검색
-
-
[신소재 신기술(134)] UC 버클리, '뜨거운 이산화탄소 가스 포집' 획기적 기술 개발
- 산업 공정에서 발생하는 뜨거운 이산화탄소를 포집할 수 있는 혁신적인 기술이 개발됐다. 시멘트나 강철을 생산하는 산업 플랜트는 강력한 온실가스인 이산화탄소를 대량으로 배출하지만, 배기가스가 너무 뜨거워 최첨단 탄소 제거 기술을 사용할 수 없다. 배기가스를 냉각하려면 많은 에너지와 물이 필요하며, 이는 일부 가장 오염이 심한 산업에서 이산화탄소 포집 기술을 도입하는 장벽으로 작용한다. 그런데 UC 버클리의 화학자 연구진이 스펀지처럼 작용해 산업 배기가스와 비슷한 높은 온도에서 이산화탄소를 포집할 수 있는 소재를 발했다. UC 버클리 공식 홈페이지에 따르면, 발견된 소재는 금속-유기 프레임워크(MOF)의 일종으로, 사이언스 저널에 게재됐다. 발전 또는 산업 플랜트 배기가스에서 탄소를 포집하는 주요 방법은 액체 아민을 사용하여 이산화탄소를 흡수하는 것이다. 그러나 이 방법은 섭씨 40~60도 사이에서만 효율적으로 작동한다. 시멘트 제조 및 제강 공장은 200도를 넘는 배기가스를 생성하고 일부 산업 배기가스는 500도에 달한다. 아민이 추가된 MOF 하위 분류를 포함해 현재 시범 운영 중인 새로운 소재는 150도 이상의 온도에서는 분해되거나 덜 효율적이다. 이렇게 뜨거운 이산화탄소를 가져와 기존의 탄소 포집 기술을 적용하려면 적절한 온도로 냉각해야 하고, 비싼 인프라가 필요하다. 이번 연구를 진행한 UC 버클리 커티스 카쉬 박사는 "우리 기술이 탄소 포집 방식을 근본적으로 바꿀 수 있을 것"이라며 "개발된 MOF가 전례 없이 높은 온도에서 이산화탄소를 포집할 수 있다는 것이 입증됐다. 과거의 다공성 소재로는 불가능했던 것"이라고 설명했다. 아민 기반 탄소 포집에 대한 일반 연구에서 벗어나 고온에서도 작동하는 MOF의 새로운 매커니즘을 수립했다는 것이다. 개발된 소재는 다공성 결정질 금속 이온 및 유기 링커 배열을 특징으로 하며, 내부 면적은 스푼당 약 6개의 축구장 크기에 달해 이산화탄소를 흡착하기에 충분히 넓은 면적이다. 연구진은 시뮬레이션에서 새로운 MOF가 평균 20%~30%의 이산화탄소 농도를 보이는 시멘트 및 철강 제조 플랜트의 배출가스와 약 4% 농도의 이산화탄소를 포함한 천연가스 발전소의 배출가스에서 뜨거운 이산화탄소를 포집할 수 있음을 보여주었다. 포집된 이산화탄소를 지하에 저장하거나 연료 또는 기타 부가가치 화학 물질을 만드는 데 사용하는 것은 온실가스를 줄이는 핵심 전략이다. 지구 온난화와 기후 변화에 대응하는 유력한 솔루션으로 각광받고 있다. 재생 에너지 발전과 달리 화석연료를 주로 사용하는 산업 플랜트는 지속 가능성을 확보하는 것이 더욱 어렵기 때문에 이산화탄소 포집이 매우 중요하다. 아민 기반 흡착제는 수십 년 동안 탄소 포집 연구의 초점이었다. MOF는 원래 독일 아우크스부르크 대학교의 연구진이 발견했다. MOF가 이산화탄소로 채워지면 이산화탄소의 분압을 낮추어 제거하거나 탈착할 수 있다. MOF는 재사용한다. 연구진은 MOF를 변형해 다른 가스를 흡착할 수 있는지 추가 확인 작업에 나서고 있다. 이 소재가 더 많은 이산화탄소를 흡착할 수 있도록 기능 개선도 진행하고 있다.
-
- 경제
-
[신소재 신기술(134)] UC 버클리, '뜨거운 이산화탄소 가스 포집' 획기적 기술 개발
-
-
[기후의 역습(83)] 기후 변화로 바다 독성 점점 더 강해져
- 지구 온난화로 바다의 독성이 점점 더 강해지고 있는 것으로 나타났다. 바다는 따뜻해지고 산성화되면서 산소를 잃고 있다. 이는 기후 변화의 잘 알려진 결과물이다. 이러한 변화가 해양 환경의 오염 물질에 영향을 미쳐 바다 독성을 더욱 강화시키고 있다는 연구 결과가 나와 주목된다고 사이테크데일 리가 전했다. 새로운 연구는 바다의 미량 오염 물질과 기후 변화의 상호작용을 조사한 것이다. 그 결과는 네이처의 지구와 환경 저널(Communications Earth & Environment)에 게재됐다. 기후 변화를 이끄는 많은 오염 물질이 바다로 방출되고 있다. 연구를 주도한 지오마르 헬름홀츠 해양연구센터(GEOMAR Helmholtz Centre for Ocean Research Kiel)의 해양 화학자 레베카 지톤 박사는 "바다의 미량 원소가 기후 변화의 영향을 어떻게 받는가를 이해하고 싶었다. 지금까지 이에 대한 연구는 거의 이뤄지지 않았다. 연구진은 인간이 유발한 원인과 자연적인 원인 두가지를 모두 조사했다"고 설명했다. 납, 수은, 카드뮴과 같은 금속은 산업이나 화석연료 연소와 같은 인간 활동을 통해서만 바다에 유입되는 것이 아니다. 기후 변화로 인해 자연적인 공급원도 변화하고 있다. 해수면 상승, 강 범람 또는 고갈, 해빙과 빙하 용융 등 모든 과정이 오염 물질 흐름을 촉진시키고 있다. 이 연구는 해양 환경 보호의 과학적 측면에 대한 유엔 공동 전문가 그룹(GESAMP)의 실무 그룹 분석 결과를 요약한 것으로, 해양의 금속 오염 물질에 초점을 맞추고 있다. 이 실무 그룹은 모나코 국제원자력기구(IAEA)의 해양 환경 연구실 전 책임자이자 GEOMAR의 해양 광물 자원 교수 실비아 샌더 박사가 시작했다. 알프레드 베게너 연구소, 헬름홀츠 극지 및 해양 연구 센터(AWI)의 크리스토프 뵐커도 참여했다. 샌더 박사는 "실무 그룹은 기후 변화와 온실가스가 해양 오염 물질에 미치는 영향에 초점을 맞췄다"며 북극 해역의 수은 농도 상승을 예로 들었다. 빙하가 녹고 영구 동토층이 해빙되고 해안이 침식하는 등 자연 공급에 의한 수은 방출 때문에 일어난 현상이다. 전통적인 어업에 의존하는 지역 사회에 특히 위협이 되는데, 수은이 먹이 사슬에 축적되어 오염된 생선을 섭취하기 때문이다. 샌더 교수는 "인간 활동으로 인해 납과 같은 독성 금속의 전 세계 유입량은 산업화 이전 수준에 비해 10배, 수은은 3~7배 증가했다"라고 말하며 "은과 같은 독성 원소는 석탄 연소와 항균 제품에서 은 나노입자의 사용이 증가함에 따라 해안 해역에서 점점 더 많이 검출되고 있다"고 우려했다. 또 해양 운송과 플라스틱 사용도 중금속 확산에 기여한다. 플라스틱은 물에서 구리, 아연, 납과 같은 금속과 결합할 수 있다. 결합된 오염 물질은 또한 먹이 사슬로 유입될 수 있다. 미래에는 해양 개발이 증가함에 따라 인간의 중금속 오염이 더욱 증가할 수 있다. 해수 온도 상승, 해양 산성화, 산소 고갈과 같은 기후 변화는 다양한 방식으로 미량 원소에 영향을 미친다. 수온이 높아질수록 수은과 같은 미량 원소의 해양 생물에 의한 생체 이용과 흡수가 증가한다. 이는 높은 온도가 신진대사를 촉진하고, 산소 용해도를 감소시키며, 아가미 환기를 증가시켜 더 많은 금속이 생체에 들어가 체내에 축적되기 때문이다. 바다는 인간이 방출하는 이산화탄소의 대부분을 흡수한다. 이 때문에 더 산성화되어 pH 수준이 떨어진다. 이는 구리, 아연 또는 철과 같은 금속의 용해도와 생체 이용률을 증가시킨다. 이 효과는 특히 구리에서 두드러지는데, 구리는 고농도에서 많은 해양 생물에 강한 독성을 일으킨다. 특히 해안 지역과 해저에서 산소가 고갈되면서 미량 원소의 독성 효과가 커진다. 이는 홍합, 게 및 기타 갑각류와 같이 해저에 서식하는 생물체에 스트레스를 준다. 인간 활동은 두 가지 방식으로 해안 지역의 오염 물질의 양에 영향을 미친다. 직접적으로는 오염 물질을 곧바로 방출하는 것이고, 간접적으로는 인간이 유발한 기후 변화가 자연에 미치는 영향을 통해서다. 연구는 그러나 기후 변화가 해양의 오염 물질에 어떤 영향을 미치는지에 대한 데이터가 여전히 부족하다는 사실도 보여준다. 실무 그룹은 오염 물질에 대한 연구를 확대해야 한다고 강조한다. 또한 더 나은 모델과 규제법을 통해 바다에 영향을 미치는 오염 물질에 대한 통제를 강화해야 한다고 권고한다.
-
- 포커스온
-
[기후의 역습(83)] 기후 변화로 바다 독성 점점 더 강해져
-
-
미세 플라스틱, 구름 형성 촉진…극한 날씨와 기후변화 가속 우려
- 미세 플라스틱이 대기 중 구름 형성을 촉진시켜 극한 날씨와 기후 변화를 가속화시킨다는 연구 결과가 최근 발표됐다. 구름은 대기 중의 보이지 않는 기체인 수증기가 먼지와 같은 작은 부유 입자와 결합해 물방울이나 얼음 결정으로 변할 때 형성된다. 최근 발표된 연구에서 미세 플라스틱 입자도 동일한 효과를 낼 수 있는 것으로 밝혀졌다. 또 미세 플라스틱이 없는 물방울보다 섭씨 5~10도 더 따뜻한 온도에서 얼음 결정이 생성될 수 있음도 보여주었다고 더컨버세이션이 전했다. 연구 결과는 공기 중에 미세 플라스틱이 없었다면 구름이 형성되지 않았을 좀 더 따뜻한 조건에서 미세 플라스틱이 구름을 생성함으로써 날씨와 기후에 적지 않은 영향을 미칠 수 있음을 시사한다. 대기 화학자 중심으로 구성된 연구진은 다양한 유형의 입자가 액체 물과 접촉할 때 어떻게 구름 속에서 얼음이 형성되는지를 분석했다. 대기에서 지속적으로 발생하는 이 과정은 '핵 형성'이라고 부른다. 대기 중의 구름은 액체 물방울, 얼음 입자 또는 두 가지의 혼합물로 구성된다. 기온이 섭씨 0도에서 영하 38도 수준인 중상층 대기의 구름에서 얼음 결정은 일반적으로 건조한 토양의 미네랄 먼지 입자나 꽃가루 또는 박테리아와 같은 생물 입자 주위에 형성된다. 미세 플라스틱도 그런 입자 중 하나다. 미세 플라스틱은 너비 5mm 미만으로 연필 끝에 달린 지우개 정도의 크기다. 일부는 이보다 더 작고 미세하다. 미세 플라스틱은 매우 작기 때문에 공기 중으로 쉽게 이동할 수 있다. 구름 속의 얼음은 날씨와 기후에 중요한 영향을 미친다. 대부분의 강수는 얼음 입자로 시작되기 때문이다. 전 세계 대부분 지역의 구름은 대기 중으로 높이 확장되고 차가운 공기가 구름 꼭대기 수분을 얼린다. 얼음이 형성되면 주변의 액체에서 수증기를 끌어당기고, 얼음 결정은 떨어질 만큼 무거워진다. 얼음이 형성되지 않으면 구름은 비나 눈으로 내리기보다는 증발하는 경향이 있다. 구름은 또한 여러 가지 방식으로 날씨와 기후에 영향을 미친다. 지구 표면에서 들어오는 햇빛을 반사하여 냉각 효과를 내기도 하고 지구 표면에서 방출되는 일부 복사선을 흡수해 온난화 효과를 증폭시킨다. 반사되는 햇빛의 양은 구름에 포함된 액체 상태의 물과 얼음의 양에 따라 달라진다. 미세 플라스틱이 구름에서 얼음 입자를 증가시키면, 이 비율의 변화는 구름이 지구의 에너지 균형에 미치는 영향을 바꿀 수 있다. 물이 섭씨 0도에서 언다고 하지만, 항상 그런 것은 아니다. 먼지 입자와 같이 핵을 형성할 물질이 없다면 물은 섭씨 영하 38도까지 얼지 않고 과냉각될 수 있다. 더 따뜻한 온도에서 동결하려면 물에 녹지 않는 물질이 물방울에 존재해야 한다. 이 입자는 첫 번째 얼음 결정이 형성될 수 있는 표면을 제공한다. 미세 플라스틱이 존재하면 얼음 결정이 형성돼 비나 눈이 더 많이 내릴 수 있다. 연구진은 미세 플라스틱 조각이 물방울의 핵 역할을 할 수 있는지를 확인하기 위해 대기 중에서 가장 널리 퍼진 네 가지 플라스틱, 즉 저밀도 폴리에틸렌, 폴리프로필렌, 폴리염화비닐, 폴리에틸렌 테레프탈레이트를 이용했다. 각각은 깨끗한 상태와 자외선, 오존 및 산에 노출된 상태 두 가지로 테스트되었다. 이 모든 것이 대기 중에 존재하며 미세 플라스틱의 구성에 영향을 미칠 수 있다. 연구진은 미세 플라스틱을 작은 물방울에 현탁시키고, 물방울을 천천히 냉각시켜 어는 시점을 관찰했다. 또한 플라스틱 조각의 표면을 분석해 분자 구조를 파악했다. 얼음 핵 형성은 미세 플라스틱의 표면 화학 성질에 따라 달라질 수 있기 때문이었다. 테스트한 대부분의 플라스틱에서 물방울의 50%는 섭씨 영하 22도로 냉각될 때까지 얼었다. 일부 미세 플라스틱은 미세 플라스틱이 없는 물방울보다 더 따뜻한 온도에서 얼음 핵을 형성했다. 자외선, 오존 및 산에 노출되면 입자의 얼음 핵 형성 활동이 감소하는 경향이 있었다. 이는 얼음 핵 형성이 미세 플라스틱 입자 표면의 작은 화학적 변화에 민감하다는 것을 시사한다. 그러나 이 플라스틱들은 여전히 얼음 핵을 형성하므로 구름 속 얼음의 양에 영향을 미칠 수 있다. 미세 플라스틱이 날씨와 기후에 어떤 영향을 미치는지 이해하려면 구름이 형성되는 고도에서의 농도를 알아야 한다. 또 미네랄 먼지 및 생물학적 입자 등 얼음 핵 형성이 가능한 다른 입자와 비교해 미세 플라스틱의 농도를 확인해야 한다. 이러한 측정을 통해 미세 플라스틱이 구름 형성에 미치는 영향을 모델링할 수 있다. 플라스틱 조각은 크기와 구성이 다양하다. 향후 연구에서는 가소제와 착색제 등 첨가제가 포함된 플라스틱과 미세 플라스틱 입자를 이용해 분석을 진행할 계획이다.
-
- 포커스온
-
미세 플라스틱, 구름 형성 촉진…극한 날씨와 기후변화 가속 우려
-
-
[기후의 역습(82)] 지구, 마지막 빙하기 이후 얼음 용융 속도 가속화
- 마지막 지구 빙하기가 끝날 무렵, 꽁꽁 얼어붙은 지구는 기후 변화의 임계점에 도달하면서 녹아내려 진흙투성이의 슬러시 행성이 되었다. 지구의 마지막 빙하기인 플라이스토세 빙하시대는 약 1만1700년 전에 끝났다. 미국 버지니아 공대에서 주도한 연구 결과는 치솟는 이산화탄소 수치로 얼어붙은 지구가 빠르게 녹는 시기로 접어들었던 '플룸월드 해양(plumeworld ocean)' 시대라고도 알려진 슬러시 행성에 대한 최초의 지구화학적 증거를 제공한다고 PHYS가 전했다. 플룸(Plume)은 빙하가 녹아 바다로 흘러들어가는 담수의 흐름을 의미하며, 이러한 담수가 바다 표면에 거대한 층을 형성하여 염분이 높은 심층수와 뚜렷하게 구분되는 현상이 나타났다. 이는 빙하의 녹은 물이 바다를 떠다니는 상황을 연상하면 쉽게 이해할 수 다. 연구를 이끈 버지니아 공대의 티안 간 연구원은 "연구 결과는 마지막 지구 빙하기의 극한 상황 이후 지구의 기후와 해양 화학이 어떻게 변했는지 이해하는 데 중요한 의미를 갖는다"고 말했다. 그는 지질학자 슈하이 샤오와 함께 연구를 진행했으며, 이 연구는 미국 국립과학원 회보 최신호에 발표됐다. 마지막 지구 빙하기는 약 6억 3500만~6억 5000만 년 전에 일어났는데, 과학자들은 이 시기에 지구 온도가 떨어지고 극지방의 빙하가 반구 주변으로 퍼지기 시작했다고 추정한다. 점점 커가는 빙하는 지구에서 햇빛을 반사해 온도를 급격히 떨어뜨렸다. 샤오는 "극도로 낮은 이산화탄소 농도로 인해 바다의 4분의 1이 얼어붙었다"라고 말했다. 해수면이 얼면서 일련의 반응이 갑자기 멈추었다. 먼저 물 순환이 막혔다. 수분 증발이 없어지고 비나 눈이 거의 내리지 않았다. 물이 없으면 암석이 침식되고 분해되는 화학적 풍화작용이라고 불리는 이산화탄소 소비 과정이 극히 느려진다. 그렇게 되면 이산화탄소가 대기에 축적되어 열을 가두기 시작한다. 샤오는 "이 같은 패턴을 깨기에 충분할 정도로 열이 높아지는 것은 시간문제일 뿐이었다. 열 축적이 끝났을 때는 이미 비극이었을 것"이라고 말했다. 갑자기 열이 쌓이기 시작했고 빙하가 후퇴하기 시작했다. 지구의 기후는 묽고 끈적끈적한(슬러시한) 방향으로 급속히 후퇴했다. 단 1000만 년 만에 지구 평균 기온은 섭씨 영하 45도에서 영상 48도로 치솟았다. 연구진은 그러나 얼음이 녹아 바닷물과 동시에 섞이지는 않았다고 말했다. 연구 결과는 우리가 상상하는 것과는 매우 다른 결과를 보여주었다는 것이다. 즉 거대한 빙하수의 강들이 역쓰나미처럼 육지에서 바다로 흘러 들어가고, 빙하수는 매우 짜고 밀도가 높은 바닷물 위에 고였다. 섞이지 않고 웅덩이가 형성된 것이다. 연구진은 전 지구적 빙하기가 끝나갈 무렵에 형성된 일련의 탄산염 암석을 관찰함으로써 당시 상황을 테스트했다. 탄산염 암석 내 리튬 동위원소 분석을 통해 특정 지구화학적인 특징을 분석한 것이다. 플룸월드 해양 이론에 따르면 담수의 지구화학적 특징은 깊고 짠 바다 아래에서 형성된 암석보다 근해에서 녹은 물 아래에서 형성된 암석에서 더 강하다. 연구진이 관찰하고 분석한 결과와 일치한 것이다. 샤오는 이번 발견이 환경 변화의 한계를 더 잘 보여주었을 뿐만 아니라 연구진에게 덥거나 춥고, 진흙이 많은 극한 조건에서 생명의 회복력에 대한 추가 정보와 추정도 가능할 것이라고 밝혔다. 플룸월드 오션은 비교적 최근에 제시된 개념으로, 아직 많은 부분이 베일에 싸여 있다. 향후 더 많은 연구를 통해 플룸월드의 형성 과정, 지속 기간, 지구 시스템에 미치는 영향 등을 밝혀내는 것이 과제다.
-
- 포커스온
-
[기후의 역습(82)] 지구, 마지막 빙하기 이후 얼음 용융 속도 가속화
-
-
[신소재 신기술(124)] COF 소재, 탄소 포집 능력 극대화⋯소량으로도 효과 탁월
- 소량의 물질로 대기 중 이산화탄소를 효과적으로 제거하는 새로운 탄소 포집 기술이 미국에서 개발됐다. 이산화탄소를 비롯한 온실가스는 배출은 쉽지만, 이를 다시 포집하는 것은 어려운 과제였다. 대기 중 탄소를 제거하는 기술은 기후 위기의 영향을 줄이는 중요한 방법이지만, 아직 많은 기술이 설계 단계에 있거나 효율성이 낮아 실질적인 효과를 거두기가 어려웠다. 미국 캘리포니아 버클리캠퍼스(UC Berkeley) 연구팀은 대기 중 이산화탄소(CO₂)를 직접 포집하는 과정을 단순화하는 새로운 기술을 개발했다고 홈페이지를 통해 발표했다. 해당 내용은 IFL사이언스에서 다루었다. 현재 이산화탄소를 포집하는 기술은 크게 자연 기반 기술과 인공 기술로 나눌 수 있다. 먼저 자연 기반 기술에는 나무를 심고 관리하는 방법이 있다. 가장 오래되고 검증된 방법이지만 토지 이용에 제약이 있고 효과가 나타나기까지 시간이 오래 걸린다는 단점이 있다. 또한 토양의 탄소를 제거해 대기 중 이산화탄소 농도를 낮추는 방법과 해조류 등을 통해 해양의 이산화탄소 흡수 능력을 향상시키는 해양 기반 기술이 있다. 인공 기술 중 직접 공기 포집(DAC)은 공기 중 이산화탄소를 직접 포집해 저장하거나 활용하는 기술이다. 이는 토지 사용 면적이 적고, 이산화탄소를 직접 제거해 효과가 빠르다. 그밖에 이산화탄소를 암석이나 광물과 반응시켜 탄산염 형태로 저장하는 기술, 바이오에너지 탄소 포집 및 저장(BECCS) 등이 있다. 나사(NASA) 과학자들에 따르면 인간 활동의 여파로 현재 이산화탄소 수치는 산업혁명 이전보다 50% 더 높다. COF 소재란? UC버클리 연구팀이 이번에 개발한 새로운 탄소 포집 기술인 다공성 소재 '공유 결합 유기 골격(COF)'은 기존 DAC 기술의 한계 중 하나인 물이나 기타 오염 물질에 의한 분해 없이 주변 공기에서 CO₂를 포집한다. 이 기술의 핵심은 '공유 결합 유기 골격-999(COF-999)'라는 소재이다. COF-999는 규칙적인 내부 기공을 가진 단단한 결정 구조로, 이산화탄소와 상호 작용하는 아민(amine, NH₂ 그룹)으로 내부가 장식되어 있다. 아민은 이산화탄소를 흡착한 후 방출하는 사이클을 통해 탄소를 포집하고 저장하는 데 사용될 수 있다. 이 기술은 기존 탄소 포집 기술의 한계를 극복하는 획기적인 발전으로 평가 받는다. 기존 탄소 포집 기술은 이산화탄소 농도가 높은 곳에서 효과적으로 작동했다. 반면, 연구팀이 개발한 새로운 다공성 물질은 공기 중의 이산화탄소가 다공성 물질 사이를 통과하면서 흡착되는 방식으로, 대기 중의 낮은 이산화탄소 농도를 효율적으로 제거할 수 있다. 연구 책임자인 오마르 야기 교수는 "이 물질을 튜브에 넣고 버클리의 바깥 공기를 통과 시켰더니 공기 중 이산화탄소가 완전히 제거되었다"며 "성능 면에서 비교할 대상이 없을 정도로 획기적인 기술"이라고 강조했다. 소량으로도 높은 탄소 포집 효과 연구팀은 250g의 물질로 1년에 20kg의 이산화탄소를 제거할 수 있을 것으로 예상했다. 팀은 이는 다 자란 나무가 1년 동안 공기 중의 이산화탄소를 제거하는 것과 같은 효과를 지닌다며, 기존 탄소 포집 시스템과 함께 사용하여 효율성을 높일 수 있다고 설명했다. 야기 교수는 "COF-999는 화학적 및 열적으로 안정적인 구조를 가지고 있으며, 에너지 소비가 적고 100회 이상 사용해도 성능 저하가 없다"며 "대기 중 탄소 포집에 가장 적합한 물질"이라고 설명했다. 머신러닝 활용으로 기술 개선 기대 연구팀은 머신러닝 기술을 활용해 이 기술을 더욱 발전시킬 계획이다. 이와 더불어 기후 위기를 늦추기 위해서는 배출량 감소 노력과 파리협정 준수가 중요하다고 강조했다. 이번 연구 결과는 국제 학술지 네이처(Nature)에 게재됐다.
-
- IT/바이오
-
[신소재 신기술(124)] COF 소재, 탄소 포집 능력 극대화⋯소량으로도 효과 탁월
-
-
삼성전자, '탄소 제로' 반도체 공장 만든다…친환경 기술 개발 박차
- 삼성전자가 지속가능한 반도체 사업을 위해 새로운 친환경 탄소 포집 기술을 도입한다. 황경순 삼성전자 SAIT(옛 삼성종합기술원) 에어사이언스 리서치센터장(부사장)은 18일 부산 벡스코에서 열린 한국화학공학회 추계학술대회에 기조강연자로 나서 반도체의 지속가능성을 위한 센터의 비전을 소개했다. 황 센터장은 "기존 탄소 포집 기술은 공간 효율성이 낮고 인체 유해한 물질도 배출할 가능성이 있어 도심에 위치한 반도체 사업장에 적합하지 않다. 따라서 친환경적이고 소형화된 탄소 포집 기술을 개발하는 것이 목표"라며 새로운 탄소 포집 기술의 중요성을 강조했다. 삼성의 에어사이언스 리서치 센터는 2022년 SAIT 내 미세먼지연구소와 탄소포집활용센터를 결합해 설립됐다. 황 센터장은 탄소중립 분야 권위자로, 미국 텍사스대 교수직을 휴직하고 지난해 6월 부임했다. 그는 "환경적 지속 가능성이 기업의 중요한 과제로 부상하면서, 글로벌 IT 기업들이 2030년 탄소중립을 선언하는 추세"라며 이러한 움직임은 삼성에도 영향을 미치고 있다고 전했다. 삼성은 2022년 새로운 환경 경영 전략을 발표하고 2050년 탄소 중립을 목표로 설정했다. 이를 위해 반도체 업계 최초로 탄소 포집 연구 센터를 설립하고 관련 기술 개발에 적극적으로 나서고 있는 것. 황 센터장은 "배출되는 탄소를 포집하여 활용하고, 2040년까지 오염 물질 배출량을 자연 상태 수준으로 맞추는 목표를 설정했다. 이는 기존 기술의 한계를 극복해야 하는 어려운 과제다. 따라서 저희 센터는 이러한 목표 달성을 위해 새로운 기술 개발에 주력하고 있다"고 밝혔다. 이어 "배출가스 저감을 위해 현재 95%인 RCS(공정가스 통합처리시설)의 불소 함유 가스 제거율을 100%까지 높이고, 질소산화물(NOx) 배출 농도는 20ppm에서 0.03ppm 수준으로 낮추는 것을 목표로 하고 있다"고 설명했다. 또한 공정 중 발생하는 가스를 즉시 플라즈마를 이용해 제거하는 POU 기술 개발과 이를 RCS와 결합하는 연구도 진행하고 있다고 덧붙였다. 아울러 "수소 분야에서는 중국이 주도하는 알칼리 수전해 기술이나 고가의 촉매를 사용하는 PEM 방식 대신, SOEC(고체산화물수전해) 기술 개발에 집중하고 있다. 특히 전극 계면 및 촉매 열화 문제 해결에 주력하고 있다"고 전했다. 그러면서 황 센터장은 "개발 중인 CCU(탄소 포집·활용) 기술을 반도체 사업장뿐 아니라 전 사업장과 협력사까지 확대 적용할 계획이다. 또한, 이 기술을 활용하여 신사업 창출을 지원하고, DS(디바이스솔루션) 사업 경쟁력 강화는 물론 사회 공헌에도 기여할 수 있을 것으로 기대한다"고 밝혔다. PEM 방식이란? 수소 분야에서 중국이 사용하고 있는 PEM 방식은 PEMFC(Proton Exchange Membrane Fuel Cell), 즉 양성자 교환막 연료 전지를 말한다. 수소와 산소를 이용하여 전기를 생산하는 연료 전지의 한 종류로, 다른 연료 전지 기술에 비해 높은 에너지 효율과 낮은 작동 온도를 갖는 장점이 있다. 그러나 백금 등 고가의 촉매를 사용해야 하고, 내구성이 낮으며 연료 순도에 민감한 단점이 있다. SOEC 방식이란? 삼성에서 중점을 두고 있는 SOEC는 'Solid Oxide Electrolyzer Cell'의 약자로, 고체산화물 수전해 전지라고 한다. 물을 전기분해하여 수소를 생산하는 기술 중 하나로 고온에서 작동하는 것이 특징이다. 기존의 수전해 기술에 비해 효율이 높고 다양한 에너지원을 활용할 수 있어 차세대 수소 생산 기술로 주목받고 있다. 장점으로는 고온 작동으로 인해 전기 에너지 소비량이 작소, 수소 생산 효율이 높다. 전기 외에도 열에너지를 직접 활용할 수 있어 폐열이나 태양열 등 다양한 에너지원을 사용할 수 있다. 고순도의 수소를 생산할 수 있어 추가적인 정제 과정이 필요하지 않다. 재생에너지를 사용할 경우 이산화탄소 배출 없이 수소를 생산할 수 있다. 단점으로는 고온 작동으로 인해 내구성 확보 및 소재 개발에 어려움이 있다. 또한 고온에 도달하는 시간이 필요해 시동 시간이 느리다. 게다가 고온 작동 환경 구축 및 소재 개발 비용이 높다. SOEC의 활용도는 다양하다. 재생에너지, 원자력 발전소 등과 연계해 대규모 수소를 생산할 수 있다. 또한 산업 공정에서 발생하는 이산화탄소를 포집하여 수소 생산에 활용할 수 있다. 더 나아가 잉여 전력을 이용하여 수소를 생산하고 저장하는 등 다양한 분야에서 활용할 수 있다.
-
- IT/바이오
-
삼성전자, '탄소 제로' 반도체 공장 만든다…친환경 기술 개발 박차
-
-
[기후의 역습(71)] 과학자들, 지구 온난화로 기온 섭씨 2.7도 상승 경고
- 기후 변화가 지구에 어떤 영향을 미치는지는 올해 그대로 드러났다. 올해의 기상 변화에 대해 '전례 없는', '역대 최고' 등의 문구가 따라다녔다. 미국 동부의 허리케인 헬렌과 베트남의 슈퍼 태풍 야기 등 열대성 폭풍이 유례를 찾아보기 어려울 정도로 빠르게 강해지고 있다. 캐나다에서는 전례 없는 화재가 발생해 마을이 파괴되었다. 브라질은 전례 없는 가뭄으로 거대한 강이 말라붙고 강바닥이 그대로 드러났다. 올해 메카에서 열린 하지(Hajj) 순례 기간 동안 기온이 섭씨 50도를 넘으면서 최소 1300명의 순례자가 사망했다. 불행히도 인류는 훨씬 더 나쁜 상황을 향해 나아가고 있다. 시드니 대학교, 오레곤 주립대, 영국 전문가 등 국제 과학자팀이 발간한 새로운 2024년 기후 현황 보고서는 심화되고 있는 기후 위기에 대한 또 다른 엄중한 경고다. 정부가 탄소 배출 저감 목표를 달성하더라도 지구가 섭씨 2.7도 온난화될 수 있다는 것이다. 이는 기후 변화를 1.5도로 유지하려는 파리 협정 목표의 거의 두 배에 달하는 수치다. 보고서는 옥스퍼드아카데믹의 바이오사이언스에 실렸다. 연구팀의 일원이었던 토마스 뉴섬, 윌리엄 리플 교수가 충격적인 보고서 내용을 더 컨버세이션을 통해 알렸다. 이 내용은 또 사이언스얼라트에도 게재됐다. 연구팀은 매년 빙하 해빙에서 산림에 이르기까지 지구의 35가지 생명 징후를 추적하고 있다. 올해는 그중 25가지가 기록적인 수준에 도달했다. 이 모두가 잘못된 방향으로의 추세를 보이고 있다. 인간은 이렇게 나빠지는 조건에 익숙하지 않다. 문명은 지난 1만 년 동안 너무 덥거나 춥지 않은 온화한 조건에서 출현했다. 그러나 살기 좋았던 기후는 이제 위험에 처해 있다. 두 세대만 지나도 기후 조건은 선사 시대에 인류가 겪었을 어떤 것보다 더 위협적일 것이다. 보고서에 따르면 화석 연료로 인한 배출은 계속 증가하고 있으며, 현재 사상 최고 수준을 유지하고 있다. 전문가들의 오랜 경고에도 불구하고 화석 연료 소비는 지구를 위험한 수준의 온난화로 몰아넣고 있다. 풍력과 태양광 발전이 급속히 성장했다지만, 화석 연료 사용은 14배 더 많다. 올해는 가장 더운 해로 기록될 것이 확실하다. 지난해의 거의 절반과 2024년 대부분 기간의 전 세계 일일 평균 기온이 역대 최고 수준을 기록했다. 11월 아제르바이잔에서 열리는 연례 유엔 기후 회담 COP29에서 노력을 배가해야겠지만, 훨씬 더 강력한 정책이 없다면 기후 변화는 계속 악화될 것이다. 인류는 여전히 '화석 연료의 일상적인 연소'라는 핵심 문제를 해결하지 못했다. 메탄과 이산화탄소로 대표되는 온실가스의 대기 중 농도는 계속 증가하고 있다. 지난해 9월 대기 중 이산화탄소 농도는 418ppm에 달했다. 올해 9월에는 422ppm을 넘었다. 강력한 온실가스인 메탄은 놀라운 속도로 증가하고 있다. 문제를 더욱 악화시키는 것은 대기 에어로졸이 최근 감소했다는 점이다. 이는 오염을 줄이기 위한 노력으로 인해 생긴 결과다. 공기 중에 떠다니는 에어로졸은 자연적 및 인간 활동의 과정 모두에서 발생하며, 뜨거워진 지구를 식히는 데 도움이 된다. 이런 냉각 효과가 없어지면 지구 온난화 속도가 빨라질 수 있다. 다른 환경 문제도 기후 변화에 영향을 미치고 있다. 아마존 등에서의 산림 벌채는 탄소 자연 흡수 능력을 감소시켜 추가적인 온난화를 유발한다. 이는 피드백 루프를 생성해 온난화로 인해 나무가 죽고 결과적으로 지구 온도가 증폭되는 결과를 가져온다. 해빙 손실도 또 다른 문제다. 해빙이 녹고 빙하가 추가 형성되지 않으면 짙푸른 바닷물이 노출된다. 얼음은 햇빛을 반사하지만 바닷물은 햇빛을 흡수한다. 결국 지구의 반사율(표면의 반사도)이 변하고 온난화가 더욱 빨라진다. 향후 수십 년 동안 해수면 상승은 해안 지역 사회에 점점 더 큰 위협이 될 것이다. 보고서는 화석 연료의 일상적인 사용을 즉각 끝내야 한다고 강조한다. 특히 배출량이 많은 선진국이 앞장서야 한다는 지적이다. 메탄 배출을 줄이기 위한 효과적인 정책 도입도 권고했다. 이산화탄소에 비해 대기 중에 머무르는 시간이 짧은 메탄을 빠르게 줄이면 단기적으로 온난화 속도를 늦출 수 있다. 산림 및 토양 복원과 같은 자연 기후 솔루션을 도입해 목재와 토양에 저장되는 탄소량도 늘려야 한다. 산불과 가뭄이 자주 발생하는 지역에 대한 보호 조치가 수반되는 것도 중요하다. 더 엄격한 토지 이용 정책을 도입하고, 파괴적인 화재 위험을 줄이며, 지속 가능한 산림 투자를 늘려야 한다. 보고서는 기후 변화가 이미 훨씬 악화되는 방향으로 진행되고 있다고 우려하고, 이를 막기 위해 배출량을 줄이고, 자연적 기후 솔루션을 강화하며, 기후 정의를 위해 노력함으로써 최악의 상황을 피해야 할 것이라고 강조했다.
-
- 포커스온
-
[기후의 역습(71)] 과학자들, 지구 온난화로 기온 섭씨 2.7도 상승 경고
-
-
북해 해안에서 미세플라스틱 핫스팟 발견⋯"플라스틱 오염 심각"
- 영국 북해 해안에서 미세 플라스틱 오염 핫스팟이 발견되어 해양 오염의 심각성을 드러냈다. 영국 환경·어업·양식 과학센터(CEFAS) 연구팀은 2022년 북해 해역에서 특수 제작된 '뉴스턴 미세 플라스틱 카타마란(기계식 유량계와 플라스틱 포집망이 달린 부유식 뗏목)'을 이용하여 미세 플라스틱 농도를 측정했다. 그 결과, 북해 남부 해안에서 미세 플라스틱 농도가 최대 2만5000개/㎢ 이상으로 나타났으며, 평균 농도는 약 8700개/㎢ 이상으로 나타났으며, 평균 농도는 약 8700/㎢ 에 달했다. 이는 인근 스코틀랜드 해역(평균 4500개/㎢)이나 북동 대서양(평균 3200개/㎢)보다 훨씬 높은 수치이다. 최대 5mm에 달하는 미세 플라스틱의 주요 성분은 폴리에틸렌(67%), 폴리프로필렌(16%), 폴리스티렌(8%) 등으로, 일상생활에서 흔히 사용되는 비닐봉투, 플라스틱 용기, 장난감 등에서 발생하는 것으로 추정된다. 중플라스틱(5~25mm)과 거대플라스틱(25mm) 이상은 각각 2000개/㎢과 1000개/㎢의 농도로 존재했으며 주로 큰 플라스틱이 분해되어 파생된 파편과 필라멘트로 구성되어 있지만 마이크로비즈와 필름도 발견됐다. 연구팀은 이러한 미세 플라스틱 핫스팟이 해류를 통해 다른 나라에서 유입된 플라스틱 쓰레기의 영향을 받았을 것으로 분석했다. 영국에서는 2018년부터 화장품과 퍼스널 케어 제품에 마이크로비즈 사용이 금지되었지만, 북해 해안에서 발견된 플라스틱은 해류를 타고 다른 나라에서 이 지역으로 유입된 것으로 추정된다. 모든 해양 쓰레기에서 11가지 색상의 플라스틱이 확인되었으며, 대부분 흰색으로 비닐봉지에서 비롯된 것으로 나타났다. 연구팀은 북해의 미세 플라스틱 오염 농도는 스페인 북부 해안(2017년, 약 25만4000개/㎢), 포르투갈 서부 해안(2019년, 약 4만개/㎢), 카나리아 제도(2024년, 약 100만개/㎢) 등 다른 지역보다는 낮지만, 해양 생태계에 심각한 위협이 될 수 있다는 점을 강조했다. 연구팀은 플라스틱 오염 문제를 위해 영국 해양 전략, 북동 대서양 환경 전략, 유엔 환경 계획 등 다양한 국가 및 국제적 노력이 필요하다고 강조했다. 이번 연구 결과는 프론티어스 인 마린 사이언스(Frontiers in Marine Science)에 게재됐다. 플라스틱 수요는 매년 4억톤을 초과하는 등 꾸준히 증가하고 있다. 한국의 잠실에 있는 롯데타워는 무게가 약 75만톤이다. 플라스틱 4억톤은 롯데타워 약533개를 합친 것과 같은 엄청난 양이다. 참고로 롯데타워는 높이 553m로 2024년 10월 2일 기준 세계에서 여섯 번째로 높은 빌딩이다. 최근 연구에 따르면 미세 플라스틱은 호흡만으로도 우리 몸에 침투할 수 있다. 지난 9월 16일 JAMA 네트워크 오픈 저널에 발표된 연구에 따르면 미세 플라스틱이 처음으로 인간의 후각 중추에서 발견됐다. 입자의 크기는 5.5 마이크론에서 26.4 마이크론까지 다양했다. 그동안의 연구에서는 뇌 장벽이 미세 플라스틱과 같은 독성 입자가 뇌에 들어가지 못하도록 막는 것으로 여겨졌다. 해당 연구는 뇌에서 처음으로 미세 플라스틱이 발견된 것으로 연구진은 치매와 같은 신경계 질환을 일으킬 수 있다고 우려했다. 이전 연구에서는 인간의 폐, 태반, 내장, 간, 혈액, 고환, 심지어 정액에서도 미세 플라스틱이 발견됐다. 인체 곳곳에서 미세 플라스틱이 검출되고 있는 현실은 매우 우려스럽다. 마래 세대를 위해 바다, 육지, 그리고 우리가 숨쉬는 공기까지 플라스틱 오염을 줄이기 위한 전 세계적인 노력이 시급하다.
-
- 생활경제
-
북해 해안에서 미세플라스틱 핫스팟 발견⋯"플라스틱 오염 심각"
-
-
[기후의 역습(65)] 줄어들던 북극 오존 회복세 돌아서나…지난 3월 최고 기록 경신
- 북극의 오존 농도는 2024년 3월에 월평균 기준 역대 최고 기록을 경신했다고 나사(NASA)가 지구관측 홈페이지를 통해 발표했다. 2023~2024년 겨울 내내 상층 대기를 교란한 대규모 기상 변화로 인해 관측 위성 기록상 다른 어느 때보다 더 많은 오존이 북극의 성층권으로 이동해 장기간 머물렀다. 관측은 나사와 리즈 대학교(University of Leeds) 연구팀이 수행했으며, 그 결과는 9월 지구물리학 연구지(Geophysical Research Letters)에 게재했다. 연구팀은 "1970년대 이후 북극 오존 수준이 그리 높지 않았다는 점을 감안할 때,지난 3월의 기록적인 최고치는 미래의 북극 오존층에 대한 긍정적인 징조로 간주될 수 있다"라고 썼다. 지난해 12월에서 2024년 3월 사이에 대규모 지구 파동이 대기를 통해 위쪽으로 전파돼 북극 주변을 순환하는 성층권 제트기류를 늦추었다. 그렇게 되면 중위도의 공기가 극지방으로 모이면서 오존을 북극 성층권으로 보낸다. 연구팀을 이끈 나사 고다드 우주비행센터의 폴 뉴먼 박사는 “오존 유입 외에 염소와 같은 다른 물질에 의한 오존 고갈도 거의 없었다”며 "북반구에서 모처럼 매우 역동적이고 활동적인 겨울이었다"라고 말했다. 성층권 오존이 많으면 지구 생명체에게는 긍정적인 영향을 미친다. 성층권 오존층은 자연적인 자외선 차단제다. 태양으로부터 쏟아지는 유해한 자외선(UV)을 흡수하기 때문이다. 연구팀은 지난 4~7월 사이에 북극의 UV 지수가 6~7%, 북반구 중위도의 UV 지수가 2~6% 수준 낮았다고 산출했다. UV 방사선이 적어지면 식물 DNA 손상이 줄어들고 인간과 동물의 백내장, 피부암, 면역 체계 억제 위험이 낮아진다. 올해 3월의 상황은 성층권 오존 농도가 극히 낮은 수준으로 떨어졌던 지난 2020년 3월과는 극명한 대조를 이룬다. 위의 지도는 2020년 3월(왼쪽)과 2024년 3월(오른쪽)의 북극 오존 농도를 보여주는데, 두 사진은 엄청난 양의 오존 변화를 나타낸다. 월평균은 나사 오존 감시팀에서 계산했다. 오존 구멍이 매년 형성되는 남극 대륙과 달리 북극의 오존은 농도가 매우 가변적이며 대류권과 성층권 날씨의 연간 변화에 큰 영향을 받는다. 이미지를 보면 2023년 12월 말부터 2024년 3월 초까지의 강파 현상으로 인해 오존 농도는 크게 증가했다. 오존 수치는 3월에 정점을 찍은 후 평균 이상으로 유지되었다. 5~8월도 월평균 오존 농도의 신기록을 수립했다. 네 달 연속 높은 오존 수준을 기록했던 것이다. 뉴먼은 "이는 진정 특별한 북반구의 여름이다"라고 말했다. 연구팀은 그러나 비정상적인 성층권 날씨의 원인에 대해서는 명확한 답을 찾지 못했다. 다만 다양한 시나리오의 가정 아래 분석했다. 예를 들어 기후 변화의 영향은 정량화하기 어렵다. 기상 요인이 있을 수 있지만 명확하지는 않다. 엘니뇨와 준 2년 주기 진동과 같은 더 큰 대기 패턴도 있지만, 그 영향은 크지 않았을 것으로 보인다. 연구팀은 북극 오존 수준의 핵심 결정 요인인 성층권 날씨 외에도, ‘장기적인 추세’가 오존 농도를 기록적인 최고치로 끌어올렸을 가능성이 있다고 판단했다. 1987년 몬트리올 의정서가 채택돼 오존을 고갈시키는 염화불화탄소(CFC) 등의 생산과 사용을 단계적으로 중단한 이후 오존 수준은 천천히 회복되는 추세였다. 연구팀은 2024년 3월의 높은 오존 수준은 예상했던 범위 내에 있었다고 지적했다. 고다드 화학-기후 모델인 GEOSCCM은 2025년까지 기록적인 최고치를 기록할 가능성이 8분의 1이라고 추정했었다. 앞으로 또 다른 신기록도 기대된다. 그러나 CFC는 수십 년 동안 대기에 계속 머무르기 때문에 북극 오존은 적어도 2045년까지는 1980년 수준으로 회복되지 못할 것으로 예상된다. 역설적이지만 성층권의 온실가스 농도가 높아지면 오존 회복도 빨라진다. 이번 오존 최고 기록이 오존층 파괴 물질이 감소하고 온실가스가 증가한 결과일 가능성도 높다. 이번 최고 기록은 미래를 예측할 수 있는 충분한 전조라고 연구팀은 강조했다.
-
- IT/바이오
-
[기후의 역습(65)] 줄어들던 북극 오존 회복세 돌아서나…지난 3월 최고 기록 경신
-
-
대기 오염, 어린이 뇌 백질 발달에 영향 미쳐
- 대기 오염이 어린이 뇌 백질 발달에도 커다란 영향을 미치는 것으로 나타났다. 바르셀로나 세계 보건 연구소(ISGlobal)가 주도한 연구에 따르면, 대기오염이 어린이의 뇌 백질 발달에 장기적인 영향을 미칠 수 있다는 사실이 밝혀졌다고 뉴로사이언스가 25일(현지시간) 보도했다. 뇌 백질은 뇌의 주요한 구성 요소 중 하나로, 주로 신경 세포의 축삭 다발로 이루어져 있다. 축삭은 신경 세포에서 정보를 전달하는 긴 섬유이며, 백질은 이 축삭들이 모여 있는 부분이다. 백질은 축삭을 둘러싸고 있는 미엘린(myelin)이라는 물질 때문에 흰색을 띤다. 백질은 뇌 전체에 걸쳐 넓게 분포하며, 뇌의 각 영역을 연결하는 복잡한 네트워크를 형성한다. 임산부와 어린이를 위한 대기 오염 문제 해결의 중요성을 강조하고 있는 이 연구 결과는 환경 연구 저널(Environment Resrarch)에 게재됐다. 최근 연구들은 대기오염이 어린이의 신경 발달에 영향을 미친다는 증거를 제시하고 있다. 특히 뇌 영역 간 연결에 중요한 역할을 하는 백질에 대한 대기오염의 영향을 뇌 영상 기술을 통해 확인했다. 그러나 이러한 연구들은 특정 시점만을 관찰하고, 아동기 전체에 걸친 추적 관찰이 부족하다는 한계가 있었다. ISGlobal 연구팀은 네덜란드 로테르담에서 진행된 '제너레이션 R 스터디(Generation R Study)에 참요한 4000명 이상의 출생 코호트를 대상으로 연구를 진행했다. 연구팀은 가족들의 주거지를 기반으로 임신 및 아동기 동안 14가지 대기오염 물질에 대한 노출량을 추정했다. 또한 1314명의 어린이를 대상으로 약 10세와 14세에 촬영한 두 번의 뇌 스캔 데이터를 활용하여 백질 미세 구조의 변화를 조사했다. 분석 결과, 미세먼지(PM2.5)및 질소산화물(NOx)과 같은 특정 오염 물질에 대한 노출은 뇌백질 발달의 차이와 관련이 있는 것으로 나타났다. 특히 임신 중 PM2.5 노출 증가, 아동기 동안 PM2.5, PM10, PM2.5-10, NOx 노출 증가는 뇌 내 물 분자 확산 방식을 측정하는 '분별 이방성' 수치 감소와 연관됐다. 이러한 연관성은 청소년기까지 지속되어 대기오염이 뇌 발달에 장기적인 영향을 미친다는 것을 시사한다. 대기오염 노출 수준이 증가할 때마다 분별 이방성 발달은 5개월 이상 지연되는 것으로 나타났다. 연구팀은 또한 일부 오염 물질이 백질의 무결성을 반영하는 '평균 확산도' 변화와 관련이 있음을 발견했다. 평균 확산도는 뇌가 성숙함에 따라 감소하는 경향이 있다. 임신 중 미세먼지(PM2.5) 내 실리콘과 같은 오염 물질에 대한 노출 증가는 초기에는 평균 확산도를 높였지만, 아이들이 성장하면서 더 빠르게 감소했다. 이는 대기오염의 일부 영향이 시간이 지남에 따라 감소할 수 있음을 나타낸다. 전반적으로 이 연구는 임신 및 초기 아동기의 대기오염 노출이 뇌 백질에 지속적인 영향을 미칠 수 있음을 시사한다. 특히 이러한 결과는 세계보건기구(WHO)가 권장하는 최대 허용치를 초과하지 않지만 유럽연합(EU) 권장치보다는 낮은 PM2.5 및 PM10 농도에 노출된 어린이에게서도 나타났다는 점에서 주목할 만하다. 연구팀은 이 연구 결과가 곧 유럽 의회에서 승인될 것으로 예상되는 더 엄격한 유럽 대기오염 지침의 필요성을 뒷받침한다면서, 대기오염 문제 해결을 위한 정책적 노력의 중요성을 거듭 강조했다.
-
- 생활경제
-
대기 오염, 어린이 뇌 백질 발달에 영향 미쳐
-
-
[기후의 역습(63)] 영구동토층 해빙으로 북극-아북극 산불 급증
- 극심한 기후 변화로 영구동토층인 북극 지역에 산불이 급증할 것이라는 암울한 연구 결과가 나왔다. 국제 기후 과학자 및 영구동토층 전문가 팀의 연구에 따르면, 새로운 기후 컴퓨터 모델 시뮬레이션 결과 지구 온난화로 인해 영구동토층 해빙이 가속화되고, 이로 인해 북부 캐나다 및 시베리아의 아북극 및 북극 지역에서 산불이 급격히 증가할 것으로 예상된다고 네이처닷컴과 PHYS 등 다수 외신이 24일(현지시간) 보도했다. 최근 관측 결과 따뜻하고 건조한 기후 조건으로 인해 이미 북극 지역의 산불이 심화되고 있는 것으로 나타났다. 미래 인위적 온난화가 산불 발생에 미치는 영향을 이해하고 시뮬레이션하기 위해서는 가속화된 영구동토층의 해빙의 역할을 고려하는 것이 중요하다. 영구동토층 해빙은 토양의 수분 함량을 크게 좌우하며, 이는 산불 발생의 핵심요소다. 최근 기후 모델들은 지구 온난화, 북부고위도 영구동토층 해빙, 토양 수분 및 화재 사이의 상호작용을 완전히 고려하지 않았다. 이번 새로운 연구는 가장 포괄적인 지구 시스템 모델 중 하나인 '커뮤니티 지구 시스템 모델'에서 생성된 영구동토층 및 산불 데이터를 사용했다. 이 모델은 토양 수분, 영구동토층 및 산불 사이의 결합을 통합적으로 파악하는 최초의 모델이다. 온실가스 배출 증가의 인위적인 영향과 자연 발생적인 기후 변화를 더 잘 구분하기 위해 과학자들은 1850년부터 2100년까지의 기간(SSP3-7.0 온실가스 배출 시나리오)을 다루는 50개의 과거-미래 시뮬레이션 앙상블을 사용했다. 이 시뮬레이션은 최근 한국의 부산 IBS 기후물리센터와 미국 콜로라도 볼더 국립대기연구센터 과학자들이 IBS 슈퍼컴퓨터 Aleph에서 수행했다. 이 앙상블 모델링 접근 방식을 통해 연구팀은 21세기 중후반까지 아북극 및 북극 지역에서 인위적인 영구동토층 해빙이 상당히 광범위하게 진행될 것임을 입증했다. 많은 지역에서 과도한 토양 수분이 빠르게 배출되어 토양의 수분이 급격히 감소하고, 이후 지표면 온난화 및 대기 건조가 발생한다. 부산에 있는 IBS 기후물리학 연구원의 연구 주저자이자 박사후 연구원인 김인원 박사는 "이러한 조건은 산불을 심화시킬 것"이라고 말했다. 연구팀은 이러한 조건들이 산불을 심화시킬 것이라고 경고했다. 모델 시뮬레이션 결과 21세기 후반에는 불과 몇 년 만에 사실상 화재가 거의 없는 상태에서 매우 강렬한 화재로 갑작스럽게 전환되는 것으로 나타났다. 이러한 미래 산불 추세는 대기중 이산화탄소 농도 증가로 인해 고위도 지역의 식물 바이오매스가 증가할 가능성이 높다는 사실로 인해 더욱 악화될 것으로 전망된다. 이른바 '이산화탄소 비료 효과'는 추가적인 화재 연료를 제공한다는 것. 참고로 이산화탄소 비료 효과는 대기 중 이산화탄소 농도가 증가하면 식물의 광합성 속도가 빨라져 성장이 촉진되는 현상을 말한다. 쉽게 말해 이산화탄소는 식물에게 비료와 같은 역할을 한다고 볼 수 있다. 식물이 더 빠르게 성장하면 화재가 발생할 경우 연료가 추가되는 것과 같은 효과를 내 화재 위험이 더 높아질 수 있다. 공동연구자인 노르웨이 트론헤임에 있는 노르웨이 과학기술대학의 한나 리 부교수는 "복잡한 영구동토층 환경이 미래를 더 잘 시뮬레이션하기 위해서는 확장된 관측 데이터 세트를 사용하여 지구 시스템 모델에서 소규모 수문학적 과정을 더욱 개선해야 할 필요성이 있다"고 강조했다. 이번 논문의 공동 저자이자 ICCP 책임자 겸 부산대학교 명예 교수인 악셀 팀머만 박사는 "산불은 이산화탄소, 검은 탄소 및 유기 탄소를 대기중으로 방출하여 기후에 영향을 미치고 북극 영구동토층 해빙 과정에 피드백을 줄 수 있다"고 지적했다. 팀머만 교수는 "하지만 화재 배출과 대기 과정 사이의 상호작용은 아직 지구 시스템 컴퓨터 모델에 완전히 통합되지 않았으며, 이러한 측면을 추가로 고려하는 것이 다음 단계가 될 것"이라고 밝혔다. 이번 연구는 국제학술지 네이처 커뮤니케이션스에 게재됐다. 실제로 2023년 캐나다 북부에서 미국 플로리다 주 크기의 지역을 태운 기록적인 산불이 발생했다. BBC에 따르면 2023년 캐나다 산불은 엄청난 이산화탄소를 배출했다. 과학자들은 캐나다의 한대 삼림이 지구 온난화를 유발하는 탄소를 포집하는 데 중요한 역할을 하기 때문에 이례적으로 화재가 발생하면 전 세계 기후 변화 예측에 영향을 미칠 수 있다고 우려하고 있다. 지난 8월 28일 캘리포니아 공과대학과 캐나다, 네덜란드 등 국제 연구팀이 네이처 저널에 발표한 자료에 따르면, 캐나다 화재로 인한 총 배출량을 약 647테라그램의 탄소로 계산했다. 1테라그램은 백만 미터톤이다. 이는 지난 10년 동안 약 29테라그램에서 82테라그램 사이를 오르내렸던 캐나다의 전형적인 산불 배출량을 훨씬 웃도는 수치다. 또한 이는 캐나다의 연간 총 탄소 배출량보다 5배 많으며, 작년에 740테라그램의 탄소를 배출한 인도와 비슷한 수준이었다. 2023년 캐나다 산불보다 더 많은 탄소량을 배출한 나라는 중국, 미국, 인도뿐이었다. 인류의 생존을 위협하는 탄소 배출량을 실질적으로 감소하기 위해 각국 정부와 기관이 더욱 머리를 맞대야 할 시기다.
-
- IT/바이오
-
[기후의 역습(63)] 영구동토층 해빙으로 북극-아북극 산불 급증
-
-
인간 뇌조직에서 미세 플라스틱 첫 검출⋯잠재적 위험성 제기
- 인간 뇌조직에서 미세 플라스틱이 처음으로 검출되어 잠재적인 건강 위험에 대한 우려가 높아지고 있다. 국제 연구팀이 15명의 사망자 뇌 조직 중 8명의 후각 신경구(코에서 냄새 정보를 받아 들이는 뇌조직 덩어리)에서 미세 플라스틱을 발견했다고 사이언스얼라트와 CNN 등 다수 외신이 보도했다. 이는 뇌 혈전에서 미세 플라스틱이 발견된 이후 뇌조직 자체에서 미세 플라스틱을 보고한 첫 번째 연구다. 베르린 자유 대학의 박사후 미세 플라스틱 연구원이자 이번 연구의 주저자인 루이스 페르난도 아마토-로렌소는 CNN에 "이 구조에 존재하면 뇌의 다른 영역으로 전이될 수 있다"고 밝혔다. 아마토-로렌소는 입자의 크기와 모양이 섬유보다 작기 때문에 뇌와 척수를 여러 유해 물질로부터 보호하는 막인 혈액뇌장벽의 미세아교세포를 우회할 가능성이 더 높다고 덧붙였다. 이전 연구에서 미세 플라스틱과 나노 플라스틱은 우리 몸의 폐 조직과 모유와 태반, 고환 등 생식기에서도 발견됐다. 아울러 플라스틱 페트 병에 든 생수 등 마시는 물에서도 미세 플라스틱이 검출돼 경종을 울렸다. 연구팀은 출판된 논문에서 나일론의 현미경 사진을 게재했으며 "미세 플라스틱은 다양한 인체 조직에서 발견됐지만 인간의 뇌에서 존재한다는 사실은 기록되지 않았으며, 이는 잠재적인 신경 독성 효과와 미세 플라스틱이 뇌 조직에 도달하는 메커니즘에 대한 중요한 의문을 제기한다"고 기술했다. 이번 연구는 지난 16일 미국의학협회 저널 '자마 네트워크 오픈(JAMA Network Open)'에 발표됐다. 검출된 미세 플라스틱은 주로 입자 및 섬유 형태였으며, 폴리프로필렌이 가장 많이 발견됐다. 입자 크기는 5.5마이크로미터(㎛)에서 26.4마이크로미터 사이로, 평균적인 인간 머리카락 너비(약 8만 나노미터)의 1/4도 되지 않았다. 이보다 작은 것은 나노 플라스틱으로 10억분의 1미터 단위로 측정해야 한다. 폴리프로필렌은 포장재부터 자동차 부품, 의료 기기에 이르기까지 가장 널리 사용되는 플라스틱 중 하나이다. 이전 연구에서는 대기 오염 입자가 후각 경로를 따라 올라가는 것을 발견했지만, 이번 연구에서는 미세 플라스틱이 후각구 바로 아래 쪽의 작은 구멍을 통해 뇌까지 동일한 경로를 이용할 수 있음을 시사한다. 연구팀은 "코와 후각구에서 미세 플라스틱이 확인된 것은 취약한 해부학적 구조와 함께 후각 경로가 외인성 입자가 뇌로 들어가는 중요한 진입 지점이라는 개념을 강화한다"고 설명했다. 미세 플라스틱의 건강 영향은 아직 명확하지 않지만. 뇌 내 합성 물질 농도 증가는 긍정적인 신호가 아니다. 최근 연구에 따르면 미세 플라스틱은 신경 손상 및 신경 질환 위험 증가와 연관 있을 수도 있다. 또한 대기 오염과 인지 문제 사이의 연관성은 이미 잘 알려져 있다. 만약 미세 플라스틱이 비강으로 유입된다면 문제를 악화시킬 가능성이 있다. 연구팀은 "파킨슨병과 같은 일부 신경 퇴행성 질환은 초기 증상으로 비강 이상과 관련이 있는 것으로 보인다"고 말했다. 생분해성이 더 높은 플라스틱을 생산하려는 지속적인 노력에도 불구하고, 플라스틱 생산량은 지난 20년 동안 두 배로 늘었다. 지난 9월 4일 '네이처' 저널에 게재된 또다른 연구에 따르면 전 세계는 매년 5700만톤의 플라스틱 오염을 발생시키고 있다. 영국 리즈대학교 연구팀은 매년 발생하는 오염 물질은 약 5200만톤으로, 뉴욕시 센트럴 파크를 엠파이어스테이트 빌딩 높이만큼 플라스틱 쓰레기로 채울 수 있는 수준이라고 밝혔다. 5200만톤의 플라스틱 쓰레기를 서울의 여의도에 쌓으면 높이는 약 1만5600km에 이른다. 이는 지구 반지름(약 6371km)의 두 배가 넘는 엄청난 높이다. 참고로 지구에서 가장 높은 에베레스트 산의 해발 고도는 약 8846미터이다. 이번 연구는 플라스틱 오염의 심각성을 다시 한 번 강조하며, 미세 플라스틱의 건강 영향에 대한 추가 연구의 필요성을 제기한다.
-
- IT/바이오
-
인간 뇌조직에서 미세 플라스틱 첫 검출⋯잠재적 위험성 제기
-
-
[기후의 역습(60)] 지구의 고대 기온, 극심한 변화 반복…이산화탄소가 주범
- 지구의 고대 기온 변화가 예상보다 훨씬 극심했으며 온실가스인 이산화탄소(CO₂)가 큰 영향을 미친 것으로 나타났다. 지구는 4억8500만년전부터 현재까지 이어진 현생대 동안 극심한 기후 변화를 겪어왔다. 최근 연구 결과에 따르면 이 변화는 예상보다 컸으며, 그 주범은 이산화탄소였다는 연구 결과가 나왔다고 독립매체 사이언스뉴스가 20일 전했다. 미국 애리조나대와 스미스소니언 국립자연사박물관의 에밀리 저드 박사 연구팀은 지질학 데이터와 기후 모델 시뮬레이션을 결합하여 과거 지구 평균 표면의 온도(GMST)를 재구성했다. 그 결과, 지구 평균 표면 온도는 섭씨 11도에서 36도 사이에 변화했다. 이는 이전 컴퓨터 시뮬레이션 기반 연구에서 추정했던 섭씨 14도에서 26도 범위를 훨씬 뛰어넘는 수치이다. 특히 열대 지역은 섭씨 42도에 달하는 폭염을 겪기도 했다. 이는 당시 생물들이 극심한 더위라는 환경에 적응하며 진화했음을 보여준다. 이산화탄소, 기후 변화의 '키 플레이어' 연구팀은 이러한 기온 변화의 주요 원인으로 이산화탄소 농도를 지목했다. 이산화탄소 농도가 두 배 증가할 때 기온 변화 폭을 나타내는 '지구 시스템 민감도(Earth system sensitivity)'는 과거에 최대 8℃로 현재(최대 3℃)보다 2~3배 컸던 것으로 확인됐다. 즉 과거 지구는 이산화탄소 변화에 훨씬 민감하게 반응했던 것이다. 특히 이러한 기온 변화는 대기 중 이산화탄소 농도 변화와 밀접한 관련이 있는 것으로 나타났으며, 태양 복사 변화 등 다른 요인보다 더 큰 영향을 미쳤다는 점이 주목할만하다. 이번 연구는 지구 온난화에 대한 새로운 시각을 제시한다. 현재 지구 평균 기온은 약 섭씨 15도로, 상대적으로 '빙하기'에 가깝다. 그러나 연구팀은 이것으로 현재 인간에 의한 지구 온난화 문제를 과소 평가해서는 안 된다고 경고했다. 연구팀은 가장 중요한 문제는 '변화 속도'라는 점을 강조하했다. 지난 2000년 동안 지구 온난화 속도는 매우 빠르게 진행되어 왔고, 생물들은 점진적인 변화에는 적응할 수 있지만 급격한 변화에는 적응하기 어렵다는 지적이다. 인간 역시 추운 환경에 적응하고 해수면 근처에서 살도록 진화했기 때문에 급격한 기후 변화에 취약할 수밖에 없다. 연구팀은 "지구의 회복력이 인간의 적응 능력을 보장하지 않는다는 점을 우리 모두 명심해야 한다"라고 강조했다. 이번 연구 결과는 20일 과학 저널 '사이언스(Science)'에 게재됐다.
-
- 생활경제
-
[기후의 역습(60)] 지구의 고대 기온, 극심한 변화 반복…이산화탄소가 주범
-
-
[기후의 역습(57)] 과학자들, 기후 변화 대응에 기여할 새로운 목재 유형 발견
- 올 여름 역대급 폭염이 이어진 가운데 튤립나무가 기후 변화에 직접적인 영향을 미치는 탄소 포집 효과가 탁월하다는 연구 결과가 나왔다. 한국 기상청에 따르면 지난 8월 폭염일수는 16일로, 2016년 16.6일에 이어 관련 통계를 집계한 1973년 이래 두 번째로 많았다. 또한 지난달 열대야 수는 11.3일로 통계 집계 이후 처음으로 두자릿수를 기록했다. 오래된 나무와 숲이 이산화탄소를 더 많이 흡수하고, 저장한다는 것은 이전의 여러 연구에서 확인됐다. 튤립나무에 대한 연구에서 탄소포집 잠재력이 큰 새로운 목재 구조가 확인됐다고 사이테크데일리가 11일(현지시간) 보도했다. 폴란드 야기에우워 대학교(Jagiellonian University)와 영국 케임브리지 대학교 연구진은 세계적으로 유명한 나무와 관목들의 목재 미세 구조를 진화적으로 조사하던 중 튤립나무에 대한 연구에서 탄소 포집 잠재력이 큰 새로운 목재 구조가 확인됐다고 사이테크데일리가 11일(현지시간) 보도했다. 연구팀은 목련과의 친척이자 30미터 이상 자라는 튤립나무가 활엽수와 침엽수 어느 쪽에도 속하지 않는 독특한 목재를 가지고 있음을 확인한 것이다. 이 획기적인 발견은 빠르게 성장하는 튤립나무를 조림지에 심어 탄소 격리 효율을 높이는 새로운 가능성을 제시한다. 목재 구조의 새로운 발견 최근 국제학술지 '신식물학자(New Phytologist)'에 발표된 연구에서 연구진은 저온 주사 전자 현미경(cryo-SEM)을 사용하여 수분이 함유된 상태의 목재 세포벽 나노 구조를 이미지화했다. 그 결과, 튤립나무(Liriodendron tulipifera)와 중국 튤립나무(Liriodendron chinense) 두 종의 고대 리리오덴드론(Liriodendron) 속 나무들이 활엽수 친척들보다 훨씬 더 큰 마크로피브릴을 가지고 있음을 발견했다. 마크로피브릴은 2차 세포벽 내 층에 정렬된 긴 섬유를 말한다. 탄소 포집에 대한 함의 연구 책임자인 야기에우워 대학교의 얀 우이차코프스키(Jan Łyczakowski) 박사는 "튤립나무는 침엽수나 할엽수와는 구별되는 중간적인 마크로피브릴 구조를 가지고 있다"며 "튤립나무는 약 300만~5000만년 전 목련나무에서 분기되었는데, 이 시기는 대기 중 이산화탄소 농도가 급격히 감소하던 시기와 일치한다. 이는 튤립나무가 탄소 저장에 매우 효율적인 이유를 설명하는 데 더움이 될 수 있다"고 말했다. 연구팀은 이 '중간 목재' 또는 '축적 목재'의 더 큰 마크로피브릴이 튤립나무의 빠른 성장 뒤에 있는 원인이라고 추측한다. 우이차코프스키는 " 두 종의 툴립나무는 탄소를 매우 효율적으로 포집하는 것으로 알려져 있으며, 확대된 마크로피브릴 구조는 대기 중 탄소 이용 가능성이 감소했을 때 더 많은 양의 탄소를 쉽게 포집하고 저장하도록 돕는 적응일 수 있다"며 "튤립나무는 탄소 포집 조림에 유용하게 활용될 수 있을 것이다. 일부 동남아 국가에서는 이미 튤립나무 조림을 통해 효율적으로 탄소를 포집하고 있으며, 이제 우리는 이것이 튤립나무의 새로운 목재 구조와 관련이 있을 수 있다고 생각한다"고 덧붙였다. 케임브리지 대학교 식물원에서 얻은 진화적 통찰 이 발견은 케임브리지 대학교 식물원의 살아있는 컬렉션에서 33종의 나무를 조사하여 침엽수(소나무, 침엽수 등 겉씨식물)와 활엽수(참나무, 물푸레나무, 자작나무, 유칼립투스 등 속씨식물)에서 목재 초미세구조가 어떻게 진화했는지 탐구하는 과정에서 이루어졌다. 우이차코프스키는 "목재 구조가 어떻게 진화하고 외부 환경에 적응하는지에 대해서는 알려진 바가 거의 없다"며 "이번 조사에서 우리는 이전에 관찰된 적이 없는 완전히 새로운 목재 초미세구조외 전형적인 겉씨식물 침엽수 대신 속씨식물과 유사한 활엽수를 가진 겉씨식물 계통을 발견하는 등 몇 가지 중요한 새로운 발견을 했다"고 말했다. 그는 이어 "목재의 주요 구성 요소는 2차 세포벽이, 건축에 의존하는 목재의 밀도와 강도를 부여하는 것은 바로 이 세포벽의 구조다. 2차 세포벽은 또한 샐물권에서 가장 큰 탄소 저장소이므로, 기후 변화 완화를 돕는 탄소 포집 프로그램을 발전시키기 위해서는 2차 세포벽의 다양성을 이해하는 것이 중요하다"고 덧붙였다. 목재 초미세 구조 목재 초미세구조는 목재의 미세한 구조, 즉 재료 구성 요소의 배열과 조직을 의미한다. 저온 주사 현미경을 사용한 이번 목재 조사는 2차 세포벽, 마크로피브릴 등에 초점을 맞췄다. 2차 세포벽은 주로 셀룰로오스와 기타 복합 당으로 구성되며, 리그닌이 함침되어 전체 구조를 단단하게 만든다. 이러한 구성 요소들은 마크로피브릴을 형성하며. 2차 세포벽 내에 뚜렷한 층으로 배열된 긴 정렬 섬유를 만든다. 마크로피브릴은 현재 저온 주사 현미경으로 측정할 수 있는 가장 작은 구조이며, 두께는 약 10~40나노미터이다. 셀룰로오스 마크로피브릴(3~4나노미터)과 기타 구성 요소로 이루어져 있다. 목재 초미세 구조 연구는 목재 가공, 재료 과학, 나무의 생태 및 진화적 측면 이해 등 다양한 분야에 중요하다. 나무 성장과 목재 침착 뒤에 숨은 생물학적 메커니즘을 이해하는 것은 탄소 포집량 계산에도 유용한 정보를 제공한다. 목재 샘플은 케임브리지 대학교 식물원 컬렉션 코디네이터 마르고 애플(Margeaux Apple)과 협력하여 식물원 내 나무에서 채취했다. 겉씨식물과 속씨식물 개체군이 분기하고 진화함에 따라 그 진화 역사를 반영하기 위해 선별된 나무에서 지난 봄 성장기에 침착된 신선한 목재 샘플을 수집했다. 저온 전자 현미경 사용한 역대 최대 목본 식물 조사 케임브리지 대학교 세인즈버리 연구소 현미경 핵심 시설 관리자인 레이먼드 와이트먼(Raymond Wightman) 박사는 "우리는 자이언트 세쿼이아, 울레미 소나무, 그리고 모든 꽃 피는 식물과 분리되어 진화한 가장 오래된 현존 식물군의 유일한 생존 종인 암보렐라 트리코포다(Amborella trichopoda)와 같은 '살아있는 화석'을 비롯하여 세계에서 가장 상징적인 나무들을 분석했다"고 말했다. 와이트만 박사는 "우리의 조사 데이터는 목재 나노 구조와 세포벽 구성 사이의 진화적 관계에 대한 새로운 통찰력을 제공했으며, 이는 속씨식물과 겉씨식물 계통에 따라 다르다. 속씨식물 세포벽은 겉씨식물에 비해 마크로피브릴이라고 불리는 더 좁은 기본 단위를 가지고 있으며, 이 작은 마크로피브릴은 암보렐라 트리코포다 조상에서 분기된 후 등장했다"고 덧붙였다. 우이차코프스키와 와이트먼은 또한 마황류(Gnetophytes) 계통의 두 겉씨식물인 그네툼속(Gnetum gnemon, 그네툼 그네몬)과 그네툼 에둘레(Gnetum edule)의 세포벽 마크로피브릴을 분석하여 둘 다 속씨식물의 활엽수 세포벽 구조와 동일한 2차 세포벽 초미세 구조를 가지고 있음을 확인했다. 이는 마황류가 일반적으로 속씨식물에서만 볼 수 있는 활엽수 유형 구조를 독립적으로 진화시킨 수렴 진화의 한 예이다. 이 조사는 2022년 영국에서 네 번째로 더운 여름으로 기록된 기간 동안 진행됐다. 와이트먼은 "저온 전자 현미경을 사용한 목본 식물 조사 중 역대 최대 규모일 것"이라며, "세인즈버리 연구소가 케임브리지 대학교 식물원 부지 내에 위치하고 있기 때문에 이처럼 많은 신선한 수화된 목재에 대해 대규모 조사를 할 수 있었다. 우리는 2022년에 모든 샘플을 수집했다. 이른 아침에 샘플을 수집하고, 샘플을 초저온 슬러시 질소에 동결시킨 다음 자정까지 샘플을 이미징했다"고 설명했다. 그는 "이 연구는 식물원이 현대 연구에 기여하는 데 지속적인 가치와 영향을 보여준다. 이 연구는 케임브리지 대학교 식물원 컬렉션에서 같은 장소에서 함께 자라는 진화적 시간을 통해 표현된 다양한 식물이 없었다면 불가능했을 것이다"라고 말했다. 참고문헌: Jan J. Lyczakowski와 Raymond Wightman의 「수렴 및 적응 진화가 종자 식물의 현존 계통에서 2차 세포벽 미세 구조의 변화를 주도했다」, New Phytologist .DOI: 10.1111/nph.19983
-
- IT/바이오
-
[기후의 역습(57)] 과학자들, 기후 변화 대응에 기여할 새로운 목재 유형 발견
-
-
[먹을까? 말까? (59)] 생감자, 먹어도 되나?
- 감자를 익히지 않고 생으로 먹어도 될까? 전문가들에 따르면 감자는 싹이나 껍질에 솔라닌 독소를 함유하고 있기 때문에 생으로 먹는 것은 피하는 것이 좋다. 요리 교육 연구소 로스앤젤레스 캠퍼스의 식물 기반 요리법 강사이자 셰프인 에밀리 버너(Emilie Berner)는 사우던 리빙에서 생감자를 소량으로 섭취한다면 아마도 해롭지 않겠지만 가능하면 생감자는 먹지 않는 가장 좋다고 말했다. 녹말이 많은 생감자를 섭취하면 속이 불편하거나 소화 문제가 발생할 수 있다. 즉, 생감자에는 솔라닌과 렉틴이 함유되어 있는데 둘 다 소화기 문제를 일으킬 수 있기 때문이다. 베르너는 "껍질 바로 아래에 있는 독소인 솔라닌은 사람을 아프게 할 수 있다"고 설명했다. 솔라닌은 가지과 식물 특히 감자나 토마토, 가지 등에서 자연적으로 생성되는 독성 물질이다. 주로 햇빛에 노출되어 녹색으로 변한 감자 껍질이나 싹, 줄기, 잎 등에 솔라닌이 많이 함유되어 있다. 솔라닌을 과다 섭취하면 메스꺼움, 구토, 설사, 복통, 두통, 현기증 등의 증상이 나타날 수 있으며, 심각한 경우 신경계 마비나 호흡곤란을 일으킬 수도 있다. 올바른 감자 보관 방법 감자는 햇빛이 닿지 않는 식품 저장실이나 냉장고의 야채칸과 같이 시원하고 건조한 곳에 보관해야 한다. USDA 웹사이트에 따르면 "감자 껍질이 녹색으로 변하는 것을 방지하기 위해 빛이 없는 곳에 보관하는 것이 중요하다. 솔라닌 농도가 높은 덩이줄기(괴경)는 쓴 맛이 나고 다량으로 섭취하면 해로울 수 있다"며 "안전을 위해 괴경의 녹색 부분은 먹지 않는 것이 가장 좋다"고 설명했다. 이어 "감자의 껍질, 껍질의 녹색 색깔과 새싹만 벗기면 된다. 솔라닌이 집중되는 곳이 바로 그곳이기 때문이다"라고 강조했다. 감자는 요리하면 맛과 질감이 더 좋아지고, 건강에 더 안전하고 소화도 쉬워진다. 감자를 익힐 때는 껍질째 익히는 것보다 껍질을 벗겨서 조리하면 감자 특유의 아린 맛을 줄일 수 있다. 감자를 삶을 때 다 익었는지 확인하기 위해서는 젓가락이나 포크로 찔러보는 방법이 있다. 감자가 덜 익었으면 젓가락이나 포크가 매끄럽게 들어가지 않는다.
-
- 생활경제
-
[먹을까? 말까? (59)] 생감자, 먹어도 되나?
-
-
도시의 공해와 소음, 불임 유발 가능성 '심각'
- 대도시에서 거주하는 사람들이 더러운 공기와 소음에 시달리는 것만으로도 불임이 될 수 있다는 연구 결과가 나왔다. 덴마크 암 연구소에서 공개한 새로운 데이터에 따르면 공기 오염은 남성의 생식 능력을 낮추고, 시끄러운 교통 소음은 여성의 생식 능력에 영향을 미칠 수 있다고 영국 일간지 메일이 온라인판에서 5일(이하 현지시간) 보도했다. 코펜하겐에 있는 덴마크 암 연구소의 메터 쇠렌센과 그의 연구팀은 지난 4일 영국 의학 저널 BMJ에 이러한 내용을 발표했다. 연구팀에 따르면 전 세계적으로 무려 7쌍 중 1쌍이 임신에 어려움을 겪는다고 한다. 팀은 덴마크의 국가 데이터베이스에서 30~45세의 덴마크 성인 남녀 약 90만 명을 대상으로 각 거주자의 건강, 직업, 교육, 가족에 대한 데이터를 활용했다. 대상자들은 모두 2명 미만의 자녀를 두었고, 2000년부터 2017년 사이에 덴마크에서 결혼하거나 동거했다. 불임 병력이 있거나 불임 수술을 받은 사람은 연구 대상에서 제외됐다. 연구팀은 최근 수십 년간의 지역 대기 오염 수준을 연구 참가자들과 교차 참조했다. 특히 그들은 폐 깊숙이 침투할 수 있는 매우 미세한 오염 입자인 PM2.5의 농도를 살펴보았다. 연구팀은 또한 각 참가자의 주소에서의 도로 교통 소음 수준을 추적했다. 18년간의 연구 기간 동안 1만6172명의 남성과 2만2672명의 여성에게 불임이 발견됐다. 연구에 따르면 30~45세 남성이 5년 동안 PM2.5 농도의 대기 오염에 평균적으로 더 많이 노출되면 불임 진단을 받을 위험이 24% 더 높은 것으로 나타났다. 그들은 직업, 급여, 교육 등의 다른 요소를 고려하여 연구 결과를 조정했다. 그러나 여성의 경우 대기 오염은 불임에 영향을 미치지 않는 것으로 나타났다. 그 대신 여성의 생식 능력은 또 다른 요인, 즉 소음의 영향을 받는 것으로 밝혀졌다. 연구자들은 5년 동안 평균 도로 교통 소음 수준이 10.2데시벨 더 높은 35세 이상의 여성은 불임 위험이 14% 더 높은 것으로 밝혔다. 하지만 30~35세 여성의 경우에는 그렇지 않았다. 반면, 남자들은 아파트 밖에서 들리는 구급차 사이렌 소리에 별로 영향을 받지 않는 듯했다. 도로 교통 소음 노출은 37~45세 남성의 불임 증가와 약간만 관련이 있다고 연구에서 밝혔다. 30~37세의 경우 효과가 없었다. 오염된 공기를 흡입하면 생식능력에 영향을 미치는 것으로 알려져 있다. 흡입된 화학물질은 혈류로 유입되어 호르몬을 교란시키거나 난자와 정자에 직접적인 손상을 일으킬 수 있다. 하지만 교통 소음과 건강 사이의 연관성은 잘 알려지지 않았다. 일부 연구에 따르면 소음이 스트레스를 유발하여 임신에 영향을 미칠 수 있다고 한다. 연구자들은 불임의 전반적인 원인을 파악하지 못했다고 강조했으며 단지 연관성을 발견했을 뿐이라고 말했다. 이번 조사 결과는 미국의 대도시에서 어린아이 수가 '충격적으로' 감소했다는 증거가 늘어나는 상황에서 나온 것이다. 새로운 연구에 따르면 가장 큰 피해를 입은 뉴욕시에서 2020년 4월 이후 5세 이하 아동의 수가 18%나 감소한 것으로 나타났다. 시카고와 로스앤젤레스는 같은 기간 동안 각각 15%와 14% 감소했다.
-
- 생활경제
-
도시의 공해와 소음, 불임 유발 가능성 '심각'
-
-
[신소재 신기술(106)] 스탠퍼드대, 식용 색소로 투명 쥐 만드는 기술 개발 성공
- 미국 과학자들이 식용 색소를 이용해 생쥐 피부를 투명하게 만드는 실험에 성공했다. 스탠퍼드대 재료과학 및 공학 궈쑹 홍(Guosong Hong) 교수 팀은 9월 5일 과학 저널 '사이언스(Science)'에서 '타르트라진(Tartrazine)' 또는 '황색 5호(FD&C Yellow #5)'로 알려진 노란색 식용 색소를 통해 생쥐의 복부 피부와 두개골 등 생물학적 조직을 일시적으로 투명하게 만드는 데 성공했다고 밝혔다. 투명망토는 공상 과학과 판타지 영화의 소재로 곧잘 등장하지만, 식용 염료를 활용해 쥐의 피부를 투명하게 만들어 낸 것은 이번이 처음이다. 여기서 '투명'이라는 개념은 좀 다르다. 일반적으로 투명망토는 인체의 내부까지 투명해져서 육안으로 사람이 안 보이는 것을 의미한다. 하지만 연구팀이 개발한 식용 염료를 바르면 피부만 투명해지고 그안의 혈관과 근육, 뼈 등 내부 구조가 고스란히 드러나 관찰하기에 적합해진다. 연구팀은 특정 탄산음료와 과자에 독특한 주황색을 부여하는 식용 색소인 황색 5호를 사용해 쥐의 피부를 완전히 투명하게 하는 것을 입증했다. 이는 가역적이고 잠재적으로 무독성인 연구 방법으로, 의학과 과학 영상 분야에 혁신을 가져올 수 있다. 해당 연구 내용에 대해서는 영국 일간지 가디언과 과학 전문매체 퍼퓰러사이언스 등 다수 외신이 전했다. 지금까지 연구팀은 이 새로운 발견을 통해 쥐의 복부 내 장기를 관찰하고, 설치류 두개골 주변의 맥동하는 혈류를 살펴보고, 현미경을 통해 근육 조직을 매우 선명하게 볼 수 있었다. 추가적인 연구를 통해 이 방법은 새로운 과학적 발견을 촉진하고, 현미경 기술을 발전시키며, 의료 진단 전략과 치료법을 개선하는데 기여할 수 있을 것으로 기대된다. 원리는 간단, 색소 바르면 피부 투명해져 쥐의 피부를 투명하게 하는 방법은 간단하다. 황색 5호 용액을 쥐의 피부에 몇 분 동안 마사지하거나 미세 바늘을 사용하면 투명('가시광선의 적색 영역에서 완전한 광학적 투명성')한 피부가 된다. 색소를 씻어내면 피부는 자연스럽고 불투명한 상태로 되돌아간다. 스탠포드 대학교의 공동수석연구 저자이자 생물공학자인 궈쑹 홍 박사는 "피부와 같은 생물학적 조직은 빛이 통과할 때 산란되기 때문에 일반적으로 투명하지 않다"며 "동물의 살은 주로 물과 지방 등 다양한 물질로 이루어진 매트릭스이며, 이 두 종류의 화합물은 서로 다른 각도로 빛을 굴절시킨다고 설명했다. 빛은 한 물질에서 다른 물질로 이동할 때 속도가 변하며 휘어지는 굴절과 흩어지는 산란 현상을 일으킨다. 우리가 물체의 속을 볼 수 없는 것은 바로 산란현상 때문이다. 연구팀은 다양한 색소가 조직 내 빛의 이동 방식을 어떻게 변화시키는 지 모델링하여 일시적으로 피부를 투명하게 하는 이 방법을 개발했다. 팀은 황색 5호와 다른 몇 가지 색소를 투명성 향상 후보로 선정한 후, 실리카 입자와 혼합된 액체, 살아있는 닭의 가슴살, 살아 있는 생쥐와 기타 쥐의 조직 샘플 등을 테스트해 색소가 얼마나 빠르고 깊게 퍼지는 지 측정했다. 또한 이 색소를 다른 광학 현미경 기술과 결합해 황색 5호가 기존 기술을 향상시키는데 사용될 수 있음을 보여줬다. 마지막으로 연구팀은 설치류 실험 대상에서 단기 및 장기적인 영향을 조사하고 쥐가 소변과 대변을 통해 이들 색소를 얼마나 빨리 배출하는 지 추적해 초기 독성 분석을 수행했다. 연구팀은 황색 5호가 24시간 내에 몸을 통과하고 염증이나 자극을 거의 일으키지 않으며 "최소한의 전신 독성"을 나타낸다고 밝혔다. 인체 적용 시기 상조 그러나 이 방법은 아직 완전하지 않다. 예를 들어 살아 있는 생쥐 몸통 전체를 투명하게 만들거나 인간 복부의 내부를 즉시 볼 수 있게 해주지는 못한다. 황색 5호는 조직에 제한적으로 침투할 수 있기 때문에, 표적 전달력과 최적 농도에 대한 정확한 이해 없이는 인간의 살과 같은 덜 투과적인 피부를 통해 내부의 이미지를 얻는 데 유용하지 않을 수 있다. 또한 색소가 광자 산란을 줄이지만 완전히 제거하지는 못한다. 사용되는 조직이 두꺼울수록 이미지는 더 어둡고 선명도가 떨어진다. 게다가 초기 독성 평가는 긍정적이지만, 황색 5호 색소가 장기적으로도 무해하다고 확신할 수 없다. 이는 추가 연구를 통해 풀어야할 과제다. 이에 홍 교수는 추가적인 안정성 연구가 필요하다고 강조하며 "인체 피부에 이를 시도하는 것은 권장하지 않는다. 특히 국소적으로 적용될 때 색소 분자의 인체 독성은 완전히 평가되지 않았다"고 강조했다. 향후 추가 연구를 통해 황색 5호가 인체에 국소적으로 안전하게 사용될 수 있다면 피부암 조기 발견, 혈관을 찾기 어려운 사람들의 혈액 채취 용이성, 레이저 문신 제거 속도 향상, 광열 암 치료 효과 증대 등 다양한 분야에서 활용될 것으로 전망된다.
-
- IT/바이오
-
[신소재 신기술(106)] 스탠퍼드대, 식용 색소로 투명 쥐 만드는 기술 개발 성공
-
-
[먹을까? 말까(57)] 술을 마시면 정말 솔직해질까?
- 우리 말 중에 '취중진담(醉中眞談)'이라는 속담이 있다. 술에 취한 상태에서 자신의 진실된 마음을 말한다는 뜻이다. 서양의 오래된 라틴어 속담에도 '와인 속에 진실이 있다(veritas in vino)'는 말이 있다. 이처럼 동서양을 막론하고 술은 일종의 진실을 밝히는 약처럼 여겨져 왔다. 그렇다면 술이 정말로 사람들을 더 정직하게 만들까? 이에 대해 전문가들은 술의 영향은 복잡하며 단순하게 '예' 또는 '아니오'로 답할 수 없다고 말했다고 라이브사이언스는 전했다. 술은 사람들이 마음 속에 있는 것을 더 쉽게 말하게 만들지만, 항상 솔직하게 하는 것은 아니다. 술에 취하면 평소에는 하지 않을 말이나 행동을 할 수 있지만 술이 깨면 후회할 수도 있다. 연구 결과에 따르면 술은 사람들을 외향적으로 만들어 솔직하게 말할 가능성을 높인다. 하지만 동시에 감정을 증폭시켜 충동적인 발언이나 후회할 행동으로 이어질 수도 있다. 이는 술이 뇌의 전두엽 피질과 편도체 기능을 억제하기 때문이다. 전두엽 피질은 행동을 조절하고 충동을 통제하는 역할을 하며, 편도체는 두려움과 불안을 유발하여 사회적으로 부적절한 행동을 억제하는 역할을 한다. 술은 이러한 뇌 부위의 기능을 억제해 사람들이 충동적으로 행동하고 평소에는 하지 않을 말을 하게 만들 수 있다. 예를 들어, 2017년 임상심리과학 저널에 실린 한 연구에서는 미국과 영국의 연방 법적 음주운전 단속 기준인 혈중 알코올 농도 0.09%에 도달할 정도로 보드카 레모네이드를 마신 후 참가자들의 성격이 어떻게 변했는지를 조사했다. 외부 관찰자들은 음주 후 참가자들의 성격에서 가장 큰 변화는 훨씬 더 외향적이 되었다는 점이라고 지적했다. 이 연구에서 알코올이 진실의 혈청인지 여부는 조사하지 않았지만, 사회적 환경에서 더 편안함을 느끼는 사람이 솔직해질 가능성이 더 높다는 것은 당연한 일이다. 미국 국립알코올남용 및 알코올 중독 연구소 역학 및 생물통계학 부서의 아론 화이트 박사는 "알코올은 우리가 마음 속에 있는 것을 무엇이든 말할 가능성을 높인다"고 말했다. 알코올은 사람들이 자신의 껍질을 벗는데 도움이 되므로 마음속 생각을 말하는데 도움이 될 수 있다는 것. 하지만 화이트는 "알코올이 감정에 미치는 영향으로 인해 그런 생각을 더 변덕스럽게 만들 수 있다"고 지적했다. 즉, 술은 사람들이 솔직하게 말할 가능성을 높이지만 동시에 감정 기복을 심하게 만들고 충동적인 행동을 유발할 수 있다. 따라서 술이 진실을 밝히는 약이라는 말은 과학적으로 뒷받침되지 않는다.
-
- 생활경제
-
[먹을까? 말까(57)] 술을 마시면 정말 솔직해질까?
-
-
[기후의 역습(50)] 작년 캐나다 산불, 인도 1년치 탄소 배출량과 맞먹어 '충격'
- 작년에 캐나다를 강타한 기록적인 산불은 지구상의 거의 모든 나라에서 배출한 탄소보다 더 많은 탄소를 대기 중에 방출했다고 영국 독립 미디어 인디펜던트가 전했다. 캐나다의 단일 산불이 지구 온난화의 가장 큰 원인을 제공했다는 분석이다. 나사(NASA)의 제트 추진 연구소가 지난주 말 발표한 분석에 따르면, 미국 노스다코타와 거의 같은 면적의 산림을 태운 캐나다 산불은 약 6억 4000만 톤의 이산화탄소를 방출한 것으로 추정됐다. 이 분석 결과는 '네이처' 저널에 발표됐다. 연구에 따르면 캐나다 산불로 배출된 탄소보다 많은 양을 배출한 나라는 중국, 미국, 인도뿐이었다. 3개국의 화석 연료 연소가 다른 국가를 압도하고 있는데, 캐나다 산불이 이에 버금갔다는 얘기다. 전 세계적인 탄소 배출로 인해 지구의 대기 중 온실가스 농도는 2023년에 인류 역사상 가장 높은 수준에 도달했다. 캐나다 산불은 2023년 5월에 발생해 기록적으로 높은 기온과 건조한 기상 조건으로 수개월 동안 꺼지지 않고 퍼지면서 캐나다 인근 전역에 걸쳐 맹위를 떨쳤다. 역대 최대 규모의 산불로 기록되기도 했다. 산불은 캐나다 브리티시 컬럼비아에서 노바스코샤까지 4500만 에이커 이상을 태웠다. 연기는 캐나다 전역으로 퍼져 국경 남쪽까지 도달했으며, 뉴욕을 비롯한 미국 대도시의 하늘을 노랑 또는 주황색으로 물들였다. 지역 주민들은 불길한 대기를 온몸으로 겪어야 했다. 캐나다에서 소방관 8명이 사망하고 수만 명이 대피했다. 나사는 연구에서 위성 관측과 슈퍼컴퓨터를 사용해 화재의 영향을 파악했다. 특히, 2017년부터 지구를 공전하고 있는 유럽우주국(ESA)의 센티넬 5P 위성에 부착된 대류권 관측 장비(TROPOspheric Monitoring Instrument)를 이용해 대기 중의 가스와 미세 입자를 측정하고 매핑할 수 있었다. 한편 기후 위기로 인해 급등하는 기온과 극심한 가뭄으로 인해 발생하는 산불의 빈도와 심각성은 날로 증가할 것으로 예상된다. 캐나다를 포함한 세계 북부 산림에 대한 위협은 심각하다는 지적이다. 산림은 일반적으로 주요 탄소 흡수원 역할을 하며, 일부에서는 특히 배출하는 탄소보다 더 많은 양을 대기 중에서 흡수한다. 그러나 미국 해양대기청(NOAA)은 극심해지는 산불로 탄소 흡수원으로서의 산림의 효과는 갈수록 약해지고 있다고 우려했다.
-
- 포커스온
-
[기후의 역습(50)] 작년 캐나다 산불, 인도 1년치 탄소 배출량과 맞먹어 '충격'
-
-
[먹을까? 말까?(54)] 마누카 꿀, 유방암 세포 성장 84% 억제…천연 항암치료 가능성 제시
- 호주와 뉴질랜드 특산물인 마누카 꿀이 유방암 세포 성장을 억제하는 것으로 나타났다. 미국 캘리포니아 대학교 로스앤젤레스(UCLA) 연구팀의 예비 연구 결과, 마누카 꿀이 유방암 세포 성장을 84% 억제하는 효과를 보였다고 메디컬 익스프레스와 뉴아틀라스 등 다수 외신이 전했다. 특히 마누카 꿀은 에스트로겐 수용체 양성 유방암 세포에 대한 억제 효과가 뛰어났으며, 건강한 세포에는 영향을 미치지 않았다. 이번 연구는 마누카 꿀이 기존 항암 치료의 부작용을 줄이고, 새로운 천연 항암치료제 개발의 가능성을 제시했다는 점에서 의미가 크다. 마누카 꿀은 뉴질랜드와 호주 남동부에서 자생하는 마누카 나무의 꽃에서 채취한 꿀로 항균, 항산화, 치유 효과 등이 있는 것으로 알려져 있다. UCLA 연구팀은 이번 연구를 통해 마누카 꿀이 유방암 예방 및 치료에도 도움이 될 수 있다는 가능성을 확인했다. 연구팀은 실험실에서 에스트로겐 수용체 양성 유방암 세포와 삼중 음성 유방암 세포를 배양하고, 마누카 꿀 또는 탈수 마누카 꿀 분말을 처리했다. 그 결과 에스트로겐 수용체 양성 유방암 세포에서 꿀의 농도에 따라 암세포 증식이 억제되는 것을 관찰했다. 또한 마누카 꿀을 항에스트로겐 치료제인 티옥시펜과 함께 사용했을 때, 암세포 증식 억제 효과가 더욱 강력하게 나타났다. 동물 실험에서도 마누카 꿀은 인간 유방암 세포를 이식한 쥐의 종양 성장을 억제하는 효과를 보였다. 특히 건강한 세포에는 영향을 미치지 않으면서 종양 성장을 84%까지 억제하는 결과를 나타냈다. 이번 연구는 마누카 꿀이 유방암 치료에 새로운 가능성을 제시했다는 점에서 주목할 만하다. 하지만 아직 예비 연구 단계이며, 추가적인 연구를 통해 안전성과 효능을 검증해야 한다. 해당 연구는 학술지 '뉴트리언트(Nutrients)'에 게재됐다.
-
- 생활경제
-
[먹을까? 말까?(54)] 마누카 꿀, 유방암 세포 성장 84% 억제…천연 항암치료 가능성 제시