검색
-
-
[신소재 신기술(62)] '기적의 소재'로 만든 태양광 패널, 에너지 혁명 앞당긴다
- '기적의 소재'로 불리는 페로브스카이트 실리콘 소재로 태양광 패널의 효율을 30% 이상 높이는 신기록을 수립했다. 세계 최대 태양광 패널 제조업체인 중국 롱기(Longi)그린에너지기술(주)의 연구원들은 직렬형 페로브스카이트-실리콘 태양전지를 사용하여 34.6%의 전력 변환 효율을 달성했다고 인디펜던트가 보도했다. 이 새로운 기록은 또한 대부분의 상용 태양광 패널에서 볼 수 있는 표준 실리콘 태양전지의 기록보다 7% 이상 더 효율적이다. 페로브스카이트는 배터리부터 통신, 재생에너지에 이르기까지 모든 분야를 크게 향상시킬 수 있는 잠재력으로 인해 차세대 태양광 소재로 주목받고 있다. 현재의 실리콘 태양전지 패널이 물리적 한계에 도달함에 따라 연구자들은 이제 태양 에너지를 더 잘 활용할 수 있는 차세대 직렬 전지를 찾고 있는 것. 페로브스카이트 실리콘 전지의 이론적 효율 한계는 43%로 표준 실리콘 전지의 한계인 29%를 훨씬 초과한다. 페로브스카이트 태양전지는 용액 공정을 통해 저온에서 제조 가능해 생산 비용을 크게 절감할 수 있다. 또한 짧은 시간 내에 실리콘 태양전지에 근접하는 효율성을 달성했으며, 이론적으로는 더 높은 효율을 달성할 수 있는 잠재력이 있다. 또한 유연하고 가벼운 특성으로 건물 외벽이나 창문, 휴대용 기기 등 다양한 분야에서 활용할 수 있다. 최신 페로브스카이트-실리콘 태양전지 기록은 지난 3년 동안 태양전지 효율성 부문에서 세계 기록을 16번이나 깬 롱기(Longi)의 일련의 혁신에 이은 것이다. 회사 측은 중국 상하이에서 열린 제17회 국제 태양광 발전 및 스마트 에너지 컨퍼런스(SNEC)에서 사우디 에너지 기업인 ACWA 파워(Power)와 협력해 글로벌 에너지를 변화시키기 위한 새로운 '랜드마크' 계약과 함께 이번 신기록을 발표했다. 인디펜던트는 롱기는 현재 이 기술을 상용화하는 과정에 있는 여러 회사 중 하나이지만 신기술에 대해 더 자세한 내용은 공개되지 않았다고 전했다. 롱기는 성명에서 "전자 수송층의 박막 증착 공정 최적화, 고효율 결함 패시베이션 재료 개발 및 사용, 고품질 계면 패시베이션 구조 설계를 통해 신기록을 달성했다"고 밝혔다. 페로브스카이트에 대한 또 다른 업체로 영국의 옥스포드 PV는 독일에 생산 시설을 설립해, 올해 페로브스카이트 기반 태양전지 제품을 첫 고객에게 전달할 수 있기를 기대하고 있다. 한편, 페로브스카이트는 수분과 열, 빛 등 외부 환경에 취약해 장기적인 안정성 확보가 필요하다는 단점이 있다. 또한 대부분의 페로브스카이트 태양전지는 납을 함유하고 있어 환경과 건강 문제를 야기할 수 있다. 게다가 대면적화 기술 개발 및 상용화가 아직 미흡한 단계에 있다. 과학자들은 페로브스카이트의 이러한 문제를 해결하기 위해 관련 연구를 활발히 진행하고 있다.
-
- 포커스온
-
[신소재 신기술(62)] '기적의 소재'로 만든 태양광 패널, 에너지 혁명 앞당긴다
-
-
[우주의 속삭임(18)] 토성 최대 위성 타이탄, 바다 파도로 해안선 침식 가능성 확인
- 토성 궤도를 도는 위성(달) 가운데 가장 큰 타이탄(Titan)은 활동적인 강, 호수 및 바다를 포함하는 태양계의 유일한 행성체이다. 타이탄의 강 시스템은 액체 메탄과 에탄으로 가득 찬 가운데 넓은 호수와 바다로 흘러 들어가며, 일부 호수는 지구의 오대호만큼이나 큰 것으로 추정된다. 타이탄의 넓은 바다와 호수는 지난 2007년 나사(NASA)의 카시니 우주선이 촬영한 이미지를 통해 확인됐다. 그 이후 천문학자들은 달의 신비한 환경에 대한 단서나 증거를 찾기 위해 수집된 이미지를 연구해 왔다. 그런 가운데, MIT 지질학자 연구팀이 타이탄의 해안선에 대한 최신 연구 결과를 발표했다고 PHYS가 전했다. 시뮬레이션을 통해 이루어진 연구는 타이탄의 넓은 바다가 파도에 의해 형성되었을 가능성이 있음을 시사한다. 연구팀은 타이탄 표면의 원격 이미지를 기반으로 파도 활동의 징후를 발견했다. MIT 팀은 먼저 지구에서 호수가 침식되는 방식을 모델링하고, 이 모델링을 카시니의 타이탄의 바다 이미지와 접목, 어떤 형태의 침식으로 인해 해안선이 생성되었는지를 확인했다. 그 결과 파도가 가장 합리적인 답이라는 사실을 발견했다. 물론 연구팀의 결과는 100% 확증은 아니다. 타이탄에 파도가 있다는 사실을 확인하려면 타이탄 표면의 파도 활동을 직접 관찰해야 한다. 그럼에도 불구하고 연구팀은 타이탄 바다의 해안선 침식의 가장 큰 원인은 파도라고 말할 수 있다고 밝혔다. "액체 메탄과 에탄의 파도가 해안에 부딪히고 폭풍이 몰아쳐 해안을 구성하는 물질을 침식한 것으로 추정된다"는 것이다. 이 연구는 '사이언스 어드밴시스'에 발표됐다. 타이탄에 파도가 존재한다는 사실은 카시니가 달 표면에서 액체 덩어리를 발견한 이후 논란이 된 주제였다. 파도의 증거를 찾기 위한 노력도 꾸준히 진행됐다. 일부 과학자들은 바다 표면에서 약간의 거친 면을 보았지만, 그것이 파도인지의 여부는 확인할 수 없었다. 타이탄의 바다에 파도 활동이 일어나는지 여부를 알면, 파도를 일으킬 수 있는 바람의 세기 등 타이탄의 기후에 대한 정보도 얻을 수 있다. 또한 타이탄의 바다가 시간이 지남에 따라 어떻게 진화할지 예측할 수 있다. 타이탄의 바다는 강이 흐르는 계곡이 교차하는 곳에서 액체의 양이 늘어나면서 형성된 것으로 보인다. 연구팀은 △ 해안 침식 없음 △ 파도에 의한 침식 △ 해안 물질을 용해시키는 '용해' 또는 해안의 자체 무게로 인해 일어나는 '균일한 침식' 등 세 가지 시나리오에 초점을 맞췄다. 그리고 시나리오 각각에 대해 시뮬레이션을 실시했다. 그리고 수백 가지의 다양한 해안선 모양에 대해 모델링을 반복하고 비교했다. 연구팀은 시뮬레이션 결과를 지구상의 실제 호수와 비교해 확인했다. 특히 타이탄에서 가장 크고 지도가 가장 잘 그려져 있는 네 개의 바다에 초점을 맞췄다. 카스피해와 유사한 크라켄 마레(Kraken Mare), 슈피리어호보다 다소 큰 리게이아 마레(Ligeia Mare), 빅토리아 호수보다 긴 풍가 마레(Punga Mare), 온타리오 라쿠스(Ontario Lacus) 등이다. 팀은 카시니 탐사선에서 촬영한 레이더 이미지를 사용해 이들 4개 바다의 해안선을 매핑하고 각 바다의 해안선에 모델링을 적용, 어떤 침식 메커니즘이 타이탄의 바다 해안선 모양을 가장 잘 설명하는지 확인했다. 그 결과, 4개의 바다가 모두 파도에 의한 침식 모델에 들어맞는다는 것을 발견했다. 이는 파도가 타이탄의 4개의 바다와 가장 유사한 해안선을 생성한다는 것을 의미한다. 연구팀은 현재 해안에서 반복적으로 부서질 수 있는 파도를 일으키려면 타이탄의 바람이 얼마나 강해야 하는지를 규명하는 데 주력하고 있다. 또한 타이탄의 해안선 모양을 통해 바람이 불어오는 방향을 파악하고 있다.
-
- IT/바이오
-
[우주의 속삭임(18)] 토성 최대 위성 타이탄, 바다 파도로 해안선 침식 가능성 확인
-
-
[퓨처 Eyes(40)] AI PC, 혁신인가 과장인가?…차세대 컴퓨팅의 가능성과 한계
- 생성형 인공지능(AI) 기술의 급속한 발전에 따라 차세대 컴퓨터로 불리는 AI PC에 업계의 관심이 쏠린다. 지난 2022년 메타버스에 이어 지난해에는 양자 컴퓨팅이 큰 주목을 받았다면, 올해는 AI가 전 산업 생태계를 휩쓸고 있다. 최근 AI는 기술 분야의 핵심 화두로 떠올랐으며, PC 업계는 이를 활용한 제품 개발에 열을 올리고 있다. 그렇다면 AI PC는 무엇일까? AI PC는 인공지능(AI) 작업에 특화된 개인용 컴퓨터다. 기존 PC와 마찬가지로 CPU와 GPU를 갖추고 있지만, AI 작업 가속화를 위한 NPU(신경망 처리 장치)가 추가로 탑재되어 있다. 미국 기술 전문매체 톰스 하드웨어에 따르면 AI PC에 대한 명확한 정의는 아직 없다. 마이크로소프트(MS)는 최신 NPU, CPU, GPU를 포함하고 마이크로소프트 코파일럿(Microsoft Copilot) 및 코파일럿 키를 탑재한 PC를 AI PC로 정의한다. 그러나 이 정의는 AMD와 인텔의 NPU와 코파일럿을 탑재했지만 코파일럿 키가 없는 일부 PC를 제외한다. 또한, 코파일럿 키는 단순히 코파일럿 실행 단축키 역할을 하므로 필수적인 요소는 아니라고 톰스 하드웨어는 전한다. 인텔과 AMD는 AI PC를 CPU, GPU, NPU를 통해 AI 작업을 최적으로 실행하도록 설계된 PC로 정의한다. 현재 대부분의 노트북 제조사는 인텔, AMD 또는 퀄컴 프로세서를 탑재한 AI PC를 생산한다. 그렇다면 NPU란 무엇일까? NPU는 '신경망 처리 장치(Neural Processing Unit)'의 약자로, AI 작업 부하를 위해 특별히 설계된 병렬 컴퓨팅 전문 프로세서다. NPU는 신경망, 딥러닝, 머신러닝 등 AI 연산에 특화된 프로세서로, AI 작업을 더욱 빠르고 효율적으로 처리할 수 있게 해준다. 선성전자는 인체가 신경계를 통해 자극을 감지하고 신호를 전달하며 적절한 판단을 내리고 자극에 반응하는 것처럼 NPU는 인간의 두뇌와 유사한 방식으로 작동한다고 설명했다. 즉 NPU는 인간의 뇌처럼 서로 동시에 신호를 주고 받는 수많은 신경셰포와 시냅스로 구성돼 있으며, AI가 탑재돼 스스로 학습하고 의사결정을 할 수 있다는 점에서 인공지능 칩이라고 할수 있다고 덧붙였다. 과학 전문 매체 안드로이드 오소리티에 따르면 NPU는 독립적으로 존재할 수도 있지만, 더욱 친숙한 CPU 및 GPU 구성 요소와 함께 SoC(시스템 온 칩)에 직접 통합되는 경우가 점점 더 늘어나고 있다. NPU는 다양한 형태와 크기로 제공되며 칩 설계자에 따라 조금씩 다른 명칭으로 불린다. 이미 스마트폰 곳곳에서 다양한 NPU 모델을 찾아볼 수 있다. 퀄컴은 스냅드래곤 프로세서에 헥사곤을, 구글은 클라우드와 모바일 텐서 칩에 TPU를, 삼성은 엑시노스에 자체 NPU를 탑재했다. NPU는 이제 노트북과 PC 분야에서도 활용된다. 예를 들어, 최신 애플 M4에는 뉴럴 엔진이, 스냅드래곤 X 엘리트 플랫폼에는 퀄컴의 헥사곤 기능이 탑재되어 있으며, AMD와 인텔은 최신 칩셋에 NPU를 통합하기 시작했다. 완전히 동일하지는 않지만, 엔비디아의 GPU는 인상적인 숫자 처리 능력으로 그 경계를 모호하게 한다. NPU는 점점 더 많은 곳에 사용되고 있다. AI PC가 정말 필요할까? 현재로서는 AI 기능은 아직 초기 단계이며, 많은 인기 있는 챗봇과 마이크로소프트 코파일럿의 기능은 클라우드 기반으로 제공된다. 일부 노트북 제조사는 독점적인 AI 기능을 제공하지만, 대부분의 AI 기능은 아직 개발 중이며 실제 활용도는 불분명하다. NPU는 비디오 재생과 같은 일반적인 작업을 훨씬 낮은 전력으로 수행하여 배터리 수명을 절약할 수 있다는 장점이 있다. 일부 웹 브라우저는 GPU를 사용하여 비디오의 AI 업스케일링을 수행하지만, 곧 NPU로 전환될 예정이다. NPU는 오디오, 비디오 또는 사진 편집과 같은 작업을 수행할 때 CPU 또는 GPU보다 훨씬 낮은 전력으로 백그라운드 노이즈 제거와 같은 작업을 처리할 수 있다. 결론적으로, AI PC의 핵심 기능은 배터리 수명 연장이 될 수 있다. NPU 사용으로 노트북 배터리 수명이 크게 향상될 수 있다. 그러나 AI 기능은 아직 초기 단계이므로, 현재 PC가 제 기능을 하고 보안 업데이트를 받고 있다면 더 강력한 기술과 다양한 AI 도구가 출시될 때까지 기다리는 것이 좋다고 톰스 하드웨어는 전한다. AI PC는 더 안전할까? AI PC는 클라우드 대신 로컬에서 AI 작업을 처리하므로 보안 측면에서 장점을 제공할 수 있다. 그러나 AI 기능 자체의 보안도 중요하다. 최근 마이크로소프트는 개인 정보 보호 문제로 인해 새로운 AI 기능인 리콜(Recall)을 코파일럿+ 기능에서 제외했다. 기업에서 중요한 데이터를 처리하는 경우 로컬에서 AI 작업을 처리하는 것이 더 안전할 수 있다. 그러나 현재 시장에 출시된 대부분의 AI 기능은 중요한 비즈니스 도구는 아니다. 현재 'AI PC'라는 용어는 아직 모호한 측면이 있다. CPU 제조업체와 마이크로소프트는 강력한 NPU를 탑재한 새로운 컴퓨터(현재는 노트북만 해당)를 판매하기 위해 이 용어를 사용한다. 사람들이 실제로 사용하는 대부분의 생성형 AI 기능(챗봇, 이미지 생성기)은 클라우드에서 무료로 사용할 수 있으므로 로컬 형태에서는 필수적인 기능은 아니다. 그러나 NPU는 비디오 재생과 같은 일반적인 작업을 훨씬 낮은 전력으로 수행하여 배터리 수명을 절약할 수 있다는 장점이 있다. 일부 웹 브라우저는 현재 GPU를 사용하여 비디오의 AI 업스케일링을 수행하지만, 곧 NPU로 전환될 예정이다. NPU는 오디오, 비디오 또는 사진 편집과 같은 작업을 수행할 때 CPU 또는 GPU보다 훨씬 낮은 전력으로 백그라운드 노이즈 제거와 같은 작업을 처리할 수 있다. AI PC는 분명히 미래 컴퓨팅의 가능성을 보여주지만, 아직 극복해야 할 과제도 많다. 소비자들은 AI PC 구매 시 이러한 단점들을 충분히 고려하고, 자신의 필요와 예산에 맞는 제품을 선택해야 한다.
-
- 포커스온
-
[퓨처 Eyes(40)] AI PC, 혁신인가 과장인가?…차세대 컴퓨팅의 가능성과 한계
-
-
테슬라, 중국 상하이 FSD 테스트 승인받아
- 미국 전기차업체 테슬라가 중국 상하이(上海)에서 자율운전지원시스템인 FSD(Full Self-Driving)를 테스트할 수 있는 승인을 받았다. 블룸버그 통신은 17일(현지시간) 복수의 소식통을 인용해 테슬라가 중국에서 자율운전 지원시스템 서비스를 제공하는 첫 걸음을 밟는 실증실험을 상하이에서 실시하는 FSD 테스트 승인을 받았다고 보도했다고 연합뉴스가 18일 전했다. 또한 소식통들은 저장성 항저우(杭州)시에도 승인이 날 수 있다고 전했다. 익명을 요구한 소식통은 초기 테스트는 테슬라 직원이 실시할 것이라고 말했다. 중국에서는 자율운전 지원시스템이 보급되고 있으며 샤오펑(小鵬)과 샤오미(小米) 등 중국 현지업체들이 관련상품을 판매하고 있다. 테슬라는 중국에서 6만4000 위안(약 1210만원) 일시불로 FSD의 주문을 받고 있다. 하지만 중국에서는 FSD를 구동할 수 없기 때문에 FSD 옵션을 구입하고 있는 테슬라차 소유자는 매우 소수에 그치고 있다. 이에 앞서 지난 4월 28일 테슬라는 해외 기업으로는 처음으로 중국 당국으로부터 데이터 안전 검사에서 '적합' 판정을 받으며 중국 내 FSD 기능 도입과 관련한 주요한 장애물을 넘어섰다. 테슬라는 FSD 소프트웨어를 4년 전에 출시했지만 중국에선 당국의 데이터 규제 때문에 내놓지 못한 상태다. 그런데 이와 관련해 중국 당국이 요구하는 데이터 안전 및 개인 정보 보호와 관련한 심사를 통과, 데이터 보안 문제를 둘러싼 우려도 완화할 수 있게 됐다. 이어 다음날인 29일에는 중국 포털업체 바이두와 완전자율주행 기능 적용을 위한 지도 제작 및 내비게이션 부문에서 협력하기로 합의하며 FSD 기능의 중국 도입과 관련한 2개 주요 장애물을 모두 뛰어넘었다. 중국 관련 규정에 따르면 모든 자율주행 시스템은 일반도로 운행에 앞서 지도 제작 관련 자격을 얻어야 하고, 외국기업의 경우 허가받은 중국 기업과 파트너십을 맺어야 한다. 바이두는 중국 당국으로부터 지도 제작 자격을 얻은 12개 회사 중 하나다. FSD 서비스가 중국에서 출시되면 테슬라는 고전하는 중국 시장에서 매출을 확대할 기회가 생길 뿐 아니라 중국에서 수집한 방대한 주행 데이터로 완전 자율주행 기술을 향한 FSD 개발에 진전을 이룰 수 있을 것으로 기대된다. 이 같은 소식에 17일 뉴욕증시에서 테슬라의 주가는 5%대로 급상승했다. 전기차 시장의 수요 둔화, 세계 최대 전기차 시장인 중국에서의 매출 부진 속 테슬라의 주가는 지난 1년 32%가량 하락했다. 시장에서는 중국에서의 FSD 출시가 본격화되며 테슬라가 주가 반등의 계기를 마련할 수 있을지 주목하고 있다.
-
- IT/바이오
-
테슬라, 중국 상하이 FSD 테스트 승인받아
-
-
[신소재 신기술(60)] 자가 치유 유리, 물과 펩타이드 혼합으로 새로운 가능성 제시
- 물과 펩타이드를 조합해 자가 조립 뿐만 아니라 자가 치유되는 유리가 개발돼 관련 업계의 이목을 집중시키고 있다. 이스라엘 텔아비브 대학교 및 네게브 벤구리온 대학교의 재료과학자 팀은 미국 캘리포니아 공과 대학 소속 연구팀과 협력해 특정 펩타이드와 물을 혼합하면 자가 조립 및 자가 치유가 가능한 유리가 생성되는 것을 발견했다고 PHYS가 전했다. '자가 치유 유리'는 외부 충격이나 손상으로 균열이나 파손됐을 경우, 특별한 조치를 취하지 않고도 스스로 원래 상태로 복구되는 능력을 가진 유리를 말한다. 마치 살아있는 생명체가 스스로 상처를 치유하는 것과 비슷한 개념이다. 자가 치유 유리는 특수한 화학 물질이나 구조를 활용해 개발된다. 예를 들면, 특정 물질이 균열 부위로 이동해 틈을 메우거나, 미세한 캡슐에 담긴 치유 물질이 파손시 방출돼 손상 부위를 복구하는 방식 등이 있다. 연구팀은 다른 단백질의 특성을 조사하던 중 우연히 자가 치유 유리를 발견한 것으로 알려졌다. 이번 연구 결과는 '네이처 커뮤니케이션스(Nature Communications)'에 게재됐다. 이탈리아 트리에스테 대학교의 실비아 마르케산(Silvia Marchesan)은 같은 저널에서 해당 유리의 특성과 잠재적 응용 분야를 설명하는 기고글을 실었다. 연구팀은 짧은 펩타이드를 복잡한 거대 분자의 기존 구성 요소와의 대체 가능성을 조사하던 중, 두 개의 페닐알라닌 잔기로 구성된 디펩타이드 분자와 물을 혼합했을 때, 상온에서 물이 증발하면서 스스로 조립(자가 조립)되는 초분자 비정질 유리가 생성되는 것을 발견했다. 이 발견은 과거 펩타이드 자가 조립 연구에서 주로 결정질 구조의 물질이 생성되었던 것과는 달리, 투명하고 유리와 유사한 특성을 보였다는 점에서 주목할 만하다. 연구팀은 이 새로운 유리의 특성을 분석하여 높은 강성과 더불어 자가 치유 및 접착력을 가지고 있음을 확인했다. 또한, 기존 유리와 동일한 수준의 투명도를 나타냈으며, 유리창이나 친수성 표면 코팅, 다양한 배율의 광학 렌즈 제작 등 정밀한 용도에도 활용될 수 있음을 밝혀냈다. 연구팀은 추가적인 연구를 통해 이 유리의 다양한 응용 분야를 탐색할 수 있을 것으로 기대했다. 특히 기존 상용 유리 제조 과정에서 요구되는 많은 에너지가 필요하지 않다는 점을 강조했다. 한편, 지난해 여름에는 자가 치유되는 금속이 발견됐다. 진공 환경에서 백금 나노 결정이 균열을 자가 복구하는 과정이 실험실에서 처음으로 관찰된 것. 미국 텍사스 A&M 대학교 마이클 뎀코비츠 박사가 2013년 에측했던 금속의 자가 치유 현상이 10년만에 발견되는 영화와 같은 일이 실제로 일어난 갓이다. 미국 샌디아 국립연구소(SNL)의 연구팀은 지난해 여름 나노 결정의 균열 실험 중 금속의 자가 치유 현상을 발견했으며, 연구 결과는 학술지 '네이처(Nature)'에 게재됐다. 금속의 자가 복구는 항공기 사고나 교각 붕괴 등으로 이어질 수 있는 '금속의 피로' 현상을 막을 수 있다.
-
- 포커스온
-
[신소재 신기술(60)] 자가 치유 유리, 물과 펩타이드 혼합으로 새로운 가능성 제시
-
-
[기후의 역습(14)] 태평양 연안 회색 고래, 20년 새 13% 작아져
- 태평양 북서부 연안의 얕은 바다에서 여름을 보내는 회색 고래의 몸 길이가 2000년 경부터 크게 줄었다는 사실이 오리건 주립대(OSU)의 새로운 연구에서 밝혀졌다. 오리건 주립대 홈페이지에 게재된 연구결과에 따르면, 회색 고래의 크기가 작아지면 고래의 건강과 번식에 중대한 영향을 미칠 수 있으며, 고래들이 공존하는 먹이사슬에 경종을 울린다고 연구팀은 지적했다. 연구팀을 이끈 OSU 해양 포유류 연구소의 K.C 비를리히 교수는 "이번 연구 결과는 회색 고래의 개체수가 감소하기 시작했거나 건강하지 않다는 조기 경고일 수 있다"고 말했다. "고래는 해양 생태계의 파수꾼으로 간주되는데, 고래 개체수가 유지되지 않으면 환경 자체에 위협이 될 수 있다"는 것이다. 이 연구는 '글로벌 생물학 변화(Global Change Biology)' 학술지에 발표됐다. 이 연구는 약 1만 4500마리의 동부 북태평양(ENP) 개체군 내 약 200마리의 하위 그룹인 PCFG(태평양 연안 섭식 그룹)를 조사한 결과다. 이 하위 그룹은 오리건 해안에 가까이 머물며 회색 고래 개체군이 1년의 대부분을 보내는 북극해보다 더 얕고 따뜻한 바다에서 먹이를 찾는다. OSU의 최근 연구는 이 하위 그룹에 속한 고래들이 ENP 고래들보다 더 작고 전반적으로 더 나쁜 신체 상태에 있다는 것을 보여주었다. 이들 고래의 크기가 최근 수십 년 동안 점점 작아지고 있는 것으로 나타난 것이다. 회색 고래 길이 13% 짧아져 해양 포유류 연구소는 2016년부터 회색 고래의 크기를 측정하기 위해 고래 위로 드론을 띄워 관측하는 등 회색 고래 하위 그룹을 연구해 왔다. 연구팀은 나이가 알려졌거나 추정되는 고래 130마리의 2016~2022년 이미지를 사용해 분석한 결과, 2020년에 태어난 성숙한 회색 고래의 몸 길이는 2000년 이전에 태어난 고래의 길이보다 1.65m 짧은 것으로 추정됐다. 완전히 성숙했을 때 고래의 길이가 11.58~12.5m로, 13% 이상이 줄어든 것이다. 연구팀원인 스코틀랜드 세인트앤드루스 대학의 엔리코 피로타 연구원은 "동물의 크기는 매우 중요하다. 그들의 행동, 생리, 생활사에 영향을 미치며, 그들이 속한 생태계에 연쇄적인 변화를 일으킨다"고 지적했다. 피로타는 ”젖을 뗄 시기의 작은 고래의 생존율에 영향을 미치며, 독립에 따르는 불확실성에 대처하지 못할 수도 있다"고 강조했다. 성체 회색 고래의 가장 큰 본능은 번식이다. 그런데 이 연구는 "PCFG 회색 고래가 몸체를 키우고 건강을 유지하기 위해 얼마나 효과적으로 에너지를 저장하고 활용할 수 있는지에 대한 의문이 있다"고 지적했다. 회색 고래가 개체수를 유지할 수 있는 충분한 에너지가 유지되기 어려울 수 있다는 것이다. 기후 변화 등 인간 활동에 기인 회색 고래의 크기가 줄어드는 것은 인간 활동으로 인한 것일 수도 있다. 선박 운전과 낚시 도구 등의 사용으로 PCFG 고래에 피해가 생기고, 그 결과 몸집이 작아지며, 에너지 비축량의 감소로 건강이 악화될 수 있다는 우려다. 특히 고래가 부상을 당하면 회복력이 약해질 수 있다. 연구는 또한 바다의 용승과 이완 주기를 추적함으로써 태평양 연안에서 회색 고래의 먹이 가용성을 변화시킬 수 있는 해양 환경의 패턴도 조사했다. 용승은 깊은 바다에서 표면으로 물을 밀어 올리는 현상이며 이완은 그 반대다. 용승은 영양분을 더 깊은 지역에서 얕은 지역으로 쓸어버리며, 이완 기간은 빛이 플랑크톤과 유기체가 얕은 지역에 남아 성장하도록 한다. 바다의 용승과 이완 사이의 균형은 회색 고래가 생존할 수 있는 생태계를 유지하는 핵심 중의 하나다. 그런데 연구 데이터는 용승과 이완 사이의 균형에 변화가 생겼으며, 이것이 고래 크기의 감소에도 영향을 미쳤음을 보여준다. 용승과 이완의 균형이 어긋난 것은 기후 변화 때문이다. 기후 변화는 바람 패턴과 수온의 변화를 일으켜 북동 태평양의 해양에 큰 영향을 미쳤다. 그리고 이러한 변화가 복합적으로 작용해 용승과 이완의 역학을 변화시켰다. 연구팀은 그간 축적된 데이터 세트를 활용, 현재 회색 고래 크기 감소와 환경적 인과관계를 추적하고 있다.
-
- 포커스온
-
[기후의 역습(14)] 태평양 연안 회색 고래, 20년 새 13% 작아져
-
-
잡초 제거 로봇, 탁월한 자동 제초 기능 발휘
- 핀란드 VVT 기술 연구센터가 개발한 잡초 제거 로봇이 탁월한 성능을 발휘한 것으로 밝혀졌다고 전문 매체 테크익스플로러가 전했다. 로봇 시스템은 이미 전 세계적으로 다양한 산업에 배포돼 여러 작업을 수행함으로써 인간을 지원하고 있다. 로봇 투입이 특히 유리할 수 있는 분야 중 하나는 농업이다. 농업에서는 사람이 수행하기 어렵거나 까다로운 작업을 더 빠르고 효율적으로 완료할 수 있다. 잡초 제거는 로봇이 처리할 수 있는 많은 농업 작업 중에서도 대표적인 일로 꼽힌다. 잡초는 가축과 농작물 모두에 심각한 피해를 줄 수 있다. 실제로, 빠르게 자라는 침입성 잡초는 작물 수확량을 감소시키고 말, 양, 소를 포함한 가축에게 독성 중독을 일으킬 수도 있다. VVT 기술 연구센터의 연구진은 최근 일부 가축에 유독할 수 있는 화합물 옥살산염이 매우 풍부한 소리쟁이속 개대황(Rumex longifolius 또는 longleaf Dock)으로 알려진 침입성 잡초를 자동으로 제거할 수 있는 새로운 로봇을 개발했다. 이 소식은 사전 출판 사이트 arXiv에 소개됐다. 연구진인 야르코 코타니에미, 니코 칸세코스키, 타피오 헤이킬래는 게재된 논문에서 "자동 제초 기술이 최근 많은 주목을 받고 있다"라고 썼다. 이들은 "경량 이동식 농지 로봇 기술을 활용해 개방형 목초지에서 자동 및 기계식으로 침입성 잡초 제초 작업을 목표로 하고 있다"면서 "논문은 GNSS(인공위성을 이용해 지상 물건의 위치, 고도, 속도 정보를 제공하는 시스템) 내비게이션이 적용된 이동식 제초 로봇, 잡초 탐지를 위한 3D 컴퓨터 비전, 기계식 제초 도구가 있는 로봇 팔에 대해 설명하고 있다"고 기술했다. 연구진이 개발한 잡초 제거 로봇은 침입성 잡초가 아직 어릴 때 기계적으로 제거하도록 설계됐다. 이러한 침입성 잡초를 어릴 때 뿌리째 제거하는 것은 제초제를 사용하는 것보다 매우 바람직한 일이다. 제초제 사용을 피하면 작물을 소비하는 인간의 건강과 환경에 대한 피해를 크게 줄일 수 있기 때문이다. 종전 논문에서 연구진은 침입성 잡초를 탐지하고 위치를 파악하기 위해 컴퓨터 비전 기술의 접근 방식을 도입했다. 이번 논문은 컴퓨터 비전 모델로 식별된 잡초를 제거할 수 있는 로봇 플랫폼 개발로 발전한 것이다. 로봇의 잡초 제거 임무를 위해 연구원들은 다층 제어 접근 방식을 활용했다. 이 접근법은 로봇이 △ 잡초를 탐색하고 △ 잡초를 감지하며 △ 궁극적으로는 잡초를 제거하는 세 가지 작업 세트로 나누어진다. 연구진은 논문에서 "로봇의 임무는 플랫폼 이동, 잡초 감지, 잡초 지도에 나열된 모든 잡초에 대한 제초 작업 수행 등으로 구성된다"고 밝히고 "각 작업은 로봇 팔 동작, 이미지 획득, 내비게이션 동작으로 구성된다"고 밝혔다.
-
- IT/바이오
-
잡초 제거 로봇, 탁월한 자동 제초 기능 발휘
-
-
[신소재 신기술(59)] 질화갈륨-마그네슘 초격자, 새로운 합성법으로 탄생
- 과학자들이 질화갈륨(GaN)과 금속 마그네슘(Mg)을 가열해서 초격자가 형성되는 것을 발견했다. 일본 나고야 대학 연구팀은 질화갈륨과 마그네숨 간의 열 반응을 통해 톡특한 조격자 구조가 형성되는 것을 실험 과정 중에 우연히 발견했다고 PHYS가 보도했다. 이는 벌크 반도체에 2차원 금속층이 삽입되는 현상이 최초로 확인된 사례이다. 초격자는 인공적으로 만들어진 주기적인 구조를 가진 물질로, 고성능 트랜지스터, 레이저 다이오드, 광검출기 등 다양한 분야에 활용된다. 연구팀은 최첨단 분석 기술을 통해 물질을 정밀하게 관찰해 반도체 도핑 및 탄성 변형 공학에 대한 새로운 통찰력을 얻었으며, 연구 결과는 학술지 '네이처(Nature)'에 게재됐다. 질화갈륨(GaN)은 높은 전력 밀도와 빠른 작동 주파수를 요구하는 분야에서 기존 실리콘 반도체를 대체할 것으로 기대되는 광대역 갭 반도체 물질이다. GaN의 이러한 특징은 LED레이저 다이오드, 전력 전자 장치(전기 자동차 및 고속 충전기의 핵심 부품 포함) 등 다양한 분야에서 활용 가치가 높다. GaN 기반 장치의 성능 향상은 에너지 절약 사회 실현과 탄소 중립 미래를 실현하는 데 기여할 수 있다. 반도체에는 p형 및 n형이라는 두 가지 필수적이고 상호 보완적인 전기 전도 유형이 존재한다. p형 반도체는 주로 양전하를 운반하는 자유 캐리어인 정공을 특징으로 하며, n형 반도체는 자유 전자를 통해 전기를 전도한다. 반도체는 도핑이라는 과정을 통해 p형 또는 n형 전도성을 획득한다. 도핑은 순수 반도체 물질에 특정 불순물(도펀트)을 의도적으로 도입하여 전기적 및 광학적 특성을 크게 변화시키는 것을 의미한다. GaN 반도체 분야에서 p형 전도성을 생성하는 것으로 알려진 유일한 원소는 Mg이다. 그러나 Mg 도핑의 성공 이후 35년이나 지났음에도 불구하고, GaN에서 Mg 도핑의 전체 메커니즘, 특히 Mg의 용해도 한계 및 분리 거동은 여전히 명확하지 않다. 이러한 불확실성은 광전자 및 전자 분야에서의 최적화를 제한한다. 이 연구의 제1 저자인 지아 왕과 그의 동료들은 p형 GaN의 전도도를 개선하기 위해 GaN 웨이퍼에 증착된 금속 Mg 박막을 패턴화하고 고온에서 가열하는 어닐링이라는 기존 공정을 수행하는 실험을 진행했다. '어닐링(Annealing)'은 금속이나 유리 등의 재료를 가열한 후 천천히 식혀 내부 응집력을 제거하고 재료의 성질을 변화시키는 열처리 과정을 말한다. 금속을 가열하고 천천히 식히면 재료의 결정 구조를 변화시켜 강도, 경도, 내식성 등의 특징을 개선할 수 있다. 왕 연구원은 "GaN은 이온 결합과 공유 결합이 혼합된 광대역 갭 반도체이고 Mg는 금속 결합을 특징으로 하는 금속이지만, 이 두 이질적인 물질은 동일한 결정 구조를 가지고 있으며 육각형 GaN과 육각형 Mg의 격자 차이가 무시할 정도로 적다는 것은 놀랍도록 자연스러운 우연"이라고 말했다. 이어 "우리는 GaN과 Mg사이의 완벽한 격자 일치가 구조를 만드는 데 필요한 에너지를 크게 줄여 이러한 초격자의 자발적인 형성에 중요한 역할을 한다고 생각한다"라고 설명했다. 연구팀은 최첨단 전자 현미경 이미징을 사용해 GaN 및 Mg 층이 번갈아 나타나는 초격자의 자발적인 형성을 관찰했다. GaN과 Mg는 물리적 특성이 크게 다른 물질이므로 이처럼 초격자가 자발적으로 형성된 것은 매우 특이한 현상이다. 연구팀은 이 독특한 삽입 거동을 '틈새 삽입(interstitial intercalation)'이라고 명명하고, 이것이 모재에 압축 변형을 유발한다는 것을 밝혀냈다. 특히 Mg 층이 삽입된 GaN은 20GPa 이상의 높은 응력을 견뎌냈다. 이는 대기압의 20만배에 해당하며, 박막 물질에서 기록된 가장 높은 압축 변형이다. 이는 실리콘 필름에서 일반적으로 발견되는 압축 응력(0.1~2GPa)보다 훨씬 크다. 전자 박막은 이러한 변형으로 인해 전자 및 자기 특성에 상당한 변화를 겪을 수 있다. 연구팀은 변형된 방향을 따라 정공 수송을 통한 GaN의 전기 전도도가 크게 향상되었음을 발견했다. 한편, 이 연구는 'GaN 기술의 요람'으로 알려진 나고야 대학에서 이루어졌다는 데 의미가 있다. 이번 연구의 교신 저자인 아마노 히로시와 나고야 대학의 아카사키 이사무는 1980년대 후반에 Mg가 도핑된 GaN을 사용해 최초의 청색 LED를 개발했다. 이들의 공헌은 2014년 노벨 물리학상 수상으로 이어졌다. 이번 연구에서는 2차원 Mg 도핑의 새로운 메커니즘을 밝혀냄으로써 III-질화물 반도체 연구 분야의 잠재적으로 새로운 길을 열 것으로 기대된다. 왕 연구원은 "마그네슘이 삽입된 GaN 초격자 구조의 발견과 2D-Mg 도핑의 새로운 메커니즘 규명은 질화 3족 반도체 연구 분야의 선구적인 업적을 기릴 수 있는 어렵게 얻은 기회"라고 말했다. 노벨상 수상 후 10년 만에 Mg 도핑의 기술을 발전시킨 왕 연구원은 "이 시기적절한 발견이 이 분야의 새로운 길을 열고 더 많은 기초 연구에 영감을 줄 수 있는 '자연의 진정한 선물'"이라고 밝혔다. 이 연구에는 나고야 대학에서 지아 왕, 카이 웬타오, 순 루, 에미 카노, 비랩 사르카, 와타나베 히로타카, 이카라시 노부유키, 혼다 요시오, 아마노 히로시 등이 참여했다. 외에도 메이지 대학교의 연구진과 오사카 대학교의 나카지마 마코토 교수가 이끄는 광학 그룹이 이 연구의 다른 공저자로 참여했다.
-
- 포커스온
-
[신소재 신기술(59)] 질화갈륨-마그네슘 초격자, 새로운 합성법으로 탄생
-
-
[신소재 신기술(58)] 차세대 나트륨-황산 배터리, 20% 비용 절감 및 성능 향상 달성
- 세계적으로 널리 활용되는 비-리튬 전기화학 에너지 저장 기술의 하나인 나트륨-황(NSA) 배터리가 한층 업그레이드된 모델이 출시됐다. 일본 산업용 세라믹 기업인 NGK와 독일 화학 회사인 BASF 자회사 BASF 고정식 에너지 스토리지(BASF Stationary Energy Storage)는 협력을 통해 기존 NAS 배터리 대비 총비용을 20% 절감하고 성능을 향상시킨 NAS 모델 L24를 선보였다고 에너지스토리지가 12일(현지시간) 보도했다. NAS 모델 L24는 연간 1% 미만의 셀 성능 저하율과 향상된 열 관리 시스템을 통해 장시간 안정적인 방전이 가능하며, 설치 공간 및 유지 관리 비용 절감 효과를 제공한다. 현재까지 전 세계적으로 약 720MW/5000MWh의 NAS 배터리 시스템이 구축됐다. 이는 일반 가정에서 사용되는 전력량(kW)의 7200억 배에 해당하는 대규모 전력량이다. MW(메가와트)sms kW(킬로와트)보다 1000배 더 큰 단위이다. kW는 일반 가정에서 사용하는 전력량을 나타내는 단위로 표시된다. 반면 MW는 대규모 시설이나 산업체에서 사용하는 전력량을 나타내는 데 사용된다. 최근에는 독일, 불가리아, 호주, 일본 등 다양한 국가에서 NAS 모델 L24 주문 및 프로젝트 계약이 체결됐다. 특히 6시간 이상의 저장 용량이 요구되는 중장기 에너지 저장(LDES) 분야에서 NAS 배터리는 대용량 전력 저장 솔루션으로 주목받고 있다. NAS 배터리는 고유한 세라믹 전해질을 사용하여 300℃의 고온에서 작동한다. 낮은 저하율은 NGK 제품의 오랜 강점 중 하나다. 이번에 출시된 NAS 모델 L24는 더욱 개선된 저하율을 자랑하며, 관련 에너지 저장 산업 안전 기준 인증을 획득했다. NGK와 BASF는 2019년부터 NAS 기술 개발 및 판매를 위한 파트너십을 이어오고 있으며, 이번 신제품 출시는 양사의 긴밀한 협력의 결과다. NGK 에너지 저장 부문 부사장 겸 총괄 관리자인 다케다 류고는 "연간 1% 미만의 낮은 저하율은 에너지 저장 산업에서 주목할 만한 성과"라고 강조했다. BASF Stationary Energy Storage의 프랑크 프레히틀 전무 이사는 "NAS 모델 L24를 통해 고객들은 초기 투자 비용 절감뿐만 아니라 장기적으로 약 20%의 프로젝트 비용 절감 효과를 누릴 수 있을 것"이라고 밝혔다.
-
- 포커스온
-
[신소재 신기술(58)] 차세대 나트륨-황산 배터리, 20% 비용 절감 및 성능 향상 달성
-
-
한국 대기업 10곳 중 9곳 AI 쓴다⋯2027년 AI 지출만 5.6조원
- 한국 대기업 대부분이 인공지능(AI)을 활용하고 있다는 조사 결과가 나왔다. 제조업으로 성장한 대기업이 AI 연구에 적극 나서면서 한국의 AI 성숙도는 아시아·태평양 지역에서 평균 이상으로 나타났다. 12일 업계에 따르면 인텔은 최근 '2024년 아시아·태평양 지역의 AI 성숙도 연구' 보고서를 통해 아태 지역의 AI 산업 전반을 분석했다. 한국의 경우 호주, 일본과 함께 3단계 'AI 혁신가'로 분류됐다. 잘 구축된 기술 인프라와 데이터 관리 전략을 통해 AI 이니셔티브를 계획하고 관리하고 있다는 분석이다. 우리보다 단계가 높은 나라는 싱가포르(4단계·AI 리더) 1곳에 그쳤다. 한국의 전체 AI 지출은 지난해부터 연평균 21.6% 증가해 2027년 41억 달러(약 5조6000억원)에 이를 것으로 전망했다. AI 인프라 투자는 연평균 12.8%씩 성장해 2027년 10억5800만 달러(1조5000억원)로 증가할 것이라는 예상이다. 한국 AI 성숙도를 기업, 정부, 사회경제 3가지 차원에서 분석한 결과 모두 아태 지역 평균보다 높은 점수를 받은 것으로 나타났다. 기업의 경우 삼성, LG, SK 등 대기업들이 자율주행, 의료, 스마트 제조 등에서 AI 개발을 위한 투자를 아끼지 않는다고 평가했다. 스타트업과 연구기관 등과 협업을 통해 지식이 원활하게 공유되고 AI 혁신이 가속화되고 있다는 지적이다. 실제 LG는 AI에 740억 달러를 투자할 계획이고, SK텔레콤도 AI 관련 사업에 대한 투자를 2019년 12%에서 2023년 33%로 3년에 걸쳐 3배 늘릴 계획이다. 인텔 측은 "한국 대기업은 압도적 수치인 90%가 AI/ML을 다양한 분야에서 활용하고 있고, 50% 이상이 AI를 통해 비즈니스 목표를 개선했거나 역량을 발전시킨 것으로 나타났다"고 밝혔다.
-
- IT/바이오
-
한국 대기업 10곳 중 9곳 AI 쓴다⋯2027년 AI 지출만 5.6조원
-
-
미세플라스틱, 모든 정액 샘플에서도 발견
- 중국에서 미세플라스틱이 모든 인간의 정액에서 발견됐으며, 정자 운동에도 영향을 미친다는 연구 결과가 나왔다고 메디컬 익스프레스와 인터레스팅엔지니어링 등 다수 외신이 보도했다. 중국의 여러 기관과 연계된 공중보건 연구팀은 테스트한 모든 샘플의 정액에서 미세플라스틱을 발견했다고 밝혔다. 이번 연구 결과는 '전체 환경과학((Science of the Total Environment)' 저널에 발표됐다. 연구팀은 직업상 플라스틱에 노출되지 않은 개인을 대상으로 △ 미세플라스틱 폴리머(Polimer, 고분자량 화합물)의 존재와 △ 어떤 유형의 플라스틱이 얼마나 많이 들었는지, △ 정액에 영향을 미치는 매개변수와의 관계를 조사하는 것을 목표로 했다. 연구팀은 중국 동부 산동성의 성도인 지난(Jinan, 濟南)에 살고 있는, 플라스틱 산업에 종사하지 않는 건강한 성인 남성 36명으로부터 정액 샘플을 수집했다. 이전 연구에 따르면 미세플라스틱은 산꼭대기, 외딴 섬, 대기 상층부, 깊은 해양과 남극 등 거의 모든 곳에 존재하는 것으로 나타났다. 또한 심장과 뇌, 태반, 개와 인간의 고환 등 인체의 모든 기관에서도 미세플라스틱이 발견됐다. 이번 연구에서 각 샘플은 화학 용액과 혼합한 뒤 현미경 분석을 위해 필터링(여과)했다. 미세플라스틱 폴리머를 식별하고 정량화하고 뷴류하기 위해 라만 현미경을 사용했다. 연구에 따르면 정자 운동성은 컴퓨터 보조 성분을 통해 평가됐으며, 형태는 Diff-Quik 염색을 통해 평가됐다. 최근 연구에서 과학자들은 사람들이 평균적으로 매주 신용 카드 1장에 해당하는 양의 플라스틱을 소비한다는 사실을 발견했다. 연구팀은 사람들이 플라스틱 물병에 든 물을 마시거나 공기 입자를 흡입하거나, 플라스틱 용기에 담긴 가열된 음식을 먹는 등 다양한 방법을 통해 미세플라스틱이 몸 안으로 들어갈 수 있다고 지적했다. 그들은 또한 이제 사람들이 미세플라스틱 섭취를 피하는 것은 실질적으로 불가능하다고 말했다. 8가지 유형의 폴리머 확인 연구팀은 모든 정액 샘플에서 샘플당 평균 2개의 입자(0.72~7.02μm 범위)의 미세플라스틱을 발견했다. 또한 8개의 서로 다른 플라스틱 폴리머가 확인되었으며, 포장용 스티로폼에 흔히 사용되는 폴리스티렌(31%)이 가장 많이 발견됐다. 연구에 따르면 정자 형태학적 이상이 발견됐지만 특정 플라스틱 유형과 유의미한 관련은 없는 것으로 나타났다. 연구팀은 또한 섭취된 미세플라스틱이 전 세계 출산율 감소의 원인이 될 수 있는지 테스트했다. 연구팀은 폴리염화비닐 플라스틱 조각에 포함된 정액 샘플에서 정자의 운동성이 낮다는 사실을 발견했다. 이는 출산율 감소를 설명하는데 도움이 될수 있음을 시사한다. 폴리스티렌에 노출된 정액은 폴리염화비닐 노출 그룹에 비해 더 높은 정자 진행성 운동을 보였다. 건강에 미치는 영향은 아직 알려지지 않았지만 전 세계 많은 과학자들은 미세플라스틱 섭취가 많은 염증성 질환의 원인이 될 수 있다고 추정하고 있다. 연구팀은 다양한 미세플라스틱 폴리머에 대한 노출이 정자의 진행성 운동에 미치는 영향이 다양하다고 설명했다. 이는 광범위하게 존재하고 잠재적인 생식 독성을 지난 미세플라스틱이 남성 생식 능력에 어떤 영향을 미치는 지 추가 조사의 필요성을 강조했다.
-
- 생활경제
-
미세플라스틱, 모든 정액 샘플에서도 발견
-
-
애플, 개인정보 걱정없는 맞춤형 AI '애플 인텔리전스' 공개
- 애플 아이폰 사용자들은 개인정보 유출 걱정 없이 AI 글쓰기를 하고 이미지를 생성할 수 있는 개인 맞춤형 인공지능(AI) ‘애플 인텔리전스(Apple Intelligence)’를 제공받게 된다. 애플은 10일(현지시간) 미국 캘리포니아주 쿠퍼티노 본사 애플파크에서 온라인으로 연례 ‘세계개발자회의(WWDC) 2024′를 열고 독자 생성형 AI 시스템 ‘애플 인텔리전스’를 발표했다. 팀 쿡 애플 최고경영자(CEO)는 "생성형 AI와 초거대언어모델(LLM)의 발전은 애플 제품의 사용 경험을 새로운 차원으로 끌어올릴 수 있는 강력한 기능을 제공할 것"이라며 "이 새로운 기능을 애플 제품의 핵심 원칙에 반영할 것으로, 무엇보다도 사용자의 일상, 관계, 의사소통 등 개인적 맥락에 기반해야 한다"고 밝혔다. 그러면서 애플 인텔리전스를 발표하면서 AI가 구동되는 과정에서 개인정보가 침해받는 일은 없다는 것을 강조했다. 애플에 따르면 애플 인텔리전스는 아이폰·아이패드·맥스 모두 사용할 수 있는 온디바이스(내장형) AI와 클라우드(가상저장공간) AI를 결합했다. 온디바이스는 인터넷 연결 없이 기기 자체적으로 업무를 처리하는 만큼 개인정보 문제에서 상대적으로 자유롭다. 애플은 '애플 인텔리전스'를 통해 개인의 스케쥴 관리를 비롯해 수많은 이메일을 분류하고 대신 작성해주는 기능과 텍스트 보완 및 분석, 각종 데이터화 작업 등 여러 활용 사례를 소개했다. 자사 음성 비서 '시리'를 개선해 이 기능들을 활용할 수 있다. 애플의 음성 서비스 시리는 생성형 AI 기술이 접목돼 더 자연스러운 대화가 가능해졌다. 오픈AI와의 협력으로 시리를 통해 바로 챗GPT에 질문도 할 수 있다. 예를 들면 이메일 내용을 분석해 관련된 연락처와 파일을 찾아내고 지시를 내릴 수 있다. 또 일부 사진을 보고 원본 이미지를 생성하거나 스스로 일러스트레이션, 스케치, 애니메이션을 만들 수 있다. 메일, 노트, 페이지 등 텍스트를 입력하는 앱에선 '쓰기 기능'을 통해 글을 다듬어주거나 요약해주는 기능을 제공한다. 자신이 쓴 글을 상황에 맞는 어조로 바꿔주고, 문법이나 단어, 문장 구조 등을 검사해 수정 사항을 제시해준다. 메시지 앱에서 '이미지 놀이터' 기능을 활용해 애니메이션, 일러스트레이션, 스케치 등 3가지 스타일 중 하나를 골라 이미지를 생성할 수 있다. 이 기능을 활용하면 대화 상대방의 얼굴 사진을 찾아 문맥에 맞는 상황 설정을 반영한 캐릭터를 생성해 문자 메시지로 보내준다. 또 노트 앱에서는 '이미지 요술봉' 기능으로 스케치를 이미지로 변환하거나 빈 공간에 이미지를 생성할 수 있다. 특정 작업에서 LLM이 필요한 경우 외부 서버의 도움이 필요한 만큼 애플은 애플 기기를 사용하는 이용자들만을 위한 '프라이빗 클라우드 컴퓨팅'도 구축했다. 올 가을 베타 버전으로 출시 예정인 애플 인텔리전스는 M1칩 이상이 들어간 기기에서만 사용할 수 있다. 아이폰의 경우 지난해 하반기 출시한 아이폰15 프로·프로맥스와 올해 출시될 예정인 아이폰16 시리즈부터 사용 가능하다. 생성형 AI 서비스나 개발 계획이 아닌 기존 스마트 기능의 업그레이드 수준에 머물렀다는 지적에 발표 이후 주가는 하락세를 면치 못했다. 이날 애플 주가는 발표가 이뤄진 이후 2% 가까이 하락했다. 당초 애플의 생성형 AI 개발 서비스나 계획을 기대했던 투자자들로부터는 적잖은 실망감이 작용한 것으로 풀이된다.
-
- IT/바이오
-
애플, 개인정보 걱정없는 맞춤형 AI '애플 인텔리전스' 공개
-
-
네이버 AI 번역서비스 파파고 월 이용자 2천만명 돌파
- 네이버의 인공지능(AI) 번역 서비스 '파파고'의 월 이용자가 세계적으로 2000만 명을 돌파했다. 10일 ICT(정보통신기술) 업계에 따르면 네이버클라우드가 자체 집계한 파파고의 월간 활성 이용자 수(MAU·애플리케이션과 웹 버전 합산)는 지난달 약 2074만 명으로 작년 5월보다 18% 늘었다. 파파고 MAU는 올해 3월 2005만 명으로 처음 2000만 명을 넘었고 4월 2039만 명을 기록한 데 이어 5월에도 상승곡선을 그렸다. 2016년 출시된 파파고의 MAU는 2019년 1000만 명을 돌파한 뒤 2020년 1200만 명, 2021년 1300만 명, 2022년 1400만 명, 지난해 1800만 명으로 꾸준히 증가했다. 특히 지난 1년 사이 해외 이용자가 크게 늘었다. 지난달 파파고 총이용자 중 해외 이용자는 541만 명으로 1년 전에 비해 27% 증가한 것으로 집계됐다. 지난 5월에는 중국, 홍콩, 대만 등 중화권에서 파파고 앱의 이용자는 항공 노선 확대 등의 영향으로 1년 전보다 95% 급증했다. 파파고의 지속적인 사용자 증가는 자체 인공신경망 기계번역 기술(NMT) 등으로 번역 품질을 끌어올리고 편의성을 개선한 효과로 보인다. 파파고는 2019년 인터넷에 연결되지 않아도 작동하는 '오프라인 번역' 기능을 도입했다. 여기에 2020년 10월 이미지를 촬영하면 번역문을 이미지 위에서 제공하는 '이미지 바로 번역'을 출시했고 2022년 8월에는 카메라에 비치는 영상을 인식해 실시간으로 번역하는 'AR 바로 번역'을 선보였다. 여행객들이 낯선 나라에서 물건 구매, 음식 주문 등의 활동을 할 때 소통하기 쉬워진 것이다. 파파고가 지원하는 언어는 올해 아랍어가 추가되면서 16개로 늘었다. 네이버클라우드 관계자는 "파파고의 성장 비결은 이용자들을 긴밀하게 살피며 서비스를 개선해온 데 있다"며 "파파고가 국내에 이어 해외에서도 활용성을 인정받고 있는 만큼 차별화된 기능과 기술력으로 경쟁력을 강화할 것"이라고 말했다. 이에 앞서 문화체육관광부와 한국관광공사가 지난 3월 발표한 '주요 여행 앱 동향 및 이용 현황' 조사 결과에 따르면 설문에 응답한 방한 외국인 여행객 중 48.3%가 통·번역 서비스로 파파고를 활용하는 것으로 나타났다.
-
- 산업
-
네이버 AI 번역서비스 파파고 월 이용자 2천만명 돌파
-
-
국제유가, 미국 금리인하 기대감 등 영향 2거래일 연속 상승
- 국제유가는 6일(현지시간) 미국 연방준비제도(연준∙Fed)의 조기 금리인하 기대감과 원유수요 증가 전망 등 영향으로 상승했다. 2거래일 연속 상승세다. 이날 로이터통신 등 외신들에 따르면 미국 뉴욕상품거래소에서 서부텍사스산중질유(WTI) 7월물 가격은 2.0%(1.48달러) 오른 배럴당 75.55달러에 거래를 마쳤다. 이날 유가는 지난 5월 28일 이후 가장 큰 폭으로 올랐다. 북해산 브렌트유 8월물은 런던 ICE선물거래소에서 전장보다 1.9%(1.49달러) 상승한 배럴당 79.90달러에 거래됐다. 국제유가는 금리 인하로 인한 수요 증가 기대감에 이틀 연속 동반 상승세를 보였다. 유럽중앙은행(ECB)이 2019년 이후 처음으로 금리인하에 나서면서 미 연준 역시 오는 9월쯤에 금리를 인하할 것이라는 기대가 커졌다. 최근 OPEC+(OPEC 플러스·OPEC과 주요 산유국 연대)가 점차 일부 감산을 줄여갈 수 있음을 시사해 유가가 과도하게 하락했다. 이날도 국제유가는 최근 4개월 만에 최저 수준을 경신한 후 금리인하에 따른 수요증가 전망에 반등했다. 이날 오전에 ECB가 금리인하에 나선 점은 완화적인 통화정책이 이어진다는 기대를 부추기며 유가를 띄웠다. 당초 하반기까지 올해 원유 수요가 시원찮을 것이라는 전망이 자리를 잡고 있었다. 하지만 주요국 중앙은행들의 금리인하가 이어지면 경기 둔화가 일부 해소되면서 원유 수요에도 긍정적인 변수가 될 수 있다. ECB는 이날 통화정책회의를 열고 "위원회는 ECB의 주요 3대 금리를 25bp(베이시스 포인트)씩 낮추기로 결정했다"고 발표했다. 이 같은 ECB의 금리인하 행보는 연준의 금리인하 기대를 높였다. CME그룹의 페드와치툴은 9월 연준의 25bp 금리인하 가능성을 56.9%로, 금리 동결 가능성을 30.2%로 반영했다. 50bp 인하 가능성도 12.7%까지 반영됐다. 이날 오전에 발표된 미국 고용시장 관련 지표들이 둔화 조짐을 보인 점도 금리인하 전망을 부추겼다. 지난 1일로 끝난 한 주간 신규 실업보험 청구자수는 계절 조정 기준 22만9000명으로 직전주보다 8000명 증가했다. 바클레이즈의 아마프릿 싱 애널리스트는 "원유시장이 약간 부정적인 OPEC플러스 회의 결과에 과도하게 반응했다고 본다"며 "최근 원유 수요 그래프가 확실히 약해진 감이 있지만 절벽에서 떨어지지는 않을 것"이라고 말했다. 미 달러화는 소폭 하락한 점도 국제유가를 끌어올린 요인으로 작용했다. 주요 6개 통화 대비 달러 가치를 보여주는 달러인덱스(달러화 지수)는 전날보다 0.17% 내린 104.09를 기록했다. 한편 대표적인 안전자산인 국제금값은 연준의 조기금리인상 기대감과 달러약세 등에 상승세를 지속했다. 이날 뉴욕상품거래소(COMEX)에서 8월물 금가격은 0.6%(15.4달러) 오른 온스당 2390.9달러에 거래를 마쳤다. 국제금값은 2주래 최고치를 나타냈다.
-
- 산업
-
국제유가, 미국 금리인하 기대감 등 영향 2거래일 연속 상승
-
-
[먹을까? 말까?(20)] 오렌지 껍질, 심혈관 질환 위험 감소 효과
- 오렌지 껍질에 심혈관 건강에 도움이 되는 성분이 함유되어 있다는 연구 결과가 나왔다고 사이언스얼럿이 보도했다. 미국 플로리다 대학교의 유 왕(Yu Wang) 박사와 농무부 연구팀은 오렌지 껍질에서 페루로일푸트레신((FP, feruloylputrescine)이라는 새로운 활성 생물학적 화합물을 발견했다. FP는 장 내의 독성 화합물인 TMAO(trimethylamine N-oxide)와 트리메틸아민(TMA)을 감소시키는 효능이 있다. TMAO는 심혈관질환 발병 위험을 증가시킬 수 있다. 연구팀은 실험에서 6주 동안 FP가 풍부한 오렌지 껍질 추출물을 섭취한 쥐에게서 혈액 지표가 개선되는 것을 관찰했다. 이 지표는 염증과 심혈관 질환과 관련이 있었다. 또한 실험 기간 동안 고지방 식단을 섭취했음에도 불구하고 FP를 섭취한 쥐는 대조군에 비해 체지방 축적이 적었다. FP는 자몽 잎과 주스에서 발견된 대사 산물이다. 일부 오렌지에도 존재하지만 라임, 레몬, 귤 등에는 없는 것으로 알려져 있다. 이 화합물은 최근 항산화 및 항염증 효능으로 많은 주목을 받고 있다. 이번 연구를 주도한 플로리다 대학교의 식품 과학자인 유 왕 박사는 "페루로일푸트레신(FP)이 심혈관 질환 위험을 감소시키는데 영향을 미친다"며 "이전에는 알려지지 않았던 건강 효능을 보여주는 새로운 발견"이라고 말했다. 오렌지는 주로 과육을 섭취하거나 오렌지 주스로 활용되지만 오렌지 껍질은 대부분 버려지고 있다. 미국에서 매년 오렌지 주스 생산과정에서 발생하는 500만톤(t)의 오렌지 껍질 중에서 절반은 가축 사료로 사용되고 나머지 절반은 폐기되고 있다. 다만 오렌지 껍질은 설탕과 함께 끓여 마아말레이드 잼으로 활용되고 있다. 과육과 비교해 오렌지 껍질은 비타민, 항산화물질, 리모덴(항염증 및 항암 특성이 있을 수 있는 화학 물질)을 풍부하게 함유하고 있다. 연구 결과에 따르면 FP는 특정 장내 박테리아가 음식을 분해하는 과정에서 생기는 트리메틸아민(TMA)이라는부산물 생성을 억제하는 것으로 보인다. 플로리다에서는 오렌지 껍질을 주로 가축의 사료로 활용하고 있다. 연구 결과에 따르면 실제로 오렌지 찌꺼기를 닭에게 먹였을 때 건강에 이점이 있는 것으로 나타났다. TMA는 주로 육류 또는 지방이 많고 단백질이 적은 식단을 섭취할 때 장내 박테리아에 의해 생성된다. 이 화합물은 장을 통해 혈류로 들어가 간에서 트리메틸아민 N-옥시드(TMAO)로 대사된다. TMAO는 동맥 플라크 축적, 심장 질환, 뇌졸중, 비만 및 2형 당뇨병 위험 증가와 관련이 있다. 연구 결과에 따르면 오렌지 껍질의 FP는 이러한 위험을 낮추는 데 도움이 될 수 있다. 연구팀은 "대사 산물을 생성하는 박테리아가 계속 활동하더라도 이들 쥐의 TMA와 TMAO 수치는 감소했다"고 밝혔다. 쥐 실험 결과가 인간에게도 동일하게 적용되는지는 아직 명확하지 않지만, 미 농무부는 이에 대한 연구에 관심을 가지고 있다. 왕 박사는 새로운 연구 결과를 바탕으로 오렌지 껍질이 건강에 이로운 식이보충제나 새로운 식재료로 사용될 수 있을 것이라고 말했다. 왕 박사 팀의 연구는 미국 농무부로부터 50만 달러(약 7억 원)의 기금 지원을 받아 진행됐다.
-
- 생활경제
-
[먹을까? 말까?(20)] 오렌지 껍질, 심혈관 질환 위험 감소 효과
-
-
테슬라, 중국 판매량 2개월 연속 감소⋯비야디 사상최고판매 근접
- 테슬라의 중국 전기자동차(EV) 판매량이 2개월 연속 감소한 것으로 나타났다. 로이터통신 등 외신들에 따르면 중국승용차협회(CPCA)는 4일(현지시간) 발표한 5월 전기자동차(EV) 판매데이터에서 미국 테슬라의 중국 생산차 판매가 지난해 같은 달보다 6.6% 감소한 7만2573대였다고 밝혔다. 2개월 연속 감소세다. 지난 3월에는 0.2%로 소폭 늘어났으나 지난 4월에는 18%나 줄어들었다. 테슬라는 이같은 수요 약화를 반영해 지난 3월부터 상하이 공장에서 모델 Y 생산량을 약 20% 줄여왔다. 구체적으로 지난 3월 4만9000여 대, 4월 3만6000여 대를 만들었는데 1년 전과 비교하면 각각 17.7%, 33% 감소한 수준이다. 테슬라는 지난 4월 중국에서 모델 Y 가격을 출시 이후 최저 수준으로 내리고, 모델3 구매자에게는 무이자 할부 혜택을 제공하는 등 돌아선 소비자들의 발길 잡기에 애쓰고 있다. 반면 선두로 발돋움한 중국 비야디(BYD)는 같은 기간 총 전년대비 38% 증가한 33만488대를 팔아치우면서 사상 최고치를 경신했던 지난해 12월 34만 대에 근접했다. 테슬라는 중국 시장뿐만 아니라 유럽에서도 힘을 잃고 있다. 지난 4월 판매실적은 15개월 만에 최저치를 기록했다. 유럽 전체 판매량이 15% 가까이 늘어날 때 홀로 뒷걸음질치고 있다.
-
- 산업
-
테슬라, 중국 판매량 2개월 연속 감소⋯비야디 사상최고판매 근접
-
-
인텔, 대만TSMC와 손잡고 엔비디아 대대적 반격
- 인텔이 대만 파운드리(반도체 위탁생산) 기업 TSMC와 협력해 차세대 AI(인공지능) 프로세서 생산에 나섰다. 인텔은 엔비디아의 그래픽처리장치(GPU)보다 3분의 1 수준의 낮은 가격에 AI 가속기를 공급하겠다는 구상도 밝히며 엔비디아에 대해 대대적인 반격을 선언했다. 팻 겔싱어 인텔 CEO는 4일(현지시간) 대만 타이베이 난강 전시장에서 열린 ‘컴퓨텍스 2024’ 전시회 기조연설에서 올해 하반기 출시할 AI 프로세서 '루나 레이크'를 처음으로 소개했다. 제품은 인텔 내부가 아닌 TSMC의 3㎚(나노미터·1㎚는 10억분의 1m) 공정에서 생산될 예정이다. 루나 레이크는 시스템온칩(SoC) 전력을 전작 대비 최대 40% 줄이고 AI 컴퓨팅 성능은 3배 이상 높인 프로세서다. 겔싱어 CEO는 올해 '루나 레이크'와 '애로우 레이크'를 출시한 데 이어 내년에는 '팬더 레이크'를 내놓겠다고 설명했다. 인텔의 서버용 CPU '제온 6' 칩도 선보였다. 6세대 프로세서 제온 6는 전작 대비 최대 4.2배 성능이 향상됐다. 이날 겔싱어 CEO는 AI칩 선두 기업인 엔비디아에 대응하기 위한 전략도 밝혔다. 뛰어난 가성비를 앞세워 엔비디아의 유일한 대항마로 자리매김한다는 전략이다. 인텔은 AI 시장에서 엔비디아와 AMD에게 빼앗긴 시장점유율을 되찾기 위한 분투하고 있다. 갤싱어 CEO는 "인텔의 AI 가속기 '가우디 2'는 경쟁사 AI용 GPU 가격의 3분의 1, '가우디 3'는 경쟁사 GPU 가격의 3분의 2 수준”이라고 말했다. 그는 "가우디 3는 동급 규모의 엔비디아 H100 GPU에 비해 학습 시간이 최대 40% 빠르다"며 "거대 언어모델(LLM)을 실행할 때 엔비디아 H100 대비 평균 최대 2배 빠른 추론을 제공할 것으로 예상된다"고 밝혔다 겔싱어 CEO는 삼성과의 협업도 언급했다. 그는 "삼성메디슨과 AI를 활용한 초음파 솔루션 관련해 협업하고 있다"며 “의사들은 AI를 활용해 쉽고 빠르게 초음파 이미지를 캡처할 수 있게 됐다"고 설명했다. 인텔은 연내 18A(1.8나노) 공정 양산에 들어가겠다고 한 기존 발표도 계획대로 진행되고 있다고 밝혔다. 겔싱어 CEO는 “다음 주에 18A 웨이퍼에서 나온 첫번째 칩을 구동시킬 예정”이라고 말했다. 이에 앞서 인텔은 18A 공정은 올해 말, 14A(1.4나노)공정은 2027년부터 도입해 TSMC와 삼성전자를 빠르게 따라잡겠다는 포부를 밝혔다. 2030년까지 세계 2위 파운드리가 돼 업계 리더십을 회복하겠다는 구상이다.
-
- IT/바이오
-
인텔, 대만TSMC와 손잡고 엔비디아 대대적 반격
-
-
[우주의 속삭임(14)] 화성의 신비한 구멍, 채광창인가?
- 화성 표면에 신비한 구멍이 포착돼 우주 과학자들의 주목을 받고 있다. 미 항공우주국(나사·NASA)의 화성 정찰 궤도선이 화성에서 신비한 구멍을 포착했다고 사이언스얼럿과 위온 등 다수 외신이 최근 보도했다. 위의 이미지는 NASA의 화성 정찰 궤도선 MRO에 있는 HiRISE(고해상도 이미징 과학 실험) 카메라로 캡처됐다. 신비한 구덩이 폭은 몇 미터에 불과하며 화성의 아르시아 몬스(Arsia Mons) 지역에 위치하고 있다. 아르시아 몬스는 3개의 화산으로 구성된 타르시스 몬테스(Tharsis Montes)군에 속한 휴화산 중 하나다. 타르시스 벌지(Tharsis Bulge)의 타르시스 지역은 수천 킬로미터에 이르는 광활한 화산 평원이다. 화성의 다른 지역에 비해 고도가 높으며 평균적으로 화성의 평균 고도보다 약 10km(3만3000피트) 높다. 이 지역은 과거에 화산 활동이 활발했던 곳으로, 이번에 포착된 구덩이와 같은 지형은 고대 화산 활동의 직접적인 결과물이다. 구덩이에 대한 과학자들의 다양한 추측 중에 하나는 지하 용암 동굴로 가는 채광창이 될 수도 있다는 것이다. 이 이론은 지구상의 하와이 같은 화산 지역에서 유사한 지형이 목격 되었다는 사실에 근거한다. 이러한 유형의 채광창은 옹암 동굴의 지붕이 무너지고 구멍이 생길 때 형성된다. 화성의 구덩이가 과학자들의 추정과 같이 실제로 채광창이라면 미래에 우주 비행사들에게 자연적인 피난처가 될 수 있다. 이 구덩이는 방사선과 극한 온도, 먼지 폭풍과 같은 극한의 우주 환경에서 우주 비행사들을 보호해 줄 수 있다. 구멍이 지각이나 화산 활동에 의해 형성되었을 가능성도 있다. 이러한 구덩이는 지구에서 흔히 발견되며, 화산 활동으로 생긴 공극(토양이나 암석 속의 비어 있는 부분) 뒤에 있는 땅이 붕괴된 후에 만들어진다. 아르시아 몬스 지역의 몇몇 구덩이는 지하 용암 동굴로 이어지는 것일 수도 있지만 불확실하다. 지하 훨씬 더 깊은 곳에서 일어난 붕괴의 결과일 수도 있다. 화성에 용암동굴이 존재하지 않을 이유는 없다. 화성의 중력은 지구보다 훨씬 약하기 때문에 더욱 큰 용암 동굴이 존재할 수도 있다. 화성 화산의 구덩이 중 하나인 파비스 몬스는 더욱 특이하다. 구덩이 아래에는 일종의 빈 공간이 있지만 그 정체를 파악하기는 어렵다. 용암 동굴로 보기에는 지구상 대부분의 용암 동굴보다는 왜소하다는 지적이다. 앞에서 설명했듯이 구멍이 실제로 용암 동굴로 이어진다면 미래의 우주 탐험가들을 위해 이상적인 거주 가능 지역이 될 가능성이 있다. 더 큰 용암 동굴은 영구 기지 건설에 가장 적합한 광대하고 안정적인 환경을 제공할 가능성이 높다. 또 농업에 적합한 환경을 제공하고 화성에서 인간이 장기적으로 거주하는 데 중요한 생명 시스템을 지원할 수도 있다. 과학자들은 화성에 용암 동굴이 풍부하다는 형태학적 증거를 많이 발견했지만 이번에 발견된 신비한 구덩이가 구체적으로 어떤 것인지는 아직 미스터리로 남아있다고 말했다.
-
- IT/바이오
-
[우주의 속삭임(14)] 화성의 신비한 구멍, 채광창인가?
-
-
[신소재 신기술(53)] 새로운 냉각 기술로 양자 컴퓨팅 시대 열린다
- 미국에서 획기적인 냉각 기술이 개발돼 절대 영도 도달 시간을 단축했다. 미국 정부기관인 국립 표준 기술 연구원(NIST) 연구팀은 획기적인 냉각 기술을 개발해 빅 칠(Big Chill)로 알려진 절대 영도에 근접한 초저온을 기존보다 훨씬 빠르고 효율적으로 달성할 수 있게 됐다고 라이브사이언스가 최근 보도했다. 이 기술은 양자 컴퓨팅, 천문학 등 중요 과학 실험에 필요한 준비 시간을 크게 단축 시킬 수 있을 것으로 기대된다. 절대 영도는 -273.15℃ 또는 0켈빈으로 표시되는 가장 낮은 온도를 의미한다. 이 온도에서 원자와 분자는 완전히 정지 상태에 있으며, 열 에너지가 전혀 존재하지 않는다. 절대 온도는 이론적 개념이며 실제로 실험적으로 달성하기에는 어렵다. 현재까지 절대 온도에 가장 근접하게 도달한 온도는 1999년 로듐을 활용한 냉각 기법으로 기록한 약 100피코켈빈이다. 과학 실험에 사용되는 민감한 전기 장비는 온도 변동과 같은 외부 노이즈의 간섭을 받지 않도록 절대 영도 근처의 초저온을 유지해야 한다. 하지만 기존 냉장 장치는 이러한 온도를 달성하는 데 배우 비용이 많이 들고 비효율적이었다. NIST 과학자들은 훨씬 더 빠르고 효율적으로 절대 온도를 달성할 수 있는 새로운 프로토타입의 냉장고를 제작했다. 염구팀은 이를 사용하면 연간 2700만와트의 전력을 절약하고, 전세계 에너지 소비를 3000만달러까지 줄일 수 있다고 주장했다. 이번 연구 결과는 '네이처 커뮤니케이션스(Nature Communications)' 저널에 게재됐다. 기존PTR 설계 개선해 초저온 달성 기존 가정용 냉장고는 액체 냉매가 저압 파이트(증발기)를 통해 순환하면서 열을 흡수해 내부를 냉각시키는 방식으로 작동한다. 냉매는 압축기를 거쳐 다시 액체 상태로 변환되면서 온도가 상승하고 이 열은 냉장고 뒷면을 통해 방출된다. 과학자들은 40년 이상 펄스 튜브 냉장기(PTR)를 사용해 초저온을 달성해돴다. PTR은 헬륨 가스를 이용해 유사한 과정을 거치지만 열을 훨씬 더 잘 흡수한다. PTR은 효과적이긴 하지만 에너지 소비가 많고 비용이 많이 들며, 냉각 시간이 오래 걸리는 담점이 있다. NIST 연구팀은 기존 PTR 설계 개선을 통해 냉각 시간을 단축하고 전체 비용을 낮출 수 있다고 밝혔다. 연구팀은 PTR은 기본 온도(보통 4 켈빈 근처)에서만 최적의 성능을 발휘하도록 설계되어 있어 전체 냉각 과정 중 상당 부분에서 비효율적으로 작동한다고 지적했다. 이에 NIST 연구팀은 압축기(컴프레서)와 냉장고 사이의 PTR 설계를 조정해 헬륨 가스 사용 효율을 높였다. 기존 방식에서는 헬륨 가스 일부가 순환 루트 대신 방출 밸브로 유출되면서 낭비됐다. 적은 비용으로 양자 컴퓨팅 구현 연구팀이 제안한 재설계에는 온도가 내려가면 수축하는 밸브가 포함돼 헬륨 가스 낭비를 방지할 수 있다. 이러한 개선으로 NIST 팀이 셜계를 수정한 PTR은 기존 방식보다 1.7배~3.5배 빠르게 초저온(빅 칠)을 달성했다. 연구팀은 이 새로운 기술을 통해 이탈리아의 희귀 현상 암흑 물질 연구소(CUORE)에서 수행한 실험 시간을 최소 1주일 단축할 수 있었다고 밝혔다. 이 연구소는 현재까지 이론상으로만 존재하는 방사성 붕괴 형태와 같은 희귀 현상을 연구하는데 사용된다. 정확한 연구 결과를 얻기 위해서 이러한 시설에서 배경 잡음을 최대한 줄여야 한다. 연구진은 이 새로운 방법을 사용하면 현재 이론적인 형태의 방사능 붕괴와 같은 희귀 사건을 찾는 데 사용되는 이탈리아의 극저온지하천문대(CUORE)에서의 실험 시간을 최소 일주일 이상 단축할 수 있다고 연구 결과에서 밝혔다. 이 시설에서 정확한 결과를 얻으려면 배경 소음을 최대한 줄여야 한다. 양자 컴퓨터도 비슷한 수준의 격리가 필요하다. 양자 컴퓨터는 양자 비트, 즉 큐비트(qubit)를 사용한다. 기존 컴퓨터는 정보를 비트(bit) 단위로 저장하고 1 또는 0의 값으로 데이터를 인코딩하여 순차적으로 계산을 수행하지만 큐비트는 양자역학의 법칙에 따라 1과 0의 중첩을 차지하며 계산을 병렬로 처리하는 데 사용할 수 있다. 그러나 큐비트는 매우 민감하기 때문에 열 에너지의 미세한 변동을 포함해 최대한의 외부 노이즈(배경 잡음) 차단이 필요하다. 연구팀은 이론적으로 가까운 미래에 훨씬 더 효율적인 냉각 방법을 달성할 수 있으며, 이는 양자 컴퓨팅 분야에서 더 빠른 혁신으로 이어질 수 있다고 말했다. 또한, 연구팀은 이 기술이 초저온을 달성하면서도 동시에 훨씬 저렴한 비용으로 초저온 산업에 도움이 될 수 있으며, 시간 집약적이지 않은 실험 및 산업 응용 분야의 비용을 절감할 수 있다고 덧붙였다.
-
- 포커스온
-
[신소재 신기술(53)] 새로운 냉각 기술로 양자 컴퓨팅 시대 열린다
-
-
[우주의 속삭임(13)] 느린 태양풍의 미스터리, 태양 궤도 우주선 '솔라 오비터'가 밝혀
- 태양 궤도선 솔라 오비터(Solar Orbiter) 우주선의 첫 번째 태양 근접 여행으로 수집된 데이터에를 통해 느린 태양풍의 신비한 미스터리가 풀릴 실마리가 밝혀졌다고 전문 매체 PHYS가 전했다. 초당 수백 킬로미터의 속도로 이동하는 태양풍은 수년 동안 과학자들의 연구 대상이었다. 그런데 '네이처 천문학지(Nature Astronomy)'에 발표된 최근의 연구에서 마침내 태양풍이 어떻게 형성되는지가 밝혀졌다는 것이다. 이 연구는 영국 노섬브리아 대학교 스테판 야들리 박사팀이 수행했다. 태양풍은 전하를 띠는 플라즈마 입자가 태양에서 우주로 계속 유출되는 것을 말한다. 바람은 초속 500km을 기준으로, 그 이상일 경우 '빠름'으로, 그 미만을 '느림'으로 규정한다. 태양풍이 지구까지 날아와 대기에 부딪히면 북극광으로 알려진 오로라가 나타난다. 그러나 더 많은 양의 플라즈마가 코로나 질량 방출의 형태로 방사되면 위험할 수 있으며, 위성과 통신 시스템에 심각한 손상을 초래할 수 있다. 수십 년 동안의 관찰에도 불구하고, 태양이 태양풍 플라즈마를 태양계로 방출, 가속 및 이동시키는 원인과 메커니즘, 특히 느린 태양풍에 대해서는 제대로 규명되지 않았다. 지난 2020년 유럽우주국(ESA)은 나사(NASA)의 지원을 받아 태양 궤도선 임무를 시작했다. 이 임무의 주요 목표 중 하나는 태양의 가장 가깝고 상세한 이미지를 포착하는 것 외에도, 태양풍을 측정해 분석하는 것이었다. 이를 위해 쏘아 올려진 솔라 오비터 우주선에는 10개의 서로 다른 과학 장비가 탑재됐다. 일부는 우주선을 통과할 때 태양풍 샘플을 현장에서 수집하고 분석하며 원격 감지도 수행한다. 태양 표면 활동에 대한 고품질 이미지를 캡처하도록 설계된 장비다. 연구팀은 솔라 오비터가 촬영한 사진과 기기 데이터를 결합함으로써 처음으로 느린 태양풍이 어디서 발생하는지 더 명확하게 식별하는 데 성공했다. 연구팀은 "우주선이 현장에서 측정한 태양풍 흐름의 변동성은 우리에게 그 근원에 대한 많은 정보를 제공했다. 태양에 가까이 접근함으로써 태양풍의 복잡한 특성을 포착할 수 있었으며, 태양풍의 기원과 복잡성이 발생 지역의 변화에 따라 어떻게 변화하는지에 대한 그림을 얻을 수 있었다"고 밝혔다. 연구팀은 빠른 태양풍과 느린 태양풍의 속도 차이가 태양풍의 기원이 되는 대기의 가장 바깥층인 코로나의 영역이 다르기 때문이라고 추정했다. 개방형 코로나는 자기장 선의 한쪽 끝이 태양에 고정되고 다른 쪽 끝은 우주로 뻗어나가 플라즈마와 같은 우주 물질이 우주로 나갈 수 있는 고속도로를 만드는 영역을 말한다. 이는 빠른 태양풍의 근원지로 여겨진다. 반대로 폐쇄형 코로나는 태양의 자기장 선이 닫혀 있는 영역을 의미한다. 태양 표면의 양쪽 끝이 연결되어 닫혀 있다는 뜻이다. 이는 자기 활성 영역 위에 형성되는 크고 밝은 루프로 볼 수 있다. 때로는 닫힌 자기 루프가 끊어지는 현상이 발생하고 끊어진 루프가 다시 연결되는 사이에 짧은 시간차가 발생하고, 그 사이에 플라즈마가 탈출하게 된다. 이는 개방형 코로나와 폐쇄형 코로나가 만나는 지역에서 발생한다. 솔라 오비터의 미션 중 하나는 느린 태양풍이 폐쇄형 코로나에서 발생하고, 자기장 선이 끊어지고 다시 연결되는 과정을 통해 우주로 탈출할 수 있다는 이론을 테스트하는 것이었다. 태양풍의 구성을 측정하는 방법을 통해서다. 태양 물질에 포함된 중이온의 조합은 그것이 어디서 유래되었는지에 따라 달라진다. 연구팀은 솔라 오비터에 탑재된 장비를 사용해 태양 표면에서 일어나는 활동을 분석한 후 이를 우주선이 수집한 태양풍 흐름과 대비했다. 솔라 오비터가 포착한 태양 표면의 이미지를 사용해 연구팀은 느린 태양풍의 흐름이 열린 코로나와 닫힌 코로나가 만나는 지역에서 발생했다는 것을 정확히 찾아낼 수 있었다. 결국 끊어지고 다시 연결되는 과정을 통해 느린 태양풍이 닫힌 자기장에서 벗어날 수 있다는 이론을 증명했다. 야들리 박사는 "솔라 오비터에서 측정한 태양풍의 다양한 구성은 코로나 소스 전체의 구성 변화와 일치했다. 코로나의 폐쇄 루프와 개방 루프 사이에서 발생하는 재연결 과정에서 발생한다는 강력한 증거를 제공했다"고 설명했다. 이로써 태양풍의 기원을 구체적으로 연구할 수 있는 길을 열어줄 것이라는 기대다.
-
- IT/바이오
-
[우주의 속삭임(13)] 느린 태양풍의 미스터리, 태양 궤도 우주선 '솔라 오비터'가 밝혀