검색
-
-
[우주의 속삭임(80)] 블랙홀 둘러싸고 있는 코로나 모양 첫 공개
- 블랙홀을 둘러싸고 있는 코로나 모양이 처음으로 공개됐다. 지구상에서 개기일식을 관찰하면, 태양을 가린 달 주위를 밝은 빛의 후광이 둘러싸고 있는 현상을 보게 된다. 이는 코로나라고 불리는 것으로, 태양의 확산된 외기권을 말한다. 이 외기권은 너무 얇아서 지구에서 보면 진공으로 생각되지만, 코로나 온도가 섭씨 수백만 도에 달하는 강한 에너지이기 때문에 개기일식 때 볼 수 있다. 우주의 블랙홀 역학에 따르면 블랙홀에도 코로나가 있다. 또한 태양의 코로나와 마찬가지로 블랙홀 코로나도 관찰하기 어렵다. 그런데 최근 천체물리학저널(The Astrophysical Journal)에 실린 연구에서 블랙홀 코로나 영역에 대한 관찰이 이루어졌다고 사이언스얼라트가 전했다. 활성 블랙홀의 경우, 일반적으로는 블랙홀을 둘러싸고 있는 도넛 모양의 가스와 먼지 토러스가 있다. 또 블랙홀의 회전면을 따라 정렬된 가열된 물질의 강착원반(디스크)이 있는 것으로 추정된다. 블랙홀의 극지방에서 흘러나오는 것은 거의 빛의 속도로 빠르게 멀어지는 이온화된 가스 제트이다. 우리가 관측하는 다양한 유형의 활성 은하핵(AGN)은 이 모델로 설명할 수 있다. 이유는 지구를 향하는 블랙홀의 방향에 따라 AGN의 모양이 변화하기 때문이다. 모델에 따르면, 강착원반의 가장 안쪽은 밀도가 진공에 가까운 과열 영역이며, 이는 블랙홀로 흘러 들어간다. 블랙홀 코로나는 태양의 코로나와 비슷하지만, 온도는 태양의 수백만 도에 비해 훨씬 높은 수십억 도에 달한다. 그러나 넓게 확산되어 있기 때문에, 그 빛은 강착원반의 빛에 압도된다. 연구팀은 블랙홀의 코로나를 연구하기 위해 개기일식 중 태양의 코로나를 관찰하는 것과 유사한 기법을 사용했다. 블랙홀이 지구를 기준으로 하는 방향은 일부 블랙홀의 경우 가스와 먼지의 토러스가 강착원반 영역에 대한 우리의 시야를 가리는 반면, 다른 블랙홀의 경우 원반을 직접 볼 수 있다. 이를 가려진 블랙홀과 가려지지 않은 블랙홀이라고 한다. 가려진 블랙홀은 강착원반의 빛이 시야에서 가려지기 때문에 개기일식으로 가려진 태양과 유사하다. 블랙홀의 코로나도 마찬가지이다. 그러나 블랙홀 코로나는 너무 뜨거워서 극도로 높은 에너지의 X선을 방출한다. 이 X선은 토러스의 물질을 산란시키고 우리의 시야로 반사될 수 있다. 연구진은 나사(NASA)의 이미징X선편광측정탐사선(IPXE)에서 얻은 데이터를 사용, 우리 은하의 백조자리 X-1과 X-3, 대마젤란 성운의 LMG X-1과 X-3 등 12개의 가려진 블랙홀 데이터를 수집했다. 연구진은 이들 블랙홀의 코로나에서 산란된 X선을 관찰할 수 있었으며, 블랙홀 사이의 패턴도 감지할 수 있었다. 데이터에 따르면 코로나는 태양의 코로나와 비슷한 구체로 블랙홀을 둘러싼 것이 아니라 강착원반과 비슷한 원반으로 블랙홀을 둘러싸고 있다. 이번 연구는 천문학계에서 블랙홀 모델을 다듬는 데 도움이 될 것으로 기대된다. 또한 블랙홀이 어떻게 물질을 소비하고, 먼 은하에서 관측하는 AGN에 동력을 공급하는지를 이해하는 데 기여할 것으로 보인다.
-
- IT/바이오
-
[우주의 속삭임(80)] 블랙홀 둘러싸고 있는 코로나 모양 첫 공개
-
-
휴머노이드 로봇, 2028년 중국 달 탐사선 창어 8호 투입 예정
- 달의 남극에서 자원 탐사 기술을 시험하려는 중국의 달 임무가 구체화되고 있으며, 이 임무에는 휴머노이드 로봇이 참여할 가능성이 높은 것으로 보인다고 스페이스닷컴이 전했다. 휴머노이드 로봇이 참여하는 달 미션은 2028년으로 예정된 창어 8호 달 탐사선이 대상이다. 창어 8호 우주선을 설계하고 있는 왕치옹 수석 연구원은 최근 SNS 게시물을 통해 중국 정부가 추진하고 있는 달 탐사 프로젝트의 업데이트 버전을 발표했다. 2028년 발사될 창어 8호는 달의 남극 인근에 착륙한다. 이 프로젝트를 위한 탐사선 설계는 중국 국가항천국(CNSA)이 주도하고 있으며 왕치옹이 설계 책임을 맡고 있다. 달 남극에 착륙하면 현장에서의 자원 활용 기술을 시험할 예정이며, 가능한 상황이라면 3D 프린팅 기술을 사용해 달의 표토로 벽돌을 만든다는 계획도 수립했다. 나아가 지상 생태계 실험도 실시할 방침이다. SNS에 발표된 게시물에는 달 임무를 수행할 창어 8호 우주선을 자세히 설명하는 슬라이드도 포함돼 있다. 종전의 창어 우주선과 같은 네 발 착륙선에는 카메라, 망원경, 지진계를 포함한 다양한 과학 장비가 탑재되어 있다. 또한 달 표면에 탑재물과 우주선을 운반할 크레인도 갖추고 있다. 이 착륙선은 6륜의 탐사 로버를 실어 나르게 되는데, 이 로버에는 파노라마 카메라, 달 투과 레이더, 적외선 분광계, 샘플 분석 및 저장 페이로드 등이 장착될 예정이다. 네 개의 바퀴와 휴머노이드 로봇이 같이하고 있는 다른 우주선도 게시물에 언급됐다. 우주선의 미션이 무엇인지에 대해서는 자세한 설명이 없다. 다만 휴머노이드 로봇이 인간 우주인과 함께 탐사에 나서는 것 아니냐는 추정이 나온다. 창어 8호는 2026년으로 예정된 창어 7호 임무와 함께 중국이 계획한 국제 달 연구 기지 건설의 전초 프로젝트이며, 연구 기지는 러시아 및 다른 파트너의 참여를 통해 2030년대에 건설할 계획이다.
-
- IT/바이오
-
휴머노이드 로봇, 2028년 중국 달 탐사선 창어 8호 투입 예정
-
-
[우주의 속삭임(79)] "달 뒷면, 한때 화산 폭발"
- 미국과 중국 연구원들이 달 뒷면에서 한때 화산이 폭발했다는 증거를 발견했다. 중국 연구팀이 달 탐사선 창어 6호가 수집한 샘플을 분석한 결과 신비한 달 뒷면에서 42억년 이상된 현무암(화산 폭발 후 형성된 현무암) 조각이 발견됐다고 BBC가 전했다. 이번 연구 결과는 지난 11월 15일 학술지 네이처와 사이언스에 게재됐다. 과학자들은 지구에서 볼 수 있는 달의 앞면에서 화산 활동이 있었다는 사실은 이미 알고 있었다. 그러나 달 뒷면은 앞면과 지질학적으로 매우 다르며, 대부분의 지역이 여전히 인간의 손이 닿지 못한 미탐사 지역으로 남아 있다. 중국 달 탐사선 창어 6호는 지난 6월부터 약 2개월간의 임무 끝에 달 뒷면에서 처음으로 토양 샘플을 회수하는 데 성공했다. 중국 과학아카데미의 전문가가 이끄는 연구진은 방사성 연대 측정법을 사용해 화산암의 연대를 확인했다. 분석 결과 약 28억3000만년 전에 '놀랍도록 젊은 분화'가 일어났다는 것을 밝혀냈다. 이는 달 앞면에서는 발견되지 않은 것이다. 지질학 및 지구물리학 연구소의 치우리 리교수는 상세한 동료 검토에서 "이것은 매우 흥미로운 연구"라고 적었다. 그는 "창어 6호 샘플에서 나온 최초의 지구 연대 연구이며, 달과 행성 과학계에 매우 중요한 연구 결과가 될 것"이라고 덧붙였다. 달의 뒷면은 '어두운 부분'으로 알려져 있지만, 지구에 있는 우리가 못 볼뿐 실제로는 햇빛을 많이 받는다. 이는 달이 지구와 수평으로 고정되어 있고, 지구 공전 시간이 약 27일로 항상 달의 같은 면이 지구를 향하고 있기 때문이다. 달 뒷면은 지구에서 볼 수 없기 때문에 오랫동안 미지의 영역이었다. 하지만 1959년 러시아(구 소련)의 루나 3호가 처음으로 달의 뒷면을 찍어 지구로 전송하면서 그 비밀이 밝혀지기 시작했다. 이후 중국의 달 탐사선 창어 4호가 2019년 1월 3일 인류 최초로 달 뒷면에 착륙해 탐사를 진행했다. 착륙 지점은 달 남극 에이트켄 분지 내에 있는 본 카르만 크레이터다. 달 뒷면의 샘플 회수 임무를 띤 창어 6호는 2024년 5월 3일 지구를 떠나 2024년 6월 1일 달 뒷면에 무사히 착륙했다. 참고로 달 앞면에는 미국, 소련, 중국, 인도, 일본 등이 착륙에 성공했다. 또한 달 남극에는 물이 있는 것으로 알려져 있다. 인도 달 탐사선 찬드라얀 3호는 2023년 7월 14일 발사돼 8월 23일 인류 최초로 달 남극에 착륙하는 데 성공했다. 이로써 인도는 미국, 러시아, 중국에 이어 네 번째로 달 착륙에 성공한 국가로 이름을 올렸다. 중국은 달에서 물을 찾고 영구 기지 건설 등을 조사하기 위해 2030년까지 세 번의 무인 임무를 더 계획하고 있다. 아울러 2030년까지 유인 우주선을 달에 보내는 것을 목표로 하고 있다. 미국도 아르테미스 3호 임무를 통해 2026년까지 우주비행사를 다시 달에 보낼 계획이다. 달 뒷면에는 헬륨-3이라는 희귀한 자원이 풍부하게 매장되어 있다고 알려져 있어 미래에는 달 뒷면에 기지를 건설하고 자원을 채굴할 수도 있을 것으로 전망돼 우주과학 선진국 간의 치열한 경쟁이 예상된다.
-
- IT/바이오
-
[우주의 속삭임(79)] "달 뒷면, 한때 화산 폭발"
-
-
[우주의 속삭임(78)] 목성에는 단단한 땅이나 바위가 없다…그 이유는?
- 목성에는 지구에서 밟는 풀이나 흙과 같이 사람이 걷거나 우주선이 착륙할 수 있는 단단한 표면이 없다. 그 이유는 뭘까. 온갖 특이한 현상을 연구하는 물리학계에서도 '표면이 없는 세계'라는 개념은 이해하기 어렵다고 한다. 나사(NASA)의 로봇 탐사선 주노(Juno)가 이상한 행성인 목성 궤도를 9년째 공전하고 있는 지금도 목성의 많은 부분은 여전히 미스터리로 남아 있다. 태양에서 다섯 번째 행성인 목성은 화성과 토성 사이에 있다. 태양계에서 가장 큰 행성으로, 1000개 이상의 지구가 들어갈 만큼 크고 여유 공간도 있다. 태양계의 수성, 금성, 지구, 화성 등 네 개의 내행성은 모두 단단한 암석 물질로 이루어져 있지만, 목성은 태양과 유사한 구성을 가진 가스 행성이다. 소용돌이치고, 폭풍우가 몰아치며, 격렬하게 난기류를 일으키는 가스 덩어리의 거대 구체다. 목성의 일부 지역에서는 바람이 시속 약 640km 이상으로 불고 있다. 이는 지구의 5등급 허리케인보다 약 3배 빠른 속도다. 지구 대기권 꼭대기에서 시작해 약 100km 아래로 내려가면 기압이 지속적으로 증가한다. 궁극적으로는 땅이든 물이든 지구 표면에 부딪힌다. 목성의 경우, 대부분이 수소와 헬륨으로 이루어진 대기권의 꼭대기에서 내려가기 시작하면 지구와 마찬가지로 더 깊이 들어갈수록 압력이 증가한다. 목성의 압력은 엄청나다. 위의 가스층이 점점 더 아래로 밀려 내려감에 따라, 그것은 마치 바다 밑바닥에 있는 것과 같다. 지구의 물 대신 목성은 가스로 둘러싸여 있다. 압력이 너무 강해져서 인체가 붕괴될 것이다. 압력에 눌려 사망하게 되는 것이다. 1600km 아래로 내려가면 뜨겁고 밀도가 높은 가스가 이상하게 작동하기 시작한다. 가스는 액체 수소 형태로 바뀌어 물이 없는 바다를 만들어낸다. 물이 없다는 점은 다르지만, 태양계에서 가장 큰 바다라고 할 수 있다. 약 3만 2000km를 내려가면 수소는 흐르는 액체 금속에 더욱 가까워진다. 이 물질은 너무 이질적이다. 과학자들도 그 때문에 큰 어려움을 겪었으며, 최근에야 실험실에서 이 물질을 재현했다. 이 액체 금속 수소의 원자는 매우 단단히 압축돼 전자가 자유롭게 돌아다닐 수 있다. 이러한 층 전환은 갑작스러운 것이 아니라 점진적으로 이루어진다. 수소 가스에서 액체 수소로, 그리고 금속 수소로의 전환은 천천히 부드럽게 이루어진다. 어떤 지점에도 날카로운 경계나 고체 물질 또는 표면은 없다. 이렇게 내려가면 궁극적으로 목성의 핵에 도달하게 된다. 이것은 목성 내부의 중심 영역이며 표면과 혼동해서는 안 된다. 학자들은 여전히 목성 핵 물질의 정확한 성질에 대해 논쟁하고 있다. 그중에서 가장 호응을 받는 모델은 암석과 같은 고체가 아니라, 액체와 고체의 뜨겁고 밀도가 높은 금속성 혼합물과 비슷하다는 것이다. 목성 핵의 압력은 엄청나서 마치 지구 대기 1억 개가 누르는 것과 같다. 또는 신체의 각 제곱인치 위에 엠파이어 스테이트 빌딩 두 개가 얹히는 것과 같다. 압력만이 유일한 문제는 아니다. 목성의 핵에 도달하려는 우주선은 섭씨 2만 도의 극심한 열에 녹을 것이다. 이는 태양 표면보다 3배 더 뜨거운 온도다. 목성은 이상하고도 무서운 곳이다. 그러나 목성이 없었다면 인간이 존재하지 않았을 수도 있다. 그 이유는 목성이 지구를 포함한 태양계 내행성을 보호하는 방패 역할을 하기 때문이다. 목성은 엄청난 중력으로 수십억 년 동안 소행성과 혜성의 궤도를 바꾸어 놓았다. 목성의 개입이 없었다면 우주 잔해 중 일부가 지구에 충돌했을 수도 있다. 만약 하나의 충돌이 대격변 수준이었다면 지구는 멸종 수준의 사건을 일으켰을 것이다. 공룡의 대멸종을 연상하면 납득할 수 있다. 목성은 지구 생명체의 존재에 도움을 주었을지 모르지만, 목성 자체는 생명체가 살기에 매우 부적합한 곳이다. 그러나 목성의 위성인 유로파는 다르다. 태양계의 다른 곳에서 생명체를 찾을 수 있는 가장 좋은 기회가 될 수 있다. 나사의 유로파 클리퍼(Europa Clipper)는 지난 10월에 발사된 로봇 탐사선으로, 유로파를 약 50회 비행하며, 이를 통해 위성의 거대한 지하 바다를 연구할 계획이다. 탐사선은 2030년 4월에 도착할 예정이다.
-
- IT/바이오
-
[우주의 속삭임(78)] 목성에는 단단한 땅이나 바위가 없다…그 이유는?
-
-
[우주의 속삭임(77)] 중국 탐사선, 화성 고대 바다 존재 증거 발견…과학계 논쟁 가열
- 중국의 화성 탐사 로버 '주롱(Zhurong)'이 고대 화성에 광활한 바다가 존재했음을 뒷받침하는 새로운 증거를 발견했다는 연구 결과가 발표되어 과학계의 이목이 집중되고 있다. 8일 네이처(Nature)지에 게재된 연구 논문에 따르면, 주롱은 2021년 화성 북반구 유토피아 평원에 착륙한 이후 고대 바다의 흔적으로 추정되는 다양한 지형적 특징을 포착했다고 야후 뉴스가 이날 보도했다. 연구를 이끈 홍콩 폴리텍 대학교의 우보(Wu Bo) 교수는 주롱의 착륙 지점 주변에서 "움푹 패인 원뿔형 구조, 다각형 홈, 침식된 흔적" 등 과거 바다의 존재를 시사하는 여러 특징을 발견했다고 밝혔다. 특히, 연구팀은 주롱이 수집한 정보와 위성 데이터 분석을 통해 이 지역 근처에 과거 해안선이 존재했을 가능성을 제기했다. 이들은 약 37억 년 전 홍수로 인해 바다가 형성되었고, 이후 바닷물이 얼어붙으면서 해안선이 만들어졌으며, 34억 년 전쯤 사라졌을 것으로 추정했다. 그러나 이러한 연구 결과에 대한 반론도 제기되고 있다. 펜실베이니아 주립 대학교의 벤자민 카르데나스 교수는 화성의 강한 바람이 수십억 년 동안 퇴적물을 이동시키고 암석을 침식시켰을 가능성을 간과했다며 연구 결과에 회의적인 입장을 보였다. 그는 과거 모델링 연구 결과를 인용하며 "느린 화성 침식 속도로도 오랜 시간에 걸쳐 해안선의 흔적이 사라질 수 있다"고 주장했다. 이에 대해 우보 교수는 바람에 의한 침식 가능성을 인정하면서도, 운석 충돌로 인해 지하 암석과 퇴적물이 지표면으로 노출될 수 있다는 점을 강조했다. 화성 바다 존재 여부에 대한 논쟁은 여전히 진행 중이지만, 이번 연구 결과는 화성 생명체 존재 가능성에 대한 탐구에 중요한 단서를 제공할 것으로 기대된다. 카르데니아 교수는 "대부분의 과학자들은 지구 생명체가 해저 열수 분출구 주변이나 바닷물과 공기가 만나는 조간대에서 발생했다고 생각한다"며 "바다 존재 증거는 화성 생명체 서식 가능성을 높이는 요인"이라고 설명했다. 이번 연구는 화성의 과거 환경을 이해하고 생명체 존재 가능성을 탐색하는데 중요한 발검음이 될 것으로 평가되며, 향후 화성 암석 샘플을 지구로 가져와 분석하는 임무를 통해 더욱 명확한 결론을 얻을 수 있을 것으로 예상된다.
-
- IT/바이오
-
[우주의 속삭임(77)] 중국 탐사선, 화성 고대 바다 존재 증거 발견…과학계 논쟁 가열
-
-
[퓨처 Eyes(55)] 우주 쓰레기, 인류의 우주 꿈을 위협한다: 4300톤의 그림자, 지구 덮치나?
- 인류의 우주 탐사 역사는 아직 60년 남짓에 불과하지만, 그 짧은 시간 동안 지구 궤도에는 엄청난 양의 우주 쓰레기가 축적되었다. 유럽우주국(ESA)에 따르면 지구 궤도를 도는 위성 파편 등 우주 쓰레기의 무게는 무려 1만3000톤에 달한다. 그중 작은 파편에 해당하는 우주 쓰레기는 4300톤으로, 자유의 여신상(약 204톤) 약 21개에 달하는 무게의 우주 쓰레기가 지구 주위를 맴돌며 인류의 우주 꿈을 위협한다. 1960년대 본격적인 우주 탐사 시대가 열린 이후, 수많은 국가들이 앞다투어 우주로 진출했다. 1969년 아폴로 11호의 달 착륙은 인류에게 새로운 가능성을 제시했고, 이후 미국, 러시아, 중국, 일본, 인도, 유럽연합 등 우주 강국들은 탐사선 개발에 박차를 가하며 우주 경쟁을 펼쳐왔다. 최근에는 한국과 아랍에미리트까지 가세하며 우주를 향한 열망은 더욱 뜨거워지고 있다. 통제 불능의 우주 쓰레기 증가 그러나 우주 탐사의 이면에는 어두운 그림자가 드리워져 있다. 바로 우주 쓰레기 문제다. 나사(NASA)에 따르면 2015년 기준 지구 상공에 위성을 포함해 약 3만 개의 물체가 돌고 있는 것으로 나타났다. 특히 고장난 인공위성, 탐사선의 파편, 로켓 발사 후 남은 잔해물 등이 지구 궤도를 떠돌며 심각한 위협으로 부상하고 있다. 이러한 우주 쓰레기는 운용 중인 인공위성이나 탐사선과 충돌하여 통신 장애, GPS 기능 중단 등의 문제를 일으킬 수 있다. 최근 몇 달 사이, 궤도상에서 폐기된 위성과 로켓 잔해가 잇따라 파손되면서 우주 쓰레기 문제가 더욱 심각해지고 있다. 우주 쓰레기가 급증하면서 '케슬러 증후군'이 현실화 될 것이라는 우려가 제기되고 있다. 1978년 NASA의 과학자 도널드 J. 케슬러가 제시한 케슬러 증후군은 우주 쓰레기가 서로 충돌하면서 기하급수적으로 늘어나, 결국 지구 궤도 전체를 뒤덮어 인공위성이나 우주선의 운용을 불가능하게 하는 현상을 말한다. 케슬러 증후군은 아직까지는 가설 단계지만 늘어난 우주 쓰레기들이 서로 충돌하면서 더욱 많은 파편들이 기하급수적으로 늘어나면서 현실적인 위협으로 인식되고 있다. 실제로 지난 6월에는 러시아의 RESURS-P1 위성이 지구 저궤도에서 파괴되어 100개 이상의 추적 가능한 파편을 생성했으며, 7월에는 미국의 DMSP 5D-2 F8 위성이 분해되었다. 8월에는 중국의 장정 6A 로켓 상단 부분이 파편화되면서 최소 283개의 추적 가능한 파편과 수십만 개의 미세 파편을 발생시켰다. 이처럼 폐기된 우주 물체의 파손은 크고 작은 파편들을 양산하며 우주 쓰레기 문제를 심화시키고 있다. 특히 미세 파편의 경우 추적이 어려워 더 큰 위험 요소로 작용한다. 이러한 파편들은 현재 운용 중인 위성이나 우주선과 충돌하여 심각한 피해를 초래할 수 있다. 최근 발생한 인텔샛 33e 위성(Intelsat 33e·대형 통신 위성) 파손 사고는 이러한 우려를 더욱 증폭시키고 있다. 인텔샛은 2024년 10월 19일, 인도양 상공 약 3만 5000km 궤도에서 인텔샛 33e 위성이 갑작스러운 전력 손실로 파괴됐다고 밝혔다. 최소 20개의 조각으로 분해된 이 위성은 유럽, 아프리카, 중동, 아시아 지역의 위성 통신 서비스에 큰 차질을 빚었다. 무게 6600kg에 리무진 크기의 인텔샛 33e 위성은 보잉에서 설계와 제작을 맡았고 2016년 궤도에 진입해 8년 동안 임무를 수행으나 갑자기 붕괴됐다. 위성이 갑자기 분해된 정확한 이유는 아직까지 불분명하다. 위성 파괴는 연쇄적인 충돌을 야기하여 피해 규모를 더욱 키울 수 있다는 점에서 우주 쓰레기 문제는 '시한폭탄'과 같다. 우주 쓰레기 추적과 관리의 어려움 유럽우주국(ESA)에 따르면, 현재 지구 궤도에는 10cm 이상의 우주 쓰레기가 4만 개 이상, 1cm 미만의 미세 파편은 무려 1억 3000만 개 이상 존재한다. 이를 무게로 환산하면 약 1만3000톤에 달하며, 그 중 4300톤이 작은 파편으로 추정된다. 나사(NASA)에 따르면 사과 크기의 우주 쓰레기가 약 2만1000개, 구슬 크기의 쓰레기가 50만개, 추적이 어려울 정도의 작은 쓰레기가 최고 1억개에 이른다고 추정한다. 특히 지구 저궤도(LEO)에 집중된 우주 쓰레기는 추적과 관리가 매우 어렵다. 정지궤도(GEO)에서 발생하는 파편들은 위치 추적이 더욱 까다로워 효과적인 관리 시스템 마련이 시급하다. 다행히 우주 쓰레기 문제 해결을 위한 노력도 활발히 진행되고 있다. JAXA(일본 우주항공연구개발기구)의 지원을 받는 스타트업 스타 시그널 솔루션스(Star Signal Solutions)는 '사테나비 S-CAN'이라는 혁신적인 충돌 회피 네비게이션 시스템을 개발했다. 이 시스템은 위성 운용자들이 우주 쓰레기의 궤도를 실시간으로 모니터링하고 충돌 위험을 사전에 예측하여 회피할 수 있도록 지원한다. 스타 시그널 솔루션스의 이와키 요타이 대표는 "위성 운용에는 전문 지식과 24시간 대응 체계가 요구되며, 막대한 운영 비용이 발생한다"고 지적하며, "사테나비 S-CAN은 최적의 회피 경로를 제시하여 운영 부담을 줄이고 연료 소비를 최소화하여 비용 절감 효과를 가져온다"고 강조했다. 하지만 기술 개발만으로는 우주 쓰레기 문제를 완전히 해결할 수 없다. 우주 쓰레기 문제는 본질적으로 전 지구적 차원의 문제이기 때문에 국제적인 협력이 필수다. 1972년 제정된 '우주물체에 의한 손해에 대한 국제책임협약'은 우주 물체 발사 국가의 손해 배상 책임을 명시하고 있지만, 실제 적용 사례는 매우 드물다. 우주 공간의 특수성으로 인해 책임 소재 규명이 어렵기 때문이다. 전문가들은 우주 쓰레기 문제 해결을 위해서는 각국의 협력을 통한 국제적 감시 시스템 구축 및 규제 강화가 시급하다고 강조한다. 우주 물체의 안전한 폐기, 추적 기술 개선, 파편 발생 최소화 등 다각적인 노력이 필요하며, 지속 가능한 우주 탐사를 위한 국제 사회의 공동 책임 의식이 무엇보다 중요하다. 국제우주정거장, 지구 재진입후 폐기 예정 참고로 국제우주정거장(ISS)은 2030년 운영 종료 후 2031년 1월에 폐기될 예정이다. NASA는 2031년 1월에 ISS를 지구 대기권으로 재진입시켜 태우는 방식으로 폐기할 계획이다. 잔해는 '우주선의 무덤'으로 불리는 남태평양의 포인트 니모(Point Nemo)에 수장된다. ISS는 1998년부터 운영되어 왔으며, NASA, 캐나다우주국(CSA), 유럽우주국(ESA), 일본우주항공연구개발기구(JAXA), 러시아 연방우주공사(Roscosmos) 등이 협력해 운영해 왔다. 하지만 ISS는 노후화로 인해 유지 보수 비용이 증가하고 있으며, 새로운 우주 탐사 계획을 위해 폐기가 결정됐다. ISS 폐기 후에는 민간 우주 정거장이 그 역할을 대신할 것으로 예상된다. 인류의 우주 탐사는 앞으로도 계속될 것이다. 하지만 우주 쓰레기 문제를 해결하지 못한다면 인류의 우주 꿈은 쓰레기 더미에 묻혀버릴지도 모른다. 지금부터라도 국제 사회가 힘을 모아 책임 있는 자세로 우주 쓰레기 문제 해결에 적극적으로 나서야 할 때다.
-
- 포커스온
-
[퓨처 Eyes(55)] 우주 쓰레기, 인류의 우주 꿈을 위협한다: 4300톤의 그림자, 지구 덮치나?
-
-
[우주의 속삭임(73)] 지구에 떨어지는 운석, 대부분 '같은 곳'에서 왔다?
- 밤하늘을 가로지며 떨어지는 유성은 늘 보는 사람들을 매료시킨다. 그렇다면 지구에 도달해 밤하늘을 환하게 밝히는 유성은 과연 어디에서 왔을까? 우리 말에 유성과 별똥별이 있다. 일반적으로 비슷한 의미로 혼동하기 쉽지만 유성과 별똥별은 엄밀히 말하면 다른 뜻이다. 우주 공간을 돌아다니는 아주 작은 먼지나 돌멩이를 유성체라고 한다. 유성체가 지구 대기권으로 진입하면서 공기와의 마찰로 인해 빛을 내는 현상을 유성이라고 한다. 유성체가 대기 중에서 완전히 타지 않고 지표면까지 떨어진 것을 운석, 우리말로는 별똥별이라고 부른다. 매년 약 1만7000개의 유성이 지구 대기권에 진입하며, 그중 일부는 지표면에까지 도달한다. 과학자들은 이러한 운석을 통해 우주의 비밀을 탐구한다. 운석의 기원은 달이나 화성 등 다양하지만 대부분은 소행성에서 유래한다고 PHYS가 전했다. 최근 네이처(Nature)지에 발표된 두 연구는 이러한 운석의 기원을 더욱 명확히 밝혀냈다. 체코 카렐 대학교의 미로슬라프 브로즈(Miroslav Brož)와 유럽 남방 천문대의 미카엘 마셋(Michaël Marsset)이 이끄는 연구팀은 대부분의 운석이 소수의 소행성, 심지어는 특정 소행성에서 비롯되었다고 밝혔다. 이는 지구와 태양계 역사를 형성한 사건들에 대한 이해를 넓히는 데 기여한다. 이번 연구 결과는 학술지 네이처(Nature)에 게재됐다. 운석이란 무엇인가? 앞서 설명했듯이 유성이 지구 표면에 도달하면 '운석(meteorite)'이라고 부른다. 운석은 크게 석질운석, 철질운석, 석철질 운석 세 가지로 나뉜다. 석질운석 중 가장 흔한 종류는 '콘드라이트(chondrites)'로, 용융된 액체 방울 형태의 구형 입자를 포함하며 전체 운석의 85%를 차지한다. 대부분은 '일반 콘드라이트'로 철 함량과 광물 성분에 따라 H, L, LL의 세 가지 유형으로 나뉜다. '탄소질 콘드라이트(Carbonaceous chondrites)'는 점토 광물에 다량의 물과 아미노산 같은 유기물을 함유하고 있으며, 용융되지 않는 태양계 초기의 먼지 샘플이다. 반면 '아콘드라이트(achondrites)'는 콘드라이트와 달리 구형 입자가 없으며, 행성체에서 용융 과정을 거쳤다. 운석의 주요 공급원 '소행성대' 태양 주위를 공전하는 작은 천체인 소행성은 운석의 주요 공급원이다. 행성처럼 태양 주위를 돌지만, 행성보다 훨씬 작고 모양도 불규칙적인 경우가 많다. 대부분의 소행성은 화성과 목성 궤도 사이에 있는 '소행성대(Asteriod belt)'에 모여있으며, 목성의 중력에 의해 궤도를 돌고 있다. 목성과의 상호작용은 소행성 궤도를 교란시켜 충돌을 유발하고, 그 결과 발생한 파편들이 모여 '돌무더기 소행성'을 형성한다. 최근 하야부사와 오시리스-렉스 탐사선은 이러한 소행성에서 샘플을 채취해 지구로 가져왔다. 과학자들은 이룰 통해 특정 소행성 유형과 지구에 떨어지는 운석 사이의 연관성을 확인했다. 석질운석과 S형 소행성은 소행성대 안쪽에, 탄소질 콘드라이트와 유사한 C형 소행성은 바깥쪽에 분포한다. 소행성 '코로니스'와 '마살리아' 이번의 새로운 두 연구는 일반 콘드라이트 유형의 기원을 특정 소행성군, 특히 '코로니스'와 '마살리아' 소행성군으로 추적했다. 이는 운석 궤적 분석, 개별 소행성 관측, 모체 궤도 진화 모델링 등의 복잡한 과정을 통해 이루어졌다. 브로즈가 주도한 연구에 따르면 일반 콘드라이트는 3000만년 전에 발생한 지름 30km 이상의 소행성 충돌에서 비롯된 것으로 밝혀졌다. 상세한 컴퓨터 모델링에 따르면 코로니스와 마살리아 소행성군은 적절한 크기의 천체를 가지고 있으며 지구에 운석을 공급할 수 있는 위치에 있다. 특히 코로니스 소행성군의 '코로니스'와 '카린'은 H 콘드라이트의 주요 공급원일 가능성이 높으며 마살리아(L)와 플로라(LL) 계열은 L- 및 LL- 콘드라이트의 주요 공급원이다. 마셋이 주도한 연구는 마살리아에서 발견된 L 콘드라이트 운석의 기원에 대해 자세히 설명한다. 연구팀은 화성과 목성 사이의 소행성대에서 분자의 지문이 될 수 있는 특징적인 빛의 세기인 분광 데이터를 수집했다. 그 결과 지구에 있는 L 콘드라이트 운석의 구성이 마살리아 소행성 계열의 운석과 매우 유사하다는 사실이 밝혀졌다. 그런 다음 과학자들은 컴퓨터 모델링을 사용하여 약 4억 7000만 년 전에 발생한 소행성 충돌이 마살리아 소행성군을 형성했음을 보여주었다. 우연히도 이 충돌로 인해 스웨덴의 오르도비스기 석회암에서 풍부한 화석 운석이 발견되기도 했다. 이러한 연구 결과는 지구에 떨어지는 운석의 기원을 밝히고 태양계 형성 과정에 대한 이해를 높이는 중요한 역할을 한다. 또한 향후 운석의 기원 소행성을 탐사하는 임무의 기초 자료로 활용될 수 있을 것으로 기대된다.
-
- IT/바이오
-
[우주의 속삭임(73)] 지구에 떨어지는 운석, 대부분 '같은 곳'에서 왔다?
-
-
[우주의 속삭임(71)] 나사, 태양 11년 주기의 극대기 도달
- 나사(NASA)와 국립해양대기청(NOAA), 국제 태양주기예측패널은 태양이 태양 극대기에 도달했으며, 이는 내년에도 지속될 수 있다고 발표했다. 발표의 자세한 내용이 나사 홈페이지에 게재됐다. 태양 주기는 태양이 낮은 자기 활동과 높은 자기 활동을 반복하면서 거치는 자연스러운 주기다. 대략 11년마다 태양 주기가 최고조에 달할 때 태양의 자기극이 뒤집힌다. 지구에서는 북극과 남극이 10년마다 자리를 바꾸는 것과 같으며, 태양은 고요한 상태에서 활동적이고 폭풍우가 몰아치는 상태로 전환된다. 나사와 NOAA는 태양 흑점을 추적해 태양 주기의 진행 상황을 파악하고 궁극적으로 태양 활동을 예측한다. 태양 흑점은 자기장 선이 집중돼 발생하는 태양의 차가운 영역이다. 태양 흑점은 태양의 활동 영역, 즉 태양의 강렬하고 복잡한 자기장 영역의 가시적 구성 요소로, 태양 폭발의 원천이다. 워싱턴 소재 나사 본부의 우주 날씨 프로그램 책임자인 제이미 파보스는 "태양 활동 극대기에는 흑점 수가 증가하고, 이에 따라 태양 활동량도 증가한다"면서 "활동의 증가는 가장 가까운 별에 대해 새로운 지식을 쌓을 수 있는 기회를 제공하는 동시에 지구와 태양계 전체에 실제적인 영향을 미친다"고 말했다. 태양 활동은 우주 날씨라고 알려진 우주의 조건에 큰 영향을 미친다. 이는 우주의 위성과 우주인, 라디오와 GPS 등 통신 및 항법 시스템, 지구의 전력망에 영향을 미칠 수 있다. 태양이 가장 활발할 때 우주 기상 현상이 더 빈번해진다. 태양 활동으로 인해 최근 몇 달 동안 오로라 현상이 증가했음은 물론 위성과 인프라에 영향을 미쳤다. 2024년 5월, 대규모 태양 플레어와 코로나 질량 방출(CME)이 일어나면서 하전 입자와 자기장 구름이 지구를 향해 발사돼 20년 만에 지구에서 가장 강력한 지자기 폭풍을 일으켰으며, 지난 500년 동안 기록된 가장 강력한 오로라가 하늘을 수놓았다. NOAA의 우주 기상 운영 책임자인 엘세이드 탈라트는 "지금이 이번 태양 주기에서 볼 수 있는 태양 활동의 정점이라는 것을 의미하지는 않는다"라고 말했다. 그는 "태양이 극대기에 도달했지만, 태양 활동이 정점에 도달하는 달은 몇 달 또는 몇 년 동안 확인되지 않을 것"이라고 언급했다. 태양 극대기의 정확한 정점을 여러 달 동안 결정할 수 없을 것이라는 의미다. 정점 이후 태양 활동이 지속적으로 감소한 것을 추적한 후에야 식별할 수 있게 된다. 다만 전문가들은 최근 2년이 태양 주기의 활동적인 단계의 일부였음을 확인했는데, 이는 이 기간 동안 태양 흑점이 지속적으로 많았기 때문이다. 학자들은 태양이 감소 단계에 들어가 태양 최소기로 돌아가기 전까지 최대 단계가 1년 정도 더 지속될 것으로 예상했다. 1989년부터 나사와 NOAA가 후원하는 전문가로 구성된 국제 패널인 태양 주기 예측 패널은 태양 주기에 대해 예측하기 위해 협력해 왔다. 천문학자들은 갈릴레오가 1600년대에 처음으로 흑점을 관찰한 이래 태양 주기를 추적해 왔다. 각 태양 주기는 다르다. 때로는 더 크고 짧은 시간 동안 최고조에 도달하고, 다른 경우에는 최고조가 더 작고 더 오래 지속되기도 한다. 지금까지 태양 주기에서 가장 강력한 플레어는 지난 10월 3일 발생한 X9.0이었다. X 등급 숫자는 강렬한 플레어의 단계를 나타낸다. NOAA는 이번 태양 극대기 동안 추가적인 태양 및 지자기 폭풍이 있을 것이며, 향후 몇 달 동안 오로라를 볼 수 있는 기회와 함께 기술 인프라에 대한 영향이 있을 것으로 예상했다. 나사와 NOAA는 우주 날씨 연구 및 예측의 미래를 준비하고 있다. 오는 12월, 나사의 파커 태양 탐사선 임무는 태양에 역사상 가장 가까이 접근해 관측을 수행하게 되는데, 이를 통해 우주 날씨를 더 깊이 이해할 수 있을 것으로 기대된다. 우주 날씨 예측은 나사의 아르테미스 미션에 참여하는 우주선과 우주인을 지원하는 데 필수적이다. 우주 환경을 탐사하는 것은 우주인이 우주 방사선에 노출되는 것을 막는 데 중요하다.
-
- IT/바이오
-
[우주의 속삭임(71)] 나사, 태양 11년 주기의 극대기 도달
-
-
[퓨처 Eyes(53)] 세계 최초, 나노 크기 물방울 생성 실시간 포착
- 수소와 산소를 결합하는 과정을 통해 나노크기의 물방울 생성 장면이 처음으로 포착됐다. 미국 노스웨스턴 대학교 연구팀이 은백색 금속인 팔라듐(Pd)을 이용해 수소와 산소를 결합, 나노 크기의 물방울을 실시간으로 생성하는 과정을 세계 최초로 관찰하고 촬영하는 데 성공했다. 이 연구는 심우주 탐사에서 물을 생산하는 혁신적인 기술로 활용될 가능성을 제시하며 주목받고 있다. PHYS.org, IFL사이언스, 사이언스 얼러트 등 다수 외신이 이 같은 내용을 중점적으로 다루었다. 팔라듐 반응으로 나노 물방울 생성 물(H₂O)의 성분은 간단하다. 수소 원자 2개와 산소 원자 1개를 섞으면 지구 생명체 유지에 가장 중한 물 분자가 만들어진다. 연구팀은 팔라듐 반응을 직접 관찰하기 위해 20나노미터(1나노미터는 10억분의 1미터) 너비의 팔라듐 조각 표면에 수소와 산소 원자를 추가하고 멤브레인을 사용해 이어지는 상호작용을 포착했다. 팔라듐은 수소를 흡수하고 저장하는 능력이 뛰어난 금속으로, 수소가 팔라듐 구조 내부로 들어가 산소와 빠르게 결합하면서 물을 생성한다. 이번 연구에서는 벌집 모양의 나노 반응기와 초박막 유리 멤브레인을 사용해, 팔라듐 표면에서 수소와 산소가 결합해 물방울을 형성하는 과정을 실시간으로 시각화했다. 연구팀은 고진공 투과 전자 현미경을 이용해 이 극미세 반응을 관찰했다. 벌집 모양의 나노 반응기는 기체 분자를 가두어 서로 반응하게 한 후, 그 과정을 초박막 멤브레인을 통해 실시간으로 관찰할 수 있는 기술을 구현했다. 이를 통해 연구팀은 팔라듐이 수소와 산소를 빠르게 물로 변환하는 나노 단위의 과정을 확인했다. 전자 에너지 분광법을 통한 분석 연구팀은 팔라듐 표면에서 생성된 나노 크기의 물방울을 전자 에너지 분광법(EELS)을 사용해 분석했다. 이 방법은 전자를 시료에 쏘아 전자의 에너지 손실을 측정함으로써 시료의 화학적 결합 상태를 파악하는 기술이다. 이를 통해 연구팀은 팔라듐 표면에서 발생하는 물 분자의 결합 상태와 생성 과정을 정밀하게 관찰할 수 있었다. 이는 또한 인도의 달 탐사선 찬드라얀 1호가 달에서 물의 존재를 확인하는데 사용된 것과 동일한 기술이기도 하다. 2008년 발사된 찬드라얀 1호는 얼름, 헬륨-3을 포함한 달의 자원을 조사했다. 물은 인류 생존에 중요한 요소로 과학자들은 달의 남극에서 상당한 양의 물을 발견했으며, 미래의 우주 임무에서 달의 물을 활용하는 점에 주목하고 있다. 게다가 지난 2023년 8월 23일 찬드라얀 3호가 달에서 물이 풍부한 지역으로 알려진 남극 지역에 세계 최초로 착륙해 달 탐사의 새로운 이정표를 세웠다. 우주에서 물 생성 응용 가능성 이번 연구는 심우주 탐사에서 물을 현지에서 생산할 수 있는 가능성을 열었다. 팔라듐을 이용해 수소를 미리 우주선에 저장해두면, 우주 비행사들은 산소만 추가해 식수를 생산할 수 있는 방법을 제시한 것이다. 이는 달, 화성,목성 탐사와 같은 장기 우주 미션에서 중요한 자원 확보 방식으로 활용될 수 있다. 연구의 시니어 저자인 노스웨스턴 대학교 비나약 드라비드 교수는 "나노 규모의 물방울을 직접 시각화함으로써, 극한의 반응 조건 없이도 가스와 금속 촉매를 사용해 빠르게 물을 생성할 수 있는 최적의 조건을 파악할 수 있었다"고 밝혔다. 그는 "이 기술은 우주 환경뿐만 아니라, 수소 연료 전지와 같은 에너지 생산 기술에도 중요한 영향을 미칠 것"이라고 덧붙였다. 팔라듐의 촉매 역할과 수소 에너지 팔라듐은 연성과 전성이 뛰어나 가공하기 쉽고, 내부식성이 강하며 고온에서도 안정적이다. 특히 촉매 활성이 뛰어나 다양한 화학 반응에 활용되며, 수소를 흡수하는 능력 덕분에 최근 수소 에너지와 연료 전지 분야에서 그 중요성이 더욱 커지고 있다. 이번 연구는 팔라듐이 수소와 산소를 결합해 물을 생성하는 속도가 수소와 산소의 주입 순서에 따라 크게 달라진다는 사실을 밝혀냈다. 이는 우주 공간과 같은 특수 환경에서 물을 효율적으로 생산하는 기술 개발에 기여할 것으로 기대된다. 영화 '마션'의 현실화 연구팀은 영화 '마션'에서 주인공 마크 와트니(맷 데이먼 분)가 화성에서 로켓 연료를 태워 수소를 추출하고 산소와 결합해 물을 만든 장면을 언급하며, "우리 기술도 극한 환경 없이 팔라듐과 기체만으로 물을 생성할 수 있다"고 설명했다. 이는 우주 탐사에서 더 간단하고 효율적인 물 생산 방법을 제시한 것이다. 이 연구 결과는 미국 국립과학원회보(PNAS)에 게재되었으며, 향후 우주 탐사 및 수소 에너지 분야에서 중요한 응용 가능성을 제시하고 있다.
-
- 포커스온
-
[퓨처 Eyes(53)] 세계 최초, 나노 크기 물방울 생성 실시간 포착
-
-
[우주의 속삭임(69)] 화성, 왜 생명체가 살 수 없게 됐나?
- 현재 화성의 게일 분화구를 탐사하고 있는 나사(NASA)의 탐사선 큐리오시티가 초기 화성의 기후가 생명체가 살기에 적합했던 상황(표면에 광범위한 물이 있다는 증거)에서 어떻게 생명체가 살기에 부적합한 곳으로 바뀌었는지에 대한 새로운 세부 정보를 제공하고 있다고 나사가 홈페이지를 통해 밝혔다. 화성 표면은 매우 차갑고 오늘날 생명체가 살기에는 부적합하지만, 전문가들은 나사의 화성 탐사선은 먼 과거에 화성에 생명체가 살았을 수 있는지에 대한 단서를 찾고 있다. 그런 가운데 연구진이 큐리오시티에 탑재된 장비를 이용해 게일 분화구에서 발견된 탄소가 풍부한 광물(탄산염)의 동위원소 구성을 측정했고, 화성의 고대 기후가 어떻게 변화했는지에 대한 새로운 정보를 찾아냈다. 메릴랜드주에 소재한 나사 고다드 우주비행센터의 데이비드 버트 박사는 최근 미국 국립과학원회보에 발표된 연구 논문에서 "이 탄산염의 동위원소 값은 극심한 양의 증발이 있었음을 알려주며, 탄산염은 일시적인 액체 상태의 물만을 지탱할 수 있는 기후에서 형성되었을 가능성이 높다“라고 말했다. 그는 "채취한 탄산염 샘플은 화성 표면에서 생명체가 살았던 고대 환경(생물권)과 일치하지는 않지만, 탄산염이 형성되기 전 생물권이 있었을 가능성을 배제하지는 않는다"고 덧붙였다. 즉, 화성은 탄산염이 생성되기 전 물이 풍부했을 때에는 생물권이 있었을 가능성이 있지만, 갑작스러운 액체 상태 물의 대규모 증발로 인해 물이 마르고 그 과정에서 탄소가 풍부한 탄산염이 만들어졌을 가능성이 있다는 것이다. 동위원소는 원자 번호는 같지만, 질량이 다른 원자를 말한다. 물이 급속도로 증발함에 따라 가벼운 탄소와 산소는 대기 중으로 빠져나가고, 무거운 탄소 원자는 남아 더 많은 양이 축적되어 결국 탄산염 암석과 결합됐다. 과학자들이 탄산염에 관심을 갖는 이유는 기후에 대한 기록, 즉 증거로 작용할 수 있기 때문이다. 이러한 광물은 물의 온도와 산성도, 물과 대기의 구성을 포함, 광물이 형성된 당시 환경의 특징을 그대로 보존한다. 이 논문은 게일 분화구에서 발견된 탄산염에 대한 두 가지 형성 가능성을 제안하고 있다. 첫 번째는 탄산염이 게일 분화구 내에서 일련의 습윤-건조 순환을 통해 만들어졌다는 것이다. 두 번째는 탄산염이 게일 분화구에서 극저온 조건 아래 매우 염분이 많은 물에서 형성됐을 것이라는 가능성이다. 공동 연구자인 나사의 제니퍼 스턴 박사는 "이러한 형성 메커니즘은 서로 다른 생명체 거주 가능성 시나리오를 제시하는 두 가지 다른 기후 체제를 보인다"며 "첫 번째 시나리오인 습윤-건조 순환은 더 살기 좋은 환경과 덜 좋은 환경 사이의 교차를 나타낸다. 반면, 두 번째 시나리오에서 화성 중위도의 극저온 기온은 대부분의 물이 얼어 있고 염분이 많아 거주 가능성이 낮은 환경을 보인다"고 말했다. 첫 번째 시나리오에서 생명체의 거주 가능성이 높음을 시사한다. 고대 화성에 대한 이 같은 기후 시나리오는 특정 광물의 존재, 대규모의 모델링 및 암석층 형성의 식별을 기반으로 제안됐다. 이 결과는 시나리오를 뒷받침하는 암석 샘플의 동위원소 증거를 추가한 최초의 결과다. 화성 탄산염의 중금속 동위원소 값은 지구의 탄산염 광물보다 매우 높으며, 화성 광물에서 기록된 가장 무거운 탄소 및 산소 동위원소 값이다. 연구진에 따르면 습윤-건조 또는 차갑고 염분이 많은 두 가지 기후 시나리오는 모두 중금속 탄소와 산소가 풍부한 탄산염을 형성하는 데 필요하다. 이 발견은 큐리오시티 탐사선에 실린 화성 샘플분석(SAM) 및 레이저분광기(TLS) 장비를 사용해 이루어졌다. SAM은 샘플을 섭씨 900도까지 가열한 다음 TLS를 사용해 가열 단계에서 생성되는 가스를 분석한다. 한편, 이 작업에 대한 자금 지원은 나사의 화성 탐사 프로그램을 통해 지원됐다.
-
- IT/바이오
-
[우주의 속삭임(69)] 화성, 왜 생명체가 살 수 없게 됐나?
-
-
[우주의 속삭임(65)] 화성 암석 화석 지형, 200억 년 전 고대 기후 암시
- 지구의 이웃인 '붉은 행성' 화성의 과거 기후가 지금과 많이 달랐다는 것은 잘 알려진 사실이다. 흐르는 물, 풍부한 얼음, 더 조밀한 대기가 고대 화성의 주요 특징이었다. 모든 기후적인 특성이 사라졌지만, 그 증거는 곳곳에 남아 있다. 천문학자들은 장기간에 걸쳐 화성에 존재하는 지형에 대한 다양한 심층 분석을 수행했고, 그런 가운데 과거 지형의 화석 및 암석 증거를 발견했다고 IFL사이언스가 전했다. 이 연구는 지형학(Geomorphology) 저널에 게재됐다. 학자들은 남아 있는 증거를 '고대 지형(paleo-bedforms)'이라고 부른다. 바람에 의한 모래언덕의 잔물결, 빙하의 작용, 강의 흐름, 호수의 파도는 화성 탐사선에 의해 관찰되고 궤도에서 촬영됐다. 10년 넘게 진행된 이 프로젝트를 통해 고대 지형에 대한 전 세계 조사가 이루어졌다. 그 결과 바람이나 물에 의해 깎여진 화성 전역의 고대 기후에 대한 증거가 드러났다. 연구팀은 나사(NASA)의 화성 정찰 궤도선(Mars Reconnaissance Orbiter)에 장착된 HiRISE 카메라가 촬영한 이미지를 이용, 바람에 의해 화성 모래에 깎여진 고대 사구(모래언덕)와 고대 잔물결을 발견했다. 또 물에 의해 형성된 하천의 모래언덕과 사구 캐스트 구덩이도 찾아냈다. 고대 사구는 너무 침식돼 얕게 움푹 들어간 부분만 남았다. 행성과학연구소의 매튜 초이나키 박사는 "이러한 고대 사구의 대부분은 현대 사구와 같지만, 더 낡은 모양으로 보인다"고 말했다. 바람과 물이 어떻게 영향을 미쳐 화석화시킬까. 전자의 경우, 연구팀은 바람이 모래를 형성하고 바람이 가라앉으면서 먼지 모래가 천천히 굳어 암석이 된다고 본다. 이는 고대 화산 폭발로 인한 용암이나 화산재에 묻히면 가속될 수 있다. 후자인 물의 경우, 하천에 의한 것은 찾기 어렵고 고대 대홍수 상황에서만 발견되었다. 대부분의 고대 지형은 약 20억 년 전이거나 최근의 것이다. 이 지형은 묻혀 있다가 느린 침식으로 인해 다시 드러났거나, 아니면 에초에 묻히지 않은 채로 남아 있다. 이러한 지형은 마리너 계곡(Valles Marineris), 녹스 미궁(Noctis Labyrinthus), 헬라스 분지(Hellas Planitia)처럼 화성의 유명한 지역을 포함해 화성 전역에서 발견되고 있다. 초이나키 박사는 "화성의 많은 지형이 현재 활동하고 이동하고 있지만, 다른 여러 지형은 정적이며 결국 암석화로 이어질 수 있는 일종의 안정화 과정이라는 증거를 보여주고 있다"면서 "이 연속체를 이해하면 화성의 변화하는 기후 조건을 더 잘 이해할 수 있을 것"이라고 밝혔다.
-
- IT/바이오
-
[우주의 속삭임(65)] 화성 암석 화석 지형, 200억 년 전 고대 기후 암시
-
-
[우주의 속삭임(62)] NASA 탐사선, 화성에서 특이한 '줄무늬 바위' 발견
- 나사(NASA)의 퍼시비어런스(Perseverance) 화성 탐사선이 화성의 제제로(Jezero) 분화구에서 얼룩말과도 같은 특이한 '줄무늬 바위'를 발견했다고 라이브사이언스가 전했다. 이 바위는 지금까지 화성에서 보았던 어떤 바위와도 다르다. 이 탐사선은 이달 초 선체에 높이 장착된 카메라를 통해 흑백 줄무늬 바위의 이미지를 포착했다. 나사의 천문학자들은 퍼시비어런스 탐사선이 이미 그 지역을 떠난 후인 이달 13일 이미지를 획득했다고 전했다. 천문학자들이 '프레야 캐슬(Freya Castle)'이라고 명명한 이 바위는 이전에 볼 수 없었던 질감을 가지고 있다. 나사 담당자는 "이 바위의 화학적 조성에 대한 지식은 제한되어 있지만, 초기 해석은 화성 또는 변성 과정에서 줄무늬를 만들었을 수 있다는 것"이라고 밝혔다. 화성 과정은 마그마의 결정화와 관련된 것이며, 변성 과정은 높은 열과 압력으로 인해 암석 구성이 변화하는 과정이다. 프레야 캐슬은 가로 약 20cm이다. 이 얼룩말 바위는 주위의 기반암과 다르기 때문에, 다른 곳에서 옮겨져 왔을 가능성도 있다. 한 가지 가능성은 바위가 분화구 위쪽에서 굴러 떨어졌을 수 있다는 것이다. 나사 측은 "이는 매우 재미있는 가능성”이라면서 "계속 오르막길을 이동하면서 퍼시비어런스 탐사선이 새로운 유형의 바위를 발견해 더 자세한 측정을 할 수 있기를 희망한다"고 기대했다.
-
- IT/바이오
-
[우주의 속삭임(62)] NASA 탐사선, 화성에서 특이한 '줄무늬 바위' 발견
-
-
[우주의 속삭임(61)] NASA, 지구 근접 통과한 거대한 눈사람 모양 소행성 이미지 공개
- 나사(NASA)의 천문학자들이 지구에 근접해 통과한 눈사람 모양의 매혹적인 소행성 이미지를 공개했다고 라이브사이언스가 전했다. '2024 ON'이라는 이름의 이 소행성은 지난 17일 지구에서 100만km 떨어진 거리에서 안전하게 지구를 지나갔다. 이는 달과 지구 사이의 거리의 약 2.6배에 해당하는 거리다. 이 소행성은 시속 3만1933km로 이동 중이었으며, 이는 음속의 약 26배이다. 나사가 공개한 새로운 이미지는 16일 캘리포니아 중부 바스토우 근처의 골드스톤 태양계 레이더(Goldstone Solar System Radar)에 의해 포착됐다. 이미지는 고층 빌딩 크기의 이 소행성이 땅콩과 매우 닮았다는 사실을 보여주었다. 그러나 실제로 눈사람 또는 땅콩 모양의 소행성은 아니었다. 2024 ON은 사실은 두 개의 소행성이 서로 밀접하게 가까워진 후 자체 중력에 의해 접촉한 쌍성의 형태로 고정되었기 때문에 일어난 모양이었다. 과거 유명한 다른 접촉 쌍성으로는 화성과 목성 사이의 주요 벨트에 있는 소행성 딘키네시(Dinkinesh)를 공전하는 소행성 '인 셀람(Selam)'과 2015년 나사의 뉴 호라이즌 탐사선이 연구한 명왕성 궤도 너머의 극저온 천체인 '아로코스(Arrokoth)'가 있었다. 나사는 이와 관련 "발견된 소행성은 잠재적으로 위험한 천체로 분류되었지만 가까운 미래에 지구에 위험을 초래하지는 않는다"라며 "골드스톤 태양계 레이더 측정을 통해 천문학자들은 수십 년 동안 지구와 소행성 사이의 거리 측정과 함께 소행성의 미래 운동에 대한 불확실성을 크게 줄일 수 있었다"고 밝혔다. 나사는 지구에서 750만km 이내에 들어오는 모든 우주 물체들이 지구에 즉각적인 위협이 되지 않더라도 '잠재적으로 위험하다'고 간주한다. 그 이유는 그러한 소행성의 궤도를 조금만 움직여도(예를 들어 다른 소행성과 부딪히는 경우) 지구와 충돌할 수 있기 때문이다. 나사는 24시간마다 밤하늘 전체를 스캔해 약 2만 8000개에 달하는 소행성의 위치와 궤도를 추적한다. 나사는 이 모든 지구 근처 소행성의 예상되는 향후 궤적을 추정해 냈는데, 그 결과 지구는 앞으로 최소한 100년 동안은 종말론적인 소행성 충돌 위험에 직면하지 않을 것임을 발견했다.
-
- IT/바이오
-
[우주의 속삭임(61)] NASA, 지구 근접 통과한 거대한 눈사람 모양 소행성 이미지 공개
-
-
화성 '거미' 지형, NASA 실험실서 최초 재현 성공
- 미 항공우주국(나사·NASA) 과학자들이 실험실에서 화성의 거미 지형 재현에 성공했다고 나사가 지난 11일(현지시간) 홈페이지를 통해 밝혔다. 2003년 궤도선 이미지를 통해 발견된 이후, 화성 남반구에 펼쳐진 거미 모양의 지형은 그동안 과학자들의 호기심을 자극해 왔다. 각각의 가지 형태는 길이가 1km 이상 뻗어 있으며 수백 개의 가느다란 '다리'를 포함하고 있다. '아라네이폼 지형'이라고 불리는 이 지형은 종종 군집을 이루어 표면에 주름진 모습을 띠고 있다. 지금까지는 지구에는 자연적으로 존재하지 않는 이산화탄소 얼음과 관련된 과정을 통해 이 '거미' 지형이 생성된다는 이론이 지배적이었다. 하지만 최근 '행성과학저널(The Planetary Science Journal)'에 발표된 논문에 따르면, 과학자들은 화성의 온도와 기압을 모방한 환경에서 처음으로 이러한 형성 과정을 재현하는 데 성공했다. NASA 제트추진연구소(JPL)의 로렌 맥키온은 "이 거미들은 그 자체로도 기이하고 아름다운 지질적 특징"이라며 "이번 실험은 거미 지형이 어떻게 형성되는 지에 대한 모델을 개선하는 데 도움이 될 것"이라고 말했다. 이번 연구는 '키퍼 모델(Kieffer model)'에서 설명하는 몇 가지 형성 과정을 확인했다. 키퍼 모델은 화성의 남반구에서 발견되는 독특한 거미 모양 지형 즉 '아라네이폼' 지형의 형성 과정을 설명하는 이론이다. 이 모델은 햇빛, 이산화탄소 얼음, 그리고 토양 사이의 상호 작용을 통해 이러한 지형이 만들어진다고 설명한다. 화성의 거미 지형이 만들어지는 원리는 다음과 같다. 먼저 겨울마다 화성 표면에 쌓이는 투명한 이산화탄소 얼음층을 통해 햇빛이 토양을 가열한다. 토양은 위의 얼음보다 어둡기 때문에 열을 흡수하고, 그 결과 가장 가까운 얼음이 액체 상태를 거치지 않고 바로 가스로 변하는 '승화' 과정이 발생한다. 드라이아이스가 액체가 아닌 기체 상태로 바로 변하는 것이 승화다. 다음으로 가스 압력이 증가하면 화성의 얼음에 균열이 생기고 가스가 빠져나갈 수 있게 된다. 가스가 위로 스며 나오면서 토양에서 나온 어두운 먼지와 모래를 함께 끌고 올라가 얼음 표면에 쌓이면서 거미 다리와 같은 모양이 생성된다. 즉, 키퍼 모델 이론에 따르면 겨울이 봄으로 바뀌고 남은 얼음이 승화하면 가스 분출로 인해 거미 모양 지형이 남게 된다. 실험실에서 화성 재현 연구팀에게 가장 아려운 부분은 화성 극지 표면의 조건, 즉 극도로 낮은 기압과 영하 185도에 이르는 낮은 온도를 재현하는 것이었다. 이를 위해 맥키온은 JPL의 액체 질소 냉각 테스트 챔버인 DUSTIE((Dirty Under-vacuum Simulation Testbed for Icy Environments)를 사용했다. 맥키온은 "DUSTIE를 좋아한다. 역사적인 장비다"라며 와인통 크기의 이 챔버가 NASA의 화성 탐사선 피닉스 착륙용으로 설계된 긁는 도구 프로토타입을 테스트하는 데 사용되었다고 밝혔다. 이 도구는 탐사선이 화성 북극 근처에서 물로된 얼음을 깨고 물을 퍼올려 분석하는 데 사용됐다. 이번 실험에서 연구원들은 액체 질소 욕조에 담긴 용기에 화성 토양 시뮬레이션 물질을 넣고 냉각했다. 그런 다음 이를 DUSTIE 챔버에 넣고 화성 남반구와 유사한 기압으로 낮췄다. 이후 이산화탄소 가스를 챔버에 주입하고 3~%시간 동안 기체에서 얼음으로 응축시켰다. 맥키온은 실험에 적합할 만큼 충분히 두껍고 투명한 얼음을 얻기 위해 여러번 시도해야 했다. 화성 남반구와 적절한 특성을 가진 얼음을 얻은 후에는 챔버 내부 시뮬레이션 물질 아래에 히터를 놓고 가열해 얼음 균열을 일으켰다. 맥키온은 마침내 분말 시뮬레이션 물질 내부에서 이산화탄소 가스 기둥이 분출되는 것을 보고 기뻐했다. 그는 "금요일 늦은 저녁이었는데, 실험실 관리자가 제 비명 소리를 듣고 뛰어왔다"며 5년 동안 이런 기둥을 만들기 위해 노력해왔다고 말했다. 어두운 기둥은 시뮬레이션 물질에서 구멍을 뚫고 뿜어져 나왔고, 모든 압축 가스가 배출될 때까지 10분 동안 시뮬레이션 물질을 분출했다. 실험 결과, 키퍼 모델에는 반영되지 않은 놀라운 사실이 발견됐다. 시뮬레이션 물질 알갱이 사이에 얼음이 형성된 후 균열이 생긴 것이다. 이러한 과정은 왜 '거미 지형'이 더 갈라진 모습을 갖는 지 설명했다. 갈라짐 현상 발생 여부는 토양 알갱이의 크기와 지하에 얼음이 얼마나 묻혀 있는지에 따라 달라지는 것으로 보인다. JPL의 세리나 디니에가는 "이것은 자연이 교과서 이미지보다 조금 더 복잡하다는 것을 보여주는 세부 사항 중 하나"라고 말했다. 향후 거미 지형 기둥 테스트 계획 기둥 형성 조건을 찾은 연구팀은 다음 단계로 아래의 히터 대신 위에서 인공 태양을 비추는 실험을 시도할 계획이다. 이를 통해 연구팀은 기둥과 토양 분출이 발생할 수 있는 조건의 범위를 좁힐 수 있을 것으로 보인다. 그럼에도 실험실에서는 답할 수 없는 거미 지형에 대한 많은 질문이 남아 있다. △왜 화성의 특정 지역에서만 거미 지형이 형성되었을까? △계절 변화의 결과로 나타나는 것으로 보이는 거미 지형은 왜 시간이 지나도 그 수나 크기가 증가하지 않는 것일까? 등이다. 거미 지형은 화성의 기후가 달랐던 먼 과거에 형성되었을 가능성도 있으며, 화성의 과거를 들여다 볼 수 있는 독특한 창을 제공할 수도 있다. 과학자들은 당분간 실험실 실험을 통해서만 화성의 거미 지형에 가까이 다가갈 수 있을 것으로 보인다. 화성 탐사선 큐리오시티와 퍼시비어런스 로버는 화성 남반구에서 멀리 떨어진 곳을 탐사하고 있다. 이 지역에는 아직 어떤 우주선도 착륙한 적이 없다. 2007년 8월 발사돼 2008년 5월 25일 화성 북반구에 착륙한 피닉스 우주선은 극심한 추위와 제한된 햇빛으로 같은해 11월 10일 임무가 종료됐다. 피닉스 탐사선은 물과 생명체를 탐사하는 두 가지 목표를 가졌지만 화성의 극한의 기온을 견디지 못했다.
-
- IT/바이오
-
화성 '거미' 지형, NASA 실험실서 최초 재현 성공
-
-
[우주의 속삭임(53)] 달, 비교적 최근까지 화살 활동 있었다
- 달 표면에서 가져온 세 개의 작은 유리 구슬은 달의 화산 활동이 그리 오래전이 아니라는 것을 보여준다는 연구 결과가 나왔다. 중국 국가우주국(CNSA)이 창어 5호 임무에서 가져온 달 샘플에 대한 새로운 분석에 따르면, 발견된 유리 구슬은 불과 1억 2000만 년 전에 발생한 달 화산 활동의 증거로 추정된다. 이는 약 44억~20억 년 전 사이에 활발했던 것으로 알려진 달의 화산 활동이 예상보다 많이 늦게까지(최근까지) 있었음을 말해 준다. 중국과학원 지질 및 지구물리학 연구소의 위양 허 박사는 "창어 5호가 가져온 화산 유리 구슬 3개에 대한 방사성 동위원소 연대 측정 결과, 달에서 약 1억 2000만 년 전에 화산 활동이 있었다는 사실이 드러났다"고 말했다. 그는 "창어 5호 착륙 지점에서 기록된 화산 분출은 약 19억 년의 간격이 있음을 말해 준다. 달의 이런 최근 화산 활동은 달과 같은 작은 천체가 매우 늦은 단계까지 내부 활력을 유지할 수 있는 충분한 열을 유지할 수 있음을 의미한다"고 설명했다. 지난 2020년 말 창어 5호가 지구로 전달한 달 샘플은 소련의 마지막 달 탐사선이 1976년 돌아온 이후 인류가 입수한 첫 달 물질이었다. 전 세계 학자들은 다양한 분석 기술을 사용해 샘플을 연구, 달 지질학과 역사에 대한 새로운 정보와 지식을 얻었다. 샘플이 특히 흥미로웠던 것은 이것이 아주 작은 유리 구슬로 구성되어 있다는 점이었다. 이는 녹아 있던 광물이 강력한 조건에서 다시 유리로 굳어질 때 형성된다. 중국과학원 연구팀은 창어 5호 샘플에서 약 3g의 달 먼지를 걸러냈고, 티스푼 정도의 작은 샘플에서 약 3000개의 유리 구슬을 분리했다. 이 중 대부분은 운석 충돌의 결과였으며, 화산 활동에 의한 입자는 찾아내기 어려웠다. 달은 충격에 취약하고 화산 활동은 거의 없었기 때문이었다. 연구팀은 먼저 후방 산란 전자 이미지를 사용해 운석 충돌의 특징이 없는 약 800개의 유리 구슬을 분리했다. 그 후 전자 프로브 마이크로 분석기를 사용해 분리한 구슬을 분석, 그중 13개의 유리 구슬이 아폴로 화산 유리 구슬과 유사한 원소 구성을 가지고 있음을 밝혔다. 13개 유리 구슬 중 6개는 아폴로 샘플에서 확인된 화산 유리와 동일한 성분인 산화마그네슘-니켈 풍부도 상관관계를 갖고 있었다. 마지막 단계로 연구팀은 2차 이온 질량 분석법을 사용해 유황 동위 원소 분석을 수행했다. 마지막 6개 구슬 중 3개는 화산 활동에 의해 형성된 유리였다. 방사성 연대 측정을 통해 구슬의 연대가 밝혀졌다. 약 1억 2300만 년 전이었으며, 여기에는 1500만 년 내외의 오차가 있을 수 있다. 이는 달이 화산 활동을 한 마지막이라고 알려진 시간보다 훨씬 최근이다. 달은 화산 활동이 일어나기에는 오랫동안 차가웠기 때문에 어떻게 이런 일이 일어났는지 알 수 없지만, 세 개의 구슬에 담긴 화학 물질에서 단서를 찾을 수 있었다. 여기에는 칼륨, 희토류 원소, 인과 같은 원소가 높은 비율로 포함되어 있었다. 이들 원소의 높은 풍부도는 방사성 열의 원천이 될 수 있다. 즉, 방사성 분열로 생성되는 상당한 열이다. 지구 내부 열의 약 절반은 방사성 분열에서 나온다. 달에서는 이론적으로 방사성 열이 국부적인 화산 활동을 일으킬 수 있다. 연구팀은 "20억 년에서 1억 2000만 년 전 사이에 다른 화산 활동이 있었을지에 대한 추가 조사가 필요하다“고 말했다. 한편, 이 연구 결과는 사이언스지에 게재됐다.
-
- IT/바이오
-
[우주의 속삭임(53)] 달, 비교적 최근까지 화살 활동 있었다
-
-
[우주의 속삭임(52)] NASA, 목성 생명체 탐사 위해 유로파 클리퍼 임무 우주선 10월 발사
- 목성의 생명체 탐사를 위한 나사(NASA)의 유로파 클리퍼(Europa Clipper) 임무 우주선이 오는 10월 발사된다고 스페이스닷컴이 전했다. 이를 위해 현재 목성 위성 주변의 혹독한 방사선 환경을 견딜 수 있는지를 확인하는 테스트가 진행되고 있다. 유로파 클리퍼 우주선은 목성의 얼음 위성인 유로파(Europa)를 연구하는 것을 목표로 한다. 유로파는 지구의 모든 바다를 합친 것보다 두 배나 많은 물을 가진 지하 바다를 품고 있는 것으로 알려져 있다. 카메라, 지상 투과 레이더, 분광기 등 9개의 장비를 탑재한 이 우주선은 유로파를 여러 번 근접 비행하고, 유로파의 얼음 지각 아래 환경을 조사하며 생명체의 흔적을 찾을 계획이다. 우주선은 플로리다에 있는 나사 케네디 우주 센터의 39A 발사장에서 스페이스X(SpaceX) 팰컨 헤비(Falcon Heavy) 로켓에 실려 발사될 예정이다. 나사는 오는 10월 10일이 발사 목표일이라고 발표했다. 나사 관계자는 "유로파 클리퍼의 주요 탐사 목표는 유로파 위성의 표면 아래에 생명체가 살 수 있는 곳이 있는지 확인하는 것"이라고 밝혔다. 관계자는 또 "이 임무의 세 가지 주요 목표는 얼음 표면과 그 아래의 바다의 특성, 유로파 위성의 구성 및 지질을 이해하는 것이다. 유로파에 대한 우주선의 자세한 탐사는 과학자들이 지구 너머에 있는 거주 가능한 세계의 천체생물학적 가능성을 더욱 깊이 이해하는 데 도움이 될 것"이라고 부연했다. 이전에는 목성의 강력한 자기장으로 인해 생성된 높은 방사선 환경에서 우주선이 견딜 수 있는가에 대한 우려가 제기됐다. 이때 탐사선의 전기 흐름을 제어하는 장치인 트랜지스터가 예상보다 낮은 방사선량에서도 고장을 일으킨 바 있다. 10월 발사가 예정된 우주선에 대한 방사선 환경 테스트도 이 때문에 시행되고 있는 것. 나사 관계자는 최근의 테스트에서 우주선의 트랜지스터가 기본 임무를 지원할 수 있음이 확인되었다고 밝혔다. 이번에 발사되는 우주선은 2030년 목성에 도착할 예정이며, 2031~2034년 사이에 유로파를 약 50회 비행할 것으로 예상된다. 한편 나사는 오는 9일 실시될 핵심 검토를 통해 유로파 클리퍼 우주선이 최종 발사 준비에 들어갈 수 있는지의 여부를 판단할 방침이다.
-
- IT/바이오
-
[우주의 속삭임(52)] NASA, 목성 생명체 탐사 위해 유로파 클리퍼 임무 우주선 10월 발사
-
-
[우주의 속삭임(50)] 목성 위성 '가니메데' 고대 소행성 충돌로 자전축 이동
- 목성의 최대 위성인 가니메데가 과거 거대한 소행성 충돌로 자전축이 이동했다는 연구 결과가 나왔다. 목성은 태양계의 다섯번째이자 가장 큰 행성이다. 목성은 95개의 자연위성을 가지고 있으며 갈릴레이 위성으로 알려져 있는 이오, 유로파,가니메데, 칼리스토가 가장 큰 네 개의 위성이다. 최근 과학 학술지 '사이언티픽 리포츠(Scientific Reports)'에 게재된 연구에 따르면, 약 40억년 전 가니메데에 충돌한 소행성은 지구에서 공룡 멸종을 초래한 소행성보다 20배 이상 컸던 것으로 추정된다. 이 충돌로 인해 가니메데 표면에는 거대한 고랑 지형이 형성되었으며, 위성의 자전축까지 변화시켰다는 것이 연구팀의 설명이다. 해당 내용에 대해서는 영국 일간지 가디언을 비롯해 뉴스위크, 기즈모도 등 다수 외신이 조명했다. 일본 고베 대학의 히라타 나오유키 연구원은 컴퓨터 시뮬레이션을 통해 가니메데 표면의 고랑 구조를 형성할 수 있는 소행성의 크기를 추정했다. 그 결과, 충돌 당시 생성된 임시 크레이터는 지름이 약 1400~1600km에 달했으며, 이는 가니메데의 자전축을 현재 위치로 이동시킬만큼 강력한 충돌이었음을 시사한다. 히라타 연구원은 "이 거대 충돌은 가니메데의 초기 진화에 상당한 영향을 미쳤을 것"이라며, "앞으로 얼음 위성의 내부 진화를 적용한 추가 연구가 필요하다"고 밝혔다. 한편, 유럽우주국(ESA)의 목성 얼음 위성 탐사선 '주스(JUICE)'가 2031년 목성계에 도착 후 2034년 가니메데를 6개월간 관측할 예정이다. 이를 통해 가니메데의 지질학적 역사는 물론, 생명체 존재 가능성에 대한 단서를 찾을 수 있을 것으로 기대된다. 가니메데와 유로파는 얼음 표면 아래 바다가 존재할 가능성이 제기되어 왔으며, 2021년에는 가니메데 대기에서 수증기가 발견되기도 했다. '주스' 미션은 이러한 얼음 위성들의 비밀을 밝히고, 태양계 내 생명체 존재 가능성을 탐색하는 중요한 역할을 수행 할 것이다.
-
- IT/바이오
-
[우주의 속삭임(50)] 목성 위성 '가니메데' 고대 소행성 충돌로 자전축 이동
-
-
[우주의 속삭임(43)] NASA 인사이트 착륙선 데이터 분석, 화성 지하 저수지 증거 발견
- 임무가 종료된 나사(NASA) 화성 미션의 데이터를 연구한 결과, 화성 지하 깊은 곳에 저수지가 있었다는 증거가 나왔다고 CNN 등 외신이 보도했다. 이는 나사의 인사이트(InSight) 화성 착륙선이 지진계를 사용해 2018~2022년까지 화성 내부를 탐사한 데이터로부터 발견한 것이다. 연구는 캘리포니아 주립대 샌디에이고 캠퍼스(UC 샌디에이고) 연구팀이 주도했다. 연구팀은 데이터 분석 결과 화성 지각 중앙의 작은 균열과 바위 기공에 갇혀 있는 물이 화성 전체 지표면을 1.6km 깊이까지 덮을 만큼 충분할 수 있다고 추정했다. 이는 화성의 지질학적 역사에 대한 새로운 정보이며, 실제 사실로 규명돼 저수지에 접근할 수 있다면, 이곳이 화성에서 생명체를 찾을 수 있는 새로운 장소임을 시사하는 것이라고 지적했다. 궤도선에서 관찰한 화성의 물에 의해 변형된 호수, 강 하구, 삼각주 및 암석의 증거들에 따르면 고대 화성은 수십억 년 전에는 지금보다 따뜻하고 습한 곳이었을 가능성이 크다. 그러나 화성은 30억 년 전 대기가 사라졌고, 이로 인해 습한 화성의 시대는 사실상 끝났다. 화성이 대기를 잃은 이유에 대해서는 아직 규명되지 않았다. 화성의 물의 역사, 대기의 상실, 물이 화성에서 생명체가 살 수 있는 조건을 만들었는지를 밝히기 위한 수 많은 우주 임무가 실행됐다. 물은 화성의 극지방 빙하에 얼음으로 갇혀 있지만, 전문가들은 그것이 화성의 잃어버린 물을 모두 설명한다고 생각하지 않는다. 일부는 물이 우주로 사라졌다고 추정하거나 화성 지표면 아래의 광물에 흡수되었거나 깊은 지하수층으로 흘러 들었다고 짐작하는 연구도 있었다. 그런 가운데 이번에 화성 탐사선 인사이트 관측 데이터에서 화성 지하에 물을 가둔 저수지 증거가 나온 것이다. 즉, 화성의 물이 화성 지각으로 흘러 들었음을 시사하는 것이다. 이는 인사이트 탐사선의 지진 데이터를 통해서 드러났다. 인사이트는 화성의 지각 두께와 맨틀의 온도, 핵과 대기의 깊이와 구성에 대한 전례 없는 데이터를 수집했다. 착륙선의 지진계는 화성 지진이라고 불리는 최초의 지진도 감지했다. 지진은 지각판이 이동하고 서로 부딪히면서 발생하는데, 화성 지각은 시간이 지남에 따라 계속 수축되고 냉각되어 단층과 균열이 있는 하나의 거대한 판과 같다. 인사이트 착륙선 지진계는 수백, 수천 마일 떨어진 곳에서 1300개가 넘는 화성 지진을 감지했다. 지진파의 속도는 바위의 구성, 균열의 위치, 균열을 채우는 물질에 따라 달라진다. 연구팀은 이 지진 데이터를 지구에서 지하 유전과 지하수 층을 매핑하는 데 사용되는 암석 물리학의 수학적 모델에 적용해 비교 분석했다. 그 결과 인사이트 착륙선이 수집한 데이터는 지구의 액체 상태의 물로 채워진 깊은 화성암 또는 화산암 층과 가장 잘 일치했다. UC 샌디에이고 스크립스 해양학 연구소의 바샨 라이트 교수는 "화성의 물 순환을 이해하는 것은 기후, 표면 및 내부의 진화를 이해하는 데 중요하며, 유용한 시작점은 물이 어디에 있고 얼마나 있는지를 파악하는 것”이라고 말했다. UC 버클리의 지구 및 행성 과학 교수이자 연구 공동 저자인 마이클 만가는 화성에 거대한 물 저장소가 있다는 이론이 확립되면 화성의 기후가 어땠는지 또는 어떨 수 있는지에 대한 정보의 창이 될 수 있다고 말했다. 만가는 "데이터 분석이 과거나 현재의 생명체에 대한 어떤 정보도 밝혀낼 수는 없지만, 만약 화성 지하에 저수지가 존재했다면, 지구의 깊은 지하수가 미생물 생명체에게 적합했던 것과 같이 습한 화성 지각에 생명체가 거주했을 수 있을 수 있다"고 말했다. 코넬 대학교 천문학과의 천체생물학자인 알베르토 페어렌은 화성 표면 아래 깊은 곳에 물이 존재할 수 있다는 생각은 수십 년 전부터 있었지만, 화성 탐사선의 실제 데이터가 이러한 추측을 사실로 확인할 수 있었던 것은 이번이 처음이라고 말했다. 전문가들은 모두 화성과 태양계 내 다른 행성 및 달에 더 많은 지진계를 보내 탐사하는 것에 큰 관심을 표명했다. 지진계 데이터를 화성 전역에 확대 적용시키면 행성 내부의 변화가 드러나고, 다양하고 복잡한 역사를 더 잘 파악할 수 있는 창을 얻게 되는 것이라고 강조했다.
-
- IT/바이오
-
[우주의 속삭임(43)] NASA 인사이트 착륙선 데이터 분석, 화성 지하 저수지 증거 발견
-
-
[우주의 속삭임(40)] 달 대기 생성의 비밀, 마침내 풀렸다
- 달은 우주의 진공에 노출되어 있다. 그래도 달은 실제로 가스로 덮여 있다. 층이 얇고 미약하지만, 외기권이라고 불리는 일종의 대기로 간주될 만큼은 충분하다. 달이 어떻게 가스 대기권을 유지하는지는 수수께끼였다. 지구의 자기장은 대기에 제한적이지만 어느 정도 영향을 미친다. 그러나 달에는 그러한 자기장이 없다. 따라서 달의 외기권은 이미 오래 전 태양 활동으로 인해 없어졌어야 했다. 그런 점에서 달의 외기권에서 가스가 없어지는 만큼 끊임없이 보충되고 있다는 것은 분명하다. 이에 대한 연구가 계속돼 온 가운데, 이번에 메사추세츠 공과대학(MIT) 연구팀이 달 대기권에서의 가스 보충의 비밀을 풀어냈다고 사이언스얼라트가 전했다. 연구 결과에 따르면, 먼지 입자보다 더 작은 미세 유성이 끊임없이 달 표면에 부딪히고, 이를 통해 달에서 먼지를 일으켜 증발시키며, 달 주변 공간으로 원자를 방출해 대기를 유지한다는 것이다. 연구팀원인 MIT의 지구화학자 니콜 니 박사는 "미세 운석의 달 충돌과 이로 인한 증발이 달 대기를 만드는 주요 과정이라는 확실한 답을 얻었다"고 말했다. 달의 나이는 대략 45억 년으로 추정되며, 그동안 달 표면은 운석의 지속적 충돌이 이어졌는데, 결국 얇은 대기가 달 전체에 걸쳐 작은 충돌로 인해 지속적으로 보충돼 결국 안정 상태에 도달했다는 것이다. 미세 운석의 달 충돌은 태양풍으로 운반된 하전 입자에 의한 것이다. 달의 대기는 매우 분산돼 있기 때문에 연구하기 어렵다. 아폴로 임무에서 남긴 달 탐지기가 달에서 다양한 원자 성분을 감지했기 때문에 대기권을 대략 파악하고는 있었지만, 천문학자들은 지금까지 그것이 정확히 어떻게 만들어지고 유지됐는지 알아내는 데 어려움을 겪었다. 연구팀은 달 외기권의 생성과 유지의 근원과 미세 운석의 역할 등을 구체적으로 규명하기 위해 새로운 분석을 수행했다. 팀은 2013~2014년 사이 7개월 동안 운영된 궤도선인 달 대기 및 먼지 환경 탐사선(LADEE: Lunar Atmosphere and Dust Environment Explorer)의 데이터를 분석했다. 분석 결과 운석이 대량으로 충돌하는 동안에는 대기에 더 많은 원자가 존재했다. 즉, 미세 운석의 충격이 영향을 미쳤던 것이다. 동시에 일식과 같이 달이 태양의 영향에서 벗어날 때 대기 중 원자에도 변화가 발생했다. 이는 태양 역시 영향을 미친다는 것을 의미한다. 연구팀은 나아가 아폴로 프로그램 동안 수집한 실제 달 먼지 샘플도 조사했다. 그 결과 달에서 발견되는 것으로 알려진 칼륨과 루비듐이라는 두 가지 원소를 찾았는데, 이들 두 원소 모두 매우 쉽게 기화되어 증발하는 성질을 가지고 있다. 태양 입자나 미세 유성체가 달 표면에 부딪히면 루비듐과 칼륨은 증발한다. 다만 이들은 더 무겁기 때문에 빠르게 달 표면으로 떨어진다. 팀은 달 먼지를 미세한 가루로 분쇄하고 질량 분석기를 사용해 분석했다. 결과 두 가지 과정 모두 달 외기권을 생성하는 데 역할을 한다는 것을 발견했다. 다만 미세 유성체의 충돌 기여도가 태양풍에 비해 두 배 이상이었다. 충격 증발의 경우 대부분의 원자는 달 대기에 머무르지만, 태양풍에 의해 퍼지는 원자는 대부분 우주로 방출됐다. 연구를 통해 비로소 두 과정의 역할을 정량화할 수 있게 되었다는 평가다. 운석 충격 증발과 태양풍 이온의 달 대기권 유지에 대한 상대적 기여도는 약 70대 30 또는 그 이상이라고 말할 수 있다고 연구팀은 설명했다.
-
- IT/바이오
-
[우주의 속삭임(40)] 달 대기 생성의 비밀, 마침내 풀렸다
-
-
[우주의 속삭임(38)] 은하 나이, 기존 추정보다 수십억 년 더 많을 수도...가이아 망원경 관측 결과
- 가이아 우주 망원경을 이용한 연구 결과, 태양 근처 고대별의 존재가 밝혀져 우리 은하의 일부가 기존 예상보다 수십억년 더 오래되었을 가능성이 제기됐다. 태양 가까이 위치한 고대 별들은 빅뱅 이후 10억년도 채 되지 않아 형성됐으며, 이는 은하수의 일부가 이전에 생각했던 것보다 훨씬 더 오래되었다는 것을 시사한다는 연구 결과가 발표됐다고 라이브사이언스가 보도했다. 독일 라이프니츠 포츠담 천체물리학 연구소(AIP)연구팀은 유럽우주국(ESA) 가이아 탐사선 데이터를 분석해 태양계 주변 약 3200광년 범위 내 80만개 이상의 별을 조사했다. 그 결과 이들 별 중 다수가 100억년 이상 되었으며, 일부는 130억년 이상 된 것으로 나타났다. 이는 기존에 은하 원반이 80~100억년 전에 형성됐다고 추정했던 것보다 훨씬 이른 시기다. 우주의 나이는 약 138억년이므로, 우리 은하의 원반에 130억년 된 별이 존재한다는 것은 우주 탄생 후 첫 10억년 동안 원반이 형성되었을 것임을 의미한다. 이는 우리 은하의 별 형성 연대 시기를 크게 앞당길수 있다는 것. 연구 책임자는 "원반에 있는 이 고대 별들은 은하수의 얇은 원반의 형성이 이전에 믿었던 것보다도 약 40~50억년 더 일찍 시작되었음을 시사한다"고 설명했다. AIP 연구팀은 유럽우주국의 가이아 우주선이 수집한 데이터를 연구하여 이 고대 별들의 연대를 측정하고 올해 초 사전 인쇄본 arXiv 서버에 연구 결과를 게시했다. AIP는 이번 발견에 대해 지난 7월 31일 발표했다. 특히 이 고대 별들 중 일부는 금속 함량이 높아 초기 은하의 빠른 금속 농축 과정을 시사한다. 이는 일반적인 고대 별들의 특징인 낮은 금속 함량과 대비되는 결과로, 은하 형성 초기 단계에 대한 새로운 시각을 제시한다. 이번 연구 결과는 은하 형성 과정에 대한 기존 이론을 수정하고 은하역사를 재구성하는 데 중요한 단서를 제공할 것으로 기대된다. 가이아 탐사선은 은하 병합 흔적, 초기 구성 요소 등 은하 역사에 대한 다양한 정보를 밝혀왔으며, 최근 운석 충돌로 인한 일시적인 데이터 수집 중단에도 불구하고 2025년말까지 임무를 수행할 예정이다.
-
- IT/바이오
-
[우주의 속삭임(38)] 은하 나이, 기존 추정보다 수십억 년 더 많을 수도...가이아 망원경 관측 결과