검색
-
-
나사, 베누 소행성 샘플서 '탄소와 물' 존재 확인
- 나사(NASA)가 우주에서 채취해 지구로 가져온 45억 년 된 소행성 '베누(Bennu)' 샘플에 탄소와 물의 존재가 확인됐다. 베누 샘플 연구는 지구 생명체의 구성 요소가 암석에서 어떻게 출현했는지 실마리를 제공할 것으로 보인다. 미국 항공우주국(NASA)은 11일(현지시간) 텍사스주 휴스턴에 있는 존슨우주센터(JSC)에서 지난 9월 24일 귀환한 소행성 탐사선 '오시리스-렉스'(OSIRIS-REx)가 채취한 '베누' 샘플을 처음으로 공개했다. 이 발견은 NASA의 오시리스-렉스(OSIRIS-REx, 기원, 스펙트럼 해석, 자원 식별 및 보안 - 레골리스 탐사선) 과학팀의 예비 평가의 일부였다. 빌 넬슨 NASA 국장은 "오시리스-렉스 샘플의 돌과 먼지에는 물과 많은 양의 탄소를 포함하고 있다"며 "과학자들이 앞으로 여러 세대에 걸쳐 지구 생명체의 기원을 조사하는 데 도움이 될 것"이라고 밝혔다. 풍부한 물과 탄소 함유 NASA는 소행성의 암석과 먼지에 담긴 비밀은 앞으로 수십 년 동안 연구되어 태양계가 어떻게 형성되었는지, 지구에 생명체의 전구 물질이 어떻게 뿌려졌는지, 지구와의 소행성 충돌을 피하기 위해 어떤 예방 조치를 취해야 하는지에 대한 통찰력을 제공할 것으로 기대했다. 넬슨 국장은 "오시리스-렉스 샘플은 지금까지 지구로 보내진 소행성 샘플 중 가장 탄소가 풍부하다"며 "첫 번째 분석 결과, 점토 광물 속에 물이 상당히 많이 함유돼 있다. 광물과 유기 분자 모두에 탄소도 있다"고 말했다. NASA 존슨의 큐레이션 전문가들은 특별히 지어진 새로운 클린룸에서 지난 열흘 동안 샘플 반환 하드웨어를 조심스럽게 분해하여 그 안에 들어 있는 대량의 샘플을 엿볼 수 있었다. 당초 소행성 샘플은 60g으로 계획됐지만 과학자들은 처음 과학용 캐니스터 뚜껑을 열었을 때 수집기 헤드, 캐니스터 뚜껑, 베이스 외부를 덮고 있는 소행성 물질을 추가로 발견했다. 여분의 물질이 너무 많아서 기본 샘플을 수집하고 담는 세심한 과정이 느려졌다는 설명이다. 넬슨은 "이 물질들은 지구 형성에 중요한 요소"라며 "이는 생명체가 탄생할 수 있었던 원소의 기원을 규명하는 데 도움이 될 것"이라고 말했다. 태양계와 지구 원소 규명 기대 처음 2주 동안 과학자들은 주사 전자 현미경, 적외선 측정, X-선 회절, 화학 원소 분석을 통해 이미지를 수집하여 행성 초기 물질에 대한 "빠른" 분석을 수행했다. 또한 X-선 컴퓨터 단층 촬영을 통해 입자 중 하나의 3D 컴퓨터 모델을 생성하여 다양한 내부를 들여다봤다. 이 초기 모습을 통해 샘플에 탄소와 물이 풍부하다는 증거를 확인할 수 있었다. 오시리스-렉스 소행성 탐사선에 탑재된 캡슐은 2016년 9월 케이프 커내버럴 우주센터에서 발사된 지 7년 만에 38억6000마일(62억km)에 달하는 대장정 끝에 지난 2023년 9월 24일 지구로 무사히 귀환했다. 이 탐사선은 2020년 10월 지구에서 약 3억3300만㎞ 떨어진 곳에 있는 베누 표면에서 흙과 자갈 등 샘플 250g을 채취한 뒤 2021년 5월 지구로의 귀환을 시작했다. 이는 미국으로선 첫 번째 소행성 샘플 채취였지만, 앞서 일본이 이토카와(2010년), 류구(2020년) 소행성으로부터 각각 채취한 샘플 1g 미만과 5.4g보다는 많은 양이다. 기상 현상과 지각 변동 등으로 크게 변형된 지구와 달리 베누는 45억년 전 태양계 형성 초기의 물질을 그대로 간직하고 있을 것으로 추정되고 있다. 투손 애리조나 대학교의 오시리스-렉스 수석 연구자인 단테 로레타(Dante Lauretta)는 "소행성 베누의 먼지와 암석 속에 보존된 고대의 비밀을 들여다보면서 우리는 태양계의 기원에 대한 심오한 통찰력을 제공하는 타임캡슐을 열어보고 있다"라고 말했다. 로레타는 "탄소가 풍부한 물질과 물을 함유한 점토 광물이 풍부하게 존재하는 것은 우주 빙산의 일각에 불과하다. 수년간의 헌신적인 협력과 최첨단 과학을 통해 이루어진 이러한 발견은 우리가 살고 있는 천체뿐만 아니라 생명의 시작에 대한 잠재력을 이해하는 여정으로 우리를 이끌고 있다"고 전했다. 우주 신비 규명 기대 한편, NASA는 존슨우주센터 내 전용 청정실에서 앞으로 2년간 베누의 샘플을 정밀 분석할 예정이다. 베누에서 채취된 샘플이 어떻게 소행성이 형성되고 진화했는지 우주 유산의 신비를 풀 수 있을 것으로 기대를 모으고 있다. 또한 이를 통해 지구에 생명체 출현에 대한 인류의 오랜 궁금증을 풀고 앞으로 이 소행성이 지구를 어떻게 비껴갈 수 있는지를 연구하는 데에도 도움을 줄 수 있을 것으로 보고 있다. 과학자들은 베누가 지금부터 약 160년 후 지구와 충돌할 가능성이 큰 것으로 추정하고 있다. NASA는 미래 세대의 과학자를 포함한 전 세계 과학자들의 추가 연구를 위해 베누 소행성 샘플의 최소 70%를 존슨 기지에 보존할 예정이다. 아울러 올가을에는 스미소니언 박물관, 휴스턴 우주 센터, 애리조나 대학교에 추가 샘플을 대여하여 공개적으로 전시할 계획이다.
-
- 산업
-
나사, 베누 소행성 샘플서 '탄소와 물' 존재 확인
-
-
호주-캐나다 팀, 유해 광산 폐기물을 '건강한 토양' 변환
- 호주와 캐나다의 과학 엔지니어링 팀은 유해 광산 폐기물을 작물이 자랄 수 있는 건강한 토양으로 변환하는 방법을 찾아냈다. 캐나다 매체 굿뉴스네트워크는 호주와 캐나다 팀이 최근 광산 폐기물을 건강한 토양으로 변환해 이미 옥수수와 수수를 재배하는 데 사용하고 있다며 이같이 보도했다. '테일링(Tailings, 우리 말로 '광산 덤프' 또는 '광미'로 해석)'은 채굴한 광물에서 유용한 금속을 분리한 후 남은 광산 폐기물에 대한 공식 산업 용어다. 일반적으로 중금속에 의해 독성이 있고 그로 인해 다른 어떤 것에도 사용할 수 없는 테일링은 지하수나 농지를 오염시키지 않도록 저장시설에 보관된다. 퀸즈랜드 대학과 사스카처완 대학의 팀은 수천억 달러의 광산 폐기물 저장비용을 절약하고 시설들이 고장나거나 버려질 때 발생하는 재앙을 막으려는 목적으로 미생물을 이용해 테일링을 건강한 토양으로 변환할 수 있는 방법을 연구했다. 퀸즈랜드 대학의 롱빈 황(Longbin Huang) 교수는 "'테일링'에는 식물을 재배하기 위한 생물학적인 친화적인 특성이 없다. 뿌리와 물이 폐기물을 관통할 수 없으며, '테일링'의 용해성 염류와 금속은 식물과 토양 미생물을 죽일 수 있다"며 "자연이 천천히 '테일링'을 비옥한 토양으로 바꾸도록 기다린다면 수천 년이 걸릴 수 있다"고 설명했다. 황 교수 팀은 캐나다 광원(CLS, Canadian Light Source)을 사용하여 '테일링'을 토양 미생물을 이용해 식물을 재배하기 위한 환경으로 변화되는 과정을 가속화하는 방법을 발견했다. CLS는 원형 입자 가속기의 한 종류인 거대한 싱크로트론(synchrotron, 빛을 생성하고 그 빛을 이용하여 물질의 성질을 연구하는 장치)으로, 일련의 자석의 배열을 통해 하전 입자(전자)가 거의 빛의 속도에 도달할 때까지 가속화시키는 방식으로 작동한다. 과학자들은 CLS의 싱크로트론 빛을 사용하여 유기-광물 인터페이스를 개발하고 광미를 활성화할 수 있는 방법에 대한 자세한 메커니즘을 시각화할 수 있었다. 황 교수는 "우리는 SM 빔라인을 사용해 즉각적인 인터페이스와 광물의 변화, 유기물과 상호 작용하는 방식을 나노미터 규모로 밝혀야 했다"고 말했다. 그는 "시설 접근과 빔라인 직원 전문가들의 의견은 우리가 양질의 데이터를 수집해 신뢰할 수 있는 과학적 증거를 확보하는데 매우 중요했다"고 덧붙였다. 데이터를 통해 과학자들은 테일링에 식물 껍질을 첨가한 후에 광산 폐기물을 토양 미생물로 재식립하는 데 성공할 수 있었다. 이러한 토양 미생물은 일부 잔류 유기물과 광물을 소비해 토양 입자로 집합시킨다. 황 교수는 "토양 파편에는 미생물 활동이 있는 표면이 있으며, 밀집된 광산 폐기물에서 기공성을 형성하여 가스와 물에서 뿌리와 미생물이 생존할 수 있게 된다. 그로 인해 광산 폐기물의 죽은 광물 매트릭스가 식물이 자랄수 있게 하는 토양과 유사하게 된다"고 말했다. 황 교수 팀은 토양, 피톤치드, 광산 폐기물과 미생물을 사용해 한 번에 장벽을 넘는 방법을 제공했다. 데이터를 분석한 과학자들은 식물을 심은 후의 광산 토양에서 미생물이 성공적으로 재정착되었다는 것을 발견했다. 이 토양 미생물들은 특정 잔류물과 미네랄을 분해하며, 이 과정에서 토양 입자들을 뭉치게 만든다. 황 교수는 "토양 부스러기에는 미생물 활성 표면이 있어 일반 토양과 마찬가지로 가스, 물, 뿌리 및 미생물이 생존할 수 있는 다공성 구조를 광미에 형성한다"고 설명했다. 그는 "이렇게 변화된 광미는 기본적으로 식물이 자랄 수 있게 해주는 토양과 같은 매개체가 된다"고 말했다. 그는 "이 과정이 12개월 안에 이루어질 수 있으며 과도한 경작, 비료 남용이나 기후 변화로 인해 손상된 토양을 복원하는 데에도 사용될 수 있다"고 덧붙였다.
-
- 생활경제
-
호주-캐나다 팀, 유해 광산 폐기물을 '건강한 토양' 변환
-
-
화장지의 종말이 가까워지고 있다
- 환경을 위해 화장지를 사용하지 않는 시대가 가까워지고 있다. 화장지는 환경에 대한 재앙으로 여겨진다. 오염시키는 플라스틱, 중독시키는 화학물질, 사라지는 나무, 고통받는 동물 사이에서 화장지는 이제 과거의 물건이 될 수도 있다. 프랑스 매체 '르포르타주 포토(reportages photos)'에 따르면 프랑스인들은 19세기부터 화장지를 사용하기 시작했다. 현대식 화장지의 발명은 클라렌스와 어빈 스콧['스카티(scott)' 화장지 창립자] 형제 덕분이다. 화장지는 오랜 역사를 갖고 있다. 중국인들은 천 조각을 사용해 몸을 닦았다. 그리스인들은 매우 매끄러운 세라믹 돌을 사용했다. 로마인들은 '자일로스폰지움(xylospongium)'이라는 도구를 사용했는데 스펀지가 달린 막대기 끝에 젖은 스폰지가 달려 있었다. 다른 문화에서는 비슷한 목적으로 동물 가죽을 사용했다. 19세기가 되어서야 비로소 현대판 화장지가 빛을 보기 시작했다. 1857년에 미국 기업가 조셉 가야티(Joseph Gayetti)가 최초로 화장지 롤을 시장에 출시했다. 그는 알로에를 주입하고 민감한 피부를 진정시키는 화장지를 치료상의 이점을 약속하는 이름인 '가야티의 의료용 휴지(Gayetty's Medicated Paper)'라고 불렀다. 이후 클라렌스와 어빈 스콧 형제가 개발한 화장지는 어떤 경쟁 업체도 이것을 대체할 수 없었다. 스콧 형제는 화장지를 더 실용적이고 쉽게 보관할 수 있도록 롤 형태로 만드는 아이디어를 생각해 냈다. 그리하여 대부분의 서구 국가에서 필수적인 위생 제품인 화장지가 탄생했다. 그러나 환경적 영향 때문에 이제는 롤 형태의 화장지를 불가피하게 대체해야 할 필요성이 대두됐다. 화장지는 실용적이지만 이를 제조하려면 수천 그루의 나무를 베어야 하므로 많은 자연 서식지가 파괴된다. 잎의 재활용 여부에 관계없이 목재 섬유를 처리하기 위해 생산에 많은 양의 물이 필요하다는 것은 말할 것도 없다. 화장지 롤이 완성되면 잎은 배수구로 흘러가는 경우가 많으며, 배수구에서 유해 물질이 폐수로 배출 될 수 있다. 플라스틱 오염은 화장지 롤과 관련된 또 다른 문제다. 화장지는 대부분 비닐랩으로 포장되어 있다. 또 완전히 생분해되는 화장지 롤도 매우 드물다. 19세기 혁신 기술 화장지 화장지는 상대적으로 최근의 발명이며, 역사를 통틀어 모든 문명에서 보편적으로 사용되지는 않았다. 우리가 오늘날 알고 있는 화장지의 등장은 19세기로 거슬러 올라가 클라렌스와 어빈 스콧 형제의 노력 덕분에 1890년에 혁신적인 제품이 탄생했다. 그런 다음 분리 가능한 셀룰로오스시트를 사용했다. 그 이후로는 어떤 대안도 그것을 대신할 수 없었다. 그러나 아시아에서는 종이를 사용하면 배수관이 막히기 때문에 화장실 사용 후 개인 위생을 위해 비데가 일반적으로 사용되기도 한다. 이 방법은 더 위생적으로 여겨지지만, 사람들은 화장지를 다른 것으로 바꾸려는 변화를 싫어한다. 화장지 대체품은 무엇? 화장지를 대체하기 위한 제안 중 하나는 재사용 가능한 대체품을 사용하는 것이다. 이 경우, 화장지를 화장실에 버리는 대신 사용 후에 세척해야 한다. 물론 실수로 변기에 버리지 않아야 하며, 그렇게 하면 배관이 막힐 수 있다. 그러나 이 대안은 효과와 위생에 대한 질문이 제기된다. 화장지는 효율성 측면에서 비데와 비교할 때 매우 부족한 면이 많다. 종이는 잔여물과 대변을 충분히 제거하지 못할 수 있다. 게다가 민감한 피부를 가진 사람들 중에서 화장지를 자주 사용하면 피부 자극을 일으킬 수 있다. 일본은 화장지 대신 워시렛을 사용한다. 종이 없이도 깨끗하게 씻을 수 있는 물세척 기능을 갖춘 최첨단 변기다. 환경에 대한 인식이 증가하면서 생태학과 지구 보전에 관심 있는 사람이라면 변화를 고려하는 것이 필수적이다. 우리의 생태계를 보존하기 위해서는 화장지 대체품을 찾는 신속한 조치가 필요하다.
-
- 산업
-
화장지의 종말이 가까워지고 있다
-
-
폐플라스틱 업사이클링 비누 제작 성공
- 버지니아 공대에서 플라스틱 폐기물로 비누를 만드는 기술이 개발됐다. 폐플라스틱을 비누와 세제와 같은 계면활성제로 재활용하는 방법이 개발됐다. 미국 과학 전문매체 사이테크데일리에 따르면 버지니아 공대의 연구원들은 플라스틱을 비누, 세제 등을 만드는 데 사용되는 계면활성제라는 귀중한 화학 물질로 업사이클링하는 새로운 기술을 개발했다. 플라스틱과 비누는 질감, 모양, 사용 방법면에는 공통점이 거의 없다. 하지만 분자 수준에서 이 둘 사이에는 놀라운 연관성이 있다. 오늘날 세계에서 가장 일반적으로 사용되는 플라스틱 중 하나인 폴리에틸렌의 화학 구조는 비누의 화학 전구체로 사용되는 지방산의 화학 구조와 놀랍도록 유사하다. 두 물질 모두 긴 탄소 사슬로 이루어져 있지만 지방산은 사슬 끝에 원자 그룹이 하나 더 있다. 버지니아 공과대학의 류궈량(Guoliang 'Greg' Liu) 화학 부교수는 폴리에틸렌의 구조와 지방산의 유사성에 주목했다. 그는 이러한 유사성을 기반으로 폴리에틸렌을 지방산으로 변환하면, 몇 가지 추가 과정을 통해 비누를 제조할 수 있을 것이라는 아이디어를 장기간 갖고 있었다. 문제는 긴 폴리에틸렌 사슬을 적절한 길이의 여러 사슬로 분리하고, 그 과정을 효율적으로 진행하는 것이었다. 류 교수는 이 방법을 통해 저렴한 플라스틱 폐기물을 가치 있는 제품으로 업사이클링하는 높은 잠재력을 인식했다. 류 교수는 벽난로 앞에서 겨울 저녁을 즐기다가 벽난로에서 나오는 연기가 나무 연소 중 생성되는 작은 입자로 이루어져 있다는 점에 착안했다. 안전과 환경상의 이유로 플라스틱을 벽난로에서 태워서는 안 되지만, 류 교수는 안전한 실험실 환경에서 폴리에틸렌을 태울 수 있다면 어떤 일이 일어날지 궁금해지기 시작했다. 폴리에틸렌이 불완전 연소하면 나무를 태울 때처럼 '연기'가 발생할까. 만약 누군가가 그 연기를 포집한다면, 그 연기는 무엇으로 만들어질까. 화학과 블랙우드 생명과학 주니어 교수 펠로우십의 류 교수는 "장작은 주로 셀룰로오스 같은 폴리머로 구성되어 있다. 연소 시 이 폴리머는 짧은 사슬로 분해되며, 결국 작은 기체 분자로 변한 뒤 이산화탄소로 완전히 산화된다"고 말했다. 그는 또 "합성 폴리에틸렌 분자도 비슷한 방식으로 분해할 수 있는데, 작은 기체 분자로 완전히 분해되기 전 단계에서 그 과정을 멈추면 짧은 사슬의 폴리에틸렌과 유사한 분자를 얻을 수 있다"고 덧붙였다. 연구실의 화학과 박사과정 학생인 젠 쉬(Zhen Xu)와 에릭 무냐네자(Eric Munyaneza)의 도움으로 류 박사는 온도 구배 열분해라는 공정으로 폴리에틸렌을 가열할 수 있는 오븐과 같은 작은 반응기를 만들었다. 아래쪽의 오븐은 폴리머 사슬을 끊을 수 있을 만큼 충분히 높은 온도를 유지하고, 위쪽의 오븐은 더 이상의 분해를 멈출 수 있을 만큼 낮은 온도로 냉각되는 구다. 열분해가 끝난 후 잔여물을 확인하니 '단쇄 폴리에틸렌', 더 정확하게는 왁스로 구성되어 있었다. 류 박사는 이것은 플라스틱을 비누로 업사이클링하는 방법을 개발하는 첫 번째 단계였다고 말했다. 비누화 등 몇 가지 단계를 더 추가한 후, 연구팀은 세계 최초로 플라스틱으로 비누를 만들었다. 이 과정을 계속 진행하기 위해 연구팀은 컴퓨터 모델링, 경제 분석 등의 전문가들의 도움을 받았다. 이들 전문가 중 일부는 버지니아 공대의 고분자 혁신 연구소와의 연계를 통해 팀에 합류했다. 이 그룹은 함께 업사이클링 프로세스를 문서화하고 개선해 과학계와 공유할 준비가 될 때까지 연구를 진행했다. 이 연구는 최근 사이언스 저널에 게재됐다. 논문의 수석 저자인 젠 쉬는 "우리 연구는 새로운 촉매나 복잡한 절차를 사용하지 않고도 플라스틱 업사이클링을 위한 새로운 경로를 보여준다. 이 연구에서 우리는 플라스틱 재활용을 위한 탠덤 전략의 잠재력을 보여주었다"고 말했다. 그는 "앞으로 사람들이 더 창의적인 업사이클링 절차를 개발할 수 있는 계기를 마련할 것"이라고 기대했다. 비록 폴리에틸렌이 이 프로젝트에 영감을 준 플라스틱이었지만, 이 업사이클링 방법은 다른 유형의 플라스틱인 폴리프로필렌에도 작용할 수 있다. 이 두 재료는 제품 포장, 식품용기, 직물 등 일상에서 소비자가 많이 접하는 플라스틱의 대부분을 차지한다. 업사이클링 기술의 또 다른 장점은 플라스틱과 열이라는 매우 간단한 재료만 있으면 가능하다는 점이다. 공정의 후반 단계에서는 왁스 분자를 지방산과 비누로 전환하기 위해 몇 가지 추가 성분이 필요하지만, 플라스틱의 초기 변형은 간단한 반응이다. 따라서 이 방법은 비용 효율성이 높고 환경에 미치는 영향이 비교적 적다. 업사이클링이 대규모로 효과적으로 이루어지려면 최종 제품이 공정 비용을 감당할 수 있을 만큼 가치가 있어야 하며, 다른 재활용 옵션보다 경제적으로 더 매력적이어야 한다. 대규모로 업사이클링이 효과적으로 이루어지려면 최종 제품은 프로세스 비용을 상환하고 대안 재활용 옵션보다 경제적으로 더 유리하게 만들 수 있을 정도로 가치 있어야 한다. 비록 비누가 처음에는 특별히 비싼 상품으로 보이지 않을 수 있지만, 실제로 무게로 비교할 때 플라스틱의 두 배 이상의 가치가 있을 수 있다. 현재 비누와 세제의 평균 가격은 톤 당 약 3550달러(약 478만원)이고 폴리에틸렌은 톤 당 약 1150달러(약 155만원)다. 류 교수는 이 연구는 사용한 플라스틱을 다른 유용한 재료의 생산으로 전환하여 폐기물을 줄일 수 있는 새로운 방법의 토대를 마련했다고 말했다. 그는 시간이 지나면 전 세계의 재활용 시설에서 이 기술을 도입할 수 있기를 기대했다. 젠 쉬는 "플라스틱 오염은 특정 국가의 문제가 아니라 전 세계적인 과제임을 인지해야 한다. 복잡한 촉매나 시약 대신 간단한 공정은 많은 나라에서 더 쉽게 적용될 수 있다"라며, "이 방법이 플라스틱 오염 문제 해결의 좋은 시작이 되길 바란다"고 말했다.
-
- 산업
-
폐플라스틱 업사이클링 비누 제작 성공
-
-
파나소닉 HD, 전기 없이 '수소 생성기' 연구 착수
- 일본의 대표 리튬이온 배터리 제조사인 '파나소닉 홀딩스(HD)'가 전기 없이 수소를 생성하는 기술 연구에 본격적으로 착수했다. 이와 함께, 한국도 탄소배출을 하지 않고 수소를 만드는 '수전해' 기술 개발에 힘을 쏟고 있다. 일본 산업 전문 매체 '뉴스위치(Newswith)'에 따르면, 파나소닉 HD는 '메조결정(mesocrystal)'이라는 특별한 규칙적인 결정 구조를 가진 금속 산화물을 활용하면, 태양광만으로 광촉매의 원리로 물을 분해, 수소를 생산할 수 있다는 연구 결과를 발표했다. 이로써 앞으로 수소 에너지 활용 시, 전기를 사용하는 문제를 극복할 수 있을 것이라는 전망이 나왔다. 메조결정(mesocrystal)은 아주 작은 단위결정들이 결합해 큰 구조를 형성하는 특징을 가진다. 직경이 수백 나노미터(나노는 1/10억)에서 수 마이크로미터(마이크로는 1/1백만) 크기이며, 규칙적이고 조밀한 방식으로 축적된다. 표면적이 증가하기 때문에 특성이 향상되고 광촉매 작용의 효율을 기대할 수 있다는 장점이 있다. 파나소닉 HD는 "소자 표면에 금속 산화물의 메조결정질 용액으로 코팅된 기판을 부착해 빛을 통한 광촉매 반응으로 수분을 분해하는 기술을 개발했다"고 밝혔다. 그러면서 "현재 초소형 실험 장비에서는 이 기술의 기본 작동 원리가 확인됐다"고 덧붙였다. 파나소닉은 2030년까지 이 기술의 프로토타입을 완성하는 것을 목표로, 메조 결정 구조를 더욱 정밀하게 제어하고 장치의 크기를 확장하는 연구에 주력할 계획이다. 또한, 태양광과 물을 분리해 얻은 수소로부터 추가 에너지를 얻기 위해 태양 전지판과 함께 사용하는 등의 응용 방법을 검토하고 있는 것으로 알려졌다. 한편, 한국은 탄소배출을 최소화한 수소생산 기술, 즉 '녹색 수소' 생산에 집중하고 있다. 이를 위한 핵심 기술로는 신재생에너지와 수전해가 대표적이다. 수전해 기술은 전기를 이용해 물을 수소와 산소로 분해하는 과정이다. 이 중, 두산퓨얼셀은 양성자 교환막 기반의 고분자 전해질막(PEM) 수전해 시스템을 2023년 하반기에 상용화할 방침이다. 세계 1위의 선박평형수 전기분해 처리장치 제조사 테크로스는 알카라인 방식의 수전해 시스템 개방 중인 것으로 알려졌다. 이밖에도 SK E&S는 미국의 수소 전문 기업 플러그파워와 손잡고 수전해 분야로의 진출을 준비하고 있다.
-
- IT/바이오
-
파나소닉 HD, 전기 없이 '수소 생성기' 연구 착수
-
-
폐수 분해해 전기 생산하는 대장균 개발
- 공장 폐수 속 유기물을 이용해 전기를 생산하는 날이 멀지 않았다. 스위스 연구팀이 대장균의 유전자 변형을 통해 폐수에서 자랄 수 있는 박테리아를 찾아냈다. 한국에서는 오폐수나 바닷물, 지하수 등을 정화하며 동시에 전기를 연속적으로 생산하는 분리막을 개발했다. 국제적인 주목을 받는 이 기술에 대해 일본의 온라인 매체 '기가진(Gigazine)'은 최근 스위스 연방 공과 대학의 논문을 인용, "이제 우리는 에너지를 사용하여 폐기물을 처리하는 것이 아닌, 폐기물 처리를 통해 에너지를 얻는 시대로 전환하게 될 것"이라고 전망했다. 스위스 연구팀을 이끄는 아르데미스 보고시안(Aldemis Bogosian) 교수는 일반 대장균의 유전자를 조작, 전기를 생산할 수 있는 '쉬와넬라 오나이덴시스(Shewanella oneidensis)'와 유사한 능력을 가진 박테리아를 개발하는 데 성공했다고 밝혔다. 이러한 연구 성과는 미래의 환경 보호와 지속 가능한 에너지 자원 확보 방안으로 큰 기대를 모으고 있다. 전기를 생산할 수 있는 능력을 지닌 박테리아가 탄생한다 해도 섬세하거나 특별한 먹이가 필요하고 번식에 많은 양의 에너지가 필요하면 실용적 가치가 떨어진다. 이에 연구팀은 스위스 로잔의 현지 맥주 양조장에서 폐수를 채취해 새로 개발한 대장균을 주입했다. 양조장 폐수에는 다량의 당분, 전분질과 맥주 효모 혼합물이 포함되어있어 그대로 흘려 버리면 미생물이 번식할 수 있다. 이에 양조장은 폐수를 배출하기 전에 곡물 세척과 탱크 세척 과정을 거친다. 보고시안은 "이것은 유기 폐기물을 처리하기 위해 에너지를 사용하는 것이 아니라, 유기 폐기물 처리와 동시에 전기를 생산하는 일석이조 시스템"이라며 "양조장 폐수로 실험했을 때 기존의 전기 미생물은 생존조차 할 수 없었지만, 우리가 개발한 전기 미생물은 폐기물을 먹고 비약적으로 증식할 수 있었다"고 말했다. 이번 연구의 응용 범위는 단순한 폐기물 처리에 그치지 않는다. 유전자를 조작한 대장균의 특징 중 하나는 다양한 물질로부터 전기를 생성할 수 있다는 점이다. 이는 미생물 연료 전지, 바이오센싱 등 여러 분야에서의 활용 가능성을 시사한다. 논문의 주저자인 모하메드 모지부는 박테리아 기반의 생체 전기 에너지 분야에 대한 기대감을 전하면서도, "기업들은 이 기술의 상용화를 위해 더 이상 기다릴 수 없다"며 아쉬워했다. 한편, 한국 기업인 SK에코플랜트는 폐수 처리를 위한 전기화학적 정화 기술의 실용성을 테스트하고 있다. 이 방법은 오염된 폐수에 전류를 가해 정화하는 방식으로 진행된다. 더불어 한국과학기술원은 동국대와 협력해 커피 찌꺼기를 활용, 중금속을 제거하는 필터의 개발에 성공했다. 또한, 한국생명공학연구원은 양돈 농가의 폐수를 희석 과정 없이 직접 정화하면서 동시에 폐수 내의 미생물을 효과적으로 관리하는 미세조류 기술 개발에 성공했다고 밝혔다. 최근 한국과학기술원(KIST)은 명지대학교 신소재공학과와 손을 잡고, 오폐수와 바닷물, 지하수와 같은 다양한 물 자원을 효과적으로 정화하며 동시에 전기를 지속적으로 생산할 수 있는 분리막 기술을 개발했다. 이처럼 세계 여러 나라의 연구팀과 기업들은 박테리아와 같은 친환경 에너지 생산이 가능한 방식으로 오폐수 정화 기술 개발에 적극 나서고 있다.
-
- IT/바이오
-
폐수 분해해 전기 생산하는 대장균 개발
-
-
플라스틱 먹는 '효소' 연구 활성화⋯고비용 과제
- 플라스틱을 먹는 효소가 개발이 활성화돼 폐플라스틱 처리에 힘을 보탤 전망이다. 환경오염 주범으로 꼽히는 지구를 뒤덮은 폐플라스틱을 재활용하기 위해 수 많은 연구팀들은 다양한 해결책을 찾고 있다. 특히, 벌집나방 애벌레와 같은 생물학적 자원 활용은 소각이나 매립보다 환경친화적으로 플라스틱을 처리하는 유용한 도구가 될 수 있다. 미국 생화학·분자 생물학 매거진 'ASBMB 투데이'에 따르면, 스페인 생물학자 페데리카 베르토치니(Federica Bertocchini)는 약 10년 전 벌집나방의 애벌레가 플라스틱의 일종인 폴리에틸렌을 먹어 치운다는 사실을 발견했다. 폴리에틸렌은 플라스틱 용기 등을 만드는 데 흔하게 이용되지만, 잘 분해 되지 않는 특성이 있어 폐기가 어렵다는 단점이 있다. 최근 과학자들은 매립지나 자동차폐차장 등을 찾아다니면서 플라스틱을 분해할 수 있는 유기체를 찾고 있다. 이를 채취해 플라스틱의 구성 요소를 회수하는 효율적인 방법을 찾길 기대하고 있는 것. 이후 새로운 재료를 조합해 ‘무한 재활용’이 가능하도록 한다는 계획이다. 영국 포츠머스대 효소혁신센터 존 맥기한(John McGeehan)은 "놀랍게도 전 세계의 수백 개 그룹과 수천 명의 과학자들이 이 문제를 연구하고 있다"고 설명했다. 폐플라스틱, 환경오염 주범 플라스틱은 1950년대 들어 본격적으로 생산됐고 생산량도 급증했다. 매년 약 4억6000만 톤에 가까운 플라스틱이 생산되는 것으로 추정된다. 하지만 이렇게 생산된 플라스틱은 아쉽게도 소각하거나 매립지에 묻히고 있다. 플라스틱은 지구상의 심해나 극지방을 비롯해 비를 타고 내려오거나, 심지어 태반이나 모유, 사람의 혈액에서도 흔적이 보고 되는 등 우리 눈에 보이지 않는 구석구석까지 침투했다. 이처럼 플라스틱은 건강과 환경 문제와 직접 연결되어 있다. 그럼에도 수요는 줄어들지 않고 있으며, 생산량은 오는 2050년까지 10억 톤을 넘길 것으로 예상된다. 플라스틱은 가볍고, 형태를 잡기 쉬운 특성 때문에 이를 대체할 마땅한 소재가 없기 때문이다. 현실적으로 모든 플라스틱을 교체하거나 재활용할 수 없다는 점에서 차선책은 덜 만드는 것이다. 또 약 9%에 불과한 전 세계 플라스틱 재활용률을 높이는 것이 과제다. 하지만, 재활용 과정에서 유해한 화학물질을 흡수할 수 있으며, 수천 가지의 플라스틱 유형에는 각각 고유한 구성과 화학 첨가물이나 착색제가 들어 있어 대다수는 재활용할 수 없는 것이 문제다. 효소 재활용 회사 버치 바이오사이언스(Birch Biosciences) 공동 창립자이자 합성 생물학자인 요한 커스(Johan Kers)는 "우리는 심각한 플라스틱 순환성 문제를 안고 있다"며 "알루미늄과 종이 등은 재활용할 수 있지만 플라스틱 재활용은 힘들다"고 지적했다. '자연'에서 착안한 '효소' 주목 캘리포니아대학교 버클리 캠퍼스 고분자 과학자 팅 쉬(Ting Xu)는 "효소를 통한 접근법은 폐플라스틱을 폐기물의 원천이 아닌 귀중한 자원으로 전환시킬 수 있다"고 설명했다. 이미 1970년대에 플라스틱을 먹는 효소에 대한 연구가 시작됐다. 그러다가 2016년 일본 과학자팀이 사이언스 학술지에 플라스틱을 먹는 획기적인 박테리아의 새로운 변종에 대한 논문을 발표하면서 효소 연구에 다시 불을 지폈다. 교토공과대학 미생물학자 코헤이 오다(Kohei Oda)가 이끄는 연구팀은 이데오넬라 사카이엔시스(Ideonella sakaiensis) 201-F6이라고 불리는 미생물이 음료수병과 섬유에 널리 사용되는 폴리에스터인 PET 플라스틱을 주요 에너지와 식품 공급원으로 사용한다는 사실을 발견했다. 그 이후로 과학자들은 독일 라이프치히 묘지의 퇴비 더미, 그리스 하니아(Chania) 해변 등 전 세계 여러 장소에서 플라스틱을 먹는 미생물을 발견했다. 그리고 바다, 북극 툰드라 표토, 사바나 및 다양한 숲을 포함한 환경에서 자유롭게 떠다니는 DNA에서 발견된 2억 개 이상의 유전자에 대한 대규모 분석을 통해 플라스틱 분해 가능성이 있는 3만 개의 다양한 효소가 있다는 것을 찾아냈다. 맥기한은 콜로라도를 포함해 다른 지역의 국립 재생 에너지 연구소(National Renewable Energy Laboratory)의 동료들과 함께 이데오넬라 사카이엔시스의 플라스틱 섭취 능력을 담당하는 두 가지 효소를 조작해 성능을 높이고 연결해 플라스틱을 분해할 수 있는 효소 칵테일을 만들었다. 그 결과 이전보다 6배 더 빠르게 PET를 분해할 수 있었다. 최근 과학자들은 인공지능(AI)을 사용해 플라스틱을 더 빠르게 해중합[해중합은 유색 페트(PET)병이나 폴리에스터 섬유 등 플라스틱 분자를 화학적으로 분해하는 기술]하고, 표적 기질에 대해 덜 까다롭고, 더 높은 온도를 견딜 수 있는 효소를 찾아내고 있다. 초기 데이터에 따르면 생물학적 효소를 이용한 재활용은 플라스틱을 새로 만드는 것보다 탄소 배출량이 더 적은 것으로 알려졌다. 탄소와 산소가 얽혀 있는 PET 재활용 플라스틱은 생물학적 재활용에 가장 적합하다. 영국 포츠머스 대학교의 분자 생물물리학자 앤디 픽포드(Andy Pickford)는 이 물질이 '일종의 아킬레스건'이라고 말했다. PET은 탄소가 산소와 얽혀 있다. 직물과 음료수병에서 흔히 발견되며 매년 생성되는 플라스틱의 약 5분의 1을 차지하는 PET는 생물학적 재활용 업체들 사이에서 인기 있는 대상이자 상업적으로 이용 가능한 제품이기도 하다. 실제로 프랑스 회사 카르비오(Carbios)는 연간 5만 톤의 PET 폐기물을 재활용하는 것을 목표로 2025년 프랑스 북부에 바이오 재활용 공장을 열 계획이다. 호주에 본사를 둔 삼사라에코(Samsara Eco)는 2024년 멜버른에 PET에 초점을 맞춘 2만 톤 규모의 재활용을 계획하고 있다. 플라스틱 유형을 연구하고 있는 픽퍼드(Pickford)는 "PET와 유사한 화학적 구성을 가진 폴리아미드와 폴리우레탄도 본질적으로 효소에 의해 분해되기 쉬워 효소 재활용의 유망한 대상"이라고 말했다. 삼사라에코는 합성 폴리아미드의 일종인 나일론을 연구하고 있다. 지난 5월 버려진 옷으로 '세계 최초의 무한 재활용' 나일론-폴리에스테르 의류를 생산하기 위해 인기 운동복 브랜드 룰루레몬(Lululemon)과 다년간의 파트너십을 발표했다. 아직은 연구가 미진하지만 연구원들은 폴리우레탄을 분해하는 미생물에 대해서도 연구 중이다. '슈퍼웜' 유충 활용 기술 향상 효소 재활용은 순수 탄소 골격을 가진 플라스틱의 경우 전망은 흐리다. 비닐봉지를 만드는 데 사용되는 폴리염화비닐(PVC), 폴리비닐알코올(PVA), 폴리스티렌 및 폴리에틸렌을 포함하는 제품은 기름기가 많아 투입된 효소를 붙잡을 수 없기 때문이다. 그런데 페데리카 베르토치니는 데메트라(Demetra)와 세레스(Ceres)라는 이름을 붙인 왁스 벌레 타액에서 플라스틱 분해 효소를 확인했다. 이 효소는 탄소 골격에 산소를 주입해 실온에서 몇 시간 내에 폴리에틸렌을 분해하는 것으로 나타났다. 폴리스티렌을 연구하는 호주 퀸즈랜드 대학교의 미생물학자 크리스 린케(Chris Rinke) 박사는 '슈퍼웜(Superworm)'이라고 불리는 미국왕딱지벌레(Zophobas morio) 유충을 발견했다. 플라스틱을 기계적으로 작은 조각으로 파쇄하고 산소 원자를 투입해 '노화'한 다음 특수 기술을 사용해 해당 조각을 해중화하는 두 가지 과정을 통해 폴리스티렌을 분해한다. 린케 박사는 "곤충에서 발견되는 효소가 열쇠를 쥐고 있을 수 있다"고 말했다. 반면, 일부 전문가들은 생물학적 재활용 전망에 대해 낙관적이지 않다. 픽포드는 "아직 폴리에틸렌, 폴리프로필렌, PVC와 같은 폴리올레핀이 대규모 효소 재활용을 위한 현실적인 목표가 될 것이라고 확신하지 못했다"며 "이런 경우 재활용이 가능한 새로운 플라스틱을 만드는 방향으로 전환하는 것이 더 현실적"이라고 말했다. 한국의 경우, 2020년 포스텍의 차형준 교수 팀은 '산맴돌이거저리(Plesiophthalmus davidis)'라고 불리는 검은 딱정벌레의 유충에서 폴리스티렌 소화 능력을 부여한 장내 세균인 '세라티아 폰티콜라(Serratia Fonticola)'에 대해 보고했다. 또 다른 그룹은 PLA를 포함한 특정 유형의 생분해성 플라스틱을 분해할 수 있는 두 가지 저온 적응성 곰팡이 균주[고산 토양과 북극 해안에서 분리된 라크네룰라(Lachnellula)와 네오데브리에시아(Neodevriesia)]를 발견했다고 보고했다. 하지만 효소를 활용하는 프로세스를 확장하는 것이 얼마나 쉬울지, 그리고 확장된 환경이 어떤 모습일지는 불분명하다. 한편, UN은 오는 2024년 세계 최초의 글로벌 플라스틱 오염 조약을 만들 예정이다. 플라스틱 오염을 억제하는 것을 목표로 하며, 특히 재활용을 더 쉽게 하기 위해 플라스틱 제품의 생산 과 설계에 대한 새로운 규칙을 도입할 것으로 예상된다. 다음 해에는 워싱턴과 캘리포니아, EU에서 플라스틱 용기와 음료수병 재료의 25%를 재활용 플라스틱으로 규정하는 법률이 시행될 예정이다. 그러나 추가적인 변화와 인센티브가 없다면 이러한 노력은 물거품이 될 수도 있다는 지적이다. 화석 연료의 저렴한 가격으로 인해 순수 플라스틱이 저렴하게 유지되는 한 생물학적 효소 활용은 비용 면에서 경쟁력이 없기 때문이다. 맥기한은 "과거 석유 및 가스 산업이 혜택을 누렸던 방식으로 PET 또는 기타 생분해성 공정에 인센티브를 부여해야 한다"며 "생물학적 재활용 기술이 향상되면 새로운 플라스틱과 경쟁할 수 있을 만큼 비용면에서 효율적일 것"이라고 강조했다. 그럼에도 그는 "효소가 전체 플라스틱 문제를 해결하지 못하지만 이제 막 첫 걸음을 뗐다"며 향후 발전에 기대감을 드러냈다.
-
- IT/바이오
-
플라스틱 먹는 '효소' 연구 활성화⋯고비용 과제
-
-
'역백신', 제1형 당뇨병·크론병 등 자가면역 질병 치료
- 제1형 당뇨병과 크론병 등 자가 면역질환을 역백신으로 치료하는 연구가 진행중이다. 중추신경계의 탈수초성 질환(demyelinating disease 신경세포의 축삭을 둘러싸고 있는 절연물질인 수초가 탈락되는 질병) 중 가장 흔한 유형인 다발성 경화증과 췌장에서 인슐린이 분비되지 않아 발생하는 제1형 당뇨병, 만성 염증성 장질환인 크론병을 정복할 수 있는 날이 코앞에 다가왔다. 과학기술 전문 매체 '사이테크데일리(SciTechDaily)’에 따르면, 시카고대학 프리츠커 분자공대(PME Pritzker Molecular Engineering) 연구팀이 '역백신(inverse vaccine)'을 개발해 자가면역 반응을 제거할 수 있음을 증명했다. 일반적인 백신은 인간의 면역 체계가 바이러스나 박테리아를 공격해야 할 적으로 인식하도록 만들지만, ‘역백신’은 한 분자에 대한 면역 체계 기억을 제거하는 정반대의 역할을 하도록 했다. 면역 체계 기억을 제거하는 것은 전염병의 경우 바람직하지 않지만 다발성 경화증, 제1형 당뇨병, 류머티즘성 관절염 또는 면역 체계가 사람의 건강한 조직을 공격하는 크론병에서 나타나는 자가면역 반응을 멈출 수 있다는 것이 연구팀의 설명이다. 최근 국제학술지 네이처 생명의학공학(Nature Biomedical Engineering)에 발표된 논문을 살펴보면, 역백신은 자연 과정에 의해 죽는 세포에 대한 자가면역 반응을 예방하기 위해 간이 자연적으로 세포 분해 생성물을 '공격 금지'로 표시하는 방식을 활용한다. PME 연구팀은 우리 몸의 간이 면역 체계가 공격하는 항원(면역 체계가 공격하는 분자)을 친구로 인식하는 노화된 세포 조각과 유사한 분자와 결합해, 이 백신이 어떻게 다발성 경화증과 유사한 질병과 관련된 자가면역 반응을 성공적으로 막을 수 있는지 보여줬다. 이번 논문의 주 저자인 제프리 허벨(Jeffrey Hubbell) 교수는 "이 연구에서 가장 흥미로운 점은 이미 염증이 진행 중임에도 다발성 경화증과 같은 질병을 치료할 수 있다는 것이며, 이는 실제 상황에서 더 유용하다"고 강조했다. 역백신으로 면역력 억제 면역 체계의 T세포(세포성 면역을 담당하는 림프구의 일종) 역할은 바이러스, 박테리아, 암 등 원치 않는 세포와 분자를 신체의 이물질로 인식해 제거하는 것이다. 그러나 T세포는 건강한 세포를 이물질로 인식하는 실수를 할 수 있다. 예를 들어, 크론병 환자의 경우 면역 체계는 소장 세포를, 다발성 경화증 환자의 경우에는 신경 주변의 보호 코팅인 미엘린을 공격한다. 허벨 교수와 그의 동료들은 면역 반응이 몸 전체의 모든 손상된 세포에 대해 발생하지 않도록 하는 메커니즘을 가지고 있다는 것을 주목했다. 이러한 현상은 간에서 일어나는 말초 면역 관용(Peripheral Immune Tolerance)으로 알려져 있다. 그들은 최근 몇 년 동안 N-아세틸갈락토사민(pGal)으로 알려진 당으로 분자를 태깅하면 이 과정을 모방하여 분자를 간으로 보내서 분자에 대한 내성이 생길 수 있다는 사실을 발견했다. 이 연구는 면역계의 작동 원리를 이해하는 데 크게 기여했으며, 미래의 의학적 치료법 개발에 중요한 토대를 제공한다. 허벨은 "우리가 원하는 분자를 pGal에 부착할 수 있고 면역 체계가 이를 견딜 수 있도록 가르칠 것"이라며 "백신처럼 면역력을 높이는 대신 역백신을 사용하면 매우 구체적인 방식으로 면역력을 억제할 수 있다"고 주장했다. 연구팀은 미엘린 단백질을 pGal에 연결하고 새로운 역백신의 효과를 테스트한 결과, 면역 체계가 미엘린 공격을 중단하고 신경이 다시 올바르게 기능하도록 하며 동물의 질병 증상을 완화시킬 수 있음을 발견했다. 일련의 다른 실험을 통해 과학자들은 동일한 접근 방식이 지속적인 면역 반응을 최소화하는데 도움이 된다는 것을 보여줬다. 제1상 안전임상시험 수행 허벨은 "오늘날 자가면역 질환은 일반적으로 면역 체계를 광범위하게 억누르는 약물로 치료되는데, 이는 매우 효과적일 수 있지만 감염을 막기 위해 필요한 면역 반응도 차단하므로 많은 부작용이 발생할 수 있다":고 지적했다. 대신 역백신으로 환자를 치료할 수 있다면 훨씬 더 구체적이고 부작용도 줄어들 수 있다는 설명이다. 허벨의 pGal 화합물을 사람을 대상을 하기 위해선 더 많은 연구가 필요하지만, 밀, 보리, 호밀 섭취와 관련된 자가면역 질환인 복강병 환자를 대상으로 초기 제1상 안전임상시험이 이미 수행됐다. 현재 다발성 경화증에서 임상시험이 진행 중이다.
-
- IT/바이오
-
'역백신', 제1형 당뇨병·크론병 등 자가면역 질병 치료
-
-
[퓨처 Eyes(3)] 양자 컴퓨터, AI·챗GPT보다 더 큰 기술 혁신 온다
- 미래 기술에서 양자 컴퓨터를 빼고 이야기할 수 없다. 양자 컴퓨터는 독특한 도전과제를 제시하고 전례 없는 연산 능력을 약속하는 최첨단 기술이다. 양자 컴퓨터는 양자역학의 원리를 이용하여 작동한다. 이진 논리(0과 1)와 순차적 계산으로 작동하는 기존 컴퓨터와 달리, 양자 컴퓨터는 무한한 수의 가능한 결과를 나타낼 수 있는 양자 비트, 즉 '큐비트(qubit)'라는 정보 단위를 사용해 계산을 수행한다. 이를 통해 양자 컴퓨터는 양자역학의 확률적 특성을 활용하여 엄청난 수의 계산을 동시에 수행할 수 있다. 인공지능(AI) 챗 GPT보다 더 큰 기술혁신을 몰고 올 것으로 기대되는 양자 컴퓨터의 장점은 첫째, 기존 컴퓨터보다 어떤 작업도 더 빠르게 수행할 수 있다. 양자 컴퓨터에서는 원자가 기존 컴퓨터보다 더 빠르게 움직이기 때문이다. 둘째, 높은 수준의 정밀도로 국가 보안 및 메가데이터 처리에 적합하다. 셋째, 에너지 낭비가 적다. 양자 컴퓨터는 아직 초기 단계에 있지만 암호화부터 신약 개발에 이르기까지 다양한 분야에 혁신을 가져올 잠재력을 가지고 있다. 양자 컴퓨터를 사용하면 부작용이 적고 더 효과적인 신약을 개발할 수 있다. 또한 IT 보안의 주요 도전 과제이기도 하다. 연구자와 기술 기업은 양자 컴퓨터의 성능을 견딜 수 있는 새로운 암호화 방법을 모색해야 한다. 여기에는 새로운 암호화 알고리즘을 개발하거나 양자역학의 원리를 사용하여 '양자 암호화'로 알려진 것을 만드는 게 포함될 수 있다. 프랑스 일간 경제지 라 트리뷘(LATRIBUNE)에 따르면 2030년까지 2000~5000대의 양자 컴퓨터가 작동할 것으로 보인다. 이 매체는 양자 컴퓨터 퍼즐에는 많은 조각이 있기 때문에 가장 복잡한 문제를 처리하는 데 필요한 하드웨어와 소프트웨어는 2035년 이후에나 존재할 수 있다고 전망했다. 또 대부분의 기업은 2035년까지 양자 컴퓨터를 통해 상당한 가치를 창출할 수 없겠지만, 일부 기업은 향후 5년 동안 이득을 볼 수 있을 것으로 내다봤다. 양자 컴퓨터 시장 규모는 2022년 약 10억 달러에서 2030년 80억 달러로 증가할 것으로 추정된다. 퓨처 아이즈에서는 양자 컴퓨터 작동 원리와 금융이나 생명공학, 공급망 등의 적용 분야, 향후 양자 컴퓨터 개발 과제 등을 점검해본다. 양자 컴퓨터의 작동 원리 1) 중첩 양자컴퓨터의 '중첩(Quantum superposition)'은 양자역학의 기본 원칙 중 하나로, 양자시스템이 두 개 이상의 상태를 동시에 가질 수 있다는 개념을 의미한다. 전통적인 컴퓨터에서 비트는 0 또는 1의 값을 갖는다. 그러나 양자컴퓨터에서 '큐비트'는 중첩의 원칙 덕분에 0과 1의 상태를 동시에 가질 수 있다. 이러한 특성은 양자컴퓨터가 복잡한 계산을 전통적인 컴퓨터보다 훨씬 빠르게 수행할 수 있게 해준다. 2) 양자 얽힘 양자 얽힘은 큐비트가 서로 결합하여 한 큐비트의 상태가 다른 큐비트의 상태에 즉각적으로 영향을 미칠 수 있게 함으로써 큐비트 사이의 거리에 관계없이 큐비트를 연결할 수 있게 한다. 이 특성 덕분에 양자 컴퓨터는 기존 컴퓨터보다 복잡한 문제를 더 효율적으로 해결할 수 있다. 3) 양자 게이트 양자 게이트는 큐비트 집합에서 수행할 수 있는 연산이다. 양자 게이트는 고전 컴퓨팅의 논리 게이트와 유사하지만, 중첩과 얽힘 덕분에 양자 게이트는 가능한 모든 입력을 동시에 처리할 수 있다. 양자 컴퓨터의 적용 잠재력 양자 컴퓨터의 잠재력은 방대한 양의 정보를 병렬로 처리할 수 있어 기존 컴퓨터에 비해 계산 능력이 기하급수적으로 증가한다는 데 있다. 기존 컴퓨터는 한 사람의 경주 결과를 계산할 수 있지만, 양자 컴퓨터는 서로 다른 경로를 가진 수백만 명의 참가자가 참여하는 경주를 동시에 분석하고 확률 기반 알고리즘을 사용하여 가장 가능성이 높은 우승자를 결정할 수 있다. 양자 컴퓨터는 특히 여러 가지 확률적 결과가 나오는 최적화 문제와 시뮬레이션을 해결하는 데 적합하며 물류, 의료, 금융, 사이버 보안, 날씨 추적, 농업 등의 분야에 혁신을 가져올 수 있다. 양자 컴퓨터의 영향력은 지정학까지 확장되어 전 세계적으로 힘의 역학 관계를 재편할 수 있다. 양자 컴퓨터는 금융과 생명공학, 공급망 등 많은 산업 분야에 혁신을 가져올 것이다. ◇ 금융 금융 및 투자 산업은 양자 AI(퀀텀 AI)의 혜택을 크게 받을 수 있는 분야 중 하나다. 대량의 데이터를 실시간으로 분석할 수 있는 양자 AI 알고리즘은 금융회사가 보다 정보에 입각한 투자 결정을 내리고 리스크를 보다 효과적으로 관리하는 데 도움이 될 수 있다. 예를 들어, 양자 AI는 시장 동향을 분석하고 주식, 채권 및 기타 금융상품의 움직임을 예측하는 데 사용될 수 있다. 이는 투자자가 투자 시점에 대해 더 많은 정보를 바탕으로 구매, 판매 또는 보유 결정을 내리는 데 도움이 될 수 있다. 또한 금융회사가 새로운 투자 기회를 파악하는 데도 도움이 될 수 있다. 양자 AI 알고리즘은 대량의 데이터를 분석하여 새로운 트렌드와 성장 가능성이 있는 산업을 파악할 수 있다. 이를 통해 투자자는 새로운 산업의 초기 단계에 진입하고 잠재적으로 상당한 투자 수익을 얻을 수 있다. ◇ 생명공학 양자 AI는 유전자 데이터와 기타 복잡한 의료 정보를 분석할 수 있는 능력을 통해 질병에 대한 새로운 치료법과 치료법을 찾아내는 데 도움을 줄 수 있다. 예를 들어, 양자 AI는 대량의 유전자 데이터를 분석하여 암과 같은 질병의 근본적인 원인을 파악하는 데 사용될 수 있다. 이는 연구자들이 이러한 질병을 유발하는 특정 유전자 돌연변이를 표적으로 하는 새로운 치료법을 개발하는 데 도움이 될 수 있다. 또한 의료진이 환자 개개인에게 맞춤화된 치료를 제공하는 데 도움이 될 수 있다. 양자 AI 알고리즘은 환자의 유전자 데이터를 분석하여 해당 환자의 특정 질환에 가장 효과적인 치료법을 찾아낼 수 있다. 이를 통해 의료진은 보다 효과적인 치료를 제공하고 환자 치료 결과를 개선할 수 있다. ◇ 공급망 및 물류 물류 및 공급망 관리는 양자 AI의 혜택을 크게 받을 수 있는 또 다른 분야다. 복잡한 물류 네트워크를 최적화함으로써 기업은 비용을 절감하고 효율성을 개선할 수 있다. 양자 AI는 배송 경로와 배송 시간을 분석하여 가장 효율적인 상품 운송 방법을 파악하는 데 사용될 수 있다. 양자 AI 알고리즘은 판매 데이터 및 기타 요인을 분석하여 제품 수요를 예측하고 기업이 재고 수준을 최적화할 수 있도록 도울 수 있다. 이를 통해 기업은 낭비를 줄이고 수익성을 개선할 수 있다. ◇ 기후 및 환경 모델링 양자 AI는 기후 및 환경 모델링에도 큰 영향을 미칠 수 있다. 연구자들은 대량의 환경 데이터를 분석함으로써 기후 변화의 영향을 더 잘 이해하고 그 영향을 완화하기 위한 전략을 개발할 수 있다. 양자 AI는 위성 데이터를 분석하여 해수면 변화를 추적하고 해수면 상승이 해안 지역 사회에 미치는 영향을 예측하는 데 사용될 수 있다. 또 기상 조건을 분석하고 허리케인이나 토네이도와 같은 자연재해의 발생 가능성을 예측하는 데에도 사용될 수 있다. 양자 컴퓨터의 개선점 양자 컴퓨터는 큐비트 수정과 양자 오류 등의 수정, 양자 알고리즘 개발 등이 문제점으로 거론된다. 이를 개선하면 양자 컴퓨터는 상상할 수 없는 혁신적인 단계로 접어들 것으로 보인다. 1) 큐비트 개선 양자 컴퓨팅의 기본 단위인 큐비트는 고전적인 비트에 해당한다. 연구자들은 양자 정보를 보다 안정적으로 저장하고 조작할 수 있는 더 안정적이고 일관된 큐비트를 개발하기 위해 노력하고 있다. 초전도 큐비트, 갇힌 이온 기반 큐비트, 광자 기반 큐비트 등 다양한 기술이 연구되고 있다. 2) 큐비트 수 증가 양자 계산의 규모와 복잡성은 사용 가능한 큐비트 수에 따라 달라진다. 연구자들은 더 강력한 양자 알고리즘을 실행하기 위해 큐비트 수를 크게 늘리고자 한다. 큐비트 수가 많은 양자 컴퓨터는 기존 컴퓨터로는 접근할 수 없는 계산을 수행할 수 있게 해준다. 3) 양자 오류 수정 양자 시스템은 노이즈, 간섭, 불안정성 등의 요인으로 인해 오류가 발생하기 쉽다. 양자 오류 수정은 양자 오류를 감지하고 수정하는 기술을 개발하여 실제 시스템에서 양자 계산의 신뢰성을 보장하는 것을 목표로 하는 활발한 연구 분야다. 4) 양자 알고리즘 연구원들은 양자 컴퓨터에서 실행되도록 설계된 특정 알고리즘을 개발하기 위해 노력하고 있다. 이러한 알고리즘은 양자 속성을 활용하여 기존 알고리즘보다 복잡한 문제를 더 빠르게 해결한다. 유망한 양자 알고리즘의 예로는 쇼 인수분해 알고리즘, 그로버 검색 알고리즘, 양자 시뮬레이션 알고리즘 등이 있다. 5) 양자 머신 러닝과 양자 인공 지능의 사용 연구자들은 양자 시스템의 고유한 특성을 활용할 수 있는 새로운 머신러닝 및 인공 지능 알고리즘을 개발하기 위해 양자 컴퓨팅의 활용을 모색하고 있다. 6) 양자 클라우드 서비스의 부상 큐비트 수와 일관성 시간이 증가함에 따라 많은 기업이 사용자에게 양자 클라우드 서비스를 제공하여 자체 양자 컴퓨터를 구축하지 않고도 양자 컴퓨팅의 성능을 이용할 수 있도록 하고 있다. 7) 양자 오류 수정의 발전 양자 컴퓨터를 실질적으로 유용하게 사용하려면 계산 중에 발생하는 오류를 최소화하는 양자 오류 수정 기술이 필요하다. 이 목표를 달성하기 위해 많은 새로운 기술이 개발되고 있다. 양자 컴퓨팅은 아직 개발 초기 단계에 있으며, 널리 사용 가능하고 상업적으로 실행 가능한 양자 시스템이 현실화되려면 많은 기술적 과제를 극복해야 한다. 하지만 이러한 혁신 분야의 지속적인 발전은 가까운 미래에 양자 컴퓨팅에 대한 흥미로운 전망을 열어줄 수 있다. 양자 컴퓨팅은 새로운 논리 패러다임으로 인해 프로그래밍에 완전히 다른 접근 방식이 필요하다. 이 기술의 잠재력을 효과적으로 활용하려면 불확실성과 반복적인 휴리스틱 접근 방식을 수용하는 것이 필수적이다. 그러나 양자 컴퓨팅의 한 가지 중요한 과제는 오류 확률을 높이지 않고 여러 큐비트를 연결해야 한다는 점이다. 이는 양자 컴퓨팅 기술의 상업적 성장을 가로막는 중요한 장애물로 남아 있다. 양자 상태를 저하시키는 디코히어런스를 피하기 위해 큐비트를 실제 환경으로부터 격리해야 한다는 현실적인 제약이 있다. 현재는 극도로 낮은 온도로 냉각하는 것이 격리에 사용된다. 현재 진행 중인 연구에서는 양자 프로세서의 확장성과 상업적 실용성을 높이기 위해 포토닉스 및 다양한 소재를 포함한 다양한 방법론을 모색하고 있다. 또한 양자 컴퓨터는 '1000큐비트'의 강력한 성능이 필요하다. 지난 10년 동안 양자 컴퓨팅은 괄목할 만한 발전을 이루었다. 예를 들어 IBM은 2017년에 50큐비트 칩을 출시했으며, 2019년에는 특정 계산에서 가장 빠른 기존 슈퍼컴퓨터를 능가하는 성능을 보였다고 주장했다. 1000큐비트 양자 컴퓨터 개발 경쟁이 이미 진행 중이며, 더 많은 발전이 기대된다. 양자 컴퓨터의 잠재력을 최대한 발휘하려면 오류 수정 큐비트의 개발이 필수적이다. 현재의 양자 프로세서는 하나의 오류 수정 큐비트를 구현하기 위해 상당한 수의 표준 큐비트가 필요한 경우가 많다. 그러나 이 문제는 향후 몇 년 내에 해결될 것이라는 낙관적인 전망이 나오고 있다. 현재 거론하는 양자 컴퓨터에 대한 단기적인 전망은 과장된 것일 수 있지만, 장기적인 결과는 판도를 바꿀 가능성이 높다. 다양한 분야에서 전 세계적으로 관심이 높아지면서 상당한 자본이 투입되고 있으며, 향후 몇 년 동안 놀라운 실용적 혁신이 이루어질 수 있는 기반을 마련하고 있다. 양자 컴퓨터는 전례 없는 연산 능력을 제공하고 다양한 산업과 분야에 혁명을 일으켜 세상을 변화시킬 수 있는 가능성을 지니고 있다. 아직 해결해야 할 과제가 남아 있지만, 양자 기술의 지속적인 발전은 언제든 획기적인 발전이 일어날 수 있음을 시사한다. 양자 컴퓨터의 잠재력을 활용하면 모든 첨단 기술 중에서 가장 영향력 있는 기술이 되어 우리 사회에 큰 발전을 가져올 것으로 기대된다.
-
- 포커스온
-
[퓨처 Eyes(3)] 양자 컴퓨터, AI·챗GPT보다 더 큰 기술 혁신 온다
-
-
미래 에너지원 수소, '나노 섹션'으로 저비용 생산 가능
- 수소는 미래의 에너지 시스템의 핵심요소로 주목받고 있다. 전기 저장과 운송에 사용되는 수소는 트럭과 선박 추진 시스템을 기후 친화적으로 전환하거나, 산업 공정에서 천연가스 대체제로 사용될 수 있다. 전기분해를 통해 친환경적인 방식으로 수소를 생산하는 데 사용할 수 있지만 먼저 친환경 전기 확보가 필수적이다. 광촉매에서는 햇빛을 이용해 직접 물을 수소로 전환하기도 한다. 독일 기술 전문 매체 퓨처 존에 따르면 비엔나 공과대학교는 광촉매를 활용해 물을 수소로 직접 전환해 수소를 저렴하게 생산하는 새로운 솔루션을 개발했다. 광촉매의 효율과 비용은 사용되는촉매의 재료에 따라 달라진다. 특히 금속-유기 프레임워크(MOF)는 효과적인 촉매로서의 가능성이 확인됐다. 이 MOF는 넓은 범위의 태양광을 효율적으로 활용하는 데 탁월하다. 티타늄 와플 재료화학연구소의 도미니크 에더 교수가 이끄는 비엔나 공과대학교 연구팀은 티타늄과 탄소층으로 구성된 MOF를 개발했다. 이 물질은 특히 효율적으로 물을 수소로 전환할 수 있다. 이 개발 연구의 제1저자인 파블로 아얄라는 "전자 현미경으로 MOF를 보면 마치 매너 섹션(manner section)처럼 보인다"고 말했다. 그는 "즉, 와플은 금속(티타늄)이고 층을 서로 접착하는 초콜릿 처럼 보이는 것은 유기 부분(탄소)"이라고 설명했다. 나노 컷, 전자 현미경으로 관찰 여기에서 '나노 컷(cuts)'은 길쭉하지 않고 입방체 모양이며 너무 작아서 육안으로 볼 수 없다. 대체로 크기가 수 나노미터(nm)에 불과한 작은 입자는 분말을 생성한다. 아얄라에 따르면, 이 분말을 물이 있는 용기에 넣고 햇빛을 비추면, 유기-금속 부분에서 물이 산소와 수소로 나뉜다. 밀폐된 용기 안에서 위로 부풀어 오르는 가스는 멤브레인을 통해 간단하게 분리할 수 있다. 낮은 무게, 높은 수율 실험 결과에 따르면 개발된 소재는 상대적으로 낮은 무게로 많은 양의 수소를 생산한다. 아얄라는 "가장 잘 알려진 MOF 중 하나는 동일한 조건에서 우리보다 10배 적은 수소를 생산한다"고 말했다. 비엔나 공대 팀은 MOF로 기록적인 결과를 달성했다. 하지만 아얄라는 이에 대해 "프로세스는 지속적으로 개선되고 있다. 이 주제에 대한 새로운 연구가 거의 매주 발표되고 있다"고 말했다. 그러나, 효율성 측면 즉 태양 에너지가 궁극적으로 얼마나 많은 수소로 변환되는지에 관한 한 비엔나 공과대학교의 MOF를 사용한 광촉매 공정은 1퍼센트에 불과했다. 반면, 몇 달 전 미시간 대학의 연구팀은 9%라는 놀라운 수치를 발표했다. 지속가능한 수소 생산이 관건 수소 생산에서 비용은 매우 중요하다. 하지만 아얄라는 "태양은 에너지원으로서 생산성이 매우 높기 때문에 최고 효율이 필요하지 않다. 중요한 것은 지속 가능성을 유지하는 것"이라며 비용이 결정적인 요소가 아니라고 선을 그었다. 게다가 물에서는 일부 물질의 성능이 급격히 저하되는 단점이 있다. 아얄라에 따르면 "나노 컷" 분말은 몇 주 동안 좋은 전환 결과를 달성했다. 그러나 장기적인 연구는 아직 수행되지 않았다. 아얄라는 "5~10년 안에 첫 번째 애플리케이션이 등장할 수 있을 것"이라며 이러한 유형의 수소 생산 원리가 발전할 것으로 기대했다. 한편, 이러한 과정을 거쳐 생산된 수소가 어떤 유형의 플랜트에 적용될지는 아직 예측할 수 없다. 어쨌든 광촉매는 소금물이나 폐수를 포함한 모든 형태의 물에서 작동하는 것이 목표다. 광촉매를 사용하면 미래에는 수소 외에도 완전히 다른 것이 생산될 수도 있다. 예를 들어 비엔나 공과대학교에서는 이미 수중에 떠다니는 미세 플라스틱을 녹이는 데 광촉매를 사용하는 방법에 대한 연구가 진행 중이다.
-
- 산업
-
미래 에너지원 수소, '나노 섹션'으로 저비용 생산 가능
-
-
우산부터 프라이팬까지⋯일상 속 '암 유발' 독성 화학물질 6가지
- 한국의 장마철에는 많은 비가 쏟아진다. 6월 말부터 시작되는 장마철을 대비해 미리 튼튼한 우산을 준비하기도 한다. 그러나 대부분의 사람들이 몰랐던 충격적인 사실이 밝혀졌다. 그 바로 우산에 '암 유발' 위험을 가진 '잔류성 독성 화학물질(Perfluoroalkyl Sulfonate 과불화옥테인술폰산)'이 숨어있다는 것. 그게 끝이 아니다. 음식물이 타지 않도록 코팅 처리된 프라이팬과 심지어 화장품에도 독성 화학물질이 들어 있다. 잔류성 독성 화학물질은 우리 주변 곳곳에 있으나, PFAS와 PFOA(perfluorooctanoic acid 과불화옥탄산)와 같은 물질들은 자연환경이나 인체에서 쉽게 분해되지 않아, 영구적으로 남는 위험이 있다. 야후 뉴스는 최근 이 같은 위험한 화학물질이 함유되어 있을 가능성이 있는 제품 6가지를 소개했다. 다양한 용도를 자랑하는 PFAS와 PFOA는 많은 기업들이 애용하고 있다. 조리용 팬에 적용하면 매끄러운 표면이 형성되며, 셔츠의 얼룩 제거에도 탁월한 효과를 보인다. 일부 규제 기관들은 잔류성 독성 화학물질이 건강에 미치는 영향을 파악하기 위해 지속적인 모니터링을 진행하고 있다. 그러나 해당 물질의 사용을 제한하자, 다른 대체 분자를 개발해 새로운 화학물질이 등장하고 있는 현실이다. 코팅 팬에는 PFAS와 같은 화학물질의 잔류 가능성이 높다. 이들 물질은 고혈압, 심장마비, 뇌졸중, 간 기능 약화, 신장암 및 고환암의 위험성이 증가한다. 심할 경우 불임 문제까지 초래할 수 있다. 유해물질추방국제네트워크(IPEN, International Pollutants Elimination Network) 과학 고문 사라 브로쉐(Sara Brosché) 박사는 "이 물질은 생식력 및 내분비 장애 문제와 관련이 있다"며 "환경 오염으로 인해 부분적으로 발생하는 출산 위기와 관련돼 있다"고 주장했다. 편리함 때문에 자주 이용하는 전자레인지용 팝콘 봉지도 가급적 사용하지 않는 것이 좋다. IPEN이 2023년 3월 발표한 연구자료에 따르면, 전자 레인지용 팝콘 봉지에는 PFBA(perfluorobutanoic acid)와 PFHxA(perfluorohexanoic acid), FTOH(플루오로텔로머 알코올), 오르텔로머 알코올(FTOHs)이 종종 함유됐다. 또 국제적인 환경 분야 학술지 '종합환경과학(Science of the Total Environment)'의 2022년 연구 결과에 따르면, 테프론 코팅 팬에서 발생하는 단 하나의 표면 균열로 인해 최대 9100개의 플라스틱 입자가 인체 내로 들어갈 수 있다고 밝혀졌다. 물건을 구입할 때 받는 영수증도 안전하다고 볼 수 없다. 이런 영수증은 광택이 나며 미끄러운 느낌이 있는데, 그 이유는 내분비계를 교란시킬 수 있는 BPS(비스페놀S)라는 독성 화학물질이 포함되어 있기 때문이다. 패스트푸드의 포장지에도 PFAS가 함유되어 있다. 우산은 방수 효과를 높이기 위해 PFAS 같은 물질이 사용되고 있다. 또한, 로션, 면도크림, 파운데이션, 립스틱, 아이라이너, 아이샤도우, 마스카라와 같은 일부 화장품에도 PFAS가 포함되어 있다. 카펫과 가구에도 내구성을 향상시키기 위해 이 물질이 사용된다. 이처럼 우리가 일상 속에서 흔히 접하게 되는 다양한 제품에 잔류성 독성 화학 물질이 함유되어 있기 때문에 특별한 주의가 요구된다.
-
- 생활경제
-
우산부터 프라이팬까지⋯일상 속 '암 유발' 독성 화학물질 6가지
-
-
발각시 액화되는 '스파이 로봇' 개발
- 서울대 재료공학부 강승균 교수팀 연구원들이 자외선(UV)과 열에 반응해 자가 붕괴하는 '에퍼멀 로봇(Ephemeral Robot)'의 프로토타입(본격적인 상품화에 앞서 성능을 검증 및 개선하기 위해 간단히 핵심 기능만 넣어 제작한 기본모델)을 개발했다. 연구원들이 개발한 이번 에퍼멀 로봇은 자외선(UV)과 열에 접촉하면 스스로 분해 될 수 있는 실리콘 엘마스토머(silicone elastomer)를 이용해 제작했다. 임무 중에는 기능을 유지하고 필요에 따라 액화해 수명 주기를 제어하여 중요한 데이터의 보안을 유지 할 수 있다. 이 로봇은 적에게 노출되면 스스로 녹아 사라질 수 있는 장점을 보유하고 있어 정찰 로봇 등 군사적 활용도가 높을 것으로 기대된다. 그러나 애퍼멀 로봇의 대표적인 소재인 열경화 실리콘은 내열성 및 내화학성이 강해 소재 분해에 적합하지 않는 지적이다. 열경화 실리콘 기반의 소프트 로봇의 분해를 위해서는 300°C까지의 극한 온도와 유사한 극단적인 pH 수준에 견뎌야 하는 문제를 먼저 해결해야 한다. 서울대 연구팀은 자외선 감응형 소재를 활용해 본연의 장점을 유지하면서 강한 자외선을 통해 가교 고분자를 쉽고 빠르게 분해할 수 있으며, 큰 열에너지나 극단적인 pH 조건이 갖춰지지 않아도 로봇이 스스로 액화될 수 있다고 말했다. 개발 소재를 소프트 로봇에 적용해 분해를 쉽게 함으로써 다양한 분야로의 응용 가능성을 열었다. 광 감응형 플루오린 발생제를 첨가한 실리콘 탄성 복합체 기반 자외선 감응형 소재는 복구할 수 없는 분해 가능한 소재다. 기존 실리콘과 같은 간단한 합성 프로세스와 뛰어난 기계적 특성을 가졌으며, 가교 구조의 고분자를 쉽고 빠르게 분해할 수 있도록 설계됐다. 연구팀은 해당 재료 시스템을 기반으로 소프트 로봇을 제작하고 주위 환경을 정찰할 수 있는 초박형 전자소자를 제작·탑재해 자외선, 온도, 로봇의 움직임까지 실시간으로 측정하는 로봇 시스템을 구현했다. 프로젝트 주요 저자인 서울대학교 재료과학 및 공학부의 오민하 박사는 "유연한 로봇이 주어진 미션을 완료 후에 붕괴가 필요한 상황이 되면, 로봇이 스스로 붕괴 절차를 밟으며 2시간 이내에 붕괴된다"고 설명했다. 이번에 개발한 로봇의 소재는 경직되지 않은 실리콘 엘라스토머(실리콘 수지)를 기반으로 한다. 내부에는 자외선으로 활성화되는 디페닐요오노늄 플루오라이드(DPI-HFP) 생성기가 분산되어 있으면서, 작은 LED를 통해 자외선 빛에 노출되면 실리콘 소재는 플루오라이드 이온(F −)을 방출하여 구조 전체가 즉시 붕괴된다. 자외선 자극에 반응해 Si-O-Si 결합이 F− 이온을 통해 균열되며 전체 구조가 파괴된다. 연구자들은 이 장치를 테스트하기 위해 다양한 전자 기기(온도 및 자외선을 측정하는 응력 센서 등)에 장착해 테스트를 진행했다. 로봇의 형태는 생분해성 폴리락틱 애씨드(생분해성 폴리머) 형태의 몰드 내에서 DPI-HFP-실리콘 혼합물을 60°C에서 30분 동안 경화시켰으며, 자가파괴 과정은 자외선을 활성화하고 60분 동안 120°C로 녹이는 것으로 시작된다. 이 시스템이 적용돼 파괴된 로봇은 실리콘 복합물과 기능이 없는 얇은 전자 부품을 포함한 오일 형태의 잔여물만 남긴다. 연구팀은 이 기술이 로봇 폐기물을 줄이는 데 도움을 주는 것뿐만 아니라 군사 작전과 접근하기 힘든 지역의 탐사 로봇에도 적용될 수 있다고 예상하고 있다. 연구원들은 사용자 안전을 고려한 액화 로봇 후속 연구를 계속 진행할 계획이라고 전했다.
-
- IT/바이오
-
발각시 액화되는 '스파이 로봇' 개발
-
-
SK하이닉스, 화웨이 스마트폰에 메모리칩 내장…주가 폭락
- 한국의 칩 제조업체인 SK하이닉스는 지난주 화웨이가 출시한 논란의 스마트폰인 '메이트 60 프로(Mate 60 Pro)'에 자사의 메모리 칩 두 개가 들어간 경위를 조사하고 있다고 CNN이 보도했다. 캐나다에 본사를 둔 반도체 전문 연구기관인 테크인사이트가 화웨이 휴대폰을 분해해 분석한 결과 12기가바이트(GB) LPDDR5 칩과 512GB 낸드 플래시 메모리 칩 두 개가 화웨이 휴대폰 내부에서 발견됐다는 사실이 알려지면서 하이닉스의 주가는 지난 9월 8일(현지 시간) 4% 이상 하락했다. 테크인사이트의 댄 허치슨 부회장은 CNN과의 인터뷰에서 "이번 개발의 의미는 SK하이닉스가 중국으로 출하할 수 있는 제품에 제한이 있다는 것"이라고 말했다. 그는 "이 칩의 출처는 어디일까요? 가장 큰 문제는 법을 위반했는지 여부"라고 지적했다. 하이닉스 대변인은 지난 8일 CNN에 자사 칩이 화웨이 휴대폰에 사용되었다는 사실을 알고 있으며 이 문제를 조사하기 시작했다고 밝혔다. 이 회사는 성명을 통해 "화웨이에 대한 미국의 제재가 도입 된 이후 더 이상 화웨이와 거래하지 않는다"고 말했다. 또한 "SK하이닉스는 미국 정부의 수출 제한 조치를 엄격히 준수하고 있다"고 강조했다. 업계 관계자들은 화웨이가 제조업체로부터 직접 구매하지 않고 중고 시장에서 메모리 칩을 구매했을 가능성이 있다고 말했다. 또 화웨이가 미국의 수출 규제가 본격화되기 전에 부품을 비축해 두었을 가능성도 제기됐다. 테크인사이트는 앞서 이 휴대폰의 '두뇌'가 중국 최고의 칩 제조업체인 SMIC로 더 잘 알려진 중국 반도체 제조 인터내셔널 코퍼레이션이 만든 5G 기린 9000 칩으로 구동된다고 밝혔다. 현재 메이트 60 프로를 조사 중이며 미국 무역 제재 대상 기업이 만든 부품을 더 찾을 가능성을 배제하지 않고 있다. 지금까지는 대부분의 휴대폰 부품이 중국 공급업체에서 제공된 것으로 밝혀졌다. 분석가들은 이 스마트 폰이 첨단 기술에 대한 접근을 놓고 미국과 충돌하는 중국에게 중요한 돌파구라고 말했다. 한편, 미국의 마이크 갤러거와 마이클 맥컬 하원 의원은 화웨이의 이 휴대폰에 대한 더 많은 정보를 찾고 있는 백악관에 중국 기업에 대한 기술 수출 판매를 더욱 제한할 것을 촉구했다.
-
- 산업
-
SK하이닉스, 화웨이 스마트폰에 메모리칩 내장…주가 폭락
-
-
코로나19 종식 후 명품 '짝퉁' 시장 급성장
- 코로나19의 종식에 따라 집콕 생활에서 벗어나 다시 외부에서 일상 생활을 즐기고 있는 가운데, 명품 짝퉁 시장이 급성장세를 보이고 있는 것으로 나타났다. 패션 전문 매체 '마리 클레르(Marie Claire)'는 명품 짝퉁 시장에서 신발, 핸드백, 의류 및 시계가 높은 비중을 차지하고 있다고 전했다. 소셜 미디어의 활성화와 일부 유명 연예인들이 명품 착용 사진 등을 공유하면서, 대중의 명품에 대한 소비 욕구가 크게 증가한 것이 이러한 위조품 시장 확대 배경 중 하나로 지목된다. 영국의 법률 회사인 '데번포트 리용(Davenports Lyons)'의 연구에 따르면, 영국 소비자의 2/3가 짝퉁 명품 구매를 자랑스럽게 생각하며 주변 사람들에게 과시한다고 밝혔다. 경제협력개발기구(OECD)와 유럽연합 특허청의 연구에 따르면, 위조품 시장에서 상위 5위 중 대부분이 패션과 뷰티 제품으로 이루어져 있다. 그 나이키, 맥 코스메틱스, 삼성, 비아그라, 아디다스 등의 브랜드가 상위에 랭크되어 있다. 특히, 명품 브랜드 중에서 샤넬과 루이 비통의 가짜 제품이 아마존과 이베이와 같은 온라인 플랫폼에서 광범위하게 판매되고 있어, 관련 법적 대응이 진행 중이라는 소식이다. 국내에서는 시계 브랜드 롤렉스의 가짜 제품이 가장 많이 적발되었으며, 이에 이어 루이 비통과 샤넬이 그 뒤를 이었다. 짝퉁 시장이 큰 비중을 차지하는 중국에서는 중국 기업인 장 첸(Zhang Chen)이 짝퉁 명품을 구분해낼 수 있는 교육 프로그램을 개설했다. 이 교육은 7일 간 진행되며, 참가 비용은 약 2000유로(대략 290만원)이다. 명품 브랜드들은 NFT(대체 불가능한 토큰, 블록체인의 토큰을 다른 토큰으로 대체하는 것이 불가능함) 인증서와 같은 첨단 기술과 감정사의 전문 교육을 강화하여 짝퉁 시장의 확산을 막기 위한 다양한 노력을 기울이고 있다. 한편, 한국에서도 가짜 명품 시장이 크게 확대되고 있다. 기획재정위원회 소속 더불어민주당 현병도 의원의 데이터에 따르면, 지난 1년 간 가짜 명품 시장은 141%나 증가했다.
-
- 생활경제
-
코로나19 종식 후 명품 '짝퉁' 시장 급성장
-
-
버려진 커피 찌꺼기로 콘크리트 강도 높일 수 있다?
- 철근과 시멘트 같은 원자재 가격의 지속적인 상승으로 건설사의 부담이 가중되고 있다. 이러한 가격 상승은 결국 소비자에게 전달되는 형태가 되고 있다. 그러나 최근 호주의 연구진이 흥미로운 발견을 했다. 버려진 '커피 찌꺼기'를 활용하여 콘크리트의 강도를 향상시키는 기술을 개발한 것이다. 아직 초기 단계이지만, 우리나라 건설 업체들도 이 기술을 활용해보는 것이 좋을 것 같다. 영국 일간지 가디언에 따르면, 호주 로열멜버른공대(RMIT)의 연구팀은 국제학술지 '저널 오브 클리너 프로덕션'에 이러한 기술을 게재했다. 버려진 커피 찌꺼기를 활용한 콘크리트는 강도가 30% 더 높아진다는 연구 결과가 RMIT에서 발표됐다. RMIT의 샤넌 킬마틴-린치(Kilmartin-Lynch) 박사는 "버려지는 커피 찌꺼기와 커피 포드를 가치 있는 재료로 전환하려는 시도로 이 연구를 시작했다"고 밝혔다. 연구팀은 커피 찌꺼기를 바이오차(Biochar)로 전환하여, 이를 콘크리트 제조 과정에서 일부 모래의 대체재로 사용했다. 현재, 연구팀은 지방 의회와 협력하여 다양한 인프라 프로젝트에 참여하고 있으며, 이 기술이 커피 폐기물 처리 문제를 해결하고 천연 모래의 수요 감소에 기여한다면 환경적으로 큰 이점이 될 것이라는 의견을 제시했다. 호주의 '국가식품폐기물 전략 타당성 조사(National Food Waste Strategy Feasibility Study)'에 따르면, 호주의 연간 온실가스 배출량 중 약 3%는 음식 폐기물에서 발생하며, 이 중 약 7만5000톤은 커피 폐기물로 추정된다. RMIT의 라지브 로이찬드 박사( Rajeev Roychand)는 바이오차 제조 과정이 미처리된 커피콩을 로스팅하는 방식과 유사하다고 설명했다. 온실가스의 증가를 피하기 위해 산소가 없는 환경에서 이 과정을 진행하는데, 이를 열분해(Pyrolysis)라고 한다. 열분해의 일반적인 온도는 700~900도 사이지만, 커피 찌꺼기는 약 350도에서 가열될 수 있어 에너지 효율이 좋다. 연구팀은 이를 통해 모래의 15%를 대체할 경우 콘크리트의 강도가 약 29.3% 향상된다고 밝혔다. 린치 박사는 "커피 바이오차는 모래보다 미세한 구조를 가지고 있고, 다공성 특성 때문에 시멘트가 이 다공성 구조와 결합될 수 있다"고 설명했다. 호주에서는 연간 약 7200만 톤의 콘크리트를 생산하기 위해 2880만 톤의 모래가 필요하다. 하지만 커피 찌꺼기로 모래를 완전히 대체하는 것은 현실적으로 불가능하다. 한국에서도 자연환경에서 얻어진 바이오차를 활용한 콘크리트의 탄소중립 활용 및 실용화 연구가 활발히 이루어지고 있다. 콘크리트에 바이오차를 일정 비율로 첨가해 건설 현장에서의 사용 가능성을 조사한 결과, 폐목재, 커피 찌꺼기, 견과류 껍질과 같은 다양한 폐자원이 건축 분야에서의 활용 가능성이 확인되었다. 반면, 호주에서의 커피 찌꺼기를 활용한 연구는 초기 단계에 있으며 내구성 테스트 등 추가 연구가 예정되어 있다. 건설 분야에서 기존 콘크리트를 바이오차를 포함한 콘크리트로 교체할 경우, 온실가스의 배출량을 줄이고 원재료비의 절감이 가능해져 환경적‧경제적 이익을 가져다줄 것으로 기대된다.
-
- 산업
-
버려진 커피 찌꺼기로 콘크리트 강도 높일 수 있다?
-
-
美 미시간 주립대, 생분해성 플라스틱 대체재 개발
- 미국 미시간 주립대학교의 연구원들이 퇴비화하기 쉬운 새로운 생분해성 플라스틱 대체재를 개발했다. USA투데이에 따르면 이 대학 포장학부 연구팀은 8월 초 동료 심사를 거친 ACS 출판 저널에 가정과 산업 환경 모두에서 퇴비화가 가능한 바이오 기반 폴리머 블렌드를 개발했다고 게재했다. 이 연구팀은 10년 넘게 포장재에 사용되어 온 폴리락트산(PLA)을 연구했다. PLA는 석유 대신 식물성 당분을 사용하여 물, 이산화탄소, 젖산으로 분해된다. 고온의 산업용 퇴비기에서 분해 가능 하지만 PLA는 고온의 산업용 퇴비기에서만 분해될 수 있으며, 가정용 퇴비기에서는 분해되지 않는 단점이 있다. 산업용 퇴비기에서도 PLA가 단 시간에 완전히 분해되는 것은 아니다. 연구자들은 산업용 퇴비 환경에서 미생물에 의해 PLA가 분해되기 시작하기까지 최대 20일이 걸릴 수 있다고 말했다. 이 과정을 가속화하기 위해 연구팀은 '열가소성 전분'이라고 불리는 것을 PLA에 혼합했다. 이 탄소 기반 전분은 퇴비 속 미생물이 바이오 플라스틱을 더 쉽게 분해하도록 도와준다. 연구원들은 열가소성 전분을 첨가해도 PLA의 강도, 투명도와 같은 품질이 손상되지 않고 유지된다고 말했다. 또한 이 바이오 플라스틱은 음식물 찌꺼기와 함께 퇴비화할 수 있다. 즉, 일회용 용기나 컵에 담긴 음식이나 음료를 따로 버리지 않아도 함께 분해된다. 이 연구는 퇴비화 가능한 바이오 기반 플라스틱 포장이 가능하다는 것을 보여 주지만, 실제로 적용하기에는 어려움이 있을 것으로 예상된다. 연구팀을 이끈 라파엘 아우라스는 "사실 많은 산업 퇴비화 업체는 여전히 PLA와 같은 바이오 플라스틱을 받아들이는 것을 꺼리고 있다"고 지적했다. 생분해 플라스틱 연구 사례 지난달 워싱턴 대학의 한 연구팀은 '스피룰리나'라고도 알려진 청록색 남조류 세포로 가정용 퇴비통에서 바나나 껍질이 분해되는 것과 같은 시간 안에 분해되는 바이오 플라스틱을 만들었다고 발표했다. 그보다 앞서 2021년 캘리포니아 버클리 대학교는 연구진이 생분해성 플라스틱을 더 빨리 분해할 수 있는 방법을 발명했다고 밝혔다. 연구진은 퇴비화 과정에서 발생하는 열과 물 등의 조건에서 플라스틱이 분해되는 데 도움이 되는 폴리에스테르를 먹는 효소를 바이오 플라스틱 자체에 삽입했다. 그렇지만 이같은 연구 결과가 우리가 쓰레기를 함부로 버려도 괜찮다는 것을 의미하는 것은 아니다. 연구팀은 퇴비화할 수 있는 플라스틱은 어떤 조건에서도 무조건 생분해된다는 것은 일반적인 오해라며 우려했다. 아우라스는 "우리가 생분해성 물질을 개발했기 때문에 사람들이 쓰레기를 함부로 버릴 수 있다고 생각하면 문제가 더 악화될 것"이라고 말했다. 그러면서 아우라스는 "생분해성 바이오 플라스틱은 빨대나 물병과 같은 일회용 플라스틱으로 인한 폐기물을 줄일 수 있다"면서 이번 연구가 플라스틱 폐기물을 줄이기 위한 전 세계적인 노력에 기여할 수 있기를 희망한다고 말했다.
-
- 생활경제
-
美 미시간 주립대, 생분해성 플라스틱 대체재 개발