검색
-
-
[우주의 속삭임(103)] 은하 중심부의 신비한 현상, '새로운 형태의 암흑물질' 존재 가능성 시사
- 우리 은하 중심부에서 관측된 미스터리한 현상이 기존 이론과는 다른 형태의 암흑물질 존재를 암시할 수 있다는 연구 결과가 발표됐다. 암흑물질은 우주 질량의 약 85%를 차지하는 것으로 추정되지만, 아직 직접 관측된 적이 없어 현대 과학의 최대 난제 중 하나로 남아 있다. 이번 연구는 과학자들이 오랫동안 추적해 온 암흑물질의 실체에 한 걸음 더 다가섰음을 보여준다. 영국 킹스칼리지 런던 연구팀은 은하 중심부에서 발생하는 설명되지 않는 화학 반응의 원인이 기존 이론과는 다른 새로운 암흑물질 후보일 가능성을 제기했다. 이에 대해서 PHYS.org와 스페이스닷컴 등 주요 외신은 10일(현지시간) 심층적으로 보도했다. 스페이스닷컴에 따르면, 연구팀이 제안한 새로운 암흑물질 후보는 기존 가설보다 가벼우면서 자기 소멸성을 가진다. 즉, 두 개의 암흑물질 입자가 충돌하면 서로를 소멸시키며, 이 과정에서 음전하를 띤 전자와 양전하를 띤 양전자가 생성된다. 이 과정에서 발생한 전자와 양전자의 홍수는 은하 중심부의 밀도가 높은 가스에서 중성 원자로부터 전자를 떼어내는 데 필요한 에너지를 제공한다. 이를 '이온화'라고 하며, 이 과정이 은하 중심 분자영역(CMZ)에 이온화된 가스가 풍부한 이유를 설명할 수 있다. 암흑물질의 소멸은 흔치 않지만, 암흑물질이 밀집해 있을 것으로 추정되는 은하 중심부에서는 더 자주 발생할 가능성이 크다. 이번 연구의 주요 저자인 킹스칼리지 런던의 박사후 연구원 샴 발라지(Shyam Balaji) 박사는 "우리 은하 중심부에는 수십 년간 미스터리로 남아 있던 거대한 양전하를 띤 수소 구름이 존재한다. 일반적으로 수소 기체는 중성이므로, 음전하를 띤 전자를 제거할 만큼 충분한 에너지를 공급하는 원천이 무엇인지가 오랫동안 의문이었다"고 설명했다. 그는 이어 "은하 중심부에서 방출되는 에너지 신호는 지속적이고 강력한 에너지원이 존재함을 시사하며, 이는 기존 모델에서 고려했던 것보다 훨씬 가벼운 형태의 암흑물질에서 비롯될 가능성이 있다"고 덧붙였다. 암흑물질은 빛과 거의 상호작용하지 않거나, 상호작용하더라도 너무 약하고 드물어 과학자들이 직접 관측하지 못했다. 이에 따라 암흑물질이 전자, 양성자, 중성자 등 중입자(바리온·baryon)로 구성되지 않았을 것이라는 결론이 도출됐다. 중입자는 원자보다 작은 아원자의 한 종류로, 별, 행성, 달을 비롯해 우리가 일상에서 보는 모든 사물을 이루는 원자의 기본 구성 요소다. 암흑물질에 대한 가장 유력한 이론은 약하게 상호작용하는 무거운 입자(WIMP·Weakly Interacting Massive Particle)가 후보라는 가설이었다. 그러나 이번 연구는 WIMP보다 훨씬 낮은 질량을 가진 새로운 유형의 암흑물질 가능성을 제시했다. 밀집된 CMZ에서 생성된 양전자는 주변 수소 분자와 상호작용해 전자를 떼어내기 전에 멀리 이동하거나 탈출하기 어렵다. 따라서 이온화 과정은 CMZ에서 특히 효율적으로 이루어진다. 발라지 박사는 "이 모델이 해결하는 가장 큰 문제는 CMZ의 과도한 이온화"라며 "이온화 가스를 형성하는 일반적인 원인 중 하나인 우주선(우주 방사선)은 현재 관측된 높은 수준의 이온화를 설명하기에 충분하지 않은 것으로 보인다"고 말했다. 현재 암흑물질의 주요 후보는 다양한 질량을 가진 '악시온(axion)'과 '악시온 유사 입자'다. 연구진은 이 저질량 암흑물질 입자들이 서로 충돌해 '소멸(annihilation)' 과정을 거치면서 새로운 전하 입자를 생성할 가능성을 제기했다. 이 새로 생성된 전하 입자들이 수소 기체를 이온화할 수 있다는 것이다. 기존 이온화 이론은 우주선을 통한 에너지원에 의존해 왔다. 그러나 CMZ에서 관측된 에너지 신호는 우주선만으로는 충분히 설명되지 않았으며, 기존 WIMP 모델로는 이러한 현상이 발생할 수 없는 것으로 나타났다. 이에 연구진은 암흑물질 소멸로 발생하는 에너지원이 기존 우주선보다 느리고, WIMP보다 질량이 작다는 결론을 도출했다. 우주선은 빛의 속도에 가까운 속도로 이동하는 하전 입자지만, 연구팀에 따르면 CMZ의 이온화 신호는 기존의 많은 암흑물질 후보보다 가볍고 느리게 움직이는 근원을 가리키는 것으로 보인다. 또한, 우주선이 CMZ의 이온화 가스를 형성했다면 감마선과 관련된 방출이 동반되어야 한다. 하지만 이러한 감마선 방출은 CMZ 연구에서 관측되지 않았다. 발라지 박사는 "만약 암흑물질이 CMZ의 이온화에 기여한다면, 우리는 암흑물질을 직접 볼 수는 없지만 은하계 가스에 미치는 미묘한 화학적 영향을 관찰함으로써 그 존재를 감지할 수 있다"고 설명했다. 한편, 은하 중심에서 관측된 희미한 감마선 빛은 양전자와 이온화 과정과 연관이 있을 가능성도 제기됐다. 발라지 박사는 "이온화와 감마선 방출 사이의 직접적인 연관성을 발견한다면 암흑물질의 존재를 입증하는 강력한 증거가 될 것"이라면서도 "현재로서는 이 두 신호 사이에 어느 정도 상관관계가 있지만, 이를 확실한 증거로 판단하기 위해서는 더 많은 데이터가 필요하다"고 말했다. 그는 이어 "암흑물질 탐색은 현대 물리학에서 가장 중요한 과제 중 하나지만, 현재 대부분의 실험은 지구에서 암흑물질이 오기를 기다리는 방식으로 이루어지고 있다"며 "CMZ의 기체를 활용한 연구를 통해 우리는 보다 직접적인 근원에 접근할 수 있으며, 분석 결과 암흑물질이 기존 예상보다 훨씬 가벼울 가능성이 있음을 시사한다"고 강조했다. 또한 "우리 은하 중심부의 관측을 통해 CMZ 내 수소 기체가 암흑물질의 본질을 밝힐 중요한 단서를 제공하고 있다"고 덧붙였다. 이번 연구는 은하 중심의 다른 미스터리와도 연관될 가능성이 있다. 예를 들어, 은하 중심에서 관측된 특정 X선 방출선인 '511keV 방출선'이 동일한 저질량 암흑물질이 충돌해 전하 입자를 생성하는 과정에서 발생했을 가능성이 제기됐다. 또한, 암흑물질 소멸 모델은 양전자와 전자가 결합해 '양전자늄' 상태를 형성한 뒤 X선 형태로 붕괴하는 과정이 CMZ의 특이한 빛 방출을 설명할 수도 있다. 발라지는 "서브 GeV 암흑물질에 의해 생성된 이온화 속도는 기존 감마선 및 우주 마이크로파 배경(CMB) 관측과 모순되지 않으며, 기존 제약 조건에 완벽히 부합한다"고 밝혔다. 이 연구는 10일 학술지 '피지컬 리뷰 레터스(Physical Review Letters)'에 게재됐다.
-
- 포커스온
-
[우주의 속삭임(103)] 은하 중심부의 신비한 현상, '새로운 형태의 암흑물질' 존재 가능성 시사
-
-
[퓨처 Eyes(73)] 시간의 미스터리, 양자 세계에서 새로운 해답을 찾다
- 시간은 과연 한 방향으로만 흐르는 것일까? 철학자와 과학자들이 오랫동안 탐구해온 이 질문에 대한 새로운 단서가 발견됐다. 영국 서리대학교(University of Surrey)의 최신 연구는 시간이 단순히 미래로만 향하는 선형적 흐름이 아닐 가능성을 제시하며, 기존의 통념을 흔들고 있다. 우리는 과거에서 미래로 흐르는 '시간의 화살'에 익숙하다. 현실 세계에서는 깨진 유리잔이 원래대로 돌아가지 않고, 엎질러진 물이나 우유가 저절로 컵에 다시 담기는 일은 결코 일어나지 않는다. 그러나 양자 세계에서는 상황이 달라진다. 물리학의 기본 방정식은 시간이 거꾸로 흘러도 동일하게 작동하는 대칭성을 갖는다. 즉, 시간이 앞으로 흐르든 뒤로 흐르든 법칙 자체는 변하지 않는다는 것이다. 서리대학교의 안드레아 로코 물리학 박사는 "엎질러진 우유가 테이블 위로 퍼지는 과정을 보면 시간이 앞으로 흐른다는 것을 알 수 있다. 하지만 영화처럼 되감아 보면 즉시 뭔가 잘 못 됐다는 것을 알 수 있다. 우유가 다시 유리 잔에 모일 것이라고 믿기 때문이다"라며 우리의 직관과 물리학 법칙 사이의 괴리를 지적했다. 이는 우리가 경험하는 거시 세계와 양자 세계 사이에는 분명한 간극이 존재한다는 것을 보여준다. 양자, 시간의 방향을 묻다 연구팀은 '개방 양자 시스템'이라는 개념에 주목했다. 양자 시스템(아원자 세계)이 주변 환경과 상호 작용하는 방식을 연구하는 분야다. 그들은 우리가 왜 시간을 한 방향으로만 인지하는 지, 그리고 이러한 인식이 양자 역학의 법칙에서 비롯되는 것인지, 아니면 환경과의 상호 작용의 결과인지 탐구했다. 연구팀은 환경을 외부 요인으로 취급하고 양자 시스템 자체에만 집중해 문제를 단순화했다. 그들은 우주 전체와 같은 환경이 너무 커서 에너지와 정보가 그 안으로 흩어져 다시는 시스템으로 돌아오지 않는다고 가정했다. 이러한 모델을 통해 시간이 이론적으로 양방향으로 흐를 수 있음에도 불구하고 양자 세계에서 시간의 방향이 어떻게 나타나는 지 탐구할 수 있었다. 이는 마치 우리가 우주라는 거대한 영화의 한 장면을 보고 있는 것과 같다고 볼 수 있다. 시간, 두 갈래 길에서 방황하다 놀랍게도 연구 결과는 기존의 통념을 완전히 뒤집었다. 환경과의 상호작용을 고려하더라도, 개방 양자 시스템을 설명하는 방정식은 시간이 앞으로 움직이든 뒤로 움직이든 동일하게 작용했다. 이는 시간이 반드시 한 방향으로만 흐른다는 가설이 절대적인 것이 아닐수도 있음을 시사한다. 토마스 구프 박사후 연구원은 "개방 양자 시스템을 설명하는 방정식에 표준적인 단순화 가정을 적용한 후에도 방정식이 시스템이 시간상 앞으로 움직이든 뒤로 움직이든 동일하게 작용했다는 것이 놀라웠다"며 뜻밖의 연구 결과가 나왔음을 강조했다. 이는 우리가 흔히 생각하는 '시간의 화살' 개념에 대한 근본적인 질문을 던지는 것이다. 시간이란 단순히 과거에서 미래로 흐르는 단일한 개념이 아닐 수 있다는 것을 시사한다. 이번 연구 결과는 학술지 '사이언티픽 리포트(Scientic Reports)'에 게재됐다. 기억 커널, 시간 대칭의 열쇠 연구팀은 또 '기억 커널' 이라는 현상이 방정식의 시간 대칭을 유지한다는 사실을 발견했다. 이 커널은 양자 시스템의 진화 방식의 기본이며, 시간이 양방향으로 흐를 가능성을 설명할 수 있다. 즉, 과거의 정보가 현재의 시스템에 양향을 미치는 방식으로 시간이 흐를 수 있다는 것이다. 연구진은 '메모리 커널(memory kernel)' 이라 불리는 방정식의 핵심 부분이 시간에 대해 대칭적이라는 것을 발견했다. 또한 시간 불연속 요소가 발견되어 시간 대칭성을 유지하는 것으로 나타났다. 로코 박사는 "우리의 연구 결과는, 우리의 일반적인 경험은 시간이 한 방향으로만 움직인다고 말하지만, 우리는 반대 방향이 똑같이 가능했을 것이라는 점을 알지 못했던 것을 시사한다"며 이번 연구의 의의를 밝혔다. 이는 우리가 시간의 흐름을 단선적으로만 인식하는 것이 사실은 착각일 수 있음을 시사한다. 시간은 어쩌면 우리가 생각하는 것보다 훨씬 더 복잡하고 다중적인 개념일지도 모른다. 시간의 비밀, 우주론의 난제를 풀 열쇠 이번 연구는 기간과 물리학 전반에 대한 우리의 이해에 심오한 의미를 갖는다. 시간이 불가역적인 화살로 인식되는 것은 고유한 물리 법칙 때문이 아니라 환경과의 상호 작용 방식과 관련이 있을 수 있음을 시사한다. 즉, 우리가 시간을 인지하는 방식은 우리가 속한 환경에 의해 규정될 수 있다는 것이다. 이러한 발견은 우주론의 오랜 질문, 예를 들어 우주의 시작이나 블랙홀의 맥락에서 시간의 본질과 같은 질문에 새로운 시각을 제공할 수 있다. 또한 아인슈타인의 일반 상대성 이론과 양자 역학을 통합하려는 물리학 분야인 양자 중력 이론에도 영향을 미칠 수 있다. 이 연구는 거시적 세계에서 우리가 경험하는 단방향적 시간의 흐름이 양자 세계에서는 양방향으로 가능할 수 있음을 시사하며, 양자역학, 우주론, 그리고 물리학의 근본 법칙에 대한 이해에 중요한 영향을 미칠 수 있다. 안드레아 로코 박사는 "우리의 일상적인 경험은 시간이 한 방향으로만 흐른다고 말하지만, 사실 반대 방향도 똑같이 가능했다는 것을 우리가 모르고 있었을 뿐"이라고 설명했다. 이 연구는 시간의 화살표가 우리가 생각했던 것만큼 고정적이지 않을 수 있다는 가능성을 제시하며, 물리학의 가장 큰 미스터리 중 하나에 대한 새로운 시각을 제공한다. 시간은 단순한 흐름이 아니라 훨씬 더 복잡하고 다차원적인 현상일 수 있다. 이번 연구는 시간의 비밀을 풀고 우주의 미스터리를 밝히는 데 중요한 발걸음이 될 것이다.
-
- 포커스온
-
[퓨처 Eyes(73)] 시간의 미스터리, 양자 세계에서 새로운 해답을 찾다
-
-
우주 '유령 입자'의 놀라운 에너지, 심해 탐사로 밝혀내
- 천문학자들이 지중해 심해에 건설중인 거대한 센서 네트워크를 활용해 역대 최고 에너지의 우주 '유령 입자'를 검출하는 데 성공했다. 해당 연구에 대해서는 CNN, 뉴욕타임스, 네이터닷컴 등 다수 외신이 심층적으로 다루었다. 이 입자는 공식 명칭 '중성미자(Nutiino)'로, 이전에 검출된 수백 개의 중성미자보다 30배나 높은 에너지를 지닌 것으로 확인됐다. 우주에서 날아오는 이 작고 강렬한 입자들은 물질과 상호작용없이 통과하는 특성 때문에 '유령 입자'로 불린다. 질량이 거의 없는 중성미자는 별, 행성, 은하 전체를 포함한 극한 환경을 통과하면도 구조를 유지한다. 전 세계 360명 이상의 과학자들이 참여한 KM3NeT 협력단의 중성미자 분석 결과는 12일 과학 저널 '네이처(Nature)'에 게재됐다. 공동 저자인 로사 코닐리오네 KM3NeT 부대변인 겸 이탈리아 국립핵물리연구소 연구원은 "중성미자는 특별한 우주 메신저로, 가장 강력한 현상과 관련된 메커니즘에 대한 독특한 정보를 제공하며 우주의 가장 먼 곳까지 탐험할 수 있게 해 준다"고 밝혔다. 이번에 검출된 기록적인 중성미자는 KM3-230213A로 명명됐으며 2200억 전자볼트의 에너지를 가지고 있었다. 연구진에 따르면 이 엄청난 에너지는 스위스 제네바 인근 유럽입자물리연구소(CERN)의 거대 강입자 충돌기(LHC)가 입자를 빛의 속도에 가깝게 가속시키는 능력보다 약 3만 배나 강력한 것이다. 전하를 띠지 않는 중성미자는 고에너지 양성자가 우주를 창조한 빅뱅에서 남은 복사선의 광자와 결합할 때 생성될 수 있다. 이 입자들은 우주를 거의 빛의 속도로 이동한다. KM3NeT 공동 저자인 브래드 K. 깁슨 박사는 이메일을 통해 CNN에 "이 단일 중성미자의 에너지는 우라늄 원자 하나, 또는 열 개, 심지어 백만 개의 원자를 쪼개서 방출되는 에너지와 맞먹는다고 생각하면 된다"며 "이 작은 중성미자 하나가 10억 개의 우라늄 원자를 쪼개서 방출되는 에너지만큼의 에너지를 가지고 있었다. 핵분열로 생성되는 에너지와 비교하면 정말 엄청난 숫자"라고 설명했다. 이 입자는 우주에서 그렇게 높은 에너지의 중성미자가 생성될 수 있다는 최초의 증거를 제공한다. 연구진은 이 중성미자가 우리 은하 너머에서 왔다고 믿지만, 정확한 기원 지점은 아직 밝혀내지 못했다. 초거대 블랙홀, 감마선 폭발, 초신성 잔해와 같은 극한 환경에서 중성미자가 생성되어 우주를 가로질러 날아왔을 가능성이 제기된다. 공동 저자인 파스칼 코일 KM3NeT 대변인 겸 프랑스 국립과학연구센터-마르세유 입자물리센터 연구원은 이번 획기적인 발견은 중성미자 천문학의 새로운 장을 열었을 뿐만 아니라 우주를 관측할 새로운 창을 열었다고 말했다. 코일은 "KM3NeT은 검출된 중성미자가 극한의 천체 물리학적 현상에서 비롯될 수 있는 에너지와 감도의 범위를 탐색하기 시작했다"고 덧붙였다. 중성미자, 얼음이나 물과 상호작용 중성미자는 주변 환경과 상호작용을 잘 하지 않기 때문에 검출하기 어렵지만, 물이나 얼음과는 상호작용한다. 중성미자가 검출기와 직접 상호작용하면 얼음에 박히거나 물에 떠 있는 인근 디지털 광학 센서 네트워크가 감지할 수 있는 푸르스름한 빛을 방출한다. 예를 들어 남극의 아이스큐브 중성미자 관측소는 남극 얼음에 박힌 5000개 이상의 센서 그리드를 포함한다. 2011년부터 운영된 이 검출기는 수백 개의 중성미자를 발견했으며, 과학자들은 그 중 일부를 블레이저나 활동 은하의 밝은 핵과 같이 우주적 근원으로 그 일부를 추적할 수 있었다. 국제 연구팀은 2010년대 초 심해에서 중성미자를 포착할 수 있는 1 입방킬로미터 중성미자 망원경(KM3NeT)으로 알려진 검출기 네트워크 아이디어를 구상했고, 2015년에 네트워크 설치가 시작됐다. KM3NeT은 2023년 2월 13일, 이 입자가 두 검출기 중 하나를 밝혔을 때 기록적인 검출에 성공했다. 두 개의 검출기 중 하나인 ARCA(심해 우주선 연구)는 수심 3450m에 위치하고, ORCA(심해 우주선 진동 연구)는 지중해 해저 수심 2450m에 위치한다. 이탈리아 카포 파세로 인근 시칠리아 해안에 있는 ARCA 검출기는 고에너지 중성미자를 포착하도록 설계됐고, 프랑스 남동부 툴롱 근처에 있는 ORCA는 저에너지 중성미자 탐색에 전념한다. 해저에 고정된 센서 그리드를 포함하는 KM3NeT은 아직 건설 중이지만, 고에너지 중성미자를 포착하기에 충분한 검출기가 배치됐다고 연구진은 밝혔다. ARCA 검출기는 계획된 구성 요소의 10%만 작동 중이었을 때 입자가 망원경 전체를 거의 수평으로 통과하며 활성 센서의 3분의 1 이상에서 신호를 발생시켰다. 검출기는 하전 입자에 의해 생성된 2만8000개 이상의 빛 광자를 기록했다. 미스터리하고 강력한 기원 이 중성미자 내의 에너지가 일상적인 물체에 대한 이해를 위해 전환된다면 0.04줄, 즉 1m 높이에서 떨어진 탁구공의 에너지에 해당한다고 공동 저자인 아르트 헤이보어 KM3NeT 물리학 코디네이터 겸 네덜란드 국립 아원자 물리학 연구소(NIKHEF) 및 암스테르담 대학 교수는 말했다. 그 양은 작은 LED 전구를 약 1초 동안 켤 수 있는 정도라고 그는 말했다. 헤이보어는 이메일을 통해 "일상적인 물체에 대해서는 큰 에너지가 아니지만, 일상 세계와의 그런 유추가 가능하다는 사실 자체가 놀랍다. 이 모든 에너지는 단일 기본 입자 안에 담겨 있었다"고 설명했다. 연구진에 따르면 입자 규모에서 중성미자는 가시광선 광자 에너지의 약 10억 배에서 1억 배에 해당하는 초고에너지로 간주됐다. 지구에서 중성미자를 검출하면 연구원들은 근원지를 추적할 수 있다. 이 입자들이 어디에서 오는지 이해하는 것은 오랫동안 광선이 지구 대기에 충돌할 때 중성미자의 주요 원천으로 여겨져 온 미스터리한 광선인 우주선(Cosmic Ray)의 기원에 대해 더 많은 것을 밝힐 수 있다. 우주에서 가장 강력한 입자인 우주선(cosmic ray)은 우주에서 지구로 쏟아진다. 이 광선은 대부분 양성자나 원자핵으로 구성되어 있으며, 광선을 생성하는 것이 거대 강입자 충돌기의 능력을 능가하는 매우 강력한 입자 가속기이기 때문에 우주 전역으로 방출된다. 중성미자는 우주선이 이디에서 오는지, 무엇이 우주 전역으로 발사하는 지 천문학자들에게 알려줄 수 있다. 연구진은 감마선 폭발이나 138억년 전 빅뱅에서 남은 복사인 우주 마이크로파 배경의 광자와 우주선 상호 작용과 같이 강력한 무엇인가가 이번에 새로 발견된 중성미자를 방출했다고 추정한다. 연구 기간 동안 연구진은 중성미자를 생성했을 가능성이 있는 12개의 잠재적 블레이저를 확인하기도 했다. 블레이저는 검출기에서 수집한 데이터와 감마선, X선, 전파 망원경의 교차 참조 데이터를 기반으로 입자가 이동한 것으로 추정되는 방향과 일치한다. 하지만 더 많은 연구가 필요하다.
-
- 포커스온
-
우주 '유령 입자'의 놀라운 에너지, 심해 탐사로 밝혀내
-
-
[우주의 속삭임(85)] 우주 거대 은하 생성, 미스터리 해결 근접
- 오랫동안 천문학자들의 궁금증을 풀어주지 못했던 은하 생성의 비밀이 풀릴 수 있을까. 수십 년 동안 전문가들을 당혹스럽게 했던 우주에서의 거대 은하 생성에 대한 미스터리를 해결할 실마리가 잡혔다고 PHYS가 전했다. 천문학자들이 거대한 타원 은하의 탄생지를 발견했으며, 이것이 은하가 어떻게 만들어졌는지에 대한 새로운 단서를 제공한다고 밝혔다. 고대 은하의 생성은 평평한 원반과 같은 우리 은하수에 비해 부풀어 오른 축구공처럼 보이며, 이는 천체물리학자들에게 여전히 미스터리로 남아 있다. 그런데, 전 세계 전문가들과 협력하는 영국 사우샘프턴 대학교의 천체 연구팀이 새로운 연구를 통해 이 수수께끼가 마침내 풀릴 수 있을 것이라고 밝혔다. 연구팀원인 사우샘프턴 대학교의 안나그라지아 풀리시 박사는 초기의 우주에서 차가운 가스의 대량 흐름과 은하 간의 충돌이 이러한 거대한 시스템을 만들었을 가능성이 있다고 말했다. 풀리시는 "두 개의 원반형 은하가 충돌하면서 별이 형성되는 연료인 가스가 중심부로 가라앉았고, 수조 개의 새로운 별이 생성되었다. 이러한 우주의 충돌은 약 80억~120억 년 전에 일어났는데, 당시 우주는 훨씬 더 활발한 진화 단계에 있었다"고 설명했다. 그녀는 "연구팀의 발견은 천문학에서 오랫동안 미스터리로 남아 있던 문제를 해결하는 데 한 걸음 더 다가가게 했다. 이는 초기 우주에서 은하가 어떻게 만들어졌는지에 대한 우리의 이해를 재정의할 것"이라고 덧붙였다. 네이처에 게재된 이 연구는 사우샘프턴 대학교, 중국 퍼플마운틴 천문대, 중국과학원 등이 협력해 수행했다. 연구팀은 칠레 아타카마 사막에 있는 세계 최대의 전파 망원경 ALMA를 사용해 먼 우주에서 별을 형성하는 100개 이상의 은하를 분석했다. 퍼플마운틴 천문대의 연구 책임자인 칭화 탄 박사는 팀이 멀리 떨어진 매우 밝은 은하에서 방출되는 빛의 분포를 살펴보는 새로운 기술을 사용해 이를 발견하게 됐다고 말했다. 그녀는 "이것은 멀리 떨어진 은하의 핵에 위치한 강렬한 별 형성 에피소드를 통해 구형 은하체가 직접 형성된다는 최초의 실제 증거다. 천체물리학자들은 수십 년 동안 이 과정을 이해하려고 노력해 왔다"고 부연했다. 그녀는 또 "이 은하들은 빠르게 형성된다. 가스가 블랙홀에 공급되도록 내부로 빨려 들어가 별의 폭발을 촉발시키는데, 별들은 우리 은하보다 10~100배 빠른 속도로 생성된다"고 설명했다. 연구진은 오픈소스 아카이브 프로젝트를 사용해 많은 먼 은하에 대한 고품질 관측 데이터를 수집했다. 연구팀은 JWST 및 유클리드(Euclid) 위성에 탑재된 망원경과 중국 우주정거장에서 수집한 데이터 및 연구 결과를 통합해 은하의 별 구성을 매핑할 것이라고 밝혔다. 풀리시 박사는 "이 연구는 초기 은하 형성에 대한 보다 완전한 그림을 제공하고, 우주가 태초부터 어떻게 진화해 왔는지에 대한 이해를 심화시킬 것"이라고 덧붙였다.
-
- IT/바이오
-
[우주의 속삭임(85)] 우주 거대 은하 생성, 미스터리 해결 근접
-
-
[우주의 속삭임(80)] 블랙홀 둘러싸고 있는 코로나 모양 첫 공개
- 블랙홀을 둘러싸고 있는 코로나 모양이 처음으로 공개됐다. 지구상에서 개기일식을 관찰하면, 태양을 가린 달 주위를 밝은 빛의 후광이 둘러싸고 있는 현상을 보게 된다. 이는 코로나라고 불리는 것으로, 태양의 확산된 외기권을 말한다. 이 외기권은 너무 얇아서 지구에서 보면 진공으로 생각되지만, 코로나 온도가 섭씨 수백만 도에 달하는 강한 에너지이기 때문에 개기일식 때 볼 수 있다. 우주의 블랙홀 역학에 따르면 블랙홀에도 코로나가 있다. 또한 태양의 코로나와 마찬가지로 블랙홀 코로나도 관찰하기 어렵다. 그런데 최근 천체물리학저널(The Astrophysical Journal)에 실린 연구에서 블랙홀 코로나 영역에 대한 관찰이 이루어졌다고 사이언스얼라트가 전했다. 활성 블랙홀의 경우, 일반적으로는 블랙홀을 둘러싸고 있는 도넛 모양의 가스와 먼지 토러스가 있다. 또 블랙홀의 회전면을 따라 정렬된 가열된 물질의 강착원반(디스크)이 있는 것으로 추정된다. 블랙홀의 극지방에서 흘러나오는 것은 거의 빛의 속도로 빠르게 멀어지는 이온화된 가스 제트이다. 우리가 관측하는 다양한 유형의 활성 은하핵(AGN)은 이 모델로 설명할 수 있다. 이유는 지구를 향하는 블랙홀의 방향에 따라 AGN의 모양이 변화하기 때문이다. 모델에 따르면, 강착원반의 가장 안쪽은 밀도가 진공에 가까운 과열 영역이며, 이는 블랙홀로 흘러 들어간다. 블랙홀 코로나는 태양의 코로나와 비슷하지만, 온도는 태양의 수백만 도에 비해 훨씬 높은 수십억 도에 달한다. 그러나 넓게 확산되어 있기 때문에, 그 빛은 강착원반의 빛에 압도된다. 연구팀은 블랙홀의 코로나를 연구하기 위해 개기일식 중 태양의 코로나를 관찰하는 것과 유사한 기법을 사용했다. 블랙홀이 지구를 기준으로 하는 방향은 일부 블랙홀의 경우 가스와 먼지의 토러스가 강착원반 영역에 대한 우리의 시야를 가리는 반면, 다른 블랙홀의 경우 원반을 직접 볼 수 있다. 이를 가려진 블랙홀과 가려지지 않은 블랙홀이라고 한다. 가려진 블랙홀은 강착원반의 빛이 시야에서 가려지기 때문에 개기일식으로 가려진 태양과 유사하다. 블랙홀의 코로나도 마찬가지이다. 그러나 블랙홀 코로나는 너무 뜨거워서 극도로 높은 에너지의 X선을 방출한다. 이 X선은 토러스의 물질을 산란시키고 우리의 시야로 반사될 수 있다. 연구진은 나사(NASA)의 이미징X선편광측정탐사선(IPXE)에서 얻은 데이터를 사용, 우리 은하의 백조자리 X-1과 X-3, 대마젤란 성운의 LMG X-1과 X-3 등 12개의 가려진 블랙홀 데이터를 수집했다. 연구진은 이들 블랙홀의 코로나에서 산란된 X선을 관찰할 수 있었으며, 블랙홀 사이의 패턴도 감지할 수 있었다. 데이터에 따르면 코로나는 태양의 코로나와 비슷한 구체로 블랙홀을 둘러싼 것이 아니라 강착원반과 비슷한 원반으로 블랙홀을 둘러싸고 있다. 이번 연구는 천문학계에서 블랙홀 모델을 다듬는 데 도움이 될 것으로 기대된다. 또한 블랙홀이 어떻게 물질을 소비하고, 먼 은하에서 관측하는 AGN에 동력을 공급하는지를 이해하는 데 기여할 것으로 보인다.
-
- IT/바이오
-
[우주의 속삭임(80)] 블랙홀 둘러싸고 있는 코로나 모양 첫 공개
-
-
[우주의 속삭임(76)] 블랙홀, 우주 팽창의 비밀 쥐고 있나…암흑 에너지 연관성 연구 결과 발표
- 우주의 팽창을 가속화시키는 미지의 힘, 암흑 에너지의 정체를 밝힐 단서가 블랙홀에 있을 가능성이 제기됐다. 미국 애리조나주립대학교 케빈 크로커(Kevin Croker) 교수 연구팀은 블랙홀이 암흑 에너지와 연관되어 우주 팽창에 영향을 미칠 수 있다는 연구 결과를 발표했다고 사이언스얼라트가 전했다. 현재 이론에 따르면 우주의 초기 성장 시기는 인플레이션 시기였다. 빅뱅 직후 우주는 무(無)에서 상당히 큰 무언가로 순식간에 변했다. 이후 한동안 상대적으로 느리게 성장하다가 약 50억년 전 암흑 에너지에 의해 팽창이 지배되기 시작했다. 연구팀은 암흑 에너지 분광기(DESI)를 이용하여 거대 질량 별의 붕괴로 생성되는 블랙홀의 성장 속도를 분석하고, 이를 우주 팽창 속도와 비교했다. 그 결과 블랙홀의 형성과 우주 팽창 사이에 뚜렷한 상관관계가 있음을 확인했다. 즉, 블랙홀이 생성될수록 우주 팽창 속도가 빨라지는 경향을 보인 것이다. 이러한 현상은 '우주론적 결합(cosmological coupling)' 이론으로 설명될 수 있다. 이 이론에 따르면, 블랙홀은 일반 물질을 암흑 에너지로 변환시키는 역할을 하며, 이 과정에서 우주 팽창이 가속화된다. 연구팀은 블랙홀의 암흑 에너지 변환율을 계산한 결과, 현재 우주에서 관측되는 팽창 속도와 일치하는 것을 확인했다. 또한, 이 연구는 블랙홀이 암흑 에너지의 근원일 가능성을 제시하며, 우주 팽창의 미스터리를 풀 수 있는 중요한 단서를 제공한다는 점에서 학계의 주목을 받고 있다. 연구팀은 향후 추가적인 연구를 통해 블랙홀과 암흑 에너지의 연관성을 더욱 명확히 규명할 계획이다. 이 연구 결과는 우주론 및 천체입자물리학 저널(Journal of Cosmology and Astroparticle Physics)에 게재됐다.
-
- IT/바이오
-
[우주의 속삭임(76)] 블랙홀, 우주 팽창의 비밀 쥐고 있나…암흑 에너지 연관성 연구 결과 발표
-
-
[신소재 신기술(123)] NASA, 중력파 관측소용 프로토타입 망원경 공개
- 나사(NASA)가 블랙홀과 다른 우주적 근원이 합쳐지면서 발생하는 시공간 파장인 중력파를 우주에서 감지할 수 있는 6개의 실물 크기 프로토타입 우주 망원경을 홈페이지를 통해 공개했다. 우주 망원경은 향후 10년 동안 진행될 나사의 우주 미션 리사(LISA: Laser Interferometer Space Antenna) 임무에 사용될 계획이다. 망원경은 2개가 한 쌍을 이루어 우주선에 탑재된다. 중력파를 관측하는 차세대 리사 임무는 유럽우주국(ESA)과 나사가 협력해 진행하는 미션으로, 레이저를 사용해 태양보다 더 광대하게 분산된 3대의 우주선 사이의 정확한 거리를 측정해 중력파를 감지하는 것이다. 거리 측정은 피코미터 또는 1조 분의 1미터 수준의 정밀도로 이루어진다. 삼각형 배열의 각 면은 약 250만km를 측정한다. 미국 메릴랜드주의 나사 고다드 우주비행센터의 라이언 드로사 박사는 "각 우주선에 탑재된 쌍둥이 망원경은 적외선 레이저 빔을 송수신해 동료 우주선을 추적하며, 리사 임무에 쓰이는 6대의 망원경은 나사가 모두 공급한다. 엔지니어링 개발 망원경 유닛(Engineering Development Unit Telescope)이라는 이름의 이 프로토타입은 우주를 비행할 우주선 하드웨어를 제작하는 작업을 지원하게 된다. 뉴욕주 로체스터에 소재한 L3해리스테크놀로지(L3Harris Technologies)에서 제조 및 조립한 프로토타입 망원경은 지난 5월 고다드 센터에 도착했다. 망원경의 주 거울은 적외선 레이저를 매우 잘 반사하고, 차가운 공간에 노출된 상태에서 열 손실을 줄이기 위해 금으로 코팅됐다. 망원경은 실내 온도에 가까울 때 가장 잘 작동한다. 프로토타입 망원경은 모두 독일 마인츠에 소재한 쇼트(Schott)에서 제조한 호박색 유리 세라믹(Zerodur)으로 만들어졌다. 이 소재는 폭넓은 온도 범위에서 모양이 거의 변하지 않기 때문에 망원경 거울과 고정밀이 필요한 응용 분야에 널리 사용된다. 리사 임무는 2030년대 중반에 시작될 예정이다.
-
- IT/바이오
-
[신소재 신기술(123)] NASA, 중력파 관측소용 프로토타입 망원경 공개
-
-
[우주의 속삭임(64)] 허블 우주망원경, 블랙홀 빔이 별의 폭발 촉진 밝혀
- 천문학자들이 NASA/ESA(미 항공우주국/유럽우주국) 허블 우주 망원경을 통해 거대한 은하의 중심에 있는 초거대 블랙홀에서 토치처럼 분출하는 제트 빔이 별의 폭발을 촉진하는 것으로 보인다는 사실을 발견했다. '신성(novae)'이라고 불리는 이 별은 제트 빔 인근에 존재하면서 빔과 밀접하게 상호 작용하는 것으로 보인다. 이 연구는 arXiv에 게재됐다. 연구팀을 이끈 스탠포드 대학의 알렉 레싱 박사는 "무슨 일이 벌어지는지는 불확실하지만 매우 흥미로운 발견이다. 이것은 블랙홀 제트 빔이 주변 천체와 상호 작용하는 방식에 대한 새로운 시각을 제공한다"고 말했다. 신성의 폭발은 노후화된 정상적인 별이 타버린 백색 왜성 동반성 위로 수소를 쏟아붓는 이중성계에서 일어난다. 왜성이 1마일(1.6km) 깊이로 수소 표층을 가득 채우면, 그 표층은 거대한 핵폭탄처럼 폭발한다. 단 왜성은 신성 폭발로 인해 파괴되지 않는다. 폭발로 표층의 수소를 분출한 후 원상태로 돌아가 신성 폭발 주기가 다시 시작된다. 연구팀은 허블 망원경을 통한 조사기간 동안, 거대 은하의 다른 곳보다 제트 빔 근처에서 두 배나 많은 신성 폭발을 발견했다. 제트 빔은 소용돌이치는 물질로 이루어진 원반으로 둘러싸인 65억 태양 질량의 중앙 블랙홀에 의해 발사된다. 블랙홀은 거의 빛의 속도로 우주를 가로지르는 3000광년 길이의 플라스마 제트 빔을 발사했다. 높은 에너지의 빔에 걸린 것은 무엇이든 끓거나 타오를 것이다. 빔에 걸리지 않아도 근처에 있는 신성과 같은 존재들이 위험한 것은 마찬가지다. 제트 빔 근처에서 두 배나 많은 신성이 발견되었다는 것은 빔 근처에 신성을 형성하는 이중성계가 두 배 많거나, 이들 행성계가 은하계의 다른 곳에 있는 유사한 성계보다 두 배 더 분출한다는 것을 의미한다. 레싱 박사는 "제트 빔이 주변 지역을 떠도는 별에 뭔가 영향을 미치고 있음은 분명하다. 제트 빔이 수소 연료를 백색 왜성에 쏟아부어 왜성이 더 자주 분출하게 하는 것일 수도 있다"고 추정했다. 연구팀이 추정한 또 다른 시나리오는 제트 빔이 왜성의 동반성을 가열해 왜성으로 더 많은 수소를 공급한다는 것이다. 그러나 연구팀은 이 정도로는 신성 폭발을 일으킬 만큼의 충분한 수소 공급이 이루어지지 않는다고 결론지었다. 1990년 허블 관측이 시작된 직후, 천문학자들은 1세대 카메라(FOC)를 사용해 괴물 블랙홀이 숨어 있는 M87의 중심부를 관측했다. 당시에도 학자들은 블랙홀 주변에서 비정상적인 일이 일어나고 있다는 것을 발견했었다. 그러나 FOC의 시야가 너무 좁아서 더 이상의 큰 진전은 이루어지지 않았다. 그러나 광시야 카메라로 재무장한 허블 망원경은 1년에 가까운 기간 동안 새로운 정보를 다량 제공했다. 연구팀은 5일마다 M87을 들여다보고 이미지를 촬영했다. 모든 M87 이미지를 통합해 M87의 가장 자세한 이미지를 도출했다. 그 결과 카메라가 포착할 수 있는 M87의 3분의 1의 영역에서 94개의 신성을 발견됐다. 알려진 모든 신성을 M87 이미지에 표시하면 제트 빔을 따라 신성이 대거 집중해 있다는 것이 나타난다. 데이터에 의한 통계 분석과 이미지로 확인된 것이다. ESA 연구원인 키아라 서코스타는 "우리는 흥미롭지만 당혹스러운 현상을 목격하고 있다"면서 "블랙홀의 제트 빔이 은하와 상호 작용하고, 잠재적으로 별 형성에 영향을 미치는 방식을 더 깊이 이해할 수 있다는 점에서 소중한 발견"이라고 강조했다. 신성은 우주에서 매우 흔하게 발생한다. 매일 M87 어딘가에서 신성이 하나씩 폭발한다. 관찰 가능한 우주 전체에 적어도 1000억 개의 은하가 존재하기 때문에, 우주 어딘가에서 매초 약 100만 개의 신성이 폭발하고 있다.
-
- IT/바이오
-
[우주의 속삭임(64)] 허블 우주망원경, 블랙홀 빔이 별의 폭발 촉진 밝혀
-
-
[우주의 속삭임(63)] EOS 망원경, 역대 최고 해상도 '은하 적외선 지도' 공개
- 우리 은하계에 대한 역대 최고 해상도를 가진 적외선 지도가 공개됐다. 천문학자들이 유럽남방천문대(ESO)의 VISTA 망원경을 이용해 15억개 이상의 천체를 담은 은하수 적외선 지도를 발표했다. 해당 연구에 대해서는 PHYS.org와 라이브사이언스 등 다수 외신이 26일(현지시간) 보도했다. 이는 역대 최고 해상도의 은하 지도로, 연구팀은 13년 이상 은하 중심부를 관측했다. 이번 연구 결과는 천문학 및 천체물리학(Astronomy & Astrophysics) 저널에 게재됐다. 연구를 이끈 칠레 안드레스 베요 대학의 단테 미니티 천체물리학자는 "이번 발견으로 우리 은하에 대한 시각이 영원히 바뀌었다"고 말했다. 이 기록적인 지도는 ESO의 VISTA 망원경으로 촬영한 20만 장의 이미지로 구성됐다. 또한 500테라바이트의 데이터로 ESO 망원경으로 수행된 관측 프로젝트 중 가장 큰 규모이다. 테라바이트(Terabyte)는 컴퓨터 저장 용량을 나타내는 단위 중 하나로 1테라바이트(TB)는 1000기가 바이트(GB) 또는 약 1조 바이트에 해당한다. 2009년 첫 관측을 시작한 VISTA(Visible and Infrared Survey Telescope for Astronomy)는 칠레 파라날 천문대에 위치한 유럽남방천문대(ESO) 소속의 4m급 광시야 탐사 망원경이다. 주로 근적외선 영역을 관측해 가시광선으로는 볼 수 없는 차가운 천체나 먼지에 가려진 천체들을 연구한다. 또한 1.65도의 넓은 시야(광시야)를 가지고 있어 넓은 영역의 하늘을 빠르게 탐사할 수 있다. 게다가 6700만 화소의 적외선 카메라 VIRCAM을 탑재해 고해상도 이미지를 얻을 수 있다. 연구팀은 VISTA의 적외선 카메라 VIRCAM을 사용하여 은하에 퍼져있는 먼지와 가스를 투과하여 은하수에서 제일 깊이 숨겨진 곳의 복사(radiation, 에너지가 파동 또는 입자의 형태로 공간을 이동하는 현상)를 관측할 수 있었고, 이를 통해 은하 환경에 대한 독특한 시야를 열었다. 이 방대한 데이터 세트는 보름달 8600개에 해당하는 하늘 영역을 커버하며, 같은 팀이 2012년 공개한 이전 지도보다 약 10배 더 많은 천체를 포함한다. 여기에는 먼지 구름에 싸여 있는 갓 태어난 별들과 은하수에서 가장 오래된 별 수백만 개가 밀집된 구상 성단이 포함된다. 적외선 관측을 통해 VISTA는 갈색 왜성(별과 행성의 중간 단계에 있는 천체)이나 별을 공전하지 않는 자유롭게 떠다니는 행성과 같은 매우 차가운 천체도 포착할 수 있었다. 관측은 2010년에 시작되어 2023년 상반기에 종료되었으며, 총 420일에 걸쳐 진행됐다. 하늘의 각 영역을 여러 번 관측함으로써 연구팀은 이러한 천체의 위치뿐만 아니라 움직임과 밝기 변화도 추적할 수 있었다. 연구팀은 주기적으로 밝기가 변하는 별들을 관측해 우주의 거리를 측정하는 데 사용했다 이를 통해 이전에는 먼지에 가려져 있던 은하수 내부 영역의 정확한 3D 지도를 얻을 수 있었다. 또한 은하수 중심의 초거대질량 블랙홀과의 근접 조우 후 빠르게 튕겨 나간 별들인 초고속 별도 추적했다. 새로운 지도에는 VISTA 망원경을 이용한 우리 은하 변광체 탐사(VVV)와 그 후속 프로젝트인 VVV eXtended(VVVX) 탐사의 일환으로 수집된 데이터가 포함되어 있다. 브라질 산타 카타리나 연방 대학교의 천체물리학자이자 이 논문의 주 저자인 로베르토 사이토 박사는 "이 프로젝트는 훌륭한 팀 덕분에 가능했던 기념비적인 노력이었다"고 말했다. VVV 및 VVVX 탐사는 이미 300개 이상의 과학 논문을 탄생시켰다. 이제 탐사가 완료되었으므로 수집된 데이터에 대한 과학적 탐구는 앞으로 수십 년 동안 계속될 것이다. 한편, ESO의 파라날 천문대는 미래를 위해 더욱 업그레이드되고 있다. VISTA는 새로운 장비인 4MOST로 업그레이드될 예정이며, ESO의 초대형 망원경(VLT)은 MOONS 장비를 갖추게 될 것이다. 이 두 장비는 함께 이번 탐사에서 조사된 수백만 개의 천체에 대한 스펙트럼을 제공하여 앞으로도 수많은 새로운 발견을 가져올 것으로 기대된다.
-
- IT/바이오
-
[우주의 속삭임(63)] EOS 망원경, 역대 최고 해상도 '은하 적외선 지도' 공개
-
-
[우주의 속삭임(59)] 블랙홀, 냉각된 별일까? 아인슈타인 이론 도전하는 새로운 가설
- 블랙홀은 '얼어붙은 별'이라는 새로운 이론이 등장했다. 극도로 강력한 중력을 가진 블랙홀은, 그 중력이 너무 강해서 빛조차도 탈출할 수 없기 때문에 '검은 구멍'이라고 불린다. 또한 블랙홀은 엄청난 질량을 아주 작은 공간에 압축하고 있어서, 주변의 모든 것을 끌어당긴다. 블랙홀의 중심에는 '특이점'이라고 불리는 점이 있다. 이곳에서는 밀도와 중력이 무한대가 되어 우리가 알고 있는 물리 법칙이 적용되지 않는다. 또한 빛 조차도 빠져나갈수 없는 경계인 '사건의 지평선'이라는 두 가지 특징을 갖는다. 하지만 이 모델은 양자 역학이 도입되면서 심각한 문제에 부딪혔다. 게다가 1970년대에 스티븐 호킹은 사건의 지평선 근처의 양자 효과가 우주 진공에 입자를 생성하는 '호킹 복사(호킹의 복사 역설)'라고 알려진 과정을 일으킨다는 사실을 발견했다. 블랙홀은 이처럼 과학 법칙을 거스르는 특이한 존재로, 해결할 수 없는 많은 역설과 연관되어 왔다. 최근 남아프리카공화국의 로즈대학교와 이스라엘의 벤구리온 대학교 공동 연구팀은 블랙홀에 대한 우리의 모든 지식을 바꿀 수 있는 새로운 이론을 제시했다. 연구팀은 얼어붙은 별 모델에 대한 상세한 이론 분석을 수행했으며, 이 모델이 사건의 지평선과 특이점이 모두 없기 때문에 블랙홀이 실제로 '얼어붙은 별(frozen star)'일 수 있다고 주장했다. 얼어붙은 별은 냉각되어 더 이상 빛이나 열을 방출하지 않는 별의 잔해로, 흑색 왜성(black dwarf)이라고도 불리며 별의 마지막 단계를 나타낸다. 일반적으로 과학자들은 별이 흑색 왜성에 도달하는데 수 조년이 걸린다고 추정한다. 우리 우주는 137억년 밖에 되지 않았기 때문에 아직 흑색 왜성은 존재하지 않는다. 그러나 연구팀은 이번 연구에서 흑색 왜성과 블랙홀 사이의 유사성을 자세히 분석해, 기존 블랙홀 모델과 관련된 많은 역설을 해결할 수 있음을 발견했다. 현재 블랙홀 모델의 문제점 과학계는 블랙홀에 관해서는 1915년 알버트 아인슈타인이 일반 상대성 이론에서 제시한 내용을 따르고 있다. 아인슈타인에 따르면 블랙홀에는 두 가지 특징이 있다. 첫째, 중심에 '특이점(singularity)'이라고 하는 무한 밀도의 점이 존재한다. 둘째, 블랙홀에는 '사건의 지평선(event horizon)'이 있어 빛조차도 탈출할 수 없는 경계를 형성한다. 이 이론은 널리 받아들여지고 있지만, 몇 가지 문제점에 직면해 있다. 예를 들어 실제 관측 결과는 자연에 무한대가 존재하지 않음을 시사하며, 이것이 물리학에서 모든 것이 유한하다고 간주되는 이유다. 또 다른 모순은 앞서 말했듯이 스티븐 호킹의 복사 역설에서 발생한다. 이 역설은 블랙홀이 복사를 방출하고 시간이 지남에 따라 질량을 천천히 잃어 결국 완전히 증발한다고 제안한다. 그러나 아인슈타인은 블랙홀에서 아무것도 빠져나갈 수 없다고 했다. 또한 블랙홀이 증발하면 블랙홀을 형성한 물질이 파괴된다. 그러나 이것은 정보 보존의 법칙에 위배된다. 정보 보존 법칙은 물질과 마찬가지로 정보도 생성되거나 파괴될 수 없다고 명시하며, 양자 역학의 기초를 형성한다. 연구팀은 블랙홀을 특이점과 사건의 지평선이 없는 '얼어붙은 별'로 간주하면 이러한 모든 역설이 해결된다고 밝혔다. 블랙홀은 얼어붙은 별일까? 연구팀은 블랙홀의 엔트로피 및 열 복사와 같은 열역학적 특성의 이론적 값이 흑색 왜성의 값과 유사함을 입증했다. 이번 연구의 제1 저자인 이스라엘 벤 구리온 대학교의 라미 브루스타인 물리학 교수는 라이브 사이언스와의 인터뷰에서 "우리는 얼어붙은 별이 사건의 지평선이 없지만 (거의) 완벽한 흡수체처럼 행동하고 중력파의 원천으로 작용하는 방법을 보여주었다"며 이러한 물체는 블랙홀처럼 그 위에 떨어지는 거의 모든 것을 흡수할 수 있다고 지적했다. 그는 "게다가 이 천체들은 기존 블랙홀 모델과 동일한 외부 기하학적 구조를 갖고 있으며 기존의 열역학적 특성을 재현한다"고 덧붙였다. 블랙홀이 얼어붙은 별이라면 무한 밀도의 점이나 특이점이 없다는 것을 의미한다. 이는 블랙홀이 실제 세계의 물체와 동일한 유한성 관련 규칙을 따른다는 것을 시사한다. 또한 사건의 지평선이 없다는 것은 복사와 입자가 경계를 탈출할 수 있음을 의미하며, 이는 호킹이 블랙홀에서 빛이 방출된다는 주장과 일치한다. 브루스타인은 "우리는 얼어붙은 별이 지평선이 없음에도 불구하고 (거의) 완벽한 흡수체처럼 행동하고 중력파의 원천 역할을 하는 방법을 보여주었다. 또한 기존 블랙홀 모델과 동일한 외부 기하학적 구조를 생성하고 기존의 열역학적 특성을 재현한다"고 말했다. 그러나 이 연구에도 몇 가지 한계가 있다. 예를 들어 흑색 왜성은 내부 구조를 가지고 있다고 믿어지지만 블랙홀의 경우에는 그렇지 않다. 또한 블랙홀이 실제로 얼어붙은 별이라는 것을 확인하는 실험적 증거는 없다. 따라서 이 가설을 검증하려면 추가 연구가 필요하다. 이 연구는 '피지컬 리뷰 D(physical Review D)' 저널에 게재됐다.
-
- IT/바이오
-
[우주의 속삭임(59)] 블랙홀, 냉각된 별일까? 아인슈타인 이론 도전하는 새로운 가설
-
-
[우주의 속삭임(54)] 허블·찬드라 망원경, 충돌하는 은하 속 초거대 블랙홀 쌍 발견
- 미 항공우주국(나사·NASA)의 허블 망원경과 찬드라 X선 망원경을 이용해 약 300광년 떨어진 초거대 블랙홀 쌍이 관측됐다. 나사 허블사이트는 9일(현지시간) 홈페이지를 통해 이 블랙홀들은 충돌 중인 두 은하 중심에 위치하며, 가스와 먼지 유입으로 활동성 은하핵(AGN)으로 밝게 빛나고 있다고 밝혔다. 유럽우주국(ESA) 또한 같은 날 나사/ESA 허블 망원경과 NASA의 찬드라 X선 관측소는 매우 가까운 거리에 있는 두 개의 초 거대 블랙홀의 존재를 확인했다고 전했다. 나사에 따르면 이 AGN 쌍은 가시광선과 X 선 관측을 통해 발견된 지역 우주에서 가장 가까운 쌍이다. 된 이 쌍은 이전에 발견된 수십 개의 블랙홀 쌍보다 훨씬 가까운 거리에 위치한다. 이러한 AGN 쌍은 은하 병합이 빈번했던 초기 우주에서 더 흔했을 것으로 추정된다. 약 8억광년 떨어진 이번 발견은 가까운 곳에서 이를 관찰할 수 있는 독특한 기회를 제공한다. 이 발견은 허블 망원경의 고해상도 이미지에서 은하 내 작은 영역에 밝은 산소 가스가 집중되어 있음을 나타내는 세 개의 광학 회절 스파이크가 발견되면서 우연히 이루어졌다. 논문의 수석 저자인 매사추세츠 케임브리지에 있는 하버드 및 스미소니언 천체물리학 센터의 안나 트린다데 팔카오 박사는 "우리는 이런 것을 볼 수 있을 것이라고 예상하지 못했다"며 "이 모습은 가까운 우주에서 흔히 볼 수 있는 모습이 아니며 은하 내부에서 다른 일이 일어나고 있음을 말해준다"고 밝혔다. 연구팀은 찬드라 망원경을 사용해 X 선으로 동일한 은하를 조사했고, 허블 망원경으로 관측된 밝은 광점과 일치하는 두 개의 강력한 고에너지 방출원을 발견했다. 이를 통해 두 개의 블랙홀이 가까이 위치하고 있다는 결론을 내렸다. 연구팀은 추가적으로 뉴멕시코에 있는 칼 G. 잰스키 초대형 전파 망원경의 자료를 활용해 이 블랙홀 쌍이 강력한 전파를 방출한다는 사실도 확인했다. 허블 망원경이 관측한 세 번째 밝은 광원의 기원은 아직 밝혀지지 않았으며, 추가적인 데이터 분석이 필요하다. 나사는 "두 초거대 블랙홀은 각각 원래 은하의 중심에 있었지만, 은하 병합으로 인해 가까워졌다"며 "앞으로 두 블랙홀은 계속해서 서로에게 접근하여 결국 병합될 것이며, 이 과정에서 시공간에 중력파를 발생시킬 것"이라고 추정했다. 미국 국립과학재단의 레이저 간섭계 중력파 관측소(LIGO)는 이미 수십 개의 항성 질량 블략홀 병합에서 발생하는 중력파를 감지했지만, 초거대 블랙홀 병합에서 발생하는 더 긴 파장의 중력하는 LIGO로 감지할 수 없다. 차세대 중력파 검출기인 LISA(Laser Interferometer Space Antenna)는 2030년대 중반 발사될 예정이며, 수백만 마일 떨어진 세 개의 검출기를 통해 심우주에서 발생하는 긴 파장의 중력파를 포착할 수 있을 것으로 기대된다. 허블망원경은 나사와 유럽우주국(ESA)간의 국제 협력 프로젝트로 30년 이상 운영되어 왔다. 팔카오는 "허블의 놀라운 분해능이 없었다면 우리는 이 복잡한 현상을 볼 수 없었을 것"이라고 말했다. 이 연구 결과는 9일 '천체물리학' 저널에 게재됐다.
-
- IT/바이오
-
[우주의 속삭임(54)] 허블·찬드라 망원경, 충돌하는 은하 속 초거대 블랙홀 쌍 발견
-
-
[우주의 속삭임(49)] 블랙홀과 암흑물질, 빅뱅 이전부터 존재했다?
- 블랙홀과 암흑물질의 비밀은 빅뱅 이전의 우주에 ‘비밀스러운 다른 모습’이 있었을 수 있다는 새로운 '바운싱' 우주론을 암시하고 있다는 새로운 연구가 발표돼 주목된다고 라이브사이언스가 전했다. 연구에서 제시하는 '바운싱'은 빅뱅 이전에 수축했다가 팽창으로 '튀어오르는 상황'을 의미한다. 우주론과 우주미립자 저널(Journal of Cosmology and Astroparticle Physics)에 최근 게재된 연구에 따르면 우주는 빅뱅 이전에 먼저 응축되는 기간을 겪었으며, 이로 인해 암흑물질의 수수께끼 같은 본질을 설명할 수 있는 블랙홀이 생성되었을 가능성이 있다. 연구에서 제시된 이론은 "우주는 초기 형성 단계에 먼저 수축해 극도로 밀도가 높은 상태에 도달한 후, 다음 단계에서 반등해 팽창, 즉 빅뱅 단계에 진입해 오늘날의 우주가 형성됐다"는 제안이다. 빅뱅 전에 수축이 먼저 일어났고, 이로 인해 밀도가 증가해 변동하면서 빅뱅 및 현재 관찰되는 가속 팽창으로 이어졌다는 것. 연구진은 수축의 정도를 오늘날보다 약 50배 작은 크기까지 응축되었다고 추정했다. 이는 우주가 빅뱅이라는 단일 사건에서 유래해 그 후부터 빠르게 팽창했다는 전통적인 우주론에 도전하는 것이다. 연구에 따르면 '수축 후 반등'은 블랙홀과 암흑물질에 대한 이해에 심오한 결과를 가져올 수 있다. 또 연구는 우주의 수축 단계에서 밀도 변동으로 인해 작은 블랙홀이 생겨났을 수 있다고 추정하고 있다. 이러한 원시 블랙홀은 반등을 견뎌내고 현재의 팽창 단계로 지속돼 우주 물질의 약 80%를 차지하는 암흑물질을 구성할 수 있다. 암흑물질은 여전히 수수께끼로 남아 있는 영역으로 빛을 반사, 흡수 또는 방출하지 않는다. 프랑스 국립 과학연구센터(CNRS)의 패트릭 피터 박사는 "작은 원시 블랙홀은 우주의 아주 초기 단계에서 생성될 수 있으며, 블랙홀이 극도로 작지 않다면 지금도 여전히 존재할 것이다. 이는 호킹(톡톡 튐) 복사로 인한 붕괴가 블랙홀을 제거하기에 충분치 않을 것이기 때문이다. 소행성 질량과 거의 비슷한 무게를 가진 블랙홀은 암흑물질 규명에 기여하거나 심지어 완전히 해결할 수도 있다"고 설명했다. 이 튀는 우주론 이론이 사실로 입증된다면, 특히 블랙홀과 암흑물질과 관련해 우주에 대한 이해에 혁명을 일으킬 수 있다. 원시 블랙홀의 존재는 빛과의 상호 작용이 부족해 과학자들이 오랫동안 이해하지 못했던 암흑물질의 본질에 대한 설득력 있는 정보를 제공할 수 있다. 한편, 천문학계는 '레이저 간섭계 우주 안테나(LISA)와 아인슈타인 망원경' 등 다가올 중력파 검출기가 이러한 원시 블랙홀이 생성되는 동안 방출된 중력파를 식별할 수 있는 기능을 갖추기를 희망하고 있다. 이 중력파가 감지된다면 이런 블랙홀이 암흑물질을 구성한다는 가설을 뒷받침하는 중요한 증거가 될 수 있다.
-
- IT/바이오
-
[우주의 속삭임(49)] 블랙홀과 암흑물질, 빅뱅 이전부터 존재했다?
-
-
[우주의 속삭임(26)] 제임스 웹 우주 망원경, 우주에서 보석 반지 발견
- 중력 렌즈라는 우주 현상을 통해 생성된 반짝이는 보석 반지가 제임스 웹 우주 망원경으로 촬영됐다. 중력 렌즈는 멀리 떨어진 천체에서 나온 빛이 중간에 있는 거대 천체에 의해 휘어져 보이는 현상을 말한다. 촬영된 이미지는 지구에서 약 60억 광년 떨어진 곳에 위치한 ‘RX J1131-1231’이라는 먼 퀘이사를 포착했다. 이미지의 전면에 위치한 근처 타원 은하의 강력한 중력장은 밝게 빛나는 활동 은하핵(AGN)인 퀘이사의 빛을 굴절시켜 밝은 원을 만들고, 물체를 복제해 궁극적으로는 반지에 보석을 박은 듯한 비주얼을 만들어 낸다. 퀘이사는 은하의 초거대 블랙홀로 떨어지는 다량의 가스와 먼지에 의해 동력을 받아 이를 빛 에너지로 바꾸어 매우 밝게 빛난다. 유럽우주국(ESA)에 따르면, 천문학자들은 은하와 같은 거대한 천체가 그보다 더 먼 곳에서 오는 빛을 굴절시킬 때 발생하는 중력 렌즈 효과를 통해 퀘이사의 블랙홀 인근을 연구할 수 있다. ESA는 퀘이사에서 나오는 X선 방출량을 측정하면 중앙 블랙홀이 얼마나 빨리 회전하는지 알 수 있으며, 이는 시간이 지남에 따라 블랙홀이 어떻게 성장하는지에 대한 중요한 단서를 제공한다고 말했다. 제임스 웹 망원경이 포착한 이미지에서 중력 렌즈를 만들어 내는 타원 은하, 즉 보석 반지는 고리 중앙에 작은 파란색 점으로 나타났다. 이는 매우 멀리 떨어져 있는 퀘이사의 빛을 확대하는 망원경 역할을 한다. ESA는 블랙홀이 주로 은하 간의 충돌과 합병으로 성장한다면 안정된 원반에 물질이 축적되어야 하며, 원반에 새로운 물질이 꾸준히 공급되면 빠르게 회전하는 블랙홀이 될 것이라고 밝혔다. 또 특정 퀘이사의 블랙홀은 빛에 버금가는 대단히 빠른 속도로 회전하고 있으며, 이는 블랙홀이 서로 다른 방향에서 물질을 끌어당기는 것이 아니라 합병을 통해 성장했음을 시사한다고 설명했다.
-
- IT/바이오
-
[우주의 속삭임(26)] 제임스 웹 우주 망원경, 우주에서 보석 반지 발견
-
-
[우주의 속삭임(19)] 우주의 새벽에 최초로 병합되는 은하핵 '퀘이사 쌍' 발견
- 은하계는 광대하지만, 여전히 충돌하고 합쳐지며 겹쳐진다. 그런 가운데 일본 에히메 대학의 마쓰오카 요시키 교수를 필두로 한 국제 천문학자 팀이 지금까지 발견된 것 중 가장 먼 우주 가장자리에서 한 쌍의 퀘이사(Quasar)를 발견했다고 퍼퓰러사이언스가 전했다. 연구팀은 하와이에 있는 지상 제미니 노스(Gemini North) 및 스바루 망원경으로 이를 관측하고 데이터를 분석했다. 발견된 두 개의 은하핵 퀘이사는 먼지와 가스가 중앙의 초거대 블랙홀로 떨어지는 가운데 서로 합쳐(병합)지고 있다. 그 과정에서 이 퀘이사 쌍은 엄청난 양의 빛을 방출했다. 연구팀은 이 빛을 찾아냈고, 이것이 두 개의 퀘이사 쌍임을 밝혔다. 연구팀은 발견된 퀘이사 쌍이 우주의 새벽(Cosmic Dawn: 빅뱅 이후 약 5000만~10억 년), 즉 초창기 우주 여명기에 해당하는 은하핵이라고 말했다. 특히 우주의 새벽 중에서도 우주 암흑기를 끝내고 별과 은하와 같은 요즘과 같은 천체가 구성되기 시작하고 어두운 우주가 처음으로 빛으로 가득 찰 무렵인 ‘재이온화 시기’에 해당하는 천체다. 퀘이사란? 우주는 빅뱅 이후 거의 140억 년 동안 팽창해 왔다. 초기 우주는 지금보다 매우 작았으며 은하계 서로 상호 작용하고 병합될 가능성이 컸다. 퀘이사는 거대 블랙홀이 주변 물질을 집어삼키는 에너지에 의해 형성되는 발광체를 말한다. 블랙홀은 퀘이사의 중심에 있으며, 주위에는 원반이 둘러싸고 있고, 원반 물질은 소용돌이 모양으로 회전하며 블랙홀로 빨려 들어간다. 은하 병합은 가스와 먼지가 초거대 질량의 블랙홀로 떨어지면서 퀘이사를 밝게 빛나게 하는 에너지다. 블랙홀로 떨어지는 원반 물질의 중력 에너지는 빛 에너지로 바뀌고, 여기에서 거대한 빛이 방출된다. 즉, 퀘이사는 지구에서 멀리 떨어진 우주 가장자리에서 발견되는 광원으로서, 멀리 떨어져 있기 때문에 우주 탄생 초창기인 우주의 새벽 시기의 천체다. 재이온화 시대의 의미 천문학자들은 우주의 재이온화 시대를 빅뱅 이후 대략 4억 년으로 잡는다. 우주 탄생 직후 우주 온도가 높았을 때는 수소의 양성자와 전자가 분리돼 이온화된 상태였다. 시간이 지나면서 우주의 온도는 낮아졌고, 양성자와 전자는 중성수소 원자로 결합됐다. 이를 우주 재결합시대라고 한다. 그 후 일어난 우주 재이온화는 중성수소 원자가 양성자와 전자로 다시 이온화되던 시기를 말한다. 천문학자들에 따르면 재이온화 시대 당시의 수소 이온화는 우주 역사에서 매우 중요한 시대였다. 이 시기는 우주의 암흑시대의 종말이며, 오늘날 지구상에서 볼 수 있는 별이 빛나는 은하구조의 시작이었다. 이번에 발견된 방합 중인 퀘이사는 우주 암흑기를 지나 최초의 별과 은하가 나타났던 우주의 새벽 기간, 그 중에서도 우주 재이온화 시대에서 나타난 것이다. 빨간색 광원 퀘이사 쌍의 합병 천문학자들은 우주의 재이온화 시대에 퀘이사가 수행한 정확한 역할을 이해하기 위해 우주의 초기 및 먼 시대에서 퀘이사를 찾고 있다. 마쓰오카 교수는 "재이온화 시대 퀘이사의 통계적 특성은 재이온화의 진행과 기원, 우주의 새벽 동안 초거대 블랙홀의 형성, 퀘이사 은하의 최초 진화 등 많은 것을 말해준다"고 말했다. 재이온화 시대에 약 300개의 퀘이사가 발견됐지만, 쌍을 이루는 퀘이사가 관측된 것은 이번이 처음이다. 연구팀의 퀘이사 발견은 우연이었다. 망원경으로 촬영한 이미지를 검토하다가 희미한 빨간색 광원을 발견했던 것. 팀은 그러나 나타난 붉은 색 광원 두 개가 퀘이사 쌍이었는지를 확신할 수 없었다. 팀은 스바루 망원경과 제미니 노스의 분광기를 사용해 빛을 분석했고, 결국 두 개의 블랙홀을 품은 퀘이사 쌍임을 확인했다 또한 둘 사이에 가스로 이어진 다리 구조도 찾아냈다. 연구팀은 감지된 빛의 일부가 실제로 퀘이사 자체에서 나오는 것이 아니라고 추정했다. 팀은 또한 중앙에 있는 두 개의 블랙홀이 태양 질량의 약 1억 배에 달하는 크기임을 밝혔다. 발견된 현상을 종합해 보면 두 퀘이사는 대규모의 합병을 진행하고 있음을 시사했다. 재이온화 시대의 병합 퀘이사 존재는 오랫동안 예상돼 왔지만, 이번에 처음으로 확인된 순간이었다.
-
- IT/바이오
-
[우주의 속삭임(19)] 우주의 새벽에 최초로 병합되는 은하핵 '퀘이사 쌍' 발견
-
-
[우주의 속삭임(1)] 은하계에서 가장 큰 항성 블랙홀 발견
- 천문학자들이 은하계에서 가장 큰 항성 블랙홀을 발견했으며, 그 질량은 무려 태양의 33배에 달하는 것으로 밝혀졌다고 PHYS가 전했다. 파리 천문대 국립과학연구센터(CNRS)의 천문학자 파스콸 파누조는 '가이아 BH3'라는 이름의 이 블랙홀은 유럽 우주국의 가이아(Gaia) 미션에서 수집한 데이터에서 우연히 발견되었다고 밝혔다. 가이아는 독수리자리 방향으로 지구에서 2000광년 떨어진 BH3에 위치해 있다. 가이아 망원경은 하늘에 있는 별들의 정확한 위치를 알려준다. 그 덕분에 천문학자들은 별들의 궤도를 특성화하고 '가이아 BH3' 블랙홀의 존재 확인은 물론 질량까지 측정하는 데 성공했다. 지상 망원경을 통해 추가로 관측한 결과, '가이아 BH3' 블랙홀은 이미 은하계에서 발견된 기존의 항성 블랙홀보다 질량이 훨씬 더 큰 블랙홀이라는 것이 확인됐다. 파누조는 "지금까지 발견되지 않은 채 숨어 있던 거대 질량 블랙홀을 발견할 것이라고는 아무도 예상하지 못했다. 이것은 일생에 단 한 번 있을 수 있는 놀라운 발견이었다“라고 말했다. 이 블랙홀은 자신만의 궤도를 운항하는 동반성에서 '흔들리는' 움직임을 발견하면서 나타났다고 한다. 항성 블랙홀은 생애 마지막에 거대한 별이 붕괴하면서 생성되며, 아직 생성 여부가 알려지지 않은 초거대 질량 블랙홀보다는 규모가 작다. 이들 초거대 질량 블랙홀들은 이미 중력파를 통해 먼 은하계에서 발견되었다. '가이아 BH3'는 비활성(휴면) 블랙홀이며 너무 멀리 떨어져 있고 X선을 방출하지 않아 감지하기 어려웠다고 한다. 가이아 망원경은 종래 은하수에서 처음 두 개의 비활성 블랙홀(가이아 BH1 및 가이아 BH2)을 식별한 바 있다. 가이아는 지난 10년 동안 지구에서 150만km 떨어진 곳에서 은하계를 관측해 왔으며, 2022년에는 18억 개가 넘는 별의 위치와 움직임을 보여주는 3D 지도도 제작했다.
-
- IT/바이오
-
[우주의 속삭임(1)] 은하계에서 가장 큰 항성 블랙홀 발견
-
-
NASA도 관측하지 못하는 소행성 포착 가능 '3톤 초대형 디지털 카메라' 완성
- 세계 최대의 디지털 카메라가 미 캘리포니아주에 소재한 에너지부 산하 국립 스탠포드 선형 가속기 센터(SLAC)에서 제작됐다고 비즈니스인사이더가 전했다. SLAC의 과학자와 엔지니어들은 20년에 걸쳐 대략 1억 6800만달러(약 2273억원)의 비용을 들여 이 거대한 카메라를 제작했다고 한다. SUV 차량 크기로, LSST(Legacy Survey of Space and Time)라고 명명된 이 카메라의 무게는 무려 3톤(6200파운드)에 달하며 전면 렌즈 폭은 150cm(5피트)를 넘는다. LSST 카메라는 앞으로 남녘 하늘 전체를 10년간 디지털로 측량하고, 밤마다 전체를 스캔해, 사상 최대 규모의 천문 영화를 제작하는 임무를 담당하게 된다. 프로젝트를 이끈 애런 루드먼(Aaron Roodman)은 비즈니스인사이더와의 인터뷰에서 "우주의 많은 부분을 볼 수 있을 것"이라고 기대했다. LSST는 다양한 용도로도 활용된다. 카메라는 도시를 파괴할 수 있는 크기의 대형 소행성도 추적하고 그 결과를 나사(NASA)와 공유함으로써 지구를 위협할 수 있는 우주 암석을 식별할 수 있도록 지원한다. 이는 우주 과학의 주요 목표다. 카메라는 또한 우주를 가득 채우고 있는 신비한 암흑 에너지와 암흑 물질을 조사하는 역할도 담당한다. 완성된 카메라는 안데스 산맥에 위치한 칠레의 루빈 천문대(Rubin Observatory)에 설치될 예정이다. 설치는 올해 말에 완료된다. LSST 카메라 렌즈는 3200MP(메가픽셀)의 선명도로 사진을 제공하게 된다. 1MP는 100만 픽셀이다. 초고화질 또는 4K TV는 약 8MP이다. 따라서 LSST 카메라의 이미지를 전체 해상도로 표시하려면 수백 대의 울트라 HDTV가 필요하다. 이 정도의 선명도라면 25km 떨어진 곳에서도 골프공을 식별해 낼 수 있다. LSST는 매일 밤 약 1000장의 이미지를 촬영하고 이를 결합해 며칠 밤마다 남쪽 하늘 전체에 대한 매우 상세한 이미지 한 장을 만들어낸다. 10년에 걸쳐 수만 장의 이미지를 생성하게 되며, 이를 통해 연구자들은 3D 영화라고 불리는 우주 파노라마를 얻게 된다. 이 카메라를 사용하면 200억 개가 넘는 은하계의 변화를 관찰하고 움직임과 변화 방식을 모두 추적할 수 있게 된다. 다른 천체 카메라와 달리 LSST는 회전할 필요가 전혀 없다. 렌즈가 포함하는 범위가 워낙 넓기 때문에 남쪽 하늘 전체를 담을 수 있다. 이런 넓은 범위는 지금까지 감지되지 않았던 은하계 인근의 소행성까지도 관측할 수 있게 해준다. LSST는 또한 하늘에 새로운 물질이 발견될 때마다 천문학자들에게 알리도록 설계됐다. 이를 통해 천문학자들은 빛의 모든 파장에서 새로운 초신성, 블랙홀 합병 및 기타 천문학 현상을 관찰하고, 이러한 동적 현상에 대한 다량의 데이터를 수집할 수 있다. 카메라가 작동하면 새로운 유형의 우주 물체와 이벤트도 발견할 가능성이 높다. 10년에 걸친 은하의 변화를 추적함으로써 우주가 어떻게 진화했는지에 대한 새로운 분석 데이터도 제공할 것이라는 기대다. 이는 암흑 에너지와 암흑 물질을 이해하는 열쇠다. 암흑 에너지는 '우주를 더욱 빠르게 팽창시키는 신비한 힘'을 의미한다. 암흑 물질은 공간을 차지하고 질량이 있지만, 빛과 상호작용하지 않는 물질의 일종이다. 암흑 에너지와 물질이 함께 우주의 대부분을 구성하고 있는데, 그것이 무엇인지는 전혀 알려지지 않았다. LSST가 그 단서를 찾는 데 도움이 될 수 있다고 한다. 루드먼은 "하나의 은하계를 보면 아무 것도 알 수 없지만 수억 개의 은하계를 보면 수십억 개의 은하계를 파악할 수 있으며, 전체 하늘의 패턴을 알 수 있다"면서 "우주에 물질이 어떻게 분포되어 있는지 알 수 있게 될 것"이라고 기대했다.
-
- IT/바이오
-
NASA도 관측하지 못하는 소행성 포착 가능 '3톤 초대형 디지털 카메라' 완성
-
-
제임스 웹 망원경, 빅뱅 7억 년 후 '죽은 은하' 발견…우주 초기 진화 모델에 도전
- 천문학자들이 제임스웹 우주 망원경(JWST)을 이용해 현재까지 관측된 가장 오래된 '죽은 은하'를 발견했다.
-
- IT/바이오
-
제임스 웹 망원경, 빅뱅 7억 년 후 '죽은 은하' 발견…우주 초기 진화 모델에 도전
-
-
호주 국립대, 태양보다 5백조 배 더 밝은 퀘이사 발견
- 호주 과학자들이 지금까지 발견된 블랙홀 중 가장 빠르게 성장하는 퀘이사를 발견했다. 20일(현지시간) 영국 매체 가디언에 따르면 호주 국립대학교(ANU) 연구원들이 발견한 'J0529-4351' 퀘이사는 태양보다 500조 배 더 밝고 질량은 태양계 태양의 약 170억 배에 달한다. 이 퀘이사는 하루에 태양 1개에 해당하는 양을 먹어치운다. 이는 퀘이사가 엄청난 양의 물질을 흡수하고 있으며, 얼마나 빠르게 성장하고 있는지를 보여 준다. '퀘이사'는 일반적으로 '중성자 별에서의 금속 원자 빛발산 현상'을 가리키는 용어다. 중성자 별은 대량의 중성자를 가진 매우 밀도가 높은 별로, 핵심 부분에 남은 것이고, 별의 질량은 태양의 수십배에서 수백배에 이은다. 퀘이사는 중성자 별의 자기장이 매우 강력해주변 공간에 있는 원자들의 전자를 빠져나가게 되고, 이러한 과정에서 원자의 핵심인 금속 원자가 감속되면서 빛을 방출하는 현상을 말한다. 이 빛발산은 주로 X선이나 감마선과 같은 고에너지 전자기파로 나타난다. 즉, 퀘이사는 우주에서 가장 강력한 에너지원 중 하나로, 고에너지 천체물리학 및 천문학에서 중요한 연구 대상이다. 특히 중성자 별의 내부 구조와 속성을 연구하는 데에 있어서 퀘이사는 중요한 정보를 제공한다. ANU 연구팀이 이번에 발견한 퀘이사는 120억 광년 떨어진 곳에 위치하며 강착원반의 크기는 무려 7광년에 달한다. '강착원반'은 블랙홀 주변에서 회전하는 가스와 먼지로 이루어진 원반이다. 연구팀에 따르면 이 퀘이사의 강착원반은 온도가 섭씨 1만도에 달하고 곳곳에 번개가 치고 바람이 매우 빨리 불어 지구를 1초 만에 돌릴 정도로 거대한 자기 폭풍 세포처럼 보인고 한다. 이 퀘이사는 너무 밝아서 처음에는 지구에서 그리 멀지 않은 별로 분류됐다. 하지만 연구팀이 유럽 남부 천문대(ESO)의 초 거대 망원경을 사용하여 관찰한 결과, 이 퀘이사는 실제로는 엄청나게 먼 곳에 위치하고 있음이 밝혀졌다. 연구원들은 이 퀘이사를 '폭풍의 눈에 블랙홀이 있는 거대한 허리케인' 또는 '주 어디에서나 발견한 지옥으로 가는 가장 큰 문'에 비유했다. 이 퀘이사는 대부분의 큰 은하계 중심에 있는 거대한 블랙홀을 연구하는 데 중요하며, 퀘이사 팽창에 대한 이해를 더욱 높일 수 있다. 이번 연구를 주도한 호주 국립대학교의 크리스찬 울프(Christian Wolf) 교수는 "이 지옥같은 장소를 상상하는 것은 충격과 경외의 순간이다. 자연은 우리가 이전에 생각했던 것보다 훨씬 더 극단적인 것을 만들어낸다"고 말했다. 이 퀘이사의 이름은 'J0529-4351'이며, 지난 수십 년 동안 '눈에 잘 띄지 않는 곳에 숨어 있다'가 발견됐다. 연구팀은 이 퀘이사를 발견했을 때 놀랍고 경외심을 느꼈으며, 극한 환경에서 물질이 어떻게 행동하는지 연구하는 데 중요하다고 말했다. 또한 우주의 초기 역사를 연구하는 데 도움이 될 수 있다고 한다. 이번 퀘이사의 발견은 우주에는 아직 모르는 것이 너무나 많다는 사실을 보여준다. 앞으로 과학자들이 더 많은 연구를 통해 퀘이사와 블랙홀에 대한 이해를 더욱 높일 수 있을 것으로 보인다.
-
- 산업
-
호주 국립대, 태양보다 5백조 배 더 밝은 퀘이사 발견
-
-
올해 IPO 시장, 지난해에 이어 상승세 유지 전망
- 지난해 말부터 이어진 공모주 시장 훈풍에 기업공개(IPO) 시장이 올해도 상승세를 유지할 것으로 전망된다. 하지만 공모가가 연달아 희망 범위 상단을 초과하면서 과열 우려도 나온다. 5일 한국거래소와 흥국증권 등에 따르면 올해 신규로 상장하는 기업 수는 이달 상장하는 에이피알을 비롯해 총 85개가 될 것으로 예상된다. 직전년보다 크게 늘었던 지난해(82개)보다도 3.7% 늘어난 수치다. IPO를 대기 중인 잔존 물량도 지난해 52개에서 올해 57개 기업으로 증가한 상태다. 올해는 '대어급' 기업들이 신규 상장을 고민 중인 것으로 알려지면서 공모 규모도 많이 늘어날 것으로 전망된다. 지난해는 상장 시 시가총액 3조원대를 넘보던 서울보증보험 등이 상장 계획을 철회하면서 공모 규모는 전년보다 76% 감소한 3조9000억원을 기록했다. 올해는 이달 중 유가증권시장에 상장할 것으로 보이는 에이피알을 비롯해 HD현대마린솔루션, LG CNS, SK에코플랜트 등 대어들이 상장을 준비하거나 검토 중인 것으로 알려졌다. 여기에 서울보증보험과 케이뱅크 등 기존에 상장을 철회했던 기업의 재도전이 전망되는 데다 SSG닷컴과 CJ올리브영, 야놀자, 현대오일뱅크, 컬리 등도 투자자로부터 상장 기대를 받고 있어 IPO 시장에 훈풍을 불 것으로 예상된다. 이에 따라 올해 공모 규모는 전년 대비 66.1% 증가한 6조4000억원이 될 것으로 추산된다. 올해 시장의 분위기도 좋다. 지난달 시장에 새롭게 소개된 기업은 우진엔텍, HB인베스트먼트, 현대힘스, 포스뱅크 등 4개 사로, 수요 예측 경쟁률이 평균 760대 1을 기록하며 기관 투자자의 많은 관심을 받았다. 이들 모두 공모가가 희망 범위 상단을 초과했다. 주가 흐름도 양호해 4개 종목 모두 지난 2일 종가 기준 주가가 공모가 대비 플러스(+)를 기록했고, 이 가운데 우진엔텍과 현대힘스는 '따따블(상장일 종가가 공모가의 4배)'을 달성했다. 지난 1일 코스닥시장에 신규 상장한 이닉스[452400] 역시 첫 거래일 종가가 공모가 대비 165% 상승해 올해 공모주의 양호한 흐름을 이어갔다. 최종경 흥국증권 연구원은 "의미 있는 반등을 기록한 2023년과 비교해 2024년의 IPO 시장은 대세 상승을 이어갈 것"이라며 "이미 역대 최다 수준의 신규 상장을 기록 중인 중소형주 중심의 코스닥시장 흐름이 견조한 가운데, 2023년 굳이 흠이라 꼽았던 코스피 시장의 대어급 부재가 2024년부터 점차 해소될 것"이라고 전망했다. 그는 "2023년 하반기를 기점으로 공모 확정가 추세가 높게 기록되고 있는 점, 2022년을 저점으로 이미 반등한 공모주의 주가 수익률, 이에 맞춰 IPO 영업을 더욱 강화하고 있는 주관사들의 활발한 움직임까지 큰 물고기들이 돌아올 시장 상황은 긍정적"이라고 짚었다. 하지만 공모주에 대한 과도한 관심 증가에 따른 부작용은 경계해야 한다는 지적도 있다. 오광영 신영증권 연구원은 "공모주에 대한 과도한 관심 증가는 한정된 공모주 수량으로 인해 결국 과열이 발생할 가능성이 커지고, 이에 따라 오버 밸류된 일부 공모주가 등장하면서 공모주 시장이 급격히 얼어붙었던 경험을 잊으면 안 된다"고 지적했다. 아울러 그는 "투자자의 관심이 높은 대형 공모주의 상장 절차가 시작되면 공모주 투자 자금의 블랙홀 역할을 해 이후 공모주 시장의 수급에 부정적 영향을 미칠 수 있어 유의해야 한다"고 부연했다.
-
- 경제
-
올해 IPO 시장, 지난해에 이어 상승세 유지 전망
-
-
신비한 천체, 블랙홀일까 중성자별일까?
- 최근 천문학자들이 발견한 신비한 천체가 블랙홀인지 중성자별인지 논란이 되고 있다. 천문학자들은 최근 지구에서 약 4만 광년 떨어진 천체인 콜드웰 73(NGC 1851)에서 빠르게 회전하는 밀리초 펄서를 발견했다. 이 펄서는 태양 질량의 약 3.887배에 달하는 동반 천체를 가지고 있는데, 이는 태양 질량의 2배보다 큰 중성자별보다 무겁고, 태양 질량의 5배보다 작은 블랙홀보다 가볍다. 이러한 천체는 블랙홀 질량 간격에 위치하는 것으로 알려져 있으며, 태양 질량의 2~5배 사이의 질량을 가진 천체는 중성자별과 블랙홀 중 어느 것으로 분류될지 명확하지 않은 상태이다. 과학 전문 매체 유니버스투데이(universetoday)는 최근 남아프리카의 전파천문대 미어캣(MeerKAT, TRAPUM 프로젝트) 망원경을 사용하여 천문학자들이 'NGC 1851'이라는 구상성단 내에 위치한 PSR J0514-4002E라는 특별한 천체를 발견했다고 보도했다. 나사에 따르면 콜드웰 73(NGC 1851)은 1826년 스코틀랜드 천문학자 제임스 던롭(James Dunlop)이 발견했다. 콜드웰 73은 콜롬바 별자리 방향으로 지구에서 약 4만 광년 떨어진 곳에 위치해 있다. 이 조밀한 구상성단은 쌍안경을 통해 발견할 수 있으며, 흐릿한 빛 조각처럼 보인다. 소형 망원경은 성단의 조밀한 중심에서 멀리 떨어져 있는 성단의 개별 별 중 일부를 분해할 수 있다. 콜드웰 73은 겨울에는 북반구의 적도 위도에서, 여름에는 남반구에서 가장 쉽게 볼 수 있다. 과학 저널 '사이언스(Science)'에 실린 연구에 따르면, 이 천체는 편심 이진 밀리초 펄서로, 펄서와 동반 천체의 총 질량은 약 3.887 ± 0.004 태양 질량으로, 이는 블랙홀의 질량 격차에 위치해 있다. 이 연구의 주요 저자는 맥스 플랑크 전파천문학 연구소(Max Planck Institute for Radio Astronomy)의 이완 바르(Ewan Barr)이며, 논문 제목은 '중성자별과 블랙홀 사이의 질량 간격에 컴팩트한 물체가 있는 쌍성계의 펄서'다. 바르와 그의 팀은 초신성 폭발의 결과로 생성된 빠르게 회전하는 중성자별인 밀리초 펄서의 궤도를 도는 컴팩트한 물체를 발견했다. 펄서는 극에서 전자기 에너지 빔을 방출하며 회전한다. 지구와 펄서가 정확히 맞춰져 있을 때, 우리는 펄서의 깜박임을 관찰할 수 있으며, 이로 인해 펄서는 우주의 등대로 불리게 된다. 밀리초 펄서는 초당 1~10밀리초의 회전 주기를 가지며, 이는 분당 6만회에서 6000회 사이의 회전 속도를 의미한다. 이 연구에서, 천문학자들은 펄서의 정밀한 타이밍 분석을 통해 펄서와 블랙홀로 구성된 이진(쌍성계) 시스템 내에 있는 다른 물체를 감지했다. 그들은 아직 펄서와 블랙홀로 구성된 이진 시스템을 발견하지 못했지만, 그러한 발견을 간절히 원하고 있다. 이러한 이진 시스템은 블랙홀 연구에 새로운 접근법을 제공할 수 있으며, 아인슈타인의 일반상대성이론을 새롭게 검증할 기회를 마련할 수 있다. 이 경우 동반체는 작은 블랙홀이 아니라 무거운 중성자별다. 맨체스터 대학의 천체물리학 교수이자 공동 저자인 벤 스태퍼스(Ben Stappers)는 "펄서-블랙홀 시스템은 중력 이론을 시험하는 데 중요한 대상이 될 것이며, 무거운 중성자별은 고밀도 핵물리학에 대한 새로운 통찰을 제공할 것"이라고 말했다. 중성자별은 거대한 별이 초신성으로 붕괴한 후 남은 극도로 밀도가 높은 천체다. 다른 별의 물질과 상호작용하면서 질량을 증가시키고, 더욱 붕괴될 가능성이 있다. 그러나 천문학자들은 중성자별이 붕괴하여 어떤 상태로 변화하는지 확실히 알지 못한다. 그것이 블랙홀로 변할 수도 있는데, 이는 바로 블랙홀 질량 격차를 연구하는 데 중요한 포인트다. 과학자들은 중성자별이 붕괴하려면 태양 질량의 약 2.2배가 되어야 한다고 추정한다. 이것이 붕괴가 발생하는 데 필요한 임계값이다. 그러나 이론과 관찰 모두 이러한 붕괴된 중성자별이 태양보다 5배 더 큰 블랙홀을 생성할 수 있음을 보여준다. 이로 인해 블랙홀 질량 격차가 발생한다. 과학자들은 중성자별이 블랙홀로 붕괴하기 위한 임계 질량이 태양 질량의 약 2.2배라고 추정한다. 이는 붕괴가 발생하기 위해 필요한 임계값이다. 그러나 이론과 관측 모두에서, 이러한 붕괴 과정이 태양 질량보다 5배 더 큰 블랙홀을 형성할 수 있다는 것이 확인됐다. 이는 블랙홀 질량 격차의 원인이다. 그러나 질량 격차에 존재하는 물체의 정체에 대해서는 확실한 결론이 없다. 관측 결과에 따르면, 해당 구역에는 분명히 어떤 물체가 존재하지만, 그 본질을 명확히 식별하기 어렵다. 연구자들은 이 동반체가 두 중성자별의 합병 결과일 가능성을 제시했다. 만약 동반성이 거대한 중성자별일 경우, 이는 펄서일 가능성이 있다. 그러나 연구진은 어떠한 맥동도 감지하지 못했다. 이 쌍성계 내 물체의 기원은 해당 물체가 무엇인지에 대한 해석을 가능하게 한다. 천체물리학자들은 쌍성계의 진화에 대해 상세한 모델을 개발했으며, 이 모델들은 물질의 전달이 중요한 역할을 한다는 것을 보여준다. 저자들은 더 낮은 질량의 초기 동반 물체가 펄서에 질량을 전달했다고 여긴다. 이러한 유형의 상호 작용은 별이 촘촘하게 밀집되어 있는 쌍성계 물체가 있는 구상 성단에서 발생할 가능성이 더 높다. 펄서는 또한 매우 빠르게 회전하는데, 이는 동반성으로부터 질량을 얻었다는 또 다른 징후다. 연구팀은 펄서의 초기 동반 물체가 비교적 낮은 질량이었으며, 이 물체로부터 펄서가 질량을 획득했다고 추정한다. 이런 종류의 상호 작용은 별들이 밀집하여 있는 구상 성단 내의 쌍성계에서 발생할 확률이 높다. 펄서의 매우 빠른 회전 속도도, 동반성으로부터 질량을 얻었다는 추가적인 증거를 제공한다. MPIA의 공동 저자 아루니마 듀타(Arunima Dutta)는 "이 쌍성의 진정한 성질을 규명하는 것은 중성자별, 블랙홀, 블랙홀 질량 격차에 숨겨진 모든 가능성에 대한 우리의 이해를 한 단계 발전시킬 것"이라고 말했다.
-
- 생활경제
-
신비한 천체, 블랙홀일까 중성자별일까?