검색
-
- [신소재 신기술(165)] '불가능한 재료의 융합'⋯양자컴퓨팅 문 여는 인공 구조체 탄생
- 국제 공동연구진이 기존 과학 이론으로는 공존하기 어려웠던 두 가지 물질을 원자 단위에서 결합해, 새로운 양자 인공 구조체를 구현하는 데 성공했다. 이 연구는 향후 양자컴퓨팅과 차세대 센서 기술에 중요한 기반이 될 수 있다는 평가를 받고 있다. 미국 러트거스대학교 뉴브런즈윅 캠퍼스 물리천문학과 자크 차칼리안(Prof. Jak Chakhalian) 교수 연구팀이 주도한 이번 연구 결과는 세계적 과학 저널 나노 레터스(Nano Letters)에 표지 논문으로 게재됐다고 웹사이트 PHYS.org가 1일(현지시간) 보도했다.. 연구진은 약 4년에 걸친 실험을 통해 원자 단위에서 '디스프로슘 타이타네이트(dysprosium titanate)'와 '피로클로르 이리데이트(pyrochlore iridate)'라는 두 인공 물질을 결합한 초미세 '양자 샌드위치 구조'를 개발했다. 이 두 물질은 각각 특이한 전자기 및 양자역학적 성질로 인해 기존에는 서로 결합이 불가능한 것으로 여겨졌다. 한쪽 층을 이루는 디스프로슘 타이타네이트는 일명 '스핀 아이스(spin ice)'라고 불리는 물질로, 내부 스핀 배열이 물의 얼음 구조를 닮았다. 이 구조는 자연계에서는 존재하지 않는 것으로 알려진 '자기 단극자(magnetic monopole)'를 유사 입자로 출현시킬 수 있다. 자기 단극자는 1931년 노벨물리학상 수상자인 폴 디랙이 예언했으나 자유 상태에서는 존재가 확인되지 않았다. 다른 쪽 층은 피로클로르 이리데이트라는 자성 준금속으로, 생다론적 입자인 '와일 페르미온(Weyl fermion)'을 포함하고 있다. 와일 페르미온은 1929년 헤르만 와일이 처음 제안했으며, 2015년에야 결정 구조 내에서 실험적으로 확인된 바 있다. 빛처럼 빠르게 움직이며 좌·우 회전을 구분할 수 있는 이 입자는 외부 잡음이나 불순물에 강한 전자적 안정성을 갖는다. 이처럼 각기 다른 특성을 지닌 두 물질을 원자 수준에서 안정적으로 접합한 것은 기존의 재료과학이 풀지 못한 난제를 해결한 것으로 평가된다. 차칼리안 교수는 "이번 연구는 인공 양자 물질 설계의 새로운 지평을 열었으며, 이전에는 상상할 수 없었던 방식으로 양자 기술의 본질을 탐구할 수 있게 됐다"고 밝혔다. 실험을 위한 결정적 전환점은 연구팀이 자체 제작한 '양자현상 탐색 플랫폼(Q-DiP, Quantum phenomena Discovery Platform)'이라는 장비였다. 이 장치는 적외선 레이저 가열기와 정밀 레이저 빔 조합을 통해 초정밀 원자층 증착이 가능하며, 절대온도에 가까운 극저온에서도 물질의 양자 상태를 탐색할 수 있도록 설계됐다. 현재 이 장비는 미국 내 유일한 장비로, 실험 장비 자체로도 과학적 성과로 평가받는다. 이 연구에는 박사과정의 마이클 테릴리(Michael Terilli), 우총치(Tsung-Chi Wu), 학부생 시절부터 참여한 도로시 도티(Dorothy Doughty), 재료과학자 미하일 카리예프(Mikhail Kareev) 등이 핵심 기여자로 참여했다. 이번에 개발된 양자 구조체는 향후 양자컴퓨팅의 핵심 구성 요소로 활용될 가능성이 크다. 특히 특정 양자 상태를 안정적으로 유지하는 데 필요한 전자 및 자기적 특성이 우수하다는 점에서, 차세대 양자센서와 스핀트로닉스(spintronics) 장치 개발에 직접적인 응용이 가능하다. 양자컴퓨팅은 정보를 처리하는 데 있어 기존 컴퓨터의 이진 논리를 뛰어넘는 '중첩(superposition)' 상태를 활용한다. 이는 한 번에 여러 연산을 동시에 수행할 수 있게 해 신약 개발, 금융 알고리즘, 인공지능(AI) 처리 등 다양한 분야에서 혁신적인 성과를 기대하게 한다. 차칼리안 교수는 "이번 연구는 단순한 물질 합성의 진보를 넘어, 양자 기술을 위한 물질 설계의 새로운 시대를 여는 첫걸음"이라며 "향후 양자 센서 기술을 포함한 응용과학 분야에 중대한 영향을 미칠 것"이라고 강조했다.
-
- IT/바이오
-
- [퓨처 Eyes(75)] 액체처럼 흐르는 황금빛 고체, '초고체' 탄생
- 레이저 빛을 초고체로 만드는 혁신적인 기술이 처음으로 개발됐다. 마법은 더 이상 동화속 이야기가 아니었다. 한 줄기 레이저 광선이 불가능을 현실로 바꾸며, 액체와 고체의 낯선 경계를 허무는 '황금빛 고체'를 눈 앞에 펼쳐냈다. 물리학자와 나노 기술자들로 구성된 국제 공동 연구팀이 마치 연금술같은 놀라운 기술로 레이저 빛을 '초고체(supersolid)'라는 미지의 물질 상태로 변환하는 데 세계 최초로 성공하며 오랫동안 과학계가 품어온 꿈을 마침내 실현했다. 이번 쾌거는 응축 물질 물리학의 오랜 숙원을 해결했을뿐 아니라, 상상조차 어려웠던 양자역학의 새로운 가능성을 활짝 열어젖힌 역사적인 순간으로 기록될 것이다. 해당 연구에 대해서는 네이처닷컴, 웹사이트 PHYS.org와 뉴사이언티스트, 퍼퓰러메카닉스 등 다수 외신이 심층적으로 다루었다. 일반적으로 양자 초고체는 양자 세계에서만 존재하는 실체로, 초저온 원자를 통해서만 형성되었지만 이탈리아 레체에 있는 국립연구위원회 나노기술 연구소(CNR Nanotec)의 과학자들이 이끄는 새로운 연구에서는 처음으로 빛을 사용하여 이 양자 물질 상태를 만들었다. 이전 연구에 따르면 초고체는 점도가 0이고 소금 결정에서 원자가 배열되는 방식과 유사한 결정과 같은 구조로 형성된다는 것이 밝혀졌다. 저명 학술지 '네이처'에 실린 이번의 놀라운 연구는 이탈리아 국립연구위원회(CNR)의 디미트리오스 트리포게오르고스 연구원의 지휘 아래 나노기술, 공학, 물리학 등 여러 분야의 국제적인 전문가들이 머리를 맞대 융합 연구를 거듭한 끝에 이룩한 값진 결실이다. 연구팀은 '빛의 연금술'이라고도 불러도 좋을만큼 혁신적인 접근 방식을 통해, 레이저 빛을 영원히 도달할 수 없는 꿈만 같았던 초고체로 완전히 탈바꿈시키는 기적을 만들어냈다. 레이저광으로 초고체 최초 구현 먼저 팀은 초고체를 만들기 위해 특수한 능선으로 형성된 갈륨 비소화물 조각에 레이저를 발사했다. 빛이 능선에 부딪히면서 빛과 재료 사이의 상호작용으로 플라리톤(polariton)이 형성됐다. 폴라리톤은 미리 설계된 방식으로 능선에 의해 제한됐고, 그로 인해 폴라리톤은 스스로 초고체를 형성했다. 그런 다음 연구팀은 만들어진 결과물이 진짜 초고체인지를 테스트했다. 이는 빛으로 만들어진 초고체가 이전에 생성된 적이 없다는 사실 때문에 매우 힘들었다. 그럼에도 연구팀은 초고체가 고체이자 유체이며 점성이 없다는 것을 확인했다. 트리포게오르고스 연구원은 감격에 찬 목소리로 "우리는 실제로 빛을 고체로 만들었다. 정말이지 믿기 어려울 정도로 놀라운 성취다"라고 외쳤다. 그의 목소리에는 이번 연구가 과학 역사의 새로운 장을 여는 기념비적인 사건이라는 평가가 충분히 담겨 있다. 미지의 물질 초고체, 과학계의 오랜 염원 초고체, 이름만 들어도 왠지 모르게 신비로운 느낌을 주는 이 물질은 마치 두 개의 얼굴을 가진 야누스와 같다. 점성이 전혀 없는 '초유동성'과, 원자들이 규칙적으로 빽빽하게 들어선 고체의 결정 구조를 동시에 지니고 있기 때문이다. 흐르는 액체의 자유로움과 단단한 고체의 견고함을 동시에 가진 초고체는 오랫동안 과학자들의 상상력을 자극하며, 미지의 영역 속에 머물러 있었다. 소금 결정처럼 질서 정연하게 늘어선 원자들 사이를 액체처럼 자유롭게 움직이는 초고체의 기묘한 이중성은, 현대 과학의 오랜 난제 중 하나였다. 특히 초고체는 극도로 낮은 기온, 즉 일반적인 상상으로는 가늠하기 어려운 극한 환경에서, 그것도 원자라는 극히 제한적인 재료로만 만들수 있었기에, 그 심오한 비밀을 파헤치는 것은 마치 별을 헤는 것만큼이나 어려운 일이었다. 반도체, 레이저 그리고 '폴라리톤'⋯빛의 마법이 현실이 되다 하지만 '불가능은 없다'는 인간의 불굴의 의지와 끊임없는 탐구 정신은, 마침내 과학의 역사를 진전시키는 놀라운 결과를 낳았다. 이번 연구팀은 오랫동안 굳어져 왔던 기존 연구의 틀을 과감하게 부수고, 완전히 새로운 길을 개척했다. 극저온, 원자라는 낡은 공식을 과감히 버리고, '알루미늄 갈륨비소' 반도체와 레이저 빛의 절묘한 조합을 통해 초고체 창조라는 꿈을 마침내 현실로 불러왔다. 연구진은 나노미터(10억분의 1미터) 수준의 초정밀 기술을 동원해 좁고 규칙적인 능선 패턴을 새겨 넣은 특별한 알루미늄 갈륨비소 웨이퍼를 제작하고, 이 혁신적인 반도체 구조에 레이저를 정밀하게 쏘았다. 레이저 빛이 능선에 부딪히는 찰나, 빛과 물질 사이에서 지금껏 상상 속에서만 가능했던 마법과 같은 상호작용이 눈앞에서 펼쳐졌다. 그 결과, '폴라리톤'이라는, 이전에는 알려지지 않았던 새로운 종류의 혼성 입자가 마치 마법처럼 탄생했다. 능선 패턴이라는 특수한 환경은 폴라리톤의 움직임과 에너지 레벨을 숙련된 조련사처럼 정교하게 통제했고, 마침내 폴라리톤들은 스스로 응축하며 꿈에서 그리던 물질, 초고체로 변신했다. 양자 기술 혁명의 도화선, 빛 기반 초고체의 무한한 가능성 이번 연구가 더욱 값진 이유는 단순히 빛을 초고체로 바꾸는 데 성공한 것을 넘어, 빛으로 만들어진 초고체의 놀라운 특성을 과학적인 실험으로 명확하게, 그리고 최초로 입증했다는 점이다. 공동 연구팀의 핵심 연구자인 다니엘레 산비토 CNR 연구원은 "빛으로 초고체를 만들고, 실제로 존재한다는 것을 실험적으로 증명하는 것은 과거에는 상상조차 할 수 없었던 미지의 영역에 발을 내딛는 것과 같았다. 우리 손으로 만들어낸 초고체가 과연 고체와 액체의 성질을 모두 가진 진정한 초고체인지, 아무도 걸어보지 않은 길을 걸으며 확인하는 과정은 마치 미지의 대륙을 탐험하는 것만큼이나 험난하고 가슴 뛰는 여정이었다"며 연구 과정 당시의 숨 막힐 듯한 긴장감을 전했다. 수많은 밤을 지새우는 실험과 고도의 분석을 거듭한 끝에, 연구진은 빛으로 빚어낸 초고체가 고체와 액체의 이중적인 모습을 완벽하게 드러내며, 점성이 '0'이라는 믿기 힘든 특성을 가지고 있음을 전 세계 과학계에 당당히 선언하는 데 성공했다. 프랑스 소르본 대학교의 알베르토 브라마티 교수는 "이번 연구는 응축 물질 물리학 분야의 오랜 숙제를 마침내 해결했을 뿐 아니라, 물질의 상전이, 특히 양자 물질이 그 상태를 변화시키는 근본 원리에 대한 깊이 있는 통찰력을 인류에게 선사하는 획기적인 과학적 성취"라고 극찬하며, "빛 기반 초고체 연구는 앞으로 양자 기술 분야에 지금껏 상상조차 할 수 없었던 혁신적인 응용 가능성을 활짝 열어줄 것이다"라고 밝은 미래를 예견했다. 트리포게오르고스 연구원은 "빛으로 만든 초고체는 기존의 원자 초고체에 비해 훨씬 정밀하게 제어할 수 있고, 훨씬 더 편리하게 다룰 수 있는 엄청난 잠재력을 품고 있다"고 강조하며, "이번 연구를 기회 삼아, 이제까지는 그 누구도 감히 상상하지 못했던 미지의 물질 세계를 탐험하고, 궁극적으로 우리 인류의 미래를 획기적으로 바꿀 양자 기술 발전에 작게나마 기여할 수 있기를 간절히 희망한다"는 뜨거운 열정을 내비쳤다. 한 줄기 빛에서 시작된 작은 불꽃이, 마침내 과학 역사의 거대한 불꽃으로 타오르기 시작했다. 빛의 연금술로 빚어낸 꿈의 물질, 초고체가 우리에게 선사할 미래는 과연 어떤 모습일까? 응축 물질 물리학은 물론, 양자 컴퓨팅, 양자 센서 등 모든 첨단 기술 분야를 뿌리부터 뒤흔들 혁명의 드라마가, 바로 지금, 눈앞에서 펼쳐지려 하고 있다. ◇ 참조: Dimitrios Trypogeorgos et al, Emerging supersolidity in photonic-crystal polariton condensates, Nature (2025). DOI: 10.1038/s41586-025-08616-9 광자를 사용하여 만든 초고체, Nature (2025). DOI: 10.1038/d41586-025-00637-8
-
- 포커스온
-
- [퓨처 Eyes(73)] 시간의 미스터리, 양자 세계에서 새로운 해답을 찾다
- 시간은 과연 한 방향으로만 흐르는 것일까? 철학자와 과학자들이 오랫동안 탐구해온 이 질문에 대한 새로운 단서가 발견됐다. 영국 서리대학교(University of Surrey)의 최신 연구는 시간이 단순히 미래로만 향하는 선형적 흐름이 아닐 가능성을 제시하며, 기존의 통념을 흔들고 있다. 우리는 과거에서 미래로 흐르는 '시간의 화살'에 익숙하다. 현실 세계에서는 깨진 유리잔이 원래대로 돌아가지 않고, 엎질러진 물이나 우유가 저절로 컵에 다시 담기는 일은 결코 일어나지 않는다. 그러나 양자 세계에서는 상황이 달라진다. 물리학의 기본 방정식은 시간이 거꾸로 흘러도 동일하게 작동하는 대칭성을 갖는다. 즉, 시간이 앞으로 흐르든 뒤로 흐르든 법칙 자체는 변하지 않는다는 것이다. 서리대학교의 안드레아 로코 물리학 박사는 "엎질러진 우유가 테이블 위로 퍼지는 과정을 보면 시간이 앞으로 흐른다는 것을 알 수 있다. 하지만 영화처럼 되감아 보면 즉시 뭔가 잘 못 됐다는 것을 알 수 있다. 우유가 다시 유리 잔에 모일 것이라고 믿기 때문이다"라며 우리의 직관과 물리학 법칙 사이의 괴리를 지적했다. 이는 우리가 경험하는 거시 세계와 양자 세계 사이에는 분명한 간극이 존재한다는 것을 보여준다. 양자, 시간의 방향을 묻다 연구팀은 '개방 양자 시스템'이라는 개념에 주목했다. 양자 시스템(아원자 세계)이 주변 환경과 상호 작용하는 방식을 연구하는 분야다. 그들은 우리가 왜 시간을 한 방향으로만 인지하는 지, 그리고 이러한 인식이 양자 역학의 법칙에서 비롯되는 것인지, 아니면 환경과의 상호 작용의 결과인지 탐구했다. 연구팀은 환경을 외부 요인으로 취급하고 양자 시스템 자체에만 집중해 문제를 단순화했다. 그들은 우주 전체와 같은 환경이 너무 커서 에너지와 정보가 그 안으로 흩어져 다시는 시스템으로 돌아오지 않는다고 가정했다. 이러한 모델을 통해 시간이 이론적으로 양방향으로 흐를 수 있음에도 불구하고 양자 세계에서 시간의 방향이 어떻게 나타나는 지 탐구할 수 있었다. 이는 마치 우리가 우주라는 거대한 영화의 한 장면을 보고 있는 것과 같다고 볼 수 있다. 시간, 두 갈래 길에서 방황하다 놀랍게도 연구 결과는 기존의 통념을 완전히 뒤집었다. 환경과의 상호작용을 고려하더라도, 개방 양자 시스템을 설명하는 방정식은 시간이 앞으로 움직이든 뒤로 움직이든 동일하게 작용했다. 이는 시간이 반드시 한 방향으로만 흐른다는 가설이 절대적인 것이 아닐수도 있음을 시사한다. 토마스 구프 박사후 연구원은 "개방 양자 시스템을 설명하는 방정식에 표준적인 단순화 가정을 적용한 후에도 방정식이 시스템이 시간상 앞으로 움직이든 뒤로 움직이든 동일하게 작용했다는 것이 놀라웠다"며 뜻밖의 연구 결과가 나왔음을 강조했다. 이는 우리가 흔히 생각하는 '시간의 화살' 개념에 대한 근본적인 질문을 던지는 것이다. 시간이란 단순히 과거에서 미래로 흐르는 단일한 개념이 아닐 수 있다는 것을 시사한다. 이번 연구 결과는 학술지 '사이언티픽 리포트(Scientic Reports)'에 게재됐다. 기억 커널, 시간 대칭의 열쇠 연구팀은 또 '기억 커널' 이라는 현상이 방정식의 시간 대칭을 유지한다는 사실을 발견했다. 이 커널은 양자 시스템의 진화 방식의 기본이며, 시간이 양방향으로 흐를 가능성을 설명할 수 있다. 즉, 과거의 정보가 현재의 시스템에 양향을 미치는 방식으로 시간이 흐를 수 있다는 것이다. 연구진은 '메모리 커널(memory kernel)' 이라 불리는 방정식의 핵심 부분이 시간에 대해 대칭적이라는 것을 발견했다. 또한 시간 불연속 요소가 발견되어 시간 대칭성을 유지하는 것으로 나타났다. 로코 박사는 "우리의 연구 결과는, 우리의 일반적인 경험은 시간이 한 방향으로만 움직인다고 말하지만, 우리는 반대 방향이 똑같이 가능했을 것이라는 점을 알지 못했던 것을 시사한다"며 이번 연구의 의의를 밝혔다. 이는 우리가 시간의 흐름을 단선적으로만 인식하는 것이 사실은 착각일 수 있음을 시사한다. 시간은 어쩌면 우리가 생각하는 것보다 훨씬 더 복잡하고 다중적인 개념일지도 모른다. 시간의 비밀, 우주론의 난제를 풀 열쇠 이번 연구는 기간과 물리학 전반에 대한 우리의 이해에 심오한 의미를 갖는다. 시간이 불가역적인 화살로 인식되는 것은 고유한 물리 법칙 때문이 아니라 환경과의 상호 작용 방식과 관련이 있을 수 있음을 시사한다. 즉, 우리가 시간을 인지하는 방식은 우리가 속한 환경에 의해 규정될 수 있다는 것이다. 이러한 발견은 우주론의 오랜 질문, 예를 들어 우주의 시작이나 블랙홀의 맥락에서 시간의 본질과 같은 질문에 새로운 시각을 제공할 수 있다. 또한 아인슈타인의 일반 상대성 이론과 양자 역학을 통합하려는 물리학 분야인 양자 중력 이론에도 영향을 미칠 수 있다. 이 연구는 거시적 세계에서 우리가 경험하는 단방향적 시간의 흐름이 양자 세계에서는 양방향으로 가능할 수 있음을 시사하며, 양자역학, 우주론, 그리고 물리학의 근본 법칙에 대한 이해에 중요한 영향을 미칠 수 있다. 안드레아 로코 박사는 "우리의 일상적인 경험은 시간이 한 방향으로만 흐른다고 말하지만, 사실 반대 방향도 똑같이 가능했다는 것을 우리가 모르고 있었을 뿐"이라고 설명했다. 이 연구는 시간의 화살표가 우리가 생각했던 것만큼 고정적이지 않을 수 있다는 가능성을 제시하며, 물리학의 가장 큰 미스터리 중 하나에 대한 새로운 시각을 제공한다. 시간은 단순한 흐름이 아니라 훨씬 더 복잡하고 다차원적인 현상일 수 있다. 이번 연구는 시간의 비밀을 풀고 우주의 미스터리를 밝히는 데 중요한 발걸음이 될 것이다.
-
- 포커스온
-
- [신소재 신기술(152)] 옥스포드대 연구진, 세계 최초로 양자 컴퓨터 간 순간이동 성공
- 옥스포드 대학교 물리학과 연구진이 세계 최초로 양자 컴퓨터 간 텔레포테이션(Teleportation·양자 순간이동)에 성공해 양자 기술 확장 가능성을 입증했다. 이번 연구는 2m 거리의 실험실 환경에서 진행됐지만, 양자 상태를 연결된 시스템의 '인터넷'을 통해 텔레포트함으로써 양자 모듈을 분산시키는 것이 가능하다는 점을 보여줬다. 해당 연구에 대해서는 과학전문 매체 사이언스 얼럿과 독립매체 인디펜던트 등이 심층 보도했다. 옥스포드 측은 연구팀이 광자 네트워크 인터스페이스를 사용해 두 개의 별도 양자 프로세서를 성공적으로 연결해 단일의 완전히 연결된 양자 컴퓨팅을 형성해 이전에 도달할 수 없었던 계산적 과제를 해결하는 길을 열었다고 평가했다. 양자 순간이동은 얽힘을 이용해 양자 정보를 장거리에 걸쳐 즉시 전송하는 기술이다. 즉 양자 순간이동은 양자역학적 현상으로, 측정 과정을 통해 특정 상태를 확정하기 전까지 여러 특성이 중첩된 상태로 존재하는 양자 특성을 이용한다. 얽힘(entanglement)이라는 과정을 통해 여러 양자의 중첩 상태를 결합한 후, 특정 양자에 대한 측정을 통해 얻은 정보를 바탕으로 다른 얽힌 양자를 원래 양자와 동일한 상태로 변화시키는 방식으로 순간이동이 이루어진다. 이번 실험에서 연구진은 양자 순간이동을 통해 물리적으로 분산된 시스템 간의 상호작용을 생성하는 데 성공했다. 기존의 양자 순간이동 연구는 물리적으로 분리된 시스템 간의 양자 상태 전송에 초점을 맞추었다. 즉 이전에는 큐비트를 이동하지 않고 한 위치에서 다른 위치로 데이터를 전송했다. 이번에 처음으로 네트워크 링크를 통해 논리 게이트(알고리즘의 최소 구성 요소)의 양자 순간이동을 처음으로 시연한 것이다. 옥스포드 대학교는 이전에도 양자 순간이동이 가능했지만, 이번 연구는 네트워크 링크에서 논리 게이트의 양자 순간이동을 최초로 입증한 것이라고 평가했다. 연구진은 이를 통해 멀리 떨어져있는 프로세서가 통신, 계산, 센싱을 의한 매우 안전한 네트워크를 형성할 수 있는 미래의 '양자 인터넷' 을 위한 토대를 마련할 수 있다고 말했다. 연구 책임자인 물리학부의 더갈 메인(Dougal Main) 박사는 "이전의 양자 순간 이동 시연은 물리적으로 분리된 시스템 간에 양자 상태를 전송하는 데 중점을 두었다. 우리 연구에서는 양자 순간이동을 사용하여 멀리 떨어진 시스템 간의 상호 작용을 생성한다. 이러한 상호 작용을 신중하게 조정함으로써, 우리는 양자 컴퓨팅의 기본 연산인 논리적 양자 게이트를 별도의 양자 컴퓨터에 저장된 큐비트 사이에서 수행할 수 있다. 이 획기적인 발견을 통해 우리는 서로 다른 양자 프로세서를 효과적으로 연결해 완전히 연결된 단일 양자 컴퓨터를 만들 수 있다"고 설명했다. 일반 컴퓨터가 0과 1의 이진법을 사용하는 것과 달리 양자 컴퓨터는 큐비트(qubit)라는 양자 정보 단위를 사용해 복잡한 계산을 수행한다. 큐비트는 일반적으로 전하를 띤 원자와 같은 미시적 입자의 특성으로 표현된다. 양자 컴퓨터의 실용화를 위해서는 수백, 수천 개의 입자를 얽히게 해야 하는데, 이는 오류 수정 과정이나 외부 간섭을 차단하는 기술이 필요하다. 소규모 프로세서들을 네트워크로 연결하여 양자 슈퍼컴퓨터를 구축하는 것도 한 가지 해결책이지만, 양자 정보를 빛의 파동 형태로 전송하는 경우 정보 손실의 위험이 존재한다. 순간이동은 기존 방식의 이진 데이터를 통해 측정값을 전달받는다. 이후 수신 측에서 얽힌 입자를 조작하여 원래 입자와 동일한 상태로 만든다. 이번 옥스포드 대학교 실험에서 텔레포트된 스핀 상태의 양자 중첩은 원래 상태와 86% 일치했으며, 이는 두 양자 프로세서에서 71%의 효율로 그로버 알고리즘(Grover algoritum)으로 알려진 간단한 연산의 논리 게이트 역할을 하기에 충분한 수치였다. 연구진은 "광자 링크를 사용하여 모듈을 상호 연결함으로써 시스템의 유연성을 확보하여 전체 아키텍처를 방해하지 않고 모듈을 업그레이드하거나 교체할 수 있다"고 설명했다. 양자 네트워크 재구성이 가능하다는 것은 양자 기술의 응용 분야를 다양화하여 컴퓨터 네트워크를 가장 기본적인 수준에서 물리학을 측정하고 테스트할 수 있는 도구로 전환할 수 있음을 의미한다. 인디펜던트는 연구팀은 또한 이미 이용 가능한 기술을 사용해 양자 시스템을 구축하고 확장할 수 있음을 보여줬다고 짚었다. 이번 연구 결과는 '광 네트워크를 통한 분산 양자 컴퓨팅'이라는 제목으로 국제 학술지 '네이처(Nature)'에 게재됐다. 영국 양자 컴퓨팅 및 시뮬레이션 허브의 수석 과학자이자 연구팀의 수석 연구원인 데이비드 루카스 교수는 "저희 실험은 네트워크 분산 양자 정보 처리가 현재 기술로 가능하다는 것을 보여준다. 양자 컴퓨터를 확장하는 것은 앞으로 몇 년 동안 새로운 물리학적 통찰력과 집중적인 엔지니어링 노력이 필요할 것으로 예상되는 어려운 기술적 과제로 남아 있다"고 말했다.
-
- 포커스온
-
- 국내 연구진, 상온에서 양자역학적 스핀 펌핑 현상 첫 관측
- 국내 연구진이 세계 최초로 상온에서 양자역학적 스핀 펌핑 현상을 증명했다. 과학기술정보통신부는 30일(한국 시간) 한국과학기술원(KAIST) 이경진·김갑진 교수, 서강대 정명화 교수 공동 연구팀의 연구 결과가 국제학술지 '네이처(Nature)'에 게재됐다고 밝혔다. 스핀 펌핑은 전자의 자기적 성질인 스핀이 세차운동하며 자성체에서 비자성체로 이동하는 현상이다. 연구팀은 철(Fe)-로듐(Rh) 자성 박막을 활용해 큰 스핀 전류를 관측하고, 이를 양자역학적으로 해석했다. 이번 연구는 극저온에서만 관측되던 양자역학적 현상을 상온에서도 실험적으로 증명한 점에서 의미가 크며, 기존 방식 대비 10배 이상의 스핀 전류를 생성하는 방법을 제시해 차세대 전자 소자 개발에 기여할 전망이다. [미니해설] KAIST·서강대 연구팀, 세계 최초로 상온에서 스핀 펌핑 현상 증명 국내 연구진이 세계 최초로 상온에서 양자역학적 스핀 펌핑 현상을 증명했다. 스핀트로닉스(spintronics) 연구에 새로운 가능성을 제시한 이번 성과는 차세대 저전력·고효율 전자 소자 개발에 기여할 것으로 기대된다. 과학기술정보통신부는 30일(한국 시간) 한국과학기술원(KAIST) 이경진·김갑진 교수, 서강대 정명화 교수 공동 연구팀의 연구 결과가 국제학술지 '네이처(Nature)'에 게재됐다고 밝혔다. 스핀트로닉스란? 전자는 전기적 성질인 전하(charge)와 자기적 성질인 스핀(spin)을 동시에 가지고 있다. 대부분의 전자 기기는 전하 전류를 기반으로 작동하지만, 전류가 흐를 때 전자가 원자와 충돌하면서 열이 발생해 에너지 소모가 증가하고 효율이 저하되는 문제가 있다. 이를 해결하기 위해 연구자들은 전하 대신 스핀 전류를 활용하는 스핀트로닉스 기술을 연구하고 있다. 스핀트로닉스는 전자의 스핀을 제어해 정보 저장·처리 효율을 높이는 기술로, 반도체 소자 및 메모리 분야에서 혁신을 이끌 핵심 기술로 주목받고 있다. 스핀 펌핑 현상이란? 스핀트로닉스 기술 구현의 핵심은 스핀 전류를 생성하는 것이다. 연구진은 스핀이 세차운동(gyroscopic precession)을 하면서 자성체에서 비자성체로 이동하는 '스핀 펌핑(spin pumping)' 현상에 주목했다. 이번 연구에서 정명화 교수팀은 철(Fe)-로듐(Rh) 자성 박막을 제작하고, 김갑진 교수 연구팀과 함께 이를 활용해 기존 방식보다 10배 높은 스핀 전류를 관측했다. 이경진 교수 연구팀은 이를 양자역학적 이론으로 해석하고 추가 실험을 통해 증명했다. 세계 최초로 상온에서 관측 성공 대부분의 양자역학적 현상은 극저온에서만 관측할 수 있다. 그러나 이번 연구를 통해 세계 최초로 상온에서도 스핀 펌핑 현상이 발생한다는 사실이 실험적으로 증명됐다. 이는 기존 고전역학적 스핀 펌핑 모델을 넘어, 스핀의 양자적인 특성을 활용한 응용 가능성을 열었다는 점에서 의미가 크다. 또한, 연구진은 기존 방식보다 10배 이상 높은 스핀 전류를 생성하는 방법을 제시했다. 이는 차세대 전자 소자 개발 및 저전력·고효율 반도체 연구에 중요한 전환점이 될 것으로 기대된다. 연구진은 "기존 스핀트로닉스 연구는 고전적인 스핀 운동을 기반으로 진행됐지만, 이번 연구는 스핀의 양자적인 특성을 활용해 더욱 효과적인 응용이 가능하다는 점을 증명했다"고 밝혔다. 이번 연구 성과는 차세대 정보통신 및 반도체 기술 발전에 중요한 기초 연구로 평가되며, 향후 관련 연구가 활발히 진행될 것으로 기대된다.
-
- IT/바이오
-
- [퓨처 Eyes(68)] 양자 컴퓨터, '슈뢰딩거의 고양이' 품다
- "어제의 꿈은 오늘의 희망이고, 내일의 현실이다." 20세기 초, 양자역학의 태동과 함께 등장한 '슈뢰딩거의 고양이'는 과학자들에게 끊임없는 탐구의 대상이었다. 죽어있는 동시에 살아있는 고양이라니! 이 기묘한 역설 속에 숨겨진 양자 세계의 비밀은 오랫동안 미지의 영역으로 남아있었다. 그러나 이제, 그 베일이 벗겨지려 한다. 호주 뉴사우스웨일스 대학교(UNSW) 연구팀이 안티몬 원자를 이용하여 양자 컴퓨터의 고질적인 문제였던 오류 발생 가능성을 획기적으로 줄이는 기술을 개발했기 때문이다. '슈뢰딩거의 고양이'를 현실 세계로 불러낸 이 연구는 양자 컴퓨터 개발에 있어 중대한 돌파구를 마련했으며, 인류에게 새로운 미래를 선사할 혁신의 씨앗이 될 것으로 기대된다. 지난 14일(현지시간) 네이처 피직스 저널에 게재된 이 연구는 1세기 넘게 과학계를 괴롭혀 온 양자역학의 난제인 '슈뢰딩거의 고양이'의 비밀을 밝히는 동시에, 양자 컴퓨팅의 가장 큰 걸림돌 중 하나였던 오류 수정 문제에 대한 새로운 해결책을 제시했다는 점에서 학계의 비상한 관심을 모으고 있다. 슈뢰딩거의 고양이, 현실이 되다 '슈뢰딩거의 고양이'는 양자역학의 불가사의한 특징을 설명하는 대표적인 사고 실험이다. 상자 속 고양이의 생사가 방사성 원자의 붕괴 여부에 따라 결정되는 이 실험에서, 양자역학적으로 고양이는 관찰되기 전까지 살아있는 상태와 죽은 상태가 중첩된 상태로 존재한다. 양자역학의 원리를 설명하기 위해 오스트리아의 물리학자 에르빈 슈뢰딩거가 1935년에 고안한 사고 실험인 슈뢰딩거의 고양이는 양자역학의 해석이 가진 불완전함을 드러내기 위해 설계됐다. 이 실험의 원리는 다음과 같다. 상상 속의 밀폐된 상자 안에 고양이 한 마리가 들어 있다. 상자 안에는 방사성 물질과 연결된 독가스 장치가 함께 들어 있다. 방사성 물질은 1시간 내에 50% 확률로 붕괴할 수 있으며, 붕괴가 발생하면 독가스가 방출되어 고양이는 죽는다. 반대로 붕괴가 일어나지 않으면 고양이는 살아남는다. 이 실험의 핵심은 상자를 열기 전까지는 고양이가 살아 있는지, 죽어 있는지 알 수 없다는 점이다. 양자역학에 따르면, 상자를 열어보기 전까지 고양이는 살아 있는 상태와 죽어 있는 상태가 동시에 중첩되어 존재한다. 즉, 고양이는 동시에 살아 있으면서 죽어 있는 것이다. 슈뢰딩거는 이 사고 실험을 통해 양자역학의 '중첩' 개념에 의문을 제기했다. 거시세계에서 우리가 관찰할 수 있는 현실에서는 고양이가 죽었거나 살아 있거나 둘 중 하나의 상태만 존재한다. 중첩된 두 상태가 동시에 존재한다는 양자역학적 해석은 직관적으로 받아들이기 어렵기 때문이다. 연구팀은 안티몬 원자의 핵 스핀을 이용하여 이러한 '슈뢰딩거 고양이' 상태를 실제로 구현했다. 안드레아 모렐로 UNSW 교수는 "누구도 동시에 죽고 사는 상태의 실제 고양이를 본 적은 없지만, 슈뢰딩거의 고양이라는 비유는 큰 차이가 있는 양자 상태의 중첩을 설명하는 데 사용된다"고 설명했다. 안티몬(Sb, 원자번호 51)은 주기율표 15족에 속하는 준금속 원료로, 금속성과 비금속성을 모두 가진 독특한 특성이 있다. 기존 양자 컴퓨터는 '큐비트'라는 양자 정보 단위를 사용한다. 큐비트는 0 또는 1의 두 가지 상태를 갖는데, 외부 환경의 영향으로 쉽게 오류가 발생하는 문제점이 있었다. 하지만 안티몬 원자는 8개의 서로 다른 스핀 방향을 가질 수 있어 큐비트보다 훨씬 더 안정적인 양자 정보 저장 및 처리가 가능하다. 논문의 주 저자인 시 유(Xi Yu)는 "안티몬 원자는 '7개의 목숨'을 가진 슈뢰딩거 고양이와 같다"며 "0에서 1로 상태를 바꾸려면 7번의 연속적인 오류가 발생해야 하므로 양자 정보를 안전하게 보호할 수 있다"고 강조했다. 실리콘, 양자 컴퓨팅의 날개를 달다 연구팀은 안티몬 원자를 실리콘 양자 칩에 내장하여 양자 상태를 정밀하게 제어하는 데 성공했다. 다니엘 홈스 UNSW 박사는 "실리콘 기반 기술은 기존 컴퓨터 칩 제작 방식과 유사하게 확장될 수 있어 양자 컴퓨팅의 실용화를 앞당길 수 있을 것"이라고 기대했다. 실리콘 기반 기술의 활용은 양자 컴퓨팅의 확장성을 높이는 데 중요한 역할을 할 것으로 예상된다. 기존 반도체 산업의 인프라를 활용할 수 있다는 점에서 양자 컴퓨터의 대량 생산 및 상용화 가능성을 높일 수 있기 때문이다. 좀 더 자세히 설명하면, 현재 양자 컴퓨터 개발에는 극저온 환경 유지, 복잡한 제어 시스템 구축 등 까다로운 조건들이 필요하다. 하지만 기존 반도체 제조 공정을 활용하면 양자 컴퓨터를 보다 쉽게 제작할 수 있다. 예를 들어, 실리콘 웨이퍼 위에 큐비트를 생성하고 제어하는 기술을 통해 대량 생산이 가능해지고, 이는 곧 양자 컴퓨터의 생산 비용 절감과 상용화 시기를 앞당길 수 있다는 것을 의미한다. 뿐만 아니라 실리콘은 이미 우리 주변의 전자 기기에 널리 사용되는 소재이기 때문에 안정성과 내구성이 검증되었다. 이러한 실리콘의 특징은 양자 컴퓨터의 안정적인 작동과 수명 연장에도 기여할 수 있다. 결과적으로 실리콘 기반 기술은 양자 컴퓨터를 연구실 밖으로 꺼내 우리 생활 속으로 가져올 수 있는 중요한 열쇠가 될 것으로 기대된다. 모렐로 교수는 "이번 연구는 양자 오류 감지 및 수정이라는 양자 컴퓨팅의 '성배'를 향한 중요한 발걸음"이라며 "앞으로 오류 수정 기술을 더욱 발전시켜 실용적인 양자 컴퓨터 개발에 박차를 가할 것"이라고 밝혔다. 이번 연구는 UNSW 시드니, 멜버른 대학교, 샌디아 국립 연구소, NASA 에임스 연구센터, 캘거리 대학교 등 다양한 기관의 국제 협력을 통해 이루어졌다. 모렐로 교수는 이를 "상호 보완적인 전문성을 갖춘 세계적 팀 간의 개방적 국경 협업의 훌륭한 사례"라고 평가했다. 양자 컴퓨터, 새로운 세상을 열다 양자 컴퓨터는 기존 컴퓨터와 달리 '큐비트'라는 양자 정보 단위를 사용한다. 큐비트는 0과 1의 값을 동시에 가질 수 있는 '중첩' 상태를 통해 기존 컴퓨터보다 훨씬 빠른 속도로 연산을 수행할 수 있다. 다만 큐비트는 외부 환경에 민감하게 반응하여 오류가 발생하기 쉽다는 단점이 있다. 이번 연구에서 UNSW 연구팀은 안티몬 원자의 핵 스핀을 이용하여 큐비트를 구성했다. 안티몬 원자는 핵 스핀이 8개의 다른 방향을 가질 수 있어 0과 1뿐만 아니라 그 사이의 6개 값을 추가로 저장할 수 있다. UNSW의 양자 정보 연구원 벤자민 빌헬름은 "기존 큐비트는 스핀 업(1)과 스핀 다운(0) 두 가지 상태만 가지므로 스핀 방향이 바뀌면 0이 1로, 혹은 1이 0으로 바뀌는 오류가 발생한다"며 "그러나 안티몬 원자는 8개의 상태를 가지므로 하나의 오류가 발생하더라도 정보가 즉시 손상되지 않는다"고 덧붙였다. 안티몬 원자, 큐비트의 수호자 연구팀은 이러한 안티몬 원자의 특성을 "마치 고양이가 목숨이 아홉 개인 것처럼, 한 번의 작은 긁힘으로는 죽일 수 없다"는 속담에 비유하며 "우리의 비유적인 '고양이'는 목숨이 일곱 개나 된다. 0을 1로 바꾸려면 7개의 연속적인 오류가 발생해야 한다"고 설명했다. 안드레아 모렐로 교수는 "단일 또는 몇 개의 오류가 발생하더라도 정보가 즉시 스크램블되지 않는다"며 "오류가 발생하면 즉시 감지하고 추가 오류가 누적되기 전에 수정할 수 있다. 슈뢰딩거의 고양이 비유를 계속하자면 마치 우리 고양이가 얼굴에 큰 긁힘을 입고 집에 오는 것을 본 것과 같다. 고양이는 죽지는 않았지만 싸움에 휘말렸다는 것을 알 수 있다. 우리는 다시 싸움이 일어나 고양이가 더 다치기 전에 누가 싸움을 일으켰는지 찾아낼 수 있다"고 말했다. 이번 연구는 양자 컴퓨터의 오류 감지 및 수정 기술 개발에 중요한 발판을 마련했다는 평가를 받는다. 앞으로 더욱 안정적인 양자 컴퓨터 개발을 통해 의학, 재료 과학, 인공 지능 등 다양한 분야에서 혁신적인 발전이 이루어질 것으로 기대된다. 특히 신약 개발, 암 치료, 인공지능 개발 등 복잡한 문제 해결에 획기적인 전환점을 가져올 수 있을 것으로 전망된다. 양자 컴퓨터, 인류의 미래를 밝히다 이번 연구는 마치 판도라의 상자를 여는 열쇠처럼, 양자 컴퓨팅 시대의 문을 활짝 열었다. 안티몬 원자를 이용한 오류 수정 기술은 양자 컴퓨터 개발의 핵심 과제를 해결하는 데 중요한 역할을 할 것으로 기대된다. 더욱 안정적이고 효율적인 양자 컴퓨터의 등장은 과학 기술 분야는 물론, 인류의 삶 전반에 걸쳐 혁명적인 변화를 가져올 것이다. 어쩌면 머지않아 우리는 양자 컴퓨터가 만들어낼 놀라운 미래를 직접 경험하게 될지도 모른다.
-
- 포커스온
-
- [신소재 신기술(146)] 국내 연구진, 고체 내 전자의 양자 기하학 첫 측정…양자역학 새 지평 열다
- 국내 연구진이 포함된 국제 공동 연구팀이 고체 내에서 움직이는 단일 전자의 기하학적 '형태'를 최초로 즉정하는 데 성공했다. 이번 연구는 결정질 고체의 양자적 거동을 연구하는 새로운 방법을 제시하는 획기적인 성과로 평가된다고 사이언스 얼럿이 5일(현지시간) 전했다. 과학자들은 전자의 에너지와 운동을 계산하는 방법을 알고 있었지만, 전자의 양자 모양을 이해하는 것은 지금까지 이론적으로만 가능했다고 인터레스팅엔지니어링은 지적했다. 미국 매사추세츠 공과대학교(MIT)의 리카르도 코인(Riccardo Comin) 물리학과 교수는 "우리는 이전에는 얻을 수 없었던 새로운 정보를 얻는 방법을 개발했다"고 밝혔다. 이번 연구는 MIT에서 박사후 연구원으로 재직했으며 현재 코넬 대학교에 있는 강민구 박사와 서울대학교 김선제 교수가 주도했다. 물리학에서 물질은 고전 물리학으로 설명되는 방식으로 주로 이해된다. 그러나 입자 간 상호 작용이나 측정이 이루어지는 근본적인 수준에서는 고전 물리학과 달리 양자역학의 원리에 따라 움직인다. 전자는 입자와 파동, 두 가지로 행동할 수 있다. 전자를 입자라고 부르지만, 이는 작은 콩과 같은 이미지를 연상시키기 쉽다. 그러나 전자의 크기와 그 양자적 특성은 파동의 형태로 설명하는 게 훨씬 더 정확하다. 물리학자들은 전자의 파동적 측면을 설명하기 위해 파동함수를 사용한다. 파동함수는 특정 위치에서 특정 상태의 입자가 존재할 확률을 기술하는 수학적 모델로, 전자의 양자적 특성을 표현한다. 이러한 파동함수의 일부 특징은 기하학적 형태로 해석될 수 있으며, 이는 곡선이나 구와 같이 무한한 방향으로 회전하는 구조를 갖는다. 원자 격자 내 전자의 양자 기하학은 클라인 병이나 뫼비우스 띠처럼 복잡한 형태로 나타나기도 한다. 연구 저자들은 "지금까지의 파동함수의 양자 기하학은 이론적으로만 추론될 수 있었거나 전혀 추론될 수 없었다"고 말했다. 그들은 그러나 "물리학자들이 양자 컴퓨터부터 고급 전자 기기 및 장치에 이르기까지 모든 것에 잠재적으로 적용할 수 있는 양자 물질은 점점 더 많이 발견함에 따라 이 속성은 점점 더 중요해지고 있다"라고 덧붙였다. 고체 내 전자의 복잡한 양자 기하학의 일부를 결정하는 것은 물리학자들이 간접적으로 추론하는 방식에 의존해왔다. 강민구 박사와 김선진 교수 연구팀은 전자의 양자 기하학을 직접 측정하기 위해 '양자 기하학적 텐서(QGT)'라는 물리량을 활용했다. QGT는 2차원 홀로그램이 3차원 공간의 정보를 인코딩하는 것과 유사하게, 양자 상태의 전체 기하학적 정보를 담고 있다. 연구팀은 '각도 분해 광전자 분광법(ARPES)'을 사용해 전자의 양자 기하학을 측정했다. 이 기술은 물질에 광자를 조사해 전자를 방출시키고, 전자의 편광, 스핀, 방출 각도 등 다양한 특성을 분석하는 방식이다. 이번 연구는 코발트-주석 합금 단결정을 대상으로 진행했다. 이 물질은 '카고메 금속(kagome metal)'으로 알려져 있으며, 연구팀은 앞선 연구에서도 동일한 물질의 특성을 조사한 바 있다. 연구 결과 고체 내에서 QGT를 최초로 측정했으며, 이를 통해 금속 내 전자의 나머지 양자 기하학적 특성을 유추할 수 있었다. 연구팀은 이 결과를 이론적으로 도출된 양자기하학과 비교해 즉접 측정과 추론 방식의 유효성을 검증했다. 팀은 이번 기술이 코발트-주석 합금뿐 아니라 다양한 재료에 적용 가능하다고 밝혔다. 특히, 초전도성이 발견되지 않은 물질에서 초전도성을 발견하는 등 새로운 가능성을 열 것으로 기대된다. 익명을 요한 한 전문가는 '양자역학의 기하학적 해석은 최근 응집물질 물리학 분야에서 많은 진전을 이루는 데 중요한 역할을 했다"며 "연구팀은 양자 상태의 기하학적 특성을 근본적으로 규명하는 QGT에 실험적으로 접근하는 방법을 개촉했다"고 평가했다. 그는 이어 "이번 연구에서 개발된 방법은 간단하고, 다양한 고체 재료에 적용할 수 있어 새로운 양자 현상에 대한 기하학적 이해를 이끌어낼 잠재력이ㅐ 크다"고 덧붙였다. 이번 연구 결과는 국제 학술지 '네이처 피직스(Nature Physics)'에 게재됐다.
-
- IT/바이오
-
- [퓨처 Eyes(65)] 한쪽으로는 질량 없는 기이한 입자, 첨단 기술 혁신의 열쇠 될까?
- 과학계가 술렁이고 있다. 마치 SF 영화에서나 나올 법한, 한 쪽 방향으로는 질량이 전혀 없지만 다른 한 쪽으로는 질량을 가진 기묘한 입자가 발견되었기 때문이다. '세미-디랙 페르미온(semi-Dirac fermions)'이라 불리는 이 준입자는 16년전 이론적으로 예측되었지만, 실제 물질에서 관측된 것은 이번이 처음이다. 이 획기적인 발견은 배터리, 센서 등 첨단 기술에 혁명적인 변화를 가져올 수 있다는 기대를 모으고 있다. 우연에서 탄생한 획기적 발견 이번 발견은 미국 펜실베이니아주립대학교(Penn State)와 컬럼비아대학교(Columbia University) 연구팀이 플로리다 국립 고자기장 연구소(National High Magnetic Field Laboratory)에서 수행한 실험 중 이루어졌다. 연구진은 지르코늄 실리사이드 설파이드(ZrSiS)라는 반금속 결정체를 -452℉(-269℃)로 냉각시키고 지구 자기장보다 90만 배 강력한 자기장을 적용해 광학적 반응을 조사하던 중 예상치 못한 신호를 관찰했다. 연구 논문의 주저자인 샤오 인밍(Yinming Shao) 펜실베이니아주립대학교 물리학 조교수는 "처음에는 우리가 무엇을 보고 있는지 몰랐다. 세미-디랙 페르미온을 찾으려던 것도 아니었다. 그런데 이해할 수 없는 신호를 발견했고, 결과적으로 이론적으로만 존재하던 준입자를 최초로 관찰하게 된 것"이라고 말했다. 플로리다 국립 고자기장 연구소의 하이브리드 자석은 세계에서 가장 강력한 지속형 자기장을 생성하는 데, 지구 자기장보다 약 90만배 강하다. 이 자기장은 너무 강해서 물방울과 같은 작은 물체를 공중에 띄울 수 있다. 연구진은 ZrSiS 결정체가 예상 밖의 특성을 보여준다고 강조했다. 그들은 "우리가 관찰한 신호는 기존의 준입자나 전자 행동과 완전히 다른 것이었다. 이는 물질 내 전자 구조가 상호작용하는 방식에 대한 새로운 시각을 제공한다"고 설명했다. 입자의 에너지가 전적으로 운동에서 비롯된 경우, 즉 본질적으로 빛의 속도로 이동하는 순수한 에너지인 경우 입자는 질량을 갖지 않을 수 있다. 예를 들어 광자나 빛의 입자는 광속으로 움직이기 때문에 질량이 없는 것으로 간주된다. 알버트 아인슈타인의 특수 상대성 이론에 따르면 빛의 속도로 이동하는 물체는 질량을 가질 수 없다. 고체 물질에서는 준입자(quasiparticles)라고도 하는 많은 입자의 집단적 행동이 개별 입자와 다른 행동을 보일 수 있으며, 이 경우 한 방향으로만 질량을 갖는 입자가 발생한다고 샤오는 설명했다. 샤오는 "어떤 물질에 자기장을 가하면 그 물질 내부의 전자 레벨이 란다우 준위(Landau levels)라는 불연속 레벨로 양자화된다"고 설명했다. 이 레벨은 마치 계단을 오를 때 중간에 작은 계단이 없는 것처럼 고정된 값만 가질 수 있다. 이 레벨 사이의 간격은 전자의 질량과 자기장의 세기에 따라 달라지므로 자기장이 증가하면 전자의 에너지 준위는 전적으로 질량에 따라 정해진 양만큼 증가해야 하지만 이 경우에는 그렇지 않다. 즉, 세미-디랙 페르미온은 방향에 따라 질량이 존재하거나 사라지는 독특한 행동을 한다. 연구팀은 적외선을 비춰 반사된 빛의 신호를 분석하는 자기-광학 분광법(mganeto-optical spectroscopy)을 통해 이 현상을 확인했다. 전자의 에너지 상태가 특정 조건에서 기존 물질과는 전혀 다른 패턴을 보이며 이 준입자의 존재를 증명했다. 질행 행동성과 독특한 행동 '발견' 일반적인 입자는 모든 방향에서 질량을 갖지만, 세미-디랙 페르미온은 특정 방향에서만 질량을 갖는다. 이는 결정체의 전자 구조와 깊은 관련이 있다. ZrSiS의 경우 층상 구조를 가지고 있어 전자가 특정 경로로는 질량 없는 상태로 이동하고, 교차점에서 질량을 얻는다. 연구진은 이를 마치 "기차가 선로를 따라 이동하다가 교차점에서 방향을 바꿀 때 갑자기 저항 받는 상황"에 비유했다. 샤오는 "이 물질은 독특한 전자 구조를 가지고 있어 기존 물리학 이론으로는 완전히 설명되지 않는 행동을 보인다. 이 때문에 우리가 연구를 계속해야 하는 이유이기도 하다"라고 말했다. 이 현장은 란다우 준위(Landau levels)로 알려진 전자의 에너지 단계에서 관찰됐다. 일반적으로 전자의 에너지 단계는 자기장 강도에 따라 증가하지만. ZrSiS에서는 세미-디랙 페르미온만이 보여주는 'B^(2/3) 법칙'을 따른 패턴이 발견됐다. 이는 기존의 물질에서는 볼 수 없는 독특한 특성이다. 이러한 특징은 세미-디랙 페르미온이 지닌 독특한 에너지 분산 관계 때문이다. 그래핀의 전자와 같은 기존의 디렉 페르미온은 에너지가 운동량에 선형적으로 비례하지만, 세미-디랙 페르미온은 특정 방향에서는 에너지가 운동량의 제곱에 비례한다. 이러한 차이가 란다우 준위에서 독특한 에너지 패턴을 만들어내는 것이다. 란다우 준위는 자기장이 존재하는 2차원 전자 시스템에서 전자들이 특정 에너지 준위를 형성하는 양자역학적 현상을 말한다. 이 개념은 프랑스 물리학자 레프 란다우(Lev Landau)가 1930년에 제안했다. 세미-디랙 페르미온은 2008년과 2009년 프랑스 파리 쉬드 대학과 미국 캘리포니아 대학교 데이비스 캠퍼스의 과학자들을 포함한 여러 연구팀에 의해 처음으로 이론화됐다. 연구팀은 운동 방향에 따라 질량 이동 특성을 가진 준입자가 있을 수 있다고 예측했다. 즉, 한 방향으로는 무질량으로 보이지만 다른 방향으로는 질량이 있을 것으로 본 것이다. 과학과 기술의 개로운 가능성 제시 세미-디랙 페르미온의 발견은 단순한 이론 검증을 넘어, 첨단 기술로의 응용 가능성을 제시한다. 연구팀은 ZrSiS와 같은 층상 구조를 지닌 물질이 그래핀처럼 단일 층으로 분리될 경우, 전자 특성을 정밀하게 제아할 수 있을 것으로 기대하고 있다. 이는 새로운 이론적 모델을 필요로 하며, 앞으로의 연구가 이를 밝혀낼 것"이라고 덧붙였다. 이처럼 세미-디랙 페르미온은 전자의 이동성과 에너지 효율을 획기적으로 높일 수 있는 잠재력을 지니고 있다. 이는 차세대 전자 소자 및 에너지 저장 장치 개발에 새로운 돌파구를 마련할 수 있음을 의미한다. 세미-디랙 페르미온 미래 연구와 방향성 세미-디랙 페르미온은 기존 물리학의 틀을 확장시키는 동시에 양자 연구에 새로운 방향성을 제시한다. 이번 발견은 물질 내 전자의 상호작용, 길량의 생성 및 소멸, 에너지 흐름에 대한 이해를 심화시키는 데 중요한 기여를 할 것으로 보인다. 또한 준입자의 행동과 특성을 기반으로 새로운 재료 과학과 응용 기술 개발의 가능성을 열었다. 이 연구는 학술지 '피지컬 리뷰 엑스(Physical Review X)'에 개재됐으며, 과학계는 앞으로 더 많은 실험과 이론적 분석을 통해 이 준입자의 비밀을 밝혀낼 것으로 기대하고 있다. 한 방향으로 질량 없는 빛의 속도로 움직이고, 다른 방향으로는 무거운 질량을 지니는 세미-디랙 페르미온. 이 입자의 발견은 물리할뿐만 아니라 인류의 기술적 진보에도 깊은 영향을 미칠 것으로 보인다.
-
- 포커스온
-
- [퓨처 Eyes(64)] 음의 시간⋯시간이 거꾸로 흐른다고?
- 시간이 거꾸로 흐른다면? 믿기 힘들겠지만, 토론토대학교 연구진이 '음의 시간(Negative Time)'이라는 비현실적인 개념을 실험으로 증명해냈다는 연구 결과를 발표했다. 양자역학의 세계는 우리의 상식을 뛰어넘는 놀라움으로 가득한데, 이번 발견은 그 정점을 찍는 듯하다. 마치 빛이 시간을 거슬러 움직이는 듯한 기이한 현상을 보인다는데⋯. 과연 '음의 시간'이란 무엇이고, 이 발견이 우리가 알고 있던 시간과 우주에 대한 이해를 어떻게 바꿀까? 빛, 시간을 거슬러 나타난다? 과학자들은 오래전부터 빛이 물질에 들어가기 전에 나오는 것처럼 보이는 현상을 관찰해왔다. 마치 터널에 들어가기도 전에 터널을 빠져나오는 것처럼 말이다. 이는 일반적으로 물질이 빛의 파동을 왜곡시키면서 발생하는 착시 현상으로 여겨졌다. 그러나 최근 토론토대학교 연구팀은 이 현상이 단순한 착시가 아니라 실제 물리적 현상일 수 있음을 시사하는 연구 결과를 발표했다. 해당 내용에 대해서는 사어언스 얼럿, IFL사이언스, 아랍뉴스 등 다수 외신이 다루었다. 이 연구를 이끈 에이프라임 스타인버그 교수는 "우리 같은 물리학자들끼리도 '음의 시간'은 말하기 어려운 주제다. 자주 오해를 받는다"고 말했다. '음의 시간'이라는 개념은 매우 생소하고, 심지어 물리학자들 사이에서도 논란이 되는 복잡한 주제이기 때문이다. '음의 시간'의 비밀을 밝히다 스타인버그 교수 연구팀은 레이저를 이용해 빛과 원자의 상호작용을 정밀하게 분석했다. 빛의 기본 입자인 광자(phptons)가 원자를 통과할 때, 일부 광자는 원자에 흡수되었다가 다시 방출된다. 이 과정에서 원자는 일시적으로 에너지가 높아진 '들뜬 상태'가 된다. 연구팀은 이때 원자가 얼마나 오랫동안 들뜬 상태에 머무는지 측정하는 실험을 진행했다. 놀랍게도 실험 결과는 예상 밖이었다. 연구팀은 전선과 알루미늄으로 감싼 장치로 가득 찬 지하실 실험실에서 수행된 실험은 최적화 하는 데 2년이 넘게 걸렸으며, 사용된 레이저는 결과를 왜곡하지 않도록 주의 깊게 교정했다고 전했다. 이 실험을 주도한 다니엘라 앙굴로 연구원은 "원자의 들뜬 상태 지속 시간을 측정했는데, 그 시간이 음수로 나타났다"고 밝혔다. 즉, 원자가 들뜬 상태에 머무는 시간이 0보다 적게 측정된 것이다. 이는 마치 원자가 광자를 방출하기 전에 흡수하는 것처럼 보이는, 시간의 순서가 뒤바뀐 현상을 의미한다. 자동차가 터널에 들어가기 전에 나온다고? 이해를 돕기 위해 터널을 통과하는 자동차를 예로 들어보자, 만약 1000대의 자동차가 터널에 진입하는 평균 시간이 정오라고 할 때, 측정 결과 첫 번째 자동차가 터널을 빠져나가는 시간이 오전 11시 59분으로 기록됐다고 가정해보자. 이는 마치 자동차가 터널에 들어가기도 전에 터널을 빠져나온 것처럼 보이는 상황으로, '음의 시간' 개념에 비유할 수 있다. 물론, 실제로 자동차가 시간을 거슬러 터널을 빠져나올 수는 없다. 마찬가지로, 양자역학에서 관측된 '음의 시간' 현상 또한 우리가 일상적으로 경험하는 시간의 흐름과는 다르게 해석해야 한다. '음의 시간'은 시간 여행을 의미하는가? 그렇다면 이번 연구 결과는 시간 여행이 가능하다는 것을 의미하는 것일까? 스타인버그 교수는 "우리는 무언가가 과거로 이동했다고 말하고 싶지는 않다. 그건 오해다"고 강조했다. 즉, 이번 연구 결과가 시;간 여행의 가능성을 시사하는 것은 아니다. 양자역학에서는 입자들이 고정된 시간선을 따라 움직이는 것이 아니라 확률적으로 존재하며, 다양한 시간대에 걸쳐 상호작용할 수 있다. 이러한 현상은 우리의 일상적인 직관과는 매우 다르지만, 아인슈타인의 특수 상대성이론과 같은 기존 물리학 법칙과 충돌하는 것은 아니다. 특수 상대성 이론은 어떤 것도 빛보다 빠르게 이동할 수 없다고 규정하는 데, 연구팀은 이번 실험에서 광자가 정보를 전달하지 않았기 때문에 우주의 속도 제한을 위반하지 않았다고 설명했다. 과학계의 뜨거운 논쟁, 그리고 새로운 가능성 '음의 시간'이라는 개념은 과학계에서 뜨거운 논쟁을 불러일으켰다. 독일의 이론 물리학자 사빈 호센펠더는 유튜브에서 이 연구에 대해 비판적인 의견을 제시했다. 그는 "이 실험에서 음의 시간은 시간의 흐름과는 무관하다. 이는 단지 광자가 매질을 통과하는 방식과 위상이 변화하는 과정을 설명하는 방법일 뿐이다"고 주장했다. 하지만 앙굴로와 스타인버그는 이에 대해 반박하며, 이번 연구가 빛의 속도가 항상 일정하지 않고 매질에 따라 달라질 수 있는 이유를 설명하는 데 중요한 단서를 제공한다고 강조했다. '음의 시간'에 대한 해석과 그 의미는 여전히 과학게에서 논쟁중이지만, 이번 연구는 양자 역학의 세계를 더 깊이 이해하는 데 중요한 발검음이 될 것이다. 비록 아직은 낯설고 어려운 개념이지만, '음의 시간'은 우주에 대한 우리의 이해를 넓히고 시간과 공간에 대한 근본적인 질문을 던지며 과학적 탐구의 새로운 지평을 열 것으로 기대된다.
-
- 포커스온
-
- [윌로우 양자 혁명의 시작(7·끝)] 윌로우, 양자 도약과 인류의 미래⋯기술 철학의 새로운 미래를 열다
- 양자 컴퓨터는 이제 공상 과학이 아닌 현실이다. 구글이 개발한 양자 컴퓨팅 칩 '윌로우(Willow)'는 계산 능력의 한계를 넘어 새로운 가능성의 문을 열었다. 하지만 기술의 발전은 단순히 효율성과 성능의 문제로 끝나지 않는다. 윌로우는 인간의 윤리와 사회적 책임, 기술과 철학의 경계선에서 중요한 질문을 던지고 있다. 이번 회에서는 윌로우가 인류의 미래에 제시하는 철학적·사회적 의미를 탐구하며, 기술의 진정한 의미를 되짚어본다. [편집자 주] 자연의 언어를 읽다…양자역학의 운영체제 양자 컴퓨팅은 자연의 언어, 즉 양자역학을 기반으로 작동한다. 고전 컴퓨터가 0과 1의 이진법으로 정보를 처리한다면, 양자 컴퓨터는 중첩(superposition)과 얽힘(entanglement)을 활용하여 훨씬 더 많은 정보를 동시에 처리할 수 있다. 윌로우는 오늘날 가장 빠른 슈퍼컴퓨터 중 하나가 10의 25제곱년 걸리는 계산을 5분 이내에 수행했다. 10의 25제곱년은 글로 표현하면 10,000,000,000,000,000,000,000,000년이다. 이 엄청난 숫자는 물리학에서 알려진 시간 척도를 넘어 우주의 나이를 크게 넘어선다. 이처럼 윌로우는 인간이 과거에는 상상조차 하지 못했던 문제를 해결할 수 있는 능력을 제공하지만 이와 동시에 윤리적 문제를 동반한다. 양자 컴퓨터가 기존 암호학 기술을 무력화하는 것처럼, 윌로우의 기술은 오용될 경우 사회적 갈등을 유발하거나 개인의 프라이버시를 침해할 가능성이 있다. 양자 컴퓨터는 RSA, ECC와 같은 기존 암호 체계를 빠르게 해독할 수 있다. 이로 인해 양자 내성 암호(Quantum-Resistant Crystography) 개발이 중요해 지고 있다. 아울러 양자 컴퓨팅 기술과 함께 양자 암호학(QKD)을 활용해 해킹에 강한 통신 네트워크 구축이 가능하다. 이처 양자 기술의 발전에는 책임감 있는 사용과 윤리적 가이드라인이 필수적이다. 기술의 목적이 무엇인지, 그리고 이를 통해 어떤 가치를 실현할 것인지에 대한 사회적 논의가 필요하다. 신약 개발 등 첨단 기술 앞당겨 양자 컴퓨터는 분자의 복잡한 상호작용을 시뮬레이션할 수 있어 신약 개발 시간을 단축하고 성공률을 높일 수 있다. 아울러 방대한 유전체 데이터를 효율적으로 분석하여 맞춤형 치료제 개발에 기여할 수 있다. 양자 시뮬레이션을 통해 신소재 개발에 기여할 수 있다. 예를 들어 초전도체나 고성능 배터리 소재 등 새로운 물질의 특성을 정확히 예측하고 최적화된 재료를 설계할 수 있다. 양자 컴퓨터는 기존의 머신러닝 알고리즘보다 더 빠르고 효율적으로 대규모 데이터를 설계할 수 있다. 그로 인해 데이터 분류, 클러스터링, 강화 학습 등에서 혁신적인 성능을 발휘할 수 있다. 금융 시장에서 복잡한 위험 요소를 더 정밀하게 분석해 투자 전략을 최적화할 수 있다. 양자 알고리즘을 활용해 금융 데이터의 패턴을 더 정교하게 분석하고 시장 예측력을 높일 수 있다. 아울러 기후 변화의 다양한 변수를 빠르게 분석해 더 정교한 모델을 제공할 수 있다. 국방 및 안보 분야에서 방대한 정보를 빠르게 분석해 전략적 의사 결정을 할 수 있다. 기존 레이더보다 월씬 더 정교하고 감지 능력이 뛰어난 시스템 개발이 가능하다. 그밖에 우주선의 최적 항로를 계산해 연료를 절약하고 탐사 효율을 극대화하며, 복잡한 천체 물리학 문제를 더 정확하게 해결할 수 있다. 이처럼 양자 컴퓨팅은 현재 초기 단계에 있지만 앞으로 기술이 성숙함에 따라 더 다양한 산업에서 응용될 가능성이 크다. 협력과 공유 통한 기술의 민주화 구글 퀀텀 AI는 윌로우의 기술을 독점하지 않고, 오픈소스 소프트웨어와 교육 자료를 통해 전 세계 연구자들과 공유하고 있다. 이러한 협력적 접근은 양자 컴퓨팅 생태계를 확장하고, 기술 발전의 혜택을 전 세계적으로 분배하는 데 기여한다. 이는 기술 민주화의 본보기가 될 수 있으며, 기술 발전이 일부 계층이나 국가에만 국한되지 않도록 하는 중요한 사례로 평가받고 있다. 기술과 철학, 새로운 질문을 던지다 윌로우는 단순히 계산 속도를 높이는 도구가 아니라, 인간 존재와 기술의 관계에 대한 새로운 질문을 던진다. 기술이 인간의 한계를 초월할 때, 우리는 무엇을 추구해야 할까? 기술 발전이 인류의 이익을 넘어선 순간, 우리는 어떤 선택을 해야 할까? 이러한 질문은 단지 과학자나 기술 전문가들만의 것이 아니다. 사회 전체가 윌로우와 같은 기술이 가져올 변화를 논의하고, 이를 바람직한 방향으로 이끌어야 한다. 미래를 여는 윌로우, 새로운 시작의 문을 열다 윌로우는 단순한 양자 컴퓨팅 칩이 아니다. 이는 기술과 윤리, 사회적 책임과 인간의 한계를 넘어 새로운 미래를 열어가는 첫걸음이다. 의약품 개발, 기후 변화 대응, 에너지 혁신 등 다양한 분야에서 윌로우는 인류가 직면한 난제를 해결할 수 있는 도구로 자리잡고 있다. 하지만 그와 동시에 윌로우는 우리에게 기술의 본질과 목표에 대해 다시금 생각해보게 만든다. 양자 컴퓨팅은 이제 막 시작됐다. 그리고 그 여정은 인간의 창의성과 협력을 바탕으로 계속 이어질 것이다. <윌로우, 양자 혁명의 시작> 시리즈는 양자 컴퓨팅 기술의 선두 주자인 윌로우를 통해, 기술이 인간과 사회에 미치는 영향과 가능성을 탐구하는 여정을 담아냈다. 구글의 윌로우가 열어갈 새로운 세계는 단순히 기술 혁신을 넘어, 인간 존재의 의미와 미래를 재정의하는 데 기여할 것이다. 이제 윌로우는 우리 모두에게 새로운 가능성의 문을 활짝 열어 보이고 있다.
-
- IT/바이오
-
- [윌로우, 양자 혁명의 시작(1)] 윌로우, 양자 컴퓨팅의 새로운 지평을 열다
- 양자 컴퓨터는 더 이상 공상 과학이 아니다. 구글이 개발한 양자 컴퓨팅 칩 '윌로우'는 기존 기술의 한계를 뛰어넘어 미래를 위한 새로운 길을 열고 있다. 윌로우의 연산 능력은 에너지, 의료, 인공지능(AI), 암호화 등 다양한 분야에 혁신적인 영향을 미칠 잠재력을 지니고 있다. 이번 시리즈 <윌로우, 양자 혁명의 시작>은 윌로우가 어떻게 전 세계적인 변화를 이끌고 있는지, 그리고 그 이면에 숨겨진 구글 퀀텀 AI 연구소의 기술 혁신 과정을 심층적으로 탐구한다. [편집자 주] 양자 오류 정정, 기술 혁명의 문을 열다 윌로우의 가장 주목할만한 성과는 양자 오류 정정 기술의 획기적인 발전이다. 큐비트(양자 컴퓨터의 기본 단위)는 외부 간섭에 민감하여 오류가 발생하기 쉬운데, 윌로우는 큐비트를 배열한 3x3, 5x5,7x7 구조에서 오류율을 단계적으로 줄이는 데 성공했다. 이는 '임계값 미만'으로 알려져 있다. 구글 퀀텀 AI 팀은 이 성과를 "양자 오류 수정에서 실제 진전을 보여주려면 임계값 미만임을 입증해야 한다. 이는 1995년 피터 쇼어가 양자 오류 수정을 도입한 이후 엄청난 과제였다"며 30년 난제를 해결했다고 평가했다. 이어 "양자 오류 정정의 기준점을 넘어섰다"라고 표현하며, 양자 컴퓨팅 상용화의 가능성을 더욱 현실화했다고 밝혔다. 슈퍼컴퓨터를 넘어선 윌로우의 연산 능력 랜덤 회로 샘플링(RCS) 벤치마크에서 윌로우는 기존 슈퍼컴퓨터가 10셉틸리언(10septillion은 10의 25제곱 년·10해년) 동안 처리해야 할 계산을 단 5분 만에 완료했다. 이 결과는 단순히 기술 경쟁력을 보여주는 것을 넘어, 양자 컴퓨팅이 실제로 상업적 문제를 해결할 수 있는 잠재력을 증명한 사례로 기록된다. 구글 퀀텀 AI의 10년 도전, 결실을 맺다 구글 퀀텀 AI 연구소는 2012년 설립 이래 양자 컴퓨팅 연구에 매진해왔다. 초기에는 양자역학의 가능성을 입증하는 연구에 집중했지만, 점차 오류 정정과 계산 성능 향상이라는 구체적인 목표로 전환했다. "정치적 불안정이 지속되더라도 기술 혁신은 멈추지 않는다." 연구소의 비전은 이제 윌로우라는 이름으로 결실을 맺고 있다. 미래를 여는 기술, 인류를 향한 도전 윌로우는 단순한 기술의 진보를 넘어, 에너지 혁신, 의료 연구, AI 융합 등 다양한 산업에 걸쳐 거대한 변화를 일으킬 준비를 하고 있다. 이는 단지 기술 개발의 끝이 아니라, 인류의 새로운 시작을 알리는 신호탄이다. 다음 회차에서는 윌로우가 어떻게 30년간 풀리지 않던 양자 오류 정정의 난제를 해결하며, 양자 컴퓨팅 상용화에 한 걸음 더 나아갔는지 깊이 있게 살펴본다. [윌로우, 양자 혁명의 시작(2)]에서 이어진다.
-
- IT/바이오
-
- 구글, 오류 대폭 줄인 양자칩 적용한 양자컴퓨터 공개
- 구글은 9일(현지시간) 양자컴퓨터에서 사용할 신형 양자칩을 개발했다고 발표했다. 로이터통신 등 외신들에 따르면 구글은 이날 슈퍼컴퓨터가 10셉틸리언(10해년-septillion·10²⁴)년 걸리는 문제를 단 몇 분 만에 푸는 양자컴퓨터를 개발했다고 밝혔다. 10셉틸리언은 10의 25제곱이며 1조의 10조배에 달하는 수다. 구글은 자체 개발한 양자 칩 '윌로우(Willow)'를 장착한 양자컴퓨터가 성능 실험에서 현존하는 가장 빠른 슈퍼컴퓨터인 프런티어를 능가했다고 설명했다. 이어 프런티어가 10셉틸리언(10의 25제곱)년 걸려야 풀 수 있는 문제를 윌로칩을 장착한 양자컴퓨터는 단 5분 안에 풀었다고 덧붙였다. 천문학적인 시간이 걸리는 계산을 5분미만에 실행할 수 있을 뿐만 아니라 30여 년간 병목 기술로 불려왔던 양자 오류 수정 기술을 획기적으로 개선하는데 성공했다. 또한 기존 슈퍼컴퓨터를 대체할 계산인프라로 폭넓은 용도에서의 실용화의 길을 열었다. 구글 양자 AI 설립자인 하트무트 네벤은 "이는 중요하지 않다"며 "간단한 문제조차 해결하지 못하면 실용적인 문제도 해결할 수 없다"고 부연했다. 구글은 기존 컴퓨터가 풀지 못하는 실제 문제 해결 사례를 내년에 발표할 것이라고 밝혔다. 구글은 또 윌로우가 큐비트 수를 늘리면서 오류를 줄일 수 있는 임계값 이하(Below Threshold)를 달성한 첫 양자시스템이며 실시간으로 오류를 수정할 수 있는 기술도 개발했다고 설명했다. 양자컴퓨터는 대개 전기 저항이 없는 초전도 큐비트를 사용해 정보를 처리하는데, 외부의 저항에 쉽게 오류가 발생하는 단점이 있었다. 로이터통신은 "양자컴퓨터를 실용적으로 만드는 데 중요한 단계"라고 짚었다. 뉴욕타임스(NYT)는 "양자컴퓨팅은 양자역학이라는 물리학의 한 분야에 대한 수십년간의 연구 결과로 여전히 실험적인 기술이지만, 구글의 성과는 과학자들이 이 기술에 대한 오랜 기대를 충족시킬 수 있는 방법들을 꾸준히 발전시키고 있음을 보여준다"고 평가했다. 양자컴퓨터는 기존의 슈퍼컴퓨터로 수십년 걸리는 복잡한 문제를 수분내에 해결할 수 있다. 현재로서는 특정의 계산외에는 사용할 수 없지만 기술개발로 앞으로 더 복잡한 문제를 해결해 새로운 소재와 화학제품의 개발로 이어질 것으로 기대되고 있다. 구글은 지난 2014년에 양자컴퓨터 분야에 진출했다. 지난 2019년에는 양자컴퓨터 '시카모어'를 개발해 슈퍼컴퓨터가 1만년 걸리는 문제를 약 3분에 해결해 '양자초월'이라 불리는 기술혁신을 달성했다고 발표했다. 구글은 이번 연구로 성능이 더욱 높이게 됐다. 양자컴퓨터는 미국의 거대 기술기업이 연구개발에서 앞서고 있다. 중국, 유럽, 일본, 캐나다 등도 차세대의 중요한 정보기술로 정부지원을 지원을 받아 연구기관과 스타트업들이 개발경쟁을 벌이고 있다.
-
- IT/바이오
-
- [신소재 신기술(125)] 양자 '슈뢰딩거의 고양이' 23분간 유지 성공…양자역학 새 지평 열어
- 과학자들이 양자 고양이 상태를 무려 23분(1400초) 이상 유지해 기존 기록을 경신했다. 중국 과학기술대학교 연구진이 '슈뢰딩거의 고양이' 상태를 1400초(약 23분 33초) 동안 유지하는 데 성공했다는 연구 결과를 발표했다고 IFL사이언스가 전했다. 이는 양자 중첩 상태를 장시간 유지한 세계 최장 기록으로, 고정밀 특정 및 양자 컴퓨터 정보 처리 분야에 새로운 가능성을 제시할 것으로 기대된다. 슈뢰딩거의 고양이는 양자역학의 원리를 설명하는 데 자주 사용되는 비유로 오스트리아의 물리학자 에르빈 슈뢰딩거가 1935년에 고안한 사고 실험이다. 이 실험은 양자 역학의 불완전함을 보여주기 위해서 고안됐다. 실험 원리는 다음과 같다. 상상속의 밀폐된 상자 안에 고양이 한 마리가 들어있다. 또 상자 안에는 방사성 물질과 연결된 독가스 장치가 있다. 방사성 물질은 1시간 안에 50%의 확률로 붕괴한다. 만약 붕괴하면 독가스가 방출되어 고양이가 죽고, 붕괴하지 않으면 고양이가 살아 있다. 여기서 중요한 점은 상자를 열어보기 전까지는 고양이가 죽었는지 살았는지 확인할 수 없다는 것이다. 양자역학에 따르면, 상자를 열어 확인하기 전까지 고양이는 죽어 있는 상태와 살아 있는 상태가 중첩되어 존재한다. 즉, 고양이는 살아 있으면서 죽어 있는 상태다. 슈뢰딩거는 이 실험을 통해 양자역학의 '중첩' 해석에 의문을 제기했다. 거시세계에서는 고양이가 죽었거나 살았거나 둘 중 하나이며 중첩된 두 가지 상태가 동시에 존재할 수 없기 때문이다. 즉, '슈뢰딩거의 고양이'는 양자역학의 불확실성을 설명하는 사고 실험으로, 상자 속 고양이가 살이 있는 상태와 죽어 있는 상태가 중첩되어 존재한다는 개념이다. 연구팀은 1만개의 이터븀 원자를 절대영도보다 몇 천분의 1도 높은 온도로 냉각시키고 빛을 이용하여 포획하는 실험을 진행했다. 각 원자는 정밀하게 제어되어 두 가지 스핀 상태의 중첩 상태, 즉 '양자 고양이' 상태를 형성했다. 이번 연구에서 주목할 점은 양자 고양이 상태의 유지 기간이다. 자연 상태에서는 중첩 상태가 순식간에 붕괴되지만, 이번 실험에서는 1400초 동안 유지됐다. 연구진은 진공 개념을 개선하면 유지 시간을 더욱 늘릴 수 있을 것으로 예상했다. 인도 캘거리 대학교의 배리 센더스 교수는 "이터븀 원자를 이용해 안정적인 양자 고양이 상태를 구현한 것은 놀라운 성과"라며 "이를 통해 미세한 외부 영향을 감지하고 상호 작용을 연구하는 데 활용할 수 있다"고 평가했다. 센더스 교수는 이 연구에 참여하지는 않았다. 이번 연구는 이터븀 원자를 이용한 장치가 자기장 측정에 매우 민감하게 반응한다는 사실을 밝혀냈으며, 다양한 분야의 응용 가능성을 제시했다. 양자역학 분야에서는 지난해에 16 마이크로그램의 결정을 중첩 상태로 만드는 실험이 성공하는 등 끊임없는 혁신이 이루어지고 있다. 이번 연구 결과는 아직 동료 평가를 받지 않았으며, 관련 논문은 아카이브(arXiv)에서 확인할 수 있다.
-
- IT/바이오
-
- [신소재 신기술(116)] 양자 실험으로 '음의 시간' 증거 발견
- 과학자들이 양자 실험을 통해 '음의 시간' 증거를 발견했다. 캐나다 토론토 대학의 연구팀이 광자가 원자를 통과하는 과정에서 '음의 시간' 현상을 보이는 것을 관찰했다고 밝혔다고 IFL사이언스와 퓨처리즘 등 다수 외신이 전했다. 아직 동료 평가를 거치지 않은 이 연구는 과학 전문 매체 '사이언티픽 아메리칸'에 소개되며 학계의 주목을 받고 있다. 음의 시간은 시간이 마치 거꾸로 흐르는 것처럼 보이는 현상을 말한다. 시간은 일반적으로 과거에서 현재, 미래로 흐른다고 여겨진다. 하지만 양자역학의 세게에서는 시간이 마치 뒤로 가는 것처럼 보이는 현상이 나타날 수 있다. 이것을 '음의 시간' 또는 '시간 역행'이라고 부른다. 연구팀은 광자 펄스를 절대 영도에 가까운 온도의 원자 구름에 발사하는 실험을 진행했다. 그 결과, 광자가 원자에 흡수되지 않고 통과할 때에도 원자는 마치 광자를 흡수한 것처럼 일정 시간 동안 들뜬 상태를 유지하는 현상이 관찰됐다. 반대로 광자가 원자에 흡수된 경우에는 원자가 들뜬 상태에서 바닥 상태로 돌아가기 전에 광자가 다시 방출되는 현상이 나타났다. 이는 광자가 원자를 들뜨게 할 때, 즉 흡수될 때, 원자에 영향을 주지 않고 통과할 때보다 더 빠르게 원자 구름을 통과한다는 것을 의미한다. 연구팀은 이러한 현상을 '음의 시간 지연'이라고 설명하며, 양자역학적 불확정성과 중첩 현상으로 인해 발생한다고 분석했다. 즉, 광자와 같은 양자 입자는 동시에 두 가지 상태로 존재할 수 있으며, 이로 인해 측정 결과는 양수와 음수 값 모두를 가질 수 있다는 것이다. 이 연구는 시간에 대한 우리의 이해를 바꾸는 것은 아니지만, 광학 분야에서 음의 시간이 광자 전송과 관련하여 "일반적으로 인식되어 온 것보다 더 큰 물리적 의미를 가진다"는 것을 시사한다. 하지만 일부 전문가들은 이 연구 결과에 대해 신중한 입장을 보이며, 추가적인 연구를 통해 검증이 필요하다고 지적했다.
-
- IT/바이오
-
- [신소재 신기술(78)] 유기 태양 전지 패널, 햇빛 20% 전기 변환 성공…실리콘 대체 가능성 높여
- 미국 과학자들이 새로운 유기 태양 전지 패널을 개발해 햇빛의 20%를 전기로 변환하는 데 성공했다. 유기 태양 전지판(Organic Solar Cell)은 빛을 흡수해 전기를 생산하는 태양 전지의 한 종류다. 기존의 실리콘 태양 전지판과 달리 탄소 기반의 유기 반도체 물질을 사용해 제작된다. 캔사스대학교 연구진이 유기 반도체에 햇빛의 20%를 전기로 변환해, 태양 에너지 분야에 혁신을 가져올 수 있는 가능성을 제시했다고 인터레스팅엔지니어링이 보도했다. 수년 동안 실리콘은 태양 에너지 환경을 지배해왔다. 실리콘의 효율성과 내구성 덕분에 태양광 패널에 가장 많이 사용하는 소재가 된 것. 하지만 실리콘 기반 태양전지는 딱딱하고 생산 비용이 비싸서 곡면에 적용하는 데 한계가 있었다. 유기 반도체는 실리콘 태양 전지 패널보다 저렴하고 유연하며, 다양한 색상과 투명도를 구현할 수 있어 차세대 태양 전지 소재로 주목받고 있다. 유기 태양 전지판은 얇고 가벼우며, 플라스틱 기판 등 다양한 소재에 적용할 수 있어 곡면이나 불규칙한 표면에도 설치가 가능하다. 게다가 유기 물질은 실리콘보다 독성이 적고 재활용이 용이해 환경 친화적이다. 유기 반도체는 이미 휴대전화, TV, 가상현실(VR)헤드셋과 같은 가전제품의 디스플레이 패널에 사용되지만 상업용 태양광 패널에는 아직 널리 사용되지 않는다. 유기 반도체인 탄소 기반 소재는 더 낮은 비용과 더 큰 유연성으로 실행가능한 대안을 제공한다. 하지만 지금까지는 빛을 전기로 변환하는 효율성이 낮아 실리콘 태양 전지 패널을 대체하기 어렵다는 한계가 있었다. 연구를 주도한 캔자스 대학교의 물리학 및 천문학 부교수인 와이런 챈 박사는 "이러한 재료는 벽에 페인트를 칠하는 것처럼 용약 기반 방법을 사용해 임의의 표면에 코팅할 수 있기 때문에 태양광 패널의 생산 비용을 잠재적으로 출 수 있다"고 설명했다. 이러한 유기 반도체는 단순히 비용 절감에만 그치지 않는다. 특정 파장의 빛을 흡수하도록 조정할 수 있어 새로운 가능성을 열어준다. 챈은 "이러한 특성 덕분에 유기 태양 전지 패널은 차세대 친환경적이고 지속 가능한 건물에 사용하기에 특히 적합하다"고 덧붙였다. 이번 연구는 유기 반도체의 일종인 비풀러렌 악셉터(NFA)의 높은 효율성에 대한 의문에서 시작됐다. 연구진은 NFA가 기존 유기 반도체보다 뛰어난 성능을 보이는 이유를 규명하는 과정에서 예상치 못한 현상을 발견했다. 특정 조건에서 NFA의 전자가 에너지를 잃는 대신 주변 환경으로부터 에너지를 얻는 현상을 관찰한 것이다. 이는 뜨거운 커피가 주변으로 열을 잃는 것과는 반대되는 현상으로 양자역학과 열역학의 결합으로 설명될 수 있었다. 연구진은 첨단 기술인 시간 분해 이광자 광전자 분해법을 활용해 1조분의 1초보다 짧은 시간 동안 전자의 에너지 변화에 추적했다. 그 결과 NFA의 전자가 양자역학적 특성으로 인해 여러 분자에 동시에 존재하는 것처럼 보이며, 이러한 현상이 열역학 제2법칙과 결합해 열흐름의 방향을 역전시키는 것을 확인했다. 이러한 역전된 열 흐름은 NFA의 전자가 주변 환경으로부터 에너지를 흡수하고 전하 분리 과정을 촉진해 전류 생성 효율을 높이는 데 기여한다. 연구진은 이번 발견이 태양 전지 효율을 20%까지 끌어올려 실리콘 태양 전지와의 격차를 좁히는 데 중요한 역할을 할 것으로 기대하고 있다. 또한 이러한 에너지 획득 메커니즘은 태양 전지 뿐만 아니라 이산화탄소를 유기 연료로 변환하는 광촉매 등 다른 재생 에너지 분야에도 적용될 수 있을 것으로 전망했다. 이는 유기 반도체 기반 기술의 잠재력을 극대화하고, 지속가능한 에너지 시스템 구축에 기여할 수 있는 중요한 발견으로 평가된다. 이번 연구는 '어드밴스드 머티리얼스(Advanced Materials)' 저널에 게재됐다.
-
- 포커스온
-
- 미국 NIST-콜로라도주립대 JILA, 역대 최고 초정밀 원자시계 개발
- 미국표준기술연구소(NIST)와 콜로라도주립대 볼더 캠퍼스가 합작해 설립한 물리학 연구소 JILA의 연구진이 아인슈타인의 일반 상대성이론이 예측한 대로 미세한 효과까지 측정할 수 있는 초정밀 빛 기반 원자시계를 개발했다고 NIST가 발표했다. NIST 홈페이지에 실린 게시글에 따르면 제작된 시계는 1초를 보다 정확하게 나타내게 되며, 심지어는 새로운 지하 광물 매장지의 발견으로까지 이어질 수도 있다고 한다. 원자시계는 일반적으로 마이크로파를 사용해 1초의 길이를 결정한다. 이번 연구는 여기에서 발전한 것으로, 가시광선으로 원자를 비추면 광파의 주파수가 마이크로파보다 훨씬 높아 초를 더욱 정확하게 계산해 낸다. 빛 기반 광학 원자시계는 마이크로파 시계에 비해 더욱 정밀해 300억 년에 1초 정도의 오차가 생길 수 있다. 다만 이 정도의 정확도에 도달하려면 시계의 정밀도 역시 높아져야 한다. 즉 극히 정밀한 초까지 측정할 수 있어야 한다. 원자시계의 정밀도 향상 JILA 연구진은 가시광선을 사용하는 대신 광학 격자로 알려진 빛의 그물을 사용해 수만 개의 원자를 동시에 측정했다. 이는 원자시계에 초를 정확하게 측정할 수 있는 더 많은 데이터를 제공했다. 과거에는 광학 격자 접근 방식이 사용됐지만, JILA 연구진은 측정을 위해 상대적으로 더 부드러운 접근 방식을 사용했다. 이로 인해 레이저 자체가 원자를 측정하거나 원자가 서로 충돌하는 효과 등 두 가지 오류 가능성을 줄일 수 있었다. 상대성과 그 이상의 효과 측정 아인슈타인의 일반 상대성 이론에 따르면 중력은 시간에 영향을 미친다. 중력장이 강할수록 시간의 흐름이 느려진다. JILA가 개발한 시계는 밀리미터 미만 규모의 시간 기록에 대한 중력의 영향을 감지할 수 있을 만큼 민감하다. JILA와 NIST의 물리학자인 준 예 교수는 이번 원자시계 제작과 관련, 시간 기록으로 가능한 한계를 돌파하고 있다면서 시계 설계가 측정을 넘어 양자 영역까지 확장됐다고 말했다. 양자 컴퓨터는 원자와 분자의 특성을 활용해 복잡한 계산을 수행한다. JILA 시계는 정밀한 측정이 가능하기 때문에, 일반 상대성이론과 양자역학 이론이 교차하는 미시적 영역에서 중력에 의한 시간 흐름의 왜곡까지 측정할 계획이다. 시계의 정확성은 과학자들이 매우 먼 거리에 떨어진 우주 공간에서도 정확한 시간을 유지하는 데 도움이 된다. 이와 관련, 예 교수는 "예컨대 정밀한 정확도로 화성에 우주선을 착륙시키려면 현재 GPS에 있는 것보다 훨씬 더 정확한 시계가 필요하다"고 덧붙였다. 보고서는 "과학은 측정 영역의 미개척지를 탐구하고 있다. 높은 수준의 정밀도로 사물을 측정할 수 있게 되면 지금까지 이론으로만 가능했던 현상이 실제로 보이기 시작한다"고 강조했다. 연구 결과는 '피지컬 리뷰 레터(Physical Review Letters)' 저널에 게재될 예정이다.
-
- IT/바이오
-
- [신소재 신기술(63)] 양자 얽힘으로 지구 자전 측정 정밀도 획기적인 향상
- 오스트리아 빈 대학교(University of Vienna) 연구팀이 양자 얽힘을 이용해 지구 자전 측정의 정밀도를 획기적으로 높이는 실험에 성공했다. 이 연구는 양자 얽힘을 활용해 전례 없는 정밀도로 회전 효과를 감지하는 향상된 광학 사그낙 간섭계(Sagnac interferometer)를 사용해 양자역학과 일반 상대성 이론 모두에서 잠재적인 돌파구를 제시한다고 사이테크 데일리가 전했다. 양자 얽힘은 두 개 이상의 입자가 서로 연결되어 있어 하나의 입자를 측정하면 다른 입자의 상태도 즉시 결정되는 현상이다. 빈 대학교의 필립 빌터(Philip Walther) 박사가 이끄는 연구팀은 지구 자전이 양자 얽힘 광자에 미치는 영향을 측정하는 실험을 성공적으로 수행했다. 이번 연구는 얽힘 기반 센서의 회전 감도 한계를 뛰어넘는 중요한 성과로 평가된다. 또한, 양자 역학과 일반 상대성 이론의 교차점에서 추가 연구의 발판을 마련할 수 있을 것으로 기대된다. 연구 결과는 지난 6월 14일 '사이언스 어드밴시스(Science Advances)' 저널에 게재됐다. 사그낙 간섭게의 발전 연구팀은 거대한 광섬유 사그낙(sagnac) 간섭계를 구축하고 몇시간 동안 낮은 노이즈를 유지하며 안정적인 실험 환경을 조성했다. 이를 통해 이전의 양자 광학 사그낙 간섭계보다 회전 정밀도를 1000배 향상시키는 고품질 얽힘 광자 쌍을 충분히 감지할 수 있었다. 사그낙 광학 간섭계는 회전에 가장 민감한 장치다. 사그낙 간섭계는 빛의 간섭 현상을 이용하여 회전 운동을 감지하는 광학 장치다. 1913년 프랑스 물리학자 조르주 사그낙이 고안했으며, 지난 세기 초부터 아인슈타인의 특수 상대성 이론을 확립하는 데 기여해 기초 물리학을 이해하는 중추적인 역할을 해 왔다. 오늘날에는 광섬유 자이로스코프, 레이저 자이로스코프 등 다양한 분야에서 활용되고 있다. 이 장치는 오늘날에도 탁월한 정밀도 분석 덕분에 고전 물리학의 한계로만 제한되었던 회전 속도를 측정하는 최고의 도구로 사용되고 있다. 빈 대학교와 오스트리아 과학 아카데미가 주최하는 연구 네트워크 TURIS의 일환으로 수행된 이번 실험은 최대 얽힘 상태의 두 광자에 대한 지구 자전 효과를 성공적으로 관측했다. 연구팀은 아인슈타인의 특수 상대성 이론과 양자 역학에서 설명하는 회전 기준 시스템과 양자 얽힘 간의 상호 작용을 확인했다. 실제 실험에서 거대한 코일에 감겨진 2km 길이의 광섬유 내부에서 얽힌 광자 2개가 전파되면서 유효 면적이 700㎡가 넘는 간섭계가 구현됐다. 실험 과정에서 연구팀은 지구의 꾸준한 회전 신호를 분리하고 추출하는 데 어려움을 겪었다. 연구의 수석 저자인 라파엘레 실베스트리(Raffaele Silvestri)는 "문제의 핵심은 빛이 지구의 회전 효과에 영향을 받지 않는 측정 기준점을 설정하는 데 있다. 지구의 자전을 멈출 수 없다는 점을 고려하여 우리는 광섬유를 두 개의 동일한 길이 코일로 나누고 이를 광 스위치를 통해 연결하는 해결 방법을 고안했다"고 설명했다. 스위치를 켜고 끄는 방식으로 연구원들은 회전 신호를 마음대로 효과적으로 취소할 수 있었고, 이를 통해 대형 장치의 안정성도 확장할 수 있었다. 마리 퀴리 박사후 연구원으로 이 실험에 참여한 하오쿤 유(Haocun Yu)는 "빛으로 지구 자전을 처음 관측한 지 한 세기 만에 개별 빛의 양자의 얽힘이 마침내 동일한 감도 영역에 진입했다는 점에서 중요한 이정표가 될 것"이라고 말했다. 본 연구는 양자 얽힘 기반 센서의 회전 감도를 더욱 향상시킬 수 있는 토대를 마련했으며, 시공간 곡선을 통한 양자 얽힘의 행동을 테스트하는 미래 실험의 길을 열 것으로 기대된다. 참고 자료: '양자 얽힘을 이용한 지구 자전의 실험적 관측', Raffaele Silvestri, Haocun Yu, Teodor Strömberg, Christopher Hilweg, Robert W. Peterson 및 Philip Walther, 2024년 6월 14일, Science Advances. DOI: 10.1126/sciadv.ado0215
-
- 포커스온
-
- [신소재 신기술(57)] 영국 스타트업, AI로 희토류 없는 영구자석 개발
- 영국의 한 스타트업이 인공지능(AI)을 활용해 희토류를 사용하지 않고도 영구 자석을 제작했다. 런던에 본사를 둔 스타트업 머티리얼스 넥서스(Materials Nexus)는 영국 헨리 로이스 연구소 및 셰필드 대학교와 협력해 AI 기반 소재 발굴 플랫폼을 활용해 희토류 원소를 사용하지 않고 새로운 영구 자석인 '마그넥스(MagNex)'를 개발했다고 인터레스팅엔지니어링(IE)이 11일(현지시간) 보도했다. 영구 자석은 외부 에너지 공급 없이도 자기장을 유지할 수 있는 자석이다. 전자레인지 문이나 스피커, 하드디스크 드라이브뿐만 아니라 풍력 터빈 로터, 첨단 로봇, 전기자동차(EV)에 이르기까지 다양한 분야에서 사용된다. 현재 사용되는 영구 자석은 네오디뮴과 디스프로슘 등과 같은 희토류 광물을 사용해서 만들어진다. 이들은 매우 희귀하며 공급망 문제에 매우 취약한 광물이다. 머티리얼스 넥서스는 강력한 인공지능 모델을 활용해 기존 재료를 대체하거나 프로세스를 줄이는 새로운 재료를 설계해 산업생산 과정의 여러 문제를 해결하고자 했다. 새로 개발된 영구 자석 제작은 기존 프로세스보다 200배나 빨랐고, 탄소 배출량은 70%나 절감됐다. 조나단 빈(Jonathan Bean) 머티리얼스 넥서스 공동 설립자 겸 CEO는 "이 AI 기반 플랫폼은 원하는 물성을 지닌 원소 조합을 빠르고 체계적으로 주기율표에서 검색한다. 모든 데이터는 자체 양자역학 계산을 통해 생성되기 때문에 실험 데이터 세트보다 정확성과 범위가 넓다. 이 데이터는 기계 학습 알고리즘을 통해 입력되고 최적의 공식을 생성한다"고 설명했다. 1억개 이상 후보 물질 조성 연구팀은 이 기술을 희토류를 사용하지 않는 영구 자석 개발에 적용하여 1억 개 이상의 후보 물질 조성을 분석해 새로운 유형의 영구 자석을 제작했다. 보도자료에 따르면 연구팀은 3개월간의 설계 및 테스트를 거쳐 기존 방식 대비 20% 저렴한 소재 비용으로 마그넥스를 개발하는데 성공했다. 개발 속도는 기존 방식의 200배나 빨랐다. 셰필드 대학의 야금 및 재료 가공교수인 이안 토드(Iain Todd)는 "머티리얼스 넥서스와의 첫번째 협력이 이처럼 긍정적인 결과를 낳게 되어 매우 기쁘다"고 말했다. 토드 교수는 "재료 발견을 위해 AI를 사용하는 머티리얼스 넥서스의 접근 방식과 셰필드의 헨리 로이스 연구소에서 고급 합금을 제조하기 위해 보유하고 있는 세계적인 시설이 결합되어 새로운 자성 재료를 놀라운 속도로 개발할 수 있었다. 이 접근 방식의 추가적인 이점은 현재 사용 가능한 희토류 재료에 비해 탄소 배출량이 70% 감소한다는 것이다"라고 강조했다. 탄소 배출량 70% 감소 빈 CEO는 "AI 기반 재료 설계는 자기 뿐만 아니라 재료 과학 전체 분야에도 영향을 미칠 것"이라면서 "이제 우리는 모든 종류의 산업 요구에 맞는 새로운 재료를 설계할 수 있는 확장 가능한 방법을 확인했다"고 말했다. 그는 "마그넥스에 대한 소재 발굴 재료 검색에 3개월이 걸렸다. 데이터 세트와 기능을 확장함에 따라 검색 속도도 더욱 빨라질 것"이라고 IE와의 인터뷰에서 밝혔다. 빈은 또한 "이미 반도체, 촉매제, 코팅 등 다양한 제품 분야에 대한 광범위한 관심을 불러일으켰다. 점점 더 시급해지는 공급망과 환경 문제 해결을 위한 새로운 소재 개발에 시장 수요를 충족시키는데 우리 플랫폼이 어떤 역할을 할지 기대된다"고 덧붙였다. 마그넥스의 개발은 희토류 없는 영구 자석 제조 기술의 발전을 가속화하고 미래 청정 에너지 개발에 기여할 것으로 잔망된다.
-
- 포커스온
-
- [신소재 신기술(53)] 새로운 냉각 기술로 양자 컴퓨팅 시대 열린다
- 미국에서 획기적인 냉각 기술이 개발돼 절대 영도 도달 시간을 단축했다. 미국 정부기관인 국립 표준 기술 연구원(NIST) 연구팀은 획기적인 냉각 기술을 개발해 빅 칠(Big Chill)로 알려진 절대 영도에 근접한 초저온을 기존보다 훨씬 빠르고 효율적으로 달성할 수 있게 됐다고 라이브사이언스가 최근 보도했다. 이 기술은 양자 컴퓨팅, 천문학 등 중요 과학 실험에 필요한 준비 시간을 크게 단축 시킬 수 있을 것으로 기대된다. 절대 영도는 -273.15℃ 또는 0켈빈으로 표시되는 가장 낮은 온도를 의미한다. 이 온도에서 원자와 분자는 완전히 정지 상태에 있으며, 열 에너지가 전혀 존재하지 않는다. 절대 온도는 이론적 개념이며 실제로 실험적으로 달성하기에는 어렵다. 현재까지 절대 온도에 가장 근접하게 도달한 온도는 1999년 로듐을 활용한 냉각 기법으로 기록한 약 100피코켈빈이다. 과학 실험에 사용되는 민감한 전기 장비는 온도 변동과 같은 외부 노이즈의 간섭을 받지 않도록 절대 영도 근처의 초저온을 유지해야 한다. 하지만 기존 냉장 장치는 이러한 온도를 달성하는 데 배우 비용이 많이 들고 비효율적이었다. NIST 과학자들은 훨씬 더 빠르고 효율적으로 절대 온도를 달성할 수 있는 새로운 프로토타입의 냉장고를 제작했다. 염구팀은 이를 사용하면 연간 2700만와트의 전력을 절약하고, 전세계 에너지 소비를 3000만달러까지 줄일 수 있다고 주장했다. 이번 연구 결과는 '네이처 커뮤니케이션스(Nature Communications)' 저널에 게재됐다. 기존PTR 설계 개선해 초저온 달성 기존 가정용 냉장고는 액체 냉매가 저압 파이트(증발기)를 통해 순환하면서 열을 흡수해 내부를 냉각시키는 방식으로 작동한다. 냉매는 압축기를 거쳐 다시 액체 상태로 변환되면서 온도가 상승하고 이 열은 냉장고 뒷면을 통해 방출된다. 과학자들은 40년 이상 펄스 튜브 냉장기(PTR)를 사용해 초저온을 달성해돴다. PTR은 헬륨 가스를 이용해 유사한 과정을 거치지만 열을 훨씬 더 잘 흡수한다. PTR은 효과적이긴 하지만 에너지 소비가 많고 비용이 많이 들며, 냉각 시간이 오래 걸리는 담점이 있다. NIST 연구팀은 기존 PTR 설계 개선을 통해 냉각 시간을 단축하고 전체 비용을 낮출 수 있다고 밝혔다. 연구팀은 PTR은 기본 온도(보통 4 켈빈 근처)에서만 최적의 성능을 발휘하도록 설계되어 있어 전체 냉각 과정 중 상당 부분에서 비효율적으로 작동한다고 지적했다. 이에 NIST 연구팀은 압축기(컴프레서)와 냉장고 사이의 PTR 설계를 조정해 헬륨 가스 사용 효율을 높였다. 기존 방식에서는 헬륨 가스 일부가 순환 루트 대신 방출 밸브로 유출되면서 낭비됐다. 적은 비용으로 양자 컴퓨팅 구현 연구팀이 제안한 재설계에는 온도가 내려가면 수축하는 밸브가 포함돼 헬륨 가스 낭비를 방지할 수 있다. 이러한 개선으로 NIST 팀이 셜계를 수정한 PTR은 기존 방식보다 1.7배~3.5배 빠르게 초저온(빅 칠)을 달성했다. 연구팀은 이 새로운 기술을 통해 이탈리아의 희귀 현상 암흑 물질 연구소(CUORE)에서 수행한 실험 시간을 최소 1주일 단축할 수 있었다고 밝혔다. 이 연구소는 현재까지 이론상으로만 존재하는 방사성 붕괴 형태와 같은 희귀 현상을 연구하는데 사용된다. 정확한 연구 결과를 얻기 위해서 이러한 시설에서 배경 잡음을 최대한 줄여야 한다. 연구진은 이 새로운 방법을 사용하면 현재 이론적인 형태의 방사능 붕괴와 같은 희귀 사건을 찾는 데 사용되는 이탈리아의 극저온지하천문대(CUORE)에서의 실험 시간을 최소 일주일 이상 단축할 수 있다고 연구 결과에서 밝혔다. 이 시설에서 정확한 결과를 얻으려면 배경 소음을 최대한 줄여야 한다. 양자 컴퓨터도 비슷한 수준의 격리가 필요하다. 양자 컴퓨터는 양자 비트, 즉 큐비트(qubit)를 사용한다. 기존 컴퓨터는 정보를 비트(bit) 단위로 저장하고 1 또는 0의 값으로 데이터를 인코딩하여 순차적으로 계산을 수행하지만 큐비트는 양자역학의 법칙에 따라 1과 0의 중첩을 차지하며 계산을 병렬로 처리하는 데 사용할 수 있다. 그러나 큐비트는 매우 민감하기 때문에 열 에너지의 미세한 변동을 포함해 최대한의 외부 노이즈(배경 잡음) 차단이 필요하다. 연구팀은 이론적으로 가까운 미래에 훨씬 더 효율적인 냉각 방법을 달성할 수 있으며, 이는 양자 컴퓨팅 분야에서 더 빠른 혁신으로 이어질 수 있다고 말했다. 또한, 연구팀은 이 기술이 초저온을 달성하면서도 동시에 훨씬 저렴한 비용으로 초저온 산업에 도움이 될 수 있으며, 시간 집약적이지 않은 실험 및 산업 응용 분야의 비용을 절감할 수 있다고 덧붙였다.
-
- 포커스온
-
- SK텔레콤, 양자 기술 주요 기업들과 '퀀텀 얼라이언스' 창설
- SK텔레콤은 양자 기술 분야에서 핵심 기술과 구성 요소를 가진 기업들과 손잡고 '퀀텀 얼라이언스'(가칭) 설립과 향후 협력을 위한 양해각서(MOU)를 체결했다고 7일 밝혔다. 영자 기술은 양자 역학의 원리와 특성을 활용하는 첨단 기술 분야다. 양타 컴퓨팅, 양자 통신, 양자 암호학, 양자 센싱과 측정 등이 이에 포함된다. 퀀텀 얼라이언스에는 SK텔레콤과 에스오에스랩, 엑스게이트, 우리로, 케이씨에스, 노키아, IDQ코리아 등 7개 기업이 참여한다. SK텔레콤에 따르면 에스오에스랩은 라이다(LiDAR) 기술을 전문으로 하는 기업으로 세계 최고 수준의 기술력을 보유하고 있다. 엑스게이트는 국내 가상사설망(VPN) 1위의 퀀텀 VPN 제공 기업이다. 우리로는 양자 기술의 핵심 부품인 단일광자 검출 소자(SPAD, 빛의 최소 단위인 단일광자를 검출할 수 있는 초고감도 광학센서로, 양자암호 통신의 중요 부품)에서 세계 선두를 달리고 있다. 케이씨에스는 하드웨어 기반의 암호화 모듈 분야에서 국내 최고 위치에 있다. SK텔레콤은 IDQ코리아는 양자 암호키 분배(QKD, 양자의 성질을 이용해 제삼자에 의한 정보 탈취를 근본적으로 방지하면서 암호키를 생성 및 배분하는 기술)와 양자난수생성(QRNG, 양자역학의 원리를 활용해 예측 불가능하고 패턴이 없는 순수한 난수를 생성하는 장치나 기술) 등을 포함한 양자통신 솔루션 분야에서의 선도 기업이라고 전했다. 또한, 세계적인 통신 장비 제조사 노키아가 퀀텀 얼라이언스의 일원으로 합류해 이 연합의 글로벌 영향력을 더욱 확대하고 있다. 회원사들은 양해각서에 따라 공동 사업 기회 발굴, 공동 마케팅, 정기 협의체 운영, 공동 투자 추진 등의 활동을 벌인다. 구체적으로, 사업 기회를 모색하기 위해 퀀텀 얼라이언스는 공공 사업 및 국가 프로젝트의 공동 수주, 기업 간 거래(B2B) 프로젝트에의 공동 참여 등을 추진할 뿐만 아니라, 회원사가 갖춘 양자 기술 및 솔루션을 결합해 신시장 개척에 나설 계획이다. 이러한 기업들은 올해 상반기 중에 얼라이언스의 공동 브랜드를 출시하고, 국내외 전시회에 함께 참가하는 한편, 핵심 양자 기술을 보유한 글로벌 기업들에 대한 공동 투자를 모색하는 등 활발한 활동을 예정하고 있다. 하민용 SK텔레콤 글로벌솔루션오피스 책임자(CDO)는 "퀀텀 얼라이언스의 창설이 국내 양자 산업의 경쟁력을 강화하는 중요한 기반을 마련할 것"이라고 말했다. 그는 또한, "앞으로도 국내외 선도하는 양자 기술 기업들과의 지속적인 협력을 통해 글로벌 시장으로의 진출을 적극 추진할 계획"이라고 밝혔다.
-
- IT/바이오