검색
-
-
[신소재 신기술(110)] 캐나다 연구진, 햇빛 이용해 온실가스를 '유용한 화학물질'로 전환
- 햇빛을 활용해 유해한 온실 가스인 메탄과 이산화탄소를 상온에서도 유용한 화학물질로 전환하는 기술이 개발됐다. 캐나다 맥길 대학교 연구팀이 햇빛을 이용해 온실가스인 메탄과 이산화탄소를 유용한 화학물질인 '녹색 메탄올'과 '일산화탄소'로 전환하는 혁신적인 기술을 개발했다고 사이테크데일리가 전했다. 이 기술은 기후변화 문제 해결과 지속 가능한 산업 발전에 기여할 것으로 기대된다. 연구팀은 금, 팔라듐, 질화갈륨, 혼합물을 촉매로 사용해 햇빛에 노출시키면 이산화탄소의 산소 원자가 메탄 분자에 결합하여 '녹색 메탄올'을 생성하는 반응을 유도했다. 이 과정에서 부산물로 일산화탄소로 생성된다. 녹색 메탄올은 재생 가능한 에너지원이나 바이오매스를 활용하여 생산되는 친환경 메탄올이다. 일반적인 메탄올은 화석 연료를 통해 생산되는데, 이 과정에서 많은 양의 온실 가스가 배출된다. 반면, 녹색 메탄올은 탄소 배출을 최소화하거나 아예 배출하지 않는 방식으로 생산되기 때문에 탄소 중립을 위한 중요한 에너지원으로 주목받고 있다. 녹색 메탄올은 선박이나 자동차의 연료로 사용가능하며, 기존 화석 연료보다 탄소 배출량이 적다. 또한 플라스틱이나 합성 섬유 등 다양한 화학제품의 원료로 사용된다. 게다가 수소보다 안전하고 쉽게 저장하고 운송할 수 있어 에너지 저장 매체로도 활용될 수 있다. 맥길 화학과 박사후 연구원 후이 수(Hui Su)는 "자동차에서 나오는 배기가스나 공장에서 나오는 배출물이 햇빛의 도움으로 차량용 청정 연료, 일상적인 플라스틱의 구성 요소, 배터리에 저장된 에너지로 전환되는 상상을 해보자"며 "이것이 바로 새로운 화학 공정이 가능하게 하는 변화의 종류"라고 말했다. 연구팀의 새로운 빛 기반 화학 공정은 상온에서 한 번의 반응으로 메탄과 이산화탄소를 녹색 메탄올과 일산화탄소로 전환한다. 팀은 전환된 두 가지 모두 화학 및 에너지 분야에서 높은 가치를 지닌다고 말했다. 연구를 이끈 차오준 리 교수는 "풍부한 태양 에너지를 활용하여 두 가지 온실 가스를 유용한 제품으로 재활용할 수 있다. 이 과정은 상온에서 진행되며 다른 화학 반응에서 사용되는 고온이나 유해 화학 물질이 필요하지 않다"고 설명했다. 이번 연구 결과는 국제 학술지 '네이처 커뮤니케이션즈'에 게재됐다. 맥길 대학교 연구팀은 이 기술이 탄소 중립 목표 달성과 환경 문제를 지속 가능한 미래를 위한 기회로 전환하는데 기여할 것이라고 전망했다.
-
- IT/바이오
-
[신소재 신기술(110)] 캐나다 연구진, 햇빛 이용해 온실가스를 '유용한 화학물질'로 전환
-
-
[신소재 신기술(64)] 자가 치유 젤, 의료·로봇 공학 등 응용 분야 다양
- 유리처럼 단단하면서도 길이를 최대 5배까지 늘릴 수 있는 새로운 자가 치유 젤이 개발됐다. 미국 노스캐롤라이나 주립대학교(NCSU) 연구진이 개발한 이 젤은 최근 발견된 물에 노출될 경우 자가 치유되는 유리와 유사한 특징을 보이며, 절단되거나 손상된 부분이 스스로 복구되는 놀라운 특성을 지나고 있다고 BGR이 전했다. 연구팀은 이 새로운 물질에 '유리 젤(glassy gel)'이라는 이름을 붙였다. 이는 기존에 없던 새로운 물질로 우연히 발견되었다고 한다. NCSU 연구원인 메이시앙 왕(Meixiang Wang)은 이온젤을 연구하던 중 우연히 유리 젤을 발견했다고. 이온젤은 전기를 전도할 수 있는 이온성 액체를 이용하여 팽창된 고분자로 구성된 물질이다. 왕 연구원은 의료 기기, 로봇 공학, 압력 센서 등에 활용될 수 있는 신축성 있고 착용 가능한 장치를 만들기 위해 이온젤을 연구하고 있었다. 그는 이온젤 구성을 변경하는 과정에서 투명하고 평범한 플라스틱처럼 보이는 새로운 유리 젤을 만들어냈다. 연구팀은 이 물질을 테스트 하는 과정에서 뛰어난 신축성 뿐만 아니라 높은 강도와 자가 치유 능력을 가지고 있다는 것을 발견했다. 특히 절단된 젤을 다시 붙이면 상온에서 몇 시간 안에 원래 상태로 복구되는 놀라운 자가 치유 능력은 기존의 자가 치유 물질과 차별화되는 특징이다. 이후 팀은 이 새로운 자가 치유 젤의 특성을 이해하기 위한 연구에 몰두했다. 유리 젤은 50~60%가 액체로 구성되어 있음에도 불구하고 건조되지 않는 특징을 보였다. 또한 매우 높은 파괴 강도를 가지고 있으며, 물체를 부착할 수 있을 뿐만 아니라 절단 후에도 스스로 복구될 수 있다. 심지어 특정 형태로 늘렸을 때 열을 가하기 전까지 해당 형태를 유지하는 '기억' 능력도 가지고 있었다. 신축성 있고 젤과 같은 물질에서 재생 특성이 발견되는 것은 새로운 일이 아니지만, 이번 유리 젤의 특별한 구성 성분은 연구자들에게 더욱 흥미로운 연구 주제를 제공했다. 연구팀은 실제 응용 분야에 활용되기 전에 추가적인 최적화 및 테스트가 필요하다고 밝혔다. 유리 젤은 실용화되기까지는 몇 년이 걸릴 수 있지만, 이러한 새로운 물질의 발견은 미래의 다른 소재 개발에 혁신적인 돌파구를 제공할 수 있다는 점에서 큰 기대를 모으고 있다. 특히, 자기 치유 능력을 가진 유리 젤은 의료, 로봇 공학이나 전자 기기 등 다양한 분야에서 활용될 수 있을 것으로 기대된다. 이번 연구 결과는 '네이처(Nature)' 저널에 게재됐다.
-
- 포커스온
-
[신소재 신기술(64)] 자가 치유 젤, 의료·로봇 공학 등 응용 분야 다양
-
-
[신소재 신기술(60)] 자가 치유 유리, 물과 펩타이드 혼합으로 새로운 가능성 제시
- 물과 펩타이드를 조합해 자가 조립 뿐만 아니라 자가 치유되는 유리가 개발돼 관련 업계의 이목을 집중시키고 있다. 이스라엘 텔아비브 대학교 및 네게브 벤구리온 대학교의 재료과학자 팀은 미국 캘리포니아 공과 대학 소속 연구팀과 협력해 특정 펩타이드와 물을 혼합하면 자가 조립 및 자가 치유가 가능한 유리가 생성되는 것을 발견했다고 PHYS가 전했다. '자가 치유 유리'는 외부 충격이나 손상으로 균열이나 파손됐을 경우, 특별한 조치를 취하지 않고도 스스로 원래 상태로 복구되는 능력을 가진 유리를 말한다. 마치 살아있는 생명체가 스스로 상처를 치유하는 것과 비슷한 개념이다. 자가 치유 유리는 특수한 화학 물질이나 구조를 활용해 개발된다. 예를 들면, 특정 물질이 균열 부위로 이동해 틈을 메우거나, 미세한 캡슐에 담긴 치유 물질이 파손시 방출돼 손상 부위를 복구하는 방식 등이 있다. 연구팀은 다른 단백질의 특성을 조사하던 중 우연히 자가 치유 유리를 발견한 것으로 알려졌다. 이번 연구 결과는 '네이처 커뮤니케이션스(Nature Communications)'에 게재됐다. 이탈리아 트리에스테 대학교의 실비아 마르케산(Silvia Marchesan)은 같은 저널에서 해당 유리의 특성과 잠재적 응용 분야를 설명하는 기고글을 실었다. 연구팀은 짧은 펩타이드를 복잡한 거대 분자의 기존 구성 요소와의 대체 가능성을 조사하던 중, 두 개의 페닐알라닌 잔기로 구성된 디펩타이드 분자와 물을 혼합했을 때, 상온에서 물이 증발하면서 스스로 조립(자가 조립)되는 초분자 비정질 유리가 생성되는 것을 발견했다. 이 발견은 과거 펩타이드 자가 조립 연구에서 주로 결정질 구조의 물질이 생성되었던 것과는 달리, 투명하고 유리와 유사한 특성을 보였다는 점에서 주목할 만하다. 연구팀은 이 새로운 유리의 특성을 분석하여 높은 강성과 더불어 자가 치유 및 접착력을 가지고 있음을 확인했다. 또한, 기존 유리와 동일한 수준의 투명도를 나타냈으며, 유리창이나 친수성 표면 코팅, 다양한 배율의 광학 렌즈 제작 등 정밀한 용도에도 활용될 수 있음을 밝혀냈다. 연구팀은 추가적인 연구를 통해 이 유리의 다양한 응용 분야를 탐색할 수 있을 것으로 기대했다. 특히 기존 상용 유리 제조 과정에서 요구되는 많은 에너지가 필요하지 않다는 점을 강조했다. 한편, 지난해 여름에는 자가 치유되는 금속이 발견됐다. 진공 환경에서 백금 나노 결정이 균열을 자가 복구하는 과정이 실험실에서 처음으로 관찰된 것. 미국 텍사스 A&M 대학교 마이클 뎀코비츠 박사가 2013년 에측했던 금속의 자가 치유 현상이 10년만에 발견되는 영화와 같은 일이 실제로 일어난 갓이다. 미국 샌디아 국립연구소(SNL)의 연구팀은 지난해 여름 나노 결정의 균열 실험 중 금속의 자가 치유 현상을 발견했으며, 연구 결과는 학술지 '네이처(Nature)'에 게재됐다. 금속의 자가 복구는 항공기 사고나 교각 붕괴 등으로 이어질 수 있는 '금속의 피로' 현상을 막을 수 있다.
-
- 포커스온
-
[신소재 신기술(60)] 자가 치유 유리, 물과 펩타이드 혼합으로 새로운 가능성 제시
-
-
[신소재 신기술(47)] ETH 취리히, 그래핀 내 전자 소용돌이 최초 감지
- 스위스 연방 공과대학교(ETH 취리히)의 연구팀이 최초로 고해상도 자기장 센서를 사용해 그래핀에서 전자 소용돌이를 직접 검출하는 데 성공했다고 과학 웹사이트 phys.org가 지난 14일(현지시간) 보도했다. 금속 와이어와 같은 일반적인 전기 도체를 배터리에 연결하면 도체 내의 전자는 배터리가 생성하는 전기장에 의해 가속된다. 전자는 이동하는 동안 전선의 불순물 원자 또는 결정 격자의 빈 공간과 자주 충돌해 운동 에너지의 일부를 격자 진동으로 변환한다. 이 과정에서 손실되는 에너지는 예를 들어 백열전구를 만질 때 느낄 수 있는 열로 변환된다. 격자 불순물과의 충돌은 자주 발생하지만 전자 간의 충돌은 훨씬 드물다. 그러나 벌집 모양 격자로 배열된 탄소 원자 단일층인 그래핀을 일반적인 철 또는 구리 와이어 대신 사용하면 상황이 달라진다. 그래핀에서 불순물 충돌은 드물고 전자 간 충돌이 주요 역할을 한다. 이 경우 전자는 점성 액체처럼 행동한다. 따라서 잘 알려진 흐름 현상인 소용돌이(와류)가 그래핀 층에서 발생해야 한다. ETH 취리히의 크리스티안 데겐(Christian Degen) 연구원은 고해상도 자기장 센서를 사용해 그래핀의 전자 소용돌이를 처음으로 직접 감지하는 데 성공했다고 '사이언스(Science)' 저널에 보고했다. 고감도 양자 감지 현미경 데겐과 그의 동료 연구원들은 제작 과정에서 폭 1㎛(마이크로미터) 너비의 전도성 그래핀 스트립에 부착한 작은 원형 디스크에 형성된 소용돌이를 연구했다. 디스크의 직경은 1.2㎛에서 3㎛사이였다. 이론적 계산에 따르면 작은 디스크에서는 전자 소용돌이가 형성되지만 큰 디스크에서는 형성되지 않아야 한다. 소용돌이를 가시화하기 위해 연구팀은 그래핀 내부에 흐르는 전자가 생성하는 미세한 자기장을 측정했다. 이를 위해 연구팀은 다이아몬드 바늘 끝에 질소-공동 센터(Nitrogen-vacancy center, NV 센터)가 내장된 양자 자기장 센서를 사용했다. 원자 결함인 NV 센터는 외부 자기장에 따라 에너지 레벨이 변하는 양자 물체처럼 작동한다. 레이저 빔과 마이크로웨이브 펄스를 사용하면 센터의 양자 상태를 자기장에 최대 감도를 갖도록 준비할 수 있다. 연구원들은 레이저를 사용해 양자 상태를 판독함으로써 이러한 자기장의 세기를 매우 정확하게 측정할 수 있었다. 데겐 연구팀의 박사 과정 학생이었던 마리우스 팜은 "다이아몬드 바늘의 크기가 작고 그래핀 층과의 거리가 약 70나노미터에 불과하기 때문에 100나노미터 미만의 해상도로 전자 전류를 볼 수 있었다"고 말했다. 이 분해능은 소용돌이를 관찰하기에 충분하다. 소용돌이 흐름 방향 반전 관찰 연구팀은 측정에서 더 작은 디스크에서 예상되는 소용돌이의 특징적인 징후, 즉 흐름 방향의 반전을 관찰했다. 일반(확산) 전자 수송에서는 스트립과 디스크의 전자가 같은 방향으로 흐르지만, 소용돌이의 경우 디스크 내부의 흐름 방향이 반전된다. 계산에서 예측한 대로 더 큰 디스크에서는 소용돌이가 관찰되지 않았다. 팜은 "매우 민감한 센서와 높은 공간 분해능 덕분에 그래핀을 냉각할 필요도 없었고 상온에서 실험을 수행할 수 있었다"고 말했다. 또한, 연구팀은 전자 와류뿐만 아니라 정공 캐리어에 의해 형성된 와류도 감지했다. 그래핀 아래에서 전압을 가함으로써, 연구원들은 전류 흐름이 더 이상 전자가 아닌 정공이라고도 하는 누락된 전자에 의해 전달되도록 자유 전자의 수를 변경했다. 전자와 정공이 모두 작고 균형 잡힌 농도가 있는 전하 중립점에서만 와류가 완전히 사라졌다. 팜은 "현재 전자 소용돌이의 탐지는 기초 연구이며 아직 미해결 과제가 많이 남아 있다"고 말했다. 연구팀은 전자와 그래핀의 경계면과의 충돌이 흐름 패턴에 어떤 영향을 미치는지, 더 작은 구조에서 어떤 효과가 발생하는지 추가 연구를 진행할 계획이다. 출처: Marius L. Palm 외, '상온에서 그래핀의 전류 소용돌이 관찰', Science (2024). DOI: 10.1126/science.adj2167
-
- IT/바이오
-
[신소재 신기술(47)] ETH 취리히, 그래핀 내 전자 소용돌이 최초 감지
-
-
[신소재 신기술(41)] 극한의 강도와 인성 가진 혁신적인 합금
- 미국 버클리 국립연구소 과학자들은 원자 수준에서 합금 결정의 꼬임이나 굽힘으로 인해 극한의 온도에서도 균열이 발생하지 않는 특별한 금속 합금을 발견했다. 과학 전문매체 사이테크데일리는 지난 4월 29일(현지시간) 로렌스 버클리 국립연구소와 UC 버클리의 연구원들이 개발한 신소재에 대해 거의 불가능에 가까운 강도와 인성으로 재료 과학자들에게 충격을 주는 혁신적인 새로운 합금이라고 전했다. 니오븀, 탄탈륨, 티타늄, 하프늄으로 구성된 금속 합금은 지금까지 거의 달성하기 불가능해 보였던 극한의 고온과 저온 모두에서 놀라운 강도와 인성을 보여주었다고 한다. 여기서 강도는 재료가 원래 모양에서 영구적으로 변형되기 전에 견딜 수 있는 힘의 양으로 정의되며, 인성은 파단(균열)에 대한 저항력을 의미한다. 광범위한 조건에서 굽힘과 파단에 대한 합금의 복원력은 더 높은 효율로 작동할 수 있는 차세대 엔진을 위한 새로운 종류의 재료에 대한 문을 열 수 있다고 평가된다. 이전에는 이러한 특성을 동시에 달성하는 것이 거의 불가능하다고 여겨졌다. 이 연구는 로버트 리치(Robert Ritchie) 박사가 이끄는 로렌스 버클리 국립연구소(Berkeley Lab)와 UC 버클리 팀과 디란 아펠리안(Diran Apelian) 교수가 이끄는 UC 어바인 팀, 엔리케 라베르니아(Enrique Lavernia) 교수가 이끄는 텍사스 A&M 대학교 팀의 협력으로 진행됐다. 이 연구는 최근 '사이언스(Science)' 저널에 게재됐다. 이 합금의 특징은 넓은 온도 범위에서 강도과 파손에 대한 놀라운 저항성을 가지고 있다는 것이다. 이는 차세대 엔진을 위한 새로운 소재 개발에 혁신을 가져올 수 있는 가능성을 열어준다. 새로운 금속 합금 RHEA/RMEA 연구팀은 이 합금의 놀라운 특성을 발견하고 원자 구조에서 발생하는 상호 작용으로 인해 이러한 특성이 어떻게 발생하는지 밝혀냈다. 이들은 특히 RHEA/RMEA(Refractory High or Medium Entropy Alloys)라고 불리는 새로운 금속 합금 계열에 속하는 합금에 집중했다. 리치 연구실의 박사 과정 학생인 제1저자 데이비드 쿡(David Cook)은 "열을 전기 또는 추력으로 변환하는 효율은 연료가 연소되는 온도에 따라 결정되며, 온도가 높을수록 더 좋다. 그러나 작동 온도는 이를 견뎌야 하는 구조 재료에 의해 제한된다"고 설명했다. 쿡 연구원은 "우리는 현재 고온에서 사용하는 재료를 더욱 최적화할 수 있는 새로운 금속 재료가 절실히 필요하다. 이 합금이 바로 그 가능성을 보여주는 것"이라고 덧붙였다. 기존 RMEA의 한계 돌파한 뛰어난 인성 대부분의 상업용 또는 산업용 응용 분야에서 사용되는 금속은 하나의 주요 금속에 소량의 다른 원소를 혼합하여 만든 합금이지만, RHEA/RMEA는 매우 높은 녹는점을 가진 금속 원소를 거의 동일한 비율로 혼합해서 만든다. 이로 인해 RHEA/RMEA는 과학자들이 아직 밝혀내지 못한 독특한 특성을 가지고 있다. 리치 박사 팀은 고온 응용 분야의 잠재력으로 인해 수년 동안 이러한 합금을 연구해 왔다. 해당 논문의 공동 저자인 푸닛 쿠마르(Punit Kumar)박사는 "저희 팀은 이전에 RHEA/RMEA에 대한 연구를 진행했으며 이러한 재료가 매우 강하지만 일반적으로 극도로 낮은 인성을 가지고 있다는 것을 발견했다. 따라서 이 합금이 예외적으로 높은 인성을 보이는 것을 발견했을 때 매우 놀랐다"고 말했다. 극한의 온도에서도 강도와 인성 유지 쿡에 따르면 대부분의 RMEA는 파단 인성이 10MPa√m 미만으로, 기록상 가장 부서지기 쉬운 금속 중 하나다. 골절에 견디도록 특별히 설계된 최고의 극저온 강은 이 소재보다 약 20배 더 강하다. 하지만 니오븀, 탄탈륨, 티타늄, 하프늄(Nb45Ta25Ti15Hf15) RMEA 합금은 상온에서 일반적인 RMEA보다 25배 이상의 강도를 기록하여 극저온 강철을 능가할 수 있었다. 연구팀은 -196°C(액체 질소 온도), 25°C(실온), 800°C, 950°C 및 1200°C의 총 5가지 온도에서 새로운 합금의 강도와 인성을 평가했다. 마지막 온도인 1200°C는 태양 표면 온도의 약 1/5에 해당한다. 마침내 연구팀은 합금이 추위에서는 가장 강도가 높고 온도가 상승함에 따라 다소 약해졌지만 여전히 넓은 범위에서 인상적인 수치를 자랑한다는 것을 발견했다. 인성은 기존 균열에 얼마나 많은 힘이 필요한지 계산해서 산출되며 모든 온도에서 높았다. 원자 배열의 비밀 풀기 거의 모든 금속 합금은 결정질이며, 이는 재료 내부의 원자가 반복 단위로 배열되어 있음을 의미한다. 그러나 완벽한 결정은 없으며 모두 결함을 포함하고 있다. 가장 눈에 띄는 결함은 결정 내 원자의 미완성 평면인 전위라고 불리는 결함이다. 금속에 힘이 가해지면 모양 변화를 수용하기 위해 많은 전위가 움직이게 된다. 예를 들어 알루미늄으로 만든 종이 클립을 구부리면 종이 클립 내부의 전위가 움직이면서 모양이 변한다. 그러나 낮은 온도에서는 전위의 움직임이 더 어려워지고, 그 결과 많은 재료가 저온에서 전위가 움직이지 못해 부서지기 쉽다. 타이타닉의 강철 선체가 빙산에 부딪혔을 때 부서진 것도 바로 이 때문이다. 녹는 온도가 높은 원소와 그 합금은 이러한 현상을 극한으로 끌어올려 800°C까지 부서지기 쉽다. 하지만 이 RMEA는 액체 질소(-196°C)와 같은 낮은 온도에서도 잘 깨지지 않는 특성을 보이고 있다. 공동 연구자인 앤드류 마이너와 연구팀은 이 놀라운 금속 내부 특성을 이해하기 위해 버클리 랩 분자 파운드리의 일부인 국립 전자 현미경 센터의 4차원 주사 투과 전자 현미경(4D-STEM)과 주사 투과 전자 현미경(STEM)을 사용해 응력을 받은 샘플과 구부러지지 않고 금이 가지 않은 대조 샘플을 분석했다. 전자 현미경 데이터에 따르면 합금의 특이한 인성은 '꼬임 밴드(kink band)'라는 희귀 결함의 예상치 못한 부작용에서 비롯된 것으로 밝혀졌다. 꼬임 밴드는 가해진 힘으로 인해 결정 조각이 스스로 붕괴되어 갑작스럽게 구부러질 때 결정에 형성된다. 연구팀은 이전 연구를 통해 RMEA에서 꼬임 밴드가 쉽게 형성된다는 사실을 알고 있었지만 연화 효과가 격자를 통해 균열이 퍼지기 쉽게 만들어 재료의 강도를 낮출 것이라고 가정했다. 하지만 실제로는 그렇지 않았다. 쿡은 "우리는 원자 사이에 날카로운 균열이 있는 경우 꼬임 밴드가 실제로 손상을 멀리 분산시켜 균열의 전파에 저항하여 균열을 방지하고 매우 높은 파괴 인성을 이끌어 낸다는 것을 처음으로 보여주었다"라고 말했다. 한편, 리치는 "기계 엔지니어는 실제 세계에서 사용하기 전에 재료의 성능에 대한 깊은 이해가 당연히 필요하기 때문에 Nb45Ta25Ti15Hf15 합금을 제트기 터빈이나 스페이스X 로켓 노즐과 같은 것을 만들기 전에 훨씬 더 근본적인 연구와 엔지니어링 테스트를 거쳐야 한다"고 지적했다.
-
- 포커스온
-
[신소재 신기술(41)] 극한의 강도와 인성 가진 혁신적인 합금
-
-
[신소재 신기술(38)] 한국 과학자팀, 상온 상압에서 다이아몬드 최초 합성
- 한국 기초과학연구원 연구원들이 새로운 액체 금속 합금 시스템을 사용해 상온 상압에서 다이아몬드 합성에 성공했다. 기초과학연구원(IBS)은 다차원탄소재료연구단 로드니 루오프 연구단장 팀이 갈륨, 철, 니켈, 실리콘으로 구성된 액체 금속 합금을 이용해 1기압과 1025°C의 상온 상압 조건에서 다이아몬드를 합성하는 데 세계 최초로 성공했다고 25일 밝혔다. 이 연구는 기존의 다이아몬드 합성 방법을 획기적으로 발전시킬 수 있는 성과라고 사이언스얼럿과 과학기술 웹사이트 Phsy 등에서도 비중있게 다뤘다. 기존의 다이아몬드 합성은 고온 고압(HPHT) 방법을 사용하며, 고온고압 조건을 유지하기 위한 압력 셀 제한 크기 때문에 다이아몬드 크기도 작아서 약 1㎠로 제한된다. 일반적으로 다이아몬드는 액체 금속 촉매를 사용해 '기가파스칼 압력 범위'(일반적으로 5~6GPa, 1GPa는 약 1만 기압)와 1300~1600°C의 고온에서만 다이아몬드를 생산할 수 있다. 천연 다이아몬드는 지하 깊은 곳의 극식한 압력과 온도에서 형성되는 데 수십억년이 걸린다. 합성 다이아몬드는 최대 몃 주 동안 강력한 압착이 필요하다. IBS 연구팀이 이번에 개발한 액체 금속 혼합을 기반으로 한 새로운 방법은 기존 다이아몬드 합성 패러다임을 깨고,1025도 온도 및 1기압 압력 조건에서 처음으로 다이아몬드를 합성했다. 이는 우리가 해수면에서 느끼는 압력과 동일하며 일반적으로 요구되는 압력보다 수만 배 더 낮다. 연구팀은 빠르게 가열과 냉각이 가능한 'RSR-S'라는 냉벽 진공 장치를 자체 제작해 통상 3시간 걸리는 기존 장치들과 달리, 15분이면 끝날 수 있게 했다. RSR-S는 온도와 압력을 빠르게 조절해 액체 금속 합금을 만드는 장치다. 연구팀은 메탄과 수소에서 갈륨 77.75%, 니켈 11.00%, 철 11.00%, 실리콘 0.25%로 구성된 액체 금속 합금을 만들어 하부 표면에서 다이아몬드 구성 물질인 탄소가 성장하는 것을 확인했다. 이 연구는 '네이처(Nature)' 저널 온라인에 게재됐다. 현재 다양한 산업 공정, 전자 제품, 심지어 양자 컴퓨터에 사용되는 대부분의 합성 다이아몬드를 만드는 데 사용되는 공정은 며칠이 걸리며 훨씬 더 많은 압력이 필요하다. 이 새로운 기술이 그 잠재력을 발휘한다면 다이아몬드 제작은 훨씬 더 빠르고 쉬워질 것이다. UNIST 석좌교수이기도 한 루오프 소장은 "이 선구적인 돌파구는 인간의 독창성과 끊임없는 노력, 그리고 많은 공동 연구자들의 협력이 만들어낸 결과"라고 말했다. 연구팀은 "액체 금속을 사용하는 일반적인 접근 방식은 다양한 표면에서 다이아몬드의 성장을 가속화하고 발전시킬 수 있으며 아마도 작은 다이아몬드(씨앗) 입자에서 다이아몬드의 성장을 촉진할 수 있다"라고 썼다. 루오프 소장은 "우리는 대형 챔버(내부 용적이 100리터인 RSR-A 챔버)에서 파라미터 연구를 진행했는데, 공기를 펌핑(약 3분)하고 불활성 가스로 퍼지(90분)한 다음 다시 진공 수준으로 펌프 다운(3분)하여 챔버를 1기압의 매우 순수한 수소/메탄 혼합물로 채우고(다시 90분) 실험을 시작하는 데 3시간 이상 소요되는 시간 때문에 다이아몬드 성장을 위한 파라미터 탐색이 더뎠다!"고 밝혔다. 이어 성원경 박사는 "메탄과 수소의 혼합물에 노출된 액체 금속으로 실험을 시작하고 완료하는 데 필요한 시간을 크게 줄이기 위해 훨씬 더 작은 챔버를 설계하고 제작하도록 요청했다"고 말했다. 성 박사는 "우리가 새로 제작한 시스템 즉, 내부 용적이 9리터에 불과한 RSR-S은 총 15분 만에 메탄/수소 혼합물을 펌핑, 퍼지, 배출, 채우기까지 완료할 수 있다. 매개변수 연구가 크게 가속화되었고, 이를 통해 액체 금속에서 다이아몬드가 성장하는 매개변수를 발견할 수 있었다"라고 설명했다. 제1저자인 얀 공 UNIST 대학원생은 "어느 날 RSR-S 시스템으로 실험을 진행한 후 흑연 도가니를 식혀 액체 금속을 고형화한 후 고형화된 액체 금속 조각을 제거했을 때, 이 조각의 바닥면에 수 밀리미터에 걸쳐 '무지개 무늬'가 퍼진 것을 발견했다. 그 무지개 색이 다이아몬드 때문이라는 사실을 알게 되었다! 이를 통해 다이아몬드의 재현 가능한 성장에 유리한 매개변수를 파악할 수 있었다"라고 말했다. 연구팀은 또 '광 발광 분광법' 실험으로 물질에 빛을 쏘아 방출되는 파장 빛을 준석해 다이아몬드 내 '실리콘 공극 컬러 센터' 구조도 발견했다. 이 구조는 액체 금속 합성 구성요소 중 하나인 실리콘이 탄소로만 이루어진 다이아몬드 결정 사이에 끼어들어 있는 것이다. 실리콘 공극 컬러 센터 구조는 양자 크기의 자성을 가져 자기 민감도가 높고, 양자 현상(양자적인 특성)을 보인다. 그로 인해 향후 나노 크기의 자기 센서 개발과 양자 컴퓨팅 분야의 응용이 기대된다. 논문 공동 저자인 메이후이 왕 박사는 "실리콘 공극 컬러 중심을 가진 이 합성 다이아몬드는 자기 감지 및 양자 컴퓨팅에 응용될 수 있을 것"이라고 말했다. 연구팀은 이러한 새로운 조건에서 다이아몬드가 핵을 형성하고 성장할 수 있는 메커니즘에 대해 심도 있게 연구했다. 시료의 단면을 고해상도 투과전자현미경(TEM)으로 촬영한 결과 다이아몬드와 직접 접촉한 고체 액체 금속에 약 30~40nm 두께의 비정질 표면 영역이 존재하는 것으로 나타났다. 공동 저자인 최명기 박사는 "이 비정질 영역의 상부 표면에 존재하는 원자의 약 27%가 탄소 원자였으며, 탄소 농도는 깊이에 따라 감소하는 것으로 나타났다"고 말했다. 연구팀은 또한 실리콘이 다이아몬드의 새로운 성장에 중요한 역할을 한다는 사실도 발견했다. 합금의 실리콘 농도가 최적 값보다 증가함에 따라 성장한 다이아몬드의 크기는 작아지고 밀도는 높아진다. 실리콘을 첨가하지 않으면 다이아몬드를 전혀 성장시킬 수 없었으며, 이는 실리콘이 다이아몬드의 초기 핵 형성에 관여할 수 있음을 시사한다. 루오프 소장은 "이 액체 금속에서 다이아몬드의 핵 형성과 성장에 대한 우리의 발견은 매우 흥미롭고 기초 과학을 위한 많은 흥미로운 기회를 제공한다. 이제 우리는 핵 형성과 그에 따른 다이아몬드의 빠른 성장이 언제 일어나는지 탐구하고 있다. 또한 탄소와 기타 필요한 원소의 과포화를 먼저 달성한 다음 온도를 빠르게 낮춰 핵 생성을 촉발하는 '온도 강하' 실험도 유망한 연구"라고 말했다.
-
- 포커스온
-
[신소재 신기술(38)] 한국 과학자팀, 상온 상압에서 다이아몬드 최초 합성
-
-
[신소재 신기술(5)] 미국 스타트업 H2MOF, 상온 수소 저장 솔루션 개발
- 캘리포니아 스타트업이 인공지능(AI)을 활용해 상온 수소 저장 솔루션을 개발했다. 세계 각지에서 전 세계 수소 생산 능력 확대를 위한 투자가 이루어지고 있다. 특히 탄소 배출 없는 재생 에너지 사용을 통해 생산되는 녹색 수소에 대한 관심이 높아지고 있다. 하지만 수소 활용의 주요한 어려움 중 하나는 저장 과정에 있다. 수소는 기체 또는 액체 상태로 저장할 수 있으며, 기존 저장 방법에는 많은 문제점들이 있다. 미국 과학 기술 전문매체 오일프라이스는 지난 24일(현지시간) 캘리포니아 스타트업 H2MOF가 AI와 첨단 연구를 활용하여 효율적인 상온 수소 저장 솔루션을 개발함으로써 다양한 산업에 혁신을 불러일으키고 있다고 전했다. 대표적인 수소 저장 기술 수소 저장 기술의 발전은 수소 및 연료전지 기술의 발전에 필수적이다. 수소는 모든 연료 중에서 질량당 에너지 밀도가 가장 높지만, 이를 연료나 가스로서 효율적으로 활용하기 위해서는 고도의 저장 기술이 요구된다. 먼저 압축 수소 저장은 현재 가장 널리 사용되는 수소 저장 방식 중 하나다. 이 방식은 수소를 높은 압력에서 저장하는 방법으로, 주로 수소 연료 전지 차량에 적용되고 있다. 액체 수소 저장 기술은 수소를 극저온에서 액화하여 저장하는 방식이다. 이 기술은 높은 에너지 밀도를 가지며 우주항공 분야 등에서 활용된다. 고체 수소 저장 기술은 금속 수소화물, 화학 수소 저장 매체 등을 활용하여 수소를 고체 형태로 저장하는 방법이다. 이 기술은 상대적으로 낮은 압력과 온도에서 수소를 저장할 수 있어 안전성이 높고, 수소 탱크의 크기를 줄일 수 있는 장점이 있다. 미국에서는 수소 및 연료전지 기술 사무소(HFTO)가 바이든 행정부의 2022 인플레이션 감축법(IRA)으로부터 자금을 지원 받아 수소 저장 시스템 기술 발전을 위한 연구 개발 활동을 진행하고 있다. 현재까지 수소 저장 기술 개발은 다양한 도전으로 인해 진전이 더디게 이루어지고 있다. 수소 저장 기술의 중요성 수소 연료 셀 기술 발전을 위해서는 효과적인 수소 저장 기술 개발이 필수적이다. 수소는 단위 질량당 가장 높은 에너지를 가지고 있지만, 에너지 손실 없이 연료를 효과적으로 활용하기 위해서는 첨단 저장 기술이 필요하다. 앞서 밝혔듯이 수소는 기체 또는 액체로 저장할 수 있다. 기체 상태에서는 고압 탱크에 저장할 수 있고, 액체 상태에서는 기체로 다시 끓는 것을 방지하기 위해 극저온(약 -252.8°C)에 저장할 수 있다. 또한 흡수 과정을 통해 고체 물질에 저장할 수도 있다. 그러나 실제 사용을 위한 수소 저장과 관련된 몇 가지 과제가 있다. 예를 들어, 현재 수소를 사용하는 운송수단은 장거리 이동에 필요한 대량의 압축 연료를 저장할 수 없다. 또한 현재의 저장 기술은 매우 비효율적이어서 이 과정에서 많은 양의 에너지가 손실된다. 상온 수소 저장 기술 2021년 설립된 캘리포니아의 스타트업 H2MOF는 이러한 문제를 해결한 상온 수소 저장이라는 혁신적인 수소 저장 기술을 개발했다고 발표했다. 이 기술은 고압 또는 저온을 사용하지 않고 압축 상태의 수소를 저온에서 안정적으로 저장하는 것을 목표로 하고 있다. 상용화에 성공한다면 차량 연료 공급 등 다양한 분야에서 수소를 실온 보관할 수 있게 된다. H2MOF는 인공지능과 컴퓨터 생성 모델을 활용하여 연구 속도를 가속화했다. 이 회사는 수소를 녹색 전환의 핵심 기술로 보고 있으며, 전기와 달리 수소는 산업 운영, 조리 및 난방과 같은 분야에서 연료로 사용될 수 있다고 강조했다. 또한 실온 저장 수소는 대용량 전지를 필요로 하는 선박이나 항공기와 같은 대형 운송 수단의 전기 동력 대체에도 사용될 것으로 기대된다. H2MOF 기술은 친환경 에너지원으로서 수소 활용을 확대하고 탄소 배출 감소에 기여할 것으로 보인다. 또한, 수소 연료 셀 자동차 보급을 촉진하고 새로운 에너지 시장을 창출할 수 있다. 그러나 H2MOF만이 유일한 수소 저장 혁신 사례는 아니다. 2023년 네덜란드의 에인트호벤 공과대학 학생 그룹은 철 펠렛(작은 철구)을 이용한 수소 저장 방법을 제안했다. 연구팀은 이를 실현하기 위해 스팀 다리미 공정을 개발했다. 이 방법은 수소와 철 산화물을 생성하는 증기 철 공정을 기반으로 한다. 생성된 철 산화물은 다시 수소와 결합하여 철로 재생되고, 이 과정을 통해 수소를 반복적으로 저장 및 방출할 수 있다. 현재 수소 저장 기술은 아직 초기 개발 단계에 있으며, 실제 산업 규모로 적용하기 위한 과제들이 남아 있다. 하지만 전 세계적인 투자 및 연구 개발 활동을 통해 수소 활용의 장애물을 극복하고 미래 에너지 전환에 기여할 것으로 기대된다. 2016년 노벨 화학상 수상자이자 H2MOF의 공동 설립자인 프레이저 스토다트는 상온 수소 저장 기술에 대해 "내가 아는 한 수소 생산은 이미 해결된 문제"라고 말했다. 그는 "수소를 생산할 수 있는 효율적인 방법은 충분히 많다. 남은 큰 과제는 저압과 상온에서 많은 양을 저장하는 방식으로 수소를 저장하는 것이다"라면서 "어떤 식으로든 우리는 당연히 거기에 도달할 것이라고 확신한다"라고 말했다.
-
- 포커스온
-
[신소재 신기술(5)] 미국 스타트업 H2MOF, 상온 수소 저장 솔루션 개발
-
-
[신소재 신기술(3)] 리튬 금속 음극 전고체 배터리, -25~120℃에서 작동
- 리튬 금속 음극을 채용해 -25℃부터 120℃까지 작동하는 전고체 전지가 개발됐다. 일본의 기술 전문 매체 EE타임스는 지난 19일(현지 시간) 덴소와 큐슈대학교 연구진이 새로운 소결 메커니즘을 활용해 750℃의 저온 소결과 리튬(Li) 금속에 대한 안정성을 갖춘 '고체 전해질'을 개발했다고 보도했다. 덴소는 일본의 대표적인 자동차 부품 전문 기업으로 자동차 전자 제어 시스템, 엔진 관련 부품, 내연기관, 하이브리드 및 전기차용 시스템, 자율 주행 기술, 정보 및 통신 기술 등 다양한 분야에서 기술을 보유하고 있다. 또한, 덴소는 에어컨 시스템, 차량 내부 및 외부 조명, 제동 시스템 등과 같은 자동차 주변 시스템도 제조한다. 연구팀은 리튬 금속 음극을 사용하여 제작한 전고체 전지가 -25℃~120℃까지의 광범위한 온도 범위에서 작동하는 것을 확인했다. 재료 간 연속적으로 일어나는 상호 반응으로 인해 저온에서 소결이 진행된다. 리튬 음극 전고체 배터리의 경우 '소결'은 전기화학적인 과정을 의미한다. 리튬 음극 전고체 배터리는 리튬 금속 또는 리튬 이온의 이동을 통해 전기 에너지를 저장하고 방출하는 전지를 말한다. 소결은 이 배터리의 전극(음극) 부분을 제작하는 과정 중 하나다. 리튬 이온 배터리의 음극은 일반적으로 그래핀, 석탄 블랙 또는 다른 탄소 기반 물질로 만들어진다. 소결 과정은 이러한 물질을 압력과 온도를 가하여 밀착시키고, 전해질과 함께 전지 구조에 통합시키는 것을 말한다. 이러한 과정은 음극의 전기적 특성을 최적화하고, 전지의 성능과 안전성을 향상시키는 데 중요하다. 소결은 전지의 제조과정에서 핵심 단계 중 하나이며, 배터리의 성능과 안전성에 직접적인 영향을 미친다. 따라서 소결 과정은 배터리 제조 과정에서 특히 중요한 부분이다. 덴소의 임진대 연구원(당시 규슈대학교 대학원 종합이공학부 박사과정 3년)과 규슈대학교 대학원 종합이공학연구원의 와타나베 켄 조교수, 시마노에 켄고 교수 등으로 구성된 연구팀은 2024년 2월, 새로운 소결 메커니즘을 활용해 750℃의 저온 소결과 리튬 금속에 대한 안정성을 겸비한 '고체 전해질'을 개발했다고 발표했다. 산화물 전해질을 사용한 전지는 발화 등이 없어 안전성이 높다. 하지만 재료 간 접합을 위해서는 1000℃ 이상의 고온에서 소결해야 한다. 연구팀은 이때 전극재와 전해질재가 반응하는 등 배터리화가 어려웠다고 전했다. 연구팀은 지금까지 전해질 소재인 'Li7La3Zr2O12(LLZ)에 저융점 소결 보조제를 나노 수준으로 복합화해 750℃에서 소결을 실현했다. 그러나 소결 보조제를 첨가하기 때문에 음극 재료인 리튬 금속에 대한 안정성이 현저하게 떨어졌다. 이번 연구에서는 새로운 소결 메커니즘을 활용해 안전성 문제를 해결했다. 연구팀은 열분석과 미세구조 분석 결과, 'Li-Sb-O 산화물' 및 'Li-B-O 산화물'이라는 두 종류의 소결 보조제와 'CO₂'가 연속적으로 상호 반응하는 것을 확인했다. 이를 통해 (Li-)-B-O 산화물은 용융 상태를 유지하며 저온에서 소결이 진행됨을 확인했다. 이 소결 메커니즘을 활용하면 Bi를 포함한 재료 조성을 사용하지 않고도 저온 소결이 가능하다. 또한, Sb를 포함한 조성으로 변경할 수 있어 Li 금속에 대한 안정성이 높은 고체 전해질을 개발하는데 성공했다. 이온전도도는 3.1×10-4S/cm를 달성했다. 'Bi'는 화학 원소 기호로 비스무트(Bismuth)를 나타낸다. 비스무트는 주기율표의 15번째 그룹에 속하는 비금속 원소로, 주로 광산에서 추출된다. 비스무트는 주변환경에서 자연적으로 발견되며, 비스무트의 화합물은 농업, 의약품, 화장품 등 다양한 분야에서 사용된다. 아울러 비스무트는 낮은 독성을 가지고 있어서 의료용 약물로 사용되는 경우가 많다. 또한, Bi는 납의 대체재로서 전자기 기기에 사용되기도 한다. 그러나 높은 가격과 기술적인 제한으로 인해 사용이 제한될 수도 있다. Sb는 화학 원소 기호로 안티모니(Antimony)를 말한다. 안티모니는 주기율표의 15번째 그룹에 속하는 비금속 원소로, 자연적으로 화학적으로 비동정된 형태로 발견된다. 안티모니와 그 화합물은 여러 산업 분야에서 사용되며, 특히 화학, 전자, 의료, 화장품 산업에서 사용되는 경우가 많다. 안티모니의 화합물은 화장품, 화학 처리, 납의 합금, 방사선 차폐재 등 다양한 용도로 사용된다. 또한, 안티모니는 반도체 산업에서 사용되는 반도체 소재의 일부이며, 화합물로서는 일부 의약품에서도 쓰인다. 그러나 안티모니와 그 화합물은 높은 독성을 가지고 있어서 적절한 관리가 필요하다. 연구팀은 개발된 소재를 이용해 제작한 전고체전지의 특성을 평가했다. 그 결과, 상온 환경에서 60회 충전·방전 후 용량 유지율은 98.6%로 나타났다. 전고체 배터리 기술은 지속적으로 발전하고 있다. 이 기술은 전기차 및 재생 에너지 저장 시스템 등의 분야에서 중요한 역할을 할 것으로 예상된다. 전고체 기술은 전통적인 액체 전해질 전지에 비해 안전성이 뛰어나며 에너지 밀도와 충방전 속도를 향상시키는 잠재력이 있다.
-
- IT/바이오
-
[신소재 신기술(3)] 리튬 금속 음극 전고체 배터리, -25~120℃에서 작동
-
-
[퓨처 Eyes(22)] 초전도체 온-오프 스위치 개발, 혁신적 전력·통신 기술 기대
- 미국 과학자들이 온-오프 스위치가 있는 획기적인 초전도체 발견해 에너지 소비 감소의 길을 열었다. 최근 사이테크데일리 보도에 따르면, 워싱턴 대학교와 미국 에너지부(DOE) 산하 아르곤 국립연구소의 물리학자들이 온-오프 스위치 기능을 갖춘 새로운 초전도체를 발견했다. 초전도체는 특정 온도 아래에서 전기 저항이 완전히 사라지는 물질이다. 이 특징은 실제로는 매우 낮은 온도, 즉 절대 온도에 가까운 온도에서 유지되는데, 이를 초전도 상태라고 한다. 초전도체는 일반적으로 금속, 합금, 반도체 등 다양한 물질로 만들어질 수 있으며, 소수의 원자 또는 분자 구조에서 유래하는 특정한 전자-전자 상호작용이 초전도 상태를 유발한다. 따라서 초전도는 물질이 전류를 제로 저항으로 전달할 수 있는 양자역학적 상태로, 완벽한 전기 전송 효율을 가능하게 한다. 초전도체는 자기공명영상(MRI), 입자 가속기, 핵융합 반응로, 자기부상열차(마그레브 열차)와 같은 다양한 첨단 기술에서 강력한 전자석으로 활용된다. 또한, 초전도체는 양자 컴퓨팅 분야에서도 중요한 역할을 한다. 이 연구팀은 외부 자극에 반응하여 조절 가능한 독특한 특성을 지닌 초전도 물질을 개발, 에너지 효율적인 컴퓨팅과 양자 기술 발전에 기여할 수 있는 가능성을 제시했다. 이러한 발견은 첨단 연구 기법을 활용하여 이루어졌으며, 초전도 특성을 미증유의 방식으로 제어할 수 있는 능력을 통해 다양한 산업 응용 분야에 혁신을 가져올 것으로 기대된다. 해당 물질은 향후 산업용 전자제품에서 초전도 회로로의 응용 가능성을 지니고 있다. 연구팀은 고급 광자 소스를 사용해 이 물질의 희귀한 특성을 검증함으로써 효율적인 대규모 컴퓨팅을 위한 새로운 길을 열었다. 산업용 컴퓨팅에 대한 수요가 증가함에 따라, 이에 대응하는 하드웨어의 크기와 에너지 소비의 증가는 주요 과제로 남아 있다. 이러한 문제에 대한 해결책 중 하나로, 에너지 소비를 크게 줄일 수 있는 초전도 소재의 개발이 주목받고 있다. 거대한 데이터 센터를 운영하는 서버의 온도를 대폭 낮춤으로써, 에너지 효율성을 극대화하여 대규모 컴퓨팅 작업을 수행할 수 있는 가능성을 제시했다. 초전도체란 무엇인가? 초전도체는 저항이 완전히 사라지는 특별한 물질을 말한다. 일반적인 전도체에서는 전기가 흐를 때 내부의 불순물이나 결정 구조 때문에 전자가 충돌하며 에너지를 손실하게 되는데, 이를 전기 저항이라고 한다. 이 저항으로 인해 전기 에너지가 열로 변환되어 손실된다. 그러나 초전도체는 특정 온도(임계 온도) 이하에서 전기 저항이 사라져 전기가 전혀 손실 없이 흐를 수 있게 한다. 초전도 현상은 1911년 헤이케 캄링 온네스에 의해 처음 발견되었으며, 이후 다양한 물질에서 초전도 현상이 관찰됐다. 초전도체는 그 특성으로 인해 많은 고급 기술과 응용 분야에서 중요한 역할을 한다. 예를 들어, 초전도체를 이용하면 에너지 손실 없이 전기를 전송할 수 있으며, 매우 강력한 자기장을 생성할 수 있어 자기공명영상(MRI) 장비나 입자 가속기, 초전도 자석 등에 활용된다. 초전도체를 만드는 데 필요한 임계 온도는 물질에 따라 다르며, 초기에 발견된 초전도체는 극저온에서만 초전도 현상을 보였다. 그러나 1986년에 발견된 고온 초전도체는 비교적 높은 온도에서도 초전도 현상을 나타내 연구와 응용의 범위를 크게 확장시켰다. 고온 초전도체의 발견 이후, 상온에서 초전도 현상을 나타내는 물질을 찾기 위한 연구가 활발히 진행되고 있다. 오늘날의 전자제품은 반도체 트랜지스터를 사용하여 전류를 빠르게 켜고 끄는 방식으로 정보 처리에 사용되는 2진법과 0진법을 생성한다. 이러한 전류는 전기 저항이 유한한 물질을 통과해야 하므로 에너지의 일부가 열로 낭비된다. 이것이 바로 시간이 지남에 따라 컴퓨터가 뜨거워지는 이유다. 초전도에 필요한 낮은 온도(보통 화씨 영하 200도 이상)로 인해 이러한 소재는 휴대용 장치에 사용하기에는 실용적이지 않다. 하지만 산업적 규모에서는 유용할 수 있다. 워싱턴 대학교의 슈아 산체스가 이끄는 연구팀은 뛰어난 조정 능력을 가진 특이한 초전도 물질을 조사했다. 이 결정은 철, 코발트, 비소 원자로 이루어진 초전도 층 사이에 강자성 유로피움 원자가 평평한 시트를 끼워 만든 결정이다. 산체스에 따르면 자연에서 강자성과 초전도를 함께 발견하는 것은 극히 드문 일이며, 일반적으로 한 단계가 다른 단계를 압도하기 때문이다. 산체스는 "초전도 층이 주변 유로피움 원자의 자기장에 의해 뚫리기 때문에 실제로는 매우 불편한 상황"이라며 "이것은 초전도를 약화시키고 전기 저항을 유한하게 만든다"고 말했다. 초전도 기술의 도전과 혁신 산체스는 아르곤에 있는 DOE 과학부 사용자 시설인 미국 최고의 X-선 광원 중 하나인 APS(Advanced Photon Source)에서 1년간 레지던트로 근무했다. 그곳에서 그는 DOE의 과학 대학원생 연구 프로그램의 지원을 받았다. 산체스는 APS 빔라인 4-ID 및 6-ID의 물리학자들과 협력하여 복잡한 물질의 미세한 세부 사항을 조사할 수 있는 포괄적인 특성화 플랫폼을 개발했다. 산체스와 공동 연구자들은 X-선 기술을 조합해 결정에 자기장을 가하면 '유로피움 자기장 선(europium magnetic field line)'이 초전도 층과 평행하도록 방향을 바꿀 수 있다는 것을 보여줄 수 있었다. 이렇게 하면 길항 효과가 제거되고 저항이 0인 상태가 나타난다. 과학자들은 전기적 측정과 X-선 산란 기술을 사용하여 물질의 거동을 제어할 수 있음을 확인할 수 있었다. 논문의 공동 저자인 아르곤의 필립 라이언은 "초전도를 제어하는 독립적인 파라미터의 특성은 이 효과를 제어하는 완전한 방법을 계획할 수 있다는 점에서 매우 매력적"라고 말했다. 라이언은 "이 잠재력은 양자 장치의 전계 감도를 조절할 수 있는 능력을 포함하여 몇 가지 흥미로운 아이디어를 제시한다"고 설명했다. 그런 다음 연구팀은 결정에 응력을 가하여 흥미로운 결과를 얻었다. 연구팀은 자기장의 방향을 바꾸지 않고도 자성을 극복할 수 있을 정도로 초전도가 증가하거나 자기장의 방향을 바꾸어도 더 이상 제로 저항 상태를 만들 수 없을 정도로 약화될 수 있음을 발견했다. 이 추가 매개변수를 통해 자성에 대한 소재의 민감도를 제어하고 맞춤 설정할 수 있다. 산체스는 "이 물질은 여러 위상 간의 경쟁이 치열하고, 작은 응력이나 자기장을 가하면 한 위상을 다른 위상보다 높여서 초전도를 켜고 끌 수 있기 때문에 흥미롭다"고 말했다. 그는 "대부분의 초전도체는 쉽게 전환할 수 없다"고 강조했다. '전기의 고속도로' 초전도체 전기가 물을 통과하는 것처럼, 초전도체는 전기가 저항 없이 흐르도록 하는 '전기의 고속도로'라고 비유할 수 있다. 마찰 없이 움직이는 완벽한 롤러 스케이트처럼, 초전도체는 에너지 손실 없이 전기를 전달한다. 초전도체의 주요 특징은 다음과 같다. 초전도체는 전기 저항이 0이기 때문에 전류가 손실 없이 흐를 수 있다. 또한 초전도체는 외부 자기장을 완전히 배척하는 마이스너 효과를 나타내며, 외부 자기장에 반대되는 방향의 자기장을 형성하는 반자성을 띠고 있다. 앞으로 활용 분야가 다양한 초전도체는 전기 저항이 없기 때문에 전기를 손실 없이 먼 거리까지 효율적으로 송전하는 데 사용될 수 있다. 초전도체를 활용한 MRI 기계는 강력한 자기장을 생성하여 인체 내부를 상세히 이미징할 수 있는 기능을 제공할 수 있다. 또한, 초전도체를 사용한 마그레브 열차는 마찰이 없어 고속으로 운행될 수 있는 가능성을 제시한다. 마그레브 열차는 자기 부상 기술을 사용하여 레일과 접촉 없이 운행하는 열차다. '마그레브(Maglev)'는 '자기부상(Magnetic Levitation)'의 줄임말로, 강력한 자석을 사용하여 열차를 공중에 띄워 마찰을 거의 없애고 이동한다. 이 기술 덕분에 마그레브 열차는 기존의 바퀴를 사용하는 철도 시스템보다 훨씬 더 높은 속도로 운행할 수 있으며, 소음과 진동이 현저히 줄어들어 매우 부드럽고 조용한 탑승 경험을 제공한다. 마그레브 열차는 전기를 사용하여 강력한 전자기장을 생성하고, 이 전자기장이 열차를 들어 올리고, 추진하며, 안내하는 데 사용된다. 세계 여러 나라에서 이 기술을 연구하고 개발해 왔으며, 중국의 상하이 마그레브 열차와 일본의 초고속 마그레브 열차 시스템 등이 실제 운영되고 있는 대표적인 예다. 상하이 마그레브는 공항과 도심을 연결하는 노선으로 사용되며, 시속 430km에 달하는 속도로 운행된다. 양자 컴퓨팅 분야에서는 초전도체가 초전도 비트(큐비트·qubit)의 생성에 필수적인 역할을 한다. 큐비트 또는 퀀텀 비트는 양자 정보시스템에서 사용되는 최소 정보 단위로 0이나 1 뿐만 아니라 0과 1 어느 쪽도 확정 지을수 없는 상태까지 표현가능하다. 비록 초전도체 기술이 개발 초기 단계에 있지만, 이 기술은 미래 사회에 중대한 변화를 가져올 수 있는 높은 잠재력을 지니고 있다. 참조: '스트레인 전환 가능한 전계 유도 초전도' 작성자: Joshua J. Sanchez, Gilberto Fabbris, 최용성, Jonathan M. DeStefano, Elliott Rosenberg, Yue Shi, Paul Malinowski, Yina Huang, Igor I. Mazin, 김종우, 주준호 및 Philip J. Ryan, 2023년 11월 24일, 사이언스 어드밴시스. DOI: 10.1126/sciadv.adj5200
-
- 포커스온
-
[퓨처 Eyes(22)] 초전도체 온-오프 스위치 개발, 혁신적 전력·통신 기술 기대
-
-
맥주의 두 종류, 에일과 라거 차이점은?
- 연말이 다가오면서 송년회와 같은 모임에서 맥주를 즐기는 사람들이 늘고 있다. 맥주는 다양한 종류와 맛을 자랑하며, 취향에 맞게 선택할 수 있는 폭이 넓다는 점에서 인기를 얻고 있다. 또한, 맥주는 가격이 비교적 저렴해 부담 없이 즐길 수 있어 많은 이들에게 사랑받고 있다. 남성 전문지 더 메뉴얼(THE MANUAL)에 따르면, 맥주는 주로 발효 방식에 따라 에일(ale)과 라거(lager)로 구분된다. 이 발효 방식은 맥주의 맛과 풍미에 중요한 영향을 미친다. 상면발효맥주(上面醱酵麥酒)라고도 하는 에일은 상온에 가까운 15~25℃의 온도에서 상면 발효 효모를 사용하는 반면, 라거는 좀 더 낮은 7~15℃에서 하면 발효 효모를 사용한다. 이러한 차이는 에일과 라거 각각의 독특한 특성과 맛을 만들어낸다. 에일은 높은 온도에서 발효되기 때문에 라거에 비해 더 많은 에스테르를 생성한다. 에스테르는 과일과 같은 풍미를 내는 화합물로, 이로 인해 에일은 라거보다 일반적으로 더 밝고 과일 향이 나는 특징적인 풍미를 가진다. 반면, 라거는 에일에 비해 발효 시간이 더 오래 걸린다. 에일은 보통 2~3주 만에 발효가 완료되는 것에 비해 라거는 발효에 4~6주가 소요된다. 이처럼 발효 시간이 길어지면 맥주의 맛을 더 부드럽고 균형잡힌 풍미를 만들어 준다. 라거의 경우 상대적으로 에일보다 더 맑은 특성을 가지는데, 이는 종종 콜드 컨디셔닝 과정을 거치기 때문이다. 콜드 컨디셔닝은 발효가 완료된 맥주를 저온에서 숙성시키는 과정으로 맥주의 탁한 성분을 제거하는 과정으로, 라거의 맑고 깨끗한 외관을 만들어낸다. 이처럼 발효 방식과 과정의 차이는 에일과 라거 각각의 독특한 맛과 특성을 만들어내며, 맥주 애호가들에게 다양한 선택의 폭을 제공한다. 대표적인 에일과 라거 종류 에일은 다양한 스타일과 맛을 가진 맥주로, 대표적인 종류에는 IPA(인디아 페일 에일), 스타우트, 포터, 고스, 사워 에일, 밀 맥주 등이 있다. IPA는 홉의 강한 풍미와 쓴맛이 특징인 맥주이며, 스타우트는 짙은 색과 깊은 풍미로 잘 알려져 있다. 포터는 스타우트보다 색이 밝고 쓴맛이 덜하며, 고스는 말린 과일이나 허브를 첨가해 독특한 맛을 낸다. 사워 에일은 발효 과정에서 생성되는 젖산 덕분에 신맛이 나고, 밀 맥주는 밀을 사용하여 부드럽고 약간 달콤한 맛이 난다. 라거의 대표적인 종류로는 필스너, 헬레스(Helles) 라거, 멕시코 라거, 쾰쉬(Kölsch) 스타일 맥주, 비엔나 라거 등이 있다. 라거는 또 다른 인기 있는 맥주 종류로, 필스너, 헬레스(Helles) 라거, 멕시코 라거, 쾰쉬(Kölsch) 스타일 맥주, 비엔나 라거 등이 대표적이다. 이들 라거는 발효 과정과 숙성 기간의 차이로 인해 각기 다른 풍미와 특성을 지니고 있다. 필스너는 1842년 체코에서 처음 양조된 맥주로, 맑은 황금색과 깔끔한 맛이 특징이다. 헬레스 라거는 필스너보다 색이 더 밝고 풍미가 더 가볍다. 멕시코 라거는 옥수수가 함유된 맥주로, 상쾌한 맛과 톡 쏘는 탄산이 특징이다. 쾰쉬 스타일 맥주는 독일 코블렌츠 지역에서 유래한 맥주로, 맑은 황금색과 홉의 풍미가 특징이다. 비엔나 라거는 독일 비엔나 지역에서 유래한 맥주로, 붉은빛을 띠는 황금색과 홉의 풍미가 독특하다. 한국, 에일과 라거 양극화 한국의 맥주는 라거가 주류를 이루고 있다. 대표적인 라거 맥주로는 오비맥주의 카스, 하이트진로의 하이트, 롯데칠성음료의 클라우드 등이 있다. 이 맥주들은 모두 맑고 상쾌한 맛을 특징으로 한다. 반면, 에일은 아직까지 소수의 마니아층을 중심으로 사랑받고 있다. 대표적인 에일 맥주로는 제주맥주의 제주 위트, 칭따오, 카프리, 에델바이스 등이 있다. 연말 술자리에서 맥주를 즐길 때는 적당히 마시고, 물을 자주 마셔주는 것이 좋다. 과음은 건강을 해칠 수 있으므로, 주의해야 한다.
-
- 생활경제
-
맥주의 두 종류, 에일과 라거 차이점은?
-
-
[퓨처 Eyes(12)]액체 금속, 화학공학 공정 혁신 '녹색화' 기대
- 호주 시드니 대학교에서 저온에서 촉매 역할을 하는 액체 금속을 개발했다. 액체 금속은 말 그대로 액체 상태인 금속을 의미한다. 이러한 금속들은 특정 온도에서 액체 상태로 존재하며, 그 특성 때문에 로봇공학이나 인공 장기, 핵융합 등 여러 분야에서 다양한 용도로 활용된다. 과학 전문매체 사이키(phys.org)에 따르면 호주 시드니 대학교 화학·생명분자 공학부의 쿠로쉬 칼란타르-자데 교수와 시드니 대학교와 뉴사우스웨일스 대학교에서 활동하는 준마 탕 박사가 이끄는 연구팀은 에너지 대량 소비가 특징인 20세기 초반의 화학 공정을 대체할 새로운 기술인 액체 금속을 테스트했다고 발표했다. '네이처 나노테크놀로지'에 발표된 액체 금속에 대한 최신 연구는 화학 산업의 전환점을 제시하고 있다. 연구팀은 녹는점이 낮은 30도의 액체 갈륨에 녹는점이 높은 주석과 니켈을 용해해 액체 금속을 얻었다. 액체 금속은 높은 전도성, 낮은 점도, 그리고 가변적인 형태를 가지고 있다. 즉, 액체 금속은 고체 금속에 비해 이동성이 높고, 형태를 자유롭게 변형할 수 있다. 대표적인 액체 금속인 수은은 상온에서 액체 상태를 유지한다. 연구팀은 에너지를 대량 소비하는 전통적인 고체 촉매 대신 액체 금속을 사용하는 새로운 방법을 도입했다. 현재 화학 공정으로 금속을 생산하는 것은 전체 온실가스 배출의 약 10~15%를 차지하고 있다. 전 세계 에너지의 10% 이상을 화학 공정에서 사용하는 현재 상황에서 이번 액체 금속 기술 개발은 중요한 의미를 갖는다. 액체 금속을 사용하는 방법은 기존 고체 촉매 기반 공정에 비해 에너지 소비를 크게 줄일 수 있다. 이는 환경에 미치는 부정적인 영향을 감소시키는 동시에 산업 효율성을 향상시킬 수 있다. 이 연구는 화학 산업의 지속 가능한 미래를 위한 중요한 단계로 여겨지며, 화학 공정의 혁신과 환경 보호라는 두 가지 주요 과제를 동시에 해결할 수 있는 가능성을 제시했다. 액체 금속의 특성 액체 금속은 독특한 물리적 성질과 화학적 안정성 덕분에 전자기기와 고체 배터리의 전극 소재, 냉각 시스템, 의료기기, 로봇공학 등 다양한 분야에서 적용될 수 있는 잠재력을 가지고 있다. 액체 금속은 뛰어난 전기 전도성을 가지고 있어, 유연한 전자기기, 인쇄 회로, 연결기기, 센서, 안테나 설계 등에 사용된다. 또한, 액체 금속의 낮은 점도와 높은 표면 장력은 미세 전자기기의 제조에 이상적이다. 아울러 액체 금속은 높은 열 전도성과 낮은 점도를 가지고 있어, 고성능 컴퓨터, 레이저 시스템, 핵 융합 반응기 등에서 발생하는 열을 효과적으로 관리하고 분산시키는 데 사용된다. 액체 금속은 핵 융합 반응기에서 냉각재로 사용되며, 핵 연료 재처리와 폐기물 관리에도 적용될 수 있다. 더 나아가 액체 금속의 생체 적합성과 유연성으로 인해, 의료 장치, 인공 장기, 생체 센서, 약물 전달 시스템 등의 개발에 활용된다. 액체 금속은 유연한 로봇, 착용 가능한 로봇 기술, 소프트 로봇공학에서 구조 및 센서 재료로서의 가능성을 가지고 있다. 액체 금속의 특성은 에너지 저장 시스템, 특히 고온 배터리와 연료 전지에서의 응용에 유리하다. 이러한 다양한 응용 분야는 액체 금속의 유연성과 기능성을 강조하며 미래 기술 발전에서 중요한 역할을 할 것으로 기대된다. 화학 공정 혁신으로 '녹색화' 기대 연구자들은 액체 금속이 기존 화학 산업의 '녹색화'를 앞당겨 화학 공정 혁신을 가져올 것으로 전망했다. 액체 금속 공정은 에너지 집약적인 고체 공정과 달리, 녹는점이 낮은 주석과 니켈을 용해하여 액체 금속의 표면으로 이동시키고 입력 분자인 카놀라유와 반응시킨다. 이 과정을 통해 작은 유기 사슬을 형성하며, 이 중에는 많은 산업에서 중요한 고에너지 연료인 프로필렌도 포함된다. 칼란타르-자데 교수는 "우리의 방법은 화학 산업이 에너지 소비를 줄이고 화학 반응을 녹색화하는 데 전례 없는 잠재력을제공한다"며 "2050년까지 화학 부문의 탄소 배출이 20% 이상을 차지할 것으로 예상되는 가운데, 패러다임 전환이 필수적이다"라고 말했다. 사진=시드니 대학교 연구팀은 녹는점이 높은 니켈과 주석을, 녹는점이 30도인 액체 갈륨 기반의 액체 금속에 용해시켜 액체 금속이라는 새로운 공정을 개발했다. 탕 박사는 "액체 갈륨에 니켈을 용해함으로써, 우리는 매우 낮은 온도에서 '슈퍼' 촉매로 작용하는 액체 니켈을 활용할 수 있게 되었다"고 설명했다. 저온에서 '슈퍼' 촉매 역할 시드니 대학교 화학 및 생명분자 공학부의 아리푸르 라힘 박사와 준마 탕 박사 팀은 액체 금속을 만든 공식을 낮은 온도 공정을 사용하여 다른 금속을 혼합함으로써 다양한 화학 반응에도 적용할 수 있다고 밝혔다. 탕 박사는 "낮은 온도에서 촉매 작용이 이루어지므로 이론적으로 주방 가스레인지에서도 가능하지만, 집에서는 시도하지 않는 것이 좋다"고 권했다. 한편 액체 금속은 다양한 분야에서 활용이 가능하다. 우선 냉각제다. 액체 금속은 열을 잘 전달하기 때문에, 반도체 제조 공정이나 레이저 제조 공정에서 냉각제로 활용된다. 또 액체 금속은 열을 잘 전달하기 때문에, 전자 제품이나 자동차의 냉각 시스템에서 열전도체로 활용된다. 전기를 잘 전달하기 때문에, 전기 회로나 센서의 전기 전도체로도 사용될 수 있다. 아직 연구 초기 단계에 있지만, 이러한 다양한 용도로 인해 액체 금속은 높은 잠재력을 지닌 신소재로 평가 받고 있다.
-
- 포커스온
-
[퓨처 Eyes(12)]액체 금속, 화학공학 공정 혁신 '녹색화' 기대
-
-
네이처, '상온 초전도물질 개발' 논문 철회…LK-99 제외
- 세계적인 과학 저널인 '네이처(Nature)'가 지난 7일 실온에서 초전도 현상을 보이는 물질에 관한 미국 연구팀의 논문을 신뢰성 문제로 철회하기로 결정했다. 해당 논문은 섭씨 20.5도의 실내온도에서 초전도 현상을 관찰했다고 주장했다. 이 연구는 미국 로체스터대의 기계공학 및 물리학 조교수인 란가 디아스(Ranga Dias) 박사가 이끄는 팀에 의해 수행되었으며, '질소 주입 루테튬 수소화물'(NDLH)이라는 이름의 초전도 물질 개발에 관한 내용을 담고 있었다. 이 논문은 지난 3월 네이처에 게재됐다. 디아스 박사팀은 NDLH에 고압을 가하면 실온에서도 초전도체의 성질을 띠게 된다고 주장했다. 그러나 이 논문에 대한 과학계의 의구심이 제기되었다. 주장된 초전도 현상이 다른 연구실에서 재현되지 않았기 때문이다. 이러한 신빙성 문제로 네이처는 결국 논문의 철회를 결정했다. "초전도체 연구계에서 LK-99는 올해의 부끄러움의 표식으로 여겨질 수 있으나, 실제 상황은 더 복잡하다. 물질과학 분야에서 최근 발견된 특정한 결함이 2023년의 주요 사건으로 보기는 어렵다는 것이 전문가들의 의견이다." 과학기술 전문 매체인 톰스하드웨어(tom’s HARDWARE)는 국제 학술지 '네이처'에 게재되었던 란가 디아스와 그의 공동 저자들의 상온 초전도체 관련 논문 철회 사건을 다루며 이러한 주장을 제기했다. 이번 철회는 뉴욕 로체스터 대학교에서 수행된 디아스의 연구와 네바다 라스베가스 대학교(UNLV)의 물리학자 애쉬칸 살라맛(Ashkan Salamat)의 연구에 대한 과학적 의심의 세 번째 사례로 보인다. 전문가들은 이러한 문제들로 인해 해당 분야의 명성에 타격이 갈 것을 우려하고 있다. 디아스의 논문에는 여러 명의 공동 저자들이 참여했기 때문에, 책임 소재, 신뢰성 문제, 논문 내 오류의 발생 시점과 그 성격을 정확히 파악하는 것이 어렵다는 점이 지적되고 있다. 수소화물 초전도체 논문 철회 사태 수소화물 초전도체 연구에 관한 원래의 논문(현재 철회된)에는 11명의 저자가 있었으며, 이 중 8명이 철회 공지를 제출했다. 톰스하드웨어에 따르면, 이 논문의 결과를 둘러싼 논란이 출판에서 얻을 수 있는 이점보다 더 큰 부정적인 영향을 끼쳤다고 한다. 철회 공지에 따르면, 이 8명의 공동 저자들은 연구에 기여한 연구원으로서, 출판된 논문이 연구에 사용된 재료의 출처, 수행된 실험 측정 및 적용된 데이터 처리 방법을 정확히 반영하지 않는다는 의견을 표명했다. 원래의 논문은 상온, 상압에서 초전도성을 보이는 수소화물에 대해 다뤘다. 수소화물은 추가 전자(기술적으로 음이온을 만드는)를 특징으로 하는 수소 기반 재료이며 재료과학 및 초전도체 연구의 대표적인 소재 중 하나다. 2015년부터 수소화물에서 발견된 여러 초전도체 대부분은 초전도성을 얻기 위해 대기압보다 수백만 배 더 높은 압력이 필요하다는 것이 밝혀졌다. 이는 해당 소재의 실용적인 응용 가능성을 크게 제한하는 요인으로 지적되어 왔다. 초전도체 연구 분야에서의 신뢰 위기 초전도체 및 응집물질 물리학 분야에서 2023년은 특히 일부 전문가들 사이에서 '신뢰의 위기'라고 불리는 해였다. 이러한 위기의 근본 원인은 잘못된 과학적 접근 방식이다. 문제의 핵심은 과학적 연구가 계획대로 진행되더라도 복제가 어렵다는 것이다. 과학적 연구의 요건은 이론적으로 단순하다고 볼 수 있다. 즉, 동일한 조건과 과정에서 검증 가능하고, 독립적으로 복제할 수 있는 원본 연구를 제공해야 한다는 것이다. 톰스하드웨어는 "그러나 네이처의 논문 철회 사례는 과학적 사기로 결론을 내리기까지 어려움을 보여준다"고 전했다. 이 매체는 논문이 철회되었다고 해서 이것이 자동적으로 사기를 의미하는 것은 아니라며 철회 사유는 다양하며, 각 경우에 따라 신중한 검토와 판단이 필요하다는 것이다. 과학계의 신뢰 위기와 악의적인 연구 조작 동일한 이론적 간소함이 악의적인 연구자에 의한 피해를 증가시키고 있다. 매년 수백 개의 연구 그룹이 잘못 기술되거나 때로는 조작된 연구 결과의 복제를 시도하며, 이 과정에서 상당한 시간과 자금을 낭비하게 된다. 과학계 내에서 신뢰의 위기에 대한 논의가 이루어지고 있지만, 최근 10년 동안 철회된 논문 수가 10배 증가한 것은 사실상 더 엄격해진 편집 통제와 강화된 동료 평가 과정의 결과로 볼 수 있다. 이러한 변화는 과학 분야에서의 신뢰성과 정확성을 강화하는 긍정적인 방향으로 해석될 수 있으며, 과학의 배타적인 영역에 국한되지 않는 현상이다. 초전도체의 다양한 분류와 특성 초전도체는 전기 저항이 완전히 0이 되는 물질이다. 이는 전자가 격자 구조의 빈 공간을 자유롭게 이동할 수 있기 때문이다. 초전도체는 고온 초전도체, 저온 초전도체, 상온 초전도체로 나눌 수 있다. 고온 초전도체는 상온(약 300K) 근처에서 초전도성을 나타내는 물질로, YBCO(YBa2Cu3O7-x), LSCO(La2CuO4-x), BSCCO(Bi2Sr2CaCu2O8+x) 등이 대표적인 예이다. 반면, 저온 초전도체는 상온보다 훨씬 낮은 온도에서 초전도 현상을 보이며, Nb3Sn, NbTi, Pb, Hg 등이 이에 속한다. 상온 초전도체는 실온에서 초전도성을 나타낼 수 있는 물질로, 만약 실제로 존재한다면 획기적인 기술 혁신을 가져올 것으로 기대되고 있다. 이 분야는 최근 여러 논란에 휩싸여 주목받고 있다. 현재 많은 연구팀들이 실온 초전도체 개발을 목표로 활발한 연구를 진행하고 있다. 주요 연구 방향은 다음과 같다. △기존 재료에 새로운 물질을 결합하거나 새로운 구조를 도입해 실온에서 초전도성을 갖는 재료를 개발하는 연구, △압력 조절을 통해 실온에서 초전도성을 발휘하는 재료를 개발하는 연구, △자기장 조절을 통해 실온 초전도성을 갖는 재료를 개발하는 연구 등이다. 만약 실온에서 작동하는 초전도체가 발견된다면, 이는 전기 에너지의 효율적 전송, 자기 부상 열차, 의료 장비, 컴퓨터 등 다양한 분야에서 혁명적인 변화를 가져올 것으로 기대된다. 이러한 발견은 기존 기술의 한계를 넘어서는 새로운 가능성을 열어줄 것이다.
-
- 산업
-
네이처, '상온 초전도물질 개발' 논문 철회…LK-99 제외
-
-
NBA 스타 릭 폭스, 바하마에 '탄소 흡수 콘크리트' 주택 건축
- 전 NBA 레이커스의 전설이자 배우인 릭 폭스(54·Rick Fox)가 바하마에 환경친화적인 '탄소 흡수 콘크리트' 주택을 건축했다. 폭스는 총 1000채의 탄소배출 제로 주택을 건설할 계획이다. 미국 경제매체 더 버지(The Verge)는 최근 릭 폭스가 건설한 탄소 흡수 콘크리트 집은 기후 변화 문제 개선에 기여할 것으로 보인다며 이같이 보도했다. 폭스는 지속가능한 건축자재 스타트업 '파르타나(Partanna)'의 CEO이자 공동 창업자다. 벤처캐피털·사모펀드 체루빅 벤처스(Cherubic Ventures)가 파르타나에 투자했다. 체루빅 벤처스는 전 세계 제품 출시 전 단계의 기업에 투자하는 시드 단계 벤처캐피털 회사다. 현재 샌프란시스코, 타이페이, 워털루, 도쿄에 사무실을 두고 있으며, 4억 달러(약 5400억원)의 운용자산(AUM)을 관리하고 있다. 폭스는 바하마에서 탄소중립을 실현하는 이 프로젝트가 성공하면, 현재 대체재인 탄소 흡수 콘크리트를 일반적인 건축 자재로 도입해 건설 산업의 환경오염을 줄일 계획이다. 그는 "나는 헐리우드 경력을 일시 중단하고, 기후 변화에 대응하는 실질적인 해결책을 찾기로 결정했다"고 말했다. 폭스의 주장에 따르면, 콘크리트와 그 주요 성분인 시멘트는 전 세계적인 이산화탄소 배출량의 약 8%를 차지하며, 이는 기후 변화에 큰 영향을 미치고 있다. 폭스는 고향인 바하마에서 겪은 기후 변화의 영향 때문에 이 분야에 뛰어든 것이라고 설명했다. 2019년 허리케인 도리안은 바하마에 큰 피해를 주었으며, 아바코 섬의 주택 75%를 파괴하고 수천 명이 이재민이 되었다. 릭 폭스는 캘리포니아의 건축가 샘 마샬과 함께 과학자들과 협력하여, '파르타나(Partanna)'라는 회사를 공동 창업해, 탄소 집약적인 시멘트를 사용하지 않는 새로운 콘크리트 제조 방법을 개발했다. 파르타나에서 제작한 콘크리트는 전통적인 시멘트 대신 해수 정수 시설에서 얻은 염수와 강철 생산 부산물인 '슬래그'를 기반으로 한다. 이 혼합물은 상온에서도 경화될 수 있어 에너지 소비가 추가로 필요하지 않고, 콘크리트의 바인더 성분이 대기 중의 CO₂를 흡수해서 그 안에 가둔다. 이 콘크리트는 건물이 완공된 후에도 계속해서 CO₂를 흡수할 능력이 있으며, 건물이 철거될 경우에도 흡수된 CO₂를 유지하면서 재사용이 가능하다. 파르타나 측은 이런 유형의 콘크리트와 건물을 '카본 네가티브(carbon negative)'라고 말했다. 예를 들어 약 116m²(약 35평)의 탄소 흡수 콘크리트 건물은 연간 약 5200그루의 성숙한 나무가 흡수하는 양만큼의 CO₂를 흡수할 수 있다고 설명했다. 애리조나 주립 대학의 지속 가능한 공학 및 건축 환경 학교의 드와락 라비쿠마르(Dwarak Ravikumar) 조교수는 파르타나의 폐기물 활용방식 콘크리트에 대해 긍정적인 평가를 내렸다. 그는 "폐기물을 사용하는 것은 좋은 일"이라면서도 "이 기술이 기후에 어떤 전반적인 영향을 미치는지를 정확히 평가하려면, 시스템 전체를 상세하게 분석해야 한다"고 덧붙였다. 라비쿠마르는 파르타나가 탄소 흡수 콘크리트의 환경적 영향과 확장 가능성을 정확히 평가하기 위해 충분한 데이터를 공유해야 한다고 강조했다. 한편 바하마 정부는 파르타나와의 협력을 통해, 내년에 건설 예정인 29채의 주택으로 구성된 커뮤니티 프로젝트로 시작해 총 1000채의 주택을 건설하기로 합의했다. 바하마 나사우에 지어진 첫 번째 주택은 현재 프로토타입 단계로 아직 거주자가 없다. 하지만 앞으로 지어질 주택들은 생애 첫 주택 구매자들을 대상으로 입주자들을 선정할 예정이다. 파르타나의 건축 자재는 사우디아라비아의 홍해 관광 개발에도 사용될 예정으로 알려졌다. 한편, 국내에도 이산화탄소를 흡수할 수 있는 건축 자재를 개발 중인 기업들이 존재한다. 일례로 에코비오는 바다 생물의 껍질에서 추출한 키토산을 활용한 콘크리트를 개발했다. 또 에코콘크리트는 폐플라스틱을 재활용하여 콘크리트를 제작했고, 제이에스콘크리트는 폐석탄재를 재활용한 콘크리트를 개발하고 있다. 유엔은 2030년까지 43%의 탄소배출을 절감한다는 계획을 세웠다. 그러나 현실은 고작 7%의 탄소배출을 줄일 것이라는 전망이다. 그럼에도 기업들이 지속적인 노력을 펼친다면, 건설 분야에서의 온실가스 배출을 줄일 수 있을 뿐만 아니라 기후 변화에 대응하는 데에도 크게 기여할 것으로 예상된다.
-
- 생활경제
-
NBA 스타 릭 폭스, 바하마에 '탄소 흡수 콘크리트' 주택 건축
-
-
상온서 작동하는 '자성 양자 컴퓨팅 물질' 개발
- 상온에서 작동하는 자성 양자 컴퓨팅 물질이 개발돼 학계의 주목을 받고 있다. 과학 전문매체 테크놀로지 네트웍스(technologynetworks)는 텍사스 주립대학교 엘 패소 캠퍼스(The University of Texas at El Paso, UTEP) 물리학부 연구원들이 상온에서 작동하는 자성 양자 컴퓨팅 물질을 개발했다고 전했다. 양자 컴퓨팅은 세계를 혁신할 수 있는 잠재력을 가지고 있다. 신약 개발이나 의료 분야뿐만 아니라 과학 연산 문제를 기존 컴퓨팅보다 지수적으로 빠르게 해결할 수 있다. 그러나 양자 컴퓨터는 초저온에서만 작동한다는 큰 단점이 있다. UTEP 물리학부의 아흐마드 엘-겐디(Ahmed El-Gendy) 박사는 "양자 컴퓨터를 작동시키려면 실온에서 사용할 수 없다"고 말했다. 그는 "컴퓨터를 식히고, 그밖에 다른 모든 물질을 식혀야 하는데, 비용이 매우 많이 든다"고 설명했다. 2019년 이후로 UTEP 팀은 양자 컴퓨팅을 위한 완전히 새로운 자성 물질을 개발하기 위해 노력해왔다. 상온에서 작동뿐만 아니라 희귀 희토류 재료로 만들어지지 않은 자석에 중점을 두었다. 마침내 엘-겐디 박사가 이끄는 팀은 일정한 온도에서 작동하는 고자성 양자 컴퓨팅 재료(순수 철의 100배 강한 자성)를 개발했다. 이 논문은 물리학회 저널 「어플라이드 피직스 레터(Applied Physics Letters)」 여름 호에 소개됐다. 희토류 원석으로 만든 자석은 현재 스마트폰, 차량, 솔리드 스테이트 드라이브(SSD)를 포함한 많은 최신 응용 분야에서 사용된다. 이 자석에 컴퓨터 정보가 저장된다. 양자 컴퓨터에서 자석은 속도를 향상시키기 위해 사용된다. 엘-겐디는 현재 강한 자기 특성은 저온에서만 작동한다고 말했다. 실제로 현재 양자 컴퓨터는 절대 영도(-273.15℃) 바로 위 부근인 섭씨 약 -273도(화씨 -459도)의 저온에서 기능이 유지된다. 그는 "모든 자석은 희토류 원소로 만들어져 있으며, 그런 자석을 만들 재료가 부족하다"고 지적했다. 또한 "우리는 곧 어떤 산업에서도 이러한 자석을 만들 수 있는 이러한 재료가 없다는 문제를 직면하게 될 것"이라고 우려했다. 엘-겐디 박사 팀은 수년간의 시행착오 끝에 아미노페로세늄(aminoferrocene)과 그래핀의 혼합물을 찾아냈다. 이 물질은 극도로 강력한 자성을 나타낸다는 점이 특징이다. 그는 "우리는 그 자성을 의심했지만, 실험 결과는 명백한 초자성 동작을 보여준다"고 말했다. 이어 "이런 종류의 물질을 이전에 아무도 만들어보지 않았다. 이 물질을 사용해 상온에서 양자 컴퓨터를 만들 수 있을 것으로 생각한다"고 기대했다. 그러나 이 제품을 상용화하기 위해서는 아직 해결해야 할 과제가 많다. 상온에서 작동하는 자성물질을 만드는 것은 어렵기 때문이다. 엘-겐디 박사 팀은 준비 과정을 최적화하고 물질의 효율성을 계속 향상시키기 위해 더욱 노력하겠다고 밝혔다.
-
- 산업
-
상온서 작동하는 '자성 양자 컴퓨팅 물질' 개발
-
-
손등에 전자 칩 이식…카드·차 키 필요 없는 세상온다?
- 우리 몸에 이식된 칩을 통해 문을 열거나 자동차의 시동을 걸고 결제까지 할 수 있는 시대가 성큼 다가오고 있다. 공상과학소설이나 같은 장르의 영화(SF)에서나 볼 법한 일이 현실에서 일어나고 있다. 프랑스 과학기술 매체 '프랑스인포(Franceinfo)'에 따르면, 여러 기업들이 피부 안에 이식할 수 있는 전자 칩을 개발 중이다. 이 전자칩은 매우 정교한 보안 프로토콜까지 관리할 수 있다는 게 전문가들의 분석이다. 피부 이식 칩이 상용화되면 주머니 속의 지갑이나 열쇠 없이도 생활이 가능해진다. 더욱 발전된 암호화 기술로 은행카드, 차 키, 생체인식 여권, 건강보험 카드까지 모두 대체할 수 있게 되는 것이다. 맨몸만으로도 여러 기능을 실행할 수 있는 시대가 열리고 있다. 생체 칩 전문 기업인 '비보키(Vivokey)'와 '월릿모어(Walletmor)'는 손바닥 피부 아래에 칩을 이식하는 서비스를 제공하고 있다. 실제로 2022년, 브랜든 댈러리(Brandon Dalaly)라는 청년은 자신의 오른손에 무선 통신이 가능한 칩 2개를 이식받았다. 그는 '비보키'의 마이크로칩 베타 테스터로 활동한 100명 중 한 명이었다. 이 칩에는 암호화폐 데이터부터 집 열쇠, 의료보험 카드 정보, 그리고 테슬라 모델3의 스마트 기능까지 모두 저장되어 있다. 생체 이식 칩을 이용하면 키의 분실이나 도난 문제에서 벗어날 수 있다. 물론 부정적인 시나리오를 상상할 수는 있지만, 우리는 이미 얼굴이나 지문으로 휴대전화의 잠금을 쉽게 해제하고 있으며, 누군가의 정보를 훔쳐보려는 극단적인 시도를 걱정할 필요도 없다. 왜냐하면 이런 칩은 외부에 드러나지 않으며, 따로 소지할 필요도 없기 때문이다. 이 작은 장치는 좁쌀만큼의 크기를 가지면서도 신뢰성 있고 안전하게 설계됐다. 사실, 몇 년 전부터 개들의 식별용으로 이미 활용되고 있었다. 그러나 모든 사람이 이 칩을 이식받을 준비가 되어 있는 것은 아니다. 첨단 기술이 사람의 몸에 적용될 때 항상 그 기술의 안전성, 장기적인 영향 등을 고려해야 하며, 기술이 실제로 도입되기 전에는 이런 부작용에 대한 연구와 테스트가 필요하다는 게 전문가들의 지적이다. 기술은 편리할 뿐만 아니라 사회적, 문화적으로수용되어야 하는 것을 보여준다. 불과 몇 년 전 만 해도 휴대전화로 결제하는 것이 불가능하게 여겼던 것처럼 조만간 손바닥을 통해 결제하는 날이 올 수도 있다.
-
- IT/바이오
-
손등에 전자 칩 이식…카드·차 키 필요 없는 세상온다?