검색
-
-
한은 "작년 1인당 국민소득 3만3천달러대 중반 추정"
- 지난해 한국의 1인당 국민총소득(GNI)이 지난해 상당한 회복세를 보인 것으로 나타났다. 25일 한국은행의 발표에 따르면, 2023년 1인당 GNI는 3만3000달러(약 4400만원) 대 중반으로 추정되며, 이는 전년도의 3만2886달러에 비해 수백 달러 이상 증가한 수치다. 명목 1인당 GNI의 변동은 실질 GDP 성장률, GDP 디플레이터, 환율, 인구 등 다양한 경제적 요소에 의해 영향을 받는다. 국민소득통계는 한 나라의 가계, 기업, 정부 등 모든 경제주체가 일정기간 동안 새롭게 생산한 재화와 서비스의 가치를 금액으로 평가하여 합산한 것이며, UN 등 국제기구가 공동으로 마련한 국민계정체계(2008 SNA)에서 제시한 편제기준에 따라 작성된다. 명목 GNI는 경제규모 등의 파악에 이용되는 지표로서 국내(주로 경제적 영역을 의미함)에서 생산된 최종생산물의 수량에 그 때의 가격을 곱하여 산출하므로 명목 GDP의 변동분은 최종생산물의 수량과 가격변동분이 혼재되어 있다. 한국은행 관계자는 2023년 1인당 GNI는 3월 초에 확정될 예정이라고 말했다. 그는 "현재까지 확인된 지표들로 볼때 3만3000달러대 중반 수준일 가능성이 매우 커졌다"고 밝혔다. 이날 한은이 발표한 '2023년 4분기 및 연간 실질 국내총생산' 자료에 따르면 2023년 한국의 실질 GDP 성장률은 1.4%로 집계됐다. 또한 한은의 내부 분석에 따르면 지난해 GDP 디플레이터는 1%대 후반 수준으로 나타났다. 이 두 요소가 플러스(+) 값을 기록한다면, 물가를 반영한 경제 규모인 명목 GNI는 상응하는 증가를 보인다. 반면, 원/달러 환율이 상승하면(원화 가치 하락), 달러 환산 명목 GNI는 감소하는 경향이 있다. 2022년에는 원/달러 환율이 연평균 13% 가까이 상승하면서 명목 1인당 GNI가 7% 이상 감소했다. 또 한국은행은 인구의 경우 1년 동안 변화가 크지 않은 것으로 보고 있다. 한은은 거시적 노동 공급에 상당한 영향을 미치고 있는 초저출산 등 인구 변화 추이에 대해 상세히 모니터링하고 있다. 한편, 한국의 1인당 GNI는 지난 2017년 3만1734달러로 처음으로 3만 달러대에 진입했다. 이후 2018년에는 3만3564달러로 증가했지만, 2019년과 2020년에는 각각 3만2204달러, 3만2004달러로 두 해 연속 감소했다. 2021년에는 3만5373달러로 코로나19 충격에서 회복하며 성장했으나, 2022년에는 원화 가치하락과 함께 달러 기준 GNI가 다시 감소했다. 그러나 지난해에는 환율 안정 등으로 인해 국민소득 감소를 면했다.
-
- 경제
-
한은 "작년 1인당 국민소득 3만3천달러대 중반 추정"
-
-
비디오 게임, 장시간 사용 시 청력 손실 위험
- 비디오 게임을 자주 하는 사람들은 그렇지 않은 사람들에 비해 청력 손상 및 이명을 겪을 위험이 더 높다는 연구 결과가 나왔다. CNN은 미국 사우스캐롤라이나대 의대 연구팀은 전 세계 약 5만4000명의 성인과 어린이를 대상으로 한 14건의 연구를 검토한 결과를 바탕으로 비디오 게임을 할 때 발생하는 평균 소음 수준이 종종 허용 가능한 소음 노출 한도를 초과하거나 사람들이 소음에 노출되는 시간이 길어질수록 청력 손상의 위험이 커지는 것으로 밝혀졌다고 보도했다. 특히 헤드폰을 통한 게임 소리의 경우, 소음 수준이 약 85-91 데시벨에 이르는 것으로 측정됐다. 비디오 게임에서 나타나는 갑작스러운 소리는 때때로 119 데시벨에 이르는 것으로 나타났으며, 이는 어린이에게 안전한 것으로 간주되는 수준을 훨씬 초과한다. 연구의 제1 저자 로렌 딜라드(Lauren Dillard) 박사는 "정기적으로 게임을 하는 사람들이 그렇지 않은 사람들에 비해 이명, 측정된 고주파 청력 손실 및 스스로 인식하는 청력 장애를 경험할 가능성이 더 높다"고 밝혔다. 이명은 귀에서 울리거나 윙윙거리는 소리를 내부적으로 느끼는 상태를 말한다. 이는 성인의 약 10%에서 25%가 경험하는 청력 문제 중 하나로, 특히 비디오 게임과 같은 소음이 많은 활동으로 인해 발생할 수 있다. 전 세계적으로 비디오 게임은 매우 인기 있는 여가 활동 중 하나이며, 게임을 즐기는 팬들은 종종 큰 볼륨으로 몇 시간 동안 게임을 한다. 이러한 게임에는 총소리나 엔진 소리와 같은 갑작스러운 시끄러운 소리들이 포함되어 있는 경우가 많다. 많은 게이머들이 장치의 스피커 대신 헤드폰을 사용하여 비디오 게임의 오디오를 듣는데, 이는 소리를 귀에 더 가깝게 하여 청력 손실 위험을 증가시킬 수 있다. 특히 게임 센터와 같은 환경에서 게이머들은 주변 소음을 차단하기 위해 볼륨을 높이는 경향이 있다. 남아프리카 공화국 프리토리아 대학의 드 웻 스와네포엘 박사는 이 연구를 통해 게임과 관련된 청력 손실 문제가 젊은이들에게 얼마나 중요한지를 강조했다. 스와네포엘 박사는 "이 연구가 젊은이들의 청력 건강 위험에 대한 우리의 이해에 중요한 기여를 한다"고 말했다. 세계보건기구(WHO)에 따르면, 전 세계적으로 10억 명 이상의 청소년이 안전하지 않은 청취 습관으로 인해 청력 손실의 위험에 처해 있다. 콜로라도 대학교 의과대학의 이비인후과-두경부 외과 겸임 교수이기도 한 드 웻 스완포엘 박사는 "이번 연구는 현대 디지털 라이프스타일에서 청력 건강 위험에 대한 이해를 증진시키는 중요한 자료가 될 것이라고 평가했다. 비디오 게임을 안전하게 즐기기 위해서는 △ 게임 볼륨을 최대치의 60% 이하로 유지하기, △헤드폰을 사용할 경우, 귀에 잘 맞고 배경 소음을 차단하는 제품 사용, △ 게임을 하는 중간에 10~15분씩 휴식을 취해 귀를 쉬게 하고 △ 청력에 이상이 느껴지면 즉시 전문의사의 진료를 받는 것이 권장된다. 특히 어린이의 경우, 청력이 성인보다 더 약하고 소음에 더 취약하므로, 게임 볼륨을 더 낮추고 휴식 시간을 더 자주 갖는 것이 중요하다. 청력 손실은 한 번 발생하면 회복이 어렵기 때문에 평소에 소음 노출에 주의를 기울이는 것이 바람직하다.
-
- 생활경제
-
비디오 게임, 장시간 사용 시 청력 손실 위험
-
-
이모티브, 뇌파 기반 AI 연구 강화 위해 벨파스트에 연구소 개설
- 미국 기반의 뇌파검사(EEG) 헤드셋 제조 기업 이모티브(Emotive Inc)가 영국 벨파스트에 새로운 연구소를 설립한다고 발표했다. 미국 샌프란시스코에 본사를 두고 있는 이 회사는 호주의 시드니, 베트남 하노이와 호치민시로 사업을 확장했다. 이모티브는 개인이 자신의 뇌를 이해하고 전 세계적으로 뇌 연구를 촉진하는 것을 자사의 주요 미션으로 삼고 있다. 이를 위해 벨파스트에 연구소를 설립하는 것은 이 회사의 글로벌 영향력 확대와 연구 역량 강화에 중요한 역할을 할 것으로 예상된다. 영국 매체 아이리시뉴스(irishnews)에 따르면, 이모티브는 퀸즈 대학교 인근에 부지를 매입한 것으로 보이며, 방문 전문가를 위한 숙소와 1층에 커피숍을 설치하는 계획 허가를 확보했다고 한다. 이는 해당 지역에서의 업무 홍보 및 네트워킹을 강화하기 위한 조치로 보인다. 또한, 보타닉 애비뉴(Botanic Avenue)와 유니버시티 로드(University Road) 사이에 위치한 7 로우어 크레센트(7 Lower Crescent)에 등록된 건물에 대한 계획 신청서가 지난해 제출된 것으로 알려졌다. 이 계획은 더블린대학교(UCD) 전직 교수였던 스콧 리카드(Scott Rickard) 박사가 진행했다. 그는 2023년 4월에 이모티브의 수석 인공지능(AI) 과학자로 임명됐다. 이 연구소의 설립은 뇌파 기반 AI 연구의 새로운 장을 열 것으로 기대된다. 수학, 컴퓨터 과학, 전기 공학 분야의 전문가인 스콧 리카드 박사는 세일즈포스(Salesforce)와 다국적 헤지 펀드 씨타델(Citadel)에서의 고위직 경력을 가지고 있다. 또한, 더블린에 기반을 둔 기술 회사를 운영한 경험도 그의 이력에 포함된다. 이모티브의 대리인은 계획 프로세스에 제출된 지원 성명에서 이 회사를 "인베스트 NI(Invest NI)의 지원을 받아 벨파스트에 연구 및 관리 시설을 설립하려는 미국 인공지능 연구 회사"로 설명했다. 이는 이모티브가 지역 경제에 기여하고자 하는 의지를 보여주는 것이다. 신청서에는 '이모티브 AI & 커피 회사(Emotiv AI & Coffee Company)'에 대한 언급도 포함되어 있으며, 이는 연구소 내의 커피숍 설치 계획을 시사한다. 제안된 개발 계획의 일환으로, 이모티브는 내부 관리자 플랫폼을 만들 계획인 것으로 알려졌다. 이 플랫폼은 Invest NI 기술 개발 지원 프로그램을 통해 방문하는 외부 전문가들이 직원들을 교육하고 멘토링할 수 있도록 지원하는 데 사용될 예정이다. 성명서에서는 "이모티브의 '인공지능 개발 회사' 프로젝트의 추가적인 측면으로, 고객들이 기존 상업 지역에서 로컬 서비스를 이용하면서 동시에 회사의 AI 개발을 경험할 수 있는 커피숍 시설을 설치할 계획"이라고 적혀 있다. 한편, 이모티브는 뇌파검사(EEG)를 사용하여 인간 두뇌에 대한 이해를 증진시키는 생물정보학 기업으로, 개인이 자신의 뇌를 이해하고 전 세계적으로 뇌 연구를 가속화하는 것을 목표로 한다. 이 기술은 BCI(Brain Computer Interface·뇌 컴퓨터 인터스페이스)의 범주에 속하며, 인지 성능 추적과 감정 모니터링 및 이 두 가지를 조절하는 것을 목표로 한다. BCI는 MMI(Mind Machine Interface·마음-기계 인터스페이스), DNI(Direct Neural Interface·직접 신경 인터스페이스), BMI(Brain Machine Interface·뇌 컴퓨터 인터스페이스) 등으로도 불린다. 이모티브 기술 및 인터페이스의 응용 프로그램은 게임에서 대화형 TV, 일상적인 컴퓨터 상호 작용, 핸즈프리 제어 시스템, 스마트 적응 환경, 예술, 접근성 디자인, 시장 조사, 심리학, 학습, 의학에 이르기까지 다양한 잠재적 산업 및 응용 프로그램에 걸쳐 있다. 이모티브의 기술 및 인터페이스 응용 프로그램은 게임, 대화형 TV, 일상 컴퓨터 상호작용, 핸즈프리 제어 시스템, 스마트 적응 환경, 예술, 접근성 디자인, 시장 조사, 심리학, 교육, 의학 등 다양한 잠재적 산업 및 응용 분야에 걸쳐 있다. 이러한 다양한 적용 가능성은 이모티브의 기술이 갖는 광범위한 영향력과 혁신성을 보여준다.
-
- IT/바이오
-
이모티브, 뇌파 기반 AI 연구 강화 위해 벨파스트에 연구소 개설
-
-
[퓨처 Eyes(21)] 붉은털원숭이 복제 성공, 의학 연구의 '게임 체인저' 될까?
- 중국 과학아카데미 연구팀이 처음으로 붉은털원숭이(레서스원숭이·Rhesus monkey) 복제에 성공했다고 영국 BBC가 보도했다. 이 종은 인간과 유사한 생리학적 특징으로 의학 연구에 널리 활용된다. 이번 성과는 의약 개발 속도를 획기적으로 늘릴 수 있는 잠재력을 지니고 있어 주목받는다. 중국 연구팀은 유전적으로 동일한 개체로부터 얻은 결과는 실험의 신뢰성을 높일 수 있기 때문에 붉은털원숭이 복제를 통해 신약 실험의 효율을 극대화할 수 있다고 기대하고 있다. 기존 붉은털원숭이 복제 시도는 출산으로 이어지지 않거나 탄생 후 몇 시간 만에 태아 사망 등으로 실패했던 반면, 이번에 복제된 원숭이는 2년 이상 건강하게 성장함으로써 연구팀은 안정적인 기술 확보를 입증했다. 붉은털원숭이 복제는 1996년 대리모를 통해서 태어난 '복제 양' 돌리(Dolly) 성공 이후 역사상 두 번째 유명한 동물 복제로 또 다른 시각을 제시한다. 그러나 돌리는 최초로 복제된 동물은 아니다. 1902년 스위스의 한스 스페만이 도룡뇽을 복제했던 것을 최초의 복제 실험으로 보고 있다. 발생생물 분야에 중요한 발전을 이룬 스페만은 도룡뇽의 수정란이 첫 번째 세포 분열을 시작할 때, 미세한 루프를 이용해 수정란을 두 개의 별도 세포로 분리했다. 이외에도 1952년 미국의 브릭스와 킹의 개구리 복제, 면양 복제(1986년), 소와 돼지 복제(1989) 등 다양한 사례가 있다. 다만, 복제양 돌리는 생식세포를 통한 복제가 아니라 체세포를 활용해 복제에 성공한 첫 사례로 유명하다. 이후 2001년에는 세계 최초의 복제 고양이 카피 캣(Copy Cat)이 탄생했다. 텍사스 A&M 대학교의 연구자들이 체세포 핵 이식 방식을 이용하여 카피 캣을 만들었다. 2003년, 이탈리아에서 체세포 핵 이식 방식으로 복제된 최초의 말 프로메테아(Prometea)가 태어났다. 프로메테아는 복제된 동물이 자신의 복제 원본으로부터 탄생한 첫 사례이기도 하다. 또한 2005년, 서울대학교 황우석 박사 연구팀에 의해 복제된 최초의 개 스너피(Snuppy)가 태어났다. 아프가니스탄 하운드에서 복제된 스너피는 체세포 핵 이식 방식을 이용해 과학계의 큰 주목을 받았다. 그 밖에 소와 돼지 복제도 다수 이루어졌다. 특히 돼지는 의학 연구에 매우 중요한 동물로, 인간과 비슷한 생리적 특성을 가지고 있다. 복제 돼지는 장기 이식 연구, 약물 테스트, 유전병 연구 등에 활용되고 있다. 중국 연구팀은 핵심 세포 재프로그래밍 기술을 통해 붉은털원숭이 배아를 형성한 뒤 대리모에게 이식하는 과정을 거쳐 복제 과정을 완료했다. 이는 돌리 양 복제 기술과 유사한 방법이지만, 인간과 더 큰 유전적 유사성을 지닌 붉은털원숭이 복제 성공으로 의료 연구 영역에 획기적인 파급 효과를 낼 수 있다. 중국 과학아카데미의 대학 루 팔롱(Lu Falong)박사는 BBC 뉴스와의 인터뷰에서 "(복제 원숭이) 성공적인 결과에 모두가 기뻐했다"고 밝혔다. 붉은털원숭이는 아프가니스탄부터 인도, 태국, 베트남, 중국에 이르는 광범위한 지역에서 야생 서식하며 감염과 면역 연구 실험에 주로 활용된다. 2018년 중국과학원은 마카크 원숭이(긴꼬리원숭이) 복제에 처음으로 성공했으나, 의료 연구에서는 인간과의 유전적 유사성 때문에 붉은털원숭이가 더 선호된다. 그동안 성체 세포를 이용한 포유류 복제 기술은 여러 한계를 드러냈다. 대다수의 복제 시도에서 유전자 재프로그래밍 과정 중 오류가 발생하고, 태어난 복제 개체의 수가 적으며 건강한 복제 개체는 더욱 드문 상황으로, 대부분의 포유류에서 성공률은 1~3%에 불과했다. 특히 붉은털원숭이의 경우 이러한 복제는 더 어려운 과제로 여겨졌으며, 연구팀이 2년에 걸친 노력 끝에 처음으로 복제에 성공하기 전까지는 태어나서 생존한 복제 개체가 없었다. 앞서 중국 과학원은 2018년 긴꼬리원숭이 복제에 성공했으나 생존율이 낮았다. 체세포 핵이식(SCNT)로 알려진 표준복제기술(체세포의 핵을 핵이 제거된 난자로 이식하는 기술)은 일반적으로 복제된 배아의 출생율과 생존율이 극이 낮다. 당 연구자들은 109개의 긴꼬리원숭이 복제배아를 생산하고 그 중 21마리의 대리모원숭이에게 이식했다. 그 중 단 2마리만 살아남았으나 성체가 되기까지 생존하지 못했다. 연구팀은 실패한 붉은털원숭이 복제 시도에서 태반이 복제 과정 중 제대로 재프로그래밍되지 않아 정상적인 발달이 이루어지지 않았다는 사실을 발견했다. 배아의 성장에 필수적인 산소와 영양분 공급에 중요한 역할을 하는 태반이 제 기능을 하지 못했기 때문에 복제가 성공하지 못했던 것. 이에 연구팀은 복제 배아의 외부층, 즉 정상적으로 태반으로 발달하지 않는 부분만을 활용해 복제 과정에서의 문제를 해결했다. 연구팀은 동물의 몸통으로 발달하는 내부 세포를 제거하고, 이를 정상적인 태반이 발달할 것으로 예상되는 비복제 배아의 외부층에 주입했다. 이 방법을 통해 연구팀은 총 113개의 배아를 사용하여 11개를 이식했으며, 이 과정에서 2번의 임신과 붉은털원숭이 1마리의 정상 출산으로 이어졌다. 연구팀은 태어난 원숭이에게, 복제기술 '영양포 대체(trophoblast replacement)'에서 따온 '레트로(ReTro)'라는 이름을 붙였다. 레트로는 수컷 원숭이로 2년 이상 생존하고 있다. 다른 대리모는 쌍둥이를 임신했으나 106일만에 사망했다. 이 연구는 지난 1월 17일 학술지 '네이처 커뮤니케이션(Nature Communications)'에 개재됐다. 네이처는 "복제된 배아에 건강한 태반을 제공하는 방법은 영장류 연구와 관련된 더 많은 연구의 길을 열어 줄 수 있다"고 평가했다. 복제팀의 루 팔롱 박사는 BBC 뉴스와의 인터뷰에서 붉은털원숭이 복제 연구의 핵심 목표에 대해 설명했다. 그는 "연구팀의 주된 목적은 더 많은 복제 원숭이를 성공적으로 얻는 동시에 실험에 사용되는 배아의 수를 줄이는 것"이라고 밝혔다. 또한, 그는 이 연구가 모든 윤리적 허가를 받고 진행되었다고 강조했다. 루 박사는 이어서 "연구 과정에서 모든 동물 실험 절차는 중국 과학 아카데미 상하이 생물과학 연구소 및 CAS(Center for Advanced Study) 뇌과학 및 인공 지능 기술 우수 센터 신경과학 연구소의 동물 사용 및 관리 위원회의 엄격한 지침을 따랐으며, 이 프로토콜은 CAS 동물 사용 및 관리 위원회의 승인을 받았다"고 말했다. 이러한 발언은 연구팀이 동물 실험의 윤리적 기준을 준수하고, 과학적 연구에서의 동물 복지를 중시하고 있음을 나타낸다. 과학자들은 이러한 복제 원숭이가 우울증, 불안증과 같은 인간의 정신 질환 연구뿐 아니라 약물 평가 프로젝트를 위한 모델로 사용될 가능성이 있다고 기대했다. 상하이 중국과학원 신경과학연구소 무밍 푸(Mu-ming Poo) 소장은 "약물 테스트에 사용할 수 있는 유전적으로 균일한 원숭이를 대량 생산할 수 있다"고 말했다. 반면, 동물 복지 단체들은 이번 성과에 대해 깊은 우려를 표명했다. 포유류의 경우 자연 번식은 부모로부터 유전자의 혼합을 통해 다양성이 유지되는 반면, 복제는 유전적으로 동일한 개체를 만드는 기술이다. 이에 일부 동물 복지 단체들은 유전자 다양성 저하, 윤리적 문제 등을 우려하며 동물 복제 기술 개발에 반대 입장을 견지하고 있다. 영국 왕립동물학대방지협회(RSPCA)는 최근 이루어진 원숭이 복제 연구에 대해 심각한 우려를 나타냈다. RSPCA의 대변인은 "현재의 연구는 당장에 응용될 수 있는 단계가 아니며, 인간 환자에게 혜택을 줄 것으로 기대되지만, 실제로 이 기술이 의학적으로 적용되기까지는 상당한 시간이 소요될 것"이라고 지적했다. 또한, "이 기술 개발 과정에서 더 많은 동물 '모델'이 필요할 것으로 예상된다"고 덧붙였다. 그는 "RSPCA는 이러한 실험 과정에서 겪는 동물들의 고통과 스트레스, 그리고 낮은 성공률에 대해 깊은 우려를 표명한다"며, "영장류는 단순한 연구 도구가 아니라 고도의 지능과 감정을 지닌 존재임을 인식해야 한다"고 강조했다. 이는 동물 복제 연구가 직면한 윤리적 문제와 동물 복지에 대한 중요성을 부각시킨다. 런던 프랜시스 크릭 연구소의 로빈 러벨-뱃지 교수는 환자 이익이 동물 고통을 능가할 때 동물 연구를 강력하게 지지한다는 입장을 밝히면서도 유사한 우려를 표명했다. 러벨-뱃지 교수는 "유전적으로 동일한 동물을 사용함으로써 실험에서의 변수를 최소화할 수 있다는 점은 분명하다. 그러나 이러한 접근법이 실제로 가치가 있는지에 대해서는 심도 있는 고민이 필요하다"고 지적했다. 또한 그는 "한 마리의 유아를 탄생시키기 위해 많은 배아를 사용하고 다수의 대리모에게 이식한 시도가 상당히 많았다"며, 연구 과정에서의 동물 사용량과 실험의 효율성에 대해 우려했다. 러벨-뱃지 교수는 이 연구에서 단 한 마리의 유아만 탄생했다는 사실을 문제삼았다. 그는 "단 한 번의 성공 사례만으로는 이 기술의 성공률에 대한 명확한 결론을 내리기 어렵다. 이 기술의 신뢰성과 효율성을 입증하기 위해서는 더 많은 성공 사례가 필요하다"고 강조했다. 이러한 입장은 동물 실험의 윤리적 측면과 실험의 효율성 사이에서 고려해야 할 중요한 요소들을 드러내고 있다. 최근 붉은털원숭이의 복제 성공은 의료 연구의 효율성 증대와 질병 치료법 개발의 속도를 높이는 데 긍정적인 영향을 미칠 것으로 기대되지만, 동시에 동물 복지와 윤리적 문제에 대한 논란을 야기할 것으로 예상된다. 이에 따라 과학의 발전과 동물 복지, 윤리적 가치 사이에서 균형을 찾기 위한 지속적인 논의가 필요할 것으로 보인다.
-
- 포커스온
-
[퓨처 Eyes(21)] 붉은털원숭이 복제 성공, 의학 연구의 '게임 체인저' 될까?
-
-
지구와 닮은 행성, 73광년 거리서 발견⋯가장 젊은 행성
- 지구와 닮은 행성이 73광년 거리에서 발견돼 천문학자들을 흥분시키고 있다. 이번에 새롭게 발견된 행성은 미국 항공우주국(NASA·나사)의 천체 탐사 위성 TESS(Transiting Exoplanet Survey Satellite)에 의해 감지됐다. TESS 위성은 태양계를 넘어서는 광대한 우주 공간에서 다수의 거대 행성들을 탐지해 왔다. 그 중에는 이번 발견을 포함해 같은 행성계 내에 위치한 두 개의 다른 행성들도 포함되어 있다. 영국 매체 인디펜던트(independent)는 나사의 TESS 위성이 발견한 HD 63433d로 명명된 이 신비한 행성이 지금까지 발견된 지구 크기 행성들 중에서 가장 젊고 가장 인접한 위치에 있다고 전했다. 이번 지구형 행성 발견의 의미는 매우 크다. 연구진은 이 행성의 근접성이 지구과학에 중대한 발견을 이끌어낼 수 있을 것으로 기대하고 있다. 이번 연구의 공동 책임자 중 한 명인 위스콘신 매디슨 대학의 멜린다 소아레스-푸르타도(Melinda Soares-Furtado) 연구원은 "우리는 지구의 초기 모습을 닮은 이 신세계를 면밀히 관찰할 기회를 가질 것"이라며, "이 행성이 초기 지구의 특성을 갖고 있을 가능성이 있어, 그 가치가 매우 크다"고 말했다. 연구진은 이 행성에 대한 면밀한 관찰을 통해 내부적인 가스 배출 여부와 자기장 작동 메커니즘 등을 파악할 수 있을 것으로 기대하고 있다. 소아레스-푸르타도 박사는 이 발견의 중요성을 강조하며, "이것은 우리 태양계와 가까운 공간에서 일어나는 매우 흥미로운 현상"이라고 말했다. 그러면서 "이렇게 가까이 있는 복잡한 천체 시스템이 우리에게 어떤 정보를 제공할 수 있을지, 또한 이 젊은 별 그룹에 속한 다른 유사한 별들 중에서 행성을 찾는 연구가 어떻게 우리의 지식을 확장하는데 도움이 될 수 있을지에 대해 깊이 고민하고 있다"고 전했다. 그러나 이 행성과 지구 간의 유사점은 한계가 있다. 이 행성은 별에 대해 조석 고정 상태로 존재하여, 항상 같은 면만을 향하고 있는 것으로 추정된다. 이로 인해 한쪽 면의 온도는 1260℃(화씨 2300도)에 이를 수 있으며, 이는 지표면이 용암으로 뒤덮여 있을 수 있음을 의미한다. 이 신비로운 행성은 HD 63433이라는 별 주변에서 발견된 세 번째 행성으로, 이에 따라 명명되었다. 이 행성은 우리의 태양과 크기와 종류가 유사하나, 연령 면에서 훨씬 젊은 특징을 지니고 있다. 게다가 불과 73광년 거리에 위치한 HD 63433d행성은 쌍안경을 통해서도 관찰이 가능하다는 점이 놀라움을 자아낸다. 이 행성은 지구의 크기와 유사하며, 지름은 지구의 1.1배 정도이다. 이 행성이 공전하는 별은 태양의 크기의 91%, 질량의 99%에 달해 태양과 상당히 유사한 특성을 보인다. 이번 행성 발견은 천문학 저널에 'TESS 젊은 외계 행성 탐사(THYME)'라는 제목의 논문으로 소개됐다. 이 연구는 천문학계에 새로운 지평을 열며, 우주에 대한 인류의 지식 확장에 중요한 기여를 하고 있다.
-
- 생활경제
-
지구와 닮은 행성, 73광년 거리서 발견⋯가장 젊은 행성
-
-
나노봇, 남성 방광암 종양 90% 제거⋯기존 치료법의 혁신
- 나노로봇을 이용해 방광암을 90% 이상 줄일 수 있는 치료 방법이 개발됐다. 방광암은 주로 60~70대에서 발병하며, 방광 내에 악성 세포가 형성되는 질환으로 알려져 있다. 이 질환은 남성에게서 여성보다 34배 더 높은 발병 위험을 보이며, 비뇨기계 암 중 가장 흔한 형태로 알려져 있다. 또한 방광암은 대부분 5년 이내에 재발한다. 현재는 절제 수술이나 전신 혹은 국소적인 항암제 투여를 통한 치료가 진행되고 있으나, 높은 재발률로 인해 지속적인 관리가 요구되는 상태이다. 그러나 최근 나노로봇 기술의 발달로 방광암 종양을 현저히 줄일 수 있는 새로운 치료방법이 개발됐다. 영국 매체 데일리메일은 스페인 바르셀로나의 과학자들이 개발한 450나노미터 크기의 작은 로봇이 혈류를 통해 이동하면서 치료제를 전달하는 방식으로 방광암의 종양을 줄일 수 있다고 보도했다. 쥐를 대상으로 한 실험에서는 이 작은 나노로봇이 단 한 번의 시도로 종양의 크기를 줄임으로써, 여러 번의 치료 절차 없이도 종양을 제거할 수 있는 가능성을 보여줬다. 현재 방광암 치료법은 수술과 화학 요법을 포함하며, 종양의 크기를 줄이기 위해 약 4~6번의 병원 방문이 필요하다. 이 과정은 환자에게 약 6만5000달러(한화 약 8690만원) 이상의 치료 비용을 발생시킬 수 있다. 그러나 최근의 연구에 따르면, 나노로봇을 사용한 새로운 치료법은 단 한 번의 병원 방문만으로도 종양의 크기를 줄일 수 있다. 이번 혁신적인 연구는 카탈로니아 생명공학연구소(IBEC)와 스페인 생체재료연구센터(CIC biomaGUNE)의 과학자들이 생물의학연구소(IRB 바르셀로나), 바르셀로나 자치대학(UAB)과 함께 공동으로 수행했다. 나노로봇의 직경은 450나노미터이며, 배율을 2000만 배로 높여야 볼 수 있는 크기다. 개발된 나노로봇의 직경은 불과 450나노미터로, 이는 2000만 배 확대해야만 볼 수 있는 극히 작은 크기다. 이 로봇은 표면이 금 나노 입자(AuNP)로 덮여 있어, 연구원들이 로봇이 혈류를 통해 어떻게 이동하고 종양을 공격하는지 관찰할 수 있었다. 연구팀은 방광암을 앓고 있는 쥐의 혈류에 나노로봇을 주입한 후, 이 금색 기계가 작동하여 종양에 도달하고 몸 전체로 퍼지는 과정을 관찰했다. 이 나노로봇은 실리카 구체로 설계되었으며, 효소 우레아제와 방사성 요오드를 포함하는 다양한 구성 요소를 가지고 있다. 우레아제는 소변의 요소와 반응해 나노로봇의 움직임을 촉진시키며, 방사성 요오드는 암 세포를 치료하는 데 사용된다. 연구팀은 나노로봇이 종양 주변의 세포외 기질을 분해하고 pH 균형을 변화시켜 조직의 기계적 특성을 변화시킨다는 사실을 발견했다. 나노로봇이 요로 조직에 도달하면, 이는 마치 벽에 부딪히는 것처럼 행동한다. 그러나 종양의 해면 같은 구조로 인해, 나노로봇은 종양 내부로 흡수되어 방사성 요오드를 전달했다. 이 방사성 요오드는 국소 종양 및 갑상선암 치료에 일반적으로 사용되는 방사성 동위원소로, 암 세포를 효과적으로 치료하는 데 사용된다. 연구팀은 나노로봇이 종양 내부로 어떻게 진입할 수 있는지에 대해 초기에는 명확하지 않았다며 나노로봇이 종양의 성장을 감지하는 특정 항체가 부족하고, 일반적으로 건강한 조직보다 더 단단한 종양 조직의 특성 때문에 진입이 어려울 수 있다고 지적했다. 이 연구의 공동 제1저자이자 IBEC의 연구원인 메리트셀 세라 카사블랑카(Meritxell Serra Casablancas) 박사는 "그러나 우리는 나노로봇이 자체 추진 화학 반응을 통해 pH를 국부적으로 증가시킴으로써 종양의 세포외 기질을 분해할 수 있다는 사실을 관찰했다"고 말했다. 그는 "이 과정은 종양 내부로의 침투를 촉진했으며, 나노로봇이 종양 내에 우선적으로 축적되는 데 도움을 주었다"고 덧붙였다. 방광암 치료의 초기 회복률은 대체로 성공적이지만, 환자의 약 30~70%에서 종양이 재발해 추가 치료와 비용이 필요한 경우가 있다. 또한 약 10~30%의 환자에서는 종양이 더 진행될 수 있다. IRB 바르셀로나 어드밴스드 디지털 현미경 플랫폼의 리더인 줄리엔 콜롬벨리(Julien Colombelli) 박사는 "우리 팀이 개발한 혁신적인 광학 시스템은 종양 자체에 의해 반사된 빛을 제거함으로써, 전례 없는 해상도로 사전 표지 없이도 기관 전체에서 나노입자를 식별하고 위치를 정확하게 찾을 수 있도록 도와주었다"고 설명했다. 미국 국립암연구소(National Cancer Institute)의 자료에 따르면, 방광암 치료 비용은 2015년의 84억 달러(약 11조 2434억 원)에서 2020년 현재 약 94억 달러(약 12조 5819억 원)로 증가했다. 나노로봇 연구를 진행한 과학자들은 아직 나노로봇 치료가 종양의 재발을 방지할 수 있는지 확신할 수 없지만, 나노로봇의 성공 여부에 따라 장기적인 효과를 평가하기 위한 추가 연구를 이미 진행하고 있다. 이 연구의 공동 저자인 크리스티나 시모(Cristina Simó) 박사는 "이 연구 결과는 치료 효과를 증대시킬 수 있는 다른 방사성 동위원소의 사용 가능성을 탐구하는 새로운 길을 열었다"고 말했다. 한편, 한국은 약 20여 년 전인 2013년, 세계 최초로 암 치료를 위한 나노로봇을 개발했다. 이 나노로봇은 진단과 치료를 동시에 수행할 수 있는 능동형 박테리아를 활용한 것으로, 그 당시 세계 최초의 능동형 나노로봇으로 인정받았다. 이 나노로봇, 일명 '박테리오봇'은 박테리아의 특성인 인식 능력과 운동성을 활용하여 암을 타겟팅하고, 약물 전달체와 결합된 치료 성능을 가진 새로운 개념의 의료 나노로봇이다. 이러한 통합적인 접근 방식은 박테리오봇이 암 세포를 정확하게 인식하고, 적극적으로 치료제를 전달할 수 있게 함으로써, 당시 의학 분야에서 중요한 혁신으로 평가됐다.
-
- IT/바이오
-
나노봇, 남성 방광암 종양 90% 제거⋯기존 치료법의 혁신
-
-
합금의 한계를 뛰어넘는 레이저 제작 금속
- 미국 에너지부(DOE)의 오크리지 국립 연구소(ORNL) 연구팀은 레이저 기반 적층 제조(AM)를 사용하여 더 강하고 파손 가능성이 적은 고엔트로피 합금을 개발했다. 적층 제조는 금속 분말을 레이저나 열 등으로 녹여서 원하는 모양의 구조물을 만드는 공정으로, 3D 프린팅이라고도 한다. 미국의 과학기술 전문 매체인 사이테크데일리(SciTechDaily)에 따르면 연구원들은 다섯 가지 이상의 원소를 일정 비율로 혼합하여 고엔트로피 합금(HEA)이라는 내구성 있는 합금을 개발했다. 고엔트로피 합금은 심각한 마모 저항성, 극한의 온도와 방사선, 높은 응력을 견딜 수 있는 특성으로 인해 다양한 산업 분야의 사용이 기대된다. 그러나 기존의 3D 프린팅으로 만든 고엔트로피 합금은 강도는 높지만 연성이 부족해 성형하기 어렵고 하중이 가해질 때 쉽게 파손될 수 있다는 단점이 있다. 이는 합금의 응용 범위를 제한하는 문제점 중 하나다. 새로운 고엔트로피 합금의 특징 연구팀은 레이저 기반 적층 제조 공정을 활용하여 나노미터 두께의 나노 라멜라 구조를 가진 새로운 고엔트로피 합금을 개발했다. 이 나노 라멜라는 서로 다른 결정 구조를 가지고 있어 고강도를 제공한다. 또한, 이 판들의 명확한 가장자리는 일정 정도의 어느 정도의 미끄러짐을 허용하여 합금에 연성을 제공한다. 이것은 나노 라멜라가 여러 층으로 쌓인 판 구조와 유사하다는 것을 의미한다. 이러한 층과 층 사이에는 서로 다른 원소들이 포함되어 있다. 이 구조 덕분에 각 층이 서러 잘 붙어 강도가 높아지고, 판의 가장자리가 미끄러짐을 통해 연성이 향상되는 것이다. 새로운 고엔트로피 합금의 성능 새로운 고엔트로피 합금은 기존의 3D 프린팅 고엔트로피 합금에 비해 강도가 1.3배, 연성이 2배 이상 향상됐다. 이는 고엔트로피 합금의 한계를 극복하여 다양한 산업 분야에서 활용 가능성을 높일 것으로 기대된다. 연구팀은 오크리지 국립 연구소에 있는 파쇄 중성자 소스(Spallation Neutron Source)와 고급 광자 소스(Advanced Photon Source)를 활용하여 나노 라멜라의 구조와 특성을 분석했다. 파쇄 중성자 소스는 핵분열을 통해 생성된 중성자를 이용하여 물질의 내부 구조를 연구하는 장비이다. 반면, 고급 광자 소스는 고에너지의 광자를 사용하여 물질의 구조와 특성을 조사하는 장비다. 연구팀은 이러한 장비를 사용해 나노 라멜라의 두께와 결정 구조를 측정하고, 나노 라멜라가 합금의 강도와 연성에 미치는 영향을 연구했다. 연구 결과 나노 라멜라의 두께가 100나노미터(nm) 미만인 경우 강도가 가장 높고, 나노 라멜라의 결정 구조가 서로 다른 경우 연성이 가장 높다는 것을 발견했다. 고엔트로피 합금 응용 분야 연구팀은 이번 연구를 통해 레이저 기반 AM을 사용하여 고엔트로피 합금의 강도와 연성을 동시에 향상시킬 수 있다는 것을 보여주었다. 이는 고엔트로피 합금의 한계를 극복하여 다양한 산업 분야에서 활용 가능성을 높일 것으로 기대된다. 예를 들어, 새로운 고엔트로피 합금은 더 안전하고 연료 효율적인 차량, 더 강력하고 더 오래 지속되는 기계를 생산하는 데 사용될 수 있다. 새로운 고엔트로피 합금은 △더 가볍고 강한 항공기 및 우주선 제작, △더 안전하고 연료 효율적인 자동차 제작, △더 내구성이 뛰어난 풍력 터빈 및 태양광 패널 제작, △더 강하고 내식성이 뛰어난 의료 기기 제작 등에서 활용될 수 있다.
-
- 산업
-
합금의 한계를 뛰어넘는 레이저 제작 금속
-
-
우주에서 쏟아지는 다이아몬드 비⋯자기장 형성 열쇠?
- 다이아몬드는 지구에서 가장 귀중한 보석 중 하나이지만, 천왕성과 해왕성과 같은 거대 얼음 행성에서는 대기 중에서 비처럼 쏟아져 내릴 것으로 예상된다는 가설이 제기됐다. 과학기술 전문 매체 ifl사이언스와 엔디티비(NDTV)에 따르면 전통적으로 다이아몬드 형성에는 매우 높은 온도와 압력이 필요하다고 여겨져 왔지만, 최근의 연구는 다이아몬드가 지구보다 낮은 온도와 압력 조건에서도 형성될 수 있음을 시사한다. 최근 미국 SLAC 국립가속기연구소와 독일의 DESY 연구소, 헬름홀츠 센터 드레스덴-로젠도르프와 같은 국제 연구팀이 천왕성과 해왕성의 대기권과 유사한 조건을 실험실에서 재현하여 다이아몬드 생성 실험을 진행했다. 연구팀은 폴리스티렌 필름에 다이아몬드 모루를 사용하여 2200℃(화씨 3992도) 이상의 온도와 지구의 해수면 대기압의 약 100만 배에 해당하는 압력을 가했다. 이 실험 조건은 천왕성과 해왕성의 대기권 깊은 곳에서 발견될 수 있는 조건과 유사한 것으로, 과학자들은 이를 통해 다이아몬드가 형성되는 과정을 연구했다. 이후, 고에너지 X선을 사용하여 폴리스티렌 필름을 가열했다. 이 X선은 필름 내의 탄소 원자를 활성화시켜 다이아몬드로 변환하는 데 중요한 역할을 했다. 이 과정을 통해 연구팀은 폴리스티렌 필름에서 다이아몬드를 형성하는 데 성공했다. 이 다이아몬드는 천왕성과 해왕성의 대기권에서 형성되는 다이아몬드와 같은 구조와 특성을 가지고 있는 것으로 밝혀졌다. 이 연구 결과는 전통적인 다이아몬드 형성에 대한 이해를 바꾸는 중요한 발견이다. 기존에는 다이아몬드 형성에는 매우 높은 온도와 압력이 필요하다고 여겨졌었다. 그러나 이번 연구는 다이아몬드가 더 낮은 온도와 압력에서도 형성될 수 있음을 보여줬다. 이는 천왕성이나 해왕성과 같은 거대한 얼음 행성의 대기권에서 다이아몬드가 어떻게 형성되는지에 대한 새로운 통찰을 제공하며, 천문학과 우주 과학 분야에 중요한 영향을 미칠 것으로 기대된다. 다이아몬드 비가 형성되는 이유 천왕성과 해왕성의 대기권은 지구의 대기권보다 훨씬 깊고 뜨겁다. 이러한 조건에서는 수소, 헬륨, 메탄, 아르곤 등의 기체가 높은 압력과 온도에 의해 액체 상태로 변환된다. 이 액체 상태의 기체들은 천왕성과 해왕성의 내부에서 바깥쪽으로 이동하면서 점차 식게 된다. 이 과정에서 액체 상태의 기체들은 다시 고체 상태로 변하게 되는데, 이때 탄소 원자들이 모여 다이아몬드 결정을 형성한다. 이렇게 형성된 다이아몬드는 대기 중에서 무거운 물체처럼 가라앉게 되며, 이를 '다이아몬드 비'라고 부른다. 다이아몬드 비는 지구에서는 발생하지 않는다. 지구의 대기권은 천왕성이나 해왕성 대기권보다 훨씬 얇고 차가워 이러한 과정이 일어나지 않기 때문이다. 다이아몬드 비와 자기장 형성 연구팀의 수석 저자인 멍고 프로스트 박사는 "다이아몬드 비는 천왕성과 해왕성의 복잡한 자기장의 형성에 영향을 미쳤을 가능성이 있다"고 말했다. 프로스트 박사의 연구에 따르면, 천왕성과 해왕성의 대기권에는 다이아몬드가 풍부하게 존재할 것으로 추정된다. 다이아몬드는 전기를 잘 전달하는 성질을 가지고 있기 때문에, 이 물질이 대기권을 통해 이동하며 자기장 생성에 기여했을 가능성이 제기됐다. 프로스트 박사는 "이번 연구는 거대 얼음 행성에 대한 우리의 이해를 크게 확장시킬 것"이라고 말했다. 더 나아가, 다이아몬드 비와 자기장 형성에 대한 추가 연구는 이러한 거대 얼음 행성들의 신비를 더욱 깊게 탐구하는 데 도움이 될 것이다. 다이아몬드 비는 우주의 또 다른 매혹적인 현상으로, 향후 추가 연구를 통해 이 현상에 대한 더 많은 정보를 얻을 수 있을 것으로 기대된다.
-
- 산업
-
우주에서 쏟아지는 다이아몬드 비⋯자기장 형성 열쇠?
-
-
아마추어 천문학자, 초신성 폭발 후 블랙홀 형성 목격
- 최근 아마추어 천문학자가 초신성의 폭발 과정에서 블랙홀의 형성을 관측했다. '초신성(超新星, supernova)'은 일반적인 별의 폭발인 신성(nova)보다 훨씬 더 강력한 에너지를 방출하는 별의 폭발 현상이다. 이 폭발은 매우 밝게 빛나며, 폭발적인 방사선을 방출한다. 폭발의 밝기는 수 주에서 수 개월 동안 지속되며, 때로는 은하 전체의 밝기에 필적할 정도다. 미국의 과학 전문 매체 코스모스 매거진은 이스라엘 와이즈만 연구소(Weizmann Institute of Science)의 핑첸(Ping Chen) 연구원이 이 과정을 실시간으로 처음으로 관측했다고 보도했다. 네이처지에 발표된 이 연구에 따르면, 아마추어 천문학자의 발견과 연구팀의 적절한 타이밍, 그리고 별의 연구 협력이 결합하여, 초신성 폭발이 블랙홀이나 유사한 천체를 형성하는 직접적인 증거를 제시했다. 핑첸은 이 연구의 중요성을 강조하며, "우리의 연구는 가능한 모든 증거를 모아 퍼즐을 풀어나가는 것과 같다. 이 모든 조각들이 모여 진실을 이룬다"고 말했다. 이 발견의 시작점은 남아프리카의 아마추어 천문학자 베르토 모나드가 약 7600만 광년 떨어진 NGC 157 은하의 나선팔에서 새롭게 발견한 밝은 물체, SN 2022jli의 관측에서 비롯된다. 하늘에서 갑자기 나타난 새로운 밝은 물체는 종종 초신성의 출현을 나타낸다. 이러한 현상이 발견되면, 천문학자들은 추가 관측을 통해 물체의 정확한 위치와 다른 정보를 파악하고 빠르게 망원경을 해당 물체에 맞춘다. 초신성은 예측하기 어렵고 짧은 기간 동안만 관측할 수 있어 연구가 어렵다. 초신성은 별의 수명이 다할 때 강력하게 폭발하는 현상으로, 별의 자체 중력에 의해 붕괴되면서 발생한다. 이 폭발은 별이 다시 어두워질 때까지 은하계 전체만큼 밝아질 수 있다. 블랙홀과 중성자별은 별의 붕괴로 인해 형성되는 초밀도 물체다. 과학자들은 이들이 초신성 이후에 형성될 것으로 확신하지만, 초신성 폭발에서 이러한 소형 물체가 형성되는 전체 과정을 직접적으로 관측한 적은 없었다. 그러나 최근의 연구와 관측을 통해 이 단계가 직접 확인될 수 있게 됐다. SN 2022jli는 일반적인 우주 규칙을 따르는 것이 아닌 평범하지 않은 패턴을 보였다. 처음에는 밝게 빛났으나 점차 어두워졌고, 발견된 후 약 한 달이 지난 시점에서 다시 밝아지는 현상을 나타냈다. 이후 200일 동안 약 12일 간격으로 주기적인 밝기 변화를 경험했다. 벨파스트 퀸스 대학의 토마스 무어 교수는 이와 관련하여 "SN 2022jli의 데이터 분석 결과, 반복적으로 밝아지고 어두워지는 패턴이 명확하게 관찰되었다"고 말했다. 무어 교수는 "이러한 주기적인 변화가 초신성 광 곡선에서 감지된 것은 이번이 처음"이라고 설명했다. 이 연구는 2023년 천체물리학 저널인 '아스트로피지컬 저널(Astrophysical Journal)'에 실렸다. 연구팀은 이러한 특이한 패턴이 초신성 폭발을 겪은 후 살아남은 두 번째 별의 영향 때문일 것으로 추측하고 있다. 그들은 이 두 번째 별이 소형 물체의 존재를 간접적으로 드러내고 있다고 설명했다. 연구팀은 블랙홀이나 중성자별이 동반성 별의 풍부한 대기에서 수소를 흡수할 것이라는 가설을 세웠다. 이러한 흡수 현상, 즉 '강착'은 연구원들이 관찰한 주기적인 변화의 원인으로, 많은 에너지를 방출하는 파동 형태로 나타난다. 연구원들은 "SN 2022jli가 보여준 독특한 특성들은 이 시스템에서 일어나는 현상이 매우 드물다는 것을 시사하며, 이는 초신성 폭발을 겪고도 살아남는 결합된 이중 별계의 드문 존재로 설명될 수 있다"고 밝혔다. 또한, "SN 2022jli의 사례는 초신성 폭발과 그 이후 소형 천체 형성 사이의 직접적인 연결고리를 제시한다"고 네이처 저널에 기고했다. 한편, 2018년에는 중국, 미국, 독일의 연구진이 초신성 폭발 과정에 대한 중요한 정보를 얻기 위해 초신성 잔해물 간의 상대적 거리 측정에 성공했다. 이들은 잔해물 주변의 밝은 별들을 기준점으로 사용하여 측정의 정확도를 높였으며, 이러한 연구는 별의 진화와 소멸 과정을 이해하는 데 큰 도움이 되고 있다.
-
- 산업
-
아마추어 천문학자, 초신성 폭발 후 블랙홀 형성 목격
-
-
레이저 가공 HEA, 3D 프린팅으로 강도·연성 향상
- 최근 레이저와 3D 프린팅 기술을 활용해 강도가 높고 유연성을 갖춘 새로운 형태의 합금을 개발하는 데 성공했다. 합금이란, 기본 금속에 다른 금속을 섞어 고온에서 녹인 후 식혀 만들어진, 원래 금속과는 다른 성질을 가진 새로운 금속 물질을 말한다. 이러한 합금을 제작하는 주된 목적은 기계적 성질을 개선하고, 부족한 특성을 보완하여 금속의 기능을 증진시키기 위함이다. 과학기술 전문 매체 사이테크데일리(SciTechDaily)는 레이저 기반 적층 제조 방식을 이용하여 더 강력하고 파손 가능성이 낮은 고엔트로피 합금(HEA)을 만드는 방법을 소개했다. '고엔트로피 합금(HEA:High entropy alloys)'은 기존의 합금 제조 방식과 비교했을 때 뛰어난 강도와 내구성을 제공하며, 합금의 적용 범위를 확장시킬 수 있는 잠재력을 가지고 있다. HEA는 심각한 마모, 극한의 온도, 방사선 및 높은 압력과 관련된 응용 분야에서 사용가능하다. 3D 프린팅, 또는 적층 가공(AM)으로 알려진 기술을 사용해 만들 수 있는 합금은 일반적으로 연성이 부족하다는 단점을 가지고 있다. 이는 3D 프린팅을 통해 제작된 고엔트로피 합금이 형태를 유지하는 데 어려움을 겪고, 하중을 받을 때 충분히 변형되거나 늘어나지 않아 쉽게 파손될 수 있다는 것을 의미한다. 그러나 최근 과학자들은 레이저 기반의 적층 가공 방식을 사용하여, 이러한 연성 문제를 개선한 더욱 강하고 연성이 뛰어난 고엔트로피 합금을 개발하는 데 성공했다. 이들은 이러한 성능 향상의 기본 메커니즘을 더 깊이 이해하기 위해 중성자와 X선 산란, 그리고 전자 현미경과 같은 고급 분석 기술을 활용했다. 이러한 연구 결과는 3D 프린팅 합금의 사용 범위를 확장하고, 그것이 적용될 수 있는 산업 분야를 다양화하는 데 기여할 수 있을 것으로 기대된다. 특히, 연성과 강도가 모두 향상된 새로운 형태의 합금은 더욱 까다로운 응용 분야에서도 활용될 수 있을 것으로 전망된다. 잠재적인 산업 응용과 에너지 효율성 산업계는 미래에 제조 과정에서 더욱 강력하고 형태를 쉽게 잡을 수 있는 고엔트로피 합금을 사용 가능할 것으로 기대하고 있다. 이러한 HEA를 산업 응용 분야에 사용하기 위해서는 가벼우면서도 복잡한 형태의 HEA 부품에 대한 높은 내구성, 신뢰성, 그리고 파손 저항성이 요구된다. 새로운 합금은 더 안전하고 연료 효율적인 차량의 제조, 더 강한 제품의 생산, 그리고 더 오래 지속되는 기계의 개발을 가능하게 하여, 소비자와 산업계 모두에 혜택을 가져올 것으로 기대된다. 또한, 레이저를 사용하여 분말 합금을 고체 금속 형태로 융합하는 레이저 기반의 적층 가공 방식은 에너지 효율성이 매우 높다는 점에서, 새로운 유형의 HEA 생산에 있어 매력적인 방법으로 여겨진다. 이는 에너지 소비를 줄이면서도 고품질의 합금 부품을 생산할 수 있는 방법으로, 지속 가능한 제조 및 공정 효율성 측면에서 중요한 역할을 할 것으로 예상된다. 나노 라멜라 구조와 기계적 특성 레이저 기반 적층 가공 공정은 나노미터 두께의 나노 라멜라(얇은 판층) 구조를 생산할 수 있다. 이 공정은 높은 강도를 제공하면서도, 나노 라멜라의 뚜렷한 가장자리가 일정 수준의 미끄러짐(연성)을 허용하여 유연성을 보장한다. 이러한 나노 라멜라는 평균 약 150나노미터 두께의 면심 입방체(FCC) 결정 구조와 평균 약 65나노미터 두께의 체심 입방체(BCC) 결정 구조의 교차 층으로 구성된다. 개발된 새로운 고엔트로피 합금은 약 1.3기가파스칼(인장강도 단위)의 높은 항복 강도를 나타내며, 이는 가장 강한 티타늄 합금의 강도를 능가하는 수준이다. 또한, 이 HEA는 약 14%의 연신율을 제공하는데, 이는 동일한 항복 강도를 가진 다른 AM 금속 합금보다 높은 수치다. 연신율은 재료가 파손되지 않고 얼마나 많은 굽힘을 견딜 수 있는지를 나타내는 지표로, 재료의 유연성과 내구성을 측정하는 중요한 요소다. HEA 첨단 연구기술 및 시설 한편, 미국 테네시주에 위치한 오크리지 국립연구소(ORNL: Oak Ridge National Laboratory)의 연구원들은 에너지부(DOE) 산하 과학 사용자 시설인 파쇄 중성자원(Spallation Neutron Source)을 통해 변형 상태에서 HEA 샘플의 내부 기계적 부하 분배를 조사할 수 있었다. 이 시설의 중성자 데이터는 합금 내부의 상세한 구조적 정보를 제공함으로써 HEA의 기계적 특성에 대한 깊은 이해를 가능하게 했다. 또한, 연구팀은 ORNL 내의 다른 DOE 과학 사용자 시설인 나노입자 재료 과학(Nanophase Materials Sciences) 센터에 위치한 원자 프로브 장비를 활용하여, 교대로 층을 이루는 나노 라멜라 구조 및 미세 구조의 상세한 3D 이미지를 캡처했다. 이와 별개로, 미국 일리노이주에 위치한 시카고 아르곤 국립연구소(Argonne National Laboratory)의 첨단방사광가속기(Advanced Photon Source)는 어닐링 과정을 거친 다양한 HEA 샘플의 단계를 연구하는 데 사용되었다. 이 시설에서의 X선 회절 분석은 합금의 열처리 과정이 그 성질에 어떻게 영향을 미치는지를 평가하는 데 중요한 역할을 했다. 미국 내 첨단 연구기술 및 시설의 활용은 HEA의 개발과 응용에 있어 중요한 도약점을 제공하며, 합금의 구조적 및 기계적 특성에 대한 포괄적인 이해를 가능하게 한다. 이러한 첨단 연구는 HEA의 미래 적용 가능성을 확장하고, 재료 과학 분야에서의 혁신적 발전을 촉진할 것으로 기대된다. 연구소들의 고도화된 기술과 시설은 재료의 기본 구조부터 그 성능에 이르기까지 광범위한 분석을 허용함으로써, 합금의 특성을 극대화하고 다양한 산업 분야에 적용할 수 있는 새로운 기회를 열어준다.
-
- 산업
-
레이저 가공 HEA, 3D 프린팅으로 강도·연성 향상
-
-
나사 주노 탐사선, 목성 위성 '이오' 초근접 비행…화산 활동 원인·패턴 규명 기대
- 미국 항공우주국(NASA·나사)의 주노 우주선이 목성의 위성 이오(Io)에 대한 대담한 초근접 비행을 통해 화산 활동의 원인과 패턴을 탐구할 수 있는 새로운 기회의 문을 열었다고 과학 기술 전문 매체 퓨처리즘이 지난 7일(현지시간) 보도했다. 나사에 따르면 주노 우주선은 지난주 태양계에서 가장 활발한 화산 활동을 보이는 이오에 20년 만에 가장 근접한 비행을 실시했다. 이 과정에서 주노는 이오의 변화무쌍한 표면과 화산 활동의 새로운 이미지를 포착했다. 주노 우주선은 지구 저궤도를 벗어나 이오의 표면에서 약 930마일(약 1497미터) 이내까지 접근했을 가능성이 높은 것으로 알려졌다. 나사는 이번의 드문 초근접 비행을 통해 주노 우주선의 장비가 아주 풍부한 데이터를 축적했을 것으로 기대하고 있다. 주노, 이오 위성 20년 만에 초근접 촬영 이미 주노가 포착한 사진들은 이오의 화산 활동의 실체를 드러내는 데 큰 도움이 될 것으로 보인다. 이 사진들에는 유황으로 덮인 평원과 드문드문 솟아 있는 이오의 산들이 선명하게 포착됐다. 이는 갈릴레이 위성의 노란색과 갈색 색조에 대한 이해를 높이는 데 기여할 것이다. 또한, 목성에서 반사된 햇빛 덕분에 달의 어두운 면도 관찰될 수 있었다. 이번 근접 비행은 태양계 탐사에서 중요한 이정표가 될 것으로 기대된다. 사우스웨스트 연구소의 물리학자이자 주노 탐사선의 수석 연구원인 스콧 볼튼은 최근 뉴욕 타임스와의 인터뷰에서 이오 표면의 다양한 지형을 페퍼로니 피자에 비유하며 "경외감을 느꼈다"고 말했다. 이오, 뜨거운 용암 분출 위성 태양계에서 화산 활동이 가장 활발한 목성의 위성중 하나인 이오는 뜨거운 온도로 유명하다. 천문학자들은 이오의 지각 아래에 마그마의 바다가 존재한다고 믿고 있으며, 주노의 데이터를 통해 이를 확인할 수 있을 것으로 기대하고 있다. 이오의 열은 거대한 조석력에 의해 더욱 증폭되는 것으로 알려져 있다. 이오가 목성과 다른 위성들 사이의 중력적 힘겨루기의 중심에 위치해 마그마를 뒤흔들고, '조석 가열'이라는 현상을 통해 엄청난 마찰열을 생성한다고 한다. 이오는 갈릴레이 위성들과 달리 물이 존재하지 않지만, 그 대신 전혀 다른 형태의 액체인 용암이 흘러내린다. 이 용암의 흐름은 이오의 중요한 특징 중 하나이고, 때때로 수백 개의 화산이 장관을 이루며 분출하는 광경을 연출한다. 이 용암은 이오의 내부(마그마로 추정되는 바다)에서 끊임없이 표면으로 흘러나와 정기적으로 이전에 없던 완전히 새로운 표면을 만들고, 용암 호수로 메운다. 과학자들은 주노를 통해 이러한 화산 현상의 원인과 어떤 패턴이 있는 지를 탐구하고 있다. 볼튼은 비행 완료에 앞서 성명을 통해 "이번 비행에서 얻은 데이터와 이전 관측 자료를 결합하여 주도 과학팀은 이오의 화산이 어떻게 변화하는지 연구하고 있다"고 설명했다. 그는 "우리는 화산이 얼마나 자주 분출하는지, 얼마나 밝고 뜨거운지, 용암 흐름의 모양이 어떻게 변하는 지, 그리고 이오의 활동이 목성 자기권의 하전 입자의 흐름과 어떻게 연결되어 있는지 찾고 있다"고 말했다. 주노 우주선은 오는 2월 3일 목성을 다시 한번 '초근접' 촬영할 예정이다. 이는 7년 넘게 궤도를 돌면서 57번째로 목성을 근접 비행하는 임무가 될 것이다. 한편, 목성은 태양계의 다섯번째 행성이자 가장 큰 행성으로 종종 행성의 왕으로 불린다. 목성은 4개의 갈릴레이 위성을 포함해 최소 500개의 위성이 있는 것으로 알려져 있다. 일부 과학자들은 목성이 최대 600개의 위성을 가지고 있다고 추산하기도 한다. '갈릴레이 위성' 또는 '갈릴레오 위성'은 1610년 과학자 갈릴레이 갈릴레오가 목성 주변에서 발견한 4개의 위성을 말한다. 이들 위성은 이오, 에우로페, 가니메데, 칼리스토 등 제우스(목성의 이름)의 연인의 이름을 따서 지었다. 주노(Juno) 우주선은 나사의 목성 탐사선으로 2011년 8월 5일 뉴 프런티어의 일환으로 케이프커내버럴 공군 기지에서 발사됐다. 극 궤도에 존재하는 성분과 중력장, 자기장 등을 조사하는 임무를 맡았다. 그밖에 목성의 대기에 존재하는 물의 양과 바위 응어리 존재 여부, 행성의 질량 분포, 시속 600km에 도달할 수 있는 목성의 대기 조사 등의 임무를 수행하고 있다. 오는 2024년 2월 3일 58번째로 이오 위성을 근접 통과할 예정이며 2025년 9월 2차 탐사 확장 계획이 종료된다.
-
- IT/바이오
-
나사 주노 탐사선, 목성 위성 '이오' 초근접 비행…화산 활동 원인·패턴 규명 기대
-
-
새해 결심, 장수 전문가가 추천하는 5가지 건강습관
- 새해가 시작되면서 많은 이들이 운동 등 건강한 생활을 위한 새로운 결심을 하고 있다. 이와 관련하여 폭스뉴스는 플로리다 출신의 신경학자이자 장수 전문가인 브렛 오스본 박사와 건강 습관에 관한 인터뷰를 진행했다. 오스본 박사는 "새해 건강을 삶을 유지하기 위한 5가지 건강 습관으로는 항염증 식단, 근력운동, 혈압, 혈액검사, 스트레스 관리가 중요하다"고 말했다. 오스본 박사는 "우리의 풍부한 과학적 지식에도 불구하고 기대 수명은 수십 년 만에 최저 수준에 있다"며 "올해 또는 그 이후에도 건강을 유지하기 위한 선택은 여전히 가능하다"고 말했다. 그는 최신 웰니스 트렌드를 따르기보다는 건강 유지를 위해 검증된 위의 5가지 기본 사항을 지키는 것을 권장했다. 첫 번째 권장 사항은 낮은 혈당지수(low-GI)를 가진 항염증 식단을 섭취하는 것이다. 혈당지수는 음식이 혈당 수준에 미치는 영향을 0에서 100까지 점수로 나타낸다. 낮은 GI 식단을 따르면 근육을 유지하면서 인슐린 수치를 낮추고 지방 손실을 유도할 수 있다고 오스본 박사는 설명했다. 또한, 탄수화물 섭취는 주로 야채와 채소에서 얻는 것이 좋으며, 혈당지수가 40 이상인 설탕, 빵, 파스타, 쌀과 같은 단순 탄수화물은 피해야 한다고 조언했다. 충분한 양의 지방(올리브 오일, 아보카도, 견과류, 버터 등)을 섭취하고, 적당량의 단백질(살코기 및 생선에서)을 통해 근육량을 유지하는 것이 중요하다고 강조했다. 오스본 박사는 "근육을 유지하고 추가하는 것이 지방을 녹이는 가장 효과적인 방법"이라며, 노화로 인한 근육 손실이 인지 저하와 관련 있기 때문에 근력 운동을 통해 근육을 보호하는 것의 중요성을 강조했다. 두 번째로 노화로 인한 근육 손실은 단순히 허약함에 그치지 않고 인지 저하와도 밀접한 관련이 있다. 이는 근력 운동을 통해 근육을 보호해야 하는 중요한 이유다. 그는 "심장병이나 암과 같은 노화 관련 질병 예방은 근육량과 직결되어 있다"고 말하며, "근육을 증가시키는 것은 허리둘레의 지방을 빠르게 녹이는 방법 중 하나"라고 강조했다. 오스본 박사는 근육에 점진적으로 부담을 주는 기본적이면서도 복합적인 운동을 권장하고 있다. 이는 근육 형성 반응을 유도하는 데 도움이 된다. 운동 계획을 세워두고 매 세션마다 이전의 성과를 개선하려는 노력을 통해 신체는 점진적으로 적응하고 강해질 것으로 예상된다. 그는 근력 훈련이 뇌에도 긍정적인 영향을 미친다고 말했다. 이는 학습과 기억 형성을 돕는 화학 물질을 방출하여 인지 기능을 보호하기 때문이다. 오스본 박사는 스쿼트, 벤치 프레스, 데드리프트, 오버헤드 프레스, 풀업/턱걸이와 같은 기본적이지만 효과적인 운동들을 근력 훈련 프로그램의 핵심으로 추천했다. 운동 초보자의 경우 경험이 풍부한 트레이너를 찾아 올바른 자세를 배우고 개인에게 맞는 프로그램으로 시작하는 것이 좋다. 세 번째 건강 습관으로는 혈압 모니터링이 있다. 오스본 박사는 노화 관련 질병의 위험을 감소시키는 가장 쉬운 방법 중 하나로 혈압 관리를 꼽았다. 그는 자동 혈압 커프를 구입해 매일 혈압 수치를 기록할 것을 권장했다. 오스본 박사는 "미국심장협회의 지침에 따라 정상 혈압을 목표로 설정하고, 지속적으로 혈압이 상승하는 경우 의사와 상담해야 한다"고 조언했다. 그는 고혈압이 관리되지 않을 경우 관상동맥이나 경동맥에 플라크가 쌓여 심부전이나 뇌졸중으로 이어질 수 있다고 경고했다. 하루에 1티스푼으로 소금 섭취를 줄이는 것이 혈압약과 동일한 효과가 있다는 연구 결과가 있다. 건강한 혈압을 유지하는 가장 좋은 방법은 깨끗한 식습관, 매일의 운동, 스트레스 완화 노력을 통해서다. 일일 소금 섭취를 1티스푼으로 줄이는 것이 혈압약과 유사한 효과를 낼 수 있다는 연구 결과가 있다. 건강한 혈압을 유지하는 가장 좋은 방법은 건강한 식습관, 규칙적인 운동, 스트레스 관리를 통한 것이다. 또한, 오스본 박사는 "마그네슘, 비트 뿌리 추출물, 오메가-3 지방산 등의 보충제가 혈압을 낮추는 데 도움이 될 수 있다"고 말했다. 네 번째 권장 사항은 나이가 들면서 증가하는 염증, 변동하는 호르몬 수치, 혈당 조절의 어려움을 감안하여 정기적인 혈액 검사를 받는 것이다. 오스본 박사는 "신체 내부의 상태를 즉각적으로 파악할 수 있다면 생화학적으로 개입하여 산화 과정을 늦출 수 있다"고 설명했다. 연구원에 따르면, 알츠하이머병 진단을 위한 혈액 검사가 올해 초 시장에 출시될 수 있다. 전반적인 건강에 영향을 미치는 주요 지표는 다음과 같다. 먼저 HbA1c는 장기적인 혈당 조절 척도로, 오스본 박사는 5 미만의 수치를 권장한다. 인슐린 수치는 낮은 HbA1c와 함께 5 미만일 때 지방 연소와 연관된다. 지질 프로필은 혈액 지방을 측정하며, LDL(나쁜 콜레스테롤)은 100 미만, HDL(좋은 콜레스테롤)은 60 이상, 트리글리세리드는 100 미만이 이상적이다. 또한 아포지단백질 B는 혈관 질환 위험 요소를 나타낸다. CRP는 염증 지표로, 0.5 미만으로 유지하는 것이 좋다. 호르몬 수치 중 비타민 D3는 호르몬으로 간주되므로 그 수치도 중요하다. 오스본은 "테스토스테론, 에스트라디올, 프로게스테론과 갑상선의 최적 수치는 웰빙에 매우 중요하며 쉽게 검사할 수 있다"며 "건강한 식단, 운동, 그리고 필요한 경우 호르몬 대체 요법(HRT)을 통해 생화학 균형을 쉽게 최적화할 수 있다"고 말했다. 마지막으로, 스트레스 수준을 관리하는 것이다. 스트레스 호르몬인 코르티솔을 관리하는 것은 종종 간과되지만 매우 중요하다. 오스본은 "만성적으로 높은 코르티솔 수치는 고혈압, 인슐린 저항성 또는 당뇨병 전증, 낮은 테스토스테론 수치와 관련이 있다. 낮은 테스토스테론 수치는 에너지 수준, 성욕 및 신체 구성에 영향을 미친다"고 주장했다. 전문가들은 스트레스 수준을 낮추는 데 도움이 되도록 요가, 명상, 해변에서 시간 보내기, 빨간불 사우나에서 세션 즐기기 등 편안한 활동을 찾아볼 것을 권장한다. 휴가 시간을 계획하는 것도 중요하다. 또 최적의 수면은 스트레스와의 전쟁에서 중요한 도구이며, 가족 및 친구들과의 사회적 상호작용을 계획하는 것 역시 중요하다.
-
- 생활경제
-
새해 결심, 장수 전문가가 추천하는 5가지 건강습관
-
-
탄소 질화물, 다이아몬드를 뛰어넘는 초강력 물질 탄생
- 과학자들이 수십 년의 연구 끝에 다이아몬드에 필적하는 새로운 초경도 물질을 개발했다는 연구 결과가 공개됐다. 과학 전문매체 '사이테크데일리(scitechdaily)'에 따르면, 영국 에든버러 대학교(University of Edinburgh)를 포함한 국제 연구팀은 탄소와 질소를 혼합한 물질을 극한의 압력과 열에 노출시킴으로써, 다이아몬드보다 더 단단한 새로운 물질을 창출했다. 연구팀은 탄소와 질소를 혼합한 물질을 지구 내부와 유사한 약 100만 배의 대기압 압력에 노출시켰다. 더불어, 섭씨 150만 도 이상의 고온에서 가열하는 실험을 진행했는데, 이는 태양 표면의 온도에 가까운 극한의 조건이다. 이러한 극한 조건에서 탄소와 질소 원자는 강력하게 결합하여 '탄소 질화물(carbon nitride)'을 형성한다. 연구팀은 이 새로운 물질의 경도를 측정하기 위해 여러 강도 시험을 수행했다. 그 결과 이 탄소 질화물이 현재 알려진 물질 중 두 번째로 단단한 '입방정 질화붕소(cubic boron nitride)'보다 더 단단한 것으로 밝혀졌다. 이번 연구는 재료 과학 분야에 있어 중대한 발견으로, 특히 항공우주, 군사, 산업 분야 등에서의 응용 가능성이 높은 새로운 초경도 물질의 개발을 의미한다. 연구팀은 프랑스의 유럽 싱크로트론 연구 시설(European Synchrotron Radiation Facility, ESRF), 독일의 독일 전자 싱크로트론(Deutsches Elektronen-Synchrotron, DESY), 미국에 기반을 둔 고에너지 물리학 연구소(Advanced Photon Source, APS)에 있는 세 개의 입자 가속기를 이용하여 강렬한 X선 빔을 이용해 샘플을 조사했다. 이 X선 빔은 샘플 내의 원자 구조와 전자 분포를 산란시켜, 물질의 내부 구조를 세밀하게 분석할 수 있게 해준다. 연구 결과는 세 가지 다른 질화탄소 화합물이 초경도를 달성하기 위한 필수 구성 요소들을 보유하고 있다는 것을 보여준다. 특히 놀라운 점은, 이 세 화합물이 모두 일반적인 압력 및 온도 조건으로 돌아갔을 때도 다이아몬드와 유사한 특성을 유지한다는 것이다. 이러한 발견은 물질의 안정성과 내구성에 대한 새로운 이해를 제공하며, 과학 및 산업 분야에서의 응용 가능성을 확대한다. 추가적인 계산과 실험에 따르면 이 새롭게 개발된 물질이 광발광과 높은 에너지 밀도와 같은 여러 특별한 특성을 가지고 있음이 밝혀졌다. 이는 물질이 매우 적은 질량으로 상당한 양의 에너지를 저장할 수 있음을 의미한다. 연구팀은 이러한 초비압축성 탄소 질화물이 다양한 응용 분야에 적용될 잠재력이 크다고 지적했다. 그들은 이 물질이 다이아몬드와 비견될 수 있는 궁극적인 공학 재료로 자리 잡을 수 있다고 전망했다. 연구를 주도한 에든버러 대학교의 도미니크 라니엘(Dominique Laniel) 박사는 "이 새로운 질화탄소 물질 중 첫 번째 질화탄소 물질이 발견되었을 때, 우리는 지난 30년 동안 과학자들이 꿈꿔온 물질을 만들어낸 것이 믿기 어려웠다. 이러한 재료는 고압 재료 합성과 산업적 응용 사이의 간극을 메우는 데 강력한 동기를 제공한다."라고 말했다. 린셰핑 대학 플로리안 트리벨(Florian Trybel) 박사는 "이 물질은 다기능성이 탁월할 뿐만 아니라 지구 내부 깊숙한 곳에서 발견되는 조건과 유사한 극한의 합성 압력에서도 안정한 상태를 유지할 수 있다는 점을 보여준다. 우리는 이 공동 연구를 통해 이 분야에서 새로운 가능성을 열 것이라고 확신한다"라고 말했다. 이번 연구는 깨지지 않는 초단단 재료 개발 분야에서 중요한 진전을 이루었다. 이 새로운 재료는 자동차와 우주선의 보호 코팅, 내구성이 뛰어난 절삭 공구, 태양 전지판, 광검출기 등과 같은 다양한 산업 분야에 응용될 수 있는 잠재력을 가지고 있다. 이는 기술적인 혁신 뿐만 아니라 산업 전반에 걸친 여러 응용 분야에도 중대한 영향을 미칠 수 있을 것으로 기대된다.
-
- 산업
-
탄소 질화물, 다이아몬드를 뛰어넘는 초강력 물질 탄생
-
-
암세포, 근적외선 분자에 99% 파괴
- 과학자들은 근적외선을 사용해 아미노시아닌 분자를 활성화시키면, 이 분자가 진동하여 암세포의 막을 파괴하는 방법을 개발했다. 이 기술은 라이스 대학교, 텍사스 A&M 대학교, 텍사스 대학교의 연구팀에 의해 개발되었으며, 과학 전문 매체 '사이언스얼럿(ScienceAlert)'을 통해 보도됐다. 이 연구는 학술지 '네이처 케미스트리(Nature Chemistry)'에 게재됐다. 아미노시아닌 분자는 이미 바이오이미징 분야에서 합성 염료로 사용되고 있다. 암 탐지를 위해 저용량으로 사용하는 이 물질은 물속에서 안정적으로 유지되고 세포 외부에 부착하는 데 효과적이다. 라이스 대학교의 화학자 제임스 투어(James Tour)는 이 기술을 "분자 착암기"라고 부르며, "완전히 새로운 세대의 분자 기계로 이전의 페링가형 모터보다 기계적 움직임이 100만 배 이상 빠르고, 가시광선이 아닌 근적외선으로 활성화할 수 있다"고 강조했다. 연구팀은 근적외선이 신체 깊은 부분까지 도달할 수 있어, 뼈나 장기의 암을 수술 없이 치료할 수 있는 가능성을 열어준다고 설명했다. 이러한 발견은 암 치료 분야에 중요한 발전을 의미한다. 실험실에서 배양된 암세포에 대한 실험 결과, '분자 착암기'라는 새로운 방법이 세포를 파괴하는 데 99%의 높은 효율을 보였다. 또한 흑색종 종양이 있는 쥐에게 테스트한 결과, 실험에 참여한 쥐의 절반에서는 암이 사라졌다. 아미노시아닌 분자의 구조와 화학적 특성은 근적외선과 같은 적절한 자극이 있을 때 유지된다는 것을 의미한다. 이 분자가 움직일 때, 내부의 전자들은 플라스몬을 형성하고, 이는 전체 분자에 걸쳐 이동을 유도하는 집합적으로 진동하는 실체를 만든다. 라이스 대학의 화학자 키케론 아얄라 오로즈코(Ciceron Ayala-Orozco)는 "중요한 점은 우리가 이 분자들이 어떻게 작동할 수 있는지에 대한 새로운 이해를 얻었다는 것"이라고 강조했다. 그는 또한 "이 방법으로 분자 전체를 흥분시켜 특정 목표를 달성하는 데 사용되는 기계적 작용을 생성하기 위해 분자 플라즈몬을 사용한 것은 이번이 처음이다. 이 경우에는 암세포의 막을 파괴하는 것이 목표였다"고 덧붙였다. 플라스몬은 분자의 한쪽에 있는 팔을 통해 진동의 움직임으로 인해 분자를 암세포의 막에 연결하는 데 도움을 준다. 이 연구는 아직 초기 단계에 있지만, 이와 같은 초기 발견들은 매우 희망적인 결과를 보여주고 있다. 이 기술은 암세포가 어떤 종류의 방어 메커니즘을 진화시키기 어렵게 만드는 간단하고 생체역학적인 접근법이다. 연구팀은 이와 유사하게 작동할 수 있는 다른 종류의 분자들을 탐색하는 것이 다음 목표다. 아얄라 오로즈코는 "이 연구는 분자 차원에서 기계적 힘을 활용하여 암을 치료하는 새로운 방법에 대한 것"이라고 말했다. 이러한 접근은 암 치료 분야에서 새로운 잠재력을 열어줄 수 있는 중요한 발전이다. 한편, 플라스몬(plasmon)은 금속에서 발견되는 자유 전자의 집합적인 진동을 나타내는 물리학적 개념이다. 금속의 전자들은 특정 조건에서 집단적으로 진동할 수 있으며, 이러한 진동은 전기장과 상호작용하여 플라스몬을 생성한다. 플라스모닉스(plasmonics)라는 분야에서는 이러한 플라스몬의 고유한 성질을 이용하여 다양한 응용을 연구하고 있다. 플라스몬은 나노기술, 광학, 센서 기술 등에서 중요한 역할을 한다. 예를 들어, 플라스몬을 이용한 나노입자는 의료 영상, 암 치료, 화학 센서 등에서 사용된다. 특히, 플라스몬의 능력으로 빛의 파장보다 작은 구조에서도 빛을 조작하고 집중시킬 수 있기 때문에, 고해상도의 광학적 기술 개발에 중요한 기초가 된다.
-
- IT/바이오
-
암세포, 근적외선 분자에 99% 파괴
-
-
'로스 드롭렛' 기법, 커피의 맛과 추출량 극대화
- 미국 오레곤 대학의 연구에 따르면 '로스 드롭렛' 기법은 커피의 맛과 향을 더욱 높이는 것으로 나타났다. 사진=픽사베이 커피 맛과 추출량을 극대화하는 새로운 추출 기법이 주목받고 있다. 바로 '로스 드롭렛' 기법이다. 로스 드롭렛 기법은 물방울을 이용하여 커피를 추출하는 방식이다. 일반적인 추출 방식은 뜨거운 물을 한 번에 부어 커피를 추출하는 방식이지만, 로스 드롭렛 기법은 물방울을 조금씩 떨어뜨려 커피를 추출한다. 커피 애호가들은 원두를 갈기 전에 약간의 물을 첨가하면 더 맛있는 커피를 만들 수 있다고 오랫동안 믿어왔다. 미국 CNN 방송은 최근 미국 오레곤 대학의 연구원들이 발표한 연구 결과를 인용, 이러한 믿음을 뒷받침하는 것으로 나타났다고 보도했다. 연구팀은 그라인더에서 먼지가 뿜어져 나오는 등 종종 지저분한 커피 제조 과정을 해결하기 위한 시도로 시작된 이 기술이 커피 맛에도 어떤 영향을 미치는지 조사했다. 오레곤 대학의 전산 재료 화학 부교수인 연구 공동 저자 크리스토퍼 헨던(Christopher Hendon)은 커피 원두를 갈 때 가루가 흩어져 주변에 묻는 것에 대해, 약간의 물을 넣으면 그라인더에서 나오는 먼지가 뭉치지 않고 원두에 달라붙어 흩어지는 것을 방지할 수 있다고 말했다. 연구팀은 커피 원두를 갈 때 먼지가 흩어지는 이유는 정전기 때문이라는 연구 결과를 발표했다. 연구팀은 커피 원두를 갈 때 콩이 서로 부딪힐 때 마찰에 의해 정전기가 발생한다고 설명했다. 이 정전기는 분쇄 커피 입자를 같은 극성의 자석처럼 서로 밀어내어 사방으로 흩어지게 한다. '로스 드롭렛' 기술로 정전기 방지 물은 절연체와 같은 역할을 하여 이 정전기를 약화시킨다. 따라서 커피 원두에 물을 첨가하면 먼지가 뭉치는 것을 방지할 수 있다. 연구팀은 물 한 방울에서 위쪽에 이르는 소량의 물을 첨가하면 정전기를 부동태화하여 먼지가 뭉치는 것을 방지할 수 있다고 하며, 이 과정을 '로스 드롭렛' 기법이라고 한다. 연구팀은 물을 넣기 전에, 마이크로그램 단위까지 정밀하게 피펫을 사용해 커피의 무게를 정확하게 측정한 후 전문 그라인더를 사용하여 분쇄했다. 헨던 교수는 “커피 원두에 물을 첨가하면 정전기가 약해져 커피 가루가 뭉치지 않고 그라인더를 빠져나간다”라고 말했다. 물이 정확히 어떻게 작용하는지는 아직 밝혀지지 않았지만, 전하를 흡수하거나 그라인더 내부의 온도를 변화시켜 마찰을 줄이는 것으로 추측된다. 그는 또 “커피 원두에 물을 많이 넣으면 뭉치지 않고 더 잘 추출된다. 또한, 폐기물이 적어질 수도 있다. 그 이유는 물이 커피 가루의 표면적을 넓혀주기 때문이다라고 설명했다. 커피의 맛에 미치는 영향 커피 원두의 로스팅 유형과 분쇄도의 거칠기 등 여러 가지 요인에 따라 물이 커피의 맛에 미치는 영향은 달라질 수 있다. 하지만 연구에 따르면 일반적으로 물을 추가하면 추출 수율이 약 10% 증가하는 것으로 나타났다. 헨던 교수는 이 결과가 '로스 드롭렛' 기술의 이점을 확인하는 것으로 볼 수 있지만, 반드시 맛의 차이로 이어지는 것은 아니라고 지적했다. 이번 연구 결과는 지난 12월 6일 학술지 '매터(Matter)'에 기록됐다. 이 연구는 아직 초기 단계이며, 더 많은 연구가 필요하다. 특히, 다양한 로스팅 유형과 분쇄도의 거칠기에 따른 로스 물방울 기술의 효과에 대한 연구가 필요하다. 또한, 로스 드롭렛 기술이 커피의 맛에 미치는 영향에 대한 보다 구체적인 연구도 필요하다. 전반적으로, 로스 드롭렛 기술은 커피 추출을 개선하고 더 나은 맛을 내는 데 도움이 될 수 있는 잠재력이 있다. 그러나 더 많은 연구를 통해 기술의 효과와 한계를 보다 명확히 밝혀야 할 것이다.
-
- 생활경제
-
'로스 드롭렛' 기법, 커피의 맛과 추출량 극대화
-
-
[신년사] KB국민은행 이재근 은행장, "고객 중심 디지털 금융으로 도약"
- KB국민은행 이재근 은행장은 2024년 1월 2일 신년사를 통해 "고객 신뢰를 최우선으로 하는 '고객 퍼스트KB(First KB)', 미래 금융을 선도하는 '디지털 퍼스트KB(Digital First KB)', 미래 성장기반 강화를 통한 '압도적인 초격차 KB', 신명 나게 일하는 '현장 중심 KB'를 4대 핵심 경영방향으로 설정했다"고 밝혔다. 이 은행장은 "KB국민은행은 지난 2023년 명실상부한 리딩뱅크의 위상을 확고히 다진 한 해였다"며 "특히, 성장성, 건전성, 수익성의 '세 마리 토끼'를 잡고자 한 균형성장 전략이 결실을 맺으면서 경영 체력을 갖추게 되었다"고 말했다. 이어 "2024년에는 더욱 겸손하고 낮은 자세로 '리딩뱅크 KB'라는 이름이 자랑스러운 진정한 '국민의 은행'으로 거듭나기 위해 더욱 노력하겠다"고 강조했다. 이 은행장은 4대 핵심 경영방향에 대해 구체적으로 설명했다. 고객 퍼스트 KB를 위해 "시장환경 변화에 따라 새롭게 대두되는 다양한 리스크 요인에 대한 신속 대응 체제를 구축하고, A.I. 등 첨단 디지털 기술을 접목한 정교한 내부통제 시스템 구축과 보이스 피싱 같은 금융사기 예방 체계 강화에도 각별한 노력을 기울여 나갈 것"이라고 밝혔다. 디지털 퍼스트 KB를 위해 "국내 1위의 금융 수퍼 앱인 KB스타뱅킹을 KB금융그룹의 유니버설 플랫폼으로 확대하고, 고객들이 가장 선호하는 1등 비금융 플랫폼들과의 전략적 제휴 및 금융 서비스 연계를 통한 '임베디드 금융' 시장을 선점해 나감으로써 빅테크 기업이 부럽지 않은 KB의 금융ᆞ생활 플랫폼 생태계를 완성하고 그 안에서 다양한 고객 경험 제공과 고객 기반 확대를 이루어 나가겠다"고 밝혔다. 압도적인 초격차 KB를 위해 "지속 가능하고 견고한 자산 성장 능력을 통해 부동의 1위 사업자 지위를 흔들림 없이 지속해 나가겠다"며 "고객 중심의 Pricing 체제로의 대전환, 업무 효율화를 통한 업무 원가 절감, 핵심예금 확대를 통한 조달 코스트 절감 등 원가 절감을 위한 실질적인 노력을 뒷받침하겠다"고 밝혔다. 또한, WM, CIB, 자본시장 부문의 비이자 수익의 질적ᆞ양적 성장을 도모하고, 미래의 새 수익원인 비금융 분야에서 금산분리 완화 정책에 적극 대응함으로써 새로운 성장 기회를 발굴하겠다고 강조했다. 현장 중심 KB를 위해 "현장에서 가장 많이 사용되는 직원용 단말 거래 화면의 UI/UX를 개선하여 보다 쉽고 빠른 업무환경을 조성하고, 평가, 보상, 인사 등에서 본부와 현장의 모든 영업 담당 직원들이 우대 받을 수 있도록 관련 제도를 개편하여 실질적인 '현장 중심의 대전환'을 이루겠다"고 말했다. 이 은행장은 "KB의 대전환을 추진함에 있어서 가장 중요한 것은 바로 '사람'이며, 우리 직원들의 '정예화'를 이루는 것"이라며 "변화를 두려워하지 않고, 더 나은 내일을 꿈꾸며 학습하고 준비하는 직원 여러분들이 바로 KB 미래의 주인공"이라고 강조했다. 이 은행장은 "2024년은 우리 모두가 '스스로 힘쓰며, 쉬지 않는다'는 '자강불식(自强不息)'의 뜻을 새기면서 '압도적인 초격차 KB'의 내일을 준비하는 변화와 도전의 새해를 만들어 갑시다"고 당부했다.
-
- 경제
-
[신년사] KB국민은행 이재근 은행장, "고객 중심 디지털 금융으로 도약"
-
-
한국 4대 금융 지주, 2024년 사상 최대 실적 달성 전망
- 한국의 주요 금융지주들이 지난해에 이어 2024년에도 사상 최대 실적을 경신할 것이라는 시장 전망이 나왔다. 2일 금융정보업체 에프앤가이드에 따르면 유가증권시장에 상장된 4대 금융지주(KB·신한·하나·우리)의 올해 연간 당기순이익 추정치는 17조2316억원으로 나타났다. 이는 지난해 순익 추정치(16조5510억원)보다 4.1% 더 늘어난 금액이다. 이같은 전망은 올해 기준금리 인하에도 불구하고 은행의 이자 수익이 크게 증가할 것으로 기대하기는 어려울 것이나, 자산관리(WM)의 호조와 비은행 부문의 성장세가 이어지면서 전반적으로 은행의 수익에 큰 변동은 없이 안정적인 성장이 예상된다는 분석이 우세하다. 은행의 주요 자회사를 고려했을 때, 순이자마진(NIM)이 약간 줄어들 수 있으나, 가계 및 기업 대출 잔액의 증가 추세는 계속될 것으로 보인다. 은행권의 2조 원 규모의 민생금융 지원 계획과 대손충당금의 추가적인 적립으로 인한 비용 증가가 실적에 미치는 영향은 크지 않을 것으로 평가된다. 미래에셋증권은 최근 보고서에서 은행업에 대한 투자 심리가 상생 금융으로 인해 다소 부정적이지만, 이 상황은 곧 지나갈 것으로 보고 있다. 또한, 총선 이후에는 관련 비난 여론이 다소 완화될 것으로 예상하고 있다. 증권사들은 각 금융지주의 실적을 예측하며, KB금융의 순이익이 5조 1968억 원으로 3.1% 증가하고, 신한금융의 순이익이 4조 9219억 원으로 3.8% 증가할 것으로 전망했다. 또한, 하나금융과 우리금융의 경우, 각각 3조 9433억 원과 3조 1696억 원의 순이익을 기록하며 4.5%, 5.7%의 증가율을 보일 것으로 예상했다. 여기에는 증권 및 보험 등 비은행 자회사들의 이익 기여도가 중요한 요소로 간주된다. KB증권은 올해의 전망 보고서에서 금융지주들의 은행 자회사 이익이 3.4% 증가하고, 비은행 자회사 이익이 15.2% 증가할 것으로 언급했다. 그러나 금융지주들은 '이자 장사'에 대한 대중의 부정적인 인식을 고려하여, 올해 경영 환경이 작년보다 어려워질 것이라는 겸손한 태도를 취하고 있다. 현장에서는 실제 글로벌 경제의 성장 둔화와 거시경제의 불확실성을 포함한 다양한 복합 위기가 심각하다는 의견이다. 한 금융지주 관계자는 "부동산 프로젝트 파이낸싱(PF)의 부실 문제나 건설사의 우발 채무 문제가 현실화될 경우, 은행들이 큰 타격을 받을 수 있다"고 우려를 표명했다. 또 다른 관계자는 "증권사, 저축은행, 캐피탈 등의 위험 노출을 고려하면, 지주 차원에서는 올해의 경영 목표를 작년에 비해 상당히 낮게 설정해야만 한다"고 밝혔다. 한편, 5대 금융지주 회장들은 올해 '상생'을 주요 화두로 삼고, 금융의 사회적 책임을 강화하는 데 주력하기로 했다. 연합뉴스가 1일 실시한 KB, 신한, 하나, 우리, NH농협 등 5대 금융지주 회장들과의 신년 인터뷰에서, 이들은 금융과 상호 보완적인 비금융 사업을 적극적으로 추진하겠다고 발표했다. 5대 금융지주 회장들은 각 회장들은 상생금융 실천, 중소기업 및 소상공인 지원, 청년과 취약계층을 위한 다양한 프로그램을 제시했다. 양종희 KB금융지주와 진옥동 신한금융지주 회장은 각각 전세 사기 피해자 지원, 임대인 금리 우대 프로그램, 외식업 및 전통시장 활성화 지원 등을 계획하고 있다. 임종룡 우리금융지주 회장은 중소기업과 소상공인을 위한 특별 지원, 스마트 결제 기기 지원, 저금리 대출 확대 등을 언급했다. 하나금융지주는 소상공인에게 에너지 생활비 지원 및 사업장 컨설팅을, NH농협금융지주는 농업인과 농식품 기업 지원에 중점을 두고 있다. 또한, 함영주 하나금융회장과 이석준 농협금융 회장은 AI 활용과 ESG 경영에 대한 계획도 밝혔다. 이들은 순이자마진 하락에도 불구하고 성장을 지속하겠다는 각오를 다졌다.
-
- 경제
-
한국 4대 금융 지주, 2024년 사상 최대 실적 달성 전망
-
-
2024년 미국 증시 전망, 불확실성 속 기대감 지속
- 월스트리트의 분석가들은 2024년 미국 증시가 경제 침체에 대한 우려에도 불구하고 2023년 말 대비 약 2% 성장할 것으로 전망하고 있다. 야후 파이낸스는 12월 30일(현지시간) "2023년 증시는 스탠더드 앤드 푸어스(S&P) 500 지수가 연중 24% 상승하며 사상 최고치에 근접한 가운데 마감했다"며 "연말까지 지속된 상승세는 미국 연방준비제도(Fed)의 금리 조정 기대감에 힘입었으나, 2024년에 대한 월스트리트의 전망은 상승 여력에 한계가 있다는 신중한 시각을 드러내고 있다"고 보도했다. 이 매체가 추적한 월스트리트 전략가 20명의 2024년 S&P 500 목표치 중간값은 4850로, 2023년 대비 2% 미만 상승할 것으로 예상했다. 그러나 일부 전략가들은 이보다 더 낙관적인 전망을 제시했다. 골드만 삭스는 최근 주가 상승을 반영해 목표치를 4700에서 5100으로 상향 조정했으며, 오펜하이머와 펀드스트랫은 5200으로 제시하며 가장 낙관적인 전망을 내놓았다. 반면, JP모건은 2024년 S&P 지수가 4200까지 하락할 것으로 예상하며 가장 보수적인 전망을 제시했다. 이러한 다양한 전망 속에서 경기침체에 대한 논의는 끊임없이 이어지고 있다. BMO(뱅크 오브 몬트리올)의 브라이언 벨스키는 '치킨 리틀 리세션'이라며 경기침체 우려를 일축하고, 내년 경기침체가 발생한다면 "이름뿐인 불황"이 될 것으로 예상했다. 벨스키는 2024년 전망에서 "우리는 계속해서 노동 시장 트렌드를 주시하고 있으며, 노동 시장이 급격히 악화되지 않는 한 현재 단계에서는 경기침체 논쟁에 대해 크게 우려하지 않는다"라고 말했다. 도이체방크는 "완만한 경기 침체"가 일어날 것으로 예측하면서도, 이것이 "단기적인 매도세"로 이어질 뿐이라고 진단했다. 일부 전문가들은 2024년에도 경기침체가 증시에 지속적인 압박을 가할 것으로 예상하고 있다. 에버코어 ISI의 줄리안 엠마뉴엘은 경기침체가 주가에 미칠 영향에 대해 더욱 신중한 입장을 취하고 있다. 엠마뉴엘은 올해 상반기에 경제가 침체 국면에 진입할 것으로 보이지만, 이후 회복세를 보여 S&P 500 지수가 목표치인 4750에 도달할 것으로 예측했다. 두브라브코 라코스-부야스가 이끄는 JP모건 주식 전략가들은 지난 2023년 11월 29일 발표한 2024년 전망에서 "연준의 빠른 양적완화가 없다면 내년에는 투자자의 포지셔닝과 심리가 대부분 반전된 상황에서 소비자 동향이 둔화되면서 주식에 더 어려운 거시적 배경이 조성될 것으로 예상한다"고 말했다. 연준의 양적완화에 대한 라코스-부야스의 지적은 강세장 대 약세장 논쟁에서 핵심적인 고착화 지점이다. 연준이 금리를 인하하는 기본적인 이유는 크게 두 가지이며, 현재 연준은 2024년에 세 차례 금리를 인하할 것으로 전망하고 있다. 연준은 경제가 의미 있게 둔화되어 금융 여건을 완화하고 경기 부양을 위해 금리를 인하할 것이다. 또는 인플레이션이 예상보다 빠르게 중앙은행의 목표치인 2%로 하락하여 연준이 금리를 인하할 수도 있다. 이것이 바로 골드만삭스가 12월 중순에 주식 전망을 상향 조정할 때 언급한 시나리오다. 골드만삭스의 수석 미국 주식 전략가인 데이비드 코스틴은 전략 노트에서 "탄력적인 성장과 금리 하락은 대차대조표가 취약한 주식, 특히 경제 성장에 민감한 주식에 도움이 될 것"이라고 말했다. 과거에는 경기침체 여부가 첫 금리 인하 이후 증시 상승 또는 하락에 중요한 역할을 했다. 골드만삭스의 그래프에 따르면 첫 번째 연준 금리 인하 후 12개월 이내에 경기 침체가 발생하면 일반적으로 주가가 하락하는 것으로 나타났다. '매그니피센트 세븐' 랠리 주도 이어지나? 2023년 주식시장에서 '매그니피센트 세븐'이라 불리는 7대 기술주가 주도했지만, 2024년에는 더 폭넓은 리더십이 예상된다. 2023년 주식시장 랠리에서 잘 알려진 측면은 애플(AAPL), 알파벳 구글(GOOGL, GOOG), 마이크로소프트(MSFT), 아마존(AMZN), 메타(META), 테슬라(TSLA), 엔비디아(NVDA) 등 7개 대형 기술주가 시장 상승의 대부분을 주도했다는 것이다. 2023년 마지막 두 달 동안 랠리가 확대됐고, 많은 전략가들은 2024년에도 이러한 시장 폭이 지속될 것으로 보고 있다. BofA(뱅크 오브 아메리카)의 미국 주식 및 퀀트 전략 책임자인 사비타 수브라마니안은 2023년 12월 고객들에게 보낸 메모에서 "2024년 S&P 500 지수는 사상 최고치를 기록할 것으로 예상되며, 연말 목표 지수는 5000이다. 하지만 매그니피센트 7이 70%를 차지했던 올해와는 달리, 더 폭넓은 리더십을 기대한다"라고 썼다. 소형주와 금융주 상승 여력 펀드스트랫의 설립자 톰 리는 2024년 3대 섹터로 기술주와 FAANG 주를 꼽았지만, 소형주와 금융주의 상승 여력을 강조했다. 리는 2023년 12월 7일에 진행한 2024년 전망에서 "수익과 여러 번의 확장을 통해 소형주를 능가할 만큼 FAANG에 충분한 주스가 있다고 생각합니까? 저는 그렇게 생각하지 않는다"라고 말했다. 그는 "내년에는 소형주가 50% 쉽게 상승할 수 있다고 생각한다. 그리고 금융은 30 % 상승할 수 있다 ... 포지셔닝에 관해서는 아무도 금융주를 소유하지 않고 아무도 소형주를 매수하지 않는다. 상승 여력이 많다"라고 밝혔다. 골드만삭스의 코스틴은 최근 2024년에 대한 전망에서 소형주에 대한 강한 긍정적인 평가를 제시했다. 벨스키는 2024년에 대한 전망에서 "2024년에는 '매그니피센트 7'로 알려진 주요 기술주들의 실적 추세가 일관되지 않을 가능성이 높다"고 말했다. 그는 "기업별 기초체력이 상이하며, 최근 4분기 주가 동향이 2024년에 다양한 실적으로 이어질 것임을 시사하고 있다"고 덧붙였다. 이어 "이런 상황은 투자자들이 전통적인 성장 부문, 특히 기술 분야에 더 적극적으로 참여할 가능성을 높인다"며 "성장세가 저조한 환경에서 투자자들은 단순히 유동성이나 모멘텀에만 의존하는 대신, 테마, 안정적인 성장, 심지어 성장 섹터 내의 배당금에도 주목해야 한다"고 조언했다. 아시아 리스크 한편, 일본 닛케이 225 지수는 일본은행의 초완화적인 통화정책과 엔화 약세로 인해 상승세를 보였지만, 불확실한 글로벌 경제 상황과 내부 정책 변화 가능성으로 인해 앞으로 난관에 직면할 전망이다. 분석가들은 일본은행이 올해 4월까지 금리를 인상할 것으로 예측하고 있으며, 이는 2007년 이후 처음 있는 일이다. 중국은 3월 전국인민대표대회와 경기 부양책에 대한 관심이 집중되고 있으며, 인도의 4월 총선 역시 중요한 국제 이벤트로 주목받고 있다
-
- 경제
-
2024년 미국 증시 전망, 불확실성 속 기대감 지속
-
-
NASA 재활용 우주선 '드림 체이서' 첫 비행
- 미국 항공우주국(NASA)와 시에라 스페이스(Sierra Space)가 협력해 드림 체이서(Dream Chaser) 우주선을 국제 우주정거장(ISS)으로의 첫 비행을 위한 준비를 진행 중이다. NASA에 따르면 이 무인 화물 우주선을 상업적 재공급 서비스 프로그램의 일환으로 활용할 계획이며, 2024년에 국제 우주정거장으로의 시범 임무를 시작할 예정이다. 콜로라도 주 루이빌에 위치한 시에라 스페이스에서 제작한 드림 체이서 화물 시스템은 드림 체이서 우주선과 '슈팅 스타(Shooting Star)' 화물 모듈, 이 두 가지 주요 구성 요소로 이루어져 있다. 이 양력체 형태의 우주선인 드림 체이서는 최대 15회까지 재사용 가능하도록 설계되었으며, 버지니아주 햄프턴에 위치한 NASA의 랭글리 연구 센터에서 개발된 HL-20 우주선을 바탕으로 개조했다. 드림 체이서(Dream Chaser) 우주선의 파트너인 '슈팅 스타(Shooting Star)' 화물 모듈은 국제 우주정거장(ISS)에서 가압 및 비가압 화물의 운송과 처리를 지원하기 위해 특별히 설계됐다. 이 화물 모듈은 일회용으로 사용되며, 재진입을 위해 분리되기 전에 우주에서 폐기된다. 드림 체이서 시스템은 플로리다주 케이프커네버럴에 위치한 우주군 기지의 우주발사단지 41에서, ULA(United Launch Alliance)의 발칸 센타우르(Vulcan Centaur) 로켓을 이용해 발사된다. 발사 시, 드림 체이서는 5m 페어링 내부에 날개를 접은 상태로 위치한다. 발사 중 페어링 패널은 우주선을 보호하는 역할을 하지만, 궤도 진입 후에는 폐기된다. 드림 체이서의 화물 모듈과 날개에 장착된 태양 전지 어레이는 우주정거장과의 자율적인 접근 과정 중에 전개된다. 만약 발사 연기(스크럽)가 발생할 경우, 드림 체이서는 24시간 이내에 다시 발사 준비를 완료할 수 있도록 설계됐다. 첫 비행 중에, 시에라 스페이스는 드림 체이서 우주선의 향후 임무를 위한 인증 과정의 일환으로 궤도 내에서 여러 시연을 진행할 계획이다. 이 비행은 플로리다에 위치한 NASA의 케네디 우주 센터, 휴스턴의 NASA 존슨 우주 센터, 그리고 콜로라도 루이빌에 있는 드림 체이서 미션 컨트롤 센터에 있는 팀들에 의해 모니터링될 예정이다. 시에라 스페이스의 비행 관제사들은 우주선이 착륙하기 전까지 발사대에서 드림 체이서를 제어하며, 착륙 후에는 NASA 케네디의 시에라 스페이스 지상 작전 팀에 우주선을 이양한다. 원거리 시연은 우주선이 국제 우주정거장(ISS) 근처의 '접근 타원체'라 불리는 2.5 x 1.25 x 1.25 마일(약 4 x 2 x 2km) 크기의 가상 경계 안으로 진입하기 전에 수행된다. 이 타원체 밖에서 수행되는 이러한 시연은 드림 체이서가 휴스턴의 미션 컨트롤 센터와 NASA 팀과의 합동 작업을 시작하기 전에 필요하다. 이 과정에는 자세 제어, 병진 기동 및 중단 기능의 시연이 포함된다. 국제 우주정거장(ISS)에 더 가까이에서 수행되는 근거리 시연은 다양한 작업을 포함한다. 이에는 LIDAR(빛 감지 및 거리 측정) 센서의 활성화 및 사용, 우주정거장에서 보낸 명령에 대한 응답, 명령에 따른 정거장으로부터의 후퇴, 그리고 접근 지점의 유지 등이 포함된다. 이 시연 과정에서 드림 체이서는 우주정거장과의 거리를 점차 줄여간다. 처음에는 역에서 330미터(약 1083피트), 그 다음은 250미터(약 820피트), 마지막으로 30미터(약 98피트) 거리를 유지하게 된다. 이러한 시연을 성공적으로 마친 후, 드림 체이서는 국제 우주정거장으로 이동하게 된다. 드림 체이서가 우주정거장의 실험실 모듈에 접근하면, 우주선은 역에서 약 11.5미터(약 38피트) 떨어진 위치에서 최종 정지한다. 이때, 정거장의 승무원은 '캐나다 암 2(Canadarm2)' 로봇 팔을 사용하여 지상 팀보다 먼저 우주선의 화물 모듈을 잡는다. 이후 화물 모듈은 유니티(Unity) 또는 하모니(Harmony) 모듈의 지구 쪽 포트에 설치한다. 캐나다 암 2는 캐나다 우주국(CSA)이 개발한 우주 정거장 조작용 로봇 팔이다. 국제 우주정거장(ISS)으로의 첫 비행에서, 드림 체이서 우주선은 약 3.5톤(7800파운드) 이상의 화물을 운반할 계획이다. 향후 임무에서는 최대 75일 동안 우주정거장에 부착되어 있으면서 최대 약 5.2톤(약 1만1500파운드)의 화물을 운반할 수 있도록 설계됐다. 드림 체이서는 지구로 돌아오는 길에 약 1.5톤(3500파운드) 이상의 화물과 실험 샘플을 반환할 수 있으며, 또한 화물 모듈을 사용해 재진입 과정에서 약 3.9톤(8700파운드) 이상의 쓰레기를 처리할 수 있다. 또한 드림 체이서는 캐나다 암 2를 사용하여 우주정거장에서 제거되기 전까지 약 45일간 우주정거장에 머무를 예정이다. 우주선은 출발 후 11~15시간 이내에 빠르게 착륙할 수 있으며, 기상 조건이 허용하는 한 매일 착륙할 수 있는 기회가 있다. 드림 체이서의 착륙 기상 기준은 일반적으로 시속 17.2마일(15노트) 이하의 측풍, 23마일(20노트) 이하의 역풍, 11.5마일(10노트) 이하의 배풍을 요구한다. 또한, 활주로 반경 20마일 이내 또는 접근 경로를 따라 10마일 이내에서 발생하는 뇌우, 번개, 비는 착륙에 적합하지 않은 조건으로 간주된다. 드림 체이서의 26개 반응 제어 시스템 추진기는 우주선이 궤도를 이탈하도록 발사된다. 이 우주선은 지구 대기권으로 재진입한 후 NASA의 우주 왕복선과 유사한 방식으로 케네디 우주 센터의 활주로에 착륙할 예정이며, 2011년 마지막 우주 왕복선 비행 이후 이 시설에 착륙하는 최초의 우주선이 될 것이다. 착륙 후 전원이 꺼지면, 시에라 스페이스의 지상 운영팀이 드림 체이서를 우주 시스템 처리 시설로 이송하여 필요한 검사를 수행하고, 나머지 NASA 화물을 내리며, 다음 임무를 위한 준비 작업을 시작된다. 시에라 스페이스(이전 Sierra Nevada Corporation)는 2016년 국제 우주정거장(ISS)에 서비스를 제공할 NASA의 세 번째 상업용 화물 재공급 우주선으로 선정됐다.
-
- 산업
-
NASA 재활용 우주선 '드림 체이서' 첫 비행
-
-
구글, AI도입으로 3만명 구조조정 추진⋯광고 영업 감원 예상
- 구글이 3만명 규모 광고 판매 조직을 대상으로 구조조정을 추진하고 있다. 25일(현지시간) 로이터통신과 정보기술(IT) 전문매체 디 인포메이션 등 외신들에 따르면 구글이 인공지능(AI) 기술을 광고 업무에 적용하면서 이전처럼 많은 직원을 둘 필요가 없다고 판단해 이같은 대규모 구조조정을 검토하고 있다. 구글이 대규모 인력 감축에 나서는 것은 올해 1월 대규모 해고에 나선 지 약 1년 만이다. AI가 사람의 일자리를 대체할 것이라는 관측이 본격적으로 나타나는 모양새다. 디 인포메이션은 이날 소식통의 말을 인용해 "구글이 새로운 AI 도구를 도입해 업무가 자동화된 영업 직원을 재배치하거나 해고하는 방안을 검토하고 있다"고 보도했다. 구글은 수년에 걸쳐 새로운 광고 생성을 자동화하도록 설계된 AI 도구를 도입해 비용 절감에 나섰다. 특히 2021년 AI 기반 광고 플랫폼인 '퍼포먼스 맥스(PMax)'를 개발한 후 올해 5월 생성 AI 기능을 탑재했다. AI를 활용해 광고주의 웹사이트를 스캔하고, 키워드, 헤드라인, 설명, 이미지 등을 자동으로 생성해 시간과 비용 효율성을 끌어올렸다. PMax가 광고주들 사이에서 좋은 반응을 얻으면서 광고 디자인 및 판매에 사람이 개입할 필요성이 눈에 띄게 감소한 것이다. 또한 더 인포메이션의 보고서는 퍼포먼스 맥스를 채택하는 광고주의 수가 증가하면서 유튜브, 검색, 디스플레이, 디스커버, G메일, 지도 등 특정 구글 서비스에 대한 광고 판매를 전담하는 직원이 필요 없게 되었다고 언급했다. 광고 판매 부서의 구조 조정 결정은 지난주 회의에서 구의 미주 및 글로벌 파트너 담당 사장인 션 다우니가 내부적으로 발표했다. 그러나 다우니 사장은 이번 조직 개편이 또 다른 감원으로 이어질지 여부에 대해서는 언급하지 않았다. 디 인포메이션은 이번 조직개편은 광고사업부 인력의 상당 부분에 영향을 미칠 것으로 예상했다. 주요 광고주를 관리하는 판매부서의 직원을 재배치하거나 통합할 것이라고 보도했다. 여기에는 해고 가능성도 포함돼 있다. 구조조정의 규모와 세부 사항에 관한 공식 발표는 내년 1월에 이뤄질 것으로 보인다. 이에 앞서 구글은 올해 초 전 직원의 6%인 1만2000명을 해고한다고 발표했다. 구글 설립 후 가장 큰 규모였다.
-
- IT/바이오
-
구글, AI도입으로 3만명 구조조정 추진⋯광고 영업 감원 예상