검색
-
-
[퓨처 Eyes(44)] 바다를 이용한 탄소 포집, 지구 온난화 해결의 새로운 희망
- 지구 온난화 문제가 심화되는 가운데, 바다의 이산화탄소 제거 기술을 모방한 혁신적인 탄소 포집 기술이 개발돼 주목받고 있다. 탄소 포집 기술은 대기 중의 이산화탄소를 포집하여 저장하거나 활용하는 기술로, 지구 온난화의 주범인 이산화탄소 배출량을 줄이는 데 중요한 역할을 한다. 해양의 탄소 흡수 방식을 모방한 탄소 직접 제거(CDR) 기술을 선도하는 에쿼틱 테크놀로지(Equatic Technology)는 캐나다 퀘벡주에 세계 최대 규모의 CDR 플랜트를 건설 중이다. 이 플랜트는 연간 10만 9500톤의 이산화탄소를 처리하고 3600톤의 녹색 수소를 생산할 예정이며, 이는 CDR 기술을 상업적 규모로 구현한 최초의 사례로 평가받는다고 비즈니스 인사이더가 전했다. CDR 기술은 대기 중 탄소를 직접 제거하는 기술로, 탄소 포집 기술 중 하나이다. 미국 UCLA 연구팀이 설립한 스타트업인 에쿼틱 테크놀로지는 로스앤젤레스와 싱가포르에서 이미 시범 공장을 운영하며 기술력을 입증한 바 있다. 이들의 핵심 기술은 바닷물에 전류를 흘려 탄소를 고체 형태로 저장하고, 부산물로 생성되는 녹색 수소를 판매하거나 시설 운영에 활용하는 것이다. 이 기술은 전기화학적 과정을 통해 이산화탄소를 탄산염 광물로 변환하여 영구적으로 저장하는 방식이다. 이는 탄소를 제거하는 동시에 에너지원을 생산하는 친환경적인 접근 방식으로, 지구 온난화 완화와 에너지 문제 해결에 동시에 기여할 수 있다. 바다, 매년 25% 탄소 제거 바다는 인간이 배출한 탄소를 가장 많이 흡수하는 곳 중 하나로, 매년 배출되는 탄소의 최대 25%를 제거한다. 바다는 대기 중 이산화탄소를 흡수하여 해양 생물의 광합성에 활용하거나 심해에 저장하는 역할을 한다. 연구에 따르면 바다가 탄소를 흡수하는 과정을 복제하면 지구 대기에서 수십억 톤의 이산화탄소를 제거하는 데 도움이 될 수 있다. 세계은행에 따르면 2020년 전 세계 평균 이산화탄소 배출량은 1인당 4.3메트릭톤(9500파운드, 약 4309kg)이었다. 인간 활동으로 인한 이산화탄소 배출량 증가는 지구 온난화를 가속화시키는 주요 원인이다. 온실가스를 줄이는 것만으로는 지구 온난화를 더 이상 막을 수 없기 때문에 탄소 포집과 저장은 기후 변화를 완화하는 중요한 도구가 될 수 있다. 탄소 제거 비용 톤당 100달러 목표 탄소 포집 및 저장(CCS) 기술은 발전소나 산업 시설에서 발생하는 이산화탄소를 포집하여 지하 깊은 곳에 저장하는 기술이다. 에쿼틱의 퀘벡 플랜트는 바닷물에 전류를 흘려 물을 수소와 산소로 분리하고, 이 과정에서 생산된 산과 염기를 통해 탄소를 고체 형태로 저장한다. 이때 생성된 약알칼리성 슬러리는 냉각탑을 통해 대기 중 탄소를 추가로 흡수하는 데 사용된다. 이러한 과정을 통해 대기 중 이산화탄소 농도를 낮추고, 지구 온난화를 완화하는 효과를 기대할 수 있다. 에쿼틱 테크놀로지는 싱가포르에도 대규모 공장을 건설 중이다. 싱가포르 공장은 해수 담수화 플랜트에서 얻은 고농도 염수를 전해질로 사용해 전기 분해를 통해 산소와 수소를 생성하고, 탄소는 단단한 미네랄 형태로 저장한다. 이는 용존 및 대기 중 이산화탄소를 최소 1만 년 이상 안전하게 저장하며, 바다의 자연적인 탄소 저장 능력을 활성화하고 확장하는 효과를 가져온다. 에쿼틱 테크놀로지는 탄소 제거 비용을 톤당 100달러까지 낮추는 것을 목표로 한다. 이는 수소 판매를 통한 수익 창출로 가능할 것으로 예상되며, 대규모 탄소 제거를 현실화하고 지구 온난화 문제 해결에 기여할 수 있는 혁신적인 접근 방법이다. 탄소 제거 비용 절감은 탄소 포집 기술의 상용화를 위한 중요한 과제이다. 현재 탄소 제거 비용은 가장 비싼 기술인 직접 공기 포집(DAC)이 톤당 200~700달러가 소요된다. 반면, 생물 에너지 탄소 포집 및 저장(BECCS)은 톤당 15~80달러로 비교적 저렴한 편이다. 직접 공기 포집(DAC)은 대기 중 이산화탄소를 직접 포집하는 기술이며, 생물 에너지 탄소 포집 및 저장(BECCS)은 바이오매스 에너지 생산 과정에서 발생하는 이산화탄소를 포집하여 저장하는 기술이다. 해양 생태계 영향 추가 연구 필요 물론 대규모 탄소 제거 기술이 해양 생물에 미칠 수 있는 영향에 대한 우려도 존재한다. 하지만 에쿼틱 테크놀로지는 해수 필터 설치와 엄격한 국제 표준 준수를 통해 해양 생태계에 미치는 영향을 최소화하고, 탄소 제거량을 투명하게 측정할 계획이다. 탄소 포집 기술의 환경 영향 평가는 기술 개발 과정에서 반드시 고려해야 할 중요한 요소이다. 에쿼틱의 혁신적인 해양 탄소 포집 기술은 지구 온난화 문제 해결에 새로운 지평을 열고, 지속 가능한 미래를 위한 중요한 발걸음이 될 것으로 기대된다. 탄소 포집 기술의 발전은 기후 변화 대응에 있어서 중요한 역할을 할 것이며, 에쿼틱 테크놀로지의 노력은 이러한 변화의 선두에 있다.
-
- 포커스온
-
[퓨처 Eyes(44)] 바다를 이용한 탄소 포집, 지구 온난화 해결의 새로운 희망
-
-
[먹을까? 말까?(39)] 브라질너트, 꾸준히 섭취하면 우리 몸에 어떤 변화가?
- 브라질너트를 매일 섭취하면 우리 몸에 어떤 변화가 일어날까. 견과류는 섬유질, 건강한 지방(블포화 지방), 단백질을 모두 함유하고 있어 건강한 간식으로 인기가 높다. 그중에서도 브라질너트는 비타민과 풍부한 미네랄을 함유하고 있어 최근 SNS에서 화제가 되고 있다. 브라질너트는 알이 크고 크고 영양이 풍부할 뿐만 아니라 셀레늄이 많이 함유되어 있다. 이는 주로 아마존 강의 토양이 비옥하기 때문이다. 헬스에 따르면 아마존 강의 토양 셀레늄 함량은 브라질너트에 셀레늄 수치를 높여 건강을 개선하는 이점을 제공한다. 브라질너트는 장 건강부터 인지 기능 향상 등 뇌 건강까지 다양한 효능을 제공한다. 브라질너트의 영양 성분과 건강 효능, 섭취시 주의 사항은 다음과 같다. 셀레늄 함량 높아 브라질너트 단 한 알에는 셀레늄 하루 권장량의 175%가 들어 있다. 브라질너트 1알에는 96㎍(마이크로그램)이 들어 있다. 미국 성인의 셀레늄 1일 섭취량은 55㎍이다. 이는 브라질너트를 매일 단 한알만 먹어도 1일 필요한 셀레늄을 충분히 섭취할 수 있다는 뜻이다. 셀레늄은 면역체계와 갑상선 건강에 중요한 항산화제이며, 특히 T4 갑상선 호르몬을 T3 갑상선 호르몬으로 전환하는 데 중요하다. 셀레늄은 강력한 항산화력으로 세포막의 손상을 일으키는 과산화수소와 같은 활성 산소를 제거해 신체 조직의 노화를 방지하거나 그 속도를 지연시키는 효과가 있다. 또한 셀레늄은 생식 기능, DNA 합성, 갑상선 기능 등에 즁요한 역할을 한다. 셀레늄이 결핍되면 활성산소의 피해를 입어 신체 내장 기능이 저하된다. 그러나 셀레늄은 필수 미량 영양소이므로 고용량을 섭취하면 독성을 나타낼수도 있다. 과다 섭취를 피하기 위해 브라질너트는 하루 최대 3알 이내로 섭취량을 제한하는 것이 좋다. 면역력 강화 브라질너트에는 비타민E와 엘라그산이 풍부하다. 비타민E는 세포를 보호하고 시력, 심장, 피부 건강에 도움을 주는 항산화제다. 이팅웰에 따르면 엘라그산은 뇌 세포를 건강하게 유지하고 알츠하이머병과 같은 신경퇴행성 질환의 위험을 낮추는 데 도움이 된다. 또한 브라질너트는 아연의 좋은 공급원이다. 이연은 면역 체계 기능에 필수적인 미네랄로, 염증을 억제하고 상처 치유를 돕는 역할을 한다. 또한 브라질너트는 건강한 지방의 훌륭한 공급원으로, 지방 함량의 3분의 1 이상이 다중불포화지방산에서 나온다. 이는 흔히 '나쁜 콜레스테롤'로 불리는 LDL 콜레스테롤 수치를 낮춰 심장 질환 및 뇌종중 위험을 감소시킨다. 2022년에 발표된 연구에 따르면 6개월동안 브라질너트를 매일 1알씩 먹은 노인의 인지 기능이 향상됐다. 섭취시 주의사항 셀레늄을 과다 섭취하면 셀레노시스(selenosis)로 알려진 셀레늄 중독 현상이 나타날 수도 있다. 셀레늄 중독은 드물지만 과다 섭취시 손톱과 머리카락이 약해지고 피부 발진, 메스커움, 설사, 피로 등의 부작용이 나타날 수 있다. 심각한 경우 호흡 곤란이나 신부전으로 이어질 수 있다. 다시 한번 강조하지만, 1일 셀레늄 섭취 상한선은 400마이크로그램으로, 브라질너트 3알에 해당한다. 따라서 브라질너트는 하루 3알 이내로 섭취하는 것이 안전하다. 또한 브라질너트는 견과류 알레르기의 원인이 될 수 있다. 갼과류 알레르기가 있는 사람은 섭취에 주의해야 한다. 한 가지 견과류에 알레르기가 있다고 해서 다른 견과류에도 알레르기가 있는 것은 아니지만 부작용이 발생하면 반드시 의료진과 상담해야 한다. 브라질너트 섭취 방법 브라질너트는 간식으로 섭취하거나 에너지볼, 그래놀라 바, 스무디볼, 트레일 믹스 등에 넣어서 먹을 수 있다. 견과를 잘게 썰어서 샐러드나 볶음 요리에 넣어서 섭취할 수도 있다. 생으로 먹어도 되지만 오븐에 구우면 풍미를 더 높아진다. 한국인 영양섭취 기준에서 성인 남녀의 셀레늄 1일 권장섭취량은 50㎍이고, 상한섭취량은 400㎍이다. 브라질너트 외에 셀레늄의 공급원으로는 동물의 간, 육류, 생선, 곡류 달걀 등이 있다. 과일과 채소에는 셀레늄이 극히 적 함유되어 있다.
-
- 생활경제
-
[먹을까? 말까?(39)] 브라질너트, 꾸준히 섭취하면 우리 몸에 어떤 변화가?
-
-
[신소재 신기술(78)] 유기 태양 전지 패널, 햇빛 20% 전기 변환 성공…실리콘 대체 가능성 높여
- 미국 과학자들이 새로운 유기 태양 전지 패널을 개발해 햇빛의 20%를 전기로 변환하는 데 성공했다. 유기 태양 전지판(Organic Solar Cell)은 빛을 흡수해 전기를 생산하는 태양 전지의 한 종류다. 기존의 실리콘 태양 전지판과 달리 탄소 기반의 유기 반도체 물질을 사용해 제작된다. 캔사스대학교 연구진이 유기 반도체에 햇빛의 20%를 전기로 변환해, 태양 에너지 분야에 혁신을 가져올 수 있는 가능성을 제시했다고 인터레스팅엔지니어링이 보도했다. 수년 동안 실리콘은 태양 에너지 환경을 지배해왔다. 실리콘의 효율성과 내구성 덕분에 태양광 패널에 가장 많이 사용하는 소재가 된 것. 하지만 실리콘 기반 태양전지는 딱딱하고 생산 비용이 비싸서 곡면에 적용하는 데 한계가 있었다. 유기 반도체는 실리콘 태양 전지 패널보다 저렴하고 유연하며, 다양한 색상과 투명도를 구현할 수 있어 차세대 태양 전지 소재로 주목받고 있다. 유기 태양 전지판은 얇고 가벼우며, 플라스틱 기판 등 다양한 소재에 적용할 수 있어 곡면이나 불규칙한 표면에도 설치가 가능하다. 게다가 유기 물질은 실리콘보다 독성이 적고 재활용이 용이해 환경 친화적이다. 유기 반도체는 이미 휴대전화, TV, 가상현실(VR)헤드셋과 같은 가전제품의 디스플레이 패널에 사용되지만 상업용 태양광 패널에는 아직 널리 사용되지 않는다. 유기 반도체인 탄소 기반 소재는 더 낮은 비용과 더 큰 유연성으로 실행가능한 대안을 제공한다. 하지만 지금까지는 빛을 전기로 변환하는 효율성이 낮아 실리콘 태양 전지 패널을 대체하기 어렵다는 한계가 있었다. 연구를 주도한 캔자스 대학교의 물리학 및 천문학 부교수인 와이런 챈 박사는 "이러한 재료는 벽에 페인트를 칠하는 것처럼 용약 기반 방법을 사용해 임의의 표면에 코팅할 수 있기 때문에 태양광 패널의 생산 비용을 잠재적으로 출 수 있다"고 설명했다. 이러한 유기 반도체는 단순히 비용 절감에만 그치지 않는다. 특정 파장의 빛을 흡수하도록 조정할 수 있어 새로운 가능성을 열어준다. 챈은 "이러한 특성 덕분에 유기 태양 전지 패널은 차세대 친환경적이고 지속 가능한 건물에 사용하기에 특히 적합하다"고 덧붙였다. 이번 연구는 유기 반도체의 일종인 비풀러렌 악셉터(NFA)의 높은 효율성에 대한 의문에서 시작됐다. 연구진은 NFA가 기존 유기 반도체보다 뛰어난 성능을 보이는 이유를 규명하는 과정에서 예상치 못한 현상을 발견했다. 특정 조건에서 NFA의 전자가 에너지를 잃는 대신 주변 환경으로부터 에너지를 얻는 현상을 관찰한 것이다. 이는 뜨거운 커피가 주변으로 열을 잃는 것과는 반대되는 현상으로 양자역학과 열역학의 결합으로 설명될 수 있었다. 연구진은 첨단 기술인 시간 분해 이광자 광전자 분해법을 활용해 1조분의 1초보다 짧은 시간 동안 전자의 에너지 변화에 추적했다. 그 결과 NFA의 전자가 양자역학적 특성으로 인해 여러 분자에 동시에 존재하는 것처럼 보이며, 이러한 현상이 열역학 제2법칙과 결합해 열흐름의 방향을 역전시키는 것을 확인했다. 이러한 역전된 열 흐름은 NFA의 전자가 주변 환경으로부터 에너지를 흡수하고 전하 분리 과정을 촉진해 전류 생성 효율을 높이는 데 기여한다. 연구진은 이번 발견이 태양 전지 효율을 20%까지 끌어올려 실리콘 태양 전지와의 격차를 좁히는 데 중요한 역할을 할 것으로 기대하고 있다. 또한 이러한 에너지 획득 메커니즘은 태양 전지 뿐만 아니라 이산화탄소를 유기 연료로 변환하는 광촉매 등 다른 재생 에너지 분야에도 적용될 수 있을 것으로 전망했다. 이는 유기 반도체 기반 기술의 잠재력을 극대화하고, 지속가능한 에너지 시스템 구축에 기여할 수 있는 중요한 발견으로 평가된다. 이번 연구는 '어드밴스드 머티리얼스(Advanced Materials)' 저널에 게재됐다.
-
- 포커스온
-
[신소재 신기술(78)] 유기 태양 전지 패널, 햇빛 20% 전기 변환 성공…실리콘 대체 가능성 높여
-
-
[신소재 신기술(76)] 그래핀 유래 신소재 EGNITE, 신경 보철 성능 강화
- 그래핀에서 파생된 신소재 EGNITE가 신경 보철 성능을 크게 향상시켰다는 연구 결과가 나왔다. 스페인 바르셀로나에 위치한 UAB 신경과학 연구소(INc-UAB) 연구팀은 그래핀 유래 소재인 EGNITE 전극의 말초 신경 자극과 기록 능력을 장시간 연구해 이같은 결과를 얻었다고 메디컬 익스프레스가 지난 10일(현지시간) 보도했다. EGNITE(Engineered Graphene for Neural interface) 전극은 그래핀 유래 신소재로 만들어진 차세대 신경 인터스페이스 기술이다. 기존의 금속 미세 전극보다 크기가 작고 유연하며, 우수한 전기적 특성과 생체 적합성을 가지고 있어 신경 자극 등의 효율을 높일 수 있다. 절단 또는 신경 손상 환자는 팔다리의 운동과 감각 기능을 상실해 일상 생활에 제약을 받는다. 이러한 기능 회복을 위한 유일한 방법은 신경 보철이다. 신경 보철은 특정 감각을 유도하기 위해 신경을 자극하고. 운동 신호를 기록해 생체 공학 보철물로 전송하는 전극으로 구성된다. 신경 보철 설계에서 전극은 신경 내 소수의 축삭과만 선택적으로 상호작용할 수 있도록 충분히 작아야 한다. 기존 신경 보철에는 금, 백금, 산화이리듐과 같은 금속이 주로 사용됐다. 그러나 더 작은 전극 접점을 만들기 위해 전도성이 향상된 새로운 소재 개발이 필요했다. 이러한 요구에 부응해 그래핀과 그 유도체는 탁월한 전기적 특성을 바탕으로 차세대 미세 전극 개발에 활용되고 있다. 연구팀은 그래핀 유래 소재인 EGNITE의 말초 신경 자극 및 기록 능력을 연구하고, 장시간 기능 유지를 위한 생체 적합성을 검증했다. 연구 결과는 '어드밴스트 사이언스(Advanced Science)' 저널에 게재됐다. 이번 연구는 자비에 나바로 교수가 이끄는 INc-UAB의 신경 가소성 및 재생 연구팀과 INC2의 호세 가리도 연구팀의 협력으로 진행됐다. INC2는 신경 인터페이스와 함께 EGNITE 개발을 담당했다. 연구팀은 쥐 실험을 통해 쥐의 좌골 신경에 이식된 EGNITE 전극이 최대 60일 동안 선택적인 근육 활성화를 유도하는 것을 확인했다. 팀은 EGNITE 전극이 기존 금속 미세 전극보다 근육 활성화에 필요한 전류가 현저히 감소했다고 설명했다. EGNITE 전극은 크기가 작아 신경 내 특정 부위만 선택적으로 자극할 수 있어, 신경 보철 장치의 정확도와 효율성을 향상시켰다. 또한 그래핀의 우수한 전기 전도성을 바탕으로 신경 신호를 효과적으로 전달하고 기록할 수 있다. INc-UAB의 박사후 연구원이자 이 논문의 제1저자인 브루노 로드리게스-메이나는 "근육 활성화를 생성하는 데 필요한 전류의 감소는 다른 대형 금속 미세 전극과 비교할 때 현저한 차이가 있었다"고 말했다. 또한 EGINITE 전극은 생체 적합성이 우수해 이식된 인터페이스로 인한 기능 변화나 염증 반응이 관찰되지 않았다. 나바로 교수는 "이 연구의 다음 단계는 EGNITE 기반 기술의 최적화외 미주 신경 또는 척수 자극 시스템에 대한 임상 전 연구에의 적용으로 구성될 것이다"라고 말했다. 연구팀은 아울러 생체 전자 의학 분야에서 임상 적용을 위한 연구도 병행할 계획이다. EGNITE 전극은 신경 보철뿐만 아니라, 뇌-컴퓨터 인터페이스 등 다양한 분야에서 활용될 수 있다. 또한 팔다리 절단 환자나 신경 손상 환자의 운동 및 감각 기능 회복에 기여해 삶의 질을 높일 것으로 기대된다.
-
- 포커스온
-
[신소재 신기술(76)] 그래핀 유래 신소재 EGNITE, 신경 보철 성능 강화
-
-
[신소재 신기술(74)] 탄소 포집·저장 6배 높인 '하이드레이트'
- 대기에서 포집한 이산화탄소(CO₂)를 6배나 빠르게 저장하는 새로운 하이드레이트 기술이 개발됐다. 미국 텍사스대학교 오스틴 캠퍼스 연구진이 개발한 새로운 대기 중 탄소 포집 하이드레이트 기술은 기존 방식보다 약 6배 빠른 속도로, 유해 화학 촉진제 없이 탄소를 저장할 수 있다고 테크익스로어와 어스닷컴 등 다수 외신이 보도했다. 미국화학회(ACS) 학술지 '지속 가능 화학 및 공학'에 발표된 이 연구에서 연구팀은 이산화탄소 하이드레이트를 초고속으로 형성하는 기술을 개발했다. 이 독특한 얼음 형태의 물질은 이산화탄소를 해저에 저장하여 대기 중 방출을 막는 역할을 한다. 탄소 포집에서 하이드레이트는 이산화탄소를 물 분자와 함께 얼음과 비슷한 고체 상태로 만드는 기술을 의미한다. 하이드레이트는 자체 부피의 최대 180배에 달하는 이산화탄소를 저장할 수 있다. 아울러 일정한 온도와 압력 조건에서 안정적으로 유지되므로 이산화 탄소 누출 위험을 줄일 수 있다. 연구를 이끈 바이바브 바라두르(Vaibhav Bahadur) 교수는 "우리는 대기 중 수십억 톤의 탄소를 안전하게 제거하는 방법을 찾는 엄청난 과제를 안고 있다"며 "하이드레이트는 탄소 저장을 위한 보편적인 해결책을 제공하며, 탄소 저장 분야에서 중요한 역할을 하려면 빠르고 대규모로 성장시키는 기술이 필요하다. 우리는 환경친화적인 방법으로 하이드레이트를 빠르게 성장시킬 수 있음을 입증했다"고 말했다. 이산화탄소는 가장 흔한 온실가스이며, 기후 변화의 주요 원인이다. 탄소 포집 및 저장 기술은 대기 중 탄소를 제거하고 영구적으로 저장하는 기술로, 지구 탄탄소화의 핵심 요소로 간주된다. 현재 가장 일반적인 탄소 저장 방법은 이산화탄소를 지하 저류층이 주입하는 것이다. 이 기술은 탄소를 포집하고 석유 생산을 증가시키는 이중 효과를 갖는다. 그러나 이 기술은 이산화탄소 누출 및 이동, 지하수 오염, 탄소 주입 관련 시 지진 위험 등 심각한 문제를 안고 있다. 또한 지하 저류층 주입에 적절한 지질학적 특징이 부족한 지역도 많다. 바하두르 교수는 하이드레이트가 대규모 탄소 저장을 위한 '차선책'이지만 주요 문제를 극복하면 '최선책'이 될 수 있다고 강조했다. 지금까지 탄소를 포집하는 하이드레이트 형성 과정은 느리고 에너지 집약적이어서 대규모 탄소 저장 수단으로 활용되기 어려웠다.. 이번 연구에서 팀은 기존 방법보다 하이드레이트 형성 기술을 6배 증가시켰다. 이러한 속도와 화학 물질을 사용하지 않는 공정은 대규모 탄소 저장에 하이드레이트를 더 쉽게 활용할 수 있게 한다. 이 연구의 핵심은 마그네슙으로, 화학촉진제 없이도 촉매 역할을 한다. 특정 반응기에서 이산화탄소를 고속 버블링으로 추가하면 빠르고 친환경적인 하이드레이트를 형성할 수 있다. 게다가 해수에서도 잘 작동하기 때문에 복잡한 담수화 공정이 필요하지 않다. 바라두르 교수는 "해저가 안정적인 열역학 조건을 제공하여 하이드레이트 분해를 방지하기 때문에 매력적인 탄소 저장 옵션이다"라며 "우리는 해안선을 가진 모든 국가에 탄소 저장을 가능하게 만들고 있으며, 이는 전세계적으로 탄소 저장 접근성과 실현 가능성을 높여 지속 가능한 미래에 더 가까워지게 한다"고 설명했다. 이번 연구 성과는 탄소 포집뿐만 아니라 해수 담수화, 가스 분리와 저장 등 다양한 산업에도 적용될 수 있다. 연구팀과 텍사스 대학교는 관련 기술에 대한 특허를 출원했으며, 상용화를 위한 스타트업 설립도 고려하고 있다. 하이드레이트 기술은 탄소 포집 및 저장 분야에서 혁신적인 기술로 주목받고 있으며, 지속적인 ㅇ녀구 개발을 통해 미래 탄소 중립 목표 달성에 기여할 것으로 기대된다.
-
- 포커스온
-
[신소재 신기술(74)] 탄소 포집·저장 6배 높인 '하이드레이트'
-
-
[기후의 역습(25)] 약한 해양 순환, 대기 중 이산화탄소 축적 증가
- 기후변화가 진행됨에 따라 해양 역전순환(적도 부근의 따뜻한 바닷물이 북쪽으로 흘러가고, 북쪽의 차가운 물이 하층부로 내려가 남쪽으로 흐르는 해류 순환) 흐름이 크게 약화될 것으로 예상된다. 그런 가운데, 해류가 약화되면 바다가 대기에서 이산화탄소를 흡수하는 양이 줄어들고, 결국 대기에 축적되는 이산화탄소가 증가할 것이라는 연구 결과가 나왔다고 PHYS가 전했다. 네이처 커뮤니케이션에 발표된 MIT의 새로운 연구에 따르면, 해류가 약해짐에 따라 심해에서 대기로 방출되는 탄소가 더 많아질 것이며, 따라서 해양 순환과 바다의 장기적인 탄소 저장 능력 사이의 관계가 재정립되어야 할 것으로 보인다. 그 이유는 바다의 철분, 용승하는 탄소와 영양분, 표면 미생물 등의 작용 때문이다. 해류가 종전보다 느리게 순환하면 이들은 궁극적으로 바다가 대기로 다시 배출하는 이산화탄소의 양을 증가시키는 작용을 하게 된다는 것이다. MIT 연구팀을 이끈 조나단 로더데일 박사는 ”기후에 영향을 미치는 해양 순환과 대기 탄소 수준 사이의 관계를 볼 때 미래의 바다가 심해에 탄소를 충분히 저장할 것이라고 기대할 수 없다. 기후 변화 완화를 위해 자연적인 정화에 의존하기보다 탄소 배출을 줄이는 데 더 공격적으로 나서야 한다"라고 밝혔다. 로더데일 연구팀은 해양 영양분, 해양 유기체, 철분을 분석, 이들의 상호 작용이 전 세계 식물성 플랑크톤의 성장에 어떻게 영향을 미치는지를 분석했다. 바다의 식물성 플랑크톤은 해양 표면에 서식하며, 심해에서 용승하는 탄소와 영양분과 철분을 섭취하는 미세한 유기체다. 식물성 플랑크톤이 많을수록 광합성을 통해 대기에서 더 많은 이산화탄소를 흡수할 수 있다. 특히 이는 바다의 탄소 격리에 큰 역할을 한다. 연구팀은 여러 지역 해양의 조건에 맞춰 이를 상자로 구성한 ‘상자 모델’을 개발했다. 각 상자에는 지역별 해양 상황과 유사한 영양분, 철 및 리간드(식물성 플랑크톤의 부산물로 여겨지는 유기 분자)가 담겼다. 팀은 또한 바다의 더 큰 해류 순환을 나타낼 수 있도록 상자 사이에 해류의 순환을 모델링했다. 해류 역전순환을 상자 모델에서 그대로 재현한 것이다. 모델을 바탕으로 실험한 결과 팀은 바다에 철분이 과도해도 남는 철분이 식물성 플랑크톤 성장에는 큰 영향을 미치지 않는다는 것을 밝혔다. 철분은 바다에 용해되지 않으므로 그 자체로는 식물성 플랑크톤이 사용할 수 없었다. 철분은 플랑크톤이 소비할 수 있는 형태로 리간드와 연결될 때 "유용한" 수준에서만 용해됐다. 리간드의 존재가 해양의 이산화탄소 농도를 좌우하는 가장 큰 변수였다. 팀은 상자 모델을 확장해 태평양, 북대서양 등 보다 다양한 환경으로 넓혔고, 다양한 해양 순환의 효과를 포함해 모델 내의 다른 상호 작용도 실험했다. 팀은 다양한 해류 강도에서 플랑크톤 등의 생물 활동과 함께 탄소, 영양소, 철 및 리간드 농도를 분석하고 다양한 시나리오를 비교 분석했다. 실험 결과는 새로운 결과를 보여주었다. 바다의 순환, 즉 해류가 약해질수록 바다가 깊은 곳에서 끌어오는 탄소와 영양분의 양이 적어졌다. 그러면 표면의 모든 식물성 플랑크톤은 자양분이 부족해지고, 그 결과 플랑크톤이 생성하는 리간드 등 부산물도 감소한다. 사용 가능한 리간드가 줄어들면 식물성 플랑크톤은 해수 표면의 철분을 덜 사용하게 돼 개체수가 더욱 감소한다. 대기에서 이산화탄소를 흡수하고 심해에서 용승된 탄소를 소비하는 식물성 플랑크톤이 크게 줄어들 수밖에 없다. 결국 해양 순환이 약해질수록 대기 중에 더 많은 이산화탄소가 축적된다고 보고서는 밝혔다. 해양의 순환은 기후 변화로 인해 크게 약화될 것이라는 우려다. 일부 기후 모델에 따르면, 특히 남극 주변의 빙상이 급속도로 녹아 내리고 있으며, 이로 인해 해양 순환이 30% 둔화될 것으로 예측한다. 이로 인해 해양이 대기에서 흡수하는 이산화탄소가 크게 줄 뿐만 아니라 심해의 이산화탄소 방출을 일으킬 수 있다는 지적이다. 지구 온난화가 증폭된다는 의미다.
-
- 포커스온
-
[기후의 역습(25)] 약한 해양 순환, 대기 중 이산화탄소 축적 증가
-
-
[신소재 신기술(71)] 음식물 쓰레기 활용해 기존 소재보다 4배 강한 '식용 콘크리트' 개발
- 해초, 양배추와 오렌지 껍질 등 식물성 재료를 활용해 기존 콘크리트보다 3배 이상 강한 '식용 콘크리트' 건축 자재가 개발되어 주목받고 있다. 일본 도쿄대학 연구팀이 배추와 바나나,양파 껍질 등 식물성 유기물로 기존 콘크리트보다 4배 강한 콘크리트를 개발했다고 더쿨다운이 5일(현지시간) 전했다. 프린스턴 대학교에 따르면, 콘크리트는 물 다음으로 지구상에서 가장 많이 소비되는 제품이지만, 매년 44억 톤의 이산화탄소를 배출하며, 전 세계 오염의 8%를 차지한다. 이에 따라 기존 콘크리트 생산 과정의 대안을 모색하고, 건물의 내구성을 높여 콘크리트 사용량을 줄이는 노력이 중요해졌다. 이러한 맥락에서 도쿄 대학 연구팀이 개발한 '식용 콘크리트'는 기존 콘크리트보다 4배 강할 뿐 아니라 음식물 쓰레기 문제 해결에도 기여할 수 있어 더욱 주목받고 있다. 연구팀은 커피 찌꺼기, 바나나 껍질, 양배추, 오렌지 껍질, 양파 껍질, 호박 등 유기물을 건조 및 압축하고 물, 조미료와 혼합하여 고온 틀에서 압축하는 방식으로 친환경 콘크리트를 제작했다. 연구 수석 저자인 유야 사카이는 "저희의 목표는 해초와 일반 음식물 쓰레기를 사용하여 최소한 콘크리트만큼 튼튼한 재료를 만드는 것이었다"면서 "하지만 먹을 수 있는 음식물 쓰레기를 사용했기 때문에 재활용 과정이 원래 재료의 맛에 영향을 미치는지 확인하는 데도 관심이 있었다"라고 설명했다. 실험 결과, 이 식용 콘크리트는 굽힘 강도가 기존 콘크리트보다 훨씬 뛰어났으며, 소금이나 설탕을 첨가하여 맛을 개선해도 강도에는 영향을 미치지 않았다. 선임 연구원인 코다 마치타는 "호박에서 추출한 표본을 제외하고 모든 재료가 굽힘 강도 목표를 초과했다"며 "콘크리트보다 3배 이상 강한 재료를 생산한 배추 잎을 약한 호박 기반 재료와 섞어 효과적인 보강재를 제공할 수 있다는 것을 발견했다"고 말했다. 이 콘크리트는 또 부패, 곰팡이, 곤충에 강하며 4개월 동안 공기 중에 노출되어도 맛이나 강도가 변하지 않는 것으로 확인됐다. 이 연구는 더욱 견고한 건물을 위한 강력한 콘크리트를 개발하는 동시에, 지구 오염의 또 다른 원인인 음식물 쓰레기를 활용할 수 있는 방법을 제시했다. 미국 농무부에 따르면, 식량 손실 및 폐기물은 인간 소비를 위해 생산된 모든 식량의 3분의 1을 차지하며, 2021년 환경보호국 보고서에서는 식량 손실로 인한 1억 8700만 톤 이상의 이산화탄소 배출량이 석탄 화력 발전소 42개의 연간 오염량과 비슷하다고 밝혔다. 이 기술이 미래 건축물에 적용될지는 아직 미지수지만, 과학자들은 다양한 분야에 활용될 수 있다는 점에서 긍정적인 반응을 보이고 있다. 이는 기존의 틀을 벗어난 사고가 이산화탄소 배출과 환경오염 두 가지 문제를 동시에 해결할 수 있는 가능성을 보여주는 좋은 사례라는 평가다.
-
- 포커스온
-
[신소재 신기술(71)] 음식물 쓰레기 활용해 기존 소재보다 4배 강한 '식용 콘크리트' 개발
-
-
[우주의 속삭임(23)] 달의 신비한 소용돌이는 '지하 마그마' 때문?
- 달의 표면은 회색의 여러 반점 모양으로 유명하다. 망원경을 들여다 보면 달의 표면에서는 또한 밝게 보이는 반점도 발견된다. 달 소용돌이로 알려진 이러한 특징적인 반점들이 지난 1600년대에 처음 발견된 이후, 천문학계는 그 기원이 무엇인지를 계속 탐구해 왔다. 학계에 잘 알려진 ‘라이너 감마’ 소용돌이와 같은 밝은색의 반점 영역은 오늘날까지도 수수께끼로 남아 있다. 라이너 감마는 달 표면 밝게 보이는 반점 형상의 평평한 지대다. 그런 가운데 스탠포드 대학교와 세인트루이스 워싱턴 대학교(WUSL) 과학자팀이 반점에 대한 새로운 연구 결과를 내놓아 주목된다고 사이언스얼라트가 전했다. 새로운 이론을 제시한 것이다. 이 연구는 '지구물리학 연구저널: 행성(Journal of Geophysical Research: Planets)'에 게재됐다. 지구와 달리 달은 태양의 하전 입자로부터 자신을 보호하기 위해 자기장을 발생시키지 않는다. 이는 태양풍이 달 표면과 충돌할 때 화학 반응을 일으켜 시간이 지남에 따라 암석이 더 어둡게 만든다. 즉, 달의 일부 반점처럼 보이는 주머니는 작은 자기장에 의해 보호되는 것으로 보인다. 지금까지 학자들이 발견한 모든 밝은 음영의 달 소용돌이는 이 지역의 자기장들 중 하나와 일치한다. 그러나 그 안에 있는 모든 암석이 반사되는 것은 아니며, 달의 모든 자기장이 소용돌이를 포함하는 것도 아니다. 그렇다면 여기에서는 무슨 일이 벌어지고 있는 것일까. 최근 일부 연구에서는 달과 미세 운석의 충돌이 하전된 먼지 입자를 일으킬 수 있으며, 이 입자가 표면에 도달하는 곳마다 국지적인 자기장이 생성되고 이로 인해 태양풍이 반사된다는 주장이 나왔다. 그러나 스탠포드와 WUSL의 연구팀은 그 가설에 대해 이의를 제기했다. 무언가 다른 힘이 달의 소용돌이를 자화시켜 태양풍 입자를 편향시켰다는 것이다. WUSL의 행성 과학자 미하일 크로친스키는 "충돌로 인해 이러한 유형의 자기 이상 현상이 발생할 수 있지만, 충격에 의한 것이라고 확신할 수 없는 모양과 크기의 소용돌이가 있다"고 지적했다. 크로친스키는 이에 대해 "지각 아래로부터의 힘도 작용할 수 있다"고 제안했다. "지하에 용암이 있다는 것이고, 자기장에서 천천히 냉각되면서 자기 이상 현상을 일으켰다"는 것이다. 연구팀은 그 근거로 달 표면 아래에서 한때 암석이 녹아 흐르고 있었던 레이더 영상 증거를 제시했다. 냉각된 마그마의 지하 흐름은 수십억 년 전의 화산 활동 시기를 나타낸다. 연구팀은 이 마그마 냉각 속도 모델을 사용, 달에 풍부하게 존재하고 화산암에서 흔히 발견되는 일메나이트라는 티타늄-산화철 광물이 어떻게 자화 효과를 낼 수 있는지 조사했다. 그들의 실험은 적절한 조건에서 일메나이트의 느린 냉각이 달의 지각과 상부 맨틀 내의 금속 철 및 철-니켈 합금 입자를 자극해 강력한 자기장을 생성할 수 있음을 보여준다. 팀은 "이 효과가 달 소용돌이와 관련된 강한 자기 영역을 설명할 수 있다"고 결론지었다. 이 결론이 입증되기 위해서는 지하 마그마에 티타늄 함량이 충분해야 한다. 그러나 지금까지 달의 국지적 자기장에 대해 알려진 대부분은 공중을 도는 우주선의 레이더를 사용해 얻은 데이터 측정에서 얻어진 것이다. 실제로 정확히 이해하려면 달 표면을 직접 시추해야 한다. 나사(NASA)는 이를 구체적으로 규명하기 위해 2025년 루나 버텍스(Lunar Vertex) 임무의 일환으로 라이너 감마 소용돌이에 탐사선을 직접 보낸다. 향후 수 년 안에 이 수수께끼를 해결할 증거가 수집될 것으로 기대된다.
-
- IT/바이오
-
[우주의 속삭임(23)] 달의 신비한 소용돌이는 '지하 마그마' 때문?
-
-
[먹을까? 말까?(33)] 아기 당근 주 3회 섭취, 피부 카로티노이드 수치 증가 확인
- 아기 당근(baby carrot)을 주 3회 간식으로 섭취하는 것만으로도 젊은 성인의 피부 카로티노이드 수치를 유의미하게 증가시킬 수 있는 것으로 밝혀졌다. 또한 베타카로틴이 함유된 종합 비타민과 함께 섭취할 경우 그 효과는 더욱 증대되는 것으로 나타났다. 폭스뉴스는 '뉴트리션(Nutrition) 2024' 컨퍼런스에서 발표된 새로운 연구를 인용해 아기 당근을 일주일에 세 번만 간식으로 먹어도 젊은 성인의 피부 카로티노이드가 증가했다며 4일(현지시간) 이같이 보도했다. 이전 연구에서도 하루 권장량의 3배에 해당하는 과일과 채소를 3주 동안 섭취하면 피부 카로티노이드 수치가 증가하는 것으로 밝혀졌지만, 이번 연구는 아기 당근 섭취라는 비교적 간단한 식습관 변화만으로도 피부 카로티노이드 축적을 크게 증가시킬 수 있음을 시사한다. 카로티노이드는 또한 피부를 자외선으로부터 보호해준다. 카로티노이드는 과일과 채소의 밝은 빨간색, 주황색, 노랑색을 담당하는 성분으로 식단을 통해서만 섭취할 수 있다. 따라서 피부 카로티노이드 수치는 과일 및 채소 섭취량을 나타내는 유용한 지표로 활용될 수 있다. 연구 결과에 따르면, 높은 피부 카로티노이드 수치는 항산화 보호 증가, 심장 질환 및 특정 암과 같은 만성 질환 위험을 감소시키는 효과가 있다. 그리고 피부건강과 면역 기능 향상과도 관련이 있다. 중간 크기의 당근은 약 25칼로리가 들어 있으며 약 2g의 섬유질이 포함됐다. 이번 연구는 60명의 젊은 성인을 무작위로 그룹에 배정해 4주 동안 각기 다른 식단을 제공하는 방식으로 진행됐다. 대조군은 녹색 사과 품종인 그래니 스미스(Granny Smith) 사과 조각을, 실험군은 100g(약 반컵)의 아기 당근과 베타카로틴이 함유된 종합비타민, 또는 아기 당근과 종합비타민을 함께 섭취했다. 연구진은 연구 전후에 비침습적 분광 기기인 배지미터(VeggieMeter)를 사용해 참가자들의 피부 카로티노이드 수치를 측정했다. 그 결과 아기 당근을 섭취한 그룹은 피부 카로티노이드 수치가 연구 전에 비해 10.8% 증가했으며, 베이비 당근과 종합비타민을 함께 섭취한 그룹은 21.6% 증가했다. 반면 대조군과 종합비타민만 섭취한 그룹에서는 유의미한 변화가 관찰되지 않았다. 이는 아기 당근 섭취가 피부 카로티노이드에 직접적인 영향을 미치며, 베타카로틴과 함께 섭취할 경우 그 효과가 강화될 수 있음을 시사한다. 하지만 연구진은 카로티노이드 흡수율은 식품 섭취와 보충제 섭취 간에 차이가 있을 수 있다는 점을 지적하며, 추가 연구의 필요성을 강조했다. 한편, 당근은 전반적으로 건강한 간식이지만 다른 야채에 비해 당분 함량이 높아 대량으로 섭취할 경우 혈당 수치에 영향을 미칠 수 있기 때문에 당뇨병 환자들은 주의해야 한다.
-
- 생활경제
-
[먹을까? 말까?(33)] 아기 당근 주 3회 섭취, 피부 카로티노이드 수치 증가 확인
-
-
[기후의 역습(22)] 기후 변화로 상어 알 부화 둔화, 2100년까지 알 부화율 90% 급락 우려
- 상어 알 부화율이 금세기 말, 즉 2100년까지 최대 90%까지 급락할 수 있으며, 이는 상어 종의 생존이 위험에 처해 있음을 시사한다는 연구 결과가 발표돼 충격이다. 해양 온난화와 산성화가 증가하면서 배아가 상당수 사망함에 따라 전 세계의 알을 낳는 상어는 세기말까지 개체 수에 큰 타격을 입을 수 있으며, 100종 이상의 상어 종이 그 영향을 받는다는 것이다. 이는 프랑스 국립 자연사박물관의 노에미 쿨롱(Noémie Coulon) 박사팀이 발견했다. 지중해와 북동 대서양에서 관찰되는 작은 점박이 고양이상어(Scyliorhinus canicula)에 대한 연구에 기초한 것으로 뉴사이언티스트가 보고서 내용을 요약해 전했다. 작은 점박이 고양이상어는 배아가 들어 있는 튼튼한 가죽 알통을 낳아 번식하는 상어 종의 약 40%를 차지한다. 이 상어 배아는 해수 온도와 산도를 의미하는 pH 수치 등 해양 조건 변화에 매우 민감하다. 기후 변화와 지구 온난화에 따라 바다는 과거에 비해 대기로부터 과도한 이산화탄소를 흡수하고 있으며, 이로 인해 바다는 더욱 더워지고 더 산성화되고 있다. 박물관 연구팀은 바다 환경을 재현한 실험실 수조에서 월별 온도 변화를 포함한 다양한 해양 조건에 작은 점박이 고양이상어 알을 넣었다. 연구팀이 이 종을 선택한 이유는 유럽에서 가장 풍부한 상어 중 하나이기 때문이었다. 첫 번째 테스트에서는 산업화 이전 수준보다 온도가 섭씨 2.7도 상승하고 2100년까지 pH가 0.2로 떨어지는 '중간 수준 기후 시나리오'에서 예상되는 수질 조건을 만들었다. 두 번째 시나리오는 세계가 계속해서 화석연료 연소에 크게 의존하는 '악화 상황'을 가정해 금세기 말까지 기온이 섭씨 4.4도 상승하고 pH가 0.4로 하락할 것으로 예측했다. 세 번째는 1995년부터 2014년까지 상어 서식지의 수온과 pH를 그대로 유지하는 '기본 수준의 시나리오'로 정했다. 연구팀은 배아가 발달하는 4개월 동안 세 가지 시나리오 각각의 조건에서 시뮬레이션을 실행했다. 그 결과 세 가지 실험 조건에 따라 배아 부화 성공에 극적인 차이가 있음을 발견했다. 기본 시나리오와 중간 시나리오에서는 약 82%의 알이 성공적으로 부화했다. 그러나 가장 따뜻한 수온의 시나리오에서는 배아 45개 중 5개만 살아남았다. 이는 거의 90%가 손실된 것이다. 쿨롱 박사는 "좋지 않은 시나리오이기는 하지만 배아의 높은 사망률에 큰 충격을 받았다"며 "기후 변화 대응을 적절하게 하지 못해 이런 조건이 만들어지면 상어 종은 멸종으로까지 이어질 수 있다"고 우려했다. 특히 8월과 같이, 상대적으로 따뜻한 기간이 짧아도 부화 실패를 야기하기에 충분했다고 한다. 이러한 결과를 바탕으로 쿨롱 박사는 돔발상어(너스하운드)와 같이 멸종 위기에 처해 있는 취약한 종을 포함, 다른 산란 상어도 마찬가지로 멸종 위기에 처할 것으로 예상했다. 쿨롱 박사는 다만 "아직 온난화에 대처할 수 있기 때문에 속단할 수는 없다"면서 "금세기 말까지 온도 상승을 섭씨 2도 정도만 유지한다면 상어 종은 살아남을 수 있다"고 지적했다.
-
- 포커스온
-
[기후의 역습(22)] 기후 변화로 상어 알 부화 둔화, 2100년까지 알 부화율 90% 급락 우려
-
-
[신소재 신기술(70)] 칩 크기의 초소형 '티타늄 사파이어 레이저' 개발
- 미국 스탠퍼드 대학교 연구팀이 칩 크기의 초소형 티타늄 사파이어(Ti:sapphire)레이저 개발에 성공했다. 이 레이저는 기존 티타늄 이온 도핑 사파이어 크리스탈로 만든 티타늄 사파이어 또는 Ti:사파이어 레이저보다 4배 작고 비용은 3배 더 저렴하며 효율성도 크게 향상되었다고 IFL이 3일(현지시간) 전했다. 기존 티타늄 사파이어 레이저는 높은 가격과 큰 부피, 그리고 구동을 위한 여러 대의 고출력 레이저가 필요하다는 단점이 있었따. 스탠퍼드리포트는 이번에 새로 개발 티타늄-사파이어 레이저에 대해 "'타의 추종을 불허하는 성능'을 가진 것으로 간주된다"고 전했다. 이어 "레이저는 최첨단 양자 광학, 분광학, 신경 과학을 포함한 많은 뷴야에서 없어서는 안 된다. 하지만 그 성능은 엄청난 대가를 치른다"면서 "Ti:sapphire는 부피가 입방 피트9볼링 공 4개 정도의 공간을 차지함)에 달할 정도로 크고 비용도 수십만 달러에 이른다. 또한 3만 달러 이상에 달하는 다른 고출력 레이저가 있어야 작동한다"며 기존 레이저의 단점을 지적했다. 스탠퍼드대 전기공학과 교수이자 칩 크기의 Ti:사파이어 레이저 논문의 시니어 저자인 옐레나 부치코비치(Jelena Vučković)는 "이것은 기존 모델에서 완전히 벗어난 것"리하고 말했다. 그는 "크고 값비싼 레이저 한 대가 아닌, 하나의 칩에 수백대의 레이저를 탑재할 수 있는 시대가 곧 올 것"이라고 전망했다. 연구팀은 티타늄 사파이어를 이산화규소(sio2) 절연체 위에 장착하고 수백 나노미터 두께의 티타늄 사파이어 층을 정밀하게 연마하고 에칭하여 소용돌이 모양의 융기, 즉 도파관을 형성했다. 이 도파관을 통과하는 빛은 소형 히터를 사용해 가열되며 사용자가 필요에 따라 레이저 파장을 조정할 수 있도록 한다. 즉, 연구팀은 마이크로스케일 히터를 통해 방출되는 빛의 파장을 변경해 빛의 색상을 700~1000나노미터(적색에서 적외선까지) 사이에서 원하는 대로 조절할 수 있었다. 또한 레이저 크기 축소는 강도를 높여 효율성을 향상시키는 효과도 있었다. 이 소형 레이저는 양자 광학, 분광학, 신경 과학 등 다양한 분야에 활용될 수 있으며, 넓은 파장 범위에서 에너지를 방출하는 탁월한 이득 대역폭과 1000조 분의 1초마다 빛 펄스를 방출하는 초고속 특성을 가지고 있다. 이는 기존 레이저보다 약 14배 빠른 속도다. 부치코비치 교수와 공동 제1저자인 조슈아 양과 연구팀은 이 새로운 레이저가 다양한 분양에 미칠 영향에 대해 큰 기대를 걸고 있다. 양자 물리학 분야에서는 이 저렴하고 실용적인 레이저가 최첨단 양자 컴퓨터의 소형화를 획기적으로 앞당길 수 있을 것으로 예상된다. 신경 과학 분야에서는 광섬유를 통해 뇌 속 뉴런을 빛으로 조절하는 광유전적 연구에 즉각적인 활용이 가능할 것으로 보인다. 소형 레이저를 활용하면 더욱 작은 프로브(probe, 뇌 활동을 측정하고 자극하는 데 사용되는 도구)를 개발해 새로운 실험 방법을 모색할 수 있다. 안과 분야에서는 노밸상 수상 기술은 '처프 펄스 증폭(chirped pulse amplification)'을 이용한 레이저 수술에 새로운 방식으로 활용되거나, 망막 건강 평가에 사용되는 광 간섭 단층 촬영 기술을 더 저렴하고 작게 만들수 있을 것으로 기대된다. 칩 형태의 레이저는 기볍고 휴대성이 뛰어나며 저렴하고 효율적이다. 그리고 대량 생산이 가능하다. 양 연구원은 "우리는 단일 4인치 웨이퍼에 수 전개의 레이저를 놓을 수 있었다"며 그렇게 되면 레이저당 비용이 거의 0이 되기 시작한다. 이는 매우 흥미로운 일이다"고 말했다. 연구팀은 이번 연구 결과가 티타늄 사파이어 레이저의 대중화에 기여할 것으로 기대하고 있다. 이번 연구 결과는 학술지 '네이처(Nature)'에 게재됐다.
-
- 포커스온
-
[신소재 신기술(70)] 칩 크기의 초소형 '티타늄 사파이어 레이저' 개발
-
-
[신소재 신기술(67)] 100% 생분해되는 보리 플라스틱 개발
- 덴마크 코펜하겐 대학교 연구팀이 100% 생분해되는 플라스틱을 개발하고 있다. 이 플라스틱은 보리 전분으로 만들어지며, 기존 플라스틱에 비해 훨씬 빠른 속도인 약 2개월만에 분해된다고 투머로우 월드투데이가 보도했다. 플라스틱은 가볍고 질기며 저렴한 가격과 다양한 활용성 등 많은 장점을 가지고 있지만 환경 오염 문제를 일으키는 주요 원인 중 하나다. 코펜하겐 대학교에 따르면 플라스틱 생산 과정에서 발생하는 이산화탄소 배출량은 전체 항공 교통량을 합친 것보다 많다. 또한 자연적으로 분해되지 않고 미세 플라스틱 형태로 환경에 잔류해 심각한 문제를 야기한다. 미세 플라스틱은 인체의 뇌와 폐, 태반을 비롯해 고환과 음경 등의 생식기에도 검출됐다는 새로운 연구가 속속 발표되고 있다. 이러한 문제를 해결하기 위해 코펜하겐 대학교 연구팀은 변형된 보리 전분으로 만들어져 2개월 안에 완전히 분해되는 새로운 플라스틱을 개발했다. 이 플라스틱은 작물에서 얻은 천연 식물성 원료를 사용해 식품 포장재 등에 활용될 수 있다. 연구팀의 안드레아스 블레노우 교수는 "플라스틱 폐기물 문제는 재활용만으로는 해결할 수 없다"며 "우리는 기존 바이오 플라스틱보다 강하고 물에 대한 내성이 뛰어난 새로운 종류의 바이오 플라스틱을 개발했다"고 밝혔다. 또한 "이 플라스틱은 100% 생분해 가능하며, 미생물에 의해 퇴비로 전환될 수 있다"고 부연했다. 새로운 바이오 플라스틱은 아밀로스와 셀룰로오스라는 식물성 원료를 주성분으로 하며 쇼핑백, 포장재 등 다양한 용도로 활용될 수 있는 잠재력을 가지고 있다. 연구팀은 아직 실험실 단계의 시제품만 개발했지만 덴마크를 비롯한 여러 지역에서 대량 생산이 가능할 것으로 전망했다. 블레노우 교수는 "바이오 플라스틱은 새로운 개념에 아니지만 오해의 소기자 있는 이름"이라고 지적했다. 현재 제한된 양의 바이오 플라스틱만이 분해 가능하며, 산업용 퇴비화 공장에서 특수한 조건에서만 분해된다는 게 그의 설명이다. 그는 "저는 그 이름이 적절하지 않다고 생각한다. 가장 흔한 유형의 바이오 플라스틱은 자연에 버려지면 쉽게 분해되지 않기 때문이다"라고 말했다. 블레노우 교수는 "플라스틱이 분해되는 과정은 수년이 걸릴 수 있으며, 일부는 미세 플라스틱으로 계속 오염을 일으킨다"며 "바이오 플라스틱을 분해하기 위해서는 특수 시설이 필요하다"고 거듭 강조했다. 소위 바이오 북합체에는 자연적으로 분해되는 여러 가지 성분이 포함되어 있다. 주요 성분은 식물계에서 흔히 볼 수 있는 아밀로스와 셀룰로오스다. 예를 들어 아밀로스는 옥수수, 감자, 보리 등에서 추출된다. 어밀로스와 셀룰로오스는 길고 강한 분자 사슬을 형성한다. 아밀로스가 풍부한 전분의 전체 생산 사슬을 이미 존재한다. 실제로 매년 수백만 톤의 순수 감자 전분과 옥수수 전분이 생산되어 식품 산업과 다른 여러 분야에서 사용된다고 불레노우 교수는 밝혔다. 그러나 플라스틱을 효율적으로 재활용하는 것은 결코 간단하지 않다. 각각의 플라스틱의 주요 차이점으로 인해 플라스틱을 분류하는 방법이 다 다르기 때문이다. 또 플라스틱을 재활용하기 위해서는 오염 물질이 용기 내부에 조금이라도 남아 있으면 안 된다. 블레노우 교수는 "플라스틱 재활용은 복잡하고 어려운 문제이며, 근본적인 해결책이 될 수 없다"며 "플라스틱처럼 작동하면서 환경을 오염시키지 않는 새로운 소재를 개발하는 것이 중요하다"고 강조했다. 현구팀은 현재 특허 출원을 처리 중이다. 승인되면 새로운 바이오 복합소재를 생산할 수 있는 기반이 마련될 수 있다.
-
- 포커스온
-
[신소재 신기술(67)] 100% 생분해되는 보리 플라스틱 개발
-
-
스타링크 등 거대 인공위성, 오존층 파괴 심화 우려
- 오존층을 파괴하는 산화알루미늄 농도가 향후 수십 년 동안 650% 증가할 수 있다는 최초의 연구 결과가 발표돼 주목된다고 스페이스닷컴이 전했다. 이는 대기권에 재진입하는 과정에서 연소되는 위성의 수가 급증하기 때문이라는 지적이다. 게다가 저궤도 위성 인터넷 등 최소 수백 개 이상의 위성 군단을 쏘아 올리는 민간 기업이 급증하고 있어, 지구의 보호막인 오존층에 더욱 나쁜 영향을 미치고 있다는 우려다. 이는 로스앤젤레스의 서던캘리포니아대학교(USC) 연구진이 수행한 것으로, 대기 중 오염 물질의 발생을 모델링하고, 예상되는 위성 수 증가에 따른 산화알루미늄 농도의 변화를 추정한 최초의 연구다. 연구 결과는 '지구물리학연구(Geophysical Research Letters)' 저널 최신호에 발표됐다. 연구진은 위성으로 인한 산화알루미늄의 농도가 증가하면 심각한 오존층 파괴가 발생하며, 오존층의 회복도 크게 방해받을 것이라고 경고하고 무엇보다 우선적으로 오존층을 복구해야 한다고 주장했다. 우주선 본체는 알루미늄으로 만들어지며, 이는 소각될 때 오존을 파괴하는 산화알루미늄을 발생한다. 오존층은 1980년대 에어컨 냉매와 에어로졸 스프레이에 프레온 가스(염화 플루오린화 탄소)를 광범위하게 사용하면서 파괴됐고, 그 결과 남극 대륙 상공 오존층에 큰 구멍이 뚫렸다. 그러나 1987년 프레온 가스 등 오존층 파괴 물질 사용을 금지한 몬트리올 의정서 덕분에 상황은 호전되고 있었다. 그러나 이번 연구 결과대로라면 오존층의 회복은 인간이 만든 인공위성의 위협으로 인해 심각하게 방해받게 된다. 수백에서 수천 개에 이르는 거대 위성 군단들이 특히 문제가 될 것이라는 진단이다. 연구는 분자동역학 시뮬레이션을 이용해 모형 위성 재진입 과정에서 생성되는 산화알루미늄의 양을 측정한 뒤, 향후 계획된 초대형 위성의 지구 궤도 재진입에서 만들어질 산화알루미늄의 양을 예측하는 방법으로 진행됐다. 연구팀은 지난 2022년 약 332톤의 노후 위성이 대기 중에서 연소됐으며, 그 과정에서 17톤의 산화알루미늄 입자가 생성되었다는 것을 발견했다. USC의 조셉 왕 교수는 “2016~2022년 사이에 대기 중 산화알루미늄 농도는 8배 증가했으며, 발사 및 재진입 위성의 수가 증가함에 따라 농도는 계속해서 더 높아질 것”이라고 말했다. 유럽우주국(ESA)에 따르면 현재 약 1만 2540개의 위성이 지구 궤도를 돌고 있으며 그 중 약 9800개가 작동 중이다. 앞으로 10년 후 위성 숫자는 10배 이상으로 늘어날 전망이다. 민간 기업이 저궤도 위성 인터넷 서비스를 위해 수만 개의 위성 군단 네트워크를 구축할 것이기 때문이다. 예를 들어 일론 머스크의 스페이스X가 제공하는 위성 인터넷 스타링크는 현재 6000개 이상의 위성 군단으로 구성돼 있으며, 총 4만 개의 위성을 발사할 계획이다. 원웹(OneWeb), 아마존(Amazon), 중국 프로젝트인 G60 및 궈왕(Guowang) 둥 여러 유사 프로젝트가 진행되고 있다. 이들 프로젝트가 모두 실현되면 2030년대까지 매년 최대 3200톤에 달하는 위성체가 대기권에서 소각될 것이다. 연구진은 이로 인해 연간 630톤의 산화알루미늄이 상층 대기로 방출돼 입자 농도가 최대 650% 증가할 수 있다고 추정했다. 지구를 보호하는 오존층의 대부분은 고도 15~30km의 성층권에 집중돼 있다. 오존은 자외선(UV)을 흡수함으로써 지구 생명체를 보호한다. 연구팀은 위성 연소로 인해 증가하는 산화알루미늄은 오존층에 치명적이라고 강조했다. 다른 오존층 파괴 물질과 달리 산화알루미늄 입자는 소멸되지 않고 오존 파괴를 유발한다는 것이다. 따라서 산화알루미늄은 오존층을 통과해 밑으로 내려올 때까지 계속 오존층을 파괴하며, 파괴 과정은 최대 30년이 걸릴 수 있다. 매년 인공위성보다 훨씬 더 많은 운석이 지구 대기권으로 유입되지만, 운석에는 알루미늄이 없기 때문에 오존층을 위협하지 않는다. 연구팀은 연구 결과의 환경 영향과 관련된 어떤 결론도 시기상조라고 말하고 더 많은 분석이 진행되어야 하며 이번 연구가 동력이 되기를 희망한다고 덧붙였다.
-
- IT/바이오
-
스타링크 등 거대 인공위성, 오존층 파괴 심화 우려
-
-
[우주의 속삭임(20)] 소행성 베누 샘플서 생명체 구성요소인 인산염 발견
- 미국 항공우주국(나사·NASA)의 소행성 연구 우주 탐사선 오시리스-렉스(OSIRIS-REx)가 소행성 베누(Bennu)로부터 채취한 4.3온스(121.6g)의 샘플을 분석한 결과 생명체의 구성 요소인 인산염이 발견됐다. 나사는 공식 홈페이지에서 "오시리스-렉스 샘플 분석팀은 소행성 베누가 우리 태양계를 형성하는 성분들을 함유하고 있음을 발견했다"고 밝혔다. 베누의 먼지에는 생명체에 필수적인 구성 요소인 탄소와 질소, 유기 화합물이 풍부한 것으로 나타났다는 것. 지구로 가져온 베누 샘플에는 또한 마그네슘-나트륨 인산염이 포함돼 연구팀을 놀라게 했다. 이는 베누 우주선이 수집한 원격탐사 데이터에서는 나타나지 않았었다. 점토 광물, 특히 사문석(뱀 문양의 돌)이 대부분인 이 샘플은 지구 지각 아래층 맨틀 물질이 물과 만나는 지구의 대양 중간 능선에서 발견되는 암석과 유사한 유형이다. 지구로부터 떨어져 나갔을 가능성을 시사하는 대목이다. 이는 점토 형성에 그치지 않고 탄산염, 산화철, 황화철 등 다양한 광물을 만들었다. 그 중에서도 가장 놀라운 발견은 수용성 인산염의 존재였다. 인산염은 오늘날 지구상에 알려진 모든 생명체의 생화학 구성 요소다. 지난 2020년 JAXA(일본우주항공연구개발기구)의 하야부사2 임무에서 채취한 소행성 류구(Ryugu) 샘플에서도 유사한 인산염이 발견됐었다. 그러나 베누 샘플에서 검출된 마그네슘-나트륨 인산염은 어떤 운석 샘플에서도 유례가 없을 정도로 순도가 탁월하다. 연구진은 이것이 베누의 역사에 대한 귀중한 단서를 제공한다고 지적했다. 연구진의 단테 로레타 애리조나 대학 박사는 "베누 샘플에서 나타난 각종 원소, 특히 인산염의 존재와 상태는 과거 소행성에 물이 존재했음을 암시한다"며 “베누는 과거 한때 습한 행성이었을 수 있지만, 이는 추가 조사가 필요하다"고 말했다. 나사의 제이슨 드워킨 박사도 오시리스-렉스가 과거에는 습했으며 질소와 탄소가 풍부했을 것으로 추정되는 원시 소행성 베누 샘플을 가져왔다"고 밝혔다. 베누는 물이 존재한 역사가 있었을 가능성에도 불구하고, 화학적으로 원소 비율이 태양과 매우 유사한 원시 소행성으로 남아 있다. 로레타는 "가져온 샘플의 구성에서 45억 년 이상 전 우리 태양계 초기 모습을 엿볼 수 있다. 이 샘플은 생성된 이래 녹거나 재응고되지 않은 원래의 상태를 유지하면서 고대의 기원을 보여준다"고 의미를 부여했다. 연구진은 샘플을 통해 소행성 베누에 탄소와 질소가 풍부하다는 사실을 확인했다. 이 원소들은 베누의 물질이 탄생한 환경과 함께, 단순한 원소가 복잡한 분자로 변환하는 화학적 과정을 이해하는 데 매우 중요하다. 지구상의 생명체의 기원을 밝히는 기초를 마련할 가능성도 있다. 태양계 형성의 복잡한 과정과 지구에 생명체가 출현한 프리바이오틱 화학을 밝히는 열쇠를 쥐고 있다는 것이다. 향후 수 개월 안에 미국과 전 세계의 연구소가 휴스턴에 있는 나사의 존슨 우주센터로부터 베누 샘플의 일부를 제공받게 된다. 베누 샘플 분석이 활발해지고, 더 많은 연구 결과가 발표될 것이라는 기대다. 2016년 9월 발사된 오시리스-렉스 우주선은 지구 근처 소행성 베누로 이동해 베누 표면에서 암석과 먼지 샘플을 수집했고 2023년 9월 이 샘플을 지구로 가져왔다. 나사의 고다드 우주 비행센터가 오시리스-렉스 임무를 관리했다. 이 임무는 국제적인 협력 아래 이루어졌으며 CSA(캐나다 우주국), JAXA 등이 함께했다.
-
- IT/바이오
-
[우주의 속삭임(20)] 소행성 베누 샘플서 생명체 구성요소인 인산염 발견
-
-
[먹을까? 말까?(31)] 종합비타민, 매일 섭취하면 장수 비결될까?
- 성인이 매일 섭취하는 종합비타민이 장수 효과는 별로 없다는 연구 결과가 나왔다. 26일(현지시간) 미국 국립보건원(NIH)의 발표에 따르면 종합비타민은 수명 연장에 도움이 되지 않는 것으로 나타났다. 해당 내용에 대해서는 영국 일간지 가디언과 미국 abc뉴스, 경제 매체 포브스 등 다수 외신이 집중 보도했다. 미국 성인 3명 중 1명은 정기적으로 종합비타민 보충제를 섭취하고 있는 것으로 확인됐다. 연그팀은 20년 동안 약 40만명의 성인의 데이터를 분석했다. 미국의학협회에서 발행하는 국제적인 의학 학술지 JAMA Network Open에 발표된 연구에 따르면 참가자들의 평균 연령은 61.5세였고, 일반적으로 만성 질환의 병력 없이 건강했다. 종합비타민제를 매일 섭취하면 심장병이나 암과 같은 질병으로 인한 사망 위험이 감소한다는 증거는 이 연구에서 발견되지 않았다. 연구원들은 "장수를 개선하기 위한 종합비타민 사용은 지원되지 않는다"고 보고했다. 연구팀에 따르면 종합비타민제를 매일 복용한 건강한 사람들은 비타민제를 먹지 않는 사람들에 비해 연구 기간동안 사망할 가능성이 4%로 약간 더 높았다. 후속 연구 기간 동안 39만명의 초기 참가자 그룹 중에서 약 16만5000명의 사망자가 발생했다고 연구팀은 보고했다. 그러나 이 연구는 기존의 비타민 결핍증이 있는 사람들의 데이터는 분석하지 않았다. 소아과 및 일반 예방의학 전문의인 제이드 A 코번 박사는 "이 연구가 보여주는 것은 일반적으로 종합비타민이 장수에 도움이 되지 않는 것"이라고 말했다. 코번 박사는 "가능하다면 보충제에 의존화기 보다는 야채와 통곡물 또는 콩과 식물 섭취를 늘리고 붉은 고기 섭취를 제한하는 는 등 식단에서 비타민과 미네랄을 섭취하는 것이 가장 좋다"고 설명했다. 한편, 종합비타민은 불규칙한 식습관이나 편식으로 인해 부족하기 쉬운 비타민과 미네랄을 보충해 영양 균형을 맞추는 데 도움을 줄 수 있다. 아울러 면역력 강화와 피로 해소, 항산화 작용 등의 효과를 기대할 수 있다. 그러나 종합 비타민은 필요 이상으로 과다 섭취할 경우 오히려 건강에 해로울 수 있다. 특히 지용성 비타민(A,D, E, K)은 제내에 축적될 수 있어 주의해야 한다. 또한 특정 약물과 함께 종합비타민을 복용할 경우, 약효를 감소시키거나 부작용을 일으킬 수 있다. 종합비타민은 의사 또는 약사와 상담후 복용하는 것이 안전하다.
-
- 생활경제
-
[먹을까? 말까?(31)] 종합비타민, 매일 섭취하면 장수 비결될까?
-
-
[신소재 신기술(65)] 다단계 발광으로 위조 방지 신기술 구현
- 캐나다 온타리오주에 있는 웨스턴 대학교 연구팀이 다단계로 빛을 방출하는 '지속 발광' 기술을 개발해 위조 방지 기술에 새로운 돌파구를 마련했다. 연구팀은 '지속 발광(PersL) 나노 형광체'라는 특수한 성질을 가진 물질을 사용해 다단계 보안 식별 표시를 생성하는 위조 방지에 혁신적인 기술을 개발했다고 아조나노가 전했다. 최근 졸업장, 화폐, 처방약, 예술 작품 등 다양한 문서의 위조 기술이 발전하고 있다. 기존에는 자외선에 노출됐을 때 빛을 발하는 발광 표시가 위조 방지책으로 사용돼 왔다. 그러나 위조범들은 이룰 우회하는 방법을 찾아냈다. 현재 위조 방지를 위해 사용되는 발광 물질은 자외선에 노출되면 발광 재료가 보인다. 그러나 광원을 제거하면 빛이 나지 않는다. 연구팀은 서스캐처원 대학교(USask)의 캐나다 광원(CLS)을 이용해 자외선이 꺼진 후에도 몇분 동안 육안으로 볼 수 있는 무기 인광 나노 입자로 구성된 새로운 위조 방지 소재를 개발했다. 이 소재는 또한 복제하기 어려운 독특한 붉은색 빛을 방출하며, 시간이 지남에 따라 점차 사라지는 특성을 가지고 있다. 일부 요소는 거의 즉시 사라지고, 다른 요소는 사라지는 데 몇 분이 걸리는 등 발광 지속 시간을 조절할 수 있다. 연구팀은 기본 재료인 산화마그네슘 게르마늄에 첨가되는 불순물(도펀트)을 조정하여 이러한 특성을 구현했다. 다단계 발광은 단일 발광 기술보다 복잡한 과정을 거치므로 위조가 어렵다. 각 단계별로 특정 조건(빛, 온도, 화학물질)을 만족해야만 다음 단계로 넘어가는 발광이 일어나도록 설계할 수 있다. 이러한 복잡성은 위조 기술의 수준을 넘어서기 때문에 위조 시도를 효과적으로 차단할 수 있다. 또한 다단계 발광 과정에 숨겨진 정보를 담을 수 있다. 특정 조건에서만 나타나는 숨겨진 발광 패턴이나 메시지는 정품 인증의 강력한 수단이 될 수 있다. 수석 저자인 이홍 류(Yihong Liu)와 그의 동료 연구팀은 마이크로미터 크기의 잔광 발광 소재가 이미 사용되고 있지만 더욱 정밀한 패턴 인쇄가 가능한 나노 크기의 지속 발광 소재를 개발했다. 이 소재는 기존 소재보다 더 오래, 더 밝게 빛나는 것이 특징이다. 연구팀은 CLS 에서 수집한 데이터를 연구에 활용했다. 류에 따르면 연구팀은 빔라인, 브록하우스(Brockhouse), SGM, IDEAS를 활용해 조율 가능한 잔광에 필수적인 도펀트(dopant, 전기 전도도를 변화시키기 위해 반도체에서 의도적으로 첨가시키는 불순물)와 기본 물질 간의 상호작용을 더 깊이 이해할 수 있었다. 이 연구는 미국화학학회(ACS) '응용 나노 물질(Applied Nano Materials)' 저널에 게재됐다. 참고: Liu, Y., et al. (2024) Multiband MgGeO3-Based Persistent Luminescent Nanophosphors for Dynamic and Multimodal Anticounterfeiting. ACS Applied Nano Materials doi.org/10.1021/acsanm.4c01069
-
- 포커스온
-
[신소재 신기술(65)] 다단계 발광으로 위조 방지 신기술 구현
-
-
[기후의 역습(18)]이산화탄소 2배 증가하면 지구 온도 최대 14도 높아져
- 대기 중 이산화탄소(CO₂) 양이 두 배 증가하면 지구의 평균 기온이 7도에서 최대 14도까지 높아질 수 있다는 연구 결과가 발표돼 주목된다고 PHYS가 전했다. 네덜란드 왕립해양연구소(NIOZ)와 위트레흐트 대학교 및 브리스톨 대학교의 공동 연구팀은 캘리포니아 인근 태평양에서 드릴로 뚫어 채취한 코어 퇴적물을 분석한 결과 이 같은 사실을 발견했다고 밝혔다. 연구 결과는 '네이처 커뮤니케이션(Nature Communications)'에 게재됐다. 연구팀의 케이틀린 위트코프스키 박사는 "연구 결과 나타난 기온 상승 예상치는 유엔 기후변동에 관한 전부간 패널(IPCC)이 지금까지 추정해 온 2.3~4.5도 상승보다 무려 3배 가까이 높다"고 말했다. 연구팀은 태평양 해저 바닥에서 추출한 45년 된 퇴적물 드릴 코어를 사용해 분석했다. 팀은 "코어를 추출한 지점의 해저에는 수백만 년 동안 무산소 상태였다. 이 때문에 이 코어는 탄소를 측정하는 우리 연구에 매우 적합했다"고 말했다. 산소가 없었기 때문에 결과적으로 유기물은 미생물에 의해 잘 분해되지 않고 더 많은 탄소가 보존됐다는 것이다. 위트코프스키는 "지난 1500만 년 동안의 이산화탄소 상태를 단일 지점에서 조사한 연구는 없었다"며 "채취된 드릴 코어의 상부 1000m는 지난 1800만 년의 역사를 담고 있다"고 설명했다. 연구진은 새로운 접근 방식을 적용, 이 코어 기록에서 과거 해수 온도와 고대 대기의 이산화탄소 수준을 추출할 수 있었다. 연구진은 20년 전 NIOZ에서 개발된 'TEX86'이라는 방법을 사용하여 온도를 도출했다. TEX86은 특수한 종류의 미생물인 고세균 막에 존재하는 특정 물질을 사용하는 분석 방법이다. 고세균은 해양 상부 200m 수온에 따라 막의 구성을 화학적으로 최적화한다. 그 막의 화학 물질은 해양 퇴적물에서 분자화석으로 발견된다. 연구팀은 이를 채취해 분석했다. 연구진은 조류에서 흔히 발견되는 두 가지 물질인 엽록소와 콜레스테롤의 화학적 성분을 사용해 과거 대기의 이산화탄소 함량을 도출하는 새로운 접근 방식을 적용했다. 이는 정량적 이산화탄소 측정을 위해 콜레스테롤과 엽록소를 사용한 최초의 연구다. 이들 콜레스테롤과 엽록소를 생성하려면 조류는 물에서 이산화탄소를 흡수하고 광합성을 통해 고정(탄소 고정)해야 한다. 한편, 지구상의 탄소 중 아주 작게는 일반적인 12C가 아니라 다소 '무거운 형태'인 13C로도 발생한다. 이산화탄소 소비에 관한 한 조류는 분명히 12C를 선호한다. 그러나 물속의 이산화탄소 농도가 낮을수록, 많은 조류들이 드물게 발생하는 13C도 이용한다. 따라서 엽록소와 콜레스테롤 두 물질의 13C 함량은 바닷물의 이산화탄소 함량을 측정하는 척도가 되며, 이는 용해도 법칙에 따라 대기의 이산화탄소 함량도 연이어 측정할 수 있다. 연구진은 이 같은 새로운 방법을 사용해 이산화탄소 농도가 1500만 년 전 약 650ppm에서 산업 혁명 직전 280ppm으로 떨어진 것으로 추정된다고 밝혔다. 연구팀은 나아가 지난 1500만 년 동안 도출된 온도와 대기 이산화탄소 수준을 각각 그래프로 표시하고 비교했다. 그 결과 둘 관계가 밀접하게 관계됐다는 사실도 발견했다. 1500만 년 전의 지구 평균 기온은 18도가 넘었다. 이는 오늘날보다 4도 더 높은 것으로, IPCC가 가장 극단적인 시나리오에서 2100년을 예측하는 수준과 비슷하다. 연구팀은 "우리의 연구는 인류가 이산화탄소 배출을 줄이기 위한 조치를 등한시하고 탄소 배출을 상쇄하기 위한 혁신을 이룩하지 않으면 미래가 어떻게 나빠질 수 있는지를 엿볼 수 있게 해 준다"라고 강조했다. 이산화탄소의 농도가 생각보다 더 온도에 더 큰 영향을 미칠 것이라는 경고다.
-
- 포커스온
-
[기후의 역습(18)]이산화탄소 2배 증가하면 지구 온도 최대 14도 높아져
-
-
로봇을 음식처럼 먹는다?…식재료로 만들어 식용 가능한 로봇 개발
- 스위스 로잔연방공대(EPFL: École Spéciale de Lausanne)를 비롯한 유럽 여러 대학 연구원 팀이 사람이 먹을 수 있는 식용 로봇을 개발하고 있어 관심을 모으고 있다고 기술 전문 매체 테크레이다가 전했다. 여기에는 로잔연방공대 외에 네덜란드의 바헤닝언대학, 영국 브리스톨대학, 이탈리아공과대학 등의 연구원이 참여했으며, 이들은 공식 프로젝트 명칭을 로보푸드(RoboFood)라고 명명했다. 참여 연구원은 플로리아노, 렘코 붐, 조나단 로시터, 마리오 카이로니 등이다. 로보푸드 프로젝트는 로봇으로서의 기능을 수행할 뿐만 아니라, 로봇 재료가 생분해성이며, 사람이 먹어도 안전한 먹는 로봇을 개발하는 것이 목표다. 연구팀은 먹을 수 있는 로봇이 전자 폐기물을 줄일 수 있고, 사람에게는 영양과 의약품을 전달하며, 나아가 건강을 모니터링하는 기능 구현도 가능하고, 새로운 음식을 제공할 수 있을 것이라고 밝히고 있다. 이 프로젝트는 로봇을 만들 때 식용 재료를 사용함으로써 기존의 비식용 부품을 대체하는 방법을 모색한다. 예를 들어 젤라틴은 고무 대신 사용할 수 있고, 쌀 쿠키는 스티로폼과 유사한 품 부품으로 사용할 수 있다. 습한 환경에서 로봇을 보호하는 필름 재료로는 초콜릿을 활용하는 것이 연구되고 있다. 다른 혁신적인 재료로는 사탕류의 일종인 구미베어와 활성탄으로 만든 전도성 잉크가 있다. 연구팀이 진행하는 식용 로봇의 발전은 느리지만 꾸준하다. 팀은 2017년 식용 그리퍼(사람 손처럼 물체를 쥐는 로봇팔)를 만들었다. 2022년에는 쌀과자 날개와 젤라틴 접착제를 갖춘 드론을 개발했고 이어 젤라틴 다리와 식용 기울기 센서를 가진 롤링 로봇이 설계됐다. 2023년에는 소형 기기에 안전하게 전원을 공급할 수 있는 리보플라빈(비타민B2 복합체)과 퀘르세틴(항산화제로 알려진 플라보노이드 식물 화합물)으로 만든 최초의 충전식 식용 배터리를 개발했다. 로보푸드 프로젝트 팀원이자 EPFL 지능형시스템 연구소 소장인 플로리아노 박사는 독특한 성격을 거론하며 "로봇과 식품을 기술적으로 결합하는 새로운 시도이자 흥미로운 도전"이라고 말했다. 기술적인 진전에도 불구하고 사람이 반응성을 보이는 식용 로봇을 어떻게 인식할 것인지를 이해하고, 전기 및 기계 부품을 식재료와 원활하게 통합하는 등의 과제는 여전히 남아 있다. 연구팀은 전기를 사용해 작동하는 부품과 이동을 위해 유체 및 압력을 사용하는 부품을 결합하는 데 어려움을 겪고 있다. 식용 가능한 재료를 전기 및 전자부품과 통합하는 데 따르는 어려움이다. 먹을 수 있는 로봇을 만들기 위해서는 또한 부품을 소형화하고 로봇 식품의 유통기한을 연장하는 방법을 찾아야 한다. 물론 로봇의 맛을 좋게 만드는 방법 연구도 중요하다고 지적했다.
-
- IT/바이오
-
로봇을 음식처럼 먹는다?…식재료로 만들어 식용 가능한 로봇 개발
-
-
[기후의 역습(15)] 과학자들, 해수면 60cm 이상 상승 경고
- 해수면 상승은 남서 태평양의 여러 섬에서부터 이탈리아의 베니스와 같은 운하 기반 도시에 이르기까지 전 세계 해안을 위협하고 있다고 지구 온난화를 막기 위한 비영리기관 TCD(쿨다운)이 전했다. 미국에서는 보스턴을 비롯한 많은 해안 도시들이 해수면 상승에 대비하고 있으며, 미국 국립해양대기청(NOAA)은 30cm의 해수면 상승을 어떻게 관리할 것인지에 대한 대화형 지도를 공유하기에 이르렀다. NOAA의 2022년 해수면 상승 기술 보고서는 2022년의 오염 수준이 유지된다고 가정할 경우, 2020~2100년 사이에 해수면이 60cm 이상 상승할 가능성이 더 높아질 것이라고 설명하고 있다. NOAA는 또 운송, 농업, 산업, 기타 원인으로 인한 오염과 지구 온난화를 줄이지 못하면, 같은 기간 동안 해수면의 높이가 2m10cm까지 올라갈 수 있다고 경고했다. 해수면이 60cm 상승하면 미국에서는 동부와 서부 해안에 접한 모든 주들과 루이지애나, 텍사스, 미시시피, 앨라배마까지 위험에 처하게 된다. 오리건은 가장 큰 영향을 받을 수 있는 주 중의 하나다. '오리건 라이브'에 따르면 해수면이 1m80cm 상승하면 주 경계를 따라 흐르는 컬럼비아 강에 있는 섬들이 물에 잠기게 될 것이며, 강 인근에서 가장 큰 섬인 소비아일랜드를 완전히 수장할 가능성도 높다. 이 정도 상승이면 해안을 따라 광범위한 피해가 발생할 것이며, 워렌턴, 씨사이드, 톨레도와 같은 곳도 대부분 물에 잠기게 된다. 높아지는 수위는 무엇보다도 해안 지역 사회를 심각한 홍수의 위험에 빠뜨린다. 가정과 일터를 파괴하고, 일부 지역에서는 사람이 거주할 수 없게 되며, 시민들은 생존의 위험에 노출된다. 미국 국립자원보호협의회(NRDC)에 따르면 해수면 상승의 다른 주요 영향 중에는 기상 이변, 토지 상실 및 해안 침식, 염수 침입 및 담수 오염, 기후 이주 가능성 증가 등이 있다. 여기서 기후 이주는 혹독한 기후로 바뀜에 따라 인간이 거주할 수 없게 돼 강제로 이주할 수밖에 없는 경우를 말한다. 해수면이 60cm 상승한다면 한국 영토의 약 10.8%가 침수될 것으로 예상된다. 이는 약 2600㎢에 해당하는 넓이다. 침수 예상 범위는 해안 지형, 지표고, 조류, 방파제 등 다양한 요인에 따라 달라질 수 있다. 인천광역시, 경기도, 충청남도, 전라남도, 경상남도 등 해안 저지대에 위치한 지역들이 주로 영향을 받게 될 것이다. 해수면 상승의 가장 큰 원인은 지구 온난화다. NRDC가 지적했듯이, 더 따뜻한 날씨는 매년 2700억 톤의 그린란드 빙하를 녹인다. 그린란드 얼음 덩어리가 사라지고 있는 것이다. 이는 그대로 바다로 흘러들어 해수면을 높인다. 바다는 또 이산화탄소와 메탄과 같은 가스의 차단(커튼 효과)에 의해 대기에 갇힌 과잉 열의 약 90%를 흡수한다. 이것은 물의 팽창으로 이어진다. NOAA 과학자들은 2004년 이후 세계 해수면 상승의 3분의 1이 해수 온난화로 인해 발생하는 것으로 추정한다. 따라서 지구 온난화를 유발하는 오염을 줄이는 것이 지구의 건강과 인간의 안전을 위해 필수적이라는 지적이다. 국가와 기관, 기업의 대책도 중요하지만 주민들의 생활 방식 변화도 이에 기여할 수 있다. 자동차를 버리고 걷거나 자전거와 같은 마이크로모빌리티를 타는 것이 권장되며, 식물성 식단으로 전환하는 것도 세계 최대 오염원 중 하나인 육류 산업의 수요를 줄인다. 습지는 자연적인 방수 기능을 제공하며, 해수면 상승에 대한 완충 역할을 한다. 습지 보호 및 복원을 통해 해안선의 자연적 방어력을 강화해야 한다. 또한 염수에 강한 작물과 나무를 개발하여 해수면 상승으로 인한 농업 및 임업 피해를 최소화해야 한다.
-
- 포커스온
-
[기후의 역습(15)] 과학자들, 해수면 60cm 이상 상승 경고
-
-
[신소재 신기술(61)] 에스테르 환원, 새로운 광촉매로 청색광 활용해 효율성 극대화
- 새로운 광촉매(N-BAP)로 청색광을 활용해 에스테fm를 효율적으로 환원하는 기술이 개발됐다. 일본 국립자연과학연구소(NINS) 연구팀은 빛을 에너지원으로 활용하여 에스테르를 효월적으로 환원하는 새로운 광촉매를 개발했다고 밝혔다고 PHYS가 전했다. 이 연구 결과는 지난 6월 14일 '미국 화학학회지(Journal of the American Chemical Society)'에 게재됐다. 에스테르는 유기화합물의 한 종류로 알코올과 산이 반응하여 물이 빠져나오면서 생성되는 물질이다. 일반적으로 에스테르는 딸기 등 과일 향이나 꽃 향 등 특징적인 향기를 가지고 있다. 이러한 향기 때문에 향수나 화장품, 의약품, 식품 첨가물 등 다양한 분야에 활용된다. 그러나 기존의 에스테르 환원 방법은 높은 비용과 환경 문제를 야기했다. 공동 교신 저자인 NINS의 분자과학연구소(IMS) 산타로 오쿠무라 조교수는 "지난 10년 동안 광촉매 반응은 유기 합성 분야에서 자속 가능한 개발 목표(SDG)에 적합한 방법으로 큰 주목을 받았다"고 말했다. 오쿠무라 조교수눈 "광촉매는 금속 환원제가 없을 때 가사광선을 에너지원으로 사용해 산화와 완원 반응을 촉진한다. 하지만 다중 전자 전달 과정을 통한 광촉매 반응은 개발이 미흡해 전자가 4개 필요한 에스테르이 광촉매 환원을 통한 알코올 형성은 아직 미개발상태다"라고 설명했다. 이어 "에스테르를 광촉매로 환원하여 알코올을 만드는 것은 전례 없는 연속적인 4중 SET 공정이 필요하기 때문에 엄청난 도전"이라고 말했다. NINS 연구팀은 지속 가능한 광촉매를 사용해 에스테르를 환원하는 방법을 연구했다. 광촉매는 빛에 의해 활성화되는 촉매로, 반응성이 높은 금속 환원제 없이 촉매와 유기 화합물 사이의 전자 이동 과정을 촉진하는 것으로 알려져 있다. 그러나 기존의 광촉매는 고가의 비재생 금속을 사용하며, 제한적인 유기 화학물만 환원할 수 있었다. 또한 일반적으로 한 번에 한 개의 전자만 화합물에 추가하는 단일 전자 이동(SET)방식을 사용하여 원하는 수준의 환원을 달성하기 위해 여러 번의 반복 과정이 필요했다. 4중 SET 공정을 달성하기 위해 연구팀은 'N-BAP'라는 새로운 광촉매를 개발했다. 파란색 빛(청색광)을 받으면 활성화되는 N-BAP광촉매는 물과 다른 탄소 기반 화학 그룹과 반응하는 화학 그룹을 생성하며, 옥살산염과 함께 사옹하면 빠른 속도로 4개의 전자를 연속적으로 추가해 원하는 알코올을 생성할 수 있다. 오쿠무라는 N-BAP 촉매와 미량 환원제인 옥살산염의 조합은 카르비놀 음이온을 생성하기 위한 에스테르의 급속한 연속적인 4-전자 환원을 가능하게 하고, 이어서 양성자화되어 알코올을 생성하게 한다고 말했다. 그는 "이 연구는 에스테르의 새로운 변환 가능성을 열 수 있으며 지속 가능한 개발 목표(SDGs)에 적합한 녹색 유기합성으로서 지속가능한 사회에 기여할 것으로 기대된다"고 밝혔다.
-
- 포커스온
-
[신소재 신기술(61)] 에스테르 환원, 새로운 광촉매로 청색광 활용해 효율성 극대화