 같은 기업들이 개발 중인 기술은 재활용 가능한 핵폐기물을 연료로 활용하므로 핵폐기물 처리 문제의 해결에 기여할 잠재력을 보유하고 있다. 실제로 오클로의 경영진은 자사의 기술이 채택될 경우 "미국 내 사용후핵연료의 기존 재고만으로도 미국의 에너지 수요를 150년 이상 충당할 수 있다"고 강조했다. 오클로의 창업자 제이콥 드윗은 "이것이 탈탄소화를 위한 가장 좋은 방법"이라고 주장했다. 환경 운동가, SMR 건설 반발 그러나 모든 사람들이 이 의견에 동의하는 것은 아니다. 많은 환경 운동가들은 원자력을 부정적으로 바라보며, 그것을 '환경 친화적' 카테고리에서 제외하길 원한다. 미국 원자력규제위원회(NRC) 전 위원장 앨리슨 맥퍼렌은 원자력산업의 일부에서는 알트먼 같은 자유주의자(자유지상주의자)로 알려진 '테크 브로'(기술계의 자신감 있는 남성을 가리키는 말)가 '뉴클리어 브로'로 전락했다는 생각 자체를 반감으로 여긴다고 말했다. 맥퍼렌은 최근 SPAC의 구조와 과대광고에 대한 비판적인 기고에서 "제안된 SMR 중 일부만 실제로 입증되었으며, 원자력 규제기관의 승인을 받은 것은 없어서 상업적 활용 가능성이 아직 없다"고 주장했다. 그는 "기존 원자력 발전소는 온난화 가스 감축에 큰 기여를 해왔고 앞으로도 그럴 것이지만, SMR의 미래는 불확실하다"고 지적했다. 게다가 오클로가 지난해 미국 연방정부에 제출한 첫 라이선스 신청은 같은 해에 기각됐다. 드윗은 내년에 다시 신청할 계획을 세우고 있으며 그 결과에 대해 낙관적이지만, SMR을 활용한 원전이 적어도 2027년까지 가동을 시작하지 않을 것이라고도 인정했다. 지구의 온도가 1도 올라가는 데 과거에는 10만년이 걸렸다. 그런데 산업혁명 이후 불과 100년 동안 지구의 온도가 1도 올라갔다. 아프리카 북동부에 위치한 리비아는 지난 9월 11일 토네이도를 동반한 열대성 폭풍 대니얼이 북동부 지역을 강타해 댐 두 곳이 무너지면서 3만명 이상의 희생자가 발생했다. 소형 원자로 기술은 아직 완전히 검증되지 않았다. 그러나 전례 없는 대형 산불이나 대홍수 등 자연재해가 지구 곳곳을 샅샅이 훑고 지나가는 기후변화의 위협 속에서 가능한 모든 청정에너지 솔루션을 빠르게 탐색하고 실험하는 것이 중요하다.
-
- 포커스온
-
[퓨처 Eyes(5)] 소형 원자로, 미래 전력 급부상
-
-
미쓰비시중공업, 핵융합용 세계 최대 '초전도 코일' 개발
- 미쓰비시중공업이 프랑스 남부 지역에 건설 중인 국제핵융합실험로 '이터(ITER)'에 사용되는 세계 최대 규모의 초전도 토로이드 자장(TF) 코일 제작을 완료했다. 일본 매체 뉴스위치는 최근 미쓰비시중공업이 프랑스 남부에서 진행 중인 대형 핵융합 국제 프로젝트 '싱크로나이즈드 사이언스(SST)'의 핵심 부품인 초전도 코일 개발에 성공했다고 전했다. 미쓰비시중공업은 양자과학기술연구개발기구로부터 수주한 5번째 코일인 토로이드 자장(TF) 코일 최종호기를 완성시켰다. ITER(International Thermonuclear Experimental Reactor)는 태양과 같은 핵융합 반응을 인공적으로 일으켜 에너지를 얻는 국제적인 과학기술 프로젝트다. ITER 프로젝트에는 미국, 러시아, 유럽연합, 일본, 중국, 인도, 한국 등 7개국이 참여하고 있으며, 프랑스 남부 카다라쉬 지역에 건설 중이다. ITER의 목표는 열출력 500MW, 에너지 증폭율 (Q) 10 이상의 핵융합실험로를 개발해 미래 핵융합발전소 건설을 위한 원천기술을 확보하는 것이다. 2040년에 ITER 프로젝트가 완공되면 지구에서 처음으로 인공태양이 뜰 예정이다. 한국은 2003년에 합류해 10대 주요장치를 제작·조달하고 있고, 여기에 필요한 초전도핵융합장치 KSTAR는 2007년 일찌감치 완공했다. 현재 일본은 '이터'용 토로이드 자장 코일 19기 중 9기의 제작을 맡고 있으며, 이 가운데 미쓰비시중공업이 5기를 담당해 이번 최종호기를 완성했다. 세계 최대 규모인 이 코일은 높이가 3.5미터, 폭이 1미터, 총 무게가 1.5톤으로 거대하지만, 원자로 내에서 핵융합 반응을 일으키는 데 필요한 1만 분의 1미터 이하의 정밀도로 제작했다는 회사측의 설명이다. 이 회사는 지난 2020년 1월 초호기를 완성한 바 있다. 회사 측은 "양자과학기술연구개발기구와 공동 개발한 초전도체를 고정밀로 권선(전류를 흘려 자속을 발생시키거나 서로 결합하도록 설계된 코일) 기술 및 용접, 가공기술 등을 통해 높은 정밀도를 실현했다"고 설명했다. 미쓰비시전기가 권선 부분을, 외부 구조물은 한국에서 제작한 후 미쓰비시중공업의 후타미공장(효고현 아카시시)에서 모든 부품을 조립해 완성품으로 만들었다. 4기 초전도 코일은 프랑스 현지에서 설치 중이며, 이번에 완공한 5기도 향후 곧 설치될 것으로 예상된다. 한편, 미쓰비시중공업은 토로이드 자장 코일 이외에도 핵융합로에서 내부에 괴는 불순물을 제거하는 장치인 다이버터와 수평 론처 등 주요 기기를 개발, 제작하고 있다. 또한, '이터' 계획에 이어 건설이 계획되고 있는 핵융합원형로에 대해서도 설계와 개발을 적극적으로 지원하겠다는 방침이다.
-
- 산업
-
미쓰비시중공업, 핵융합용 세계 최대 '초전도 코일' 개발