검색
-
-
리튬이온 배터리, 재활용 시장 성장세
- 중국의 리튬이온 배터리(LIB) 관련 기술이 날로 발전하고 있다. 게다가 폐배터리 재활용 연구도 활발해 제조와 생산에 이어 재활용까지 명실상부한 배터리 산업 세계 1위 종주국 자존심을 지키려 애쓰는 모습이 역력하다. 최근 널리 사용되고 있는 리튬이온 배터리는 모바일, 태블릿을 비롯해 전기자동차 등 다양한 분야에 쓰이고 있다. 현존하는 배터리 제품 중 에너지 저장능력이 탁월하다는 장점 등으로 그 수요가 증가하고 있다. 하지만, 리튬 가격 상승과 자원 고갈 문제, 독성 물질을 함유한 방전 배터리 처리 문제 등이 수면 위로 떠오르면서 리튬이온 배터리 재활용에 대한 다양한 연구가 진행되고 있다. 미국 산업 매체 오일프라이스(Oilprice)는 리튬이온 배터리의 재활용은 높은 품질의 리튬을 회수하기 복합하고 비용이 많이 들기 때문에, 대부분의 재활용 공정은 양극에서 리튬을 추출하는데 중점을 두고 있다고 지적했다. 리튬이온 배터리를 재활용하는 것은 매우 까다로운 공정이다. 다시 사용할 수 있을 만큼 높은 품질의 리튬을 회수하는 것은 복잡하고 비용이 많이 들어간다. 중국과학원(ICCAS) 화학연구소와 중국과학원(UCAS) 대학의 위궈궈(Yu-Guo Guo)와 칭하이 멍(Qinghai Meng)이 이끄는 연구팀은 리튬이온 배터리를 재활용 하는 대체 방법을 개발했다. 이 연구팀은 물 대신에 양극에서 리튬을 회수하기 위해 비양성자성 유기 용액을 사용했다. 양성자성 물질은 수소 이온을 방출할 수 없으므로 수소 가스가 생성되지 않는다. 대부분의 재활용 공정은 음극(방전된 배터리의 리튬 대부분이 위치한 곳)에서 리튬을 추출하는 것을 목표로 한다. 그러나 리튬은 음극에 포함된 다른 금속과 함께 침전되기 쉬워 분리하는데 까다로운 작업이 수반되기 마련이다. 주로 흑연(graphite)으로 이뤄진 양극에서 리튬 추출은 훨씬 효율적이며 배터리 방전 없이 수행할 수 있다. 그러나 수용액으로 침출되면 화재와 폭발 위험도 높다. 또 이러한 반응은 많은 양의 에너지를 방출하고 수소를 생성할 수 있다. 이에 연구팀은 양극에서 리튬을 회수하기 위해 물 대신 유기 용매를 사용했다. 유기 용매 물질은 수소 이온을 방출할 수 없어, 수소 가스가 생성되지 않는다. 이 용매는 다환 방향족 탄화수소(PAH)와 에테르를 포함한다. 특정 PAH는 양극의 양성 리튬 이온과 전자 하나를 함께 흡수할 수 있으며, 온화한 조건에서 이 환원 반응은 효과적으로 제어고 매우 효율적이라는 설명이다. 또 연구팀은 PAH 피렌(네 개의 벤젠 고리로 된 여러 고리 방향족 탄화수소)을 테트라에틸렌글리콜디메틸 에테르와 함께 사용하면 양극에서 활성 리튬을 거의 완전히 용해 시킬 수 있었다고 부연했다. 추가로, 얻어진 리튬-PAH 용액은 새로운 양극에 리튬을 추가하거나 전처리 또는 사용된 양극을 재생하는 데 사용될 수 있다. PAH 용매 시스템은 처리되는 물질에 최적화하기 위해 다양하게 조절될 수 있다. PAH는 석탄, 기름, 가스, 쓰레기, 담배, 고기나 기타 물질이 연소될 때 형성되는 화학물질의 한 종류다. 오일프라이스는 "중국의 새로운 리튬 회수 공정은 효율적이고 비용이 저렴하며 안전 위험을 낮추고, 폐기물을 방지하며 리튬이온 배터리의 지속 가능한 재활용에 대한 새로운 전망을 열어준다"며 "아마도 전 세계 해변과 폐기물에 있는 수백만 개의 배터리를 재활용하는 해결책일 수 있다"고 평했다. 그러나 가장 큰 문제가 아직 남아있다. 재활용을 위해서는 먼저 배터리를 회수해야 한다. 어떤 공정을 사용하더라도 배터리를 수거하지 않으면 재활용 자체가 불가능하다. 게다가 화학 물질 사용도 문제다. 대부분의 사람들은 자신의 동네에 불쾌한 화학 물질이 들어오는 것을 원하지 않기 때문이다. PAH와 에테르를 포함한 것은 가스 밀폐 시설이 필요하며 원격 제어 기능이 반드시 필요하다. 한편, 오리온 마켓 리서치(Orion Market Research)에 따르면, 세계의 리튬이온 배터리 재활용 시장은 2022년~2028년까지 약 18.5% 성장할 것으로 예상하고 있다. 리튬이온 배터리 가격 하락에 의한 사용량 증가와 폐기물 처리에 대한 우려, 그리고 정부 정책 등이 재활용을 견인할 것으로 보여진다. 또한 LG에너지솔루션 자료에 따르면 세계 배터리 재활용 시장 규모는 2023년 108억 달러로 추정된다. 아울러 2024년 424억 달러, 2040년 2089억 달러 등으로 연평균 17% 성장할 것으로 전망되고 있다. 오일프라이스는 "하지만 무엇이든지 빨리 (대응을) 해야 한다"며 "사용된 리튬이온 배터리의 재앙적인 사고가 언젠가는 발생할 것이기 때문"이라며 리튬이온 배터리 재활용 방안 마련을 서둘러야 한다고 말했다.
-
- 산업
-
리튬이온 배터리, 재활용 시장 성장세
-
-
美 리튬이온 배터리,10분 만에 80% 충전 가능한 소재 개발
- 미국 오크리지 국립연구소(Oak Ridge National Laboratory, ORNL)의 연구진이 기존 리튬이온 배터리보다 훨씬 빠른 충전 속도와 오래 지속되는 수명을 가진 새로운 배터리 소재를 개발했다. 최근 사이테크데일리(SciTechDaily)에서 공개된 이 연구에 따르면, 새로 개발된 리튬이온 배터리는 단 10분만에 80%까지 충전이 가능하며, 1500사이클 이상 사용 수명을 자랑한다. 오크리지 국립연구소는 미국 에너지부가 후원하고 UT-Battelle이 연방 기금 연구 개발 센터 (Federally funded research and development centers,FFRDCs)로 관리와 운영을 하는 미국 다중 프로그램 과학 기술 국가 연구소다. 리튬이온 배터리는 액체 전해질을 사용해 갑작스러운 충격이나 압력 변화에 내부 구조가 변화되면 온도가 상승해 폭발할 수 있다. 이번에 개발한 리튬이온 배터리의 핵심 기술은 탄산염 용매를 활용한 새로운 형태의 리튬 염과 이온 흐름의 향상에 있다. 연구팀은 이를 통해 고전류에도 견디며, 배터리 가열 문제가 크게 줄었다는 설명이다. 이번 연구결과는 전기 자동차(EV) 시장에서의 배터리의 충전 시간과 수명 문제를 크게 개선하는 데 기여할 것으로 보인다. 이는 전기자동차의 보급 확대와 환경 보호에 중요한 발판이 될 것으로 전망된다. 이번에 ORNL에서 개발된 배터리는 이온이 전해질, 즉 매개체를 통해 전극 사이로 움직이게 되는 원리로 작동 및 재충전된다. 연구원 즈이지아 두(Zhijia Du)는 탄산염 용매를 활용해 시간이 흐를수록 보다 효율적인 이온 흐름을 보장하는 리튬 염의 새로운 제형을 개발했다. 또한, 이 제형은 고속 충전 시 고전류에 의한 배터리 가열에 효과적으로 대응했다. 아울러 배터리의 안전성과 사이클링 특성을 입증하기 위해 ORNL의 배터리 제조 시설에서 만든 배터리 파우치 셀을 여러 차례 테스트했다. 즈이지아 연구원은 "이 새로운 전해질 제형을 통해 초고속 충전 배터리의 수명을 기존의 3배로 늘릴 수 있음을 확인했다"고 말했다. 이번 연구는 ORNL의 배터리 제조 시설에서 만든 배터리 파우치 셀을 통해 배터리의 안전성과 사이클링 특성을 입증하며 혁신적인 배터리 소재의 가능성을 높였다.
-
- 생활경제
-
美 리튬이온 배터리,10분 만에 80% 충전 가능한 소재 개발
-
-
전기차 시장, '전고체 배터리'가 뜬다…10대 리드 기업 어디?
- 최근 전기차 업계가 주목하는 기술 중 하나는 '전고체 배터리'다. 이 기술은 기존 리튬 이온 배터리보다 에너지 저장 용량이 뛰어나고, 충전 시간도 단축되는 등 탁월한 성능을 자랑한다. 그렇다면 이 전고체 배터리는 기존 배터리와 다른 점은 무엇일까. 전고체 배터리는 이름에서도 알 수 있듯이 액체 전해질이 아닌 고체 전극과 고체 전해질을 사용한다. 이로 인해 배터리의 누출이나 열 문제가 크게 줄어들어 사용자의 안전을 더욱 보장한다. 게다가 작은 크기로도 높은 에너지 밀도를 구현할 수 있어 휴대성과 효율성 모두에서 높은 점수를 받는다. 시장의 변화에 민감하게 반응하는 글로벌 자동차 기업들도 전고체배터리 개발에 발빠르게 뛰어들었다. 토요타와 폭스바겐은 이미 전고체 배터리 기술 개발에 속도를 내고 있다. 이러한 대기업들이 전고체 배터리의 선봉에 서게 될 것인가, 아니면 다른 참여 기업들이 이를 따라잡거나 앞질러 나갈 것인가. 전기차 시장의 미래는 어떻게 전개될지 기대된다. 폭스바겐과 퀀텀스케이프는 전기 자동차용 고체 상태 배터리 기술 개발에 손을 잡았다. 전기차의 두 가지 큰 걸림돌인 '주행 거리'와 '충전 시간'을 해결하기 위해서는 향상된 '에너지 저장 능력'과 '빠른 충전'이 선결과제다. 이 두 마리 토끼를 잡을 수 있는 전고체 배터리는 소비자의 전기차에 대한 인식을 크게 바꿔놓을 것으로 보인다. 전고체 배터리 개발 진행중인 선도적인 10개 기업은 다음과 같다. 1. 도요타 토요타는 21세기 자동차 혁신의 핵심으로 전고체 배터리를 지목하며, 2027년까지 상용화를 목표로 연구개발을 가속화하고 있다. 도요타의 이러한 움직임은, 배터리가 전기차 업계의 핵심 부품임을 감안하면, 전기차 시장에서의 선두 주자로의 복귀를 알리는 신호로 해석된다. 그들은 이미 2012년부터 전고체 배터리 기술 개발에 뛰어들었고, 현재 200명 이상의 전문가로 구성된 팀이 이를 주도하고 있다. 그 결과, 토요타는 1000개 이상의 특허를 보유하게 되었다. 이 기업의 최종 목표는 전고체 배터리의 장점을 살려 완충 상태에서 약 700km (435마일)의 주행 거리를 달성하는 전기차와 하이브리드 차량을 출시하는 것이다. 2. 폭스바겐(Volkswagen) 폭스바겐은 전고체 배터리 연구의 선구자 중 하나인 퀀텀스케이프와 파트너십을 맺고 전기 자동차용 고에너지 밀도 배터리를 개발하고 있다. 2018년 폭스바겐은 퀀텀스케이프와 함께 전기차용(EV) 배터리 기술 개발을 추진했고, 2020년 추가적으로 2억 달러의 투자를 통해 이 연구의 가속화를 선언했다. 퀀텀스케이프는 기존 배터리 대비 전고체 배터리가 약 80% 더 긴 주행 거리와 80% 더 많은 충전량을 제공한다고 주장했다. 2022년 말 현재, 퀀텀스케이프는 전고체 배터리 셀의 시험을 진행 중이다. 폭스바겐은 다른 기업들과 협업하여 고체 상태 기술 및 전극 건조 코팅 공정과 같은 다양한 배터리 기술을 연구 중이며, 이를 2030년에 대량 생산에 투입할 계획이다. 3. 파나소닉(Panasonic) 전세계적인 전기차 시장의 확대와 함께 배터리 기술의 중요성이 강조되는 가운데, '파나소닉'과 '도요타'의 조합이 눈길을 끈다. 두 기업은 2020년 '프라임 플래닛 에너지 솔루션(Prime Planet Energy & Solutions, Inc.)'이라는 이름의 합작기업을 설립, 생산성과 용량 모두에서 우수한 배터리 솔루션을 제공하기 위해 노력하고 있다. 도요타는 이미 전고체 배터리 기술 관련 1000개 이상의 특허를 보유하고 있으며, 파나소닉도 445개의 특허로 그 기술력을 과시하고 있다. 파나소닉은 지난 수십 년 동안 배터리 기술을 선도해 왔다. 특히 전고체 배터리 기술 연구에 주력하며, 액체 전해질로 인한 화재, 폭발 위험 등의 문제점을 해결하고자 고체 상태 배터리로의 전환에 큰 희망을 걸고 있다. 파나소닉은 기술에 대한 구체적인 일정을 제공하지는 않았지만, 연구 및 개발에 적극적으로 투자하고 있다. 특히 도요타, 테슬라, 포드와 같은 국제적인 자동차 기업들과의 협력은, 전고체 배터리의 시장 출시 때 그들이 이 분야의 혁신을 주도할 가능성을 제시한다. 4. 베이징 웨이란신에너지기술(Beijing WeLion New Energy Technology) 중국 기업 니오(Nio)는 배터리 제조업체인 중국 베이징 웨이란신에너지기술(北京卫蓝新能源科技·Beijing WeLion New Energy Technology, 이하 '웨이란'-WeLion)과 파트너십을 맺어 새로운 배터리 기술을 선보였다. 이들 두 기업은 전기 자동차에 대한 반고체 상태 배터리 셀을 생산했다. 반고체 상태 배터리는 리튬 이온 배터리의 젤 전해질과 고체 전해질을 결합한 것이다. 니오는 특히 이번 파트너십을 통해 웨이란으로부터 150 kWh 용량의 반고체 배터리 셀을 공급받게 되었으며, 이 배터리는 'Nio ET7' 전기자동차에 적용될 예정이다. 이러한 혁신적인 기술을 탑재한 세단 'Nio ET7'은 CLTC 기준으로 약 1000킬로미터(621 마일), EPA 기준으로는 740킬로미터(460 마일)의 높은 주행 거리를 자랑한다. 또한, 이 배터리는 'Nio ES6 SUV'에도 적용되어, 약 689킬로미터(428 마일)의 주행 거리를 제공하게 된다. 5. 중국 CATL(Amperex Technology Co. Limited) 중국 배터리 대기업 CATL은 2023년 4월 전기 항공기 전동화를 향한 새로운 움직임을 위해 고체 상태 배터리 기술의 한 형태인 압축형 배터리 셀을 출시했다. 이 배터리 셀은 에너지 밀도가 500 Wh/kg로 매우 높다. 중국의 배터리 대기업 'CATL'은 2023년 4월 전기 항공기의 전동화를 목표로 고채 상태 배터리 기술의 한 형태인 압축형 배터리 셀을 출시했다. 이번에 선보인 배터리 셀은 무려 500 Wh/kg의 높은 에너지 밀도를 자랑한다. 반면, 테슬라가 자랑하는 4680 배터리 셀의 에너지 밀도는 244 Wh/kg에 불과하다. 이를 비교하면 CATL의 신제품은 기존 리튬 이온 배터리에 비해 약 두 배의 충전량을 가지고 있음을 알 수 있다. 이렇게 혁신적인 배터리 기술은 중국 지리자동차(Geely)의 2023년 형 전기차 '지커-001(Zeekr-001 EV)'에도 적용될 수 있으며, 해당 차량은 CLTC 기준으로 641 마일의 주행 거리를 달성할 수 있다. CATL의 압축형 배터리 셀은 이보다 훨씬 더 긴 주행 거리를 제공할 전망이다. 6. 혼다 혼다는 2050년까지 탄소 중립을 목표로 하고 있으며, 이를 위해 제너럴 모터스(GM)와 소니 같은 기업들과 파트너십을 맺어 고체 상태 배터리 기술을 연구하고 있다. 또한 혼다는 일본의 사쿠라에 4300억 엔 (약 2950만 달러)을 투자해 2028년까지 전기 자동차에 고체 상태 배터리 셀을 도입하는 생산 라인을 구축하는 작업을 진행 중이다. 고체 상태 배터리 기술의 가장 큰 단점은 세포의 무결성을 위협하는 덴드라이트(dendrites)의 존재다. 혼다는 덴드라이트 문제를 해결하기 위한 새로운 연구를 진행하고 있다. 이를 통해 2030년까지 연간 200만 대의 배터리 전기 자동차 생산을 목표로 하고 있다. 7. 닛산 닛산은 2028년까지 고체 상태 배터리로 구동되는 차량을 시장에 선보이기 위한 연구를 본격화했다. 가나가와에 위치한 닛산의 연구 센터에서는 2024년까지 고체 상태 셀 프로토타입을 생산하기 위한 공장 건립 작업이 진행 중이다. 고체 상태 배터리 기술 도입 후, 닛산은 EV 배터리 비용을 최소 50% 절감하며, 충전 능력을 현존하는 기술의 세 배로 향상시키고, 에너지 밀도를 두 배로 늘리는 것을 목표로 삼고 있다. 시장에서 현재 주목받는 최고 성능의 배터리 셀은 에너지 밀도 240 Wh/kg을 제공하는데, 닛산의 목표는 이를 480~500 Wh/kg로 높이는 것이다. 이외에도 닛산은 액체 전해질을 사용하지 않는 올 고체 상태 배터리와 나트륨을 활용한 셀에 대한 연구를 활발히 진행하고 있다. 8. 솔리드에너지시스템(SolidEnergy Systems) 솔리드에너지시스템(SES)은 치차오 후 박사(Dr. Qichao Hu)가 2012년에 매사추세츠주 워본(Woburn)에 설립했다. 이 회사는 리튬 금속 기술을 사용하며, 리튬 이온 배터리 셀에서 발견되는 전통적인 젤 대신 분리 막으로 사용한다. SES 리튬 금속 배터리 셀은 에너지 밀도가 400 Wh/kg이며, 전통적인 리튬 이온 배터리 셀의 주행 거리를 두 배로 늘릴 수 있다. SES는 안전하고 효율적인 배터리 개발에 중점을 둔다. 인공 지능 알고리즘을 활용해 배터리의 안전성을 향상시켰고, 가볍고 비용 효율적으로 제작될 수 있다. 게다가 15분만에 배터리의 80%까지 빠르게 충전할 수 있다는 것은 큰 강점이다. 차량 제조업체들과의 협력도 활발한 편이다. 제너럴 모터스(GM), 혼다, 현대자동차, 지리, 기아와 같은 주요 자동차 기업들과 파트너십을 체결하고 있다. 특히 2021년에는 GM이 SES에 1억 3900만 달러를 투자했으며, 2025년부터는 SES의 리튬 금속 배터리 셀을 자동차에 적용할 계획이다. 9. 솔리드 파워(Solid Power) 솔리드 파워는 2011년 콜로라도 대학의 스핀오프로 탄생했으며 현대자동차, BMW, 포드와 같은 글로벌 자동차 제조업체들의 후원을 받으며 빠르게 성장했다. 2021년에는 콜로라도 주의 손턴(Thornton)에 7만5000평방 피트(약 6967제곱미터) 규모의 최첨단 생산 공장을 설립했다. 솔리드 파워의 주요 기술은 전통적인 리튬 이온 배터리의 액체 전해질을 황화물 기반의 고체 전해질로 교체하는 것이다. 이 고체 전해질은 액체 전해질보다 안전하며, 안정적인 성능을 제공한다. 이 회사는 2028년까지 연간 80만 대의 전기차 배터리 셀 생산을 목표로 하고 있으며, 그를 위한 생산 확장 계획을 세우고 있다. 또한, 솔리드 파워는 미국 에너지부의 "전기 자동차를 위한 미국 저탄소 생활 (EVs4ALL)" 프로그램에서 총 4200만 달러 중 560만 달러의 지원을 받아 연구 및 개발 활동을 지속적으로 진행하고 있다. 10. 실라 나노 테크놀로지스(Sila Nanotechnologies) 실라 나노 테크놀로지스는 BMW, 다임러 AG(Daimler AG), 지멘스(Siemens), CATL과 같은 세계적인 기업들과 전략적 파트너십을 체결해 전기 자동차용 고체 상태 배터리의 상용화를 위한 강력한 투자 지원을 확보했다. 산업 내 주요 플레이어들의 지원 아래, 이 회사는 2028년까지 150 GWh 이상의 대규모 배터리 셀 생산을 목표로 하는 로드맵을 구축하고 있다. 특히, 실라 나노는 20% 더 긴 주행 거리와 20분만에 10-80%까지 충전이 가능한 타이탄 실리콘(Titan Silicon) 배터리 셀을 선보였다. 이 기술은 메르세데스-벤츠의 EQG 모델에 적용될 예정이다. 더욱이, 회사는 기존 고체 상태 배터리 기술의 덴드라이트 현상과 부피가 큰 세라믹 전해질의 한계를 극복하기 위한 방안으로, 중간 온도에서 다공성 분리막-양극 스택에 고체 전해질을 용융 침투시키는 방식을 도입할 계획이다.
-
- IT/바이오
-
전기차 시장, '전고체 배터리'가 뜬다…10대 리드 기업 어디?
-
-
바나듐 플로우 배터리, 신재생 에너지의 미래를 열다
- 영국의 배터리 기업인 인비니티 에너지 시스템(Invinity Energy Systems PLC, 이하 인비니티)은 바나듐 플로우 배터리를 활용하여 신재생 에너지를 효율적으로 관리하며, 전력 네트워크의 안정성을 강화하는 혁신적인 기술을 개발하는 데 성공했다. 영국 기술전문매체 프로액티브인베스터스에 따르면 바나듐 플로우 베터리 관련 기술은 대용량 에너지 저장 시스템(ESS)으로 구현되어 재생 에너지의 효과적인 활용을 가능하게 한다. 바나듐은 은빛 회색의 금속으로, 강철 제련이나 연소 과정을 통해 얻어지거나 우라늄 광산에서 추출된다. 바나듐 레독스 배터리는 바나듐을 전해액으로 사용하며, 양극과 음극을 별도의 탱크에 저장함으로써 리튬 이온 배터리처럼 화재나 폭발의 위험 없이 안전하게 작동한다. 이러한 배터리는 바나듐 플로우 배터리(VFB) 또는 바나듐 레독스 플로우 배터리(VRFB)로도 알려져 있다. 바나듐 플로우 배터리는 환경에 친화적이며, 장기적인 에너지 저장에 적합하게 설계돼 다양한 응용 분야에서 활용된다. 전력 그리드의 에너지 저장, 재생 가능 에너지의 통합, 급속 충전 인프라 지원, 산업용 에너지 저장 등 여러 분야에서 이 배터리의 활용성이 증명되고 있다. 이 배터리의 주요 장점은 장기적인 에너지 저장 능력, 안정성, 수천 번의 충방전 수명, 그리고 용량 감소가 최소화된 구조다. 또한, 이 배터리는 환경 친화적이고, 재활용이 가능하며, 빠른 충전이 가능하다는 장점도 가지고 있다. 인비니티는 최근 캐나다의 재생 에너지 프로젝트 개발 회사인 엘리멘탈 에너지(Elemental Energy)에 8.4 MWh 바나듐 플로우 배터리 공급 계약을 체결했다. 해당 배터리는 앨버타의 차피스 레이크 솔라 스토리지(Chappice Lake Solar Storage) 프로젝트에서 활용되어, 앨버타 전력망에 경제적이면서도 환경 친화적인 전력을 제공할 예정이다. 이로써 재생 에너지의 효율적 활용과 전력망의 안정성이 강화될 것으로 예상된다. 인비니티는 이런 프로젝트들을 통해 다양한 분야에 걸쳐 안정적이고 지속 가능한 에너지 솔루션을 제공하는 능력을 갖추었음을 증명하고 있다. 바나듐 플로우 배터리는 신재생 에너지 산업의 미래를 밝히는 중요한 역할을 할 것으로 기대된다.
-
- IT/바이오
-
바나듐 플로우 배터리, 신재생 에너지의 미래를 열다
-
-
한국전기연구원(KERI), 차세대 '리튬황배터리' 개발 성공
- 기존 배터리가 전기 저장만을 목적으로 했다면, 미래의 배터리는 단순 저장을 넘어서 부가가치 있는 화학물질 생산 기능을 갖는 하이브리드 배터리로 변화할 것으로 보인다. 한국의 연구팀은 아연과 망간을 활용해 이러한 하이브리드 배터리를 개발했고, 그 결과 기존 배터리에 비해 10% 이상의 향상된 전압과 에너지 효율을 보였다. 과학·기술 매체 '사이테크데일리(SciTechDaily)'에 따르면, 최근 과학자들은 단순 전기 저장 외에도 유용한 화학물질을 생성하는 하이브리드 배터리 시스템의 개발에 성공했다고 발표했다. 이 하이브리드 배터리는 전기 에너지를 저장하는 동시에 유용한 화학물질도 생성한다. 전통적인 2차 배터리는 전극 재료에 전기 에너지를 저장하는 방식을 사용한다. 반면, 레독스 흐름 전지(Redox Flow Battery)는 전극에 연결된 탱크에 보관된 화학물질을 활용한다. 이는 산화와 환원의 화학적 반응을 통해 전자가 전해액을 통해 음극에서 양극으로 이동하며 전기에너지를 발생시키는 원리를 기반으로 한다. 이번에 연구자들이 개발한 하이브리드 배터리는 사용 과정에서 푸르푸랄(나일론 합성에 사용되거나 살충제로 활용되는 액체)을 기반으로 한 니켈 수산화물 배터리이다. 이 배터리는 바이오매스(생물 유기체)에서 추출한 푸르푸랄을 푸르푸릴 알코올이나 푸로산 중 하나로 변환할 수 있다. 푸르푸랄 자체는 농업용 바이오매스에서 흔히 발견되는 오탄당에서 형성되는 작은 분자이며, 다양한 화학 분야에서 중요한 중간체로 사용되는 플랫폼 화학물질로 알려져 있다. 이물질은 푸로산으로 산화될 때 식품 방부제, 약물, 향료 합성의 중간체가 될 수 있으며, 환원될 때는 레진(수지), 향료, 약물의 전구체로서의 역할을 하는 푸르푸릴 알코올로 변환된다. 중국 베이징의 청화대학(Tsinghua University)에서 활동하는 하오홍 두안(Haohong Duan) 박사를 포함한 연구팀은 하이브리드 흐름 배터리를 사용해 두 종류의 부가가치 화학물질을 추출함으로써 배터리 시스템의 비용 효율성을 개선하는 데 성공했다. 기존의 충전식 배터리는 충전 과정에서 전극에 전기를 저장하고, 방전 시에는 해당 전기를 회로로 전달한다. 반면 레독스 흐름 전지라는 다른 타입의 배터리는 특정 화학물질에 전기를 저장하며, 해당 화학물질은 두 상태 사이에서 순환하면서 배터리 내에 계속 보관된다. 한국전기연구원(KERI) 차세대전지연구센터 박준우 박사팀과 부산대학교의 박민준 교수팀은 아연과 망간을 주요 소재로 사용하여 고성능 '레독스 흐름 전지' 기술을 개발했다. 레독스 흐름 전지는 큰 용량 저장이 가능하며, 배기가스를 발생시키지 않아 화재나 폭발 위험에서 상대적으로 안정적이다. 이러한 특성으로 인해 에너지저장장치(ESS) 용도로서 많은 관심을 받는 차세대 전지로 평가받고 있다. 연구자들은 에너지 저장 및 제공과 동시에 추가 화학물질을 생산하는 능력을 결합하여 이를 조사했고, 그 과정에서 흥미로운 결과를 발견하게 되었다고 한다. 양극용 이중 기능성 금속 촉매의 혁신적인 발전이 관찰되었는데, 로듐(백금족 금속의 일종)과 구리를 단일 원자 합금으로 조합하여 만들어진 촉매가 등장했다. 이 촉매는 배터리가 충전될 때 푸르푸랄(전해액 포함)을 푸르푸릴 알코올로 효과적으로 변환하며, 방전 시에는 푸로산을 생성한다. 또한 연구원들은 음극에서 니켈-아연 또는 니켈-금속 수소화물 배터리에서 사용되는 음극 재료와 유사한 특성을 가진 코발트-도핑 수산화니켈 재료를 확인했다. 이러한 조합을 통해 참신한 이중용 배터리 시스템이 개발되었다. 태양 전지로 충전된 이 배터리는 4개를 직렬로 연결하여 사용되며, LED 조명과 스마트폰 등의 장치를 작동시키면서도 지속적으로 푸르푸릴 알코올과 푸로산을 생성한다. 이 화학물질들은 흐름 시스템을 통해 전달된다. 이 새로운 하이브리드 배터리는 일반 배터리와 비교하여 에너지 밀도와 전력 밀도에서 유사한 성능을 보이면서도, 동시에 전력과 부가가치 있는 화학물질을 생산한다는 점이 새로 확인되었다. 1kWh의 에너지 저장 시, 0.7kg의 푸르푸릴 알코올이 생성되고, 0.5kWh의 전력 공급 시에는 1kg의 푸로산이 생산된다. 단, 푸르푸랄은 지속적으로 시스템에 공급되며, 최종 제품은 전해질에서 분리해야 한다. 이 연구팀이 제시한 하이브리드 방식은 2차 전지의 지속 가능성과 경제성을 높이는 첫걸음이지만, 이를 더욱 발전시키기 위한 지속적인 노력이 필요하다.
-
- IT/바이오
-
한국전기연구원(KERI), 차세대 '리튬황배터리' 개발 성공
-
-
전기차 배터리 전문가, CATL 리튬인산철 배터리 급속 충전 이의 제기
- 중국 리튬 이온 배터리 전문 기업 CATL은 지난 8월 중순 세계 최초의 4C 초고속 충전 리튬 인산철 배터리인 '셴싱(Shenxing)'을 개발, '전기차 초고속 충전 시대'를 열었다고 발표했다. 세계 최대의 EV 배터리 제조업체인 CATL(Contemporary Amperex Technology Co.)은 '셴싱' 배터리가 10분 충전으로 전기 자동차에 약 400킬로미터(약 249마일)의 주행 거리를 제공할 수 있다고 주장했다. 그러나 4일(현지시간) 야후 뉴스에 따르면 배터리 기술 과학자 라치드 야자미(Rachid Yazami) 박사는 "전기차의 총 주행 거리로 환산되는 배터리의 사이클 수명, 극한 온도 성능, 안전성 및 비용과 같은 중요한 정보가 CATL의 주장에는 많이 누락되어 있다"며 CALT 주장에 이의를 제기했다. 1979~1980년에 리튬 그래핀 양극을 발명한 야자미 박사는 세계 최고의 배터리 기술 전문가 중 한명이다. 이 양극은 시장에 출시된 리튬 이온 배터리에서 가장 흔히 사용된다. 상업용 리튬 이온 시장은 2023년부터 2032년까지 1303억 달러 규모로 성장할 것으로 예상된다. 리튬인산철(LFP) 배터리의 장점 중 하나는 지속 가능한 청정 에너지 공급원이라는 점이다. 또한 다른 리튬 이온 배터리보다 비용 효율적이고 폭발 위험이 적어 안전하다. CATL은 이 배터리를 연말까지 대량 생산해 2024년 1분기까지 전기차에 탑재할 수 있을 것이라고 밝혔다. 이 회사는 "현재 급속 충전에 대한 불안감이 소비자들이 전기차로 전환하는 것을 막는 가장 큰 요인이 되고 있다"고 말했다. 미국에는 전기차 충전 인프라가 부족하기 때문에 주행 가능 거리는 전기차 소유자와 잠재적 구매자에게 중요한 요소다. 2022년 미국에서 판매되는 전기차의 평균 주행 거리는 291마일(약 470킬로미터)로 알려졌다. CATL은 셴싱의 '높은 에너지 밀도'로 인해 완전 충전 시 435마일(700킬로미터) 이상의 주행거리를 확보할 수 있다고 주장했다. 또한 CATL은 셴싱이 섭씨 -10도(화씨 14℉)에서 30분 만에 0%에서 80%까지 충전할 수 있다고 밝혔다. 더 레지스터는 "셴싱은 LFP 배터리로, 구형 전기차 리튬 배터리보다 과충전 허용 범위가 더 넓다" 면서 "또한 더 높은 온도에서 작동 할 수 있으며, 그 과정에서 더 많은 열이 발생하기 때문에 빠르게 충전하려는 경우 적합하다"고 전했다. 그러나 단점으로 "배터리가 최대 용량에 가까워질수록 충전 속도가 느려지고 추운 날씨도 충전을 지연시킬 수 있다"고 지적했다.
-
- 산업
-
전기차 배터리 전문가, CATL 리튬인산철 배터리 급속 충전 이의 제기
-
-
'최악의 실패작 톱10' 리스트에 구글·애플·MS·삼성이?
- 삼성이나 구글, 애플 등 세계적인 IT 기업들이 신제품을 공개하면 기대감이 높아지곤 한다. 하지만 성공을 위해선 실패가 수반되기 마련이다. 최근 모바일 산업뉴스 전문매체 XDA가 공개한 '최악의 실패작 TOP10' 리스트에 국내외 거대 IT 기업의 제품들이 포진되어 있어 관심을 모으고 있다. 구글의 '구글글래스(Google Glass)'는 기술의 한계와 비싼 가격 탓에 2015년 결국 시장에서 퇴출됐다. 구글글래스는 증강현실(AR) 꿈을 실현시킬 장치로 소개됐지만, 기술 한계와 제품 가격이 문제였다. 가격은 무려 1500달러(약 198만 원)로 매우 비싼데다가, 배터리 수명이 낮고 일부 기능도 의도한 대로 작동하지 않는 등 심각한 기술적 한계를 드러냈다. 구글은 마침내 2015년 시장에서 이 제품을 철수했다. 애플의 '애플뉴턴(Apple Newton)'은 필기 인식의 문제로 사용자들에게 큰 불만을 사게 됐다. 애플뉴턴은 지난 1993년 메시지패드(PDA)로 출시됐다. 메모를 작성하고 연락처와 일정을 저장하고 팩스를 보내는 등의 작업을 수행할 수 있는 혁신적 기능에도 불구하고, 사용자의 필기를 정확하게 인식하지 못하는 등 치명적인 단점을 드러냈다. 하지만 XDA는 "이 제품이 현대의 스마트폰, 태블릿의 길을 열었다"며 그 중요성을 언급했다. 마이크로소프트의 '윈도우비스타(Windows Vista)'는 초기 호환성 문제와 사용자 경험의 문제가 실패로 이어졌다. 윈도우비스타는 초기에 많은 어플리케이션과 하드웨어 장치 등과 호환되지 않았고, 새롭게 도입된 사용자 계정 제어(UAC)는 귀찮은 시스템으로 악명을 떨쳤다. 오히려 사용자 대부분이 '윈도우XP'에 만족하고 있었다는 것이 실패의 원인으로 지적됐다. 세계적인 스마트폰 제조사 삼성전자의 '갤럭시 노트7'은 배터리 폭발 사건으로 불명예를 안았다. 지난 2016년 여름에 탄생한 갤럭시 노트7은 출시한 지 1개월도 채 되지 않아 30대 이상이 폭발했다. 삼성 측은 노트7의 무료 반품을 실시했고, 미국연방항공청(FAA)도 이 제품의 사용을 금지하기에 이르렀다. XDA는 "그후 삼성전자는 노트7FE를 출시해 문제를 해결했으며, 예상치 못한 문제만 아니었다면 훌륭한 스마트폰이었다"는 긍정적인 평가도 덧붙였다. 블랙베리로 전세계 휴대폰 업계에 신선한 충격을 가했던 림(RIM)은 처음으로 터치스크린 '블랙베리스톰(BlackBerry Storm)'을 출시했다. 그러나 터치스크린인 슈어프레스(SurePress) 디스플레이는 타이핑 속도가 극도로 느린 탓에 소비자 불만이 컸다. 게다가 어플리케이션과 소프트웨어도 훌륭하지 못했다는 평가다. 이밖에 너무 늦게 출시돼 명성을 얻지 못한 휴대용 MP3인 '마이크로소프트준(Microsoft Zune)', 유명무실해진 애플의 소프트웨어 '아이튠즈핑(iTunes Ping)', 다루기 어려운 노키아의 모바일 게이밍 폰 '노키아 엔 게이지(N-Gage)', 품질이 낮은 디스플레이를 장착한 휴렛팩커드의 터치패드(HP TouchPad) 등도 최악의 실패작 리스트에 이름을 올렸다. 하지만 XDA는 "이러한 실패에도 불구하고 기술 산업은 항상 혁신하고 있다"며 "앞으로 10년 동안 더 많은 제품들이 나타날 것이며, 그 중 일부는 이 목록에 들어갈 수도 있을 것"이라고 말했다. 이처럼 실패는 불가피하지만 그 속에서 새로운 혁신과 기회를 찾아낼 수 있는 기업만이 미래를 이끌 것이다.
-
- 산업
-
'최악의 실패작 톱10' 리스트에 구글·애플·MS·삼성이?