검색
-
-
코카콜라, 연간 60만톤의 플라스틱 폐기물 바다 투기 논란
- 무더운 여름날 코카콜라 병의 이미지는 시원함을 상징하지만, 그 이면에는 플라스틱 오염이라는 심각한 위험이 도사리고 있다. 해양 보호 비영리 단체 오세아나(Oceana)의 새로운 분석에 따르면, 코카콜라의 플라스틱 폐기물은 2030년까지 연간 약 60만3227톤(13억 3000만 파운드)에 달해 해양과 수로를 오염시킬 것으로 예측됐다고 어스닷컴이 보도했다. 이는 고래 1800만 마리의 위장을 채울 수 있는 엄청난 양이다. 더 이상 단순한 오염 문제가 아닌, 통제되지 않은 성장의 단면이자 심각한 환경 문제에 대한 경고 신호로 해석된다. 이번 보고서는 미세 플라스틱 문제가 더 이상 간과할 수 없는 수준에 이르렀다는 점을 시사한다. 미세 플라스틱은 이미 생태계, 식수, 심지어 인간의 장기까지 침투했으며, 그 존재는 더 이상 놀라운 일이 아니다. 과학자들은 이러한 미세 플라스틱이 얼마나 빠른 속도로 전 세계적인 위협으로 확산되었는지에 주목하고 있다. 미세 플라스틱 섭취에 숨겨진 건강 위험 미세 플라스틱 확산은 심각한 건강 문제를 야기한다. 연구자들은 플라스틱 입자와 암, 불임, 심혈관 질환 간의 연관성을 점점 더 많이 밝혀내고 있다. 해양에서 분해된 플라스틱은 사라지는 것이 아니라, 인체에 유입될 수 있을 정도로 작은 입자인 미세 플라스틱(5mm크기)과 마이크로 플라스틱으로 변형된다. 해양 생물부터 시작되는 먹이사슬은 이미 인간이 선택한 플라스틱 포장재의 흔적을 고스란히 담고 있다. 기업의 환경 오염 감시 캠페인을 이끌고 있는 오세아나의 매트 리틀존(Matt Littlejohn)은 "코카콜라는 세계 최대의 음료 제조업체이자 판매업체이다. 따라서 코카콜라의 행보는 해양에 미치는 영향 측면에서 매우 중요하다"고 강조했다. 최근 자료에 따르면, 이러한 영향은 더 이상 가설이 아닌 측정 가능하고 예측 가능하며, 점차 확대되고 있는 현실이다. 코카콜라, 플라스틱 오염 순위 1위 특히 과학 학술지 '사이언스 어드밴시스(Science Advances)'에 따르면, 코카콜라는 세계 최악의 플라스틱 오염 기업으로 선정됐다. 뒤를 이어 펩시코, 네슬레, 다논, 알트리아 등 주요 기업들이 플라스틱 오염의 주범으로 지목됐다. 오세아나는 2018년부터 2023년까지의 코카콜라 자체 공개 자료와 미래 판매 예측치를 종합하여 분석했으며, 그 결과는 비관적이다. 현재 추세가 지속된다면, 코카콜라의 연간 플라스틱 사용량은 2030년까지 연간 413만 톤 이상의 플라스틱을 사용할 것으로 전망된다. 학술지 '사이언스(Science)'에 발표된 동료 검토 방식을 사용하여 연구자들은 이 중 60만3200톤이 수중 생태계로 유입될 것으로 추정했다. 이는 500ml 플라스틱 병 약 2200억 개에 해당하는 양이다. 재활용 수거는 단순한 미봉책 코카콜라는 당초 2030년까지 전체 포장재의 25%를 재사용 가능한 형태로 전환하겠다고 발표했으나, 2024년 12월 이 목표를 철회하면서 논란을 더욱 가중시키고 있다. 현재는 재활용과 수거 중심의 전략을 유지하고 있지만, 환경 전문가들은 이 방법이 근본적인 해결책이 될 수 없으며 오히려 기업의 책임을 소비자에게 전가할 수 있다고 지적한다. 특히 얇은 일회용 플라스틱의 경우, 재활용은 에너지 효율성이 낮고 오히려 기업의 책임을 소비자에게 전가하는 결과를 초래할 수 있다. 오세아나의 리틀존은 "재활용은 물론 중요하다. 하지만 재활용 플라스틱으로 더 많은 일회용 플라스틱을 생산하는 것은 문제"라고 지적했다. 유리병 1개, 최대 50번 재사용 가능 재사용 가능한 포장재의 가치는 내구성에 있다. 어스닷컴에 따르면 유리병 하나는 최대 50번까지 재사용할 수 있으며, 두꺼운 PET 플라스틱 용기는 최대 25번까지 재사용이 가능하다. 각각의 재사용은 플라스틱 폐기물, 생산 배출량, 에너지 소비를 줄이는 효과를 가져온다. 이러한 이점에도 불구하고, 코카콜라와 같은 주요 브랜드는 여전히 재활용을 주요 해결책으로 내세우고 있다. 코카콜라의 재사용 목표 철회는 전 세계적인 플라스틱 생산량 감축 노력에 걸림돌이 된다. 재사용 시스템은 인프라 구축과 계획이 필요하지만, 플라스틱 순환에서 벗어날 수 있는 장기적인 해결책을 제시한다. 반면, 재활용은 종종 근본적인 문제를 해결하지 못하는 단기적인 미봉책에 그치는 경우가 많다. 플라스틱 사용이 기후 변화에 미치는 영향 플라스틱은 단순한 쓰레기 문제가 아닌 탄소 문제이기도 하다. 거의 모든 플라스틱은 화석 연료로 만들어지므로, 모든 플라스틱 병은 생산부터 폐기까지 기후 변화에 영향을 미친다. 플라스틱 폐기물과 지구 온도 상승 간의 연관성은 보고서가 발표될 때마다 더욱 명확해지고 있다. 대량으로 일회용 플라스틱을 생산하는 기업들은 환경 위기와 기후 위기를 동시에 심화시키는 주범인 셈이다. 그러나 코카콜라는 변화가 가능하다는 것을 이미 보여줬다. 일부 국가에서는 이미 대규모 재사용 시스템을 운영하고 있다. 브라질, 독일, 나이지리아, 심지어 미국 남부 텍사스와 같은 지역에서도 재활용 모델이 성공적으로 도입됐다. 리틀존은 "코카콜라는 이미 전 세계에서 가장 큰 규모의 재사용 인프라를 보유하고 있는 기업"이라며 "이러한 인프라를 활용해 플라스틱 오염을 실질적으로 줄일 수 있는 강력한 리더십을 보여줘야 한다"고 강조했다. 전문가들은 근본적인 해결책으로 플라스틱 사용 감축과 재사용 인프라 확대를 요구하고 있다. 광범위한 글로벌 네트워크를 가진 코카콜라는 실질적인 변화를 주도할 수 있는 역량을 갖추고 있다. 공급망, 소비자 습관, 산업 동향에 대한 코카콜라의 영향력은 플라스틱 위기 해결에 있어 핵심적인 역할을 할 수 있게 한다. 그러나 리더십은 단순한 성명 발표 이상의 것을 요구한다. 단기적인 이익보다 장기적인 지속가능성을 중시하는 과감한 결정이 필요하다. 재활용만으로는 충분하지 않다. 해결책은 재사용, 감축, 그리고 음료 포장 방식에 대한 근본적인 재고에 있다. 전 세계가 증가하는 플라스틱 쓰레기와 악화되는 해양 생태계 오염 문제로 씨름하고 있는 가운데, 코카콜라는 중대한 기로에 서 있다.
-
- ESGC
-
코카콜라, 연간 60만톤의 플라스틱 폐기물 바다 투기 논란
-
-
[우주의 속삭임(108)] 화성에서 긴 탄소 분자 사슬 발견, 고대 생명체 존재 가능성 시사
- 화성에서 최대 12개의 탄소 원자로 이루어진 사슬이 고대 호수 바닥으로 추정되는 지역에서 발견되어, 고대 생명체 존재 가능성을 더욱 높이고 있다. NASA의 큐리오시티 로버에 탑재된 샘플링 장비가 이번 발견을 이끌었으며, 국제 연구팀이 지구 실험실에서 결과를 검증했다고 과학 전문매체 사이언스 얼럿이 25일(현지시간) 보도했다. 이번 연구는 프랑스 국립과학연구센터(CNRS)의 분석화학자 카롤린 프라이시네(Caroline Freissinet) 박사가 주도했다. 발견된 탄소 화합물 자체는 비생물학적 과정을 통해 생성되었을 가능성도 있지만, 수십억 년 전에 형성되었을 수 있는 긴 유기 분자를 화성 표면에서 식별할 수 있는 로버의 능력을 입증한다. 프라이시네 박사는 인터뷰에서 "깨지기 쉬운 선형 분자가 형성된 지 37억 년이 지난 후에도 화성 표면에 여전히 존재한다는 사실은 새로운 가능성을 제시한다. 수십억 년 전 지구에 생명체가 나타났을 때 화성에 생명체가 존재했다면, 오늘날에도 그 고대 생명체의 화학적 흔적을 발견할 수 있을 것이다"라고 설명했다. 화성 탐사선 큐리오시티의 주요 목표는 화성에 생명체가 존재했는지, 혹은 존재 가능성이 있었는지를 알려줄 단서를 수집하는 것이다. 게일 크레이터(분화구)의 퇴적암을 탐사하는 동안 큐리오시티는 염소 및 황 함유 유기 화합물과 질산염 등 다양한 흥미로운 퇴적물을 발견했으며, 이는 고대 암석에서 더 복잡한 생명체 지표가 발견될 수 있다는 가능성을 시사한다. 연구진은 컴벌랜드(Cumberland)라는 이암(머드스톤) 퇴적물에서 채취한 광물 샘플을 분석하기 위해 화학적 증강제를 사용하는 실험 절차를 이용했다. 실험 조건은 기체 크로마토그래피-질량 분석법을 위해 온도를 약 850°C(1,562°F)까지 올릴 때 연소 위험을 제한하기 위해 분자 산소를 제거하는 방식이었다. 분석 결과, 현재까지 화성에서 발견된 가장 긴 탄소 사슬 중 일부인 데케인(C10H22), 운데케인(C11H24), 도데케인(C12H26) 형태의 포화 탄화수소 사슬이 미량 검출됐다. 연구진은 실험실 조건에서 다양한 분석 실험을 수행하여, 샘플에 함께 존재했던 벤조산을 포함한 다른 유기 화합물로부터 화성과 유사한 광물 조건이 어떻게 탄소 사슬을 생성할 수 있는지 밝혔다. 어떤 경우든, 샘플 분석과 실험실 연구 모두 화성 머드스톤에 상당한 길이의 탄소 분자 사슬이 존재함을 강력하게 시사한다. 프라이시네 박사는 "검출된 분자는 10개, 11개, 12개의 선형 탄소 사슬로, 알케인 또는 탄화수소로 알려져 있다"며, "이는 최대 6개의 탄소로 구성된 원형 고리인 방향족 분자를 검출한 이전 결과와는 상당히 다르다. 원형 고리는 선형 분자보다 더 안정적이다"라고 덧붙였다. 만약 이 화합물이 실제로 암석에 존재했다면, 생명체의 도움 없이 수소와 일산화탄소와 같은 더 간단한 분자로부터 '생성'되었을 가능성이 있다. 그러나 생물학적 징후일 수 있는 더 복잡한 화합물의 분해를 포함한 다른 가능성을 고려해 볼 수도 있다. 예를 들어, 우리 몸에는 퇴적암에 보존될 수 있는 종류의 카르복실산이 풍부하게 존재한다. 연구진은 "비록 비생물학적 과정이 이러한 산을 형성할 수 있지만, 이들은 지구 및 어쩌면 화성의 보편적인 생화학적 산물로 간주된다"고 말했다. 이 연구는 미국 국립과학원 회보(PNAS)에 게재됐다.
-
- 포커스온
-
[우주의 속삭임(108)] 화성에서 긴 탄소 분자 사슬 발견, 고대 생명체 존재 가능성 시사
-
-
[기후의 역습(125)] 자연 탄소 흡수 능력 감소 추세, 기후 변화 가속화 경고
- 자연적인 이산화탄소(CO₂) 격리 과정이 약화되고 있으며, 이로 인해 기후 변화가 더욱 가속화될 것이라는 연구 결과가 발표되어 주목을 받고 있다. 스코틀랜드 스트라스클라이드 대학교 연구팀은 식물이 광합성을 통해 대기 중 CO₂를 흡수하고 저장하는 탄소 격리 과정이 1960년대에는 연간 0.8%씩 증가했으나, 2008년을 정점으로 하락세로 전환되어 현재는 연간 0.25%씩 감소하고 있다고 밝혔다. 과거 1960년대의 탄소 격리 성장률이 지속되었다면 자연 탄소 격리는 1960년부터 2010년까지 50% 증가했을 것이지만, 현재의 감소 추세가 이어진다면 250년 안에 절반으로 줄어들 것이라는 분석이다. 해당 연구에 대해서는 글래스고우 스트라스칼라이드 대학교가 17일(현지시간) 홈페이지를 통해 밝혔다. CO₂ 인위적 배출 상쇄 능력 약화 자연 탄소 격리는 최근 연간 약 1.2%씩 증가하고 있는 인간 활동으로 인한 탄소 배출량을 일부 상쇄하는 역할을 한다. 이러한 상쇄 효과를 유지하기 위해서는 인간의 탄소 배출량을 연간 0.3%씩 감축해야 한다. 이는 약 1억 톤의 CO₂ 감축에 맞먹는 양이다. 본 연구 결과는 영국 왕립 기상학회(Royal Meteorological Society) 학술지 '웨더(Weather)'에 게재됐다. 연구의 공동 저자인 스트라스클라이드 대학교 지속가능발전센터 방문 교수 제임스 커런(James Curran) 박사는 "지구 육지의 대부분은 북반구에 위치하며, 북반구의 여름철에는 풍부한 식생이 대기 중의 막대한 양의 CO₂를 흡수한다"고 설명했다. 커런 박사는 이어 "북반구의 겨울철에는 일부 CO₂가 죽은 식물의 자연 분해를 통해 대기 중으로 다시 방출되지만, 일부는 뿌리, 토양 및 휴면 상태의 목질 물질에 갇혀 남아있다. 인간 활동으로 인한 추가적인 배출 때문에 CO₂ 농도의 전체적인 곡선은 여전히 매년 상승하고 있다"고 덧붙였다. 그는 또한 "탄소 격리를 포함한 생물 다양성과 관련 생태계 서비스를 재건하기 위한 모든 노력이 시급하다. 삼림 벌채를 중단하고, 생태계 복원을 장려하며, 산불을 예방해야 한다. 회복력이 뛰어나고 향상된 생태계 서비스를 제공하는 대규모 서식지의 경우, 단편화를 우선적으로 해결해야 하며, 화석 연료를 단계적으로 폐지하고, 목재 및 섬유 제품을 더 넓은 순환 경제의 일환으로 가능한 한 오랫동안 재사용해야 한다"고 강조했다. "탄소 격리 감소는 이미 진행중" 커런 교수는 탄소 격리가 여전히 증가하고 있으며 미래의 어느 시점에서 감소하기 시작할 것이라는 광범위한 믿음이 존재하지만, 데이터는 이미 감소가 진행 중임을 보여준다고 지적했다. 그는 "대기 중 CO₂ 증가는 식물의 비료와 같은 역할을 하며, 특히 캐나다와 러시아의 광활하고 추운 북위 지역에서 지구 온난화로 식물이 더 빠르고 쉽게 잘 자랄 수 있는 것은 알려진 사실이다"라고 말했다. 커런 교수는 "위성 관측 결과 지구의 식생이 확산되면서 '더 푸르게' 변하고 있는 것으로 보고되지만, 과도한 열, 가뭄, 홍수, 바람 피해, 산불, 사막화, 그리고 잠재적으로 더 넓게 퍼지는 식물 해충 및 질병으로 인한 식생 성장 손상 등 다른 모든 영향으로 인해 그 단순한 가정이 반박된다"고 설명했다. 이 연구에 사용된 데이터는 하와이 마우나 로아 화산 북쪽 측면에 위치한 마우나 로아 천문대(MLO)에서 제공했다. 해발 3397m에 위치한 마우나 로아 천문대는 1950년대부터 대기 변화와 관련된 데이터를 지속적으로 모니터링하고 수집해온 최고의 대기 연구 시설이다. 2022년 마우나로아 화산이 폭발하면서 용암이 진입로를 가로질러 시설로 가는 전선을 끊어버려 마우나로아 천문대에서의 측정이 중단됐다. 현재 천문대는 차량으로 접근이 불가능하고 지역 전력회사의 전력 공급이 중단된 상태다. 천문대 직원들은 4개의 천문대 건물에 제한적인 태양광 발전을 설치해 글로벌 모니터링 연구실과 스크립스의 중요한 CO₂ 기록 및 기타 대기 측정값을 포함한 약 33%의 측정값을 현장에서 복구했다. ◇ 참고 문헌: James C. Curran et al, Natural sequestration of carbon dioxide is in decline: climate change will accelerate, Weather (2025). DOI: 10.1002/wea.7668
-
- ESGC
-
[기후의 역습(125)] 자연 탄소 흡수 능력 감소 추세, 기후 변화 가속화 경고
-
-
[신소재 신기술(162)] 국내 연구진, 박테리아 이용한 친환경 플라스틱 생산 기술 개발
- 국내 연구진이 최근 박테리아를 활용해 기존 플라스틱 생산 방식의 한계를 극복하고 친환경적인 폴리머 생산 가능성을 제시하는 연구 결과를 발표해 학계의 주목을 받고 있다. 플라스틱은 현대 사회에 필수적인 소재이지만, 생산 과정에서 화학 연료 기반 화학 물질 사용으로 인한 환경 문제와 폐기할 때 자연적으로 분해되지 않아 발생하는 환경 오염 문제가 지속적으로 제기되어 왔다. 이러한 가운데, 한국과학기술원(KAIST)의 생물분자공학자이자 공동저자인 이상엽 박사 연구팀은 포도당만을 연료로 사용해 유용한 폴리머를 생산할 수 있도록 박테리아는 유전자 조작하는 데 성공했다. 연구팀이 개발한 시스템은 박테리아가 특이한 영양 조건이 직면했을 때 사용하는 효소를 기반으로 하며, 다양한 종류의 폴리머를 생산할 수 있도록 조절이 가능하다. 해당 연구에 대해서는 과학기술 전문매체 아르스 테크니카, 네이처닷컴, PHYS.org 등 다수 매체가 17일(현지시간) 보도했다. 네이처 닷컴에 따르면, 매년 전세계적으로 약 4억 톤의 분해 불가능한 석유 기반 플라스틱 폐기물과 미세 플라스틱이 생산되어 야생동물과 인간의 건강을 위협하고 지구를 오염시키고 있다. 탄소 과잉 상태를 활용한 폴리머 합성 메커니즘 연구진은 박테리아 세포가 폴리하이드록시알카노에이트(PHA·폴리에스테르)를 생성하는 시스템에 주목했다. PHA는 박테리아 세포가 탄소원과 에너지를 충분히 공급받지만, 성장과 분열에 필요한 특정 영양소가 부족할 때 생성되는 화학 물질이다. 이러한 환경에서 박테리아 세포는 탄소 원자를 포함하는 작은 분자들을 연결하여 거대한 폴리머를 형성한다. 이후 영양 조건이 개선되면, 박테리아는 이 폴리머를 분해하여 개별 분자들을 에너지원으로 활용할 수 있다. 이 시스템의 핵심적인 특징은 폴리머를 구성하는 단량체의 종류에 크게 구애받지 않는다는 점이다. 지금까지 150가지 이상의 다양한 작은 분자들이 PHA에 통합될 수 있음이 확인됐다. 폴리머를 합성하는 효소인 PHA 합성 효소는 분자가 에스터 결합을 형성할 수 있는지 여부와 세포 내 생화학 반응의 중간체로 흔히 사용되는 코엔자임 A에 결합될 수 있는지 여부만을 중요하게 고려하는 것으로 나타났다. 일반적으로 PHA 합성 효소는 산소 원자를 통해 분자들을 연결하지만, 아미노산에서 발견되는 것과 같이 질소 원자를 통해 연결되는 유사한 화학 결합을 형성하는 것도 가능하다. 그러나 이러한 반응을 촉매하는 효소는 지금까지 알려진 바가 없었다. 이에 연구진은 기존 효소들이 통상적으로 수행하지 않는 반응을 유도할 수 있는지 실험하기로 결정했다. 연구진은 클로스트리디움(Clostridium) 속 박테리아에서 유래한 효소를 활용했는데, 이 효소는 다양한 화학 물질과 상호작용하는 것으로 알려져 있다. 실험 결과, 이 효소는 아미노산을 코엔자임 A에 비교적 효과적으로 결합시켰다. 아미노산들을 서로 연결하기 위해 연구진은 슈도모나스(Pseudomonas) 속 박테리아에서 유래한 효소에 네 가지 돌연변이를 도입하여 반응 물질의 범위를 넓혔다. 시험관 내 실험에서 이 시스템은 성공적으로 작동하여 아미노산들이 폴리머 형태로 연결되는 것을 확인했다. 세포 내 발현 및 생산량 증대 노력 다음 과제는 이 시스템이 실제 세포 내에서도 작동하는 지 확인하는 것이었다. 불행히도 사용된 두 효소 중 하나가 대장균(E. coli)에 약한 독성을 나타내 성장을 저해하는 것으로 밝혀졌다. 이에 연구팀은 해당 단백질을 내성적으로 발현하는 대장균 균주를 개발했다. 이 두 단백질을 모두 발현시킨 결과, 세포는 소량의 아미노산 폴리머를 생산했다. 배지에 특정 아미노산을 과량으로 첨가하면, 생성되는 폴리머에 해당 아미노산의 함량이 높아지는 경향을 보였다. 하지만 박테리아 무게 대비 폴리머 생산량은 다소 낮은 수준이었다. 연구팀은 "이러한 [아미노산]들은 적절한 탄소원으로부터 세포 내에서 생성될 경우 폴리머에 보다 효율적으로 통합될 수 있을 것"이라고 판단했다. 이에 특정 아미노산(라이신) 생산에 필요한 유전자 복제본을 추가적으로 도입했다. 그 결과 더 많은 폴리머가 생산됐으며, 폴리머 내 라이신 함량 비율도 높아졌다. 생성된 폴리머 대부분에는 에스터 결합을 형성할 수 있는 젖산이 상당량 포함되어 있었다. 젖산은 포도당 대사 과정의 잠재적 산물 중 하나이므로 세포 내에 자연적으로 많이 존재한다. 이에 연구팀은 젖산 생성의 주요 효소를 암호화하는 유전자를 제거해 폴리머에 통합되는 젖산의 양을 현저히 줄였다. 연구진은 다양한 조건에서 실험을 진행하여 두 가지 다른 아미노산 단량체의 혼합물로 이루어진 폴리머를 만들 수 있음을 입증했으며, 혼합물에 비아미노산 물질을 통합하는 데에도 성공했다. 대장균 균주에 몇 가지 추가적인 효소를 도입함으로써 박테리아 무게 대비 폴리머 생산량을 50% 이상으로 끌어올렸다. 또한, 중합 반응을 담당하는 효소에 돌연변이를 도입하여 특정 아미노산이 생성되는 폴리머에 선택적으로 더 많이 통합되도록 조절할 수 있음을 확인했다. 다양한 물성 조절 및 생분해 가능성 제시 연구팀이 개발한 시스템은 매우 유연하여 광범위한 학 물질을 폴리머에 통합할 수 있다는 점이 가장 큰 특성이다. 이는 생성되는 플라스틱의 다양한 물성을 조절할 수 있도록 해줄 것으로 기대된다. 또한, 효소를 통해 결합이 형성되었으므로 생성된 폴리머는 거의 확실하게 생분해될 가능성이 높다. 다만 몇가지 한계점도 존재한다. 폴리머에 통합되는 물질을 완전히 통제할 수는 없다는 것이다. 특정 아미노산 또는 기타 화학 물질의 혼합 비율을 높일 수는 있지만, 효소가 세포 내 대사 과정에서 생성되는 임의의 하학 물질을 어느 정도 수준으로 통합하는 것을 완전히 막을 수는 ㅇ첪다. 또한 생산된 폴리머를 제조 공정에 적용하기 전에 다른 세포 구성 성분으로 정제해야 하는 문제와 대규모 산업 생산에 비해 생산 속도가 느리다는 점도 해결해야 할 과제다. 비록 이 기술이 당장 전 세계 플라스틱 생산을 대체할 수 있는 수준은 아니지만, 생물 기반 제조의 잠재력을 훌륭하게 보여주는 연구 결과라는 평가를 받고 있다. 본 연구 결과는 국제 학술지 '네이처 케미컬 바이올로지(Nature Chemical Biology)' 2025년 3월 18일 자 온라인판에 게재됐다. ◇ 참고 문헌: Tong Un Chae et al, Biosynthesis of poly(ester amide)s in engineered Escherichia coli, Nature Chemical Biology (2025). DOI: 10.1038/s41589-025-01842-2
-
- ESGC
-
[신소재 신기술(162)] 국내 연구진, 박테리아 이용한 친환경 플라스틱 생산 기술 개발
-
-
KAI, 인도네시아 KT-1B 훈련기 수명 150% 연장…6400만 달러 규모 사업 수주
- 한국항공우주산업(KAI)이 인도네시아 현지 항공사와 협력해 인도네시아 공군(TNI AU)의 KT-1B 훈련기 운용 수명을 150%까지 늘리는 6400만 달러(약 930억 원) 규모의 사업을 수주하며, 단순 항공기 납품을 넘어 '종합 항공 솔루션' 제공 기업으로서의 입지를 확고히 했다. KAI는 지난 3월 13일 인도네시아 정부와 계약을 체결했다. 15일(현지시각) 자카르타닷컴 보도에 따르면 이번 수명 연장 사업은 KT-1B 훈련기의 동체와 날개 등 주요 구조를 강화하는 데 초점을 맞춘다. 이를 통해 항공기의 작전 능력을 향상시키는 것은 물론, 설계 수명을 목표 운용 시간까지 연장하여 운용 기간을 기존 대비 약 150% 늘리는 효과를 거둘 것으로 기대된다. 이번 사업의 핵심은 인도네시아에서 운용 중인 KT-1B 훈련기를 분해 및 정밀 검사하여 잔여 수명을 정확하게 진단하는 과정이다. KAI는 고객의 항공기 운용 분석 및 수명 해석 결과를 바탕으로 최적의 수명 연장 방안을 적용할 계획이다. 이 과정을 통해 인도네시아는 항공기를 지속적으로 효과적으로 운용하면서도 장기적으로 유지보수 비용을 절감하는 상당한 경제적 효과를 누릴 수 있을 것으로 예상된다. 인도네시아는 지난 2003년 KT-1B를 처음 도입한 이후 현재까지 총 20대를 운용하고 있다. KT-1B는 KAI의 기본 훈련기인 KT-1의 인도네시아 수출형 모델로, 기본 조종 훈련뿐만 아니라 인도네시아 공군 곡예비행팀 '주피터'의 에어쇼에도 활발하게 활용되고 있다. 현재까지 튀르키예, 페루, 세네갈 등 다양한 국가에 총 84대의 KT-1 계열 항공기가 수출되며 KAI의 우수한 기술력을 입증했다. 특히 인도네시아는 KT-1뿐만 아니라 T-50 고등훈련기 등 국산 항공기를 처음으로 도입한 해외 국가이며, KF-21 전투기 공동 개발국으로서 KAI와 긴밀한 협력 관계를 이어오고 있다. 이번 수명 연장 사업은 인도네시아 현지에서 진행될 예정이며, KAI는 기술 전문가를 파견하여 인도네시아 공군 및 현지 항공사와 긴밀히 협력할 계획이다. 특히 이번 협력은 인도네시아의 국영 항공기 제작업체인 PTDI와 같은 기업으로 확대되어, 인도네시아가 지역 항공기 유지보수 및 후속 지원 서비스의 핵심 기지 역할을 수행하는 데 기여할 것으로 보인다. KAI는 이미 지난달 인도네시아의 PT PDS 인도네시아와 양해각서를 체결하고, 협력사에 항공 전문가 교육 및 인력 공급을 제공하는 등 인도네시아 항공 산업과의 다각적인 협력을 모색하고 있다. 강구영 한국항공우주산업(KAI) 사장은 "우리는 항공기 납품뿐만 아니라 후속 지원 및 성능 개선 분야에서도 성공적인 사업 성과를 거두고 있다"며, "이번 KT-1B 수명 연장 사업 수주는 KAI가 항공기 개발부터 제조, 운용, 유지보수, 성능 개량까지 아우르는 '종합 항공 솔루션' 제공 기업으로서의 역량을 입증한 쾌거"라고 강조했다. 그는 이어 "향후 KT-1뿐만 아니라 T-50, 수리온 등 국내외 고객이 운용하는 다양한 플랫폼으로 시장을 확대해 나갈 것"이라고 포부를 밝혔다. 한편, KAI는 현재까지 전 세계에 224대의 국산 항공기를 수출했으며, 앞으로도 국제 시장 점유율 확대를 위해 적극적으로 노력할 계획이다. 최근에는 인도네시아 공군 소속 KT-1B 훈련기 '웡 비'(기체 번호 LL-0113)가 제10정비창 제2정비대대에서 중정비를 마치고 다시 작전 투입 준비를 완료했다는 소식도 전해졌다. 이는 인도네시아 공군이 자체적으로 무기체계의 작전 가동률을 유지하고 비행 임무 및 군사 훈련을 원활하게 지원하기 위한 노력의 일환으로 풀이된다. 당시 인도 과정에서 제11정비대대장인 아르디 아르디안 P.S. 소령은 관련 서류와 함께 항공기를 족자카르타 아디 수칩토 공군기지 비행 교관에게 인도했으며, 이로써 해당 항공기는 각종 훈련 및 작전 임무에 즉시 투입될 수 있게 되었다. 자카르타닷컴은 '웡 비' 훈련기가 인도 전 모든 시스템의 정상 작동 여부를 확인하기 위해 5일간의 시험 비행을 성공적으로 마쳤다고 보도했다. 또한, 이번 정비는 엄격한 제조업체 기준과 항공 규정에 따라 진행되어 항공기의 안전과 성능을 완벽하게 보장한다고 덧붙였다. 이번 정비 성공은 인도네시아 공군 제10정비창 제11정비대대가 자체적으로 무기체계의 중정비를 수행할 수 있는 뛰어난 능력을 입증하는 사례로 평가되며, 외부 지원에 대한 의존도를 줄이고 정비 기간을 단축함으로써 인도네시아 공군 훈련기의 전투 준비 태세를 한층 강화하는 데 기여할 것으로 전망된다. 이번 KAI의 인도네시아 KT-1B 훈련기 수명 연장 사업 수주는 단순한 계약 이상의 의미를 지닌다. KAI가 항공기 개발 및 제조 역량을 넘어, 운용 수명 관리 및 성능 개선 분야에서도 국제적인 경쟁력을 확보했음을 입증하는 사례이기 때문이다. 특히 인도네시아는 KF-21 공동 개발 파트너로서, 이번 사업을 통해 양국 간의 방산 협력이 더욱 공고해질 것으로 기대된다. 또한, KAI가 '종합 항공 솔루션' 제공 기업으로 도약하는 발판을 마련했다는 점에서도 주목할 만하다. 향후 KAI는 축적된 기술력과 경험을 바탕으로 다른 국가에서도 유사한 사업 기회를 확대해 나갈 수 있을 것으로 전망된다.
-
- 산업
-
KAI, 인도네시아 KT-1B 훈련기 수명 150% 연장…6400만 달러 규모 사업 수주
-
-
[신소재 신기술(160)] 플라스틱, 4시간만에 94% 재활용⋯공기 중 습기가 비결
- 지구촌 플라스틱 문제 해결에 청신호가 켜졌다. 미국 노스웨스턴대학교 연구팀이 공기 중 습기를 이용해 플라스틱 폐기물을 분해하는 혁신적인 신기술을 개발했다고 발표했다. 이 신기술은 기존 플라스틱 재활용 방식에 비해 안전하고 경제적이며 지속가능한 것으로 플라스틱 순환 경제 구축에 크게 기여할 것으로 전망된다. 새로운 기술은 공기 중의 미량의 습기만으로 플라스틱 폐기물을 효율적으로 재활용하는 간편한 방법이다. 연구팀은 폴리에스터 계열 플라스틱 중 가장 널리 사용되는 페트(PET)의 결합을 끊는 저렴한 촉매를 개발했다. 이 촉매를 활용해 분해된 PET는 공기중의 미량의 수분에 노출되는 것만으로 플라스틱의 기본 구성 단위인 단량체로 전환된다. 연구팀은 이 단량체를 재활용하거나 고부가가치물질로 업사이클링할 수 있을 것으로 기대하고 있다. 해당 연구에 대해서는 전문매체 쿨다운, 인터레스팅엔지니어링,웹사이트 PHYS.org 등 다수 매체가 다루었다. 연구의 공동 교신 저자인 노스웨스턴 대학 조교수인 요시 크라티쉬 연구원은 보도자료를 통해 "본 연구의 가장 획기적인 성과는 플라스틱 분해에 공기 중 습기를 활용하여 매우 깨끗하고 선택적인 공정을 달성했다는 점"이라고 말했다. 크라티쉬 연구원은 "미국은 1인당 플라스틱 오염국 1위이며, 우리는 그 플라스틱의 5%만 재활용한다"면서 "다양한 유형의 플라스틱 폐기물을 처리할 수 있는 더 나은 기술이 절실히 필요하다. 오늘날 우리가 가진 대부분의 기술은 플라스틱 병을 녹여서 품질이 낮은 제품으로 다운사이클한다"고 밝혔다. 이어 "우리 연구에서 특히 흥미로운 점은 공기 중의 수분을 이용해 플라스틱을 분해하여 매우 깨끗하고 선택적인 공정을 달성했다는 것이다. PET의 기본 구성 요소인 단량체를 회수함으로써 재활용하거나 더 가치 있는 재료로 업사이클할 수도 있다"고 강조했다. 플라스틱 지속 가능한 해결책 제시 연구팀은 플라스틱 폐기물을 분해하기 위해 몰리브덴 촉매와 활성탄을 사용했다. 이 두 물질은 모두 저렴하고 풍부하며 무독성이라는 장점을 지닌다. 실험 과정은 다음과 같다. 먼저 PET 플라스틱과 촉매, 활성탄을 혼합한 후 가열한다. 폴리에스터 플라스틱은 화학 결합으로 연결된 반복 단위의 거대 분자(폴리머)로 구성되어 있다. 가열 과정을 통해 이 화학 결합이 단시간내 끊어지는 것이다. 다음으로 연구진은 분해된 물질을 공기에 노출시켰다. 놀랍게도 분해된 물질은 극소량의 습기만으로 폴리에스터의 고부가가치 전구체인 테레프탈산(TPA)으로 변환됐다. 부산물은 상업적 가치가 있는 산업용 화학물질인 아세트알데히드뿐이었다. 이는 쉽게 제거할 수 있다. 연구의 제1 저자인 나빈 말라크 연구원은 "상대적으로 건조한 환경에서도 대기 중에는 평균 1만~1만5000㎦의 물이 존재한다"며 "대기 중 습기를 활용함으로써 대량의 용매를 제거하고 에너지 투입량을 줄이며, 공격적인 화학 물질 사용을 피할 수 있어 더욱 깨끗하고 환경 친화적인 공정이 가능하다"고 설명했다. 크라티쉬 연구원은 시스템이 완벽하게 작동했지만, 과도한 양의 물을 첨가했을 때 기능이 오히려 저하됐다고 밝혔다. 이는 폐플라스틱 분해에 적절한 균형 유지가 중요하며, 결국 자연적인 공기 중 습도가 플라스틱 폐기물 분해에 최적의 양을 제공했다는 것이다. 심각한 플라스틱 오염 문제 PET 플라스틱은 식품 포장재 및 음료 용기에 광범위하게 사용되며, 전 세계 플라스틱 소비량의 12%를 차지한다. 자연 분해가 잘 안 돼 플라스틱 오염의 주범으로 꼽힌다. 사용 후 매립되거나 미세 플라스틱 또는 나노 플라스틱으로 분해되어 토양과 하수, 수로를 오염시킨다. 플라스틱 재활용은 중요한 연구 분야이지만, 기존 방식은 고온, 고에너지 소비, 유해 용매 사용 등 극단적인 조건에 의존하며 독성 부산물을 생성하는 경우가 많다. 더욱이 백금, 팔라듐과 같은 촉매는 고가이며 독성이 있어 더욱 유해한 폐기물을 생성한다. 반응 완료 후에는 재활용 물질을 용매로부터 분리해야 하는데, 이 과정 또한 시간과 에너지가 많이 소모된다. 크라티쉬 연구원은 "용매 대신 공기 중 수증기를 사용했다. 이것은 플라스틱 재활용 문제를 해결하는 훨씬 더 우아한 방법"이라고 강조했다. 빠르고 효율적인 공정 새로운 공정은 빠르고 효율적이다. 단 4시간 만에 가능한 TPA의 94%를 회수한다. 개발된 촉매는 내구성이 뛰어날 뿐만 아니라 재활용이 가능하며, 반복 사용에도 효과를 유지한다. 또한 이 방법은 혼합 플라스틱에도 적용 가능하도록 설계되어 선택적으로 재활용 할 수 있다. 이러한 선택성은 재활용 산업에 상당한 경제적 이점을 제공하는 전처리 분류의 필요성을 없애준다. 실제 플라스틱 병, 의류, 혼합 플라스틱 폐기물 등 실제 재료에 대한 테스트에서도 이 공정은 매우 효과적이었으며, 색깔있는 플라스틱까지 순수하고 투명한 무색의 TPA로 분해됐다. 연구팀은 향후 산업적 응용을 위해 공정 규모를 확대해 대량의 플라스틱 폐기물을 효율적으로 관리할 수 있도록 노력할 계획이다. 이번 연구 결과는 왕립화학회(Royal Society of Chemistry)에서 발행하는 학술지 '그린 케미스트리(Green Chemistry)'에 최근 게재됐다.
-
- ESGC
-
[신소재 신기술(160)] 플라스틱, 4시간만에 94% 재활용⋯공기 중 습기가 비결
-
-
[기후의 역습(122)] 남극 오존층, 회복세 공식 확인…MIT, 완전 소멸 궤도 진입
- 한때 지구 생태계를 위협했던 남극 오존층 구멍이 국제 사회의 공동 노력으로 괄목할 만한 회복세를 보이며 완전 소멸을 향해 나아가고 있다는 고무적인 연구 결과가 발표됐다. 미국 매사추세츠공과대학교(MIT) 연구진은 5일(이하 현지시간) 국제 학술지 '네이처'에 게재한 논문에서 "남극 오존층이 95% 신뢰 수준으로 회복되고 있으며, 이는 자연적 기상 변동성이 아닌 오존층 파괴 물질 감축 노력의 직접적인 결과"라고 밝혔다. MIT 뉴스는 5일 "이러한 회복(오존층 구멍 회복)이 자연적인 기상 변화나 성층권으로의 온실가스 배출 증가와 같은 다른 영향보다는 오존 고갈 물질의 감소에 주로 기인환다는 것을 보여준 최초의 연구"라고 밝혔다. 수십 년간 과학계는 남극 오존층 구멍의 점진적 개선 징후를 관찰해 왔으나, 이번 연구는 장기간의 관측 데이터를 토대로 오존층 회복에 대한 확고한 과학적 증거를 제시했다는 점에서 의미가 깊다. 논문의 주저자인 MIT의 저명한 대기 화학자 수잔 솔로몬 교수는 성명을 통해 "남극 오존층 구멍이 개선되고 있다는 정성적 증거는 많았지만, 이번 연구는 오존층 회복에 대한 신뢰도를 처음으로 수치화했다"고 강조했다. 솔로몬 교수는 "95% 신뢰도로 회복되고 있다는 결론은 매우 놀라운 성과이며, 인류가 환경 문제 해결에 실제로 나설 수 있음을 보여준다"고 덧붙였다. CFCs 남용으로 오존층 구멍 형성 오존층은 지구 표면 15~30km 상공의 성층권에 위치하며, 대기 중 오존 농도가 높아 유해한 태양 자외선을 흡수하여 지구 생명체를 보호하는 역할을 한다. 그러나 1970년대와 80년대에 들어서면서 남극 상공의 오존층에 거대한 구멍이 형성되기 시작했다. 이는 에어로졸 스프레이, 용매, 냉매 등에 광범위하게 사용된 염화불화탄소(CFCs)와 같은 합성 화합물이 주범으로 지목됐다. CFCs는 성층권에 도달하면 염소 원자를 방출하여 오존 분자 분해를 촉진하는 것으로 알려져 있다. 특히 남극 지역은 극도로 낮은 기온, 극지방 성층권 구름의 존재, 그리고 오존층 파괴 화학 물질을 가두는 극 소용돌이와 같은 특수한 조건으로 인해 남반구의 봄철에 오존층 파괴가 더욱 심각하게 나타난다. 솔로몬 교수는 과거 미국해양대기청(NOAA) 소속으로 1986년 남극에 파견되어 CFCs가 오존층 파괴의 원인임을 입증하는 결정적인 증거를 수집하는 데 기여했다. 몬트리올 의정서 채택 이후 CFCs 단계적 폐지 이러한 과학적 근거를 바탕으로 국제 사회는 문제 해결을 위해 발 빠르게 움직였다. 1987년 몬트리올 의정서 채택 이후 197개국과 유럽연합(EU)은 냉장고와 에어로졸에 사용되는 CFCs와 같은 오존층 파괴 물질의 단계적 폐지에 합의했다. 지난 10년간 남극 오존층 구멍은 특히 9월, 남극이 온난해지기 시작하며 오존층 구멍이 가장 크게 열리는 시기에 매년 축소되는 긍정적인 신호가 나타났다. 그러나 대기 중 '혼란스러운 변동성' 때문에 과학자들은 섣불리 회복을 단정하기를 주저했으며, 일각에서는 회복 속도가 기대에 미치지 못한다는 주장이 제기되기도 했다. 하지만 15년간 축적된 관측 데이터를 분석한 결과, 연구진은 오존층이 확실히 회복되고 있다는 결론을 내렸다. 현재 추세가 유지된다면 남극 오존층은 약 10년 후 완전히 회복될 것으로 전망된다. 연구팀은 남극 오존 회복의 원인을 파악하기 위해 정량적 접근 방식을 취했다. 팀은 기후 변화 커뮤니티에서 '지문 분석(fingerprinting)'이라는 방법을 차용했다. 이는 클라우스 하셀만이 개발한 것으로, 그는 2021년 이 기술로 노벨물리학상을 수상했다. 기후의 맥락에서 지문 분석은 자연적 기상 노이즈와 별도로 특정 기후 요인의 영향을 분리하는 방법을 말한다. 하셀만은 지문 분석을 적용해 기후 변화의 인위적인 지문 식별, 확인 및 정량화했다. 솔로몬 교수 팀은 지문 분석법을 적용해 또 다른 인위적인 신호, 즉 사람들이 오존층 파괴 물질을 줄이는 것이 오존층 회복에 미치는 영향을 확인하고자 했다. 아울러 지구 대기의 시물레이션으로 시작해 서로 다른 시작 조건에서 동일한 지구 대기의 여러 '평행 세계' 또는 시뮬레이션을 생성했다. 연구팀은 예를 들어, 온실 가스나 오존층 파괴 물질의 증가가 없다고 가정한 조건에서 시뮬레이션을 실행했다. 또한 온실 가스만 증가하고 오존층 물질만 감소하는 시뮬레이션도 실행했다. 이러한 시뮬레이션을 통해 연구팀은 수십년에 걸쳐 오존이 매월 회복되는 시간과 고도를 매핑하고 오존 고갈 물질의 감소로 인한 오존 회복의 핵심 '지문' 또는 패턴을 식별했다. 그런 다음 연구팀은 2005년부터 현재까지 남극 오존층에 대한 실제 위성 관측에서 이 지문을 찾았다. 팀은 2018년에 이 지문이 가장 강했고, 오존 회복이 주로 오존층 파괴 물질의 감소 때문이라고 95%의 신뢰도로 확신했다. 솔로몬 교수는 "2035년쯤에는 남극 오존층에서 오존층 파괴가 전혀 나타나지 않는 해를 보게 될 수도 있다. 이는 매우 감격스러운 일"이라며 "우리 시대에 오존층 구멍이 완전히 사라지는 것을 목격하게 될 것"이라고 강조했다. 이번 연구는 인류가 국제적인 협력을 통해 심각한 환경 문제에 효과적으로 대응할 수 있음을 보여주는 대표적인 사례로 기록될 전망이다.
-
- 포커스온
-
[기후의 역습(122)] 남극 오존층, 회복세 공식 확인…MIT, 완전 소멸 궤도 진입
-
-
일상용품 속 안전한 '고분자', 유해물질 방출 '새로운 위협'
- 일상샐활 속 각종 제품에 광범위하게 사용되는 화학 물질에 대한 안전성 논란이 끊이지 않는 가운데, 그간 인체에 무해하다고 여겨졌던 고분자(폴리머·polymer) 화합물이 유해 물질을 방출하는 '트로이 목마' 역할을 할 수 있다는 충격적인 연구 결과가 발표되어 파장이 예상된다. 미국 독성물질관리법(TSCA) 및 유럽연합의 REACH 규제 등 주요 유해 물질 규제에서조차 예외로 취급될 만큼 안전성이 강조되어 온 고분자는, 분자 크기가 커 인체에 흡수되지 않아 건강상 위험이 없다는 것이 과학계의 통념이었다. 그러나 국제 학술지 '네이처 지속가능성(Nature Sustainability)'에 게재된 획기적인 동료 평가(peer-review) 연구 논문은 일부 고분자 난연제가 분해되어 인체에 유해한 화학 물질로 변질될 수 있다는 사실을 밝혀내며 기존의 학설을 정면으로 반박했다고 과학 전문매체 사이테크데일리가 4일(현지시간) 보도했다. 논문의 수석 저자인 중국 광둥성에 있는 지난(Jinan)대학교의 다 첸(Da Chen) 박사는 "이번 연구는 고분자가 유해 화학 물질의 '트로이 목마'가 될 수 있음을 시사한다"며 "본래 비활성 상태의 거대 분자로 제품에 첨가되지만, 시간이 지나면서 분해되어 유해한 부산물에 우리를 노출시킬 수 있다"고 경고했다. '무독성' 대체재로 개발된 폴리머 난연제, 유해 물질 방출⋯제브라피시 실험 통해 독성 확인 연구팀은 기존 난연제의 유해성을 대체하기 위해 '무독성'으로 개발된 두 종류의 폴리머 브롬화 난연제((polymeric brominated flame retardants, polyBFRs)를 대상으로 심층 연구를 진행했다. 실험 결과, 두 종류의 polyBFRs 모두 수십 종의 작은 분자로 분해되는 것으로 확인됐다. 특히 제브라피시를 이용한 독성 실험에서, 이들 작은 분자들이 미토콘드리아 기능 장애를 유발하고 발달 및 심혈관에 심각한 손상을 초래할 수 있는 잠재력이 있다는 사실이 입증됐다. 토양·공기·먼지 등 환경 전반에 유해 물질 검출⋯전자 폐기물 재활용 시설 인근 농도 '최고' 더욱 심각한 문제는, 연구진이 환경 오염 실태를 조사하는 과정에서 이들 고분자 분해 물질이 토양, 공기, 먼지 등 환경 전반에 광범위하게 퍼져 있음을 확인했다는 점이다. 특히 전자 폐기물 재활용 시설 인근 지역에서 가장 높은 농도로 검출됐으며, 이들 시설에서 멀어질수록 농도가 점차 감소하는 경향을 보였다. 이는 전자 제품에 사용된 polyBFRs가 유해한 분해 물질을 환경으로 방출하고, 인간과 야생 동물이 이에 노출되어 심각한 피해를 입을 수 있음을 시사하는 충격적인 결과다. 논문의 공동 저자인 캐나다 토론토대학교의 미리아 다이아몬드 교수는 "전자 제품에 polyBFRs가 광범위하게 사용될 경우, 제품 생산, 가정 내 사용, 폐기 및 재활용 등 전 과정에서 유해 물질 노출이 발생할 수 있다"고 지적하며 "화학 산업계가 생산량을 공개하지 않고 있지만, 생산량이 매우 높을 것으로 추정되는 만큼, 오염 가능성과 그로 인한 인간 및 야생 동물에 대한 심각한 피해가 매우 우려스럽다"고 강조했다. 이번 연구 결과는 기존의 안전성 평가 기준에 허점을 드러내며, 고분자 화합물에 대한 보다 엄격한 규제와 심층적인 안전성 검증의 필요성을 제기하는 중요한 계기가 될 것으로 보인다. ◇ 참조: 「고분자 난연제 분해의 환경적 영향」 작성자: Xiaotu Liu, Yinran Xiong, Xiao Gou, Lei Zhao, Shanquan Wang, Yanhong Wei, Xiaoyun Fan, Yang Yu, Arlene Blum, Lydia Jahl, Miriam L. Diamond, Yiping Du, Zhuyi Zhang, Shuxin Jiang, Xiaowei Zhang, Ting Wu 및 Da Chen, 3 March 2025, 네이처 자속가능성(Nature Sustainability). DOI: 10.1038/s41893-025-01513-z
-
- ESGC
-
일상용품 속 안전한 '고분자', 유해물질 방출 '새로운 위협'
-
-
[우주의 속삭임(100)] 화성의 붉은색, 냉수 속 철 산화물 '페리하이드라이트' 때문일 가능성 제기
- 화성을 상징하는 붉은 색은 건조 광물인 '적철석' 이 아닌, 물이 풍부한 철광물인 페리하이드라이트(ferrihydrite) 때문이라는 의견이 제기됐다. 화성은 특유의 붉은색으로 인해 오랜 기간 '붉은 행성'으로 불렸다. 최근 과학계는 이 독특한 색채의 기원을 밝혀낼 잠재적 단서를 발견해, 기존의 통념을 뒤집는 새로운 이론을 제시했다. 화성의 먼지는 산화철을 포함한 다양한 광물이 뒤섞인 것으로 알려져 있다. 새로운 연구에 따르면 산화철 중 하나인 물이 풍부한 페리하이드라이트가 화성의 붉은 색의 원인이라고 미국 항공우주국(나사·NASA)은 설명했다. 미국 브라운 대학교 지구·환경·행성 과학부의 박사후 연구원인 주저자 애덤 발란티나스는 "화성이 왜 붉은지에 대한 근본적인 질문은 아마도 수천 년에서 수백 년 동안 이어져 왔다"고 말했다. 발란티나스는 "저희 분석에 따르면 페리하이드라이트는 먼지의 모든 곳에 있으며 아마도 암석 형성에도 있을 것이다. 페리하이드라이트가 화성이 붉은 이유라고 생각한 것은 처음은 아니지만, 관찰 데이터와 새로운 실험 방법을 사용해 실험실에서 화성 먼지를 만들어 테스트할 수 있다"고 설명했다. 화성은 지구 가까이에 위치한 거리 상의 이점과 수십년 동안 탐사선을 보냄으로써 태양계에서 가장 광범위하게 연구된 행성 중 하나다. 궤도선과 착륙선은 화성의 붉은색이 행성을 뒤덮은 먼지 속 산화된 철 광물에서 비롯된다는 자료를 제공해 왔다. 과거 화성 암석 속 철은 물 또는 물과 대기 중 산소와 반응하여 지구에서 녹이 형성되는 것과 유사한 방식으로 산화철을 생성했다. 수십억 년에 걸쳐 산화철은 먼지로 분해되어 화성의 바람에 의해 이동하며 행성 전체에 퇴적되었고, 이는 현재에도 먼지 회오리와 대규모 먼지 폭풍을 일으키고 있다. 미국 브라운대학교 연구팀이 시뮬레이션된 화성 먼지를 보여주는 실험실 샘플. 황토색은 철분이 풍부한 페리히드라이트의 특징으로, 화성의 고대 물 활동과 환경 조건에 대한 중요한 통찰력을 제공하는 광물이다. 이 미세 분말 혼합물은 페리히드라이트와 현무암으로 구성되어 있으며 입자 크기가 1마이크로미터(머리카락 지름의 1/100) 미만이다(샘플 규모: 가로 1인치). 사진=애덤 발란티나스 그동안 우주선의 관측에만 의존한 화성 산화철 분석에서는 물의 흔적이 감지되지 않아 연구자들은 산화철이 적철석(hematite)일 것이라는 가설을 세웠다. 철광석의 주요 구성 성분인 건조 광물 적철석은 수십억 년에 걸쳐 화성 대기와의 반응을 통해 형성되었을 것으로 추정됐다. 이는 적철석이 화성 표면에 호수와 강이 존재했던 것으로 추정되는 시기 이후에 형성되었음을 의미했다. 그러나 브라운대학교 연구팀은 다수의 탐사 임무에서 수집된 자료와 모사된 화성 먼지를 결합한 새로운 연구 결과는 적철석이 아닌 냉수 환경에서 형성되는 광물인 페리하이드라이트(ferrihydrite)가 붉은색의 원인일 수 있다는 가능성을 제시했다. 이는 수백만 년 전 화성의 환경과 잠재적 거주 가능성에 대한 과학적 이해를 변화시킬 수 있음을 시사한다. 해당 연구 결과는 지난 25일 학술지 '네이처 커뮤니케이션즈(Nature Communications)'에 발표됐다. 연구를 주도한 애덤 발란티나스 박사후 연구원은 "화성은 여전히 붉은 행성이다. 다만, 화성이 왜 붉은색인지에 대한 우리의 이해가 변화했을 뿐이다"라고 밝혔다. 지구 실험실서 화성 먼지 재연 연구팀은 유럽우주국(ESA)의 화성 익스프레스 궤도선과 엑소마스 미량 가스 궤도선, 그리고 NASA의 화성 정찰 궤도선과 큐리오시티, 패스파인더, 오퍼튜니티 로버에서 수집된 자료를 활용했다. 미량 가스 궤도선의 CaSSIS 컬러 카메라는 화성 먼지 입자의 정확한 크기와 구성을 밝혀 연구자들이 지구에서 자체적으로 먼지를 제작할 수 있도록 했다. 연구진은 다양한 유형의 산화철을 사용하여 실험실에서 자체적인 화성 먼지를 만들었다. 모사된 먼지는 특수 분쇄기를 통해 화성의 먼지와 동일한 크기의 입자로 제작됐으며, 두께는 사람 머리카락의 1/100에 해당한다. 연구팀은 화성 궤도를 돌며 행성을 연구하는 궤도선에서 사용하는 기술과 유사한 X선 기계와 반사 분광계를 사용하여 먼지를 분석했다. 이후 실험실 자료와 우주선 자료를 비교했다. 발란티나스 연구원은 화성 익스프레스의 OMEGA 반사 분광계는 화성의 먼지가 가장 많은 지역에서도 물이 풍부한 광물의 증거를 보여주었으며, CaSSIS 자료는 실험실 시료와 비교했을 때 적철석이 아닌 페리하이드라이트가 화성 먼지와 가장 잘 일치한다는 것을 보여줬다고 밝혔다. CaSSIS 카메라 개발을 주도한 스위스 베른 대학교 물리학 연구소의 니콜라스 토마스 교수는 "우리는 현무암과 혼합된 페리하이드라이트가 화성에서 우주선이 관측한 광물과 가장 잘 일치한다는 것을 발견했다"고 말했다. 미량 가스 궤도선 자료를 사용하여 스위스 베른 대학교에서 연구를 시작한 발란티나스 연구원은 "주요 시사점은 페리하이드라이트가 표면에 물이 존재했을 때만 형성될 수 있기 때문에 화성이 우리가 이전에 생각했던 것보다 더 일찍 녹슬었다는 것이다. 또한 페리하이드라이트는 현재 화성의 조건에서도 안정적으로 유지된다"고 밝혔다. 물이 풍부했던 과거 화성 발란티나스 연구원은 화성의 붉은색에 대한 미스터리가 수천 년 동안 지속되어 왔다고 말했다. 유럽우주국(ESA)에 따르면 로마인들은 화성의 색이 피를 연상시킨다는 이유로 전쟁의 신의 이름을 따서 화성이라고 명명했으며, 이집트인들은 화성을 '헤르 데셰르(Her Desher)', 즉 "붉은 것"이라고 불렀다. 발란티나스 연구원은 화성의 색이 물이 없는 형태의 녹인 적철석이 아닌 페리하이드라이트와 같은 물을 함유한 녹슨 광물 때문일 수 있다는 사실이 연구진을 놀라게 했다고 말했다. 하지만 이는 화성의 지질학적, 기후학적 역사에 대한 흥미로운 단서를 제공한다고 그는 덧붙였다. 발란티나스는 "물이 함유된 녹이 화성 표면 대부분을 덮고 있다는 것은 화성의 고대 과거에 액체 상태의 물이 이전에 생각했던 것보다 더 광범위하게 존재했을 수 있음을 시사한다. 이는 화성이 한때 액체 상태의 물이 존재했던 환경을 가지고 있었음을 의미하며, 물은 생명체의 필수 조건이다. 우리 연구는 화성에서 페리하이드라이트 형성에 산소(대기 또는 다른 출처에서)와 철과 반응할 수 있는 물이 모두 필요했음을 보여준다"고 말했다. 페리하이드라이트, 30억년 전 생성 가능성 이번 연구는 광물이 정확히 언제 형성되었는지 밝히는 데 초점을 맞추지는 않았다. 하지만 페리하이드라이트는 냉수에서 형성되기 때문에 수백만 년 전 화성이 더 따뜻하고 습했던 시기가 아닌 약 30억 년 전에 생성되었을 가능성이 있다. 발란티나스는 "이 시기는 화성에서 격렬한 화산 활동이 일어나 얼음이 녹는 현상과 물과 암석 사이의 상호작용을 촉발하여 페리하이드라이트 형성에 유리한 조건을 제공했을 가능성이 높은 시기였다. 이 시기는 화성이 초기 습한 상태에서 현재의 사막 환경으로 전환되는 시기와 일치한다"고 말했다. 페리하이드라이트는 먼지뿐만 아니라 화성 암석층에도 존재할 가능성이 있다. 이를 확인하는 가장 좋은 방법은 붉은 행성에서 암석과 먼지 실제 표본을 확보하는 것이다. 퍼시비어런스 로버는 이미 암석과 먼지를 포함하는 여러 표본을 수집했으며, NASA와 ESA는 화성 표본 귀환 프로그램(Mars Sample Return program)을 통해 2030년대 초까지 지구로 가져오는 것을 목표로 하고 있다. ESA의 미량 가스 궤도선 및 화성 익스프레스 프로젝트 과학자인 콜린 윌슨은 "이 귀중한 표본을 실험실로 가져오면 먼지에 페리하이드라이트가 얼마나 포함되어 있는지, 그리고 이것이 화성의 물의 역사와 생명체 존재 가능성에 대한 우리의 이해에 어떤 의미를 갖는지 정확히 측정할 수 있을 것"이라고 밝혔다. 한편 이번 연구 결과는 발란티나스 연구원과 동료들에게 먼지 폭풍을 통해 화성 전체로 퍼져나가기 전 페리하이드라이트의 원래 생성 위치와 페리하이드라이트가 형성되었을 때 화성 대기의 정확한 화학적 구성 성분 등 새로운 미스터리를 안겨주었다. 호건 교수는 먼지가 언제 어디서 형성되었는지 이해하는 것은 과학자들이 초기 지구와 유사한 행성의 대기가 어떻게 진화했는지에 대한 통찰력을 얻는 데 도움이 될 수 있다고 말했다. 호건 교수는 "페리하이드라이트는 눈이 녹거나 따뜻한 기후에서 짧은 기간 동안 강렬한 강우로 인해 단기간에 많은 물이 이동하는 지구의 토양에서 매우 흔하게 발견된다. 우리는 또한 (큐리오시티 로버가 탐사하고 있는 화성의) 게일 분화구의 호수 퇴적물에서도 페리하이드라이트의 증거를 발견했다. 이 퍼즐을 풀 수 있는 가장 좋은 방법은 화성 먼지 표본을 지구의 실험실로 가져오는 것이다"라고 덧붙였다.
-
- 포커스온
-
[우주의 속삭임(100)] 화성의 붉은색, 냉수 속 철 산화물 '페리하이드라이트' 때문일 가능성 제기
-
-
[신소재 신기술(158)] 반도체 나노플레이트 약점 활용 나노스케일 조립 기술 혁신
- 카드뮴 셀레나이드(CdSe) 나노플레이트의 취약점을 활용한 혁신적인 반도체 나노스케일(구조체) 조립 기술이 개발됐다. 카드뮴 셀레나이드 나노판은 혁신적인 전자 소재 개발의 유망한 기반으로 주목받고 있다. 특히, 이 나노판은 원자 몇 개 두께에 불과한 초박형 구조로 뛰어난 광학적 특성을 제공해 전 세계 연구자들의 관심을 끌고 있다. 독일 헬름홀츠 드레스덴-로젠도르프 센터(HZDR), 드레스덴 공과대학교(TU Dresden), 라이프니츠 고체 및 재료 연구소 드레스덴(IFW) 공동 연구팀은 카드뮴 셀레나이드 나노판의 체계적인 생산을 위한 중요한 진전을 이루었다고 웹사이트 PHYS가 전했다. 카드뮴 셀레나이드 나노판은 빛이나 공기에 노출될 경우 표면 산화 또는 구조 변화가 발생해 광학적 특성이 저하될 수 있는 취약점이 있다. 특히 고온이나 습도가 높은 환경에서는 광학적 안정성이 더욱 떨어질 수 있다. 또한 제조 과정이 어려워 균일한 형태와 크기의 카드뮴 셀레나이드 나노판을 대량 생산하는 것은 기술적으로 힘들다. 게다가 카드뮴 셀레이트 나노판의 표면을 안정화하거나 다른 물질과 결합하는 과정에서도 어려움이 발생할 수 있다. 연구팀은 학술지 '스몰(Small)'에 카드뮴 셀레나이드 나노판 구조와 기능 간의 상호 작용에 대한 기초적인 통찰력을 얻었다고 발표했다. 연구에 따르면 카드뮴 기반 나노판은 근적외선(NIR)과 특정 상호 작용을 통해 빛을 흡수, 반사, 방출하거나 다른 광학적 특성을 나타내는 2차원 물질 개발에 적합하다. 이러한 스펙트럼 범위는 다양한 기술 분야에서 활용될 수 있다. 예를 들어, 의료 진단에서는 NIR 빛이 가시광선보다 조직에서 산란이 적어 조직 내부를 더 깊이 관찰할 수 있다. 통신 기술에서는 고효율 광섬유 시스템에 NIR 물질이 사용되며, 태양 에너지 분야에서는 광전지 효율을 높일 수 있다. HZDR 이온빔 물리학 및 재료 연구소의 리코 프리드리히 박사 겸 드레스덴 공과대학교 이론 화학과 교수는 "원하는 광학적 및 전자적 특성을 나타내도록 물질을 특정하게 변형하는 능력은 이러한 모든 응용 분야에서 매우 중요하다"고 말했다. 드레스덴 공과대학교 물리 화학과의 알렉산더 아이히뮐러 교수는 "과거에는 나노 화학 합성이 시행착오를 통해 물질을 혼합하는 것에 가까웠기 때문에 어려움이 있었다"고 덧붙였다. 두 과학자는 공동으로 협력해 이번 연구 프로젝트를 이끌었다. 정밀한 나노 입자 생산을 위한 양이온 교환 여기서 특별한 과제는 나노 구조체의 폭과 길이를 변경하지 않고 원자층의 수와 조성을 특정하게 제어하여 두께를 조절하는 것이다. 이러한 복잡한 나노 입자 합성은 재료 연구의 핵심 과제이다. 양이온 교환은 이러한 문제를 해결하는 데 중요한 역할을 했다. 이 방법에서는 나노 입자의 특정 양이온(양전하를 띤 이온)을 다른 이온으로 체계적으로 대체한다. 아이히뮐러 교수는 "이 과정은 조성과 구조를 정밀하게 제어하여 기존 합성 방법으로는 얻을 수 없는 특성을 가진 입자를 생산할 수 있게 한다. 그러나 이 반응의 정확한 작동 방식과 시작점에 대해서는 알려진 것이 거의 없다"고 설명했다. 이번 프로젝트에서 연구팀은 활성 모서리가 중요한 역할을 하는 나노판에 초점을 맞췄다. 이러한 모서리는 화학적으로 특히 반응성이 높아 판들을 조직화된 구조로 결합할 수 있다. 이러한 효과를 더 잘 이해하기 위해 연구팀은 정교한 합성 방법, 원자 분해능 (전자)현미경, 광범위한 컴퓨터 시뮬레이션을 결합했다. 나노 입자의 활성 모서리와 결함은 화학적 반응성뿐만 아니라 광학적 및 전자적 특성으로도 흥미롭다. 이러한 위치는 종종 전하 운반체의 농도가 높아 운반체의 이동과 빛의 흡수에 영향을 미칠 수 있다. 프리드리히 박사는 "단일 원자 또는 이온을 교환하는 능력과 결합하여 단일 원자 촉매에서 이러한 결함을 활용하여 개별 원자의 높은 반응성과 선택성을 활용하여 화학 공정의 효율성을 높일 수 있다"고 설명했다. 이러한 결함의 정밀한 제어는 나노 물질의 NIR 활성에도 중요하다. 이는 근적외선이 흡수, 방출 또는 산란되는 방식에 영향을 미쳐 광학적 특성을 체계적으로 최적화할 수 있는 방법을 제공한다. 나노 구조체 연결, 자기 조직화를 향한 발걸음 이 연구의 또 다른 결과는 활성 모서리를 통해 나노판을 체계적으로 연결하여 입자를 정렬되거나 자기 조직화된 구조로 결합할 수 있다는 것이다. 미래 응용 분야에서는 이러한 조직화를 활용하여 NIR 활성 센서 또는 새로운 유형의 전자 부품과 같은 통합 기능을 갖춘 복잡한 재료를 생산할 수 있다. 실제로 이러한 재료는 센서 및 태양 전지의 효율성을 높이거나 새로운 데이터 전송 방법을 용이하게 할 수 있다. 동시에 이 연구는 촉매 또는 양자 재료와 같은 나노 과학의 다른 분야에 대한 기초적인 통찰력을 제공한다. 연구팀의 이번 발견은 최첨단 합성, 실험 및 이론적 방법의 조합 덕분에 가능했다. 연구자들은 나노 입자의 구조를 정밀하게 제어할 수 있을 뿐만 아니라 활성 모서리의 역할을 자세히 조사할 수 있었다. 원자 결함 분포 및 조성 분석 실험은 재료 특성에 대한 포괄적인 이해를 얻기 위해 이론적 모델링과 결합됐다. ◇ 참고: 볼로디미르 샴라옌코 외, 반도체 나노판의 취약점: 격리된 결함에서 방향성 나노 스케일 어셈블리로, 스몰 (2024). DOI: 10.1002/smll.202411112
-
- IT/바이오
-
[신소재 신기술(158)] 반도체 나노플레이트 약점 활용 나노스케일 조립 기술 혁신
-
-
트럼프, 플라스틱 빨대 사용 재개 선언⋯"종이 빨대는 효과 없어"
- 도널드 트럼프 미국 대통령이 플라스틱 빨대 사용을 재추진하는 행정명령에 서명하며, 바이든 행정부의 연방 정부 내 일회용 플라스틱 사용 단계적 금지 정책을 뒤집었다. 트럼프는 10일(현지시간) "종이 빨대는 효과가 없다"며 "우리는 다시 플라스틱 빨대로 돌아갈 것"이라고 밝혔다고 독립매체 인디펜던트, 미국의 소리, 더 힐 등 다수 외신이 전했다. 바이든 행정부의 플라스틱 규제 철회⋯트럼프의 행정명령 트럼프의 이번 결정은 바이든 행정부가 추진했던 연방 정부의 일회용 플라스틱 사용 감축 정책을 정면으로 겨냥한 것이다. 바이든 행정부는 연방 시설 내 플라스틱 빨대, 식기류, 포장재 등의 사용을 2027년까지 음식 서비스, 행사, 포장 부문에서 금지하고, 2035년까지 연방 운영 전반에서 단계적으로 중단하는 목표를 설정한 바 있다. 트럼프는 종이 빨대가 환경 보호의 대안으로 제시되었으나, 실제로는 사용이 불편하다는 점을 지적했다. 그는 지난 주말 자신의 소셜 미디어 '트루스 소셜(Truth Social)'을 통해 "입안에서 녹아내리는 빨대는 역겹다"며 바이든 정책을 "폐기된(dead) 정책"이라고 비판했다. 앞서 트럼프는 2019년 대선 캠페인 당시 트럼프 브랜드의 재사용 가능한 플라스틱 빨대(10개들이 15달러)를 판매하며 종이 빨대 사용 규제를 강하게 반대해왔다. 이번 행정명령 역시 플라스틱 사용 규제에 반대하는 기업과 소비자들의 요구를 반영한 것으로 풀이된다. 플라스틱은 석유와 가스를 사용해 생산된다. 환경 단체 반발⋯"플라스틱 오염, 지구적 위기" 트럼프의 결정에 대해 환경 단체들은 즉각 반발하고 나섰다. 미국 해양 보호 단체 오세아나(Oceana)의 플라스틱 캠페인 디렉터 크리스티 레빗(Christy Leavitt)은 "트럼프 전 대통령은 일회용 플라스틱 문제에서 잘못된 방향으로 가고 있다"며 "지구는 플라스틱 오염 위기에 직면해 있으며, 이는 해양 생태계와 전 지구적 환경에 심각한 위협이 되고 있다"고 경고했다. 더 힐은 2023년 연구를 인용해 코팅이나 방수에 주로 사용되는 PFAS(영원한 화합물질)로 알려진 화합물은 독성이 있으며, 종이와 대나무를 포함한 거의 모든 유형의 빨대에서 발견됐다고 지적했다. 플라스틱 빨대는 해양 쓰레기 중 일부에 불과하지만, 전체적으로 일회용 플라스틱 포장재, 물병, 테이크아웃 용기, 쇼핑백 등과 함께 심각한 환경 오염을 초래하는 주요 요인으로 지목되고 있다. 유엔에 따르면 매년 전 세계에서 400만 톤 이상의 플라스틱 폐기물이 바다로 유입되며, 이는 분해되는 과정에서 미세 플라스틱으로 변해 해양 생물과 인간 건강에도 악영향을 미친다. 미국 환경 단체 '스트로우스 터틀 아일랜드 복원 네트워크(Straws Turtle Island Restoration Network)'는 "미국에서 하루에 3억 9000만 개의 빨대가 사용되며, 이는 200년 이상 분해되지 않고 해양 생태계에 심각한 위협을 가한다"고 밝혔다. 플라스틱 산업계 환영⋯"빨대는 시작일 뿐" 한편, 플라스틱 업계는 트럼프의 결정을 적극 지지하고 있다. 미국 플라스틱 산업 협회(Plastics Industry Association)의 대표 맷 시홀름(Matt Seaholm)은 "우리는 '다시 플라스틱(Back to Plastic)' 캠페인을 전면적으로 지지한다"며 "빨대 문제는 시작에 불과하며, 더 많은 제품에서 플라스틱 규제를 완화해야 한다"고 주장했다. 플라스틱 규제 둘러싼 논쟁 심화 전망 현재 전 세계적으로 플라스틱 오염 문제를 해결하기 위한 논의가 진행 중이다. 지난해 말 한국에서 열린 유엔(UN) 회의에서는 전 세계 100개국 이상이 플라스틱 생산량 제한과 재활용 촉진을 포함한 국제 협약 체결을 추진했으나, 최종 합의에는 이르지 못했다. 미국, 중국, 독일 등 주요 플라스틱 생산국들은 협상 과정에서 자국 산업 보호와 환경 규제 간 균형을 맞추는 방안을 모색하고 있다. 미국 플라스틱 제조업체들은 바이든 행정부가 제시한 재활용 중심 정책을 유지할 것을 촉구하고 있으며, 트럼프가 플라스틱 규제 완화를 주도하는 것이 환경 정책의 흐름과 맞지 않는다는 비판도 제기되고 있다. 트럼프 전 대통령의 이번 행정명령은 단순한 정책 변경이 아니라 환경 보호 정책과 산업 이익 간의 갈등을 보여주는 대표적 사례로 평가된다. 앞으로 플라스틱 사용 규제에 대한 논쟁은 더욱 심화될 것으로 보인다.
-
- ESGC
-
트럼프, 플라스틱 빨대 사용 재개 선언⋯"종이 빨대는 효과 없어"
-
-
국내 첫 대체거래소 '넥스트레이드' 출범…주식거래 시간 12시간으로 확대
- 국내 최초 대체거래소(ATS) '넥스트레이드'가 내달 4일 출범한다. 7일 김영돈 넥스트레이드 경영전략본부장은 서울 여의도 금융투자협회에서 기자설명회를 열고, 애프터마켓 운영 방침을 공개했다. 애프터마켓(오후 3시 30분~8시) 운영 중 투자 관련 주요 정보가 공개될 경우, 해당 종목의 주식 거래가 즉시 중지된다. 거래 정지는 한국거래소(KRX)의 공시 확인 후 재개 여부가 결정된다. 넥스트레이드는 SOR(자동주문전송시스템·Smart Order Routing) 시스템을 활용해 투자자에게 유리한 시장을 선택하도록 하고, 증권사에는 최선집행의무를 부여한다. 본격 출범 후 4주간 거래 종목을 점진적으로 확대해 800여 개 종목으로 운영할 계획이다. [미니해설] 국내 첫 대체거래소 '넥스트레이드' 출범⋯주식거래 경쟁 본격화 국내 최초의 대체거래소(ATS) '넥스트레이드'가 내달 4일 출범한다. 기존 한국거래소(KRX)와 함께 운영되며, 애프터마켓을 도입해 국내 주식 거래 시간을 최대 12시간으로 확대한다. 또한, 주요 투자 정보가 공개될 경우 해당 종목의 거래를 즉시 정지하는 등 투자자 보호 장치도 마련됐다. 애프터마켓 도입⋯거래 정지 조치로 투자자 보호 넥스트레이드는 정규 시장이 마감된 후 오후 3시 30분부터 8시까지 운영되는 애프터마켓을 도입한다. 이 시간 동안 투자 판단에 영향을 미칠 수 있는 주요 정보가 보도되면 해당 종목의 거래가 즉시 중지된다. 거래 재개 여부는 한국거래소(KRX)의 공시 확인 후 결정된다. 김영돈 넥스트레이드 경영전략본부장은 7일 서울 여의도 금융투자협회에서 열린 기자설명회에서 "애프터마켓에서의 투자자 보호 장치가 부족하다는 우려를 반영한 조치"라며 "거래소에서 매매 정지를 할 사유가 발생했을 때, 특히 악재가 있을 경우 신속한 대응이 필요하다"고 설명했다. 이러한 조치는 기존 주식 시장과 차별화된 점으로, 야간 거래에서 발생할 수 있는 급격한 변동성을 억제하고 투자자 보호를 강화하기 위한 것이다. 증권사에 '최선집행의무' 부여⋯투자자 이익 우선 넥스트레이드는 투자자 주문을 가장 유리한 시장에서 체결하도록 하는 '최선집행의무(Best Execution Obligation)'를 증권사에 부여한다. 증권사는 넥스트레이드와 한국거래소 중 유리한 시장을 선택해 주문을 배분해야 하며, 이를 위해 자동주문전송시스템(SOR, Smart Order Routing)을 활용할 예정이다. 최선집행의무를 위반할 경우 자본시장법에 따라 과태료가 부과될 수 있으며, 증권사는 이에 대한 이행 기록을 10년간 보관해야 한다. 또한, 투자자가 요청할 경우 최선집행기준에 따라 주문이 처리됐음을 증명하는 서면을 1개월 내에 제공해야 한다. 주식거래 시간 12시간으로 확대⋯프리마켓·애프터마켓 도입 넥스트레이드가 출범하면 국내 주식 거래 시간은 기존보다 대폭 늘어난다. △ 프리마켓은 오전 8시~8시 50분, △정규 시장은 오전 9시~오후 3시 30분(한국거래소 및 넥스트레이드 동시 운영), △ 애프터마켓은 오후 3시 30분~8시(넥스트레이드 운영)까지 운영한다. 즉, 넥스트레이드 운영으로 인해 국내 주식시장은 하루 12시간 동안 거래가 가능해진다. 이는 미국, 일본 등 주요 선진국의 야간 거래 시스템과 유사한 형태로, 국내 투자자들에게 새로운 거래 기회를 제공할 것으로 기대된다. 출범 후 4주간 거래 종목 확대⋯800여 개 종목으로 운영 넥스트레이드는 초기 거래 종목을 약 10개 내외로 시작해, 출범 후 4주간 매주 거래 종목을 확대할 계획이다. 최종적으로 약 800여 개 종목이 포함될 예정이다. 거래 환경을 더욱 개선하기 위해 기존 시장가 및 지정가 외에도 새로운 주문 방식이 추가된다. △ 중간가호가는 최우선 매수·매도 호가의 중간 가격으로 자동 조정된다. △ 스톱지정가호가는 특정 가격에 도달하면 지정가 주문을 실행한다. 이러한 주문 방식은 투자자들의 주문 전략을 다양화하고, 시장의 유동성을 더욱 높일 것으로 기대된다. 한국거래소보다 20~40% 낮은 수수료⋯경쟁 체제 본격화 넥스트레이드는 거래소의 매매체결 수수료보다 20~40% 낮은 수수료를 책정할 계획이다. 이에 따라 기존 한국거래소의 독점적 지위가 완화되고, 주식 거래 시장에서 경쟁 체제가 본격적으로 도입될 전망이다. 이는 투자자들의 거래 비용 절감으로 이어질 가능성이 높아, 장기적으로는 국내 증권 시장의 효율성을 높이는 데 기여할 것으로 보인다. 넥스트레이드는 현재 출범을 약 한 달 앞두고 최종 점검을 진행 중이다. 김 본부장은 "운용사 단에서의 점검은 인프라 구축처럼 오랜 시간이 걸리는 이슈가 아니며, 현재 큰 문제 없이 순조롭게 진행 중"이라고 밝혔다. 앞서 금융위원회는 지난 5일 넥스트레이드의 다자간매매체결회사(ATS) 투자중개업 본인가를 승인했다. 이에 따라 넥스트레이드는 법적·제도적 요건을 충족한 상태에서 출범을 준비 중이다. 대체거래소 도입으로 증시 변화 전망⋯투자자 유의해야 넥스트레이드 출범은 국내 주식시장의 중요한 전환점이 될 것으로 예상된다. 기존 한국거래소의 독점 구조가 완화되고, 투자자들에게 더 많은 선택권이 제공된다. 특히, 애프터마켓 도입으로 인해 기업 공시 이후의 시장 반응을 즉각적으로 반영할 수 있다는 점에서 의미가 크다. 다만, 대체거래소 도입 초기에는 유동성이 낮아 일부 종목의 변동성이 커질 가능성이 있다. 또한, 증권사별 최선집행기준이 다를 수 있어 투자자들은 거래 시 주의가 필요하다. 업계 관계자는 "대체거래소 도입으로 인해 증권사 간 경쟁이 심화되고, 투자자 보호 장치도 한층 강화될 것"이라며 "초기에는 거래 규모가 작을 수 있지만, 점차 시장이 확대되면 안정적인 운영이 가능할 것"이라고 전망했다. 넥스트레이드의 출범으로 국내 주식 시장이 어떻게 변화할지 주목된다.
-
- 금융/증권
-
국내 첫 대체거래소 '넥스트레이드' 출범…주식거래 시간 12시간으로 확대
-
-
인체 장기 내 미세 플라스틱 축적 심화, 뇌 조직에서 고농도 검출
- 미세플라스틱이 인체 내 뇌 조직에서 다른 장기보다 더 많이 발견돼 충격을 주고 있다. 미국 뉴멕시코대학 연구진의 최근 연구에 따르면, 인체 내 미세플라스틱 축적이 심화되고 있으며, 특히 뇌 조직에서 높은 농도의 미세플라스틱이 검출돼 우려가 커지고 있다고 과학전문매체 사이언스얼럿과 abc뉴스 등 다수 외신이 4일(현지시간) 보도했다. 학술지 '네이처 메디신(Nature Medicine)'에 게재된 이번 연구는 지난해 수거된 뇌 조직 샘플이 약 10년 전 수거된 유사 샘플보다 훨씬 더 많은 미세플라스틱을 함유하고 있음을 보여준다. 이는 미세한 합성 입자가 시간이 지남에 따라 인체의 주요 기관에 축적된다는 사실을 시사한다. 뉴멕시코대 보건과학자 알렉산더 니하트(Alexander Nihart)와 연구진은 뇌 샘플에서 신장 및 간 샘플보다 더 높은 농도의 미세플라스틱이 검출됐음을 확인했다. 뉴멕시코대 건강과학센터, 오클라호마주립대, 듀크대, 콜롬비아 라 유니버시다드 델 발레엔칼리의 연구원들은 47구의 시체에서 뇌, 간, 신장 샘플을 분석했다. 연구 결과에 따르면 뇌 조직에서 발견된 미세플라스틱의 평균 양은 1g당 4800마이크로 그램이었다. 이는 표준 플라스틱 숟가락 하나와 맞먹는 양이다. 연구에 따르면 사람의 혈류 내에 이 정도의 미세플라스틱이 존재할 경우 어떤 구체적인 건강 위험이 초래될지는 아직 알수 없다고 한다. 1950년부터 2019년까지 약 90억 톤의 플라스틱이 생산되었으며, 이 물질들은 시간이 지나면서 미세한 조각으로 분해돼 전 세계적으로 확산되고 있다. 플라스틱이 작은 조각으로 떨어져나간 미세플라스틱은 크기가 최대 5mm에 달하며, 나노플라스틱은 그보다 더 작은 크기로 10억분의 1미터 단위로 측정한다. 연구진은 논문에서 "인위적으로 생성된 미세플라스틱과 나노플라스틱의 환경 내 농도는 지난 반세기 동안 기하급수적으로 증가했다"고 밝혔다. 연구에 따르면 플라스틱 용기부터 바닥재, 의료기기에 이르기까지 모든 것에서 발견되는 가장 흔한 플라스틱인 폴리에틸렌이 뇌 샘플에서 발견된 미세 플라스틱의 75%를 차지했다. 미세플라스틱, 뇌 보호막도 침투 인체 조직에 축적된 플라스틱 입자의 장기적인 영향과 잠재적 누적 효과는 아직 명확히 밝혀지지 않았지만, 우려할 만한 연구 결과들이 속속 제시되고 있다. 미발표 연구에서는 태반 내 미세플라스틱이 조산과 연관된 것으로 나타났으며, 쥐를 대상으로 한 연구에서는 미세플라스틱이 뇌 혈관을 막는 데 영향을 미칠 수 있다는 결과도 보고됐다. 또 다른 연구에서는 흔히 사용되는 플라스틱 첨가제 노출이 수백만 건의 사망과 관련이 있다는 사실이 밝혀졌다. 니하트 연구진은 2016년과 2024년 부검을 통해 확보한 52개의 인체 조직 샘플을 분석한 결과, 모든 샘플에서 플라스틱 입자가 검출됐다고 밝혔다. 간과 신장 샘플의 플라스틱 양은 유사했으나, 뇌 샘플에서는 최대 30배 높은 농도의 플라스틱이 발견됐다. 이는 간과 신장이 체내 노폐물을 걸러내고 분해하는 역할을 수행하면서 순환하는 입자와의 접촉이 많아질 수 있다는 점을 고려할 때 뜻밖의 결과다. 특히, 뇌에는 유해 물질을 차단하는 혈액뇌관문이 존재함에도 불구하고 미세플라스틱이 축적된 사실이 확인돼 충격을 주고 있다. 치매 환자 뇌에서 플라스틱 농도 더 높아 연구진은 1997년부터 2013년까지 확보한 초기 뇌 샘플 데이터와 비교한 결과, 시간이 지남에 따라 플라스틱 농도가 증가하는 명확한 추세를 발견했다. 이는 환경 내 미세플라스틱과 나노플라스틱 농도의 급격한 증가가 인체 내에서도 반영되고 있음을 시사한다. 분석된 조직의 플라스틱 농도는 연령, 인종, 사망 원인과 무관했지만, 치매 진단을 받은 사람들의 샘플에서는 그렇지 않은 사람들보다 높은 농도의 플라스틱이 검출됐다. 연구진은 "뇌 조직 위축, 혈액뇌관문 손상, 노폐물 제거 기능 저하는 치매의 주요 특징이며, 이는 미세플라스틱과 나노플라스틱 농도를 증가시킬 수 있다"고 설명했다. 다만, 플라스틱 물질 축적이 건강 악화에 직접적으로 영향을 미치는지는 아직 확실하지 않다고 덧붙였다. 니하트 연구진은 미세플라스틱의 건강 영향을 규명하기 위한 추가 연구가 필요하다는 점을 강조하며, 이에 대한 연구자들의 관심이 더욱 필요하다고 촉구했다. 한편, 플라스틱 생산량은 지속적으로 증가하고 있으며, 인간은 일상적으로 플라스틱 조각을 흡수하고 있다. 영국 엑서터대 글로벌 개발 연구원 아담 하니에(Adam Hanieh)는 "플라스틱은 석유와 가스로부터 추출된 석유화학 제품"이라며, 2040년에는 플라스틱이 석유 수요 증가의 95%를 차지할 것으로 예상된다고 경고했다.
-
- ESGC
-
인체 장기 내 미세 플라스틱 축적 심화, 뇌 조직에서 고농도 검출
-
-
EU, PFAS(영원한 화학물질) 규제 본격화…소비자 제품 사용 금지 추진
- 유럽연합(EU)이 환경과 건강에 악영향을 미칠 수 있는 PFAS(퍼플루오로알킬 및 폴리플루오로알킬 물질)의 소비자 제품 사용 금지를 본격 추진한다. EU 환경 담당 집행위원 제시카 로스월은 20일(현지시간) 로이터와의 인터뷰에서 "소비자 제품에서 PFAS 사용을 금지하는 방안을 검토 중"이라며 "이는 인간과 환경에 중요한 문제일 뿐 아니라 산업계가 PFAS를 단계적으로 줄여나가는 데도 도움을 줄 것"이라고 밝혔다. PFAS(Per-and Polyfluoroalkyl Substances)는 퍼플루오로알킬 및 폴리플루오로알킬 화합물을 통칭하는 화학 물질군이다. 이들은 약 4700종 이상의 화합물로 구성되어 있으며, 높은 내구성과 비분해성으로 인해 '영원한 화학물질(Forever Chemicals)'로 불린다. PFAS는 열, 물, 오염물질에 강한 내성을 지니고 있어 쉽게 분해되지 않는다. 또한 물과 기름을 모두 방어하는 특성이 있어 다양한 산업과 소비자 제품에 사용된다. 높은 온도에도 견딜 수 있고 부식에 강한 특성 덕분에 PFAS는 화장품, 코팅 프라이팬, 항공기, 풍력 터빈 등 수천 가지 제품에 사용된다. 그러나 환경에서 분해되지 않아 생태계와 음용수, 인체에 축적될 가능성이 커 심각한 우려를 낳고 있다. 규제 세부안 마련⋯"산업계 필수 사용 사례는 예외 검토 중" 미국 환경보호국(EPA)에 따르면 PFAS에 장기간 노출되면 전립선암, 신장암, 고환암 위험이 증가하고, 어린이의 발달 지연, 여성의 생식력 감소, 신체 호르몬 균형이 깨질 수 있다. 특히 PFAS는 장내 미생물의 섬세한 균형을 파괴해 염증을 유발하고, 이는 대장암과 같은 질병 발생 위험을 높이는 것으로 밝혀졌다. 덴마크, 독일, 네덜란드, 노르웨이, 스웨덴은 2년 전부터 PFAS의 광범위한 금지를 지지해 왔지만, EU의 공식 제안은 이르면 내년에나 나올 전망이다. 의료용 흡입기와 전기차용 반도체 같은 필수 산업 분야에서 PFAS 사용이 예외적으로 허용될 가능성을 검토 중이기 때문이다. EU 화학물질청(ECHA)은 금지 대상의 범위를 구체화하기 위해 기업 및 업계 단체로부터 수천 건의 의견을 수렴하고 있다. 자동차, 청정 에너지, 플라스틱 산업 등 다양한 분야의 단체들은 일부 PFAS, 특히 방수 의류나 태양광 패널에 쓰이는 플루오로폴리머에 대한 예외 적용을 요청하고 있다. PFAS 관련 소송 증가⋯기업 리스크 확대 PFAS는 신장 기능에도 심각한 영향을 미치는 것으로 드러났다. 미국 남부캘리포니아 대학교(USC) 연구팀의 4년간 추적 관찰 결과, PFAS 노출은 신장 기능을 최대 50%까지 감소시키는 것으로 나타났다. 신장 기능 감소는 노폐물 여과 기능 저하로 이어져 체내 독성 물질 축적, 주요 장기 기능 손상 등을 유발할 수 있다. 또한 미국 노스이스턴 대학교 연구팀은 PFAS가 면역 체계를 약화시켜 감염에 대한 저항성을 떨어뜨린다는 사실을 밝혀냈다. 이는 면역력 저하로 인한 각종 감염성 질환, 만성 염증성 질환 발병 위험 증가로 이어질 수 있다. PFAS가 간 손상, 저체중 출산, 고환암 등 건강 문제와 관련 있다는 연구 결과가 나오면서 기업들의 소송 위험도 커지고 있다. 미국에서는 화학물질로 인한 수질 오염 소송으로 3M과 케모어스(Chemours) 등 기업들이 110억 달러(약 14조 원) 이상의 합의금을 지불했다. 유럽에서도 환경오염과 건강 피해를 축소하거나 은폐한 기업들을 대상으로 한 소송이 확산될 가능성이 크다는 분석이 나온다. 환경법 전문 로펌 클라이언트어스(ClientEarth)의 헬렌 뒤구이 변호사는 "PFAS와 관련된 기업들의 행동을 주시하고 있으며, 필요할 경우 법적 조치를 취할 것"이라고 밝혔다. EU의 PFAS 규제가 본격화되면 관련 산업계와 소비자 제품에 적잖은 변화를 가져올 것으로 보인다. PFAS 사용 금지와 규제 강화가 어떻게 진행될지 귀추가 주목된다.
-
- ESGC
-
EU, PFAS(영원한 화학물질) 규제 본격화…소비자 제품 사용 금지 추진
-
-
[신소재 신기술((149)] 플라스틱 폐기물을 지속가능한 제트 연료로 전환
- 플라스틱 폐기물에서 탄소 발자국을 줄이는 지속가능한 항공유 추출 기술이 개발됐다. 미국 연구진이 폐폴리스티렌을 활용하여 지속가능한 항공유에 필수적인 첨가제인 에틸벤젠을 생산하는 획기적인 기술을 개발했다고 사이테크데일리가 전했다. 이는 항공 산업의 탄소 발자국을 줄이고 화석 연료 의존도를 낮추는 데 크게 기여할 것으로 기대된다. 일리노이 대학교 연구팀은 최근 'ACS 지속가능한 화학 및 공학 저널(ACS Sustainable Chemistry and Engineering)' 저널에 발표된 연구에서 폐폴리스티렌을 열분해와 수소화 과정을 거쳐 에틸벤젠으로 전환하는 기술을 소개했다. 에틸벤젠은 항공유 시스템의 성능 유지를 위해 필수적인 방향족 탄화수소로 윤활 및 밀봉 기능을 수행한다. 에틸벤젠으로 연료 성능 개선 기존의 지속 가능한 항공유는 폐지방, 오일, 동물성 지방인 그리스(grease), 식물 바이오매스 등 비석유 자원으로 만들었다. 그러나 이는 방향족 탄화수소 함량이 부족해 기존 항공기 및 인프라 와의 호환성을 유지하기 위해서는 최소 8.4% 이상의 방향족 탄화수소를 혼합해야 한다. 현재 지속 가능한 항공유의 방향족 탄화수소 함량은 약 0.5%에 불과하며, 이는 지속 가능한 항공유 사용 확대에 걸림돌로 작용해왔다. 일리노이 지속 가능한 기술 센터(ISTC)의 연구 과학자 홍 루는 "방향족 탄화수소는 기계 부품을 윤활하고 씰을 팽창시켜 정상 작동 중 누출을 방지함으로써 연료 시스템 성능을 유지하는 데 필수적이다"라고 설명했다. 연구팀이 개발한 기술은 폐폴리스티렌을 에틸벤젠으로 전환하여 기존 항공유 사용 걸림돌을 해결할 수 있는 가능성을 제시한다. 폐폴리스티렌은 탄화수소가 풍부하고 매립지에 막대한 양이 폐기되고 있어 지속가능한 에틸벤젠 생산에 적합한 원료로 평가된다. 전 세계적으로 생산되는 플라스틱은 재활용율이 겨우 10% 미만에 불과하다. 2025년에는 플라스틱 폐기물이 400억톤에 이를 것으로 예상된다. 특히 포장재와 건축 자재에 널리 사용되는 폴리스티렌(PS)은 매립지에 버려지는 폐기물의 약 33%를 차지하지만, 재활용율은 1%에 불과하다. 2022년 폴리스티렌의 전 세계 생산량은 1540만톤에 달했다. 그 중에서 재활용된 폴리스티렌은 겨우 15만4000톤에 불과했다. 탄소 배출량 60% 감축 연구팀은 폐폴리스티렌에서 추출한 에텔벤젠을 지속가능한 항공유에 혼합하여 성능을 평가한 결과, 화석 연료에서 추출한 에틸벤젠과 거의 동일한 성능을 보이는 것으로 확인했다. 또한, 폐폴리스티렌 유래 에틸벤젠은 생산 비용이 저렴하고 탄소 배출량을 최대 60%까지 감축할 수 있는 것으로 나타났다. 이번 연구는 지속가능한 항공유 생산 및 활용 확대에 중요한 전환점이 될 것으로 기대된다. 미국 에너지부는 2030년까지 지속가능한 항공유 생산량을 연간 30억 갤런으로 늘리고, 2050년까지 항공유 사용량(연간 350억 갤런)의 100%를 지속가능한 항공유로 대체하는 것을 목표로 하고 있다. 폐플라스틱을 활용한 에틸벤젠 생산 기술은 이러한 목표 달성에 기여할 수 있을 뿐만 아니라, 폐기물 문제 해결과 탄소 배출 감축에도 효과적인 방안으로 주목받고 있다.
-
- ESGC
-
[신소재 신기술((149)] 플라스틱 폐기물을 지속가능한 제트 연료로 전환
-
-
금융당국, 공매도 재개 앞두고 통합 가이드라인 발표
- 금융당국이 3월 말 공매도 재개를 앞두고 규제 체계를 명확히 하는 '통합 가이드라인 최종안'을 마련했다고 19일 밝혔다. 가이드라인에 따르면 대규모 공매도 법인은 잔고 관리 시스템을 구축해야 하며, 소규모 법인은 공매도 업무 규칙만 마련하면 된다. 수탁증권사는 공매도 주문 전 내부통제 기준 구비 여부를 확인하고, 연 1회 점검 결과를 금감원에 보고해야 한다. 또한 투자자 실체성 검증을 위한 행정절차가 마련되며, 공매도 잔고 0.01% 이상 법인은 거래 정보를 제출해야 한다. 금융당국은 공매도 전산화 제도를 3월 말까지 완성하고, 수탁증권사 설명회, 투자자 토론회, 시스템 시연회를 잇달아 개최해 시장과의 소통을 강화할 계획이다. [미니해설] 공매도 규제 강화, 통합 가이드라인 최종안 공개 금융당국이 오는 3월 31일 공매도 재개를 앞두고 규제 체계를 명확히 하기 위해 마련한 '통합 가이드라인 최종안'을 19일 발표했다. 이번 가이드라인은 공매도 관련 규제의 실효성을 높이고, 시장 신뢰를 강화하기 위한 내용을 담고 있다. 특히 무차입 공매도 방지 및 내부통제 강화를 주요 목표로 삼았다. 대규모 공매도 법인·소규모 공매도 법인, 규제 수준 차등화 가이드라인에 따르면 대규모 공매도 법인과 소규모 공매도 법인을 구분해 규제 수준을 차등화한다. 대규모 공매도 법인은 공매도 잔고가 전체 주식의 0.01%를 초과하거나 금액 기준 10억 원 이상인 경우를 말한다. 이들 법인은 기관 내 공매도 잔고 관리 시스템을 의무적으로 구축해야 하며, 이를 통해 공매도 거래의 투명성과 신뢰성을 제고한다는 방침이다. 반면, 소규모 공매도 법인이나 관련 규모가 작은 기관은 공매도 업무 규칙만 마련하면 된다. 공매도 업무의 법적 준수 여부를 사전에 점검하고, 사후 검증 시스템을 강화하는 조치도 포함됐다. 이는 무차입 공매도와 같은 불법 행위가 발생하지 않도록 하는 핵심 제도다. 수탁증권사는 최초 공매도 주문을 수탁하기 전 해당 법인의 내부통제 기준 구비 여부와 업무 분장의 명확성을 확인해야 한다. 또한 연 1회 이상 점검을 실시하고, 점검 결과는 확인일로부터 1개월 이내에 금융감독원에 보고해야 한다. 투자자의 실체성을 검증하기 위한 행정 절차도 새롭게 마련됐다. 이를 통해 공매도 거래에 참여하는 투자자가 실제로 신뢰할 수 있는 주체인지 여부를 확인할 수 있도록 하고, 이를 위해 관련 법인은 투자자 등록번호를 발급받아야 한다. 등록번호 발급 대상은 공매도 잔고가 전체 주식의 0.01% 이상이거나 10억 원 이상인 대규모 공매도 거래 법인에 한정된다. 시장조성(Market Maker·MM)이나 유동성 공급(Liquidity Provider·LP) 역할을 수행하는 법인도 등록 대상에 포함된다. 등록번호는 법인 단위별로 발급하는 것을 원칙으로 하며, 이를 통해 공매도 거래의 투명성과 이력을 체계적으로 관리할 예정이다. 전산시스템 개발 완료⋯연계 테스트 시작 또한, 공매도 거래소 중앙점검시스템(NSDS)과의 정보 연계도 의무화됐다. 법인은 보유 중인 모든 종목에 대한 잔고 및 거래 내역을 NSDS에 제출해야 한다. 이는 공매도 거래의 전산화를 통해 무차입 공매도를 원천적으로 차단하기 위한 조치로, 3월 말까지 관련 제도를 완비할 계획이다. 금융감독원은 "이번 시행세칙 개정을 통해 공매도 전산화 제도의 틀이 완성될 예정"이라며 "이 제도에 맞춰 공매도 전산화 작업을 3월 말까지 마무리하겠다"고 밝혔다. 한국거래소는 지난해 6월 정부의 공매도 제도 개선 방안 발표 이후인 7월 NSDS 개발에 착수했으며, 6개월간 시스템 설계·개발·구현 및 자체 테스트를 완료했다고 지난 5일 밝혔다. 이어 6일부터 전체 공매도 거래의 90% 이상을 점유하고 있는 국내외 주용 기고나투자자 30여곳을 대상으로 다음달까지 연계 테스트를 실시한다고 덧붙였다. 금융당국은 공매도 재개를 앞두고 시장 참여자와의 소통 강화에도 나선다. 이달 중으로 수탁 증권사를 대상으로 가이드라인에 대한 설명회를 개최할 예정이며, 이어서 2월에는 투자자와의 열린 토론회를 열 계획이다. 또한, 3월에는 공매도 거래소 중앙점검시스템(NSDS) 시연회를 개최해 전산화 제도의 실효성을 시장에 설명하고, 투자자들의 신뢰를 제고한다는 목표를 세웠다. 공매도 불신 해소, 시장 신뢰 회복 기대 이번 통합 가이드라인 최종안은 공매도 규제와 관련해 오랜 기간 지속되어 온 논란을 잠재우고, 시장의 신뢰를 회복하기 위한 시도라는 점에서 주목된다. 특히 무차입 공매도와 같은 불법 행위를 차단하고, 공매도 거래의 투명성과 신뢰성을 높이는 데 중점을 두고 있다. 이는 최근 공매도 제도를 둘러싼 불신을 해소하고, 국내 금융시장에 긍정적인 영향을 미칠 것으로 기대된다. 금융감독원 관계자는 "시장 참여자와의 소통을 통해 이번 가이드라인을 충분히 이해시키고, 공매도 재개 이후에도 지속적으로 규제 효과를 모니터링하겠다"고 밝혔다. 이어 "공매도 전산화와 내부통제 강화는 국내 금융시장의 신뢰를 회복하는 데 중요한 역할을 할 것"이라고 덧붙였다. 이번 가이드라인은 공매도 제도의 전반적인 개편과 시장 안정화를 목표로 하고 있다. 다만, 실제 시행 과정에서 현장의 목소리를 얼마나 잘 반영할 수 있을지, 그리고 이 규제가 공매도 시장의 활성화와 신뢰 회복이라는 두 가지 목표를 동시에 달성할 수 있을지는 지속적인 모니터링과 보완이 필요할 것으로 보인다.
-
- 금융/증권
-
금융당국, 공매도 재개 앞두고 통합 가이드라인 발표
-
-
[퓨처 Eyes(67)] 우주 농업, 달에서 희망을 싹틔우다
- 인류의 우주 진출이 가속화되면서, 우주에서의 식량 생산은 중요한 과제로 떠올랐다. 나사(NASA)는 달과 화성으로 향하는 미래의 우주 임무에서 우주인들이 신선한 식물을 포함한 영양가 있는 농산물을 섭취할 수 있는 방법을 검토하고 있다. 밀봉된 식품 포장은 시간이 지남에 따라 맛이 변하고 비타민이 분해되어 건강에 문제가 될 수 있다. 비타민C가 부족하면 우주인들은 괴혈병에 걸릴 수 있고, 비타민 결핍은 다른 여러 건강 문제를 일으길 수 있다고 나사는 설명했다. 또한 우주에 지구의 식물을 가져가는 것은 우주 개척자들에게 심리적 웰빙에 좋으며, 우주인의 장기 임무에서 건강을 유지하는 데 중요하다고 나사는 덧붙였다. 현재 지구 저궤도를 돌고 있는 국제 우주 정거장에는 우주인들이 다양한 동결 건조 식품이나 미리 포장된 식품을 정기적으로 공급받아 식단을 충족하고 있다. 나사는 무중력 상태에서 상추와 토마토, 무와 같은 식물을 재배하는 방법을 실험하고 있다. 이를 통해 우주 비행이 식물 유전학, 물 사용과 식품의 풍미 등에 어떤 영향을 미치는지를 연구하고 있는 것이다. 더 나아가 햇빛이나 지구 중력이 없는 심우주의 폐쇄된 환경에서 어떻게 식물을 생산할 수 있을 것인가?에 초점을 맞추고 있다. 그러면, 달과 화성 중 어디가 농작물 재배에 더 적합할까? 최근 연구 결과는 우리의 예상을 뒤엎고 달의 손을 들어주었다고 스페이스닷컴이 최근 보도했다. 달 vs 화성, 작물 성장의 승자는? 북애리조나대학교의 연구 조교 로라 리는 "흥미로운 점은 달에서 작물이 화성에서보다 더 잘 자랐다는 점입니다. 우리는 반대일 것이라고 예상했죠."라고 밝혔다. 2024년 미국 지구물리학연합(AGU) 가을 학술대회에서 발표된 이 연구는 달과 화성의 토양 조건이 작물 성장에 미치는 영향을 비교 분석한 최초의 실험 중 하나다. 연구 결과는 달 토양의 구조적 특징이 작물 생장에 더 유리함을 보여준다. 화성 토양은 질소가 풍부하지만, 점토처럼 밀도가 높아 뿌리 호흡에 필수적인 산소 공급을 제한한다. 반면, 달의 표면을 덮고 있는 흙과 암석 부스러기인 레골리스(regolith)는 상대적으로 느슨한 구조로 뿌리 성장에 더 적합한 환경을 제공한다. 마치 지구의 밭을 갈아 토양에 공기를 공급해주는 것과 같은 효과를 기대할 수 있다. 폐수 비료, 우주 농업의 해결사? 척박한 우주 환경에서 비료는 작물 재배의 필수 요소다. 하지만 지구에서 비료를 운송하는 것은 막대한 비용이 소요된다. 이에 대한 대안으로, 연구진은 우주인의 폐수에서 추출한 미생물을 열처리하여 만든 비료인 밀오르가나이트(Milorganite)를 사용했다. 폐기물을 재활용하여 비료를 생산한다는 점에서 지속 가능한 우주 농업 시스템 구축에 필요한 아이디어지만, 아직까지는 해결해야 할 과제가 남아있다. 화성에서 밀오르가나이트를 사용한 옥수수 재배 실험 결과는 그다지 성공적이지 못했다. 지구에서 흔히 사용하는 질소 비료를 사용했을 때보다 옥수수 생존율이 현저히 낮았다. 이는 인간 폐수를 활용한 비료 생산 기술을 더욱 발전시켜야 할 필요성을 보여준다. 효율적인 폐기물 처리 시스템과 작물 생장에 최적화된 비료 생산 기술 개발, 그리고 옥수수 외에도 다양한 작물의 생장 특성을 연구하여 우주 환경에 적합한 작물을 선별하는 것은 우주 농업의 핵심 과제다. 다양한 작물, 우주 농업의 미래를 밝히다 연구진은 옥수수 외에도 브로콜리, 호박, 콩, 알팔파 등 다양한 작물을 대상으로 실험을 진행 중이다. 특히, 알팔파는 달과 화성 토양 모두에서 높은 생존율을 보이며 미래 우주 농업의 핵심 작물로 떠올랐다. 알팔파는 질소 고정 능력이 뛰어나 토양을 비옥하게 만드는 효과가 있다. 또한, 단백질 함량이 높아 영양학적으로도 우수하며, 가축 사료로도 활용 가능하다. 영화 '마션(The Martian)'에서 화성에 홀로 남겨진 식물학자이자 기계공학자인 주인공 마크 와트니(맷 데이먼 분)가 화성에서 생존하기 위해 감자를 재배했던 장면처럼, 감자는 향후 연구에서 다룰 중요한 작물 중 하나다. 감자는 탄수화물 함량이 높고 재배가 용이하여 우주 식량 자원으로서 큰 잠재력을 지니고 있다. 달, 자급자족 시대 앞당길까? 2019년 발표된 연구에 따르면, 화성이 자급자족 가능해지기까지는 약 100년이 소요될 것으로 예상된다. 반면, 나사의 연구에 따르면 달은 몇십 년 안에 자급자족이 가능할 수도 있다. 지구와의 거리가 짧아 물자 수송이 용이하다는 점이 달의 큰 장점이다. 하지만, 달에는 대기가 없어 소행성 충돌이나 태양 복사에 대한 대비책 마련이 필요하다. 화성은 방사선, 극저온, 독성 물질인 과염소산염 등 극복해야 할 환경적 난관이 많다. 특히, 토양의 유기물 부족은 작물 재배에 큰 어려움을 야기한다. 우주 농업, 지구 농업의 미래를 밝히다 우주 농업 연구는 단순히 우주 탐사를 위한 기술 개발을 넘어 지구 농업의 혁신에도 기여할 수 있다. 극한 환경에서 작물을 재배하는 기술은 기후 변화와 토지 황폐화 등으로 어려움을 겪는 지구 농업에 새로운 해결책을 제시할 수 있다. 예를 들어, 우주 농업 기술은 사막화 지역이나 척박한 토양에서의 작물 재배에 응용될 수 있다. 이번 연구는 인류의 우주 진출과 지속 가능한 미래를 위한 중요한 발걸음이다. 달과 화성의 토양 특성을 정확히 이해하고, 이에 맞는 작물 재배 기술을 개발하는 것은 우주 농업 성공의 핵심 열쇠다. 앞으로 더욱 활발한 연구를 통해 우주에서 인류가 자립할 수 있는 기반을 마련해야 한다. 특히, 우주 환경의 극심한 온도 변화, 방사선, 낮은 중력 등에 대응하기 위한 인공 환경 제어 기술 개발과 인력 부족 문제를 해결하고 효율성을 높이기 위한 자동화된 농작물 재배 시스템 구축도 중요한 과제다. 끊임없는 연구 개발과 투자를 통해 우주 농업의 꿈을 현실로 만들어 나가야 한다.
-
- 포커스온
-
[퓨처 Eyes(67)] 우주 농업, 달에서 희망을 싹틔우다
-
-
[먹을까? 말까?(87)] 엘더베리 주스, 체중 관리와 대사 건강 개선에 도움
- 엘더베리 주스가 체중 관리와 대사 건강 개선에 도움이 될 수 있다는 연구 결과가 나왔다고 사이테크데일리가 전했다. 블루베리와 생김새와 맛이 비슷한 엘더베리는 유럽딱총나무(Sambucus nigra)의 열매다. 엘더베리는 주로 유럽과 북미에서 자라는 나무로, 품종이 다양하며 성분도 여러 가지다. 히포크라테스가 '기적의 열매'라고 불렀던 엘더베리에는 비타민, 탄닌, 아미노산, 카로틴, 안토시아닌 등이 함유되어 있다. 미국 워싱턴 주립대학교 연구팀은 '뉴트리언츠(Nutrients)' 저널에 발표한 임상 실험에서 엘더베리 주스 섭취가 장내 미생물군에 유익한 변화를 가져오고, 포도당 내성을 개선하며, 지방 산화를 증가시키는 것으로 나타났다고 밝혔다. 연구팀은 과체중 성인 18명을 대상으로 무작위 위약 대조 임상 실험을 진행했다. 참가자들은 표준화된 식단을 유지하면서 엘더베리 주스 또는 유사한 색상과 맛을 가진 위약을 1주일 동안 매일 350ml씩 섭취했다. 그 결과, 엘더베리 주스를 섭취한 참가자들은 유익한 장내 세균(퍼미큐티스, 액티노박테리아 등)이 증가하고 해로운 세균(박테로이데테스 등)이 감소하는 것으로 나타났다. 또한 혈당 수치가 평균 24% 감소하고 인슐린 수치도 9% 줄어들어 포도당 처리 능력이 향상됐다. 안토시아닌 성분, 지방 분해 도와 엘더베리 주스는 신체의 지방 연소 능력을 향상시키는 것으로 밝혀졌다. 엘더베리 주스를 섭취한 참가자들은 고탄수화물 식사 후, 그리고 운동 중 지방산 분해가 증가하는 것으로 나타났다. 연구팀은 이러한 긍정적인 효과가 엘더베리에 풍부하게 함유된 안토시아닌 때문이라고 설명했다. 안토시아닌은 항염, 항당뇨, 항균 효과 등 다양한 건강상 이점을 가진 식물성 생리 활성 물질이다. 연구팀은 엘더베리의 생리 활성 성분을 체중 관리 및 장 건강 개선을 위한 보충제 또는 다른 용도로 사용하는 것에 대한 특허를 출원했다. 또한 추가 연구를 통해 엘더베리 주스의 장기적인 효과와 다양한 집단에 대한 효능을 확인할 계획이다. 이번 연구는 미국 농무부 국립식량농업연구소(NIFA)의 지원을 받아 수행됐다. 콜로라도 주립대학교, 노스캐롤라이나 주립대학교, 버몬트 대학교의 연구진도 연구에 참여했다.
-
- 생활경제
-
[먹을까? 말까?(87)] 엘더베리 주스, 체중 관리와 대사 건강 개선에 도움
-
-
[신소재 신기술(146)] 국내 연구진, 고체 내 전자의 양자 기하학 첫 측정…양자역학 새 지평 열다
- 국내 연구진이 포함된 국제 공동 연구팀이 고체 내에서 움직이는 단일 전자의 기하학적 '형태'를 최초로 즉정하는 데 성공했다. 이번 연구는 결정질 고체의 양자적 거동을 연구하는 새로운 방법을 제시하는 획기적인 성과로 평가된다고 사이언스 얼럿이 5일(현지시간) 전했다. 과학자들은 전자의 에너지와 운동을 계산하는 방법을 알고 있었지만, 전자의 양자 모양을 이해하는 것은 지금까지 이론적으로만 가능했다고 인터레스팅엔지니어링은 지적했다. 미국 매사추세츠 공과대학교(MIT)의 리카르도 코인(Riccardo Comin) 물리학과 교수는 "우리는 이전에는 얻을 수 없었던 새로운 정보를 얻는 방법을 개발했다"고 밝혔다. 이번 연구는 MIT에서 박사후 연구원으로 재직했으며 현재 코넬 대학교에 있는 강민구 박사와 서울대학교 김선제 교수가 주도했다. 물리학에서 물질은 고전 물리학으로 설명되는 방식으로 주로 이해된다. 그러나 입자 간 상호 작용이나 측정이 이루어지는 근본적인 수준에서는 고전 물리학과 달리 양자역학의 원리에 따라 움직인다. 전자는 입자와 파동, 두 가지로 행동할 수 있다. 전자를 입자라고 부르지만, 이는 작은 콩과 같은 이미지를 연상시키기 쉽다. 그러나 전자의 크기와 그 양자적 특성은 파동의 형태로 설명하는 게 훨씬 더 정확하다. 물리학자들은 전자의 파동적 측면을 설명하기 위해 파동함수를 사용한다. 파동함수는 특정 위치에서 특정 상태의 입자가 존재할 확률을 기술하는 수학적 모델로, 전자의 양자적 특성을 표현한다. 이러한 파동함수의 일부 특징은 기하학적 형태로 해석될 수 있으며, 이는 곡선이나 구와 같이 무한한 방향으로 회전하는 구조를 갖는다. 원자 격자 내 전자의 양자 기하학은 클라인 병이나 뫼비우스 띠처럼 복잡한 형태로 나타나기도 한다. 연구 저자들은 "지금까지의 파동함수의 양자 기하학은 이론적으로만 추론될 수 있었거나 전혀 추론될 수 없었다"고 말했다. 그들은 그러나 "물리학자들이 양자 컴퓨터부터 고급 전자 기기 및 장치에 이르기까지 모든 것에 잠재적으로 적용할 수 있는 양자 물질은 점점 더 많이 발견함에 따라 이 속성은 점점 더 중요해지고 있다"라고 덧붙였다. 고체 내 전자의 복잡한 양자 기하학의 일부를 결정하는 것은 물리학자들이 간접적으로 추론하는 방식에 의존해왔다. 강민구 박사와 김선진 교수 연구팀은 전자의 양자 기하학을 직접 측정하기 위해 '양자 기하학적 텐서(QGT)'라는 물리량을 활용했다. QGT는 2차원 홀로그램이 3차원 공간의 정보를 인코딩하는 것과 유사하게, 양자 상태의 전체 기하학적 정보를 담고 있다. 연구팀은 '각도 분해 광전자 분광법(ARPES)'을 사용해 전자의 양자 기하학을 측정했다. 이 기술은 물질에 광자를 조사해 전자를 방출시키고, 전자의 편광, 스핀, 방출 각도 등 다양한 특성을 분석하는 방식이다. 이번 연구는 코발트-주석 합금 단결정을 대상으로 진행했다. 이 물질은 '카고메 금속(kagome metal)'으로 알려져 있으며, 연구팀은 앞선 연구에서도 동일한 물질의 특성을 조사한 바 있다. 연구 결과 고체 내에서 QGT를 최초로 측정했으며, 이를 통해 금속 내 전자의 나머지 양자 기하학적 특성을 유추할 수 있었다. 연구팀은 이 결과를 이론적으로 도출된 양자기하학과 비교해 즉접 측정과 추론 방식의 유효성을 검증했다. 팀은 이번 기술이 코발트-주석 합금뿐 아니라 다양한 재료에 적용 가능하다고 밝혔다. 특히, 초전도성이 발견되지 않은 물질에서 초전도성을 발견하는 등 새로운 가능성을 열 것으로 기대된다. 익명을 요한 한 전문가는 '양자역학의 기하학적 해석은 최근 응집물질 물리학 분야에서 많은 진전을 이루는 데 중요한 역할을 했다"며 "연구팀은 양자 상태의 기하학적 특성을 근본적으로 규명하는 QGT에 실험적으로 접근하는 방법을 개촉했다"고 평가했다. 그는 이어 "이번 연구에서 개발된 방법은 간단하고, 다양한 고체 재료에 적용할 수 있어 새로운 양자 현상에 대한 기하학적 이해를 이끌어낼 잠재력이ㅐ 크다"고 덧붙였다. 이번 연구 결과는 국제 학술지 '네이처 피직스(Nature Physics)'에 게재됐다.
-
- IT/바이오
-
[신소재 신기술(146)] 국내 연구진, 고체 내 전자의 양자 기하학 첫 측정…양자역학 새 지평 열다
-
-
[기후의 역습(109)] 개인이 할 수 있는 2025년 기후변화 대응 전략 7가지
- 기후 변화를 늦추는 것은 인류의 최우선 과제지만, 개인의 소소한 기후 행동이 더해지면 기후 변화의 원인이 되는 배출을 줄이는 데 큰 도움이 될 수 있다. 2024년 1년 동안 역대 처음으로 섭씨 1.5도의 임계치가 깨지면서 세계적으로 배출을 줄여야 할 시급성이 부각됐다. 기후 변화를 억제하는 데 필요한 대부분의 작업은 재생 에너지 확대에서 석유, 가스, 석탄 생산 중단에 이르기까지 개인의 권한을 넘어선다. 그러나 개인의 행동도 기후 변화를 늦추는 데 기여할 수 있다. 하지만 어디서부터 시작해야 할지 알기 어려울 때가 많다. 어떤 단계가 실제로 의미 있는 변화를 가져올 수 있을까. BBC가 2025년 더 지속 가능한 삶을 위해 취할 수 있는 가장 영향력 있는 몇 가지 행동을 모아 전했다. 식물성 식품을 더 많이 먹는 것부터 비행기 타는 횟수를 줄이는 것, 중고 의류를 더 많이 사는 것 등 일곱 가지가 제시됐다. 식물성 식단으로 탄소 배출 절감 2033년까지 청록색 지구에는 소가 약 20억 마리, 돼지 10억 마리, 가금류 320억 마리, 양 약 30억 마리 등 동물이 약 380억 마리 살고 있을 것이다. 이들은 살아가면서 강력한 온실가스인 메탄과 아산화질소를 방출한다. 이 온실가스 분자들은 이산화탄소보다 각각 28배와 265배 더 강한 지구 온난화 효과를 일으킨다. 이들을 유지하는 데 필요한 막대한 양의 땅과 물은 말할 것도 없을 것이다. 과학계는 지구 온난화에서 구하기 위해 사람이 행동을 바꿀 수 있는 가장 좋은 방법 중 하나가 '고기를 덜 먹는 것'이라는 데 동의하고 있다. 영국의 한 연구에 따르면, 채식주의자의 식단에서의 탄소 배출은 가장 강한 육식주의자 식단의 25%에 불과하다. 채식주의자와 비건 모두 잡식주의자보다 물 사용량이 현저히 낮고 생물 다양성에 미치는 피해도 적다. 2022년 BBC 어스는 이를 시험하기로 결정하고 일주일 동안 식단에서의 탄소 배출량을 추적했다. 추적 결과 채식주의 식단이 항상 그런 것은 아니었지만 실제로 탄소 배출량이 낮았다. 탄소 배출량은 매일 발생하는 음식 쓰레기와 사용하는 조리 방법도 적지 않은 영향을 미쳤다. 비행기 대신 기차 이용 미국에서 교통수단은 가장 큰 이산화탄소 배출원이다. 총 탄소 배출량의 거의 3분의 1을 차지하며 전 세계 배출량의 16%를 차지한다. 인프라 변화는 교통으로 인한 배출량을 줄이는 데 중요한 역할을 하지만, 개인의 행동 역시 이 부문의 배출을 줄이는 데 기여할 수 있다. 비행기 탑승을 줄이는 것은 지속 가능한 삶을 사는 가장 좋은 방법 중 하나다. 두 명 이상이 함께 기차, 버스 또는 자동차를 이용하면 km 또는 마일당 탄소 배출량이 항상 낮다. 그리고 비행기 탑승을 줄이면 집에서 더 가까운 곳으로 여행할 수 있어 탄소 배출을 훨신 줄일 수 있다. BBC 작가 마틸다 웰린은 런던과 스웨덴 간 비행기 여행을 장거리 자전거 여행으로 대체한 결과에 대해 “비행기보다 비용이 많이 들고 시간이 훨씬 더 오래 걸렸지만, 잊을 수 없는 여행을 경험했고 인간의 속도로 세상을 보는 것을 즐겼다”고 밝혔다. 그녀는 자동차와 기차 여행도 자전거로 대체할 준비가 되었다고 덧붙였다. 화석연료 자동차를 사용하는 경우 제조에 필요한 에너지와 소재가 적은 소형차를 선택하면 배출을 줄일 수 있으며, 전기 자동차는 기후에 전반적으로 순이익이 된다. 어떤 자동차를 사용하든 운전을 줄이는 것만으로도 큰 영향을 미칠 수 있다. 특히 도보나 자전거로 이동할 수 있는 짧은 거리의 경우 건강에도 도움이 된다. 가능하다면 자동차를 완전히 없애는 것도 좋은 방법이다. 의류 구매 줄이기 패션은 지구 온난화에 큰 영향을 미친다. 항공과 운송을 합친 것보다 많은 탄소를 배출한다. 전 세계 배출량의 8~10%를 차지한다. 환경 비영리 단체인 엘렌 맥아더 재단에 따르면, 매초 쓰레기 트럭 한 대에 해당하는 옷이 소각되거나 매립지에 묻힌다. 옷장을 더 지속 가능하게 만들려면 어떻게 해야 할까. 가장 좋은 방법은 새 옷을 덜 사는 것이다. 특히 지속 불가능한 소재로 만든 패스트 패션 아이템은 기피하는 것이 좋다. 옷을 사는 대신, 빌리거나 기존 옷장을 업사이클하거나, 온라인 플랫폼을 통해 중고품으로 바꿀 수 있다. 중고 또는 업사이클 의류는 미국 평균 옷장의 9%에 불과하지만, 미국 패션 부문의 다른 어떤 채널보다 빠르게 성장하고 있으며, 향후 10년 내에 거의 900억 달러 시장이 될 것으로 예상된다. 지속가능한 단백질 사료 사용 반려동물과 사는 것이 그다지 환경 친화적인 것은 아니다. 반려묘의 경우 일생 동안 3톤 이상의 탄소를 발생한다. 휘발유 자동차를 1만 2070km 운전하는 것과 동일하다. 동물의 탄소 누적 발생을 줄이는 방법이 있다. 한 가지 옵션은 사료를 보다 지속 가능한 단백질로 전환하는 것이다. 사료 재료로 생선을 사용하면 배출량은 양고기와 소고기 재료의 4분의 1에 불과하다. 또 다른 대체 단백질은 곤충이다. 곤충은 음식물 쓰레기를 분해하는 동물이다. 개 배변을 담는 봉투도 재활용 재료로 전환한다. 난방의 열원 대체 화석연료가 여전히 전 세계 난방 에너지 수요의 60%를 충당하고 있다. 이 부문의 배출은 재생 에너지의 사용 증가에도 불구하고 여전히 늘고 있다. 열원을 대체하는 것이 매우 중요한 과제다. 브뤼셀에서는 지하의 하수 시스템을 활용해 도시의 건물을 난방했다. 캐나다 밴쿠버에서 진행된 유사한 프로젝트는 폴스크릭 교외의 주택을 덥히는 데 도움이 된다. 데이터 센터와 인체 자체도 화석연료 기반 난방을 줄이는 데 활용할 수 있는 다른 잠재적인 에너지원이다. 이들은 대단위 프로젝트이지만 개인을 위한 저탄소 옵션도 등장하고 있다. 열펌프는 현재 태양광 에너지와 함께 집을 난방하는 가장 탄소 효율적인 방법 중 하나다. 분석에 따르면, 열펌프 설치 비용은 국제적으로 낮아지고 있다. 여전히 초기 설치 비용이 많이 들지만, 30개국에서 열펌프에 대한 재정적 인센티브를 제공하고 있다. 국제에너지기구(IEA)는 2030년까지 열펌프가 전 세계 탄소 배출량을 최소 5억 톤, 즉 현재 유럽의 모든 자동차의 연간 탄소 배출량과 동일한 수준으로 줄일 수 있다고 추정한다. 가스 보일러에 의존하는 가정은 수리를 통해 난방 효율성을 개선하고 에너지 비용을 줄일 수 있다. 단열재, 통풍 차단 장치, 두꺼운 커튼 등이 그것이다. 친환경적 연금 투자 돈을 저축하고, 투자하고, 지출하는 방식을 올바로 선택하면 기후에 놀라울 정도로 큰 변화를 가져올 수 있다. 은행은 화석연료의 주요 자금 조달자이다. 은행의 이런 정책에 불만이 있다면 신용 조합이나 건축 조합으로 돈을 옮기는 것을 고려할 수 있다. 이들은 투자 방식 때문에 화석연료에 자금을 지원할 가능성이 낮다. 연금은 지출을 더 녹색으로 만들 수 있는 가장 직접적인 방법 중 하나다. 연금 기금은 총자산이 56조 달러 이상으로, 자본 시장의 세계 최대 투자자다. 그러나 대부분의 사람들은 연금이 어떻게 투자되는지조차 모른다. 첫 번째 단계는 연금 제공자에게 지속 가능성을 위해 어디에 투자하고 있는지를 묻는 것이다. 일회용 플라스틱 사용 줄이기 남극 해빙, 가장 깊은 해구의 동물 내부, 우리의 음식과 식수에서 미세 플라스틱이 발견됐다. 생활에의 침투는 점점 더 심화되고 있다. 플라스틱 생산량은 2050년까지 최소 두 배로 늘어날 것으로 예상된다. 미국의 플라스틱 폐기물은 1960년 이후 지속적으로 증가했다. 현재 속도로 플라스틱 소비를 계속한다면 2050년까지 석유 생산량의 20%를 차지할 수 있다. 플라스틱의 99% 이상은 화석연료에서 얻은 화학 물질로 만들어진다. 플라스틱을 완전히 없애는 것은 어렵지만 소비를 줄이기 위한 조치는 취할 수 있다. 이는 건강에도 도움이 된다. 야채 등 상품 포장지를 플라스틱에서 재활용 봉지로 바꾸는 것이 대표적인 사례다. 플라스틱 식기는 재활용하기 어렵다. 운반 케이스에 들어 있는 휴대용 식기 키트를 가지고 다니면 지속 가능하다. 빨대도 종이로 대체되고 있지만 종이 빨대가 반드시 환경에 더 좋은 것은 아니다. 재사용 가능한 빨대가 더 바람직한 솔루션이다.
-
- ESGC
-
[기후의 역습(109)] 개인이 할 수 있는 2025년 기후변화 대응 전략 7가지