검색
-
- AI의 판도를 바꾸는 MIT의 '액체 신경망'
- 오픈AI의 챗GPT는 자연어 처리 분야에서 혁명적인 변화를 가져왔다. 이를 바탕으로 중국, 한국 등 전세계 여러 국가들이 생성형 인공지능(AI) 개발에 본격적으로 나섰다. 프랑스 기술 전문 매체 르빅데이터프랑스에 따르면 MIT의 컴퓨터과학 및 인공지능 연구소(CSAIL) 팀은 AI, 로봇공학, 자율주행차 분야의 혁신이 가능한 '액체 신경망(LNN, Liquid neural network)'이라는 새로운 딥 러닝 모델을 선보였다. 전통적인 딥 네트워크는, 예를 들어 차선 유지 같은 기능을 수행하기 위해 약 10만 개의 인공뉴런과 50만 개의 매개변수가 필요했다. 그러나 액체 신경망을 이용하면 불과 19개의 뉴런만으로 동일한 작업을 처리할 수 있을 정도로 효율적이다. 더불어 기존 딥 러닝 시스템이 인과 관계 파악에 한계가 있었던 반면 액체 신경망은 인과 관계를 더욱 깊게 이해하며, 다양한 상황에 유연하게 대응할 수 있다. 이러한 액체 신경망 개발의 배경은 로봇이 대규모 언어 모델을 실행하기에는 필요한 컴퓨팅 능력과 저장 공간이 부족하다는 점에서 출발했다. MIT CSAIL의 다니엘 러스(Daniel Rus) 이사는 로봇에 적합하며 실시간으로 실행 가능한 효율적인 신경망 개발의 필요성을 강조했다. 기존 신경망과는 다르게, 동적으로 조절 가능한 미분 방정식을 활용하여 새로운 상황에 유연하게 대응할 수 있게 됐다. 이는 기본적인 수학 방정식과 함께 새로운 하드웨어 구조를 통해 동적 학습이 가능하도록 설계된 결과이다. 연구팀은 여름 동안 숲에서 촬영한 비디오 스트림에서 물체를 인식하기 위해 LNN 및 다양한 딥 러닝 모델을 훈련시켰다. LNN은 높은 정확도를 유지했지만, 다른 신경망 모델들의 성능은 크게 저하되었다. 이러한 차이는 유동 네트워크가 작업 자체에 중점을 두는 반면, 다른 모델들은 작업의 맥락과 테스트 환경 분석에 지나치게 의존하기 때문으로 해석된다. 실제로 LNN에서 분석한 어텐션 맵을 보면, 도로 감지를 위한 운전 작업이나 객체 감지를 위한 작업에서 주요 요소에 높은 값을 할당했다. 이러한 특징이 상황 변화에도 과제를 유연하게 적응할 수 있었던 배경이다. 이들의 핵심적인 용도는 바로 비디오, 오디오 스트림, 온도 측정 시퀀스 등 지속적인 데이터 스트림 지원이다. 이러한 특성 덕분에 로봇공학이나 자율주행차와 같은 강력한 보안이 필요한 애플리케이션에 적합할 것으로 예상하고 있다. MIT 연구팀은 앞으로 다중 로봇 시스템과 다양한 데이터 유형에 대한 연구를 통해 이 네트워크의 새로운 기능과 한계를 탐색할 예정이다.
-
- IT/바이오
-
- AI 드론 '스위프트', 인간 드론 전문가 3명 상대 압승
- 인공지능(AI) 드론과 숙련된 인간 드론 조종사가 시합을 벌이면 과연 누가 이길까. 2016년부터 시작된 자율 비행 시스템의 연구는 AI 기술의 발전으로 현재에 이르러, 최근 '스위프트(Swift)'라는 AI 드론이 숙련된 조종사 3명을 제치고 드론 경주에서 화려한 승리를 거두었다. 기술 전문 매체 '트렌딩 토픽스(TRENDING TOPICS)'에 따르면, 취리히 대학의 엘리야 카우프만(Elia Kaufmann) 박사를 중심한 연구 팀은 '네이처(Nature)' 저널에 '스위프트'라는 AI 기반 드론 시스템을 발표하며 학계의 주목을 받았다. 이 드론은 시뮬레이션과 현실 세계의 데이터를 결합하여, 세계 최고 수준의 쿼드로콥터 조종 능력을 보여주었다. 연구팀은 AI 드론 '스위프트'와 숙련된 드론 조종사인 드론 레이싱 세계 챔피언 알렉스 바노버(Alex Vanover), 스위스 챔피언을 세 번 차지한 마빈 샤퍼(Marvin Schäpper), 2019년 멀비 GP 우승자 토마스 비트마타(Thomas Bitmatta) 등 3명과 총 25회 경주를 펼쳤다. 그 결과, AI 드론 스위프트는 열다섯 번의 경주에서 인간 조종사들을 앞서 1위를 차지하는 쾌거를 이뤘다. 시합에 참여한 드론 조종사 토마스 비트마타는 "스위프트 드론의 뛰어난 잠재력을 목격하게 되어 감명 받았다"고 전했다. 이러한 연구 성과는 항공 산업을 넘어 자율주행 차량, 항공기, 개인용 로봇 등의 분야에서도 큰 혁신을 가져올 것으로 예상된다. AI 기술의 발전은 앞으로 우리 일상에서 더욱 큰 변화와 기여를 할 것으로 보인다.
-
- IT/바이오
-
- 반도체 '쿠데타', 엔비디아 AI원스톱 시스템으로 세계 선두로
- 인공지능(AI)의 성장과 함께 반도체 산업도 그 국면을 바꾸고 있다. CPU(중앙연산처리장치)와 GPU(그래픽처리장치)의 전통적인 경계는 흐려지며, 인텔과 엔비디아가 그 양대산맥에서 새로운 경쟁을 펼치고 있다. 특히, 엔비디아는 AI 분야에서의 독보적 지배력을 강조하며, 칩부터 소프트웨어, 그리고 다양한 서비스까지 AI 개발을 위한 원스톱 시스템을 제공함으로써 세계적인 톱 위치를 차지하게 되었다. 최근의 데이터센터와 인공지능 열풍은 기존의 반도체 업체들에게 큰 변화의 기회를 제공했다. 닛케이, 뉴욕타임스 등 외신들에 따르면, CPU 최대 업체인 미국 인텔과 GPU 최대 업체인 미국 엔비디아는 서로의 강점을 잠식하는 방향으로 성능 향상을 모색하고 있다. 이 중에서도 엔비디아는 AI에 특화된 원스톱 솔루션으로 시장의 주목을 받으며 독보적인 위치를 확립했다. 뉴욕타임스에 따르면, 신경과학자 출신의 기술 기업가 나빈 라오(Naveen Rao)는 "인텔이 인수한 스타트업에서 AI 작업에 적합한 GPU를 대체할 칩 개발을 했으나, 속도에서 뒤처진 인텔에 비해, 엔비디아는 신속한 제품 업그레이드와 새로운 AI 기능 도입으로 경쟁력을 확보했다"고 주장했다. 라오는 인텔을 떠나 모자이크ML(MosaicML)을 창업, 엔비디아의 칩을 사용해 경쟁사의 칩과 비교 평가했다. 그에 따르면 엔비디아는 자체 기술로 대규모 AI 프로그래머 커뮤니티를 형성해, 단순한 칩 생산 이상의 차별화를 달성했다고 전했다. 엔비디아의 경영전략 AI 집중 선택 엔비디아는 자사의 AI 알고리즘 및 개발 도구를 통해 개발자와 연구자들이 AI 솔루션을 제작하는 데 필요한 지원을 제공하며, 독특한 커뮤니티 활동을 통해 혁신적인 AI 솔루션을 지속적으로 개발하고 공유하고 있다. 엔비디아는 AI를 위한 다양한 제품 라인업을 보유, GPU를 비롯하여 AI에 특화된 칩, 클라우드 서비스, 고성능 서버 및 슈퍼컴퓨터 솔루션, 그리고 AI 연구와 개발 지원 시스템 등을 포함한다. 10년 동안 거의 경쟁 없는 자리를 유지하며, 챗봇용 텍스트 생성 등에도 성공한 바 있다. 엔비디아 젠슨 황(Jensen Huang) 최고경영자(CEO)는 '씨그래프(SIGGRAPH)'에서 생성 AI시대의 새로운 프로세서인 '그레이스 호퍼(Grace Hopper)' AI 반도체를 발표했다. 이 반도체는 엔비디아가 처음으로 데이터센터용으로 개발한 CPU를 포함하며, 주력 GPU 'H100'과 결합하면 AI 학습 속도를 기존 대비 약 4배 향상시킬 수 있다. 젠슨 황CEO는 "회사의 초점이 항상 AI 개발에 있어 원스톱 샵의 위치를 확보했다"고 밝혔다. 엔비디아 그레이스 호퍼 vs 인텔 GPU 맥스 리서치 회사인 옴디아(Omdia)에 따르면 구글, 아마존, 메타, IBM 등도 AI칩을 출시하고 있지만, 엔비디아는 AI 칩 시장의 70% 이상을 차지해, 2분기 매출은 월스트리트의 예상을 크게 뛰어넘는 64%의 증가를 기록했다. 현재 시가총액 1조 달러(약 1321조 원)로, 세계에서 가장 가치 있는 칩 제조업체로 올라섰다. 엔비디아는 지난 10여 년 동안 이미지, 얼굴, 음성 인식 등의 복잡한 AI 작업을 위한 칩의 생산에서 뚜렷한 우위를 보여왔다. 특히, 챗봇용 텍스트 생성 기술인 챗GPT와 같은 분야에서의 성과를 통해 그 능력을 입증하며, 초기 AI 추세를 선제적으로 파악하고 적극 반영함으로써 경쟁력을 강화했다. 인텔도 엔비디아에 뒤질세라 적극적인 반격 자세를 취하며 지난 6월 데이터센터용 AI 반도체인 'GPU 맥스 시리즈'를 시장에 선보였다. 이 제품은 고성능 GPU를 탑재하며, 특히 AI를 이용한 이미지 분석 등에서는 엔비디아의 H100보다 우수한 성능을 보여주는 것으로 알려졌다. 맥스 시리즈의 핵심 반도체는 인텔의 7나노미터 기술과 대만 TSMC의 5나노미터 기술이 통합됐다. 21년 만에 인텔로 복귀한 팻 겔싱어 CEO는 전통적인 독립 제조 방식에서 벗어나 엔비디아를 탄력있게 추격하고 있다. 캐나다의 조사기관 프레지던트 리서치 예상에 따르면 2023년 AI 반도체 시장은 전년 대비 30% 성장하여 218억 달러 규모에 이를 것으로 보인다. AI 반도체의 시장 점유율은 전체의 3%에 불과하지만, 고가 거래가 빈번하게 일어나고 있으며, AI 반도체는 현재의 반도체 시장에서 가장 주목받는 영역 중 하나다. 삼성전자와 비슷하지만 다른 엔비디아 전략 엔비디아와 삼성전자는 AI 분야에서 각기 다른 전략을 펼치며 세계적인 경쟁을 펼치고 있다. 엔비디아는 GPU와 같은 특화된 AI 하드웨어의 개발 및 제조에 중점을 둔다. 또한, 개발자들을 위해 소프트웨어 도구와 프레임워크를 제공하며, GPU 클라우드 서비스로 AI 작업의 효율성을 높이고 있다. 반면 삼성전자는 반도체 분야의 세계적인 위치를 바탕으로 AI 칩과 컴퓨팅 솔루션을 제작하며, 이를 스마트폰, 자율주행차, 그리고 다양한 AI 응용프로그램에 적용한다. 또한, 가전제품에서의 음성인식 AI 기술 개발로 스마트 홈 환경을 강화하고 있다. 예컨대, 엔비디아는 AI 하드웨어와 관련된 도구 및 서비스를 중심으로 생태계를 구축하는 반면, 삼성전자는 다양한 전자 제품에서 AI를 접목해 스마트한 기술 환경을 선도하고 있다. 두 기업은 각자의 강점을 바탕으로 AI 분야에서 세계 각국과 경쟁하며 주도권을 놓고 다투고 있다. 한편 반도체 기술의 지속적인 발전에 따라, 서로의 강점을 지닌 분야를 잠식하고 있는 인텔과 엔비디아의 싸움에 세계 반도체가 흥미진지하게 지켜보고 있다. 인텔과 엔비디아는 모두 압도적인 자금력과 연구 및 개발 능력을 보유하고 있어, 반도체 산업 내에서의 핵심적인 위치를 계속 유지할 것으로 전망된다. 산업 전문가들은 엔비디아에서 촉발된 반도체 산업의 독점적 구조 변화를 산업의 건강한 발전의 일환으로 평가하며, 이로 인해 경쟁이 활성화되어 더 우수한 기술 및 제품이 시장에 등장할 것이라는 기대감을 드러냈다.
-
- IT/바이오