검색
-
-
원자력연, 한국형 소형 원전 해외진출 본격화
- 한국원자력연구원이 독자 개발해 세계 최초로 표준설계인가를 획득한 소형모듈원자로(SMR)인 SMART(System-integrated Modular Advanced ReacTor)를 상용화하기 위해 민간기업 현대 엔지니어링과 협업한다. 원자력연구원은 한국형 소형원전 SMART 수출을 본격화하기 위해 현대엔지니어링과 업무협약을 체결했다고 11일 밝혔다. 원자력연구원은 원자로 설계 및 현지 인허가 업무를, 현대엔지니어링은 SMART 실증 및 상용화를 위한 사업 개발을 담당할 예정이다. 원자력연은 지난 4월 캐나다 앨버타주와 탄소 감축을 위한 SMART 활용 업무협약을 체결했다. 이후 9월에는 캐나다원자력공사(AECL)와 협력 양해각서(MOU)를 체결하며, 앨버타주와 온타리오주에서 SMART 실증과 상용화 노력을 해왔다. 원자력연과 현대엔지니어링은 SMART 실증·건설사업이 속도를 낼 수 있도록 캐나다 현지 사업 기반을 강화할 계획이다. 두 기관은 지난 9월 캐나다원자력연구소(CNL)의 다양한 SMR 기술을 실증하는 'SMR 실증 프로그램'에 신청서를 공동 제출했다. 내년에는 캐나다 파트너사 확보 및 현지 사업체계 등을 구축할 계획이다. 소형 일체형 원자로인 SMART는 발전 용량이 기존 대형 원전의 10분의 1 규모이다. 용기 하나에 원자로, 증기발생기, 가압기, 냉각재 펌프가 모두 포함돼 있어 SMR 중 가장 빨리 실증 배치가 가능한 것으로 평가되고 있다. 주한규 한국원자력연구원장은 최근 현대엔지니어링과의 업무협약과 관련하여, 이 협약이 한국 고유의 소형모듈원자로(SMR)인 SMART 기술을 활용하여 국내 기업이 주도적으로 사업을 개발하는 시작점이 될 것이라고 말했다. 한편, '소형 원자로(SMR)'는 전통적인 대형 원자로와 달리 작은 크기로 경제성과 유연성, 안전성, 확장성 등의 장점을 갖고 있다. 최근 급격한 기후 변화의 위협으로, 탄소배출을 최소화하는 에너지원에 대한 수요가 크게 증가하고 있다. 소형 원자로는 이러한 배경 속에서 미래의 주요 전력 공급 수단으로 주목받고 있다. SMR은 원자력 연료의 재사용 기술로 연료 수명을 연장하며, 방사성 폐기물의 양도 줄인다. 초기 투자 비용이 적기 때문에, 소규모 전력 시장과 개발 도상국도 원자력 발전을 채택하기 쉽다. 또한 SMR의 크기와 디자인은 유연성을 높여주며, 원격 지역, 도시 인근, 심지어 산업 시설 안에도 설치가 가능하다. 대부분의 부품은 공장에서 미리 제작되므로 현장에서의 설치도 빠르고 효율적이다. 필요에 따라 여러 개의 SMR을 한 지역에 설치해 발전 용량을 조절할 수 있어, 수요 변동에 유연하게 대응한다. 이러한 특징들로 인해 투자자들에게 상업적으로 매력적이며, 전통적인 대형 원자로보다 빠른 수익 회수가 가능하다.
-
- 산업
-
원자력연, 한국형 소형 원전 해외진출 본격화
-
-
GH파워, 그린 수소 생산 원자로 개발
- 캐나다 기업이 재활용 알루미늄 캔을 활용해 그린 수소를 생산하는 원자로를 선보였다. 수소는 지구 전체 에너지 구성의 90%를 차지하는 중요한 자원이지만, 현재 대부분 화석 연료에서 추출되어 환경에 큰 부담을 주고 있다. 전 세계적으로 재생 가능 에너지를 활용하여 생산한 그린 수소에 대한 관심이 증가하고 있다. 그린 수소는 탄소 배출이 없는 친환경 에너지원으로서 미래의 에너지원으로 각광받고 있다. 그러나 기존의 그린 수소 생산 방식은 높은 비용과 낮은 효율성이라는 문제를 안고 있었다. 이에 대한 해결책으로, 캐나다에서 새로운 원자로 설계가 개발되어 이 분야에서 큰 주목을 받고 있다. 최근 에너지 전문 매체 오일프라이스(OILPRICE)의 보도에 따르면, 캐나다 기업 지에이치 파워(GH Power)가 개발한 원자로는 재활용 알루미늄과 물만을 사용하여 수소, 알루미나, 열을 생산하는 방식해 주목받고 있다. GH파워의 원자로는 기존의 그린 수소 생산 방식보다 비용이 60% 저렴하고 효율성이 85% 높다는 장점이 있다. 이 혁신적인 원자로 설계는 모듈식으로 제작되어, 소규모 설비에서부터 대규모 발전소까지 확장 가능하다. 이는 그린 수소 시장의 확장에 중요한 기여를 할 것으로 기대된다. GH 파워는 현재 온타리오주 해밀턴에 2MW 규모의 실증 상업용 원자로를 건설 중이며, 이는 내년 2분기부터 수익을 창출할 것으로 예상된다. 또한, 회사는 북미와 유럽에서 대규모 수소 발전소 건설하기 위해 우량 전략 파트너와 협력 관계를 구축하고 있다. GH 파워는 캐나다와 독일 정부가 후원하는 독일의 RWTH 아헨 대학교(RWTH Aachen University)와의 협력을 통해 이 기술을 개발했고, 녹색 기술 보조금을 받는 등 세계적으로 기술력을 인정받았다. GH 파워의 기술은 재활용 알루미늄을 원자로에서 열을 발생시키는 연료로 사용하며, 물은 알루미늄과 반응하여 수소와 산화알루미늄을 생성한다. 이렇게 생성된 수소는 연료로 사용되거나 다른 화합물의 제조에 활용될 수 있다. 또한, 산화알루미늄은 재활용되어 다시 원자로에서 연료로 사용될 수 있어, 자원 순환을 통한 지속 가능한 생산 체계를 구축하는 데 중요한 역할을 한다. 저비용 수소 GH 파워의 원자로 기술은 기존 화석 연료와의 가격 경쟁력을 갖춘 점에서 혁신적이다. 현재 전기 분해를 통해 생산되는 녹색 수소는 천연 가스에서 추출된 수소보다 약 3배 비싼 반면, GH 파워의 기술은 기존 전기 분해 방법으로 생산하는 것보다 이미 60% 저렴한 비용으로 수소를 생산할 수 있다. 이 원자로는 두 가지 중요한 녹색 출력물을 생산한다. 첫 번째는 발열이며, 이 열은 수소 생산뿐만 아니라 지역난방이나 산업용 열원으로도 활용될 수 있다. 두 번째는 녹색 알루미나로, 기존의 알루미나 생산 공정이 염산을 사용하여 알루미늄을 추출하는 방식에서 발생하는 염산 누출과 대기 오염 문제를 해결한다. GH 파워의 기술은 물과 재활용 알루미늄을 주요 원료로 하여, kg당 약 1.50달러(약 1960원)의 저렴한 비용으로 수소를 생산한다. 이는 기존의 염산 침출 및 가수분해 공정에 비해 약 85% 저렴한 비용으로, 수소 생산의 경제성을 크게 높인다. 27MW 규모의 발전소는 연간 약 120만 톤의 탄소 상쇄를 생산할 수 있는데, 이는 탄소 상쇄 비용이 톤당 40달러(약 5만2300원)에서 80달러(약 10만4600원) 사이인 것을 고려할 때, 상당한 탄소 상쇄 수익 잠재력을 의미한다. 수소 산업은 아직 초기 단계에 있지만, 급속한 성장세를 보이고 있다. 글로벌 시장조사기관 리서치앤마켓(Research and Markets)의 보고에 따르면, 수소 산업의 시장 규모는 2022년 1230억달러(약 160조 7610억원)에서 2030년에는 5580억달러(729조 3060억원)로 성장할 것으로 예측되며, 이는 연평균 11.4%의 성장률을 의미한다. 수소 산업의 주목받는 기업들 수소 산업은 다양한 분야의 기업들이 진출하고 있다. 그 중에서도 주목할 만한 기업으로는 다음과 같은 기업들이 있다. 에어 프로덕츠 앤 케미칼스(Air Products and Chemicals, Inc.)는 산업용 가스 부문에서 확고한 입지를 구축한 기업으로, 현재 수소 시장에서 상당한 발전을 이루고 있다. 발라드 파워 시스템즈(Ballard Power Systems Inc.)는 연료 전지 산업의 선구자로, 첨단 양성자 교환막(PEM) 기술로 잘 알려져 있다. 쉘(Shell)은 전통적인 석유 메이저에서 다각화된 에너지 회사로 전환한 기업으로, 수소 이니셔티브에 대한 그들의 진출은 지속 가능성과 혁신을 향한 광범위한 변화를 반영하는 중요한 부분이다. BP는 과거 회사명을 '브리티시 페트롤리움(British Petroleum)'에서 '비욘드 페트롤리움(Beyond Petroleum)'으로 리브랜딩을 통해 변화를 상징한다. 이러한 기업들은 모두 그린 수소 생산 분야에서 혁신적인 기술과 비즈니스 모델을 개발하고 있으며, 향후 이 시장의 성장을 주도할 것으로 기대된다. 한국의 수소 기업들 한국원자력연구원(KAERI)은 한국 최초의 원자로를 개발한 연구기관으로, 다양한 원자력 기술을 연구하고 개발하고 있다. 한국원자력연구원은 재활용 알루미늄과 물을 사용하여 수소를 생산하는 원자로 개발을 추진하고 있다. 이 원자로는 지에이치 파워의 원자로와 마찬가지로 두 가지 녹색 출력물인 발열과 녹색 알루미나를 생산한다. 한국원자력연구원의 원자로는 현재 개발 초기 단계에 있으며, 2025년경 실증 상업용 원자로를 건설할 계획이다. 이외에도 한국에는 수소 생산을 위한 다양한 기술을 개발하고 있는 기업들이 있다. 대표적으로 현대자동차, SK그룹, 포스코 등이 있다. 현대자동차는 수소연료전지 자동차를 생산하는 기업으로, 수소 생산 기술 개발에도 적극적으로 투자하고 있다. SK그룹은 수소 생산, 저장, 운송, 활용 등 수소 산업의 전 분야에 진출하고 있으며 포스코는 풍력, 태양광 등 재생 에너지를 활용한 수소 생산 기술을 개발하고 있다. 수소 산업, 투자의 기회 될까 수소 산업은 빠른 성장이 기대되는 산업인 만큼, 투자의 기회가 될 수 있다는 분석도 나온다. 실제로, 수소 산업 관련 기업의 주가는 최근 들어 상승세를 보이고 있다. 그러나, 수소 산업은 아직 초기 단계인 만큼, 투자 시에는 신중한 접근이 필요하다는 지적도 있다. 수소 생산, 저장, 운송, 활용 등 다양한 분야에서 기술 개발이 진행 중이며, 시장이 성숙하기까지는 시간이 걸릴 것으로 예상된다. 또한, 수소 산업은 정부의 정책에 영향을 받는 산업이기도 하다. 정부의 정책 변화에 따라 시장의 성장 속도나 방향이 달라질 수 있기 때문에, 투자 시에는 정부 정책을 면밀히 살펴볼 필요가 있다. 수소 산업은 미래 에너지원으로서 주목받고 있으며, 그 성장 잠재력이 높은 산업이다. 그러나 수소 산업은 아직 초기 단계에 있기 때문에, 이 분야에 대한 투자는 신중한 접근이 필요하다.
-
- 산업
-
GH파워, 그린 수소 생산 원자로 개발
-
-
영국 스타트업, 핵융합 원자로로 암 치료 새 지평 열어
- 의학 및 약학 기술의 발달로 '암'이 더 이상 치료 불가능한 질병으로 여겨지지 않는 가운데, 영국의 한 스타트업이 핵융합 기술을 활용한 새로운 암 치료법을 개발해 주목을 받고 있다. 최근 미국 IT 전문지 '인터레스팅 엔지니어링'은 영국의 스타트업인 아스트랄 시스템즈(Astral Systems)가 암세포를 직접적으로 치료할 수 있는 혁신적인 핵융합 원자로 기술을 공개했다고 보도했다. 아스트랄 시스템즈는 브리스톨 대학에서 설립된 회사로, 최초의 다중 상태 핵융합(MSF) 원자로를 개발했다고 한다. 이 원자로는 암 방사선 치료와 진단 영상 촬영에 필수적인 의료용 동위원소를 생산하는 데 중점을 두고 설계됐다. 의료용 동위원소는 방사선 치료 중 암세포를 효과적으로 파괴하는 데 사용되는 방사성 물질로, 표적 암 치료에 있어 중요한 역할을 한다고 이 매체는 전했다. 아스트랄 시스템즈의 공동 창립자이자 브리스톨대학교의 객원 연구원 탤몬 퍼스톤(Talmon Firestone) CEO는 "핵의학은 의료계가 암을 스캔하고 종양과 암세포를 근원지에서 직접 치료할 수 있도록 함으로써 수십 년 동안 생명을 구하는 데 크게 기여했다"라고 말했다. 또한 신체 내에서 '방사성 추적자' 역할을 해 영상을 통해 의학적 상태를 쉽게 감지할 수 있다. 이러한 동위원소는 신체 내에서 방사선을 생성하여 의료 전문가에게 장기와 조직의 구조 및 기능에 관한 중요한 정보를 검출하고 정량화할 수 있게 해준다. 현재 전 세계 의료용 동위원소의 대부분은 제한된 수의 핵분열로에 의존하고 있는 상황이다. 이러한 의존성은 특히 의료용 동위원소 공급 부족이 임박한 상황에서 더욱 두드러진다. 영국 정부의 평가에 따르면, 세계적으로 의료용 동위원소 공급의 대다수가 노후화된 소수의 핵분열로에 의존하고 있으며, 이들 중 대부분은 2030년까지 폐쇄될 예정이다. 이는 중요한 의료 자원의 향후 가용성에 대한 우려를 야기한다. 새로운 MSF 원자로는 이러한 과제에 대한 컴팩트한 솔루션을 제공합니다. 이는 중요한 의료 자원의 미래 가용성에 대한 심각한 우려를 낳고 있다. 이에 대응하여, 아스트랄 시스템즈가 개발한 새로운 다중 상태 핵융합(MSF) 원자로는 이러한 도전과제에 대한 혁신적이고 컴팩트한 해결책을 제시하고 있다. 아스트랄 시스템즈는 영국을 비롯한 전 세계 여러 지역에 소형 핵융합로를 전략적으로 설치할 계획을 가지고 있다. 이러한 분산형 전략은 보다 유연하고 비용 효율적인 방식으로 방사성 샘플을 공급할 수 있게 해줄 것으로 기대된다. 이 회사는 소규모 원자로 건설을 통해 몇몇 대형 원자로에 대한 의존성을 줄이고, 이에 따른 위험을 완화하려는 목표를 가지고 있다. 이를 통해 의료용 동위원소의 지속 가능하고 안정적인 생산을 보장할 수 있을 것으로 전망하고 있다. 퍼스톤은 "우리 시스템은 훨씬 더 빠르게 개발되었으며 대체 기술보다 훨씬 작은 규모로 동위원소를 생산할 수 있다“며 ”이는 거대한 국제 핵분열 공장에 의존하지 않고도 병원 허브 근처 또는 내부에서 의료용 동위원소를 생산할 수 있음을 의미한다"고 말했다. 퍼스톤 CEO는 '우리의 시스템은 대체 기술에 비해 빠르게 개발되었으며, 훨씬 작은 규모로 동위원소를 생산할 수 있다'고 말했다. 그는 이어 '이는 병원 허브 근처나 내부에서도 의료용 동위원소를 생산할 수 있다는 것을 의미하며, 이는 임상의가 사용할 수 있는 진단 및 치료 기술을 극적으로 향상시킬 것이다. 또한 병원 대기 시간과 비용을 줄이고 치료의 질을 높일 것이다'고 강조했다. 2021년 브리스톨 대학교는 아스트랄 시스템즈 및 STFC(과학 기술 위원회)와 협력하여 마이크로노바(MicroNOVA)라는 프로젝트를 통해 MSF 반응기 기술을 최적화하고 상용화하기 위해 100만 파운드(약 16억5038만원)의 연구 보조금을 확보했다. 회사 공동 창립자 월래스 스미스는 "우리의 MSF 원자로는 의료용 방사성 동위원소를 안전하고 보다 효율적으로 개발할 수 있는 메커니즘을 제공할 뿐만 아니라, 본격적인 핵융합 발전소의 모습과 작동 중 어떻게 작동할지 이해하기 위한 이상적인 테스트베드도 제공한다"라고 말했다. 모든 것이 계획대로 진행된다면 이 기술은 암 치료 및 의료용 동위원소 생산의 새로운 시대를 열 것으로 전망된다. 한편, 한국의 원자력연구원은 벨기에 원자력연구소에서 '연구로 핵연료' 최종 검증에 돌입했다. 이 핵연료는 우라늄을 70% 이상 연소하는 극한의 조건에서도 방사능 누출이 없는 것으로 확인되었으며, 핵연료의 안전성이 건전하게 유지됨으로써 뛰어난 안전성을 입증했다고 알려졌다. 원자력연구원은 현재 2단계 성능 검증 단계에 진입했으며, 이 단계는 핵연료 공급자가 시장 진입 전에 거쳐야 하는 마지막 검증 과정이다. 2025년 말까지 이 핵연료를 포함한 집합체 성능검증을 마치면 벨기에의 핵연료 공급 입찰 자격을 획득할 수 있다. 이는 연구로에서 중성자를 생산하기 위해 우라늄을 활용하는 것과 관련이 있다. 연구로는 열을 활용하면 원전이 되고, 중성자만을 활용하면 연구로로 작동한다는 원리를 따른다. 더욱이, 원자력연구원은 고밀도 저농축 '우라늄실리사이드 판형핵연료'(U3Si2)를 개발했다. 이는 저농축 우라늄을 사용하는 3세대 핵연료로, 핵연료 집합체는 곡면형으로 설계되어 핵분열 시 중성자를 중심부로 집중시키는 장점을 가지고 있다. 이러한 핵연료는 의료용 동위원소나 고품질 반도체 웨이퍼 제작 등 다양한 분야에 활용될 수 있는 가능성을 가지고 있다.
-
- IT/바이오
-
영국 스타트업, 핵융합 원자로로 암 치료 새 지평 열어
-
-
LG화학 AVEO 온콜로지, 2년 연속 '매사추세츠 최고의 직장' 선정
- LG화학의 미국 자회사인 AVEO 온콜로지(Oncology)가 2년 연속 보스턴 글로브의 '매사추세츠 최고의 직장' 목록에 이름을 올렸다. 지난달 30일(현지시간) 미국 매체 pr뉴스와이어에 따르면 AVEO 온콜로지는 중형 기업(100-249명 직원) 부문에서 이번 영예를 안았다. 보스턴 글로브의 '최고의 직장' 리스트는 리더십, 감사, 혜택, 기업 사회적 책임 등에 대한 익명 직원 설문조사를 바탕으로 선정된다. 이번 조사에는 380개 이상의 회사에서 약 10만 명의 직원이 참여했다. 마이클 베일리 AVEO 온콜로지 대표는 "매사추세츠 최고의 직장 중 하나로 다시 한번 선정된 것을 매우 기쁘게 생각한다"며 "이 인정은 LG화학에 인수된 후 가장 어려울 수 있는 시기에 이루어져 더욱 값지다. AVEO 팀이 환자 중심의 사명과 비전을 지속적으로 추구해 준 것과 LG화학 팀이 두 회사의 원활한 통합을 위해 열심히 노력한 데 대해 감사하다"고 말했다. LG화학은 2022년 10월 바이오 제약회사인 AVEO 온콜로지 인수를 발표했고, 거래는 2023년 1월에 공식적으로 마무리됐다. AVEO와 LG화학은 함께 암 환자의 삶을 개선하는 혁신적인 해결책을 제공하고, 세계적인 종양 치료제 시장의 선두주자가 되겠다는 공동의 사명과 비전을 가지고 있다. AVEO와 LG화학은 종양 치료제 개발과 관련된 공동의 사명뿐만 아니라 지역 사회 서비스 문화도 공유하고 있다. 올해 초 모든 직원 회의에서 두 회사의 직원들은 허리케인 이안으로 피해를 입은 플로리다 남서부 주민들을 위한 비상 키트를 조립, 포장했다. AVEO는 또한 지역 사회에 기여하는 것에 열정적이며 지난 2년 동안 다나-파버 암 연구소(Dana-Farber Cancer Institute)에서 환자 치료와 혁신적인 암 연구를 지원하는 지미 펀드(Jimmy Fund) 및 보스턴 레드 삭스의 '암 퇴치(Strike Out Cancer)' 이니셔티브의 최고 기업 후원자로 자리매김했다. 이러한 핵심 원칙은 AVEO의 생동감 넘치고 통합되고 목적 중심의 기업 문화를 강화하며, 보스턴 글로브의 '최고 직장' 인정으로 2년 연속 확인됐다. 카티 맥카시(Katie McCarthy) AVEO 온콜로지의 마케팅 책임자는 "AVEO 온콜로지에서 근무한 수년 동안 암 환자와 그 가족의 삶을 개선하기 위한 공통된 사명에 참여할 수 있어 영광이었다"라고 말했다.
-
- 산업
-
LG화학 AVEO 온콜로지, 2년 연속 '매사추세츠 최고의 직장' 선정
-
-
尹 대통령, 영국 국빈방문…원전 등 '탄소 중립 파트너' 기대
- 윤석열 대통령이 한·영 수교 140주년을 맞아 찰스 3세 국왕 초청으로 20∼23일 영국을 국빈 방문한다. 윤 대통령의 이번 방문 기간 동안 양국 간 '탄소 중립 협력'이 강조될 것으로 예상된다. 한국과 영국 간의 상업 교류는 작년 기준으로 63억 달러에 불과하지만, 탄소 중립을 추구하는 새로운 협력 기회가 열릴 것으로 기대된다. 특히 영국 정부가 중점적으로 추진하는 해상풍력 프로젝트, 신규 원전 건설, 소형모듈원자로(SMR) 개발 프로젝트 등에서 협력 가능성이 높게 평가된다. 또한, 바이오와 반도체 등 첨단 기술 분야에서도 양국 간의 시너지 효과를 기대할 수 있을 것으로 전망된다. 20일 한국무역협회에 따르면, 지난해 기준으로 영국과의 교역 규모는 크지 않았으며 수출액은 63억 달러로 20위, 수입액은 85억 달러로 27위에 해당한다. 우리나라의 영국 수출 품목 중 주요한 항목으로는 전기차(15.9%), 기타 자동차(12.7%), 무선전화기(7.9%) 등이 상위에 있었다. 반면, 주요 수입 품목은 원유(17.2%), 승용차(8.6%), 의약품(6.9%) 순으로 나타났다. 윤 대통령의 국빈 방문을 계기로 한국과 영국 간의 교역이 '탄소 중립 파트너'로 한 단계 높아질 가능성이 큰 것으로 기대된다. 또한, 영국은 탄소중립 정책을 적극적으로 추진하고 있어, 이와 관련한 협력 가능성이 높게 평가되고 있다. 영국은 2019년 세계 최초로 '2050년 온실가스 배출량 제로(0)', 일명 넷제로를 법적 목표로 도입한 국가다. 또한, 2021년 제26차 기후변화협약 당사국 총회(COP26)에서 의장국을 맡아 전 세계에 탄소중립 노력을 촉구하며 탄소중립 시대를 주도하고자 하고 있다. 영국은 환경 및 탄소 중립에 대한 앞장서는 역할을 하며 ESG(환경, 사회, 지배구조) 수준 역시 비교적 높다. 2020년 11월에 시작된 '녹색산업혁명을 위한 10대 중점계획'을 출발로, 2020년 12월에 '에너지백서 2020(Energy White Paper)'를 발표하고, 2022년 4월에 '에너지안보 전략(Energy Security Strategy)'을 공개하며, 2023년 4월에 '에너지안보 계획(Powering up Britain: Energy Security Plan)'을 발표하는 등 많은 중장기 계획을 제시하고 있다. 또한, 세계 주요 증권거래소에서 상장된 기업들의 ESG 리스크를 분석한 결과, 영국과 프랑스가 ESG 리스크가 가장 낮다는 평가를 받았다. 특히 영국의 FTSE 100 기업 중 54%가 ESG 위원회를 보유하고 있는 등 ESG 경영에 앞선 노력을 기울이고 있다. 더불어, 영국 재무부는 ESG 경영을 더욱 투명하게 촉진하기 위해 2021년에 '녹색금융: 지속가능한 투자 로드맵(Greening Finance: A Roadmap to Sustainable Investing)'을 발표했다. 이 로드맵은 금융 제공기관들로 하여금 금융 활동이 환경에 미치는 영향, 제품의 지속가능성 수준, 투자 전략 이행 여부 등을 의무적으로 공개하도록 규정하고 있다. 기업들은 이 로드맵에서 제시한 환경 보전 항목 중 하나 이상에 실질적인 기여를 증명해야 한다. 이 외에도 영국 정부는 플라스틱 포장세(Plastic packaging Tax), 플라스틱 빨대 공급 금지, 2030년 내연기관차 판매 금지 조치 등 환경에 해를 가하는 기업의 경제활동을 법적으로 금하고 있다. 이처럼 영국에서는 탄소중립이 에너지 안보와 성장 전략의 중요한 요소 중 하나로 고려되고 있다. 대한무역투자진흥공사(코트라)에 따르면, 영국 정부는 지난 3월에 발표한 '에너지 안보 및 넷제로 성장 계획'에서 신규 원전·SMR 기술 선발·차세대 원자로(AMR) 실증(원자력) 및 해상풍력·태양광(신재생에너지) 그리고 탄소포집 및 활용(CCUS), 저탄소 수소 생산·수소 수송 및 저장(수소에너지)을 핵심 전략으로 제시했다. 이러한 전략은 한국에게도 기술 개발 분야에서 큰 기회를 제공하는 분야와 관련이 있다. 원전 분야 협력 기대 특히 한국과 영국 간의 원전 분야에서의 협력은 세계적인 경쟁력을 지닌 분야로 주목할 만하다. 코트라의 '탄소중립을 위한 영국 원전산업 정책 동향' 보고서에 따르면, 영국 정부는 2050년까지 총 24기가와트(GW) 용량의 원자력 발전을 목표로 하고 있지만, 현재 가동 중인 원전 발전량은 7GW 수준으로 적극적인 투자가 필요한 상황이다. 양국 정부는 원전산업 협력 논의를 오랫동안 진행해 왔으며, 지난 4월에는 원자력 발전과 청정에너지 분야에서의 협력 확대를 위한 공동선언문을 발표했다. 이 선언문에는 영국 신규 원전 건설 참여 가능성을 모색하는 내용이 포함되어 있다. 또한, 지난 3월에는 영국원자력청(GBN) 출범을 계기로 한국전력이 영국 신규 원전 건설에 참여하는 방안을 논의하기로 합의한 일도 있었다. 한국전력은 2016∼2017년에 영국 무어사이드 원전 사업에 참여를 검토했지만, 경제성 문제로 추진을 중단한 적이 있다. 코트라는 "단기적으로는 한국 정부가 영국 대형 원전 건설 프로젝트에 참여하고, 한국의 원전 기자재 기업이 영국 시장에 원전 기자재를 수출하는 것을 모색하는 것이 중요하다"고 말했다. 그리고 앞으로는 영국 원전 운영사(EDF) 등과의 기업 네트워크를 구축하거나 에이전트 기업을 활용해 원전 기자재 기업의 독자적인 수출이 가능할 것으로 보인다.
-
- 경제
-
尹 대통령, 영국 국빈방문…원전 등 '탄소 중립 파트너' 기대
-
-
SK그룹, 베트남과 신재생에너지·자원순환 사업 협력 강화
- 29일 SK그룹에 따르면, 최태원 SK그룹 회장은 지난 27~28일 베트남 하노이를 방문해 팜 민 찐 총리, 브엉 딘 후에 베트남 국회의장 등 고위급 인사와 만나 그린 비즈니스 협력을 심도 있게 논의했다. 최 회장은 행사에서 "수소, 탄소포집·저장·활용(CCUS), 소형모듈원자로(SMR), 에너지 솔루션 등 첨단 기술을 활용해 베트남의 청정에너지 전환을 지원하고, 넷제로(탄소 중립) 달성에 협력할 계획"이라며 "현지 정부, 파트너들과 함께 생산에서 소비에 이르는 전 과정에서 친환경 생태계를 구축하는 것이 목표"라고 밝혔다. 이번 방문은 최 회장이 지난 16~18일 프랑스 파리에서 열린 'SK 최고경영자(CEO) 세미나' 이후 첫 글로벌 현장 점검이다. 이번 방문에는 조대식 SK수펙스추구협의회 의장, 추형욱 SK E&S사장, 박경일 SK에코플랜트 사장, 박원철 SKC 사장 등 그린, 에너지 분야 주요 경영진이 대거 동행했다. 베트남은 정치·안보적 외풍에서 비교적 자유롭고 현지 정부, 기업과 오랜 기간 신뢰를 쌓아온 데다, 한국의 3대 교역국으로 인프라가 잘 갖춰져 있어 SK가 동남아 거점으로 삼아온 국가다. 특히 베트남 정부가 '2050년 넷제로'를 국가적 핵심 과제로 추진하고 있어 SK의 그린 비즈니스 사업과 ESG(환경·사회·지배구조) 경영 방침과도 시너지를 기대하고 있다. SK는 이번 방문을 통해 현지에서 친환경 사업을 확대할 전망이다. SK E&S는 281메가와트(MW) 규모의 태양광·해상 풍력발전소를 현지에 준공해 상업 운영 중인 것에 더해 756MW 규모의 육상풍력발전소를 추가 구축하고, 청정수소·액화천연가스(LNG) 사업도 추진할 계획이다. SKC는 베트남 하이퐁에 2025년 가동을 목표로 세계 최대 규모의 생분해 소재 생산시설을 건설하고 있고, SK에코플랜트는 베트남 북부 박닌 소각설비에 인공지능(AI) 기술을 적용한 데 이어 현지 자원순환 기업들과 폐기물 처리·폐배터리 재활용 사업을 모색하고 있다. 최 회장은 베트남 방문 기간 파트너십을 여러 차례 강조하며 지난 30년간 다져온 신뢰를 이어가며 앞으로도 베트남의 산업 전환과 새로운 변화를 함께 하겠다는 의지를 드러냈다. 베트남이 산업 구조 진화에 속도를 내는 가운데 SK는 국가혁신센터 건립에 3000만달러(약 400억원)를 지원하는 등 스타트업 육성과 기술 혁신에 힘을 보탰다. SK는 국가혁신센터 개관 첫 행사로 다음 달 1일까지 열리는 '베트남 국제 혁신 엑스포(VIIE) 2023'에 전시관을 마련하고, 첨단 미래도시로 변한 약 30년 후 하노이를 가상현실로 선보여 큰 호응을 얻기도 했다. SK 관계자는 "베트남은 1990년대 최종현 선대회장이 현지 원유개발 사업을 시작한 이래 다양한 사업, 사회활동을 함께한 상징적인 협력국"이라며 "그린 비즈니스 외에도 디지털, 첨단산업 영역에서 지속가능한 성장을 위한 협업을 확대해 나갈 것"이라고 밝혔다. 최 회장과 SK 경영진은 현장을 점검하며 현지 직원을 격려하고, 동남아 사업 방향에 대한 열띤 토론을 펼쳤다. 이를 마지막으로 파리에서 시작해 아프리카, 베트남까지 이어진 10월 해외 출장 일정을 마무리했다. 최 회장은 파리에서 열린 'SK CEO 세미나'에서 "대격변 시대를 헤쳐 나가기 위한 방법론으로 경제블록별 조직화, 에너지·AI·환경 관점의 솔루션 패키지 마련 등 글로벌 전략을 논의했다"고 밝혔다. 이러한 글로벌 전략에 따라 SK는 베트남을 동남아 지역 거점으로 삼고, 신재생에너지, 자원순환 등 그린 비즈니스 분야에서 협력을 강화해 나갈 계획이다. 특히, SK E&S는 베트남에서 태양광, 풍력, 수소 등 다양한 신재생에너지 사업을 추진하고 있다. SKC는 세계 최대 규모의 생분해 소재 생산시설을 건설하고 있으며, SK에코플랜트는 폐기물 처리, 폐배터리 재활용 사업을 모색하고 있다. SK는 이러한 사업을 통해 베트남의 청정에너지 전환과 넷제로 달성에 기여하고, 동시에 글로벌 그린 비즈니스 시장에서 경쟁력을 강화해 나갈 것으로 기대된다. 한편, 최 회장은 이번 베트남 방문을 통해 현지 정부와 기업과의 관계를 강화하고, 동남아 지역에서 SK의 글로벌 성장 기반을 다지는 계기를 마련했다. 최 회장은 "베트남은 SK의 중요한 비즈니스 파트너이자 동반자"라며 "앞으로도 양국의 협력을 통해 지속가능한 성장을 이루고, 지역 경제 발전에 기여해 나가겠다"고 밝혔다.
-
- 산업
-
SK그룹, 베트남과 신재생에너지·자원순환 사업 협력 강화
-
-
MIT, 태양광 발전으로 수소 효율성 향상
- 수소를 공해 없이 보다 효율적으로 생산할 새로운 방법이 연구되고 있다. 매사추세츠 공과대학(MIT)의 엔지니어들은 태양열을 이용하여 물을 분해하고, 이 과정에서 온실가스를 배출하지 않는 수소를 효율적으로 생산하는 '태양열화학수소' 시스템을 개발했다고 산업 전문매체 '오일프라이스(Oil Price)'가 보도했다. 기존의 태양열 열화학 수소 생산 시스템은 효율성이 낮았지만, MIT의 설계는 수소 생산에 태양열을 최대 40%까지 활용할 수 있다. '솔라 에너지 저널(Solar Energy Journal)'에 게재된 이 신기술은 태양열을 활용해 물을 분해하고, 그 과정에서 나온 수소를 청정 연료로 사용할 수 있는 시스템이다. 이렇게 생산된 수소는 장거리 트럭, 선박, 항공기의 연료로 사용될 수 있으며, 온실가스가 전혀 배출되지 않는다. 현재 대부분의 수소 생산 방법은 천연가스나 다른 화석 연료를 사용하는데, 이는 환경에 해를 끼치는 '회색' 에너지원에 가깝다. 그러나 태양열화학수소는 오로지 재생 가능한 태양 에너지만을 사용하여 수소를 생산하므로, 환경에 해롭지 않다. 기존의 태양열화학수소 시스템은 태양광의 약 7%만 수소 생산에 활용할 수 있었고, 이로 인해 효율이 낮고 비용이 높았다는 단점이 있었다. MIT 연구팀은 새로운 설계 방법을 도입하여 태양열의 최대 40%를 수소 생산에 활용할 수 있도록 개선시켰다. 이번 연구를 주도한 아흐메드 고니엠(Ahmed Ghoniem) 교수는 "미래의 주요 연료인 수소를 저렴하게 대량 생산할 방법을 찾아야 한다"고 말했다. 그는 "2030년까지 킬로그램당 1달러로 수소를 생산하는 것이 목표다. 경제성을 개선하려면 효율성을 높이고 수집한 태양 에너지의 대부분을 수소 생산에 활용해야 한다"고 덧붙였다. MIT의 새로운 시스템은 집중형 태양열 발전소(CSP) 방식을 사용하며, 여러 거울을 이용해 태양광을 한 곳에 모아 열을 생성한다. 이렇게 모아진 열은 수소를 생산하는데 사용된다. 이 시스템의 핵심은 2단계의 열화학 반응 과정이다. 첫번째 단계에서는 금속이 증기 형태의 물에 노출되며, 이 금속은 증기에서 산소를 제거하고 수소를 추출한다. 이 과정은 '산화'라고 하며, 물과 반응하여 금속이 산화되는 것과 유사하지만, 이 과정은 훨씬 빠르게 진행된다. 수소가 한 번 분리되고 나면, 산화된 금속은 진공 상태에서 재가열되어 원래 상태로 복원된다. 이 과정에서 금속은 산소를 잃게 되고, 다시 물 증기와 반응하여 추가적인 수소를 생산하게 된다. 이러한 과정을 수없이 반복해 수소를 생산하는 것이다. 이 시스템의 구조는 원형 트랙을 따라 달리는 상자 모양의 원자로 열차와 비슷하게 구성되어 있다. 이 원형 트랙은 태양열을 집중하는 CSP 타워 주변에 배치되어 있으며, 각 원자로는 높은 온도에서 산소를 제거하고, 증기와 반응하여 수소를 생산하는 산화환원 과정을 거친다. 원자로는 먼저 아주 뜨거운 스테이션을 통과하며, 금속은 최대 1500도의 태양열에 노출된다. 이 때 금속은 고온에서 산소를 빠르게 잃고, 이후 약 1000도 정도의 스테이션으로 이동해 증기와 반응하여 수소를 생산한다. 그러나, 이 시스템은 반응기가 냉각되는 과정에서 발생하는 열을 어떻게 효과적으로 관리하고 재활용할 것인지에 대한 과제를 안고 있다. 열 재활용 없이는 시스템의 전체 효율성이 떨어져 실제로 사용하기 어렵게 된다. 또 다른 과제는 금속을 녹을 제거할 수 있도록 에너지 효율적인 진공 상태를 유지하는 것이다. 초기 프로토타입에서는 기계식 펌프를 이용하여 진공을 생성했으나, 이 방법은 대량의 수소를 생산할 때 에너지 소비가 많고 비용이 높았다. 연구팀은 이 문제를 해결하기 위해, 시스템 내에서 발생하는 열을 대부분 회수하는 방안을 마련했다. 원형 트랙의 원자로는 열을 상호 교환할 수 있도록 설계되었으며, 이를 통해 뜨거운 반응기는 냉각되고, 차가운 반응기는 가열되어 시스템 내의 열을 보존한다. 또한, 연구팀은 에너지 소비를 줄이기 위해 첫번째 원자로 열차 주위를 돌면서 반대 방향으로 움직이는 두 번째 원자로 세트를 추가 설치했다. 이 새로운 궤도의 원자로는 보다 낮은 온도에서 작동하며, 기계식 펌프의 도움 없이도 내부 궤도의 높은 온도에서 발생하는 산소를 제거하는 데 사용된다. 외부 반응기는 에너지 집약적인 진공 펌프 없이도 내부 반응기에서 산소를 흡수하여 금속의 원래 상태로 복원하는 데 효과적이다. 두 세트의 반응기는 연속적으로 운영되어, 순수한 수소와 산소를 분리하여 생성한다. 연구팀은 이러한 개념 설계에 대해 상세한 시뮬레이션을 수행했고, 그 결과 태양열을 이용한 열화학 수소 생산 효율이 이전의 7%에서 40%로 크게 향상될 수 있었다. 고니엠 교수는 "시스템의 에너지 효율을 극대화하고 비용을 최소화하기 위해 우리는 모든 에너지 소스와 그 활용 방법을 고려해야 한다"며, "이 새로운 설계를 통해 태양에서 발생하는 열의 대부분을 활용할 수 있음을 확인했다. 이를 통해 태양열의 40%를 수소 생산에 활용할 수 있다"고 설명했다. 연구팀은 내년에 에너지부 연구소의 집중형 태양광 발전 시설에서 테스트할 프로토타입 시스템을 구축할 계획이다. 한편, 한국의 DGIST(대구경북과학기술원)와 단국대학교 연구팀은 친환경적인 양자점을 활용하여 세계 최고 수준의 태양광 수소 생산 기술을 개발했다. 이 기술은 양자점의 물성을 조절하여 광전기화학 소자에 적용, 태양광을 효과적으로 수소 생산에 활용하는 방법을 제공한다. 연구팀은 합성된 친환경 양자점을 광전기화학 소자에 적용하여 태양광 에너지의 전 영역을 효율적으로 이용, 수소를 생산할 수 있었다. 이 연구 결과는 '카본 에너지'라는 학술지에 게재됐다.
-
- 산업
-
MIT, 태양광 발전으로 수소 효율성 향상
-
-
세계 최고 슈퍼컴 '오로라', 원자로 시뮬레이션 투입
- 미국 아르곤 국립연구소에서 설치하고 있는 '오로라'는 현존하는 슈퍼 컴퓨터보다 50배 강력한 시스템이다. 현존하는 슈퍼컴퓨터 보다 성능이 50배 이상 더 강력한 슈퍼컴퓨터가 등장한다. 기술 전문매체 인터레스팅엔지니어링(InterestingEngineering)은 미국 아르곤 국립연구소(ANL) 과학자들이 세계에서 가장 강력한 슈퍼컴퓨터인 '오로라(Aurora)'를 설치 중이라고 보도했다. 오로라는 미국이 이미 'TOP500'기준으로 세계에서 가장 빠른 수퍼컴퓨터를 보유하고 있는 상황에서, 이전 원자로보다 더 효율적이고 안전한 새로운 원자로의 시뮬레이션을 돕기 위해 설치되고 있다. TOP500은 세계에서 알려진 가장 강력한 500대(비분산형)의 컴퓨터 시스템의 500대 순위를 나열하고 자세히 설명하는 프로젝트다. 이들 슈퍼컴퓨터는 다양한 계산 작업에 사용된다. 앞서 이 매체는 2023년 9월 슈퍼컴퓨터로 미군의 핵 비축량을 확인할 계획인 로스 앨러모스 국립연구소(Los Alamos National Laboratory, LANL)에 대해 보도했다. LANL은 지난 1943년 설립된 세계적으로 가장 큰 규모의 기술과학 연구소로, 인류 최초로 핵폭탄을 제조한 맨해튼 프로젝트를 진행했다. 다만, 오로라는 LANL 슈퍼컴퓨터와는 매우 다른 역할을 수행하기 위해서 계획됐다. 오로라는 현재 미국 전기 공급량의 5분의 1을 공급하는 원자로 내 핵분열 과정을 개선하는 것이 목표로 한다. 더 중요한 것은 원자력 공급이 탄소 배출을 절반 이상 감소시킬 수 있다는 점이다. ANL은 시뮬레이션을 위해 초당 44천조 개의 계산을 수행할 수 있는 44 페타플롭(초당 1000조번의 수학 연산처리를 뜻하는 말) 머신인 폴라리스(Polaris) 슈퍼컴퓨터를 사용하고 있다. 반면, 오로라는 2 엑사플롭(초당 100경번을 연산하는 말) 이상의 계산 용량을 제공하도록 설계돼 현존하는 시스템보다 50배 더 강력한 초당 200경 계산을 수행할 수 있다. 이 시스템은 제조상의 문제로 인해 완성이 지연되었으나, 오로라가 작동 준비를 마치면 미국 오크릿지 국립연구소의 프론티어를 대체해 세계에서 가장 빠른 슈퍼컴퓨터가 될 것으로 예상된다. ANL의 원자력 엔지니어인 딜론 세이버 박사는 "오로라의 차별화된 특징은 우리가 수행할 수 있는 시뮬레이션의 규모와 다양성"이라고 말했다. 세이버와 그의 팀은 오로라의 뛰어난 계산 능력을 이용하여, 시뮬레이션에서 수십억 개의 변수를 처리할 계획이다. 이 팀은 원자로 코어 내의 복잡한 과정을 상세하게 캡처해, 비용이 많이 드는 실험 없이도 새로운 원자로 설계를 개발하는 데 도움을 줄 것으로 보인다. 이러한 능력은 원자로 건설 업체들이 설계의 타당성을 확인하고 승인을 받는 데 있어 매우 유용하게 사용될 것으로 예상된다. 이 시뮬레이션에서 연구자들은 연료 핀 주변의 열 소용돌이와 난류, 그리고 열 전달 특성을 모델링할 예정이다. 난류의 증가는 열 전달을 촉진할 수 있지만, 이 과정은 추가적인 에너지를 필요로 한다. 소듐 냉각 원자로에서는 난류가 열의 미세한 소용돌이, 즉 열 소용돌이를 형성할 가능성이 있으며, 이는 연료 핀이 진동하는 원인이 될 수 있다. 연구팀은 원자로와 연료의 성능에 영향을 미치는 구조 역학뿐만 아니라 열 교환 특성도 시뮬레이션에서 고려하여 모델링할 계획이다. 연구팀은 다양한 연구자들이 모델링과 시뮬레이션을 수행할 수 있도록 다중물리 객체 지향 시뮬레이션 환경(MOOSE)을 사용할 계획이다. MOOSE를 활용하면 시뮬레이션을 빠르게 완료할 수 있으며, 오로라의 계산 능력과 결합하여 NekRS라는 전산 유체 역학 솔버를 사용하면 더욱 세밀한 시뮬레이션도 가능하다. 세이버는 "이런 미세한 역학적 요소들은 원자로의 열 전달에 대한 거시적인 행동을 파악하는 데 결합되어 매우 중요한 역할을 한다"고 설명했다. 한편, 2023년 5월에 발표된 T500 순위에 따르면, 한국은 삼성종합기술원의 SSC-21, SSC-21 Scalable Module, 기상청의 구루와 마루, SKT의 타이탄, 광주과학기술원의 드림-AI, 그리고 KT의 KT DGX SuperPOD 등 총 8대의 슈퍼컴퓨터를 보유하고 있다. 성능 기준으로는 8위, 보유 대수 기준으로는 9위에 올랐다.
-
- 산업
-
세계 최고 슈퍼컴 '오로라', 원자로 시뮬레이션 투입
-
-
지구 내부 핵 신비 밝히다
- 지구는 여러 층으로 구성되어 있으며, 이는 바깥층의 지각에서 시작해 상부 맨틀, 하부 맨틀, 외부 핵, 그리고 내부 핵으로 이어진다. 기존의 연구에서는 지구의 내부 핵은 엄청난 온도와 압력 때문에 매우 단단하다고 여겨졌다. 그러나 독일 매체 프랑크푸르트 런스차우(Frankfurter Rundschau)에 따르면, 이러한 견해는 부분적으로만 옳다는 새로운 사실이 발견됐다. 지구 어디에서도 내부 핵만큼의 극단적인 온도와 압력을 찾아볼 수 없다. 이러한 강한 압력은 철 원자를 굳게 압축하여 지구의 내부 핵을 형성하게 한다. 미국과 중국의 연구원들이 지구 중심부의 철 원자 일부가 놀랄 만큼 빠르게 이동할 수 있다는 사실을 발견했다. 이들 원자는 기본 금속 구조를 유지하면서도 단 몇 초 만에 위치를 바꿀 수 있다. 이런 현상은 '집단 운동'이라고 알려져 있으며, 새 떼나 동물 무리의 움직임에서 볼 수 있다. 지구 코어 원자의 빠른 이동 연구원들은 지구 내부 핵의 고온과 고압 때문에 직접 조사할 수 없다고 말했다. 그러나 실험실 실험과 이론 모델을 통해, 연구원은 지구 중심부의 원자들이 기존에 생각했던 것보다 훨씬 더 활발하게 움직이고 있음을 발견했다. 이러한 발견은 지구의 자기장 형성 등, 지구 핵에 관한 수많은 신비를 이해하는데 도움이 될 것으로 보인다. 텍사스 대학교의 주 연구원 정-후 린은 "이제 우리는 지구 내부의 동적 과정과 발전을 이해하는데 도움이 될 기본적인 메커니즘을 파악했다"고 말했다. 이 연구 결과는 미국 국립과학원 회보(Proceedings of the National Academy of Sciences)에 발표됐다. 지구 핵의 축소판 재현 미국과 중국 연구팀은 지구 핵의 미니 버전을 실험실에서 재현하여 철 원자의 집합적 움직임을 관찰했다. 연구팀은 먼저 빠르게 움직이는 발사체를 가진 작은 철판을 사용했으며, 여기서 온도, 압력, 속도와 관련된 데이터를 획득했다. 이 데이터는 기계 학습에 사용되어 지구 내부 원자의 시뮬레이션을 위한 컴퓨터 모델을 구축하는데 적용됐다. 연구팀은 인공지능(AI)을 활용하여 약 3만 개의 원자로 구성된 '슈퍼 셀'을 생성하고, 이를 통해 원자의 행동을 보다 정확하게 예측할 수 있었다. 예상보다 더 유연한 코어 이번 연구 결과로 인해 지구의 내부 핵이 예상보다 더 부드럽고 유연하다는 사실이 밝혀졌다. 연구팀은 이러한 철 원자의 놀라운 움직임이 지구의 내부 핵의 지진 측정값이 고압 상태에서 예상보다 더 부드러움과 유연함을 보이는 이유를 설명할 수 있을 것이라고 말했다. 이 연구의 공동저자인 장유준(Suchan University) 교수는 "지구 깊은 곳의 철이 놀라울 정도로 부드럽게 움직이는 것이 가장 큰 발견이다. 원자가 우리가 상상했던 것보다 훨씬 더 활발하게 움직이기 때문이다. 이런 활발한 움직임은 내부 핵을 덜 단단하게 만들어 전단력에 대해 더 약하게 만든다"라고 설명했다. 이번 연구는 지구 내부 핵에 대한 이해를 한 단계 더 발전시키는 결과를 가져왔으며, 지구의 자기장 형성과 내부 구조 및 작동 방식에 중요한 영향을 미치는 핵심 요소로 평가되고 있다. 이번 연구는 지구 내부 핵에 대한 이해를 크게 발전시킨 것으로 평가된다. 지구 내부 핵은 지구의 자기장을 형성하고, 지구의 내부 구조와 작동 방식에 중요한 역할을 미치는 핵심 부분이다. 이로써 지구의 자기장 변화와 지구의 내부 구조 변화를 더 잘 예측할 수 있을 것으로 기대된다.
-
- 산업
-
지구 내부 핵 신비 밝히다
-
-
[퓨처 Eyes(5)] 소형 원자로, 미래 전력 급부상
- 소형 원자로(Small Modular Reactor, SMR, 소형 모듈 원전)가 미래 전력으로 주목받고 있다. 소형 원자로는 그 이름에서 알 수 있듯이 작은 크기의 원자로를 의미한다. 최근 급격한 기후 변화의 위협으로, 탄소 배출을 최소화하는 에너지원에 대한 수요가 크게 증가하고 있다. 소형 원자로는 이러한 배경 속에서 미래의 주요 전력 공급 수단으로 각광받고 있다. '소형 원자로(SMR)'는 전통적인 대형 원자로와 달리 작은 크기로 경제성과 유연성, 안전성, 확장성 등의 장점을 갖고 있다. 미국 오픈AI의 창업자 샘 알트먼은 지난 7월 삼각형 모양의 특이한 목조 건물의 사진을 SNS에 게재했다. 얼핏 보면 휴양지 펜션이나 별장으로 보이는 이 건물은 사실 알트먼의 스타트업 오클로(Oklo)가 개발 중인 '소형모듈원자로'의 모형이다. 알트먼은 월가의 은행 거물 마이클 클라인과 함께 설립한 기업인수목적회사(SPAC)와 오클로를 합병했고, 그 사실을 알리기 위해 SNS에 이 사진을 올린 것. 오클로의 기업가치는 합병으로 8억5000만 달러(약 1200억 원)로 평가됐다. 오클로의 이름은 아프리카 가보니에서 발견된 20억 년 전의 자연 원자로에서 따온 것이며, 이 원자로는 자연 발생 원자로 현상을 기반으로 설계됐다. 그동안 원자로는 1986년 체르노빌 원전 사고, 2011년 일본 후쿠시마 원전 사고와 최근 러시아군의 우크라이나 위협 등을 고려하면 부정적인 이미지를 갖기도 했다. 특히 우리나라의 경우 일본이 지난 8월 후쿠시마 원전 처리 오염수 약 7800만톤(t)을 1차 방류한 데 이어 5일 비슷한 양의 2차 방류를 시작해 더욱 민감하게 받아들이고 있다. 차세대 원자로 SMR의 장점 '차세대 원자로'로 불리는 소형 원자로는 작은 크기로 설계되어 경제성이 뛰어나다. 이는 전통적인 원자로에 비해 적은 자원으로 건설할 수 있기 때문이다. 오클로와 같은 SMR들은 패시브 안전 시스템이 포함되어 있어, 비상 상황에서도 자동으로 안전하게 종료될 수 있다. 또한, SMR은 원자력 연료의 재사용 기술로 연료 수명을 연장하며, 방사성 폐기물의 양도 줄인다. 초기 투자 비용이 적기 때문에, 소규모 전력 시장과 개발 도상국도 원자력 발전을 채택하기 쉽다. SMR의 크기와 디자인은 유연성을 높여주며, 원격 지역, 도시 인근, 심지어 산업 시설 안에도 설치가 가능하다. 대부분의 부품은 공장에서 미리 제작되므로 현장에서의 설치도 빠르고 효율적이다. 필요에 따라 여러 개의 SMR을 한 지역에 설치해 발전 용량을 조절할 수 있어, 수요 변동에 유연하게 대응한다. 이러한 특징들로 인해 투자자들에게 상업적으로 매력적이며, 전통적인 대형 원자로보다 빠른 수익 회수가 가능하다. 알래스카 공군기지에 소형원자로 활용 실제로 미국 공군은 지난 8월 31일 알래스카 아일슨 공군기지에 오클로 원자로를 사용할 계획을 발표했다. 이 계획이 실행되면 미국 내에서 연방정부가 상업용 SMR을 사용하는 첫 사례가 될 것으로 보인다. 또 미국 원자력규제위원회(NRC)는 지난 9월 7일 미국 최초의 소형 모듈식 원자로(SMR) 프로젝트 중 하나에 대한 초기 건설 활동을 시작하기 위해 탄소 없는 전력 프로젝트(Carbon Free Power Project)의 신청을 검토하기로 합의했다 . 승인되면 회사는 뉴스케일파워의 기술을 사용하여 아이다호의 제안된 부지에 6모듈 소형 모듈식 원자로 발전소를 건설할 예정이다. 첫 번째 전력 모듈은 2029년까지 작동될 것으로 예상된다. 그밖에 SMR에 대한 활동과 투자자들의 관심은 지속적으로 증가하고 있다. 마이크로소프트의 창업자 빌 게이츠가 투자한 테라파워(Terra Power)도 2008년부터 신형 원자로를 개발하고 있다. 테라파워는 4세대 원전으로 분류되는 소듐고속도(SFR, Sodium Fast Reactor, 물 대신 소듐을 냉각재로 사용)인 NATRUMTM을 개발중이며 2030년 상용화를 목표로 하고 있다. 한국의 이창양 산업통상부 장관은 지난 7월 7일 미국의 소형모듈원전 개발 기업인 테라파워의 크리스 르베크(Chris Levesque) 대표와 만났다. 이 회동은 테라파워가 지난 4월 국빈 방미 때 한국수력원자력과 체결한 소형모듈원전 관련 업무 협약을 체결하는 등 국내 기업과 활발한 협력의 연장선 상에 있다. 미국 뉴스케일 파워도 SMR 개발에 나서고 있다. 이 회사는 지난해 SPAC와의 합병을 통해 상장했고, 최근 루마니아의 SMR 공장 건설 계획을 위해 여러 정부로부터 총 2억7500만 달러의 투자와 융자를 확보했다. 또한 미국 제너럴일렉트릭(GE)과 히타치제작소의 합작회사인 미국 GE히타치 뉴클리어 에너지는 캐나다에 SMR 플랜트를 건설하고 있다. 영국 롤스로이스 등 거대 산업체들도 속속 SMR 사업에 진출하고 있다. 게다가 영국은 지난 7월 "2050년까지 영국 전력의 4분의 1을 국내 원자력 에너지로 확보하겠다"고 선언하고, 가장 우수한 SMR 설계를 겨루는 국제 공모전을 시작했다. AI 등 신기술로 전력 수요 급증 이처럼 국제적으로 소형 원자로가 주목받는 배경으로는 첫째, 세계 경제의 성장과 인공지능(AI)과 같은 신기술에 대한 막대한 전력 수요때문이다. 전력 수요는 앞으로 몇 년 내에 크게 증가할 것으로 예상되고 있다. 이 때문에 저렴하고 안전한 청정 에너지에 대한 수요가 절실한 상황이다. 둘째, 전력 생산을 위한 화석 연료 의존은 지구 온난화 문제를 악화시킨다. 축전 기술의 진전 없이는 풍력이나 태양광 같은 재생 에너지만으로는 수급 차이를 해소하기 어렵다. 셋째, 원자력 기술의 진화다. 20세기에는 막대한 비용과 시간이 소요되는 거대한 발전소에서 에너지를 생산했다. 그러나 SMR은 크기가 작고, 공장에서 제작된 부품들을 현장에서 조립하기 때문에 건설에 드는 비용과 시간이 훨씬 적고, 전력 수요지 인근에 설치할 수 있다. 오클로와 테라파워와 같은 기업들이 개발 중인 기술은 재활용 가능한 핵폐기물을 연료로 활용하므로 핵폐기물 처리 문제의 해결에 기여할 잠재력을 보유하고 있다. 실제로 오클로의 경영진은 자사의 기술이 채택될 경우 "미국 내 사용후핵연료의 기존 재고만으로도 미국의 에너지 수요를 150년 이상 충당할 수 있다"고 강조했다. 오클로의 창업자 제이콥 드윗은 "이것이 탈탄소화를 위한 가장 좋은 방법"이라고 주장했다. 환경 운동가, SMR 건설 반발 그러나 모든 사람들이 이 의견에 동의하는 것은 아니다. 많은 환경 운동가들은 원자력을 부정적으로 바라보며, 그것을 '환경 친화적' 카테고리에서 제외하길 원한다. 미국 원자력규제위원회(NRC) 전 위원장 앨리슨 맥퍼렌은 원자력산업의 일부에서는 알트먼 같은 자유주의자(자유지상주의자)로 알려진 '테크 브로'(기술계의 자신감 있는 남성을 가리키는 말)가 '뉴클리어 브로'로 전락했다는 생각 자체를 반감으로 여긴다고 말했다. 맥퍼렌은 최근 SPAC의 구조와 과대광고에 대한 비판적인 기고에서 "제안된 SMR 중 일부만 실제로 입증되었으며, 원자력 규제기관의 승인을 받은 것은 없어서 상업적 활용 가능성이 아직 없다"고 주장했다. 그는 "기존 원자력 발전소는 온난화 가스 감축에 큰 기여를 해왔고 앞으로도 그럴 것이지만, SMR의 미래는 불확실하다"고 지적했다. 게다가 오클로가 지난해 미국 연방정부에 제출한 첫 라이선스 신청은 같은 해에 기각됐다. 드윗은 내년에 다시 신청할 계획을 세우고 있으며 그 결과에 대해 낙관적이지만, SMR을 활용한 원전이 적어도 2027년까지 가동을 시작하지 않을 것이라고도 인정했다. 지구의 온도가 1도 올라가는 데 과거에는 10만년이 걸렸다. 그런데 산업혁명 이후 불과 100년 동안 지구의 온도가 1도 올라갔다. 아프리카 북동부에 위치한 리비아는 지난 9월 11일 토네이도를 동반한 열대성 폭풍 대니얼이 북동부 지역을 강타해 댐 두 곳이 무너지면서 3만명 이상의 희생자가 발생했다. 소형 원자로 기술은 아직 완전히 검증되지 않았다. 그러나 전례 없는 대형 산불이나 대홍수 등 자연재해가 지구 곳곳을 샅샅이 훑고 지나가는 기후변화의 위협 속에서 가능한 모든 청정에너지 솔루션을 빠르게 탐색하고 실험하는 것이 중요하다.
-
- 포커스온
-
[퓨처 Eyes(5)] 소형 원자로, 미래 전력 급부상
-
-
미쓰비시중공업, 핵융합용 세계 최대 '초전도 코일' 개발
- 미쓰비시중공업이 프랑스 남부 지역에 건설 중인 국제핵융합실험로 '이터(ITER)'에 사용되는 세계 최대 규모의 초전도 토로이드 자장(TF) 코일 제작을 완료했다. 일본 매체 뉴스위치는 최근 미쓰비시중공업이 프랑스 남부에서 진행 중인 대형 핵융합 국제 프로젝트 '싱크로나이즈드 사이언스(SST)'의 핵심 부품인 초전도 코일 개발에 성공했다고 전했다. 미쓰비시중공업은 양자과학기술연구개발기구로부터 수주한 5번째 코일인 토로이드 자장(TF) 코일 최종호기를 완성시켰다. ITER(International Thermonuclear Experimental Reactor)는 태양과 같은 핵융합 반응을 인공적으로 일으켜 에너지를 얻는 국제적인 과학기술 프로젝트다. ITER 프로젝트에는 미국, 러시아, 유럽연합, 일본, 중국, 인도, 한국 등 7개국이 참여하고 있으며, 프랑스 남부 카다라쉬 지역에 건설 중이다. ITER의 목표는 열출력 500MW, 에너지 증폭율 (Q) 10 이상의 핵융합실험로를 개발해 미래 핵융합발전소 건설을 위한 원천기술을 확보하는 것이다. 2040년에 ITER 프로젝트가 완공되면 지구에서 처음으로 인공태양이 뜰 예정이다. 한국은 2003년에 합류해 10대 주요장치를 제작·조달하고 있고, 여기에 필요한 초전도핵융합장치 KSTAR는 2007년 일찌감치 완공했다. 현재 일본은 '이터'용 토로이드 자장 코일 19기 중 9기의 제작을 맡고 있으며, 이 가운데 미쓰비시중공업이 5기를 담당해 이번 최종호기를 완성했다. 세계 최대 규모인 이 코일은 높이가 3.5미터, 폭이 1미터, 총 무게가 1.5톤으로 거대하지만, 원자로 내에서 핵융합 반응을 일으키는 데 필요한 1만 분의 1미터 이하의 정밀도로 제작했다는 회사측의 설명이다. 이 회사는 지난 2020년 1월 초호기를 완성한 바 있다. 회사 측은 "양자과학기술연구개발기구와 공동 개발한 초전도체를 고정밀로 권선(전류를 흘려 자속을 발생시키거나 서로 결합하도록 설계된 코일) 기술 및 용접, 가공기술 등을 통해 높은 정밀도를 실현했다"고 설명했다. 미쓰비시전기가 권선 부분을, 외부 구조물은 한국에서 제작한 후 미쓰비시중공업의 후타미공장(효고현 아카시시)에서 모든 부품을 조립해 완성품으로 만들었다. 4기 초전도 코일은 프랑스 현지에서 설치 중이며, 이번에 완공한 5기도 향후 곧 설치될 것으로 예상된다. 한편, 미쓰비시중공업은 토로이드 자장 코일 이외에도 핵융합로에서 내부에 괴는 불순물을 제거하는 장치인 다이버터와 수평 론처 등 주요 기기를 개발, 제작하고 있다. 또한, '이터' 계획에 이어 건설이 계획되고 있는 핵융합원형로에 대해서도 설계와 개발을 적극적으로 지원하겠다는 방침이다.
-
- 산업
-
미쓰비시중공업, 핵융합용 세계 최대 '초전도 코일' 개발