검색
-
-
[기후의 역습(87)] 영장류 권위자 제인 구달 "여섯 번째 대멸종이 목전에 있다" 경고
- 제인 구달(Jane Goodall). 그녀는 세계적으로 유명한 저명 영장류학자이자 환경보호론자다. 현재 90세인 구달 박사는 여전히 탐사를 위한 여행을 하고 있다. BBC와의 이 인터뷰도 여행 중에 진행한 것이다. 그 뒤 베를린, 다음에는 제네바로 간다고 한다. BBC와의 인터뷰에서 구달 박사는 이번 여행은 환경에 대한 위험과 몇 가지 치유법에 대해 이야기하기 위함이라고 말했다. 인터뷰에서 구달 박사는 그녀의 이름을 딴 재단이자 비영리 기술 회사인 에코시아(Ecosia)가 우간다에서 수행하고 있는 나무 심기 및 서식지 복원 임무를 소개했다. 지난 5년 동안 지역 사회와 소규모 농부의 도움으로 이 조직은 거의 200만 그루의 나무를 심었다. 구달 박사는 이 자리에서 "우리는 여섯 번째 대멸종의 한가운데에 있다"고 경고했다. 그러면서 "자연을 복원하고 기존 숲을 보호하기 위해 할 수 있는 일이 급선무"라고 강조했다. 이 프로젝트의 주목적은 우간다에서 5000마리 침팬지의 생존을 위협받는 서식지를 복원하는 것이다. 그녀는 수십 년 동안 영장류를 보호하기 위해 연구하고 캠페인을 벌였다. 동시에 산림 벌채가 우리 기후에 미치는 위협을 강조한다. 나무는 지구 기후를 위협하는 이산화탄소를 흡수하는 소중한 존재다. 아제르바이잔 바쿠에서 개최된 COP29(유엔 기후변화협약 당사국총회)와 맞물려 구달 박사는 "지구 온난화를 늦추기 위한 조치를 취하는 것이 그 어느 때보다 시급하다"고 지적했다. "기후 변화와 생물 다양성 손실을 늦출 시간은 끝나가고 있다"는 것이다. 그녀는 침팬지를 연구하기 시작한 탄자니아의 숲에서 60년 전에는 우기와 건기에 따라 일정을 정할 수 있었지만 지금은 건기에 비가 내리고 우기에는 오히려 건조하다고 말했다. 나무가 잘못된 시기에 열매를 맺는다는 의미이다. 이는 침팬지와 곤충, 새의 생태계를 위협한다. 수십 년 동안 그녀는 야생 침팬지의 주요 서식지인 아프리카 전역에서 숲이 파괴되는 것을 보았다. 그리고 침팬지 수가 감소하는 것도 목격했다. 그녀는 "환경에 엄격한 규제를 부과하지 않고 화석 연료에서 빠르게 벗어나지 않는다면, 산업 농업을 중단하지 않는다면, 결국 환경을 파괴하고 토양을 죽이고 생물 다양성에 파괴적인 영향을 미칠 것이며 궁극적으로 미래는 파멸할 것"이라고 경고했다. 구달 박사는 탄자니아에서 침팬지를 관찰하고 연구하기 시작한 선구자였다. 그녀는 침팬지가 도구를 만들고 사용하는 것을 목격하고 기록한 최초의 전문가였다. 영장류는 흰개미를 낚기 위해 막대기를 사용했다. 그녀가 관찰하기 전까지 이는 인간에게만 있는 특성으로 여겨졌다. 또한 그녀는 동물들이 강한 가족적 유대감을 형성하고 심지어 영토를 놓고 전쟁을 벌인다는 것도 밝혔다. 구달 박사는 거의 전 생애를 침팬지를 비롯한 영장류 연구에 바쳤다. 올해 90세가 된 지금도 그 속도를 늦추지 않고 있다. 그녀는 이를 우리의 다음 세대 미래를 위한 것이라고 해명한다. 그러면서 단호하게 환경 법률에 대해 더욱 강경해야 한다고 강조한다. 구달 박사는 "우리에게는 환경을 되돌릴 시간이 남아있지 않다. 환경을 파괴하는 너무 많은 잘못을 저질렀다"면서, 여섯 번째 대멸종의 위기를 재삼 경고했다.
-
- 포커스온
-
[기후의 역습(87)] 영장류 권위자 제인 구달 "여섯 번째 대멸종이 목전에 있다" 경고
-
-
합병증 발생 92%, 가장 위험한 성형 수술 1위는?
- 완벽하게 아름다운 얼굴을 위해 쌍꺼풀 수술과 코를 높이는 등의 성형수술은 이제 일반인들도 쉽게 이용하고 있다. 물론 미(美)의 기준은 주관적인 것으로 객관화하기는 어렵다. 남들과 다른, 남보다 예쁜 모습을 갖추기 위해 성형수술은 점점 세분화되는 추세로 아름다운 다리, 애플힙, 필러 주입, 눈동자의 색깔을 바꾸는 수술 등 정말 다양하다. 그러나 부작용과 합병증 등으로 아름다움을 추구하는 데는 엄청난 비용이 들 수 있다. 미국 안경 처방업체 오버나이트 글래시스(Overnight Glasses)가 주도한 연구에서 눈동자의 색깔을 변화시키는 수술이 합병증 발병 92%로 가장 위함한 수술로 꼽혔다고 스터디파인즈가 전했다. 동양인들의 눈동자는 대개 검은색에 가깝다. 반면 서양인의 눈은 초록빛이나 푸른 빛이 돌아 에메랄드나 사파이어 보석에 빗대기도 한다. 연구에 따르면 눈동자 색깔 변경 수술은 합병증이 무려 92.30%로 가장 위험한 성형 수술 1위로 꼽혔다. 아직 미국 식품의약국(FDA)의 승인을 받지 못한 이 시술은 시력 상실, 녹내장, 각막 손상을 포함한 상당한 위험을 안고 있다. 홍채 이식이나 레이저 색소 제거, 각막 문신 등이 포함된 이 수술은 회복 시간이 1~8주까지 다양하고, 평균 비용은 1만2000달러(약 1600만원)에 달한다. 연구원들은 눈동자 색채 변경 시술을 두고 "말 그대로 시력을 가지고 도박을 하고 있다"고 꼬집었다. 눈동자에서 멜라닌 색소가 많으면 갈색을 띠고, 멜라닌 색소가 거의 없으면 푸른 색을 띤다. 눈동자에서 멜라닌 색소를 제거하는 수술 결과가 푸른색 눈동자를 갖게되는 것은 아니라고 전문가들은 경고했다. 미국 안과학회(AAO)는 2024년 눈 색깔을 바꾸는 수술의 위험성에 대해 경고했다고 클리블랜드 클리닉은 전했다. 위험 척도에서 두 번째로 높은 수술은 허벅지 리프트로 합병증 발생률이 78%였다. 다리를 조각하는 것을 목표로 하는 이 수술은 혈전, 감염, 피부 감각 변화 등의 위험이 있다. 엉덩이를 높여주는 인기 있는 수술인 브라질 버트 리프트(BBL)는 합병증 발병률 37.94%로 3위를 차지했다. 브라질 버트 리프트는 지방 색전증 및 기타 심각한 합병증 때문에 다른 시술보다 위험 순위가 높게 평가됐다. 4위는 바디 리프트로 합병증 발병률은 42%였다. 전신을 개선하기 위해 고안된 바디 리프트 바용은 1만5000달러(약 2000만원)로 목록 중에서 가장 비싼 수술이다. 종종 '점심시간 시술'로 여겨지는 주입형 필러는 합병증 발병률이 64.61%로 5위를 차지했다. 회복 시간은 1~2일로 짧지만 알레르기 반응과 비대칭과 같은 합병증 빈도는 우려스럽다는 것. 유방 축소 수술은 38%로 6위를 차지했다. 이 연구에서 유방 축소 수술은 유방 확대 수술보다 합병증 발병 위험이 두 배로 높았다. 유방 확대 수술은 14.40%의 합병증 발생률로 8위에 올랐다. 그 밖에 엉덩이 임플란트(butt implants 21.60%) 7위, 팔 리프트(상완성형술, 21.00%) 9위, 유방 리프트(10.40%)가 10위를 차지했다. 컬러 콘택트렌즈는 레이저 수술이나 염색 주사를 하지 않고도 눈동자의 색깔을 바꿀 수 있다. 이러한 콘택트렌즈도 각막을 긁거나 눈을 감염시킬 수 있으므로 사용에 주의해야 한다.
-
- 생활경제
-
합병증 발생 92%, 가장 위험한 성형 수술 1위는?
-
-
[기후의 역습(36)] 남극 빙붕 아래서 특이한 눈물방울 패턴 발견
- 남극 해안에 떠다니는 빙붕의 아래쪽에서 전에 본 적이 없는 눈물방울 모양의 패턴이 발견됐다고 라이브사이언스가 전했다. 연구 결과는 최근 국제 학술지 사이언스 어드밴시스(Science Advances)에 발표됐다. 이 패턴은 스웨덴 예테보리(Gothenburg) 대학 해양학 안나 볼린(Anna Wåhlin) 교수팀의 주도 아래 수행된 탐사 도중 서남극의 닷슨(Dotson) 빙붕 아래에서 발견됐다. 탐사 당시 일종의 수중 로봇(드론)인 원격조종차량(ROV)은 빙하 아래 17km까지 잠수해 얼음 밑면을 따라 1000km 이상을 이동하며 조사 중이었다. 닷슨 빙붕은 뉴욕시의 7배 크기인 50km 폭의 떠다니는 얼음덩어리로, 서남극의 마리버드랜드(Marie Byrd Land) 해안에 위치해 있다. 이곳은 서남극 빙상의 일부로, 빙하 붕괴로 전체 빙상이 붕괴되면 전 세계 해수면은 무려 3.4m나 상승할 수 있는 민감한 곳이다. 연구팀은 ROV를 얼음 아래로 내려보내 소나(수중음파탐지기)로 빙하의 아랫면을 스캔함으로써 빙하 아랫면의 가장 광범위하고 완전한 그림을 만들어 냈다. 이는 350m 두께의 빙붕을 위협하는 요인들을 더 자세히 조사하기 위함이었다. 이전의 연구에서는 꾸준한 침식이 빙상 가장자리를 갉아내고 있으며, 따뜻한 바닷물이 빙상 밑면으로 스며들고, 결국 빙상은 육지에서 떨어져 나가 붕괴가 불가피하다는 사실이 밝혀졌다. 이번 연구는 그 후속으로 실제 빙붕 상황을 조사한 것이다. 학계에서 예상했던 대로, 연구팀 조사 결과 빙하는 수중 해류가 바닥을 침식하는 지점에서 가장 빨리 녹고 있는 것으로 밝혀졌다. 또한 빙하를 가로지르는 균열은 얼음이 녹은 물이 표면으로 이동하도록 유도한다는 것도 보여주었다. 연구팀은 "남극의 얼음 순환과 얼음이 대륙에서 바다로 이동하는 과정을 이해하려면 얼음이 아래에서 어떻게 녹는지 이해해야 한다. 이는 육지의 얼음을 바다로 밀어내는 중요한 과정이다"라고 설명했다. 탐사 과정에서 연구팀은 예상과 달리 빙하의 바닥이 매끄럽지 않고, 얼음의 봉우리와 골짜기에서 나오는 눈물방울 모양으로 얼룩덜룩하다는 것을 발견했다. 이러한 모양 중 일부는 길이가 최대 400m에 달하는 것도 있었다. 연구팀은 이 패턴이 지구의 자전에 따라 물이 빙하 아랫면을 가로질러 이동하면서 고르지 않게 녹아 발생한 모양이라고 추정했다. 지구에서 움직이는 물은 '코리올리 효과'의 영향을 받는데, 이 효과는 남반구에서 지구 운동 방향의 왼쪽으로 작용한다. 그 결과 '에크만 나선'이라는 나선 흐름 패턴이 나타난다. 이는 바람이 바다 표면 수역을 지날 때 흔히 나타나지만, 물이 얼음 위를 지날 때도 나타날 수 있다. 팀은 "얼음을 녹이려면 많은 에너지가 필요하다. 따라서 남극의 모든 빙하는 거대한 지구의 온도 안정제와 같다. 즉 남극은 지구 기후 시스템을 유지하는 핵심이다"라며 "남극 빙상이 높은 속도로 바다로 흘러 들어가면 해수면 상승에 큰 영향을 미칠 수 있기 때문에 남극 지방에서의 빙붕 탐사는 미래의 해수면 상승 억제에 기여할 수 있다"고 지적했다.
-
- 포커스온
-
[기후의 역습(36)] 남극 빙붕 아래서 특이한 눈물방울 패턴 발견
-
-
영국 맨체스터 대학, 빅벤 높이 2배 120m 이상 점프하는 로봇 개발
- 영국 맨체스터 대학(University of Manchester)의 엔지니어들이 현재까지 설계된 점프 로봇 가운데 가장 높은 120m를 점프할 수 있는 로봇을 개발했다고 전문 매체 테크익스플로러가 전했다. 연구진은 수학, 컴퓨터 시뮬레이션 및 실험실 테스트를 결합해 최적의 부품을 채용하고 크기, 모양을 최적화한 로봇을 설계하는 방법을 발견했다. 개발된 로봇은 자체 크기의 수십 배에 달하는 장애물을 넘을 수 있을 만큼 높이 점프할 수 있다. 현재까지 개발된 가장 높이 점프하는 로봇은 자기 몸 크기의 110배에 해당하는 33m까지 도약할 수 있다. 이번에 맨체스터 대학 연구진이 개발한 로봇은 공중에서 120m 이상, 중력이 약한 달에서는 빅벤 타워 높이의 무려 두 배 이상인 200m 이상 점프할 수 있다. 이 개발 결과는 '메커니즘 및 기계 이론(Mechanism and Machine Theory)' 저널 최근호에 발표됐다. 이 로봇은 행성 탐사부터 재난 구조, 위험하거나 접근하기 어려운 공간 탐사 및 모니터링에 이르기까지 다양한 응용 분야에 혁명을 일으킬 것으로 기대된다. 연구진의 일원인 맨체스터 대학교 우주 로봇공학 연구원 존 로 박사는 "로봇은 전통적으로 점프 대신 바퀴를 굴리거나 다리를 사용해 걷도록 설계되었지만, 점프는 우주 공간에서 이동할 수 있는 매우 효과적인 방법을 제공한다"라고 말했다. 지형이 고르지 않거나 동굴 내부, 숲 속, 바위 지대 표면, 심지어 우주의 다른 행성 표면과 같이 장애물이 많은 곳에 적합하다는 것이다. 로 박사는 "점핑 로봇이 이미 개발됐지만 이런 종류의 로봇을 설계하는 데는 몇 가지 큰 난제가 있다. 가장 중요한 것은 크고 복잡한 장애물을 극복할 수 있을 만큼 높이 점프하는 것이다"라며 "우리가 설계한 로봇은 스프링 구동 점핑의 에너지 효율성과 성능을 획기적으로 향상시킨다"고 설명했다. 연구진은 기존의 점핑 로봇이 스프링 에너지를 완전히 방출하기 전에 도약하는 경우가 많아 비효율적이고, 최대 점핑 높이도 제한한다는 사실을 발견했다. 또한 위로 똑바로 움직이는 대신 몸체가 좌우로 움직이거나 회전함으로써 도약 에너지를 낭비한다는 것도 밝혀냈다. 이에 따라 설계된 새로운 로봇 디자인은 필요한 구조적 강도와 강성을 유지하면서도 이 같은 바람직하지 않은 동작을 제거하는 데 중점을 두었다. 연구진인 항공우주공학 벤 파슬루 교수는 "캥거루처럼 땅을 밀어낼 수 있는 다리가 맞을지, 거대한 스프링을 갖춘 피스톤이 맞을지 등 로봇의 구조와 형태에 대해 결정할 사항이 매우 많았다"고 말했다. 다이아몬드처럼 마름모꼴의 대칭 모양이어야 할지, 곡선적이고 유기적인 형태를 갖출지도 연구 대상이었다. 로봇의 크기도 중요했다. 크기가 작으면 가볍고 민첩하지만, 대형 로봇은 더 강력한 점프를 위해 더 큰 모터를 운반할 수 있으므로 어느 정도의 크기로 할 것인지를 정해야 했다. 그래서 설계된 로봇은 로봇 질량을 위쪽으로 많이 분배하고 아래쪽으로 가늘게 만들어졌다. 프리즘 모양의 더 가벼운 다리와 신축성이 큰 스프링을 사용했다. 점프 성능을 향상시키고 점핑 로봇의 에너지 효율성을 극대화하기 위함이었다. 연구진은 후속 작업으로 점프 방향을 제어하고 착지 시의 운동 에너지를 활용해 로봇이 한 번에 수행할 수 있는 점프 횟수를 늘리는 방법을 찾고 있다. 또한 로봇을 달에 더 쉽게 운반하고 사용할 수 있도록 우주 임무를 위한 보다 효율적인 디자인을 모색하고 있다.
-
- IT/바이오
-
영국 맨체스터 대학, 빅벤 높이 2배 120m 이상 점프하는 로봇 개발
-
-
AI 통한 채용, 인간 선택보다 공평할까?
- 인공지능(AI) 혁명은 사람들의 직업은 물론 개인 삶 모두로 파고 들고 있다. 채용 역시 마찬가지다. 예술가들은 저작권 침해나 작업의 대체를 두려워한다. 기업과 경영진은 공급망 관리, 고객 서비스, 제품 개발, 인적자원(HR) 관리 등 다양한 분야에서 AI를 활용한 효율성 제고를 꾀하고 있다. 지금까지의 추세로 볼 때 거의 모든 사업 분야와 운영은 어떤 형태로든 AI를 도입해야 한다는 압박을 피할 수 없게 될 것이다. 그러나 AI의 본질과 그 결과물의 기반이 되는 데이터는 인간의 편견이 내재된다. 그렇다면 채용 및 고용에서 AI를 사용하는 것은 어떨까. 채용 분야에서는 이미 이력서 검토를 자동화하고 구직자의 비디오 인터뷰를 평가하기 위해 AI를 널리 도입하고 있다. 채용 분야의 AI는 인간의 편견을 없애고 의사 결정의 공정성과 일관성을 강화함으로써, 채용 과정의 객관성과 효율성을 약속한다. 과연 그럴까. 그러나 뉴질랜드 매시 대학교와 호주 퀸즐랜드 대학교 분석팀의 연구에 따르면 AI는 채용 과정에서 미묘하게, 때로는 노골적으로 편견을 심화시킬 수 있는 것으로 나타났다고 더컨버세이션이 전했다. 또한 HR 전문가의 참여는 이러한 역효과를 완화하기보다는 악화시킬 수 있다. 이는 사람이 AI를 관리할 수 있다는 믿음에 혼란을 가져온다. 인간의 편견 확대 채용에 AI를 사용하는 이유 중 하나는 더 객관적이고 일관성을 꾀하기 위함이다. 그러나 여러 연구에 따르면 AI 기술은 실제로 편향될 가능성이 매우 높다. 이는 AI가 훈련에 사용된 데이터 세트로 학습하기 때문이다. 데이터에 결함이 있으면 AI도 결과적으로 결함을 보인다. 그런데 데이터는 인간의 편견이 상당히 포함되며, AI를 지원하는 인간이 만든 알고리즘으로 인해 더욱 악화될 수 있다. 22명의 HR 전문가와의 인터뷰에서는 채용에서 두 가지 일반적인 편견이 확인된다. '고정관념 편향'과 '나와 비슷한 편향'이다. 고정관념 편향은 특정 그룹에 대한 고정관념(예컨대 같은 성별의 후보자 선호)의 영향을 받아 의사 결정이 이루어질 때 발생하며, 이는 성 불평등으로 이어진다. 나와 비슷한 편향은 채용 담당자가 자신과 비슷한 배경이나 관심사를 공유하는 후보자를 선호할 때 발생한다. 채용 과정의 공정성에 상당한 영향을 미칠 수 있는 이러한 편향은 과거 채용 데이터에 내재되어 AI 시스템을 훈련하는 데 사용된다. 이로 인해 편향된 AI가 발생하는 것이다. 따라서 과거 채용 관행이 특정 계층이나 인물을 선호했다면 AI도 계속 그렇게 할 것이다. AI 알고리즘도 이러한 편향을 완화하는 것이 어렵다. 이러한 편향의 지속성은 인간과 AI 주도 채용 과정 모두에서 공정성을 보장하기 위해 신중한 계획과 모니터링이 필요함을 강조한다. 인간의 지원 가능성 조사는 HR 전문가뿐만 아니라 17명의 AI 개발자도 인터뷰했다. 채용 편향을 완화하는 AI 채용 시스템을 개발하는 방법을 조사하고자 함이었다. 인터뷰를 바탕으로, 분석팀은 HR 전문가와 AI 프로그래머가 데이터 세트를 살펴보고 알고리즘을 개발하면서 정보를 교환하고 선입견에 의문을 제기하는 모델을 개발했다. 그러나 조사 결과에 따르면 이러한 모델을 구현하는 데는 어려움이 따른다. 이는 HR 전문가와 AI 개발자 간에 존재하는 교육적, 전문적, 인구통계적 차이 때문이다. 이러한 차이는 효과적인 의사소통, 협력, 심지어 서로에 대한 이해까지 방해한다. HR 전문가는 전통적으로 사람 관리와 조직 행동을 중시하는 반면, AI 개발자는 데이터 과학과 기술에 능숙하다. 이처럼 서로 다른 배경은 함께 일할 때 오해와 불일치로 이어질 수 있다. 이는 특히 자원이 제한적이고 전문가 네트워크가 다양하지 않은 소규모 국가에서 문제가 된다. HR과 AI 연결 기업과 HR 업계가 AI 기반 채용의 편향 문제를 해결하려면 몇 가지 변경 사항이 필요하다. 첫째, 정보 시스템 개발과 AI에 초점을 맞춘 HR 전문가를 위한 체계적인 교육 프로그램을 구현하는 것이 중요하다. 이 교육에서는 AI의 기본, AI 시스템의 편향 파악, 편향을 완화하기 위한 전략을 다루어야 한다. 또한 HR 전문가와 AI 개발자 간의 협업을 촉진하는 것도 중요하다. 기업은 HR 및 AI 전문가를 모두 포함하는 팀을 만들어야 한다. 이를 통해 의사소통 차이를 해소하고 팀을 조정할 수 있다. 나아가 문화적으로 관련성 있는 데이터 세트를 개발하는 것은 AI 시스템의 편견을 줄이는 데 필수다. HR 전문가와 AI 개발자는 AI 기반 채용 과정에 사용되는 데이터가 다양한 그룹을 대표하도록 협력해야 한다. 이를 통해 보다 공평한 채용을 기할 수 있다. 마지막으로, 국가는 채용에 AI를 사용하는 규정과 윤리 기준을 만들어야 한다. 조직은 AI 기반 의사 결정 과정에서 투명성과 책임감을 높이는 정책을 구현해야 한다. 이러한 단계를 거치면 HR 전문가와 AI 개발자의 강점을 모두 포괄하는 보다 공정한 채용 시스템을 만들 수 있다.
-
- IT/바이오
-
AI 통한 채용, 인간 선택보다 공평할까?
-
-
챗GPT 등 생성형 AI 기술 이용, 유전자 가위 '크리스퍼' 제작 길 넓힌다
- 이제 생성형 인공지능(AI) 기술을 이용해 컴퓨터 키 하나만 누르면 유전자 편집 도구를 만들 수 있는 길이 열리게 됐다고 네이처가 보도했다. 지금까지는 유전자 가위라고 알려진 크리스퍼(CRISPR) 유전자 편집 시스템을 발견하기 위해 온천, 이탄 습지, 분변, 심지어는 요구르트에 이르기까지 모든 미생물을 탐색해야 했다. 생명공학 스타트업 프로플루언트(Profluent)는 수백만 개의 단백질 서열을 훈련한 생성형 AI 기술(단백질 언어 모델)을 적용해 크리스퍼 유전자 편집 단백질을 설계하는 방법을 발표했다. 캘리포니아 버클리에 소재한 프로플루언트의 알리 마다니 최고경영자(CEO)는 “챗GPT와 같은 생성형 AI 기술을 사용해 크리스퍼와 같은 복잡한 시스템을 설계하는 것이 가능하다는 것을 보여주었다”고 밝혔다. 이 연구 결과는 생뮬학 온라인 프리프린트 서버 'bioRxiv' 사이트에 실렸다. 게시글에서는 "온전한 기계 학습으로 설계된 단백질에 의한 인간 게놈의 최초의 성공적인 편집"이라고 적고 있다. 크리스퍼 설계를 위한 생성형 AI는 단백질이나 게놈 서열 형태의 방대한 생물학적 데이터를 훈련받는다. 이 '사전 훈련' 단계를 통해 AI 모델은 ‘어떤 아미노산이 함께 결합되는지’ 등 유전자 서열에 대한 지식을 쌓게 된다. 이 정보는 완전히 새로운 단백질 서열 생성과 같은 작업에 적용될 수 있다. 프로플루언트 연구팀은 종전에 자사가 개발한 '프로젠(ProGen)'이라는 단백질 언어 모델을 사용해 새로운 항균 단백질을 개발했다. 그 후 박테리아와 고세균 등 단세포 미생물이 바이러스를 방어하기 위해 사용하는 수백만 개의 다양한 크리스퍼 시스템을 학습시켜 프로젠 차기 버전을 만들었다. 진보한 크리스퍼 시스템을 개발하기 위함이었다. 크리스퍼 유전자 편집 시스템은 단백질뿐만 아니라 표적을 지정하는 RNA 분자로도 구성돼 있기 때문에, 연구팀은 이러한 '가이드 RNA'를 설계하기 위한 또 다른 AI 모델도 개발했다. 연이어 신경망을 사용해 자연에서 발견되는 수십 개의 서로 다른 단백질 계열에 속하는 수백만 개의 새로운 크리스퍼 단백질 서열을 설계했다. AI가 설계한 크리스퍼가 올바른 유전자 편집자라는 사실도 확인됐다. '가이드 RNA'를 인간 세포에 삽입했을 때 의도한 표적을 정확하게 절단했다는 것. 확인 결과 실험실에서 널리 사용되는 크리스퍼-카스9(CRISPR-Cas9)에 속하는 단백질만큼 표적 DNA 서열을 절단하는 데 효율적이었다. 오히려 잘못된 위치에서 절단하는 횟수가 훨씬 적었다. 한편 캘리포니아 스탠포드 대학의 컴퓨터 생물학자 브라이언 히 교수와 캘리포니아 팔로알토에 소재한 Arc연구소가 이끄는 연구팀도 단백질과 RNA 서열을 모두 생성할 수 있는 AI 모델을 개발했다. EVO라고 불리는 이 모델은 박테리아와 고세균의 8만 개 게놈과 기타 미생물 서열(3000억 개의 DNA)에 대해 훈련받았다. EVO가 설계한 일부 크리스퍼-카스9 시스템의 예상 구조는 천연 단백질의 구조와 유사했다. 이 연구 역시 bioRxiv 사이트에 게시됐다. 마다니는 AI가 설계한 유전자 편집 도구가 기존 크리스퍼보다 의료 부문 응용에 더 적합할 수 있다고 기대했다. 프로플루언트는 AI 생성 크리스퍼를 테스트하기 위해 유전자 편집 치료법을 개발하는 회사와의 파트너십도 추진하고 있다. 편집 기술의 정밀도를 높이고 맞춤형 디자인으로 발전시킨다는 계획이다.
-
- IT/바이오
-
챗GPT 등 생성형 AI 기술 이용, 유전자 가위 '크리스퍼' 제작 길 넓힌다
-
-
오클라호마시티에 581m 높이 미국 최고층 빌딩 들어선다
- 미국 오클라호마주는 중남부 최남단에 위치한 텍사스주와 맞닿아 있는 인구 400만 명의 한적한 시골 지역이다. 주도는 오클라호마 시티로 시 경계지역까지 포함한 인구는 70만 명 수준이다. 그런데 미국 도시 중에서는 세 번째로 면적이 넓다. 그런 오클라호마 시티에 미국에서 가장 높은 빌딩이 들어서게 됐다고 뉴스아틀라스가 전했다. 뉴욕 맨해튼이나 시카고가 아닌, 그것도 수시로 토네이도가 발생해 피해를 일으키는 오클라호마 시티에 초고층 마천루가 만들어지는 데 대해 정책이나 건축, 도시공학 전문가들도 고개를 갸웃한다. 보도에 따르면 최초 프로젝트는 미국에서 두 번째로 높은 마천루로 제안됐다. 그 후, 건축 디자이너와 개발자들이 처음부터 다시 설계에 들어갔고, 한 단계 더 나아가 미국 최고층 빌딩을 건설하는 프로젝트로 업데이트됐다. 그 이후에도 더 많은 세부 사항들이 확정돼 시 정부에 제출됐다. 이 빌딩은 철길 근처 주차장 부지와 유홀(U-Haul: 이삿짐 포장 및 보관, 트럭 대여 전문회사) 창고 시설 부지에 위치하게 된다. 그렇다면 왜 빌딩 높이가 581m일까. 답부터 말하면, 오클라호마가 미국의 46번째 주가 된 해를 기념하기 위함이다. 오클라호마는 1907년에 46번째 미국의 주로 가입했다. 581m를 미국의 길이 표시 단위인 피트(ft)로 환산하면 1907ft다. 참고로 한국에서 가장 높은 빌딩인 롯데월드타워는 123층, 555m 높이로 세계에서 여섯 번째로 높은 건물이다, 현재 미국의 가장 높은 고층 건물은 뉴욕의 원월드 트레이드센터(One World Trade Center)로, 새로 짓는 빌딩은 39m(130ft) 더 높다. 중국의 핑안국제금융센터(Ping An Finance Center) 바로 다음으로, 세계에서 여섯 번째로 높은 빌딩이 된다. 이 타워 주변에는 각각 105m짜리 빌딩 세 개가 추가로 지어진다. 총 네 개의 건물 사이에는 고급 호텔과 함께 1776개의 주거용 시설도 들어선다. 일종의 주상복합인 셈이다. 그러나 프로젝트가 완성되기까지 여러 우려가 뒤따랐다. 개발자인 스캇 매테슨은 프로젝트에 소요되는 16억 달러의 자금을 확보했다고 발표했지만, 인구가 100만 명 미만인 도시(오클라호마 시티 메트로폴리탄 지역 전체를 포함하면 약 140만 명)에 그렇게 높은 건물을 짓는 것이 재정적으로 의미가 있냐는 질문이다. 게다가 월스트리트저널은 최근의 오클라호마 시티 도시 계획 회의에서 또 다른 긴급한 우려가 제기됐다고 보도했다. 바로 날씨 문제다. 오클라호마 시티는 토네이도가 빈발하는 곳이다. 초고층 건물을 짓는데, 회의 석상에서 온갖 종류의 최악의 악몽 같은 시나리오가 도마에 올랐음은 당연한 일이다. 타워를 설계하고 있는 캘리포니아 스튜디오 AO 측은 이 문제를 해결하기 위해 엘리베이터 샤프트를 둘러싼 콘크리트 코어를 설치할 것이고, 창문도 토네이도의 파괴력에 견딜 수 있도록 할 것이라고 확언했다. AO측은 토네이도가 발생했을 때 오히려 타워 내부가 더 안전한 장소 중 하나가 될 것이라고 제안했다.
-
- 포커스온
-
오클라호마시티에 581m 높이 미국 최고층 빌딩 들어선다
-
-
[신소재 신기술(24)] 제트제로(JetZero), 획기적인 혼합 날개 시연기 시험 비행 승인 획득
- 미국 캘리포니아에 본사를 둔 제트제로(JetZero)의 비행기 몸체와 날개가 혼합된 디자인의 혼합 날개 시연기가 미국 연방항공국(FAA)의 테스트 비행 시작 승인을 받았다. 여객기의 기본 모양은 수십 년 동안 크게 변하지 않았지만, 급진적인 새로운 모양들이 선보이고 있다. 뉴아틀라스는 27일(현지시간) 제트제로의 혼합날개(블렌디드 윙·blended wing) 시연기가 FAA 승인을 받아 시험 비행을 시작했다고 발표했다고 전했다. 혼합 날개 비행기는 동체와 날개가 함께 혼합되어 일반 여객기와 하늘을 나는 날개 사이의 교차점이 날렵한 모양으로 만들어진 것을 말한다. 제트제로는 기본적으로 양력 표면인 공기역학적인 디자인인 자사의 혼합 날개가 일반 제트기보다 연비가 크게 향상돼 50% 적게 사용한다고 주장했다. 연비 절감은 운영 비용 절감으로 이어져 장거리 대륙횡단 노선도 개설될 수 있다. 이 개념이 배터리 전기, 수소 또는 암모니아 연료와 같은 청정 항공 파워트레인과 결합된다면, 훨씬 더 큰 이점이 있을 수 있다. 게다가 혼합 날개 디자인은 화물과 승객을 위한 훨씬 더 많은 공간을 제공한다. 에비에이션위크에 따르면 제트제로는 자사의 항공기 구조가 승객 1인당 기존 항공기 보다 가볍다고 설명했다. 제트제로의 혼합날개 비행기는 최대 250명을 태울수 있도록 설계됐다. 지난해 제트제로는 2030년까지 자사의 블렌디드 윙 여객기를 취항시키기 위해 미 공군, 미 항공우주국(나사·NASA), FAA와 협력하고 있다고 발표했다. 또한 작년 8월에는 2027년까지 시제품을 제작하기 위해 미 공군과 계약했다. 한편, 세계 최대 항공기 제조업체들은 넷제로를 실현하기 위해 혁신적인 차세대 비즈니스 및 여객기를 개발하고 있다. 유럽의 에어버스는 기류 저항을 극복하기 위해 모양이 변형되는 날개 디자인 등 급진적인 형태의 날개인 엑스트라 퍼포먼스 윙(Extra Performance Wing) 개발을 진행하고 있다. 미국의 보잉은 NASA와 협력해 기존의 날개보다 훨씬 길고 날씬한 날개를 받치는 트러스 구조를 사용하는 실험 항공기 X-66A 개발에 참여하고 있다. 이는 항공기의 연료 효율을 획기적으로 향상시켜 2050년까지 탄소 중립을 달성하겠다는 항공 업계의 지속 가능성 목표를 실현하기 위함이다.
-
- 포커스온
-
[신소재 신기술(24)] 제트제로(JetZero), 획기적인 혼합 날개 시연기 시험 비행 승인 획득
-
-
미국 해군, 첨단 로봇 전쟁 전문가 자격(RW) 신설
- 미국 해군은 지난 22일(이하 현지시간) 미래 해상 전력 강화를 위한 핵심 전략적 조치의 일환으로 첨단 로봇 전쟁 전문가 자격(Robotics Warfare Specialist, RW)을 신설한다고 발표했다. 이 역사적인 발표는 미 해군이 로봇 및 자율 시스템 분야의 급격한 발전에 발맞춰 전투력을 향상시키고 미래 해상 전쟁에 대비하기 위한 노력의 일환으로 해석된다. 24일 미국의 군사 전문 매체 C4ISRNET은 미 해군이 신설하는 RW자격은 로봇 및 자율 시스템 운영을 감독하며, 능동 및 수동 탑재 시스템과 센서를 작동하고 유지 관리하는 역할을 수행한다고 보도했다. 즉, RW 자격은 미래 해군의 핵심 전력으로 떠오르는 로봇 및 자율 시스템 운영 및 유지 관리 분야의 전문가를 양성하기 위한 프로그램이다. RW 자격을 취득한 전문가들은 첨단 로봇 플랫폼 운영, 능동 및 수동 탑재 시스템 작동 및 관리, 센서 데이터 분석 등 다양한 임무를 수행하게 된다. 미 해군 행정 규정(NAVADMIN) 메시지에 따르면, RW 자격은 "진정한 혼합 함대를 달성하기 위한 해군의 끊임없는 노력에서 중요한 이정표"라고 명시됐다. 이는 미 해군이 유인함과 무인함을 혼합하여 운영하는 혼합 함대 구축을 목표로 하고 있으며, RW 자격은 이러한 목표 달성에 필수적인 역할을 할 것으로 기대된다. RW 자격은 빠르게 발전하는 자율 기술 분야에서 심층적인 전문 지식을 갖춘 인재를 양성하여 미래 해상 전쟁에 대비하는 데 중요한 역할을 할 것이다. 이 새로운 자격은 현재 활동 중인 모든 선원들에게 개방되어 있으며, 해군은 RW 자격 취득을 통해 미래 해상 전력 강화에 기여할 우수한 인재를 모집할 계획이다. 엄선된 전문가 RW, 미래 해상 전력의 중추 로봇 전쟁 전문가(RW) 자격은 미 해군의 미래 해상 전력 강화를 위한 핵심 전략적 조치다. 이 자격으로 전환하는 인재들은 주로 현재 또는 과거 무인 차량 부대에 배치되었거나 해당 해군 병사 분류 코드를 가진 전문가들로 구성될 예정이다. 이들은 엄격한 선발 과정을 거쳐 미래 해상 전쟁의 중추를 이루는 핵심 인력으로 육성될 것이다. NAVADMIN 메시지는 모든 활동 중인 자격자들이 RW 자격으로 전환 신청을 가능하게 하지만, 초기에는 소규모의 엄격한 선발 과정을 거칠 것임을 강조했다. 이는 미 해군이 RW 자격을 획득하는 인재들에게 최고의 전문성을 요구하고, 미래 해상 전력 강화에 기여할 뛰어난 인재만을 선발하고자 하는 의지를 보여준다. E-4부터 E-9(상병~원사) 계급의 현역 군인들은 전환 신청을 제출할 수 있으며, 지휘관은 직속 상관 및 병사 커뮤니티 관리자와 협력하여 신청 절차를 진행한다. 이러한 체계적인 신청 절차는 전환 과정의 투명성을 높이고, 자격 요건을 충족하는 모든 인재에게 동등한 기회를 제공한다. 선발 과정은 계급에 따라 차별화된다. E-5 및 E-6 계급의 선원들은 9월에 전국 로봇 전쟁 전문가 진급 시험을 치르게 되며, 더 높은 계급의 선원들은 2025년에 시험과 심사위원회를 거쳐야 한다. 이는 각 계급의 역량과 책임에 맞는 전문성을 평가하고, 미래 해상 전쟁에 필요한 다양한 인재를 확보하기 위한 전략이다. 선원들은 현재 근무 기간이 끝나면 로봇 전쟁 커뮤니티로 전환되며, 이미 전환된 직책으로 이동하지 않은 경우에는 이전이 진행된다. 이는 로봇 전쟁 전문가 자격을 획득한 인재들이 효율적으로 배치되고, 미래 해상 전력 강화를 위한 최적의 환경을 조성하기 위한 노력이다. 미래 해상 전력 강화를 위한 전략적 투자 미 해군 교육 훈련 사령부는 RW 자격 취득을 위한 맞춤형 훈련 과정 개발에 착수했다. 이 훈련 과정은 2026 회계 연도 신입 선원들에게 처음 개설될 예정이며, 미래 해상 전력 강화를 위한 해군의 전략적 투자를 상징한다. 미 해군이 로봇 전쟁 자격을 신설한 이유는 미래 해전의 변화에 대응하기 위함이다. 미래 해전은 자율 무인 시스템 및 로봇 시스템의 사용이 증가할 것으로 예상되며, 이러한 시스템을 효과적으로 운영하고 유지 관리하기 위해서는 전문성을 갖춘 인력이 필수적이다. RW 자격은 미 해군이 미래 해상 전력 강화를 위해 핵심 전략적 목표로 설정한 것이다. RW 자격은 해군 인력의 전문성을 향상시키고 미래 해전에 대비하는 데 중요한 역할을 할 것으로 기대된다. 이 자격은 해군 내 로봇 전쟁 관련 기술 혁신을 촉진하고 새로운 기술 개발을 장려할 것이다. 또한, 해군 인력에게 새로운 기회를 제공하고 전문성을 인정함으로써 사기 진작에도 효과를 발휘할 것으로 예상된다.
-
- 산업
-
미국 해군, 첨단 로봇 전쟁 전문가 자격(RW) 신설
-
-
레이저 가공 HEA, 3D 프린팅으로 강도·연성 향상
- 최근 레이저와 3D 프린팅 기술을 활용해 강도가 높고 유연성을 갖춘 새로운 형태의 합금을 개발하는 데 성공했다. 합금이란, 기본 금속에 다른 금속을 섞어 고온에서 녹인 후 식혀 만들어진, 원래 금속과는 다른 성질을 가진 새로운 금속 물질을 말한다. 이러한 합금을 제작하는 주된 목적은 기계적 성질을 개선하고, 부족한 특성을 보완하여 금속의 기능을 증진시키기 위함이다. 과학기술 전문 매체 사이테크데일리(SciTechDaily)는 레이저 기반 적층 제조 방식을 이용하여 더 강력하고 파손 가능성이 낮은 고엔트로피 합금(HEA)을 만드는 방법을 소개했다. '고엔트로피 합금(HEA:High entropy alloys)'은 기존의 합금 제조 방식과 비교했을 때 뛰어난 강도와 내구성을 제공하며, 합금의 적용 범위를 확장시킬 수 있는 잠재력을 가지고 있다. HEA는 심각한 마모, 극한의 온도, 방사선 및 높은 압력과 관련된 응용 분야에서 사용가능하다. 3D 프린팅, 또는 적층 가공(AM)으로 알려진 기술을 사용해 만들 수 있는 합금은 일반적으로 연성이 부족하다는 단점을 가지고 있다. 이는 3D 프린팅을 통해 제작된 고엔트로피 합금이 형태를 유지하는 데 어려움을 겪고, 하중을 받을 때 충분히 변형되거나 늘어나지 않아 쉽게 파손될 수 있다는 것을 의미한다. 그러나 최근 과학자들은 레이저 기반의 적층 가공 방식을 사용하여, 이러한 연성 문제를 개선한 더욱 강하고 연성이 뛰어난 고엔트로피 합금을 개발하는 데 성공했다. 이들은 이러한 성능 향상의 기본 메커니즘을 더 깊이 이해하기 위해 중성자와 X선 산란, 그리고 전자 현미경과 같은 고급 분석 기술을 활용했다. 이러한 연구 결과는 3D 프린팅 합금의 사용 범위를 확장하고, 그것이 적용될 수 있는 산업 분야를 다양화하는 데 기여할 수 있을 것으로 기대된다. 특히, 연성과 강도가 모두 향상된 새로운 형태의 합금은 더욱 까다로운 응용 분야에서도 활용될 수 있을 것으로 전망된다. 잠재적인 산업 응용과 에너지 효율성 산업계는 미래에 제조 과정에서 더욱 강력하고 형태를 쉽게 잡을 수 있는 고엔트로피 합금을 사용 가능할 것으로 기대하고 있다. 이러한 HEA를 산업 응용 분야에 사용하기 위해서는 가벼우면서도 복잡한 형태의 HEA 부품에 대한 높은 내구성, 신뢰성, 그리고 파손 저항성이 요구된다. 새로운 합금은 더 안전하고 연료 효율적인 차량의 제조, 더 강한 제품의 생산, 그리고 더 오래 지속되는 기계의 개발을 가능하게 하여, 소비자와 산업계 모두에 혜택을 가져올 것으로 기대된다. 또한, 레이저를 사용하여 분말 합금을 고체 금속 형태로 융합하는 레이저 기반의 적층 가공 방식은 에너지 효율성이 매우 높다는 점에서, 새로운 유형의 HEA 생산에 있어 매력적인 방법으로 여겨진다. 이는 에너지 소비를 줄이면서도 고품질의 합금 부품을 생산할 수 있는 방법으로, 지속 가능한 제조 및 공정 효율성 측면에서 중요한 역할을 할 것으로 예상된다. 나노 라멜라 구조와 기계적 특성 레이저 기반 적층 가공 공정은 나노미터 두께의 나노 라멜라(얇은 판층) 구조를 생산할 수 있다. 이 공정은 높은 강도를 제공하면서도, 나노 라멜라의 뚜렷한 가장자리가 일정 수준의 미끄러짐(연성)을 허용하여 유연성을 보장한다. 이러한 나노 라멜라는 평균 약 150나노미터 두께의 면심 입방체(FCC) 결정 구조와 평균 약 65나노미터 두께의 체심 입방체(BCC) 결정 구조의 교차 층으로 구성된다. 개발된 새로운 고엔트로피 합금은 약 1.3기가파스칼(인장강도 단위)의 높은 항복 강도를 나타내며, 이는 가장 강한 티타늄 합금의 강도를 능가하는 수준이다. 또한, 이 HEA는 약 14%의 연신율을 제공하는데, 이는 동일한 항복 강도를 가진 다른 AM 금속 합금보다 높은 수치다. 연신율은 재료가 파손되지 않고 얼마나 많은 굽힘을 견딜 수 있는지를 나타내는 지표로, 재료의 유연성과 내구성을 측정하는 중요한 요소다. HEA 첨단 연구기술 및 시설 한편, 미국 테네시주에 위치한 오크리지 국립연구소(ORNL: Oak Ridge National Laboratory)의 연구원들은 에너지부(DOE) 산하 과학 사용자 시설인 파쇄 중성자원(Spallation Neutron Source)을 통해 변형 상태에서 HEA 샘플의 내부 기계적 부하 분배를 조사할 수 있었다. 이 시설의 중성자 데이터는 합금 내부의 상세한 구조적 정보를 제공함으로써 HEA의 기계적 특성에 대한 깊은 이해를 가능하게 했다. 또한, 연구팀은 ORNL 내의 다른 DOE 과학 사용자 시설인 나노입자 재료 과학(Nanophase Materials Sciences) 센터에 위치한 원자 프로브 장비를 활용하여, 교대로 층을 이루는 나노 라멜라 구조 및 미세 구조의 상세한 3D 이미지를 캡처했다. 이와 별개로, 미국 일리노이주에 위치한 시카고 아르곤 국립연구소(Argonne National Laboratory)의 첨단방사광가속기(Advanced Photon Source)는 어닐링 과정을 거친 다양한 HEA 샘플의 단계를 연구하는 데 사용되었다. 이 시설에서의 X선 회절 분석은 합금의 열처리 과정이 그 성질에 어떻게 영향을 미치는지를 평가하는 데 중요한 역할을 했다. 미국 내 첨단 연구기술 및 시설의 활용은 HEA의 개발과 응용에 있어 중요한 도약점을 제공하며, 합금의 구조적 및 기계적 특성에 대한 포괄적인 이해를 가능하게 한다. 이러한 첨단 연구는 HEA의 미래 적용 가능성을 확장하고, 재료 과학 분야에서의 혁신적 발전을 촉진할 것으로 기대된다. 연구소들의 고도화된 기술과 시설은 재료의 기본 구조부터 그 성능에 이르기까지 광범위한 분석을 허용함으로써, 합금의 특성을 극대화하고 다양한 산업 분야에 적용할 수 있는 새로운 기회를 열어준다.
-
- 산업
-
레이저 가공 HEA, 3D 프린팅으로 강도·연성 향상
-
-
양자컴퓨터, 실용화까지 '멀고 험난한 길'
- "양자컴퓨터의 성능은 과장됐고, 실용화는 아직 요원하다"는 지적이 나왔다. 일본 기술 전문 매체 기가진에 따르면 일본의 양자컴퓨터의 성능과 실용화 가능성에 대한 과장된 기대감이 있으며, 실제 실용화까지는 여전히 멀고 험난한 길이 남아 있다는 지적이 제기됐다. 마이크로소프트와 인텔을 포함한 여러 기업들이 양자 역학의 원리를 활용한 양자 컴퓨터 개발에 박차를 가하고 있다. 이들 기업은 양자 컴퓨터가 일반 컴퓨터보다 훨씬 빠른 속도로 복잡한 계산을 수행할 수 있을 것으로 기대하고 있다. 그러나 일부 전문가들은 양자 컴퓨터의 실현이 대중적인 예상보다 훨씬 더 미래의 일이 될 수 있다고 경고하고 있다. 양자 컴퓨터는 소립자의 세계에서 발견되는 '중첩'과 '양자 얽힘' 등의 특성을 활용하여, 기존 컴퓨터로는 불가능한 처리를 수행할 수 있다고 여겨진다. 이는 금융 모델링, 물류 최적화, 머신러닝 가속화 등 다양한 실제 문제 해결에 응용될 수 있는 잠재력을 지니고 있어 주목받고 있다. 그러나 이러한 가능성에도 불구하고, 양자컴퓨터의 실용화에는 아직 많은 연구와 개발이 필요한 상황이다. 양자 컴퓨터를 개발하고 있는 IBM과 같은 일부 회사는 양자 컴퓨터가 몇 년 안에 실제 문제에 영향을 미칠 것이라는 낙관적인 전망을 제시하고 있다. 하지만 이와 동시에 일부 전문가들은 양자 컴퓨팅 기술이 현실적인 적용에 회의적인 입장을 보이고 있다. 메타의 AI 연구 책임자인 양루쿤은 양자 컴퓨팅 기술에 대해 "매력적인 과학적 주제이지만 실제로 유용한 양자 컴퓨터를 생산할 가능성에 대해 확신하기 어렵다"고 말했다. 이는 양자 컴퓨터의 실용화에 대한 기대와 불확실성을 동시에 나타내는 발언으로 해석될 수 있다. 아마존웹서비스(AWS)의 양자 하드웨어 책임자인 오스카 페인터는 양자 컴퓨터 산업에 대해 "엄청난 양의 과대 광고가 존재한다. 현재 상황에서 낙관적인 접근과 비현실적인 기대를 구분하기가 점점 어려워지고 있다"고 지적했다. 이는 양자컴퓨터 분야의 빠른 발전과 그에 따른 과대 광고의 증가가 업계 내에서 어떻게 인식되고 있는지를 보여준다. 결과적으로, 양자 컴퓨터 개발은 과학과 기술의 빠른 발전 속에서도 여전히 현실과 기대 사이의 간극을 좁히는 데 어려움을 겪고 있는 분야로 여겨진다. 현재 양자컴퓨터 개발의 근본적인 문제 중 하나는 오류 발생의 취약성이다. 대다수의 현재 개발 중인 양자컴퓨터들은 '노이즈(잡음)가 있는 중간 규모 양자 컴퓨터'(NISQ)로 분류되며, 이들은 몇 년에서 수십 년 내에 개발될 것으로 예상된다. 일부 전문가들은 이러한 컴퓨터들이 오류에도 불구하고 유용한 기능을 제공할 수 있을 것으로 보고 있다. 그러나 오스카 페인터 박사는 이러한 가능성에 대해 회의적인 입장을 보이며, 실용적인 양자 컴퓨터의 실현은 오류 처리 능력에 달려있다고 강조했다. 아울러 페인터 박사는 또한 "수천 개의 큐비트를 갖춘 대규모 양자 컴퓨터 구현을 위해서는 아직 해결해야 할 기술적 과제가 많다"며 "개발 완료까지 최소 10년이 소요될 것으로 예상한다"고 말했다. 양자컴퓨터의 발전과 관련하여, 마이크로소프트의 양자 컴퓨팅 부문 책임자인 마티아스 트로이어(Matthias Troyer)는 양자 컴퓨터가 실제로 유용한 결과를 제공할 수 있는 애플리케이션의 범위가 일반적으로 생각하는 것보다 훨씬 제한적일 수 있다고 지적했다. 이러한 견해는 양자 컴퓨터의 실용적인 적용과 관련하여 여전히 많은 도전과제가 존재한다는 것을 시사한다. 양자컴퓨터는 복잡한 문제를 기존의 컴퓨터보다 훨씬 빠르게 해결할 수 있는 잠재력을 가지고 있다. 그로 인해 양자 컴퓨터는 암호 해독, 물질과 분자의 구조 예측, 최적화 문제 등 기존 컴퓨터로는 해결하기 어려운 복잡한 문제들을 효과적으로 처리할 수 있다. 또 분자와 화학 반응을 시뮬레이션하는 데 양자 컴퓨터가 사용될 경우, 약물 개발과 재료 과학 분야에서 혁신적인 발전을 이룰 수 있다. 현재 양자컴퓨터는 오류률이 높은 편이다. 양자 상태는 매우 불안정하며 외부 환경의 영향을 쉽게 받기 때문에, 정확한 계산을 위한 오류 수정이 어렵다. 아울러 양자컴퓨터는 극도로 낮은 온도에서 작동해야 하며, 이를 위한 복잡하고 비용이 많이 드는 냉각 시스템이 필요하다. 또한 양자컴퓨터를 위한 프로그래밍 언어와 알고리즘은 전통적인 컴퓨터 시스템과는 매우 다르다. 이로 인해 새로운 종류의 전문 지식과 기술이 필요하다. 그로 인해 현재로서는 양자 컴퓨터가 기존 컴퓨터보다 우월한 실용적인 성능을 보이는 분야가 제한적이다. 양자 우위를 달성하려면 아직 많은 연구와 개발이 필요하다. 트로이어에 따르면, 양자 컴퓨팅이 기존 컴퓨터보다 기하급수적으로 빠른 것으로 알려진 응용 프로그램에는 '큰 숫자의 인수분해'와 '제약 설계 및 유체 역학 시뮬레이션' 등이 포함된다. 그러나 이러한 응용 프로그램의 가속화가 항상 효과적인 것은 아니며, 경우에 따라 기존 컴퓨터가 더 빠를 수도 있다고 한다. 트로이어는 양자컴퓨터가 복잡한 연산 과정을 수행함에 따라 큐비트의 연산이 매우 복잡해지며, 이는 기존 컴퓨터의 '트랜지스터 스위칭' 속도보다 느릴 수 있다고 설명했다. 실제로, 그는 '엔비디아(NVIDIA) A100'을 사용하는 컴퓨터와 10,000 큐비트를 탑재한 양자 컴퓨터의 성능을 비교하는 이론적 실험을 수행했다. 그 결과 양자 컴퓨터가 기존 컴퓨터의 성능을 능가하기 위해서는 수백 년 또는 수천 년에 걸친 연구가 필요할 것으로 나타났다. 이러한 분석을 바탕으로, 트로이어는 "양자컴퓨터는 소규모 데이터 문제에서 기하급수적으로 빨라질 수 있지만, 현재의 양자 컴퓨터는 실용적이지 않다"고 지적했다. 이는 양자컴퓨터 개발의 현실적인 한계를 드러내며, 향후 연구와 개발이 직면한 도전과제를 보여주는 중요한 지표로 여겨진다. 스타트업 퀀텀에라(QuEra)의 최고 마케팅 책임자인 유발 보시어(Yuval Bossier)에 따르면, 회사의 큐비트 개발을 포함한 양자 컴퓨팅 분야는 현재 많은 변화를 겪고 있다. 보시에는 "일부 기업들이 양자 컴퓨팅 연구에서 AI 연구로 리소스를 전환하고 있다"고 말했다. 이는 양자 컴퓨팅 분야에 대한 투자와 관심이 AI 분야로 이동하는 현상을 반영한 것으로 보인다. 보시에는 또한 양자 컴퓨팅에 대한 과대 광고가 많은 재능 있는 사람들을 분야로 끌어들였지만, 현재 양자 컴퓨터가 세계의 다양한 문제를 해결하기 어렵다는 사실이 밝혀지면서 실망감을 불러일으키고 있다고 지적했다. 그 결과, 많은 연구자들이 이 분야를 떠나고 있다는 것이다. 이러한 현상은 양자 컴퓨팅 기술의 발전과 실용화에 대한 과도한 기대가 현실과 맞닥뜨리면서 생기는 문제로, 연구자들과 투자자들 사이에서 재평가가 필요한 시점임을 시사한다. 양자 컴퓨팅의 발전은 여전히 중요하지만, 그 기대치와 현실 사이의 균형을 찾는 것이 중요해 보인다. 독일의 유명 제약회사 '머크 KGaA'의 디지털 혁신 그룹 글로벌 책임자 필립 헤르바흐(Philip Herbach)는 양자 컴퓨터에 대해 현실적인 견해를 제시했다. 그는 "양자 컴퓨터가 기존 컴퓨터로는 해결할 수 없는 문제들을 해결할 수 있을 것으로 기대되지만, 실제로는 새로운 지평을 여는 것보다는 기존 프로세스의 속도를 개선하는 데 더 자주 사용된다"고 언급했다. 이는 양자 컴퓨터의 실질적인 활용 가능성에 대한 보다 현실적인 평가를 나타낸다. 마이크로소프트의 마티아스 트로이어도 양자컴퓨터에 대한 회의론적인 견해를 표명했다. 그는 "이 분야에 대한 관심을 줄이려는 것이 아니라, 연구자들이 양자 컴퓨팅의 가장 유망한 응용 분야에 자원을 집중할 수 있도록 하기 위함"이라고 말했다. 트로이어의 이러한 발언은 양자 컴퓨팅 분야의 연구와 개발이 실질적인 결과를 낳기 위해서는 목표와 방향성을 명확히 하는 것이 중요함을 시사한다. 이러한 전문가들의 견해는 양자 컴퓨팅 기술의 미래가 여전히 불확실성을 내포하고 있으며, 실용화를 향한 길이 단순하지 않음을 보여준다.
-
- IT/바이오
-
양자컴퓨터, 실용화까지 '멀고 험난한 길'
-
-
영국 해군, '군수물자' 드론 항공모함 착륙 후 본토 복귀 첫 성공
- 드론의 활용 범위가 점점 넓어지고 있다. 드론은 이제 군수 물자를 배송하는 수준까지 발전했다. 최근 영국 해군이 운영하는 항공모함에 드론이 최초로 착륙해 드론의 미래 운용 방향에 관심이 모아지고 있다. 미국의 매체 '인사이더'에 따르면, 2023년 9월 드론이 영국의 항공모함 'HMS 프린스 오브 웨일스'에 화물(군수물자)을 배달하고 영국 본토로 복귀하는 첫 번째 테스트를 성공적으로 마쳤다. 이를 바탕으로 영국 해군은 항공모함 타격단에 드론을 통합하여 선박 간 보급품 전송을 용이하게 하는 한편, 유인 헬리콥터가 다른 전술 임무, 예를 들어 잠수함과 수상함으로부터 항공모함 그룹을 보호하는 작업에 집중할 수 있도록 계획하고 있다. HMS 항공모함 사령관 리차드 휴잇(Richard Hewitt) 대령은 최근의 드론 테스트를 '환상적인 이정표'로 칭하며, 이번 드론 비행이 항공모함 항공 분야에서 중대한 역할을 수행하고 있음을 시사한다고 밝혔다. 이번 테스트에 사용된 드론은 영국의 W오토노머스시스템즈(W Autonomous Systems)가 제작한 단거리 이착륙 모델이다. 약 100kg 화물을 1000km 이동 성공 이 드론은 최대 220파운드(약 99.8kg)의 화물을 약 620마일(약 997.8km) 거리까지 운반할 수 있는 능력을 지니고 있다. 회사 측에 따르면, 이 드론은 최대 12시간 동안 공중에 머무를 수 있으며, 원격 조종사의 조작 없이도 작동할 수 있는 자동 조종 시스템을 탑재하고 있다. 또 드론의 이착륙을 위해서는 약 500~600피트(최대 약 183미터)의 공간이 필요한 것으로 알려졌다. 이는 항공모함과 같은 상대적으로 짧은 활주로에서도 드론이 작동할 수 있음을 의미한다. 실제로 HMS 항공모함의 전체 길이는 900피트(약 274미터)를 조금 넘는다. 휴잇 대령은 영국 해군의 보도 자료에서 이번 테스트에 대해 언급하며, "이러한 자율 드론의 운용은 미래의 영국 해군 항공모함 타격 그룹의 표준이 될 것"이라고 말했다. 이어 "현재 영국해군항공대(Fleet Air Arm)의 중추인 F-35 라이트닝 제트기, 해군 멀린 및 와일드캣 헬리콥터와 함께 승무원 없는 항공기를 안전하게 운용하기 위한 중요한 단계"라고 밝혔다. HMS 항공모함에서 테스트를 주도한 애쉬 로프터스(Ash Loftus) 중령은 "항공모함 항공은 해전의 가장 어려운 측면 중 하나이며, 이번 테스트의 성공은 영국 해군의 18개월 간의 작업에 대한 노력의 증거"라고 말했다. HMS 항공모함은 이번 드론 테스트 외에도 다른 목적으로 드론을 시험한 장소였다. 2021년 영국 해군은 승무원이 탑승하는 제트기와 미사일 방어 훈련에 도움이 되는 드론 시스템을 시험했다. 그 당시의 테스트 종료 후, 영국 해군 항공 시험·평가 책임자는 "지금은 해상 항공과 함대 공군의 미래에 있어서 매우 흥미로운 시기다"라고 말했다. 서방 국가들의 군대는 드론을 함대에 통합하는 데 점점 더 중점을 두고 있다. 터키 해군은 드론 비행단을 위해 특별히 설계된 세계 최초의 항공모함인 TCG아나돌루(TCG Anadolu)를 곧 도입할 예정이다. 이 항공모함은 주로 짧은 활주로에서 이륙 가능한 헬리콥터와 경비행기를 수용할 수 있는 규모로, 길이 약 232미터, 폭 32미터에 달하며 1개 대대 약 1400명의 병력을 실을 수 있다. 미국 공군, 6세대 '드론 윙맨' 개발 중 현재 미국 공군과 해군도 유인 항공기와 함께 다양한 역할을 수행할 수 있는 무인 항공기 함대의 개발을 계획하고 있다. 미국 공군의 차세대 항공 우위 프로그램(Next Aircraft Dominance Program)은 6세대 항공기 제품군에 속하는 '드론 윙맨'을 개발 중이다. 이 드론은 조종사가 조종하는 비행기와 함께 비행할 수 있도록 설계됐다. 공군은 또한 협력 전투기의 개발에도 착수했다. 이 프로젝트에 관여하는 관계자들은 조종사들이 이 협력 전투기를 통해 작업 범위를 확장하고 임무 수행 시의 작업량을 줄일 수 있게 될 것이라고 언급했다. 미 해군은 수년 동안 선박에서 소형 드론을 운용해 왔다. MQ-8B과 MQ-8C 무인 헬리콥터와 같은 이들 드론은 주로 호위함과 연안 전투함에서 활용되며 주로 정보와 감시, 정찰 임무를 수행한다. 미국 해군은 현재 항공모함용 MQ-25 Stingray(스팅레이) 공중급유 드론 개발에도 착수한 상태다. 이 MQ-25는 현재 F/A-18 전투기가 수행하는 항공모함 공중급유 임무를 대체할 뿐만 아니라, 미래에는 정보 수집과 같은 추가적인 역할을 맡을 가능성도 열려 있다. 오는 2026년에 배치될 예정인 스팅레이(Stingray)는 최초의 특수 목적으로 제작된 항공모함 기반 드론이 될 것으로 예상된다. 게다가 미 해군은 2045년까지 항공모함 함대의 60%를 무인화하는 것을 목표로 하고 있다. 유인 항공기 및 헬리콥터와 함께 항공모함 작전에 무인 항공기를 통합하는 것은 큰 도전이 될 것으로 보인다. 항공 전문가이자 저널리스트인 알렉스 홀링스(Alex Hollings)는 "해군 항공은 특히 항공모함 착륙과 관련해 오류가 발생할 여지가 거의 또는 전혀 없는 엄격한 작업이다"라며 "착륙 갑판이 때때로 파도로 인해 최대 30피트(약 9.1m)까지 기울어지기 때문에 항공모함 착륙은 일반 항공기에 심각한 손상을 입힐 만큼 단단하며 밤이나 악천후에만 상황이 더욱 악화된다"고 지적했다. 항공 전문가이자 저널리스트인 알렉스 홀링스는 이와 관련하여 "해군 항공, 특히 항공모함 착륙은 오류의 여지가 거의 없어야 하는 엄격한 작업이다"라고 언급했다. 그는 또한 "파도로 인해 항공모함의 착륙 갑판이 때때로 최대 30피트(약 9.1미터)까지 기울어질 수 있기 때문에, 밤이나 악천후의 항공모함의 착륙은 일반 항공기에 심각한 손상을 입힐 수 있는 위험한 작업이다"라고 설명했다. 베트남 전쟁 중 해군 조종사들은 날아오는 지대공 미사일 공격에 대응할 때보다 밤 시간대의 항공모함 착륙 직전에 더 높은 심박수를 기록했다고 한다. 이는 항공모함 착륙의 어려움과 긴장감을 보여주는 사례다. 한편, 원격제어가 가능한 무인 비행장치인 '드론'은 항공교통, 건설, 물류, 농업, 에너지, 방위산업 등 다양한 분야에서 그 쓰임새가 지속적으로 확장되고 있으며, 이에 따라 첨단 기술의 발전과 함께 더욱 진화하고 있다. 한국 드론 시장 전망 우리나라 국토교통부의 ‘2023년 국정감사 제출자료’에 따르면 전 세계 드론산업 시장규모는 2020년 225억달러(약 29조5200억원), 2025년 390.2억달러(약 51조1942억원), 2030년 557.7억달러(약 75조7635원) 수준으로 성장할 전망이다. 우리나라 국토교통부가 2023년 국정감사에 제출한 자료에 따르면, 전 세계 드론 산업의 시장 규모는 2020년에 약 225억 달러(약 29조 5200억 원)였으며, 2025년에는 약 390.2억 달러(약 51조 1942억 원), 2030년에는 약 557.7억 달러(약 75조 7635억 원)로 성장할 것으로 전망된다. 국내 드론시장 규모도 지속적으로 성장할 것으로 예측되고 있다. 2020년 4945억원이었던 시장이 2025년 약 1조392억원, 2030년 약 1조4997억원으로 커질 것으로 예상된다.
-
- 산업
-
영국 해군, '군수물자' 드론 항공모함 착륙 후 본토 복귀 첫 성공
-
-
와인병이 750ml인 진짜 이유
- 와인병의 표준 용량은 750ml로, 전 세계에서 가장 흔하게 볼 수 있는 크기이다. 이 사이즈는 와인 애호가들에게도 매우 익숙하다. 19세기 초, 프랑스의 보르도 지역 와인 생산자들은 와인을 더 효율적으로 운송하고 판매하기 위해 표준화된 병 크기를 도입했다. 당시 와인은 주로 달콤한 포트 와인과 같은 스타일로, 병에 담겨도 오랫동안 보관이 가능했다. 프랑스 매체 르 피가로 최신 호에 따르면 보르도의 생산자들은 여러 이유로 750ml 병을 선택했다. 이는 당시 평균 와인 병 크기였으며, 운송과 보관에도 적합했다. 또한, 한 병에서 적당한 양의 와인을 제공할 수 있었다. 그로 인해 750ml크기의 와인병은 보르도 지역에서 널리 채택되었고, 점차 유럽 전체로 확산되며 현재의 표준이 되었다. 와인병이 750ml인 이유는 몇 가지가 있으나, 주로 다음과 같은 세 가지 이유가 잘 알려져 있다. 첫 번째로, '유리 장인의 폐활양' 설로 유리 장인의 한 호흡으로 만들 수 있는 크기가 바로 750ml였다. 유리병은 약 17세기부터 와인 보관에 널리 사용되기 시작했다. 와인이 외부 환경의 영향을 받아 변질되지 않도록 하기 위함이었다. 초기 유리병은 유리 장인이 직접 불어 만들었고, 한 번의 호흡으로 만들 수 있는 병의 크기가 바로 750ml였다. 두 번째로, '소비의 편리성'을 들 수 있다. 750ml의 용량은 와인을 적당한 양만큼 소비하기에 알맞다. 병을 한 번 열었을 때, 와인이 남아 변질될 염려 없이 적당한 시간 내에 마실 수 있는 양이기 때문이다. 또한, 이런 용량은 고품질의 와인을 합리적인 가격으로 제공하기에도 적합하다. 세 번째로, '와인잔의 크기'가 750ml 병 용량 결정에 영향을 주었다는 이유도 있다. 일반적인 와인잔의 용량은 250ml 정도이며, 와인을 마실 때 보통 잔에 와인을 1/4 혹은 1/3 정도 따른다. 이렇게 따르면 750ml의 와인병에서는 대략 6잔의 와인이 나와, 한 병을 여러 사람이 나눠 마시기에 적절한 양이 된다. 와인병이 750ml로 표준화된 정확한 이유는 여전히 밝혀지지 않았다. 다만, 초기의 와인병 크기 결정에는 과학, 기술, 경제 등 여러 요소들이 복합적으로 작용했을 것이라고 추정할 수 있다. 최근 1인 가구나 혼술을 즐기는 사람들이 증가하면서, 750ml는 와인을 혼자 마시기에 조금 큰 용량으로 느껴지기도 한다. 이런 트렌드를 반영해 다양한 크기의 와인병이 출시되고 있다. 500ml나 375ml, 250ml와 같은 소용량 병과 1.5L나 3L와 같은 대용량 와인병도 등장하고 있다. 와인병의 표준 용량은 여전히 750ml이지만, 소비자의 변화하는 필요와 취향에 맞춰 다양한 크기의 병도 계속 출시될 것으로 예상된다.
-
- 생활경제
-
와인병이 750ml인 진짜 이유