검색
-
-
[신소재 신기술(134)] UC 버클리, '뜨거운 이산화탄소 가스 포집' 획기적 기술 개발
- 산업 공정에서 발생하는 뜨거운 이산화탄소를 포집할 수 있는 혁신적인 기술이 개발됐다. 시멘트나 강철을 생산하는 산업 플랜트는 강력한 온실가스인 이산화탄소를 대량으로 배출하지만, 배기가스가 너무 뜨거워 최첨단 탄소 제거 기술을 사용할 수 없다. 배기가스를 냉각하려면 많은 에너지와 물이 필요하며, 이는 일부 가장 오염이 심한 산업에서 이산화탄소 포집 기술을 도입하는 장벽으로 작용한다. 그런데 UC 버클리의 화학자 연구진이 스펀지처럼 작용해 산업 배기가스와 비슷한 높은 온도에서 이산화탄소를 포집할 수 있는 소재를 발했다. UC 버클리 공식 홈페이지에 따르면, 발견된 소재는 금속-유기 프레임워크(MOF)의 일종으로, 사이언스 저널에 게재됐다. 발전 또는 산업 플랜트 배기가스에서 탄소를 포집하는 주요 방법은 액체 아민을 사용하여 이산화탄소를 흡수하는 것이다. 그러나 이 방법은 섭씨 40~60도 사이에서만 효율적으로 작동한다. 시멘트 제조 및 제강 공장은 200도를 넘는 배기가스를 생성하고 일부 산업 배기가스는 500도에 달한다. 아민이 추가된 MOF 하위 분류를 포함해 현재 시범 운영 중인 새로운 소재는 150도 이상의 온도에서는 분해되거나 덜 효율적이다. 이렇게 뜨거운 이산화탄소를 가져와 기존의 탄소 포집 기술을 적용하려면 적절한 온도로 냉각해야 하고, 비싼 인프라가 필요하다. 이번 연구를 진행한 UC 버클리 커티스 카쉬 박사는 "우리 기술이 탄소 포집 방식을 근본적으로 바꿀 수 있을 것"이라며 "개발된 MOF가 전례 없이 높은 온도에서 이산화탄소를 포집할 수 있다는 것이 입증됐다. 과거의 다공성 소재로는 불가능했던 것"이라고 설명했다. 아민 기반 탄소 포집에 대한 일반 연구에서 벗어나 고온에서도 작동하는 MOF의 새로운 매커니즘을 수립했다는 것이다. 개발된 소재는 다공성 결정질 금속 이온 및 유기 링커 배열을 특징으로 하며, 내부 면적은 스푼당 약 6개의 축구장 크기에 달해 이산화탄소를 흡착하기에 충분히 넓은 면적이다. 연구진은 시뮬레이션에서 새로운 MOF가 평균 20%~30%의 이산화탄소 농도를 보이는 시멘트 및 철강 제조 플랜트의 배출가스와 약 4% 농도의 이산화탄소를 포함한 천연가스 발전소의 배출가스에서 뜨거운 이산화탄소를 포집할 수 있음을 보여주었다. 포집된 이산화탄소를 지하에 저장하거나 연료 또는 기타 부가가치 화학 물질을 만드는 데 사용하는 것은 온실가스를 줄이는 핵심 전략이다. 지구 온난화와 기후 변화에 대응하는 유력한 솔루션으로 각광받고 있다. 재생 에너지 발전과 달리 화석연료를 주로 사용하는 산업 플랜트는 지속 가능성을 확보하는 것이 더욱 어렵기 때문에 이산화탄소 포집이 매우 중요하다. 아민 기반 흡착제는 수십 년 동안 탄소 포집 연구의 초점이었다. MOF는 원래 독일 아우크스부르크 대학교의 연구진이 발견했다. MOF가 이산화탄소로 채워지면 이산화탄소의 분압을 낮추어 제거하거나 탈착할 수 있다. MOF는 재사용한다. 연구진은 MOF를 변형해 다른 가스를 흡착할 수 있는지 추가 확인 작업에 나서고 있다. 이 소재가 더 많은 이산화탄소를 흡착할 수 있도록 기능 개선도 진행하고 있다.
-
- 경제
-
[신소재 신기술(134)] UC 버클리, '뜨거운 이산화탄소 가스 포집' 획기적 기술 개발
-
-
삼성전자, '탄소 제로' 반도체 공장 만든다…친환경 기술 개발 박차
- 삼성전자가 지속가능한 반도체 사업을 위해 새로운 친환경 탄소 포집 기술을 도입한다. 황경순 삼성전자 SAIT(옛 삼성종합기술원) 에어사이언스 리서치센터장(부사장)은 18일 부산 벡스코에서 열린 한국화학공학회 추계학술대회에 기조강연자로 나서 반도체의 지속가능성을 위한 센터의 비전을 소개했다. 황 센터장은 "기존 탄소 포집 기술은 공간 효율성이 낮고 인체 유해한 물질도 배출할 가능성이 있어 도심에 위치한 반도체 사업장에 적합하지 않다. 따라서 친환경적이고 소형화된 탄소 포집 기술을 개발하는 것이 목표"라며 새로운 탄소 포집 기술의 중요성을 강조했다. 삼성의 에어사이언스 리서치 센터는 2022년 SAIT 내 미세먼지연구소와 탄소포집활용센터를 결합해 설립됐다. 황 센터장은 탄소중립 분야 권위자로, 미국 텍사스대 교수직을 휴직하고 지난해 6월 부임했다. 그는 "환경적 지속 가능성이 기업의 중요한 과제로 부상하면서, 글로벌 IT 기업들이 2030년 탄소중립을 선언하는 추세"라며 이러한 움직임은 삼성에도 영향을 미치고 있다고 전했다. 삼성은 2022년 새로운 환경 경영 전략을 발표하고 2050년 탄소 중립을 목표로 설정했다. 이를 위해 반도체 업계 최초로 탄소 포집 연구 센터를 설립하고 관련 기술 개발에 적극적으로 나서고 있는 것. 황 센터장은 "배출되는 탄소를 포집하여 활용하고, 2040년까지 오염 물질 배출량을 자연 상태 수준으로 맞추는 목표를 설정했다. 이는 기존 기술의 한계를 극복해야 하는 어려운 과제다. 따라서 저희 센터는 이러한 목표 달성을 위해 새로운 기술 개발에 주력하고 있다"고 밝혔다. 이어 "배출가스 저감을 위해 현재 95%인 RCS(공정가스 통합처리시설)의 불소 함유 가스 제거율을 100%까지 높이고, 질소산화물(NOx) 배출 농도는 20ppm에서 0.03ppm 수준으로 낮추는 것을 목표로 하고 있다"고 설명했다. 또한 공정 중 발생하는 가스를 즉시 플라즈마를 이용해 제거하는 POU 기술 개발과 이를 RCS와 결합하는 연구도 진행하고 있다고 덧붙였다. 아울러 "수소 분야에서는 중국이 주도하는 알칼리 수전해 기술이나 고가의 촉매를 사용하는 PEM 방식 대신, SOEC(고체산화물수전해) 기술 개발에 집중하고 있다. 특히 전극 계면 및 촉매 열화 문제 해결에 주력하고 있다"고 전했다. 그러면서 황 센터장은 "개발 중인 CCU(탄소 포집·활용) 기술을 반도체 사업장뿐 아니라 전 사업장과 협력사까지 확대 적용할 계획이다. 또한, 이 기술을 활용하여 신사업 창출을 지원하고, DS(디바이스솔루션) 사업 경쟁력 강화는 물론 사회 공헌에도 기여할 수 있을 것으로 기대한다"고 밝혔다. PEM 방식이란? 수소 분야에서 중국이 사용하고 있는 PEM 방식은 PEMFC(Proton Exchange Membrane Fuel Cell), 즉 양성자 교환막 연료 전지를 말한다. 수소와 산소를 이용하여 전기를 생산하는 연료 전지의 한 종류로, 다른 연료 전지 기술에 비해 높은 에너지 효율과 낮은 작동 온도를 갖는 장점이 있다. 그러나 백금 등 고가의 촉매를 사용해야 하고, 내구성이 낮으며 연료 순도에 민감한 단점이 있다. SOEC 방식이란? 삼성에서 중점을 두고 있는 SOEC는 'Solid Oxide Electrolyzer Cell'의 약자로, 고체산화물 수전해 전지라고 한다. 물을 전기분해하여 수소를 생산하는 기술 중 하나로 고온에서 작동하는 것이 특징이다. 기존의 수전해 기술에 비해 효율이 높고 다양한 에너지원을 활용할 수 있어 차세대 수소 생산 기술로 주목받고 있다. 장점으로는 고온 작동으로 인해 전기 에너지 소비량이 작소, 수소 생산 효율이 높다. 전기 외에도 열에너지를 직접 활용할 수 있어 폐열이나 태양열 등 다양한 에너지원을 사용할 수 있다. 고순도의 수소를 생산할 수 있어 추가적인 정제 과정이 필요하지 않다. 재생에너지를 사용할 경우 이산화탄소 배출 없이 수소를 생산할 수 있다. 단점으로는 고온 작동으로 인해 내구성 확보 및 소재 개발에 어려움이 있다. 또한 고온에 도달하는 시간이 필요해 시동 시간이 느리다. 게다가 고온 작동 환경 구축 및 소재 개발 비용이 높다. SOEC의 활용도는 다양하다. 재생에너지, 원자력 발전소 등과 연계해 대규모 수소를 생산할 수 있다. 또한 산업 공정에서 발생하는 이산화탄소를 포집하여 수소 생산에 활용할 수 있다. 더 나아가 잉여 전력을 이용하여 수소를 생산하고 저장하는 등 다양한 분야에서 활용할 수 있다.
-
- IT/바이오
-
삼성전자, '탄소 제로' 반도체 공장 만든다…친환경 기술 개발 박차
-
-
[기후의 역습(57)] 과학자들, 기후 변화 대응에 기여할 새로운 목재 유형 발견
- 올 여름 역대급 폭염이 이어진 가운데 튤립나무가 기후 변화에 직접적인 영향을 미치는 탄소 포집 효과가 탁월하다는 연구 결과가 나왔다. 한국 기상청에 따르면 지난 8월 폭염일수는 16일로, 2016년 16.6일에 이어 관련 통계를 집계한 1973년 이래 두 번째로 많았다. 또한 지난달 열대야 수는 11.3일로 통계 집계 이후 처음으로 두자릿수를 기록했다. 오래된 나무와 숲이 이산화탄소를 더 많이 흡수하고, 저장한다는 것은 이전의 여러 연구에서 확인됐다. 튤립나무에 대한 연구에서 탄소포집 잠재력이 큰 새로운 목재 구조가 확인됐다고 사이테크데일리가 11일(현지시간) 보도했다. 폴란드 야기에우워 대학교(Jagiellonian University)와 영국 케임브리지 대학교 연구진은 세계적으로 유명한 나무와 관목들의 목재 미세 구조를 진화적으로 조사하던 중 튤립나무에 대한 연구에서 탄소 포집 잠재력이 큰 새로운 목재 구조가 확인됐다고 사이테크데일리가 11일(현지시간) 보도했다. 연구팀은 목련과의 친척이자 30미터 이상 자라는 튤립나무가 활엽수와 침엽수 어느 쪽에도 속하지 않는 독특한 목재를 가지고 있음을 확인한 것이다. 이 획기적인 발견은 빠르게 성장하는 튤립나무를 조림지에 심어 탄소 격리 효율을 높이는 새로운 가능성을 제시한다. 목재 구조의 새로운 발견 최근 국제학술지 '신식물학자(New Phytologist)'에 발표된 연구에서 연구진은 저온 주사 전자 현미경(cryo-SEM)을 사용하여 수분이 함유된 상태의 목재 세포벽 나노 구조를 이미지화했다. 그 결과, 튤립나무(Liriodendron tulipifera)와 중국 튤립나무(Liriodendron chinense) 두 종의 고대 리리오덴드론(Liriodendron) 속 나무들이 활엽수 친척들보다 훨씬 더 큰 마크로피브릴을 가지고 있음을 발견했다. 마크로피브릴은 2차 세포벽 내 층에 정렬된 긴 섬유를 말한다. 탄소 포집에 대한 함의 연구 책임자인 야기에우워 대학교의 얀 우이차코프스키(Jan Łyczakowski) 박사는 "튤립나무는 침엽수나 할엽수와는 구별되는 중간적인 마크로피브릴 구조를 가지고 있다"며 "튤립나무는 약 300만~5000만년 전 목련나무에서 분기되었는데, 이 시기는 대기 중 이산화탄소 농도가 급격히 감소하던 시기와 일치한다. 이는 튤립나무가 탄소 저장에 매우 효율적인 이유를 설명하는 데 더움이 될 수 있다"고 말했다. 연구팀은 이 '중간 목재' 또는 '축적 목재'의 더 큰 마크로피브릴이 튤립나무의 빠른 성장 뒤에 있는 원인이라고 추측한다. 우이차코프스키는 " 두 종의 툴립나무는 탄소를 매우 효율적으로 포집하는 것으로 알려져 있으며, 확대된 마크로피브릴 구조는 대기 중 탄소 이용 가능성이 감소했을 때 더 많은 양의 탄소를 쉽게 포집하고 저장하도록 돕는 적응일 수 있다"며 "튤립나무는 탄소 포집 조림에 유용하게 활용될 수 있을 것이다. 일부 동남아 국가에서는 이미 튤립나무 조림을 통해 효율적으로 탄소를 포집하고 있으며, 이제 우리는 이것이 튤립나무의 새로운 목재 구조와 관련이 있을 수 있다고 생각한다"고 덧붙였다. 케임브리지 대학교 식물원에서 얻은 진화적 통찰 이 발견은 케임브리지 대학교 식물원의 살아있는 컬렉션에서 33종의 나무를 조사하여 침엽수(소나무, 침엽수 등 겉씨식물)와 활엽수(참나무, 물푸레나무, 자작나무, 유칼립투스 등 속씨식물)에서 목재 초미세구조가 어떻게 진화했는지 탐구하는 과정에서 이루어졌다. 우이차코프스키는 "목재 구조가 어떻게 진화하고 외부 환경에 적응하는지에 대해서는 알려진 바가 거의 없다"며 "이번 조사에서 우리는 이전에 관찰된 적이 없는 완전히 새로운 목재 초미세구조외 전형적인 겉씨식물 침엽수 대신 속씨식물과 유사한 활엽수를 가진 겉씨식물 계통을 발견하는 등 몇 가지 중요한 새로운 발견을 했다"고 말했다. 그는 이어 "목재의 주요 구성 요소는 2차 세포벽이, 건축에 의존하는 목재의 밀도와 강도를 부여하는 것은 바로 이 세포벽의 구조다. 2차 세포벽은 또한 샐물권에서 가장 큰 탄소 저장소이므로, 기후 변화 완화를 돕는 탄소 포집 프로그램을 발전시키기 위해서는 2차 세포벽의 다양성을 이해하는 것이 중요하다"고 덧붙였다. 목재 초미세 구조 목재 초미세구조는 목재의 미세한 구조, 즉 재료 구성 요소의 배열과 조직을 의미한다. 저온 주사 현미경을 사용한 이번 목재 조사는 2차 세포벽, 마크로피브릴 등에 초점을 맞췄다. 2차 세포벽은 주로 셀룰로오스와 기타 복합 당으로 구성되며, 리그닌이 함침되어 전체 구조를 단단하게 만든다. 이러한 구성 요소들은 마크로피브릴을 형성하며. 2차 세포벽 내에 뚜렷한 층으로 배열된 긴 정렬 섬유를 만든다. 마크로피브릴은 현재 저온 주사 현미경으로 측정할 수 있는 가장 작은 구조이며, 두께는 약 10~40나노미터이다. 셀룰로오스 마크로피브릴(3~4나노미터)과 기타 구성 요소로 이루어져 있다. 목재 초미세 구조 연구는 목재 가공, 재료 과학, 나무의 생태 및 진화적 측면 이해 등 다양한 분야에 중요하다. 나무 성장과 목재 침착 뒤에 숨은 생물학적 메커니즘을 이해하는 것은 탄소 포집량 계산에도 유용한 정보를 제공한다. 목재 샘플은 케임브리지 대학교 식물원 컬렉션 코디네이터 마르고 애플(Margeaux Apple)과 협력하여 식물원 내 나무에서 채취했다. 겉씨식물과 속씨식물 개체군이 분기하고 진화함에 따라 그 진화 역사를 반영하기 위해 선별된 나무에서 지난 봄 성장기에 침착된 신선한 목재 샘플을 수집했다. 저온 전자 현미경 사용한 역대 최대 목본 식물 조사 케임브리지 대학교 세인즈버리 연구소 현미경 핵심 시설 관리자인 레이먼드 와이트먼(Raymond Wightman) 박사는 "우리는 자이언트 세쿼이아, 울레미 소나무, 그리고 모든 꽃 피는 식물과 분리되어 진화한 가장 오래된 현존 식물군의 유일한 생존 종인 암보렐라 트리코포다(Amborella trichopoda)와 같은 '살아있는 화석'을 비롯하여 세계에서 가장 상징적인 나무들을 분석했다"고 말했다. 와이트만 박사는 "우리의 조사 데이터는 목재 나노 구조와 세포벽 구성 사이의 진화적 관계에 대한 새로운 통찰력을 제공했으며, 이는 속씨식물과 겉씨식물 계통에 따라 다르다. 속씨식물 세포벽은 겉씨식물에 비해 마크로피브릴이라고 불리는 더 좁은 기본 단위를 가지고 있으며, 이 작은 마크로피브릴은 암보렐라 트리코포다 조상에서 분기된 후 등장했다"고 덧붙였다. 우이차코프스키와 와이트먼은 또한 마황류(Gnetophytes) 계통의 두 겉씨식물인 그네툼속(Gnetum gnemon, 그네툼 그네몬)과 그네툼 에둘레(Gnetum edule)의 세포벽 마크로피브릴을 분석하여 둘 다 속씨식물의 활엽수 세포벽 구조와 동일한 2차 세포벽 초미세 구조를 가지고 있음을 확인했다. 이는 마황류가 일반적으로 속씨식물에서만 볼 수 있는 활엽수 유형 구조를 독립적으로 진화시킨 수렴 진화의 한 예이다. 이 조사는 2022년 영국에서 네 번째로 더운 여름으로 기록된 기간 동안 진행됐다. 와이트먼은 "저온 전자 현미경을 사용한 목본 식물 조사 중 역대 최대 규모일 것"이라며, "세인즈버리 연구소가 케임브리지 대학교 식물원 부지 내에 위치하고 있기 때문에 이처럼 많은 신선한 수화된 목재에 대해 대규모 조사를 할 수 있었다. 우리는 2022년에 모든 샘플을 수집했다. 이른 아침에 샘플을 수집하고, 샘플을 초저온 슬러시 질소에 동결시킨 다음 자정까지 샘플을 이미징했다"고 설명했다. 그는 "이 연구는 식물원이 현대 연구에 기여하는 데 지속적인 가치와 영향을 보여준다. 이 연구는 케임브리지 대학교 식물원 컬렉션에서 같은 장소에서 함께 자라는 진화적 시간을 통해 표현된 다양한 식물이 없었다면 불가능했을 것이다"라고 말했다. 참고문헌: Jan J. Lyczakowski와 Raymond Wightman의 「수렴 및 적응 진화가 종자 식물의 현존 계통에서 2차 세포벽 미세 구조의 변화를 주도했다」, New Phytologist .DOI: 10.1111/nph.19983
-
- IT/바이오
-
[기후의 역습(57)] 과학자들, 기후 변화 대응에 기여할 새로운 목재 유형 발견
-
-
[신소재 신기술(92)] 선박이 배출하는 탄소 포집, 짠 물로 바꿔 바다에 저장하는 원자로 나왔다
- 국제해운선이 차지하는 세계 무역의 비중은 80%에 달한다. 해운 부문은 전 세계 탄소 배출량의 약 3%를 차지한다. 그러나 기후 변화가 심각한 현재 해운은 기후 목표를 달성할 수 있는 단계에 오르지 못하고 있다. 지난해, 해운을 규제하는 유엔 기관인 국제해사기구는 다른 산업들과 연계해 2050년까지 제로를 달성하는 것을 목표로 해운 산업의 탄소 배출을 강화했다. 그러나 메탄올, 수소, 암모니아 등 저배출 연료의 공급은 빠르지 않다. 캘리포니아 공과대학(칼텍)의 화학 해양학자 제스 애드킨스가 연료 연소로 인해 배출되는 탄소를 바닷물 소금으로 전환할 수 있는 원자로를 화물선에 장착함으로써 탄소 제로에 도움을 줄 수 있다는 아이디어를 제안했다고 CNN이 보도했다. 애드킨스는 이 방법으로 탄소를 10만 년 동안 가두어 둘 수 있다고 밝혔다. 이 아이디어는 바다에서 이미 자연적으로 일어나고 있는 현상과 비슷하다. 원자로를 설계하고 테스트하는 스타트업 칼캐리아(Calcarea)를 설립한 애드킨스는 이 방법이 지구가 수십억 년 동안 자연적으로 진행해 온 반응이라고 언급했다. 해수는 대기로 방출되는 탄소의 약 3분의 1을 자연스럽게 흡수해 물을 산성화하고 바다에 풍부한 탄산칼슘을 용해시킨다. 탄산칼슘은 산호의 뼈대, 조개 및 바다 바닥의 대부분의 퇴적물을 구성하는 모든 것들을 만든다. 용해된 탄산칼슘은 물 속의 탄소와 반응해 중탄산염을 형성하고 탄소를 가두어 둔다. 바닷물에는 현재 이미 3만8000기가톤(38조 톤)의 중탄산염이 존재한다. 칼캐리아는 선박의 배기 가스를 선체의 원자로로 흘려보내 이런 자연적 과정을 모방하고자 한다. 대부분 탄산칼슘으로 구성된 암석인 석회암과 배기 가스 속의 탄소는 혼합물과 반응, 탄소를 중탄산염의 형태로 가두는 짠 물을 만든다. 애드킨스는 원자로를 통해 선박의 탄소 배출량의 약 절반을 포집해 저장하는 것을 목표로 하고 있다. 자연계에서는 이 반응이 1만 년 이상 걸리지만 칼캐리아의 원자로에서는 불과 1분이면 된다고 한다. 이는 탄소와 석회암을 서로 밀접하게 접촉시켜 이루어진다. 만들어진 짠 물은 바다로 방출되며, 이는 해양 생물이나 해수의 화학적 균형에 위협이 되지 않는다. 회사는 또 미립자 및 연소되지 않은 연료와 같은 다른 오염 물질과 기타 오염 물질을 제거하기 위해 필터를 추가하는 방안도 강구 중이라고 밝혔다. 애드킨스는 2년 동안 프로젝트를 진행한 후 2023년 1월 회사를 칼텍에서 분사했다. 칼텍의 학부생인 멜리사 구티에레즈, 엔지니어인 피에르 포린, 서던캘리포니아 대학교(USC) 교수이자 지구화학자인 윌 베렐슨 등 세 명이 공동 창립자로 참여했다. 회사는 350만 달러의 초기 자금을 조달하고 시스템 개발에 집중했다. 칼캐리아는 USC 주차장과 로스앤젤레스 항구에 각각 하나씩의 프로토타입 원자로를 건설했다. 5월 말, 칼캐리아는 국제 운송 회사인 로마(Lomar)와 연구개발 협력 계약을 맺었다고 발표했다. 애드킨스는 이를 통해 첫 번째 원자로가 선박에 장착될 것이라고 전했다. 애드킨스는 칼캐리아 솔루션이 해운 산업이 보다 친환경적인 연료로 전환하는 것과 함께, 해운의 탈탄소화에 도움을 줄 수 있다고 확신했다. 더 먼 미래에는 이 원자로가 대기에서 포집된 탄소를 지하에 저장하는 대안으로 활용될 수 있다고 부연했다.
-
- 산업
-
[신소재 신기술(92)] 선박이 배출하는 탄소 포집, 짠 물로 바꿔 바다에 저장하는 원자로 나왔다
-
-
[신소재 신기술(74)] 탄소 포집·저장 6배 높인 '하이드레이트'
- 대기에서 포집한 이산화탄소(CO₂)를 6배나 빠르게 저장하는 새로운 하이드레이트 기술이 개발됐다. 미국 텍사스대학교 오스틴 캠퍼스 연구진이 개발한 새로운 대기 중 탄소 포집 하이드레이트 기술은 기존 방식보다 약 6배 빠른 속도로, 유해 화학 촉진제 없이 탄소를 저장할 수 있다고 테크익스로어와 어스닷컴 등 다수 외신이 보도했다. 미국화학회(ACS) 학술지 '지속 가능 화학 및 공학'에 발표된 이 연구에서 연구팀은 이산화탄소 하이드레이트를 초고속으로 형성하는 기술을 개발했다. 이 독특한 얼음 형태의 물질은 이산화탄소를 해저에 저장하여 대기 중 방출을 막는 역할을 한다. 탄소 포집에서 하이드레이트는 이산화탄소를 물 분자와 함께 얼음과 비슷한 고체 상태로 만드는 기술을 의미한다. 하이드레이트는 자체 부피의 최대 180배에 달하는 이산화탄소를 저장할 수 있다. 아울러 일정한 온도와 압력 조건에서 안정적으로 유지되므로 이산화 탄소 누출 위험을 줄일 수 있다. 연구를 이끈 바이바브 바라두르(Vaibhav Bahadur) 교수는 "우리는 대기 중 수십억 톤의 탄소를 안전하게 제거하는 방법을 찾는 엄청난 과제를 안고 있다"며 "하이드레이트는 탄소 저장을 위한 보편적인 해결책을 제공하며, 탄소 저장 분야에서 중요한 역할을 하려면 빠르고 대규모로 성장시키는 기술이 필요하다. 우리는 환경친화적인 방법으로 하이드레이트를 빠르게 성장시킬 수 있음을 입증했다"고 말했다. 이산화탄소는 가장 흔한 온실가스이며, 기후 변화의 주요 원인이다. 탄소 포집 및 저장 기술은 대기 중 탄소를 제거하고 영구적으로 저장하는 기술로, 지구 탄탄소화의 핵심 요소로 간주된다. 현재 가장 일반적인 탄소 저장 방법은 이산화탄소를 지하 저류층이 주입하는 것이다. 이 기술은 탄소를 포집하고 석유 생산을 증가시키는 이중 효과를 갖는다. 그러나 이 기술은 이산화탄소 누출 및 이동, 지하수 오염, 탄소 주입 관련 시 지진 위험 등 심각한 문제를 안고 있다. 또한 지하 저류층 주입에 적절한 지질학적 특징이 부족한 지역도 많다. 바하두르 교수는 하이드레이트가 대규모 탄소 저장을 위한 '차선책'이지만 주요 문제를 극복하면 '최선책'이 될 수 있다고 강조했다. 지금까지 탄소를 포집하는 하이드레이트 형성 과정은 느리고 에너지 집약적이어서 대규모 탄소 저장 수단으로 활용되기 어려웠다.. 이번 연구에서 팀은 기존 방법보다 하이드레이트 형성 기술을 6배 증가시켰다. 이러한 속도와 화학 물질을 사용하지 않는 공정은 대규모 탄소 저장에 하이드레이트를 더 쉽게 활용할 수 있게 한다. 이 연구의 핵심은 마그네슙으로, 화학촉진제 없이도 촉매 역할을 한다. 특정 반응기에서 이산화탄소를 고속 버블링으로 추가하면 빠르고 친환경적인 하이드레이트를 형성할 수 있다. 게다가 해수에서도 잘 작동하기 때문에 복잡한 담수화 공정이 필요하지 않다. 바라두르 교수는 "해저가 안정적인 열역학 조건을 제공하여 하이드레이트 분해를 방지하기 때문에 매력적인 탄소 저장 옵션이다"라며 "우리는 해안선을 가진 모든 국가에 탄소 저장을 가능하게 만들고 있으며, 이는 전세계적으로 탄소 저장 접근성과 실현 가능성을 높여 지속 가능한 미래에 더 가까워지게 한다"고 설명했다. 이번 연구 성과는 탄소 포집뿐만 아니라 해수 담수화, 가스 분리와 저장 등 다양한 산업에도 적용될 수 있다. 연구팀과 텍사스 대학교는 관련 기술에 대한 특허를 출원했으며, 상용화를 위한 스타트업 설립도 고려하고 있다. 하이드레이트 기술은 탄소 포집 및 저장 분야에서 혁신적인 기술로 주목받고 있으며, 지속적인 ㅇ녀구 개발을 통해 미래 탄소 중립 목표 달성에 기여할 것으로 기대된다.
-
- 포커스온
-
[신소재 신기술(74)] 탄소 포집·저장 6배 높인 '하이드레이트'
-
-
[퓨처 Eyes(36)] 세계 최대 탄소 제거 공장, 아이슬란드에서 가동 시작
- 세계 최대 탄소 포집 공장 '매머드'가 아이슬란드에서 가동을 시작했다. 아이슬란드 헬리셰이디에 위치한 세계 최대 규모의 이산화탄소 제거 시설 '매머드(Mammoth)'가 가동을 시작했다고 더 버지, CNN, 패스트컴퍼니 등 다수 외신들이 보도했다. 매머드는 스위스 기후 기술 기업 클라임웍스(Climeworks)가 아이슬란드에 설립한 두 번째 상업용 '직접 공기 포집(DAC, Direct Air Capture)' 플랜트로, 2021년 가동을 시작한 이전 모델인 오르카(Orca)보다 10배 향상된 처리 능력을 갖추고 있다. 직접 공기 포집은 대기 중에서 직접적으로 이산화탄소를 포집하는 기술로, 화학 물질을 사용하여 공기로부터 탄소를 제거한 후 땅속 깊은 곳에 안전하게 저장하거나 재활용 또는 고체 제품으로 전환하는 방식으로 운영된다. 매머드는 클라임웍스가 운영하며, JP모건 체이스, 마이크로소프트, 스트라이프(Stripe), 쇼피파이(Shopify) 등 글로벌 기업들이 탄소 중립 실현을 위해 투자와 운영에 참여하고 있다. 아이슬란드에서 클라임웍스의 DAC 시설은 공기를 빨아들이는 팬이 달린 모듈식 '수집기 컨테이너'로 구성되어 있다. 이 발전소의 컨테이너 크기의 상자 안에는 팬이 이산화탄소(CO₂)를 직접 포집(DAC)하는 필터를 통해 외부 공기를 끌어들인다. 전체 작업은 아이슬란드의 풍부하고 깨끗한 지열 에너지로 구동된다. 외부에서 팬으로 끌어들인 이 공기는 이산화탄소를 흡수하는 특수 필터를 통과한다. 필터가 완전히 포화 상태가 되면 섭씨 약 100도(화씨 212도)까지 가열하여 이산화탄소를 방출한다. 클라임웍스는 포집된 탄소를 지하로 운반해 자연적으로 돌로 변형시켜 탄소를 영구적으로 가둘 계획이다. 이러한 CO₂ 격리 과정을 위해 클라임웍스는 아이슬란드 기업인 카브픽스(Carbfix)와 파트너십을 체결했다. CO₂를 포집한 후 카브픽스가 이를 물에 녹여 지하 깊은 곳으로 펌핑하면 현무암 암석과 자연적으로 반응해 대기 중으로 다시 유출되는 것을 방지한다. 이들은 CO₂를 물과 혼합한 다음 그 슬러리(고체와 액체의 혼합물 또는 미세한 고체입자가 물 속에 현탁된 현탁액)를 지하 깊은 곳으로 펌핑하여 결국 단단한 암석이 되게 한다. 화석 연료를 계속 사용함에 따라 DAC와 같은 차세대 기후 솔루션은 정부와 민간 기업에게 더 많은 관심을 받고 있다. CNN에 따르면 지구를 온난화시키는 대기 중 이산화탄소 농도는 2023년 사상 최고치를 기록했다 DAC 기술은 대기 중에 축적된 온실가스 배출을 제거해 기후 변화에 대응할 수 있는 방법 중 하나로 여겨지지만, 실질적인 영향을 미칠 만큼 규모를 확대할 수 있는지 여전히 검증 과정에 있다. DAC와 같은 탄소 제거 기술은 비용이 많이 들고, 에너지를 많이 소비한다는 비판을 받아왔다 국제환경법센터의 화석 경제 프로그램 디렉터인 릴리 푸어(Lili Fuhr)는 탄소 포집 기술에 대해 "불확실성과 생태학적 위험으로 가득 차 있다"고 말했다. 최근 가동된 매머드는 현재 가동 중인 DAC 공장 중 가장 큰 규모다. 하지만 큰 틀에서 보면 현재 진행 중인 다른 프로젝트에 비하면 상대적으로 작은 규모다. 아이슬란드에서의 클라임웍스의 운영은 이 기술이 작동할 수 있다는 것을 전 세계에 보여주기 위한 것이었다. 이제 미국 시장 성장에 발맞춰 이 초기 성공 사례를 재현할 수 있을지가 관건이라고 더 버지는 지적했다. 2017년 클라임웍스는 공기 중에서 이산화탄소를 빨아들여 탄산음료와 온실에서 사용하는 제품으로 판매한 최초의 기업이 되었다. 클라임웍스는 4년 후인 2021년에는 아이슬란드에 이산화탄소 포집 공장 오르카(Orca)를 설립해 마이크로소프트를 비롯한 고객을 위해 이산화탄소를 포집하고 지하에 영구적으로 격리하기 시작했다. 오르카는 지금까지 운영 중인 DAC 플랜트 중 가장 큰 규모였다. 매머드가 완전히 가동되면 오르카의 10배에 가까운 연간 약 3만6000톤의 이산화탄소를 포집할 수 있게 된다. 그러나 2022년 마이크로소프트에서만 약 1300만 톤의 이산화탄소를 배출한 것을 고려하면 클라임웍스의 탄소 제거량은 여전히 많은 양은 아니다. 클라임웍스는 2022년 6월부터 매머드 건설을 시작했으며, 세계 최대 규모의 플랜트라고 밝혔다. 공기에서 탄소를 포집하는 기계의 진공 부품인 72개의 '컬렉터 컨테이너'를 위한 공간이 있는 모듈식 설계로, 서로 쌓아 올려 쉽게 이동할 수 있다. 현재 12개가 설치되어 있으며 앞으로 몇 달 동안 더 추가될 예정이다. 앞서 ㅅ밝혔듯이 매머드는 최대 용량으로 연간 3만6000톤의 탄소를 대기에서 끌어낼 수 있을 것으로 클라임웍스는 예상했다. 이는 약 7800대의 가스 구동 자동차를 1년 동안 도로에서 퇴출시키는 것과 같은 효과다. 클라임웍스는 제거된 탄소 1톤당 정확한 비용은 밝히지 않았지만, 톤당 1000달러에 가까운 것으로 시사했다. 이는 이 기술을 저렴하고 실용적으로 만드는 데 중요한 임계값으로 널리 알려져 있다. 클라임웍스의 공동 설립자이자 공동 CEO인 얀 뷔르츠바허는 공장 규모를 확대하고 비용을 낮추면서 2030년까지 톤당 300~350달러에 이르고 2050년경에는 톤당 100달러를 달성하는 것이 목표라고 CNN에 말했다. 에든버러 대학교의 탄소 포집 및 저장 교수인 스튜어트 하젤딘은 "이 새로운 공장은 기후 변화와의 싸움에서 중요한 단계"라고 말했다. 탄소 오염을 포집하는 장비의 규모가 커질 것이라는 설명이다. 하젤딘은 그러나 이는 여전히 필요한 것의 극히 일부에 불과하다고 경고했다. 국제에너지기구에 따르면 전 세계의 모든 탄소 제거 장비는 연간 약 0.01만 미터톤의 탄소만 제거할 수 있다. 이는 2030년까지 세계 기후 목표를 달성하기 위해 필요한 연간 7000만 톤 제거와는 거리가 멀다. 한편, 매머드는 아직 진행 중인 프로젝트다. 현재 매머드에는 12개의 모듈형 컨테이너만 설치되어 있으며, 클라임웍스는 올해 안에 60개를 더 설치해 공사를 완료할 계획이라고 밝혔다. 클라임웍스 외에 다른 기업들도 대기 중 이산화탄소를 제거하기 위해 다양한 기술적 접근 방식을 취하고 있다. 2020년에 설립된 미국 기후 기술 스타트업인 헤어룸(Heirloom)은 암석 가루를 사용해 탄소를 빨아들인다. 헤어룸은 이산화탄소를 석회암과 같은 자연 광물에 결합시켜 영구적으로 저장하는 탄소 광화 기술을 사용한다. 헤어룸의 기술은 다른 '직접 공기 포집' 기술보다 저렴하도록 설계됐다. 이는 탄소 제거 기술을 더 저렴하고 확장 가능하게 만들 수 있음을 의미한다. 일부 연구자들은 많은 양의 에너지를 사용하지 않고도 CO₂를 포집해 저장할 수 있는 패시브 시스템을 연구하고 있다.
-
- 포커스온
-
[퓨처 Eyes(36)] 세계 최대 탄소 제거 공장, 아이슬란드에서 가동 시작
-
-
尹 대통령, 영국 국빈방문…원전 등 '탄소 중립 파트너' 기대
- 윤석열 대통령이 한·영 수교 140주년을 맞아 찰스 3세 국왕 초청으로 20∼23일 영국을 국빈 방문한다. 윤 대통령의 이번 방문 기간 동안 양국 간 '탄소 중립 협력'이 강조될 것으로 예상된다. 한국과 영국 간의 상업 교류는 작년 기준으로 63억 달러에 불과하지만, 탄소 중립을 추구하는 새로운 협력 기회가 열릴 것으로 기대된다. 특히 영국 정부가 중점적으로 추진하는 해상풍력 프로젝트, 신규 원전 건설, 소형모듈원자로(SMR) 개발 프로젝트 등에서 협력 가능성이 높게 평가된다. 또한, 바이오와 반도체 등 첨단 기술 분야에서도 양국 간의 시너지 효과를 기대할 수 있을 것으로 전망된다. 20일 한국무역협회에 따르면, 지난해 기준으로 영국과의 교역 규모는 크지 않았으며 수출액은 63억 달러로 20위, 수입액은 85억 달러로 27위에 해당한다. 우리나라의 영국 수출 품목 중 주요한 항목으로는 전기차(15.9%), 기타 자동차(12.7%), 무선전화기(7.9%) 등이 상위에 있었다. 반면, 주요 수입 품목은 원유(17.2%), 승용차(8.6%), 의약품(6.9%) 순으로 나타났다. 윤 대통령의 국빈 방문을 계기로 한국과 영국 간의 교역이 '탄소 중립 파트너'로 한 단계 높아질 가능성이 큰 것으로 기대된다. 또한, 영국은 탄소중립 정책을 적극적으로 추진하고 있어, 이와 관련한 협력 가능성이 높게 평가되고 있다. 영국은 2019년 세계 최초로 '2050년 온실가스 배출량 제로(0)', 일명 넷제로를 법적 목표로 도입한 국가다. 또한, 2021년 제26차 기후변화협약 당사국 총회(COP26)에서 의장국을 맡아 전 세계에 탄소중립 노력을 촉구하며 탄소중립 시대를 주도하고자 하고 있다. 영국은 환경 및 탄소 중립에 대한 앞장서는 역할을 하며 ESG(환경, 사회, 지배구조) 수준 역시 비교적 높다. 2020년 11월에 시작된 '녹색산업혁명을 위한 10대 중점계획'을 출발로, 2020년 12월에 '에너지백서 2020(Energy White Paper)'를 발표하고, 2022년 4월에 '에너지안보 전략(Energy Security Strategy)'을 공개하며, 2023년 4월에 '에너지안보 계획(Powering up Britain: Energy Security Plan)'을 발표하는 등 많은 중장기 계획을 제시하고 있다. 또한, 세계 주요 증권거래소에서 상장된 기업들의 ESG 리스크를 분석한 결과, 영국과 프랑스가 ESG 리스크가 가장 낮다는 평가를 받았다. 특히 영국의 FTSE 100 기업 중 54%가 ESG 위원회를 보유하고 있는 등 ESG 경영에 앞선 노력을 기울이고 있다. 더불어, 영국 재무부는 ESG 경영을 더욱 투명하게 촉진하기 위해 2021년에 '녹색금융: 지속가능한 투자 로드맵(Greening Finance: A Roadmap to Sustainable Investing)'을 발표했다. 이 로드맵은 금융 제공기관들로 하여금 금융 활동이 환경에 미치는 영향, 제품의 지속가능성 수준, 투자 전략 이행 여부 등을 의무적으로 공개하도록 규정하고 있다. 기업들은 이 로드맵에서 제시한 환경 보전 항목 중 하나 이상에 실질적인 기여를 증명해야 한다. 이 외에도 영국 정부는 플라스틱 포장세(Plastic packaging Tax), 플라스틱 빨대 공급 금지, 2030년 내연기관차 판매 금지 조치 등 환경에 해를 가하는 기업의 경제활동을 법적으로 금하고 있다. 이처럼 영국에서는 탄소중립이 에너지 안보와 성장 전략의 중요한 요소 중 하나로 고려되고 있다. 대한무역투자진흥공사(코트라)에 따르면, 영국 정부는 지난 3월에 발표한 '에너지 안보 및 넷제로 성장 계획'에서 신규 원전·SMR 기술 선발·차세대 원자로(AMR) 실증(원자력) 및 해상풍력·태양광(신재생에너지) 그리고 탄소포집 및 활용(CCUS), 저탄소 수소 생산·수소 수송 및 저장(수소에너지)을 핵심 전략으로 제시했다. 이러한 전략은 한국에게도 기술 개발 분야에서 큰 기회를 제공하는 분야와 관련이 있다. 원전 분야 협력 기대 특히 한국과 영국 간의 원전 분야에서의 협력은 세계적인 경쟁력을 지닌 분야로 주목할 만하다. 코트라의 '탄소중립을 위한 영국 원전산업 정책 동향' 보고서에 따르면, 영국 정부는 2050년까지 총 24기가와트(GW) 용량의 원자력 발전을 목표로 하고 있지만, 현재 가동 중인 원전 발전량은 7GW 수준으로 적극적인 투자가 필요한 상황이다. 양국 정부는 원전산업 협력 논의를 오랫동안 진행해 왔으며, 지난 4월에는 원자력 발전과 청정에너지 분야에서의 협력 확대를 위한 공동선언문을 발표했다. 이 선언문에는 영국 신규 원전 건설 참여 가능성을 모색하는 내용이 포함되어 있다. 또한, 지난 3월에는 영국원자력청(GBN) 출범을 계기로 한국전력이 영국 신규 원전 건설에 참여하는 방안을 논의하기로 합의한 일도 있었다. 한국전력은 2016∼2017년에 영국 무어사이드 원전 사업에 참여를 검토했지만, 경제성 문제로 추진을 중단한 적이 있다. 코트라는 "단기적으로는 한국 정부가 영국 대형 원전 건설 프로젝트에 참여하고, 한국의 원전 기자재 기업이 영국 시장에 원전 기자재를 수출하는 것을 모색하는 것이 중요하다"고 말했다. 그리고 앞으로는 영국 원전 운영사(EDF) 등과의 기업 네트워크를 구축하거나 에이전트 기업을 활용해 원전 기자재 기업의 독자적인 수출이 가능할 것으로 보인다.
-
- 경제
-
尹 대통령, 영국 국빈방문…원전 등 '탄소 중립 파트너' 기대
-
-
SK그룹, 베트남과 신재생에너지·자원순환 사업 협력 강화
- 29일 SK그룹에 따르면, 최태원 SK그룹 회장은 지난 27~28일 베트남 하노이를 방문해 팜 민 찐 총리, 브엉 딘 후에 베트남 국회의장 등 고위급 인사와 만나 그린 비즈니스 협력을 심도 있게 논의했다. 최 회장은 행사에서 "수소, 탄소포집·저장·활용(CCUS), 소형모듈원자로(SMR), 에너지 솔루션 등 첨단 기술을 활용해 베트남의 청정에너지 전환을 지원하고, 넷제로(탄소 중립) 달성에 협력할 계획"이라며 "현지 정부, 파트너들과 함께 생산에서 소비에 이르는 전 과정에서 친환경 생태계를 구축하는 것이 목표"라고 밝혔다. 이번 방문은 최 회장이 지난 16~18일 프랑스 파리에서 열린 'SK 최고경영자(CEO) 세미나' 이후 첫 글로벌 현장 점검이다. 이번 방문에는 조대식 SK수펙스추구협의회 의장, 추형욱 SK E&S사장, 박경일 SK에코플랜트 사장, 박원철 SKC 사장 등 그린, 에너지 분야 주요 경영진이 대거 동행했다. 베트남은 정치·안보적 외풍에서 비교적 자유롭고 현지 정부, 기업과 오랜 기간 신뢰를 쌓아온 데다, 한국의 3대 교역국으로 인프라가 잘 갖춰져 있어 SK가 동남아 거점으로 삼아온 국가다. 특히 베트남 정부가 '2050년 넷제로'를 국가적 핵심 과제로 추진하고 있어 SK의 그린 비즈니스 사업과 ESG(환경·사회·지배구조) 경영 방침과도 시너지를 기대하고 있다. SK는 이번 방문을 통해 현지에서 친환경 사업을 확대할 전망이다. SK E&S는 281메가와트(MW) 규모의 태양광·해상 풍력발전소를 현지에 준공해 상업 운영 중인 것에 더해 756MW 규모의 육상풍력발전소를 추가 구축하고, 청정수소·액화천연가스(LNG) 사업도 추진할 계획이다. SKC는 베트남 하이퐁에 2025년 가동을 목표로 세계 최대 규모의 생분해 소재 생산시설을 건설하고 있고, SK에코플랜트는 베트남 북부 박닌 소각설비에 인공지능(AI) 기술을 적용한 데 이어 현지 자원순환 기업들과 폐기물 처리·폐배터리 재활용 사업을 모색하고 있다. 최 회장은 베트남 방문 기간 파트너십을 여러 차례 강조하며 지난 30년간 다져온 신뢰를 이어가며 앞으로도 베트남의 산업 전환과 새로운 변화를 함께 하겠다는 의지를 드러냈다. 베트남이 산업 구조 진화에 속도를 내는 가운데 SK는 국가혁신센터 건립에 3000만달러(약 400억원)를 지원하는 등 스타트업 육성과 기술 혁신에 힘을 보탰다. SK는 국가혁신센터 개관 첫 행사로 다음 달 1일까지 열리는 '베트남 국제 혁신 엑스포(VIIE) 2023'에 전시관을 마련하고, 첨단 미래도시로 변한 약 30년 후 하노이를 가상현실로 선보여 큰 호응을 얻기도 했다. SK 관계자는 "베트남은 1990년대 최종현 선대회장이 현지 원유개발 사업을 시작한 이래 다양한 사업, 사회활동을 함께한 상징적인 협력국"이라며 "그린 비즈니스 외에도 디지털, 첨단산업 영역에서 지속가능한 성장을 위한 협업을 확대해 나갈 것"이라고 밝혔다. 최 회장과 SK 경영진은 현장을 점검하며 현지 직원을 격려하고, 동남아 사업 방향에 대한 열띤 토론을 펼쳤다. 이를 마지막으로 파리에서 시작해 아프리카, 베트남까지 이어진 10월 해외 출장 일정을 마무리했다. 최 회장은 파리에서 열린 'SK CEO 세미나'에서 "대격변 시대를 헤쳐 나가기 위한 방법론으로 경제블록별 조직화, 에너지·AI·환경 관점의 솔루션 패키지 마련 등 글로벌 전략을 논의했다"고 밝혔다. 이러한 글로벌 전략에 따라 SK는 베트남을 동남아 지역 거점으로 삼고, 신재생에너지, 자원순환 등 그린 비즈니스 분야에서 협력을 강화해 나갈 계획이다. 특히, SK E&S는 베트남에서 태양광, 풍력, 수소 등 다양한 신재생에너지 사업을 추진하고 있다. SKC는 세계 최대 규모의 생분해 소재 생산시설을 건설하고 있으며, SK에코플랜트는 폐기물 처리, 폐배터리 재활용 사업을 모색하고 있다. SK는 이러한 사업을 통해 베트남의 청정에너지 전환과 넷제로 달성에 기여하고, 동시에 글로벌 그린 비즈니스 시장에서 경쟁력을 강화해 나갈 것으로 기대된다. 한편, 최 회장은 이번 베트남 방문을 통해 현지 정부와 기업과의 관계를 강화하고, 동남아 지역에서 SK의 글로벌 성장 기반을 다지는 계기를 마련했다. 최 회장은 "베트남은 SK의 중요한 비즈니스 파트너이자 동반자"라며 "앞으로도 양국의 협력을 통해 지속가능한 성장을 이루고, 지역 경제 발전에 기여해 나가겠다"고 밝혔다.
-
- 산업
-
SK그룹, 베트남과 신재생에너지·자원순환 사업 협력 강화