검색
-
-
우주에서 기른 양상추, 식중독 위험 높아
- 우주 무중력 환경에서 재배한 상추가 지구에서보다 대장균 등 세균에 감염되기 쉬워 식중독 위험이 놓다는 충격적인 연구 결과가 발표됐다. 미국 델라웨어 대학 연구팀은 우주 공간에서 자란 상추가 지구의 상추보다 대장균과 살모넬라 같은 박테리아 감염에 더 취약하다고 발표했다고 포브스 재팬(Forbes JAPAN)이 최근 보도했다. 지난 1월 9일 학술지 '사이언티픽 리포트(Scientific Reports)'와 'npj 극미세중력(npj Microgravity)'에 게재된 이 연구는 국제우주정거장(ISS)의 무중력 환경을 모방한 조건에서 재배한 상추가 박테리아에 감염되기 쉽다는 것을 보여주었다. 상추는 지금까지 ISS의 수경재배실에서 3년 이상 재배되어 우주비행사들의 식량으로 사용되어 왔다. 하지만 연구진은 식중독이 발생하면 임무가 중단될 수 있다고 우려하고 있다. 델라웨어대 연구팀은 ISS의 무중력 환경을 모방한 조건에서 양상추를 재배했다. 그 결과 식물이 숨을 쉬기 위해 잎과 줄기에 있는 기공은 박테리아와 같은 스트레스 요인을 감지하면 보통 식물을 보호하기 위해 닫힌다는 것을 발견했다. 그러나 미세중력 시뮬레이션을 통해 상추에 박테리아를 넣었을 때 잎채소는 기공을 닫는 대신 크게 열어놓는 것으로 나타났다. 델라웨어대 식물토양과학과 졸업생이자 논문의 주저자인 노아 토트라인(Noah Totline)은 "스트레스라고 생각되는 것을 주었음에도 불구하고 (상추의 기공이) 열려 있었다는 것은 정말 예상치 못한 일이었다"고 말했다. 연구팀은 결국 살모넬라균이 지구상의 일반적인 조건보다 극미세중력 조건에서 잎 조직에 더 쉽게 침투할 수 있다는 것을 발견했다. 델라웨어대학교 생명공학연구소의 미생물 식품안전학 교수인 칼리 쿠니엘(Kari Knier)은 "우리는 현재 ISS에 살고 있는 사람들과 미래에 우주정거장에서 살게 될 사람들을 위해 우주에서의 위험을 줄여야 한다"고 말했다. 그는 "우리는 우주에서 재배되는 식물과 인간 병원균의 상호작용을 더 잘 이해할 필요가 있다"고 덧붙였다. 연구팀에 따르면 가까운 미래에 더 많은 사람들이 우주에서 생활하게 될 것이지만, 수경재배로 상추를 재배하는 것은 비교적 쉬운 일로 여겨진다. 쿠니엘 교수는 "이 위험을 줄이기 위해 멸균된 종자를 사용하는 것이 한 가지 대책으로 생각된다. 하지만 미생물이 우주 재배 공간에도 존재하고, 식물에 부착될 가능성도 있다"고 지적했다. 이번 연구 결과는 우주에서 식량을 생산하는 데 있어 새로운 과제를 제시한다. 무중력 환경에서 식물이 박테리아에 감염되기 쉽다는 사실은 우주 식량 생산의 안전성을 높이기 위한 새로운 기술 개발이 필요하다는 것을 의미한다. 연구팀은 앞으로 우주 환경에서 식물의 면역 체계를 강화하는 방법, 우주 재배 공간의 미생물 오염을 줄이는 방법 등에 대한 연구를 진행할 계획이다.
-
- 산업
-
우주에서 기른 양상추, 식중독 위험 높아
-
-
달의 축소, NASA 달 탐사에 미치는 영향은?
- 달이 지속적으로 수축하는 현상이 미래 달 탐사에 영향을 미칠 것이라는 주장이 제기됐다. 미국 매체 크론 등 다수 외신은 미 항공우주국(나사·NASA)는 달이 줄어들고 있다는 사실을 수년 전부터 알고 있었다고 전했다. 과학자들은 2019년 달이 지난 수억 년 동안 약 46m(약 150피트) 정도 줄어들었다고 추정했다. 워싱턴 스미소니언 연구소의 최근 연구에 따르면 달의 내부는 냉각되고 있으며, 부서지기 쉬운 지각에 균열이 생겨 한 조각이 다른 조각 위로 미끄러지는 '추력 단층'이 발생하여 달 지진을 유발할 수 있다. 이는 적어도 5년 전까지만 해도 과학계에서 통용되던 상식이었다. 비즈니스 인사이더는 동료 심사를 거친 행성 과학 저널(Planetary Science Journal)에 발표된 새로운 연구에 따르면 달의 추력 단층 중 일부는 NASA의 유인탐사선 계획인 아르테미스 III 임무를 위한 잠재적 착륙 지점 근처에 있으며 장기적인 달 정착에 문제가 될 수 있다고 전했다. 달 남극의 위험 아르테미스III 임무는 물 얼음을 포함한 중요한 자원이 있는 달 남극 근처에 우주 비행사를 착륙시키는 것을 목표로 하고 있다. 1972년 이후 인간이 달 표면에 발을 디딘 것은 아르테미스호가 처음이다. NASA 보도 자료에 따르면 달 남극에서는 작은 진동에도 산사태가 발생할 수 있으며, 이는 우주 비행사에게 위험할 수 있다. 달 축소 관련 논문의 수석 저자인 스미소니언의 톰 와터스(Tom Watters)는 뉴스위크와의 인터뷰에서 "아르테미스 3호와 같은 단기 임무는 강하고 얕은 월진이 드물기 때문에 위험할 것 같지 않다"고 말했다. 하지만 NASA가 2030년까지 실현할 것으로 예상하는 장기적인 달 정착 계획에는 더 큰 위험이 있다. NASA의 오리온 달 탐사선 프로그램 책임자는 2022년 BBC와의 인터뷰에서 "우리는 사람들을 달 표면으로 내려보낼 것이고, 그들은 달 표면에서 살면서 탐구할 것"이라고 말했다. 지구의 지진보다 더 강할 수 있는 달의 지진 달은 시간이 지날수록 계속해서 줄어들고 있으면서 새로운 단층이 생겨날 가능성이 높아지고 있다. 또한 단층이 생기면 달의 지진(월진)이 발생할 수 있다. 와터스와 다른 연구자들은 달 남극의 섀클턴 분화구 벽을 따라 지진이 산사태를 일으킬 수 있다고 예측하는 모델을 만들었다. 이 연구의 공동 저자인 니콜라스 슈머는 소행성과 혜성 또한 달 표면을 파괴했다고 성명에서 말했다. 슈머는 "느슨한 퇴적물로 인해 흔들림과 산사태가 발생할 가능성이 매우 높다"고 말했다. 연구팀은 미끄러지는 추력 단층이 1969년과 1977년 사이에 일련의 달 지진을 일으켰다고 추정했다. 당시 아폴로 우주비행사들은 임무 수행 중 달에 지진계를 설치해 지진을 감지했다. 와터스는 CNN에 "이러한 지진은 지구 기준으로는 비교적 가벼운 수준이었지만(가장 큰 지진은 규모 5.0), 달의 낮은 중력으로 인해 더 심하게 느껴졌다고 말했다. 과학자들은 달에 영구적인 기지를 설치할 때 단층의 위치와 안정성을 반드시 고려해야 한다고 강조했다. 단층 위에 기지를 설치하면 지진 발생 시 큰 위험에 처할 수 있기 때문이다. 유인 달탐사선 아르테미스 임무 연기 한편, NASA는 지난 1월 9일(현지시간) 보도자료를 통해 유인 탐사선으로 달 궤도를 도는 아르테미스 프로그램 2단계 계획(아르테미스Ⅱ)을 2025년 9월로, 우주비행사를 달에 착륙시키는 3단계(아르테미스Ⅲ) 계획을 2026년 9월로 연기한다고 밝혔다. 민간 우주 기업 아스트로보틱의 달 착륙선 페레그린이 지구에서 발사된 직후 연료 누출로 인해 달 탐사 임무를 포기해야 하는 상황이 발생하자 NASA는 이 같은 결정을 내렸다. 당초 NASA는 아르테미스Ⅱ 임무로 올해 11월 우주비행사 4명을 태운 탐사선을 달 궤도에 보냈다가 지구로 귀환시키고, 내년에는 이들을 달에 착륙시키는 아르테미스Ⅲ 임무에 들어갈 계획이었다. 하지만 이번 발표에 따라 아르테미스의 단계별 추진 일정은 약 1년씩 늦춰지게 됐다. NASA는 2022년 12월에 진행된 아르테미스 1단계에서 무인 우주선 오리온의 달 궤도 비행 임무에서 여러 문제가 발생했다고 밝혔다. 해당 팀은 배터리 문제와 공기 환기, 그리고 온도 제어를 담당하는 회로 구성 요소에 관한 문제를 해결하기 위해 노력하고 있다. 당시 NASA는 우주비행사를 모방한 마네킹을 태워 달 궤도를 비행하는 임무를 수행했다. 무인우주선 오리온은 우주발사시스템(SLS) 로켓에 실려 발사되어 25일 만에 성공적으로 지구에 귀환했지만, 이러한 문제들로 우주비행사의 안전을 보장하기 위해 추가적인 보완이 필요하다고 NASA가 설명했다. 달 탐사는 새로운 가능성을 제공하지만 동시에 위험과 불확실성이 가득한 곳이다. 아르테미스 III 임무를 성공적으로 수행하고 달 남극에 안전하게 정착하기 위해서는 달의 축소와 월진을 대비한 과학적 연구, 기술 개발, 그리고 철저한 준비가 필요하다.
-
- 산업
-
달의 축소, NASA 달 탐사에 미치는 영향은?
-
-
달이 지구와 멀어지는 이유와 미래에 미치는 영향
- 달이 지구에서 매년 3.78cm씩 멀어지고 있다. 그러나 과학자들은 이 사실에 대해서 지금은 걱정을 하지 않아도 된다고 말했다. 내셔널 지오그래픽(NATIONAL GEOGRAPHIC)은 달이 멀어지는 것은 수십억 년 전부터 일어나고 있는 자연스러운 과정이며, 현재의 우리 삶에 큰 영향을 미치지 않을 것이라고 보도했다. 달이 멀어지는 이유 달이 멀어지는 현상은 뉴턴의 세 번째 운동 법칙으로 설명될 수 있다. 지구가 자전하면서 바다와 대륙과의 마찰로 인해 자전 속도가 느려지고, 이는 달의 운동 속도를 빨라지게 한다. 그 결과, 달은 지구에서 더 멀어지게 되는 것이다. 하지만 이러한 변화는 매우 느려서 우리나 우리 자손들이 살아있는 동안에는 눈에 띄는 변화를 느낄 수 없을 것이다. 심지어 지구가 자전을 계속 늦추더라도 이러한 영향이 나타나려면 수십억 년이 걸릴 것으로 예상된다. 실제로 그렇게 되기 전에 태양이 팽창해서 지구와 달을 포함한 태양계 대부분을 삼킬 적색 거성이 될 것으로 예측된다. 지구와 달 거리 측정 방법 1969년 NASA의 아폴로 계획 당시 우주 비행사들이 달에 레이저 반사기를 설치했다. 천문학자들은 달에 설치된 레이저 반사기를 향해 강력한 레이저 빔을 발사했다. 빔은 달 표면에 도달해 반사기에서 반사되어 다시 지구로 돌아온다. 과학자들은 빔이 왕복하는 데 걸리는 시간을 정밀하게 측정하여 달과의 거리를 계산했다. 빛의 속도는 알려져 있기 때문에, 빔이 왕복하는 데 걸리는 시간을 측정하면 간단한 계산을 통해 거리를 알 수 있다. 현재 달은 약 38만 4000km 떨어져 있다. 과거에는 2만 2500km 밖에 떨어져 있지 않았다는 사실은 달이 지구로부터 꾸준히 멀어지고 있다는 것을 보여준다. 이처럼 달이 지구에서 멀어지는 것은 자연스러운 과정이다. 하지만 수십억 년 후에는 지구와 달의 관계가 지금과는 많은 변화가 일어날 가능성이 높다. 달이 멀어지는 현상이 인류에게 미치는 변화 과학자들은 현재 달이 지구에서 멀어지는 현상은 인류의 삶이 미치는 영향이 거의 없지만 미래에는 여러가지 영향을 미칠 것으로 예상했다. 우선 하루의 길이가 길어질 수 있다. 달의 인력은 지구의 자전 속도를 조절하는 역할을 한다. 달이 멀어지면 지구의 자전 속도가 느려져 하루 길이가 점점 길어질 수 있다. 즉, 지금은 하루가 24시간이지만, 수십억 년 후에는 25시간 이상 될 수도 있다. 달이 멀어지면 조수 간만의 차이가 줄어들 수 있다. 달의 인력은 지구의 조수 간만을 일으키는 주요 원인이기 때문이다. 현재 조수 간만의 차이는 지역에 따라 다르지만, 평균적으로 약 6시간 간격으로 일어난다. 하지만 수십억 년 후에는 조수 간만의 차이가 거의 없어질 수도 있다. 또한 달의 인력은 지구 기후 변화에 영향을 미칠 수 있다. 달이 멀어지면 지구 기후 변화 패턴이 변할 수 있는데 현재 지구 기후는 태양과 달의 인력, 지구 자체의 자전 등 여러 요인에 의해 영향을 받는다. 하지만 달이 멀어지면 이러한 요인들의 상호작용이 변해서 지구 기후 변화 패턴도 변할 수 있다. 이외에도 달이 멀어지는 것으로 인해 지구의 생태계에도 영향을 미칠 수 있다. 예를 들어, 달빛은 동물들의 이동 패턴에 영향을 미치는 것으로 알려져 있다. 달이 멀어지면 달빛이 약해져 동물들의 이동 패턴에도 변화가 일어날 수 있다. 하지만 이러한 변화는 수십억 년 후에 일어날 것으로 예상되므로, 지금 당장 걱정할 필요는 없다. 오히려 달이 멀어지는 과정을 통해 과학 기술 발전을 이루고 우주에 대한 이해를 높일 수 있는 기회로 삼아야 할 것이다.
-
- 산업
-
달이 지구와 멀어지는 이유와 미래에 미치는 영향
-
-
제임스웹 망원경, 은하수 너머 별 탄생 클러스터 관측
- 제임스웹 우주 망원경이 별을 형성하는 복합체의 놀라운 이미지를 공개했다. 미 매체 폭스뉴스는 최근 제임스웹 망원경이 우리 은하계의 위성 은하인 대마젤란 성운(LMC) 내에서 별 형성 복합체 'N79'의 새로운 이미지를 포착했다고 보도했다. 유럽우주국(ESA)에 따르면, N79는 일반적으로 미개척 지역인 LMC에서 약 1630광년에 걸쳐 있는 거대한 별 형성 복합체다. N79는 타란툴라 성운(Tarantula Nebula)으로도 알려진 또 다른 유사한 지역인 30도라두스의 젊은 버전이다. 천문학자들은 N79가 지난 50만 년 동안 30 도라두스보다 훨씬 더 효율적으로 별을 형성할 수 있다고 추정했다. 이번에 공개된 최신 이미지는 일련의 회절 스파이크가 있는 세 개의 거대한 분자 구름 복합체 중 하나를 둘러싼 화려한 별 폭발 패턴을 보여준다. ESA는 이미지에서 눈에 띄는 별 폭발 스파이크는 웹의 18개 기본 거울(미러) 세그먼트가 육각형 대칭을 이루는 결과라고 설명했다. 이 스파이크는 모든 빛이 발산되는 밝고 작은 물체 주변에서 가장 잘 보인다. 제임스웹 망원경의 분할형 거울은 접힌 상태로 발사됐지만 지구에서 100만 마일 떨어진 궤도 지점에 도착한 후 펼쳐졌다. 최근 공개된 이미지는 중적외선 빛이 비추어주는 덕분에, 구름 깊숙이 일어나는 일을 드러내면서 이 영역의 빛나는 가스와 먼지를 보여준다. 제임스웹 망원경은 우리 태양과 같은 별이 태어나는 영역을 들여다보기 위해 설계됐다. 천문학자들이 이 지역에 관심을 갖는 이유는 별 형성이 절정에 달했던 시기의 젊은 우주에 대한 통찰력을 제공하기 때문이다. 제임스웹 망원경은 허블 우주 망원경의 후속작이자 지금까지 우주로 발사된 망원경 중 가장 큰 망원경으로 미 항공우주국(나사·NASA)과 유럽우주국이 공동 프로젝트로 제작했다. 1990년에 지구 저궤도로 발사된 허블 망원경은 천문학 역사상 중요하고 대중에게 인기 있는 망원경이다. 제임스웹의 주거울은 18장의 작은 거울 세그먼트로 구성됐으며, 거울 세그먼트는 금으로 코팅된 베릴륨 재질이다. 세그먼트가 하나로 모인 제임스웹의 주거울은 직경이 6.5미터에 달하여 2.4미터의 허블 우주 망원경의 주거울보다도 크다. 제임스웹은 적외선 천문 관측을 주목적으로 하는 우주 망원경으로 2021년 12월 25일 발사됐다. 웹의 거대한 거울과 절묘한 해상도를 통해 천문학자들은 우주의 다양한 진화 단계에서 N79 영역의 별 형성 관찰을 비교하고 대조할 수 있었다. 제임스웹 망원경이 포착한 N79 이미지는 우주에서 별이 어떻게 형성되는지에 대한 놀라운 통찰력을 제공한다. 이 이미지는 젊은 우주를 연구하고, 별 형성의 과정을 이해하고, 우주의 진화를 연구하는 데 도움이 될 것으로 보인다.
-
- 산업
-
제임스웹 망원경, 은하수 너머 별 탄생 클러스터 관측
-
-
NASA, 지구 밖 첫 동력비행 화성 헬리콥터 날개 손상으로 임무 종료
- 화성에서 동력 비행에 성공한 미국항공우주국(NASA·나사)의 우주 헬기 '인저뉴어티(Ingenuity)'가 최근 임무를 종료했다. 인저뉴어티의 화성 비행은 2021년 4월 19일 첫 비행에 성공했으며, 나사가 당초 예상했던 30일을 훌쩍 넘겨 약 3년간 임무를 지속했다. 이는 설계도보다 14배 길게 비행한 것이다. 미 CNN에 따르면 나사는 인저뉴어티 화성 헬기가 프로펠러에 손상을 입고 지난 18일 마지막 비행을 끝으로 화성에서의 임무를 종료했다고 지난 25일(현지시간) 발표했다. 나사는 성명을 통해 '인저뉴어티'가 로터 손상으로 '비상 착륙'을 수행해야 했다고 밝혔다. 이는 더 이상 비행할 수 없음을 의미하며, 임무 수행을 마쳤다는 뜻이다. 나사는 2021년 2월 탐사 로버 '퍼서비어런스(Perseverance)'를 화성에 보내면서 비행체를 활용한 탐사 가능성을 탐색하기 위해 인저뉴어티를 함께 실어 보냈다. '인저뉴어티'의 화성 비행은 인류가 지구 외 행성에서 '제어가 되는 동력체'를 비행시킨 첫 번째 사례로, 라이트 형제의 인류 최초 동력 비행과 견주는 것이었다. 태양열 충전으로 가동되는 높이 49㎝, 무게 1.8㎏(화성에서의 무게 0.68㎏)의 이 우주 헬기는 당시 이륙 후 3m 높이까지 상승해 39초간 정지비행을 한 후 착륙했다. 대기 밀도가 지구의 100분의 1수준에 불과해 공기 힘으로는 양력을 만들어내기 힘든 화성에서 헬기가 성공적으로 비행하자 금성이나 토성, 타이탄 위성과 같은 태양계 천체에서의 탐사 방식에 새로운 길이 열릴 것이라는 기대가 커졌다. 화성의 대기 밀도는 지구의 100분의 1 수준으로 매우 낮아 공기의 힘만으로는 양력을 생성하기 어려운 조건에서 헬리콥터의 성공적인 비행이 이루어지자, 금성, 토성, 타이탄과 같은 태양계 내 다른 천체들 위에서의 탐사 방식에 대한 새로운 가능성이 열렸다는 기대가 높아졌다. 나사의 빌 넬슨은 “작은 헬리콥터인 인저뉴어티는 의도했던 것보다 훨씬 더 많은 비행을 했다”며 “우리 태양계에서 미래 비행 가능성을 탐색하기 위한 길을 열었다”고 평가했다. 넬슨은 소셜미디어를 통해 공유한 영상 메시지에서, 인저뉴어티와 같은 임무가 태양계 내 미래 비행의 새로운 가능성을 제시했으며, 화성을 포함한 그 너머의 세계로 향하는 보다 스마트하고 안전한 인간 탐사의 기반을 마련했다고 설명했다. 그는 또한, 이 놀라운 헬리콥터가 상상했던 것보다 더 높고 멀리 비행함으로써, 나사가 불가능해 보이는 것을 가능하게 만드는 데 중요한 역할을 했다고 강조했다. 4번의 비행을 성공적으로 마친 인저뉴어티는 퍼서비어런스 과학 팀과 로버의 운전을 지원하기 위한 공중 정찰의 역할을 수행하는 새로운 임무, 즉 작전 시연에 착수했다. 이 장비는 화성의 흥미로운 지역을 미리 조사해 지구에서 제어되는 바퀴 달린 로봇과 운전자가 '제제로 분화구(Jezero Crater)' 탐사에서 올바른 경로를 선택할 수 있도록 퍼서비어런스를 효과적으로 지원했다. 퍼서비어런스 로버는 제제로 분화구 가장자리에 도달하기 위해 길고 빠른 주행을 시도할 계획이다. 인저뉴어티는 단지 30일 동안 최대 5회의 실험적 테스트 비행을 목표로 하는 기술 시연 목적으로 설계됐다. 그러나 약 3년 간 화성 표면에서 운영되며, 예상을 훨씬 뛰어넘는 72회의 비행을 성공적으로 수행했고, 계획된 거리보다 14배 이상 멀리 비행했다. 총 비행 시간은 2시간을 초과했다. 한편, 인저뉴어티 팀은 이 헬리콥터가 이전 비행에서 비상 착륙을 수행한 후 위치를 확인하기 위해 지난 2024년 1월 18일 수직 비행을 할 계획이었다. 계획대로 최대 12미터에 도달했고 4.5초 동안 호버링한 후 초당 1미터의 속도로 하강을 시작했으나, 화성 표면 약 1미터 높이에서 로버와의 통신이 끊어졌다. 다음날 통신이 이뤄졌지만 프로펠러에 해당하는 로터 블레이드가 손상됐다. 인저뉴어티는 탄소섬유로 만든 날개 4개가 보통 헬기보다 8배 정도 빠른 분당 2400회 안팎 회전하도록 설계됐는데, 나사는 날개 중 하나가 부러진 것을 확인했다. 나사는 인저뉴어티 성공을 발판으로 2027년 태양계에서 생명체가 존재할 가능성이 높은 천체 중 하나로 꼽히는 타이탄에 로봇 회전날개항공기인 '드래곤플라이(Dragonfly)'를 쏘아올릴 예정이다.
-
- 산업
-
NASA, 지구 밖 첫 동력비행 화성 헬리콥터 날개 손상으로 임무 종료
-
-
우주비행사, 달의 물 마실 수 있을까
- 최근 달에 가장 먼저 착륙한 미국뿐만 아니라 러시아, 중국, 인도, 일본 등 강대국이 달 탐사 경쟁을 벌이고 있다. 지난해 8월 인도는 달 탐사선 찬드라얀 3호를 달에 착륙시켜 남극으로 보내는데 성공했다. 반면, 일본은 소형 달 탐사선 '슬림'은 지난 1월 20일 착륙 도중 전복되어 임무를 수행하지 못했다. 1969년 미국 우주비행사 닐 암스트롱(Neil Armstrong)이 달 표면을 처음 밟은 이후로, 달은 지속적으로 우주 탐사 분야에서 중요한 연구 대상으로 자리잡고 있다. 강대국들의 달 탐사 목적은 주로 광물 자원과 달의 남극에 존재하는 물 자원을 개발하는 것으로 알려져 있다. 물은 인류 생존에 필요한 중요한 요소다. 스페인 과학 매체 엔세데시엔시아(ensedeciencia)는 달은 탐사에 적합하며 필수 자원의 잠재적 원천이지만, 과학자들은 우주비행사들이 달의 물을 섭취할 수 있는지에 대한 의문을 제기하고 있다고 전했다. 과학자들은 달의 남극에서 상당량의 물을 발견했으며, 이는 미래의 우주 임무에서 이 자원을 활용하는 데 큰 관심을 불러일으키고 있다. 달의 물, 수은 등 유해 물질 함유 여기서 가장 중요한 질문은 우주 비행사들이 달의 물을 안전하게 섭취할 수 있는지 여부다. 지구에서 경험하는 물과 유사하다고 가정할 수 있지만, 달의 물은 구성이 매우 다르다. 2009년 나사의 LCROSS 탐사선이 달의 분화구를 관찰하면서 발견한 바에 따르면, 달의 물은 수소, 마그네슘, 칼슘뿐만 아니라 일산화탄소 및 수은 같은 위험한 성분도 포함하고 있다. 이러한 유해 원소의 존재는 우주비행사들이 달에서 물을 마시는 것이 안전한지에 대한 의문을 제기한다. 이제 과학자들은 달의 물을 여과하고 정화하여 위험한 성분을 제거하는 방법을 개발해야 한다. 그러나 이것은 현재 지구상의 여과 기술로 직접 해결할 수 있는 문제가 아니다. 혁신이 필요하며 달의 독특한 조건에 맞는 해법을 찾아야 하는 과제가 남았다. 이제 필요한 것은 달의 물을 여과하고 정화하여 위험한 성분을 제거하는 방법을 찾는 것이다. 그러나 이는 현재 지구상의 여과 기술만으로는 해결될 수 없는 문제다. 혁신적인 접근이 필요하며, 달의 독특한 환경에 적합한 해결책을 모색해야 한다. 달의 물 정화, 독성 원소 제거 이상의 기술 필요 달의 물을 정화하는 과정은 단순히 유해 원소를 제거하는 것을 넘어선다. 이 과정은 지구에서 사용하는 기본적인 정화 방식과는 다르다. 연구팀은 암모니아, 에틸렌, 일산화탄소, 메탄올, 황화수소, 이산화황, 메탄, 심지어 달 토양 파편 등 다양한 오염 물질을 처리할 수 있는 솔루션을 개발해야 한다. 달의 낮은 중력과 토양의 부식성은 이러한 문제를 해결하기 위한 포괄적인 접근 방식을 찾는 데 큰 도전을 제시한다. 특히, 지구의 6분의 1밖에 되지 않는 달의 중력은 우주비행사들이 정화 작업을 수행하는 데 있어 복잡한 문제를 제기한다. 또한, 달의 물을 정화하기 위해 개발되는 기계나 장비는 우주선의 제한된 공간을 고려하여 작고 효율적이어야 한다. 비록 달의 물을 정화하는 것이 기술적인 도전으로 보일 수 있지만, 이 문제의 해결은 미래 우주 임무의 성공 및 달에서의 지속 가능한 존재 구축에 필수적이다. 이러한 성공은 과학적인 이정표를 설정하는 것뿐만 아니라, 달의 물을 지구로 되돌려 보낼 수 있는 가능성을 열어줄 것으로 예상된다. 한국 달 탐사선 '다누리호' 한편, 2023년 8월, 인도의 찬드라얀3호가 세계 최초로 달 남극에 착륙하는 데 성공한 후, 이를 달까지 운송한 우주선 추진 모듈이 지구 궤도로 재배치되었다고 보고됐다. 이 추진 모듈은 남은 연료를 사용하여 운영되며, 앞으로 달의 시료를 지구로 운반하는 데 기여할 것으로 기대된다. 미국은 첫 번째 민간 달 착륙선의 발사를 준비하고 있다. 아스트로보틱이 개발한 '페레그린'은 오는 2월 23일 지구를 출발하여 달 표면에 착륙할 예정이다. 이 프로젝트가 성공할 경우, 아스트로보틱은 1969년 인류의 첫 달 탐사 이후 달에 착륙한 첫 번째 민간 기업이 될 것이다. 한국의 첫 달 탐사선 '다누리호'는 달 궤도 상공 100km 지점에서 임무를 수행하고 있다. '다누리(KPLO, Korea Pathfinder Lunar Orbiter)'는 한국항공우주연구원(KARI)이 개발했으며, 스페이스X의 팰컨 9 로켓을 사용하여 미국 플로리다주 케이프 커내버럴의 케네디 우주센터에서 2022년 8월 5일 발사됐다. 이 임무는 한국이 독자적으로 수행한 최초의 달 탐사 임무로, 달 궤도에서 과학적 탐사를 수행하고 있다.
-
- 산업
-
우주비행사, 달의 물 마실 수 있을까
-
-
신비한 천체, 블랙홀일까 중성자별일까?
- 최근 천문학자들이 발견한 신비한 천체가 블랙홀인지 중성자별인지 논란이 되고 있다. 천문학자들은 최근 지구에서 약 4만 광년 떨어진 천체인 콜드웰 73(NGC 1851)에서 빠르게 회전하는 밀리초 펄서를 발견했다. 이 펄서는 태양 질량의 약 3.887배에 달하는 동반 천체를 가지고 있는데, 이는 태양 질량의 2배보다 큰 중성자별보다 무겁고, 태양 질량의 5배보다 작은 블랙홀보다 가볍다. 이러한 천체는 블랙홀 질량 간격에 위치하는 것으로 알려져 있으며, 태양 질량의 2~5배 사이의 질량을 가진 천체는 중성자별과 블랙홀 중 어느 것으로 분류될지 명확하지 않은 상태이다. 과학 전문 매체 유니버스투데이(universetoday)는 최근 남아프리카의 전파천문대 미어캣(MeerKAT, TRAPUM 프로젝트) 망원경을 사용하여 천문학자들이 'NGC 1851'이라는 구상성단 내에 위치한 PSR J0514-4002E라는 특별한 천체를 발견했다고 보도했다. 나사에 따르면 콜드웰 73(NGC 1851)은 1826년 스코틀랜드 천문학자 제임스 던롭(James Dunlop)이 발견했다. 콜드웰 73은 콜롬바 별자리 방향으로 지구에서 약 4만 광년 떨어진 곳에 위치해 있다. 이 조밀한 구상성단은 쌍안경을 통해 발견할 수 있으며, 흐릿한 빛 조각처럼 보인다. 소형 망원경은 성단의 조밀한 중심에서 멀리 떨어져 있는 성단의 개별 별 중 일부를 분해할 수 있다. 콜드웰 73은 겨울에는 북반구의 적도 위도에서, 여름에는 남반구에서 가장 쉽게 볼 수 있다. 과학 저널 '사이언스(Science)'에 실린 연구에 따르면, 이 천체는 편심 이진 밀리초 펄서로, 펄서와 동반 천체의 총 질량은 약 3.887 ± 0.004 태양 질량으로, 이는 블랙홀의 질량 격차에 위치해 있다. 이 연구의 주요 저자는 맥스 플랑크 전파천문학 연구소(Max Planck Institute for Radio Astronomy)의 이완 바르(Ewan Barr)이며, 논문 제목은 '중성자별과 블랙홀 사이의 질량 간격에 컴팩트한 물체가 있는 쌍성계의 펄서'다. 바르와 그의 팀은 초신성 폭발의 결과로 생성된 빠르게 회전하는 중성자별인 밀리초 펄서의 궤도를 도는 컴팩트한 물체를 발견했다. 펄서는 극에서 전자기 에너지 빔을 방출하며 회전한다. 지구와 펄서가 정확히 맞춰져 있을 때, 우리는 펄서의 깜박임을 관찰할 수 있으며, 이로 인해 펄서는 우주의 등대로 불리게 된다. 밀리초 펄서는 초당 1~10밀리초의 회전 주기를 가지며, 이는 분당 6만회에서 6000회 사이의 회전 속도를 의미한다. 이 연구에서, 천문학자들은 펄서의 정밀한 타이밍 분석을 통해 펄서와 블랙홀로 구성된 이진(쌍성계) 시스템 내에 있는 다른 물체를 감지했다. 그들은 아직 펄서와 블랙홀로 구성된 이진 시스템을 발견하지 못했지만, 그러한 발견을 간절히 원하고 있다. 이러한 이진 시스템은 블랙홀 연구에 새로운 접근법을 제공할 수 있으며, 아인슈타인의 일반상대성이론을 새롭게 검증할 기회를 마련할 수 있다. 이 경우 동반체는 작은 블랙홀이 아니라 무거운 중성자별다. 맨체스터 대학의 천체물리학 교수이자 공동 저자인 벤 스태퍼스(Ben Stappers)는 "펄서-블랙홀 시스템은 중력 이론을 시험하는 데 중요한 대상이 될 것이며, 무거운 중성자별은 고밀도 핵물리학에 대한 새로운 통찰을 제공할 것"이라고 말했다. 중성자별은 거대한 별이 초신성으로 붕괴한 후 남은 극도로 밀도가 높은 천체다. 다른 별의 물질과 상호작용하면서 질량을 증가시키고, 더욱 붕괴될 가능성이 있다. 그러나 천문학자들은 중성자별이 붕괴하여 어떤 상태로 변화하는지 확실히 알지 못한다. 그것이 블랙홀로 변할 수도 있는데, 이는 바로 블랙홀 질량 격차를 연구하는 데 중요한 포인트다. 과학자들은 중성자별이 붕괴하려면 태양 질량의 약 2.2배가 되어야 한다고 추정한다. 이것이 붕괴가 발생하는 데 필요한 임계값이다. 그러나 이론과 관찰 모두 이러한 붕괴된 중성자별이 태양보다 5배 더 큰 블랙홀을 생성할 수 있음을 보여준다. 이로 인해 블랙홀 질량 격차가 발생한다. 과학자들은 중성자별이 블랙홀로 붕괴하기 위한 임계 질량이 태양 질량의 약 2.2배라고 추정한다. 이는 붕괴가 발생하기 위해 필요한 임계값이다. 그러나 이론과 관측 모두에서, 이러한 붕괴 과정이 태양 질량보다 5배 더 큰 블랙홀을 형성할 수 있다는 것이 확인됐다. 이는 블랙홀 질량 격차의 원인이다. 그러나 질량 격차에 존재하는 물체의 정체에 대해서는 확실한 결론이 없다. 관측 결과에 따르면, 해당 구역에는 분명히 어떤 물체가 존재하지만, 그 본질을 명확히 식별하기 어렵다. 연구자들은 이 동반체가 두 중성자별의 합병 결과일 가능성을 제시했다. 만약 동반성이 거대한 중성자별일 경우, 이는 펄서일 가능성이 있다. 그러나 연구진은 어떠한 맥동도 감지하지 못했다. 이 쌍성계 내 물체의 기원은 해당 물체가 무엇인지에 대한 해석을 가능하게 한다. 천체물리학자들은 쌍성계의 진화에 대해 상세한 모델을 개발했으며, 이 모델들은 물질의 전달이 중요한 역할을 한다는 것을 보여준다. 저자들은 더 낮은 질량의 초기 동반 물체가 펄서에 질량을 전달했다고 여긴다. 이러한 유형의 상호 작용은 별이 촘촘하게 밀집되어 있는 쌍성계 물체가 있는 구상 성단에서 발생할 가능성이 더 높다. 펄서는 또한 매우 빠르게 회전하는데, 이는 동반성으로부터 질량을 얻었다는 또 다른 징후다. 연구팀은 펄서의 초기 동반 물체가 비교적 낮은 질량이었으며, 이 물체로부터 펄서가 질량을 획득했다고 추정한다. 이런 종류의 상호 작용은 별들이 밀집하여 있는 구상 성단 내의 쌍성계에서 발생할 확률이 높다. 펄서의 매우 빠른 회전 속도도, 동반성으로부터 질량을 얻었다는 추가적인 증거를 제공한다. MPIA의 공동 저자 아루니마 듀타(Arunima Dutta)는 "이 쌍성의 진정한 성질을 규명하는 것은 중성자별, 블랙홀, 블랙홀 질량 격차에 숨겨진 모든 가능성에 대한 우리의 이해를 한 단계 발전시킬 것"이라고 말했다.
-
- 생활경제
-
신비한 천체, 블랙홀일까 중성자별일까?
-
-
과학이 풀어야 할 가장 큰 미스터리 5가지
- 과학은 세상에 대한 우리의 이해를 크게 발전시켰지만, 여전히 많은 미스터리가 남아 있다. 특히 우주의 기원이나 지구의 생명의 기원등은 가설은 많지만 아직까지 명확한 답이 나오지 않고 있다. 스페인 매체 마스 인포르마시온(Mas informacion)은 과학자들이 여전히 답을 찾지 못하고 있는 다섯 가지 핵심 질문을 소개했다. 1. 우주의 구성 요소는 무엇인가? 우주의 신비는 우리가 기존에 인지하고 있던 것보다 훨씬 더 깊고 복잡하다. 우리가 알고 있는 우주를 구성하는 물질은 전체의 약 5%에 불과하며, 나머지 약 95%는 미지의 영역인 암흑물질과 암흑에너지로 채워져 있다. 암흑물질은 우주 전체의 약 27%를 차지할 것으로 추정되는, 관측되지 않는 물질이다. 이 물질은 중력의 영향을 미치며, 우주의 팽창을 억제하는 중요한 역할을 한다. 암흑에너지는 우주의 약 68%를 구성하는 것으로 추정되며, 관찰할 수 없는 에너지 형태이다. 암흑에너지는 우주의 팽창을 가속화하는 데 결정적인 역할을 하는 것으로 여겨진다. 우주의 심오한 미스터리를 풀기 위해, 암흑물질과 암흑에너지의 본질을 밝히는 것은 중대한 과학적 과제로 남아 있으나, 현재까지 이들의 정체에 대한 명확한 답은 아직 발견되지 않았다. 암흑물질의 잠재적 후보로는 중성미자, 윔프(WIMP), 액시온(axion) 등이 거론되고 있다. 중성미자는 전하를 갖지 않아 빛을 발하지 않으며 질량이 있어 관측이 어렵다. 윔프는 그 무거운 질량과 강력한 중력으로 인해 우주의 구조 형성에 기여할 것으로 추정된다. 액시온은 중력과 전자기력 사이의 힘을 가짐으로써 우주의 팽창에 영향을 미칠 수 있다고 여겨진다. 암흑에너지의 가능한 후보로는 진공 에너지, 쿼크-글루온 플라즈마, 반물질 등이 제시되고 있다. 진공 에너지는 우주 공간 자체에 내재된 기본적인 힘의 에너지 형태로, 쿼크-글루온 플라즈마는 초기 우주의 고온 상태에서 존재했던 물질이다. 반물질은 물질과 상호작용하여 완전히 소멸되는 특성을 지니며, 이 과정은 우주 팽창에 중요한 역할을 할 수 있다. 과학자들은 이러한 후보들을 관측하고 실험을 통해 그 본질을 밝히려는 지속적인 노력을 기울이고 있으나, 아직까지는 이들의 정확한 성질과 역할에 대한 확실한 결론을 내리지 못하고 있다. 2. 생명은 어떻게 생겨났나? 생명의 기원은 과학계가 오랜 시간 동안 탐구해온 가장 심오한 미스터리 중 하나다. 지구상의 생명체가 어떻게 탄생했는지에 대해서는 아직도 명확한 해답이 제시되지 않았다. 과학자들은 다양한 이론을 제시하고 있으나, 아직까지 어느 하나의 가설도 정설로 자리 잡지 못하고 있다. 가장 널리 인정받는 가설 중 하나는 '원시 수프(Primordial soup)' 이론이다. 이 이론은 초기 지구의 바다가 생명체 형성에 필수적인 단순 화학 물질로 가득 차 있었고, 대기 중의 가스와 번개 에너지의 결합으로 아미노산과 같은 단백질 구성 요소가 형성될 수 있었다고 주장한다. 1920년대에 알렉산더 오파린과 J.B.S. 할데인이 제안한 이 가설은 이후 실험을 통해 그 타당성이 일부 입증됐다. 대표적인 예로, 1953년 스탠리 밀러와 하럴드 우레이는 초기 지구의 환경을 모사한 실험을 통해 아미노산의 합성에 성공했다. 하지만 원시 수프 가설에는 여전히 미해결의 문제가 존재한다. 아미노산이 우연히 결합하여 복잡한 생명체로 발전할 수 있는지에 대한 의문, 그리고 원시 수프에서 생명체가 어떻게 진화했는지에 대한 설명이 미흡하다는 지적이 있다. 또한, 지구 생명체의 기원에 대한 다른 이론도 존재한다. 일부 과학자들은 우주에서 온 운석이나 혜성에 생명의 씨앗이 실려 지구에 도착했을 가능성을 제시하는 '판스페르미아(Panspermia)' 이론을 주장한다. 이처럼 생명의 기원에 대한 탐구는 여전히 과학계의 중요한 도전 과제로 남아 있다. 3. 무엇이 우리를 인간으로 만드는가? '무엇이 우리를 인간으로 정의하는가?'는 과학과 철학의 경계를 넘나드는 깊이 있는 질문이다. 인간은 다른 동물들과 구별되는 특유의 특성들을 가지고 있지만, 이러한 특성들이 무엇인지에 대한 명확한 합의는 아직 이루어지지 않았다. 언어 사용, 도구 활용, 추상적 사고, 자기 인식 능력 등은 전통적으로 인간만의 고유한 특성으로 여겨져 왔다. 하지만, 최근의 과학 연구는 다른 동물들 또한 이러한 특성들을 어느 정도 보유하고 있음을 증명하고 있다. 예를 들어, 코끼리는 복잡한 의사소통을 위해 고유의 언어 체계를 사용하며, 침팬지는 도구를 사용해 먹이를 얻거나 사냥하는 능력을 지니고 있다. 돌고래는 추상적인 사고를 할 수 있으며, 침팬지는 거울을 통해 자신을 인식하는 자기 인식 능력을 갖추고 있다고 알려져 있다. 이러한 발견들은 인간과 다른 동물들 사이의 경계가 생각보다 모호하다는 것을 시사하며, 인간을 정의하는 것이 단순한 문제가 아님을 보여준다. 인간의 독특한 특성들에 대한 이해는 계속해서 진화하고 있으며, 이는 우리가 인간성에 대해 더 깊이 고민하고 탐구해야 함을 의미한다. 한편으로는, 인간을 특별하게 만드는 요소가 단일 특성이 아니라, 여러 특성들의 복합적인 상호작용이라는 주장이 제기되고 있다. 이에 따르면, 인간은 언어를 통한 복잡한 의사소통 능력, 도구를 활용한 환경 변형 능력, 그리고 추상적 사고를 통해 새로운 것을 창조하는 능력을 결합하여 독특한 문화와 사회 구조를 형성하였다는 것이다. 이러한 능력들의 결합은 인간만의 특별한 문화적, 사회적 발전을 가능하게 했다. 인간의 언어 사용 능력은 복잡한 의사소통과 지식 전달을 가능하게 했으며, 도구 사용 능력은 환경을 변화시키고 적응하는 방법을 혁신적으로 발전시켰다. 또한, 추상적 사고는 예술, 과학, 철학 등 인간만의 다양한 창조적 영역을 탄생시켰다. 그럼에도 불구하고, 인간을 인간답게 만드는 근본적인 요소가 무엇인지에 대한 질문은 여전히 해결되지 않은 미스터리로 남아 있다. 4. 의식이란 무엇인가? 의식은 인간 존재의 가장 심오하고 미스테리한 특성 중 하나로 여겨진다. 우리는 아직 의식이 구체적으로 무엇이며, 그것이 어떻게 기능하는지 완전히 이해하지 못하고 있다. 의식은 뇌의 복잡한 기능과 밀접하게 연관되어 있을 것으로 추측되지만, 뇌의 어떤 부분이 의식을 조절하는지, 그리고 의식이 어떻게 형성되고 발현되는지에 대한 구체적인 메커니즘은 아직 명확하게 밝혀지지 않았다. 의식은 우리가 세계를 인식하고 경험하는 방식의 핵심을 이루며, 이에 대한 깊은 이해는 인간 본성과 지적, 정서적, 영적 측면에 대한 우리의 이해를 크게 향상시킬 것으로 기대된다. 의식에 대한 연구는 인간 뇌의 복잡성과 그 신비를 탐구하는 과정에서 핵심적인 역할을 하며, 이는 인지 과학, 신경학, 철학, 심리학 등 여러 학문 분야에 걸쳐 진행되고 있다. 5. 우리는 왜 꿈을 꾸는가? 인간이 꿈을 꾸는 이유는 심리학과 신경과학의 오랜 미스터리 중 하나이며, 이에 대한 확실한 답변은 아직 없다. 꿈에는 여러 가설이 존재하고 있다. 예를 들어, 무의식의 표현에 관한 가설은 꿈이 우리의 억압된 감정과 생각을 드러내는 역할을 한다고 주장한다. 기억 정리와 학습 지원에 관한 가설은 꿈이 기억을 재구성하고 새로운 정보를 처리하는 데 중요한 역할을 한다고 설명한다. 스트레스 해소 기능에 관한 가설은 꿈이 심리적 압박을 완화하고 정서적 균형을 찾는 데 도움을 준다고 주장한다. 그러나 이러한 가설들 중 어느 것도 아직 확실하게 입증되지 않았다. 꿈은 인간의 정신적, 감정적 삶에 중요한 영향을 미친다. 꿈은 우리의 무의식을 반영하고, 내면을 이해하는 데 도움을 줄 뿐만 아니라, 창의적 사고와 문제 해결 능력에도 기여할 수 있다. 그러나 꿈의 본질과 목적에 대한 신비는 여전히 베일에 싸여 있다. 이와 같은 질문들에 대한 답은 과학이 발전함에 따라 점차 밝혀질 것으로 기대되지만, 그 과정은 간단하지 않을 것이다. 과학자들은 새로운 기술과 방법론을 개발하고, 기존 가설들을 실험적으로 검증함으로써 꿈의 신비를 풀기 위해 지속적으로 노력하고 있다.
-
- 생활경제
-
과학이 풀어야 할 가장 큰 미스터리 5가지
-
-
우주에서 쏟아지는 다이아몬드 비⋯자기장 형성 열쇠?
- 다이아몬드는 지구에서 가장 귀중한 보석 중 하나이지만, 천왕성과 해왕성과 같은 거대 얼음 행성에서는 대기 중에서 비처럼 쏟아져 내릴 것으로 예상된다는 가설이 제기됐다. 과학기술 전문 매체 ifl사이언스와 엔디티비(NDTV)에 따르면 전통적으로 다이아몬드 형성에는 매우 높은 온도와 압력이 필요하다고 여겨져 왔지만, 최근의 연구는 다이아몬드가 지구보다 낮은 온도와 압력 조건에서도 형성될 수 있음을 시사한다. 최근 미국 SLAC 국립가속기연구소와 독일의 DESY 연구소, 헬름홀츠 센터 드레스덴-로젠도르프와 같은 국제 연구팀이 천왕성과 해왕성의 대기권과 유사한 조건을 실험실에서 재현하여 다이아몬드 생성 실험을 진행했다. 연구팀은 폴리스티렌 필름에 다이아몬드 모루를 사용하여 2200℃(화씨 3992도) 이상의 온도와 지구의 해수면 대기압의 약 100만 배에 해당하는 압력을 가했다. 이 실험 조건은 천왕성과 해왕성의 대기권 깊은 곳에서 발견될 수 있는 조건과 유사한 것으로, 과학자들은 이를 통해 다이아몬드가 형성되는 과정을 연구했다. 이후, 고에너지 X선을 사용하여 폴리스티렌 필름을 가열했다. 이 X선은 필름 내의 탄소 원자를 활성화시켜 다이아몬드로 변환하는 데 중요한 역할을 했다. 이 과정을 통해 연구팀은 폴리스티렌 필름에서 다이아몬드를 형성하는 데 성공했다. 이 다이아몬드는 천왕성과 해왕성의 대기권에서 형성되는 다이아몬드와 같은 구조와 특성을 가지고 있는 것으로 밝혀졌다. 이 연구 결과는 전통적인 다이아몬드 형성에 대한 이해를 바꾸는 중요한 발견이다. 기존에는 다이아몬드 형성에는 매우 높은 온도와 압력이 필요하다고 여겨졌었다. 그러나 이번 연구는 다이아몬드가 더 낮은 온도와 압력에서도 형성될 수 있음을 보여줬다. 이는 천왕성이나 해왕성과 같은 거대한 얼음 행성의 대기권에서 다이아몬드가 어떻게 형성되는지에 대한 새로운 통찰을 제공하며, 천문학과 우주 과학 분야에 중요한 영향을 미칠 것으로 기대된다. 다이아몬드 비가 형성되는 이유 천왕성과 해왕성의 대기권은 지구의 대기권보다 훨씬 깊고 뜨겁다. 이러한 조건에서는 수소, 헬륨, 메탄, 아르곤 등의 기체가 높은 압력과 온도에 의해 액체 상태로 변환된다. 이 액체 상태의 기체들은 천왕성과 해왕성의 내부에서 바깥쪽으로 이동하면서 점차 식게 된다. 이 과정에서 액체 상태의 기체들은 다시 고체 상태로 변하게 되는데, 이때 탄소 원자들이 모여 다이아몬드 결정을 형성한다. 이렇게 형성된 다이아몬드는 대기 중에서 무거운 물체처럼 가라앉게 되며, 이를 '다이아몬드 비'라고 부른다. 다이아몬드 비는 지구에서는 발생하지 않는다. 지구의 대기권은 천왕성이나 해왕성 대기권보다 훨씬 얇고 차가워 이러한 과정이 일어나지 않기 때문이다. 다이아몬드 비와 자기장 형성 연구팀의 수석 저자인 멍고 프로스트 박사는 "다이아몬드 비는 천왕성과 해왕성의 복잡한 자기장의 형성에 영향을 미쳤을 가능성이 있다"고 말했다. 프로스트 박사의 연구에 따르면, 천왕성과 해왕성의 대기권에는 다이아몬드가 풍부하게 존재할 것으로 추정된다. 다이아몬드는 전기를 잘 전달하는 성질을 가지고 있기 때문에, 이 물질이 대기권을 통해 이동하며 자기장 생성에 기여했을 가능성이 제기됐다. 프로스트 박사는 "이번 연구는 거대 얼음 행성에 대한 우리의 이해를 크게 확장시킬 것"이라고 말했다. 더 나아가, 다이아몬드 비와 자기장 형성에 대한 추가 연구는 이러한 거대 얼음 행성들의 신비를 더욱 깊게 탐구하는 데 도움이 될 것이다. 다이아몬드 비는 우주의 또 다른 매혹적인 현상으로, 향후 추가 연구를 통해 이 현상에 대한 더 많은 정보를 얻을 수 있을 것으로 기대된다.
-
- 산업
-
우주에서 쏟아지는 다이아몬드 비⋯자기장 형성 열쇠?
-
-
태양 플레어, 6년 만에 X급 폭발
- 2024년 새해 전날 태양의 플레어 폭발(빛나는 점)로 지구 전력망이 일시적으로 방해받을 수 있다. 사진=NOAA 홈페이지 2024년 새해 전날 발생한 태양의 강력한 에너지 폭발은 2017년 이후 관측된 것 중 가장 큰 태양 플레어를 생성했다. 미국 국립해양대기청(NOAA)은 이러한 태양 플레어의 분출이 심각해 보일 수 있지만, 두려워할 것은 없다고 밝혔다. 미국 매체 USA투데이는 NOAA의 우주 기상 예측 센터(Space Weather Prediction Center)가 최근 태양 표면에 빛나는 점으로 나타난 플레어의 이미지를 공개했다고 최근 보도했다. 문제는 이 플레이어가 고주파 무선 신호를 일시적으로 방해해 지구 전력망에 영향을 미칠 위험이 있다는 지적이다. 나사(NASA)의 태양 역학 관측소(Solar Dynamics Observatory) 또한 거대한 태양 플레어의 이미지를 포착했다. 나사는 플레어가 방출하는 열과 자외선을 극도의 강도를 강조하기 위해 노란색과 주황색으로 채색했다. 우리 태양계의 가장 큰 폭발 사건으로 간주되는 태양 플레어는 흑점과 관련된 자기 에너지가 방출되어 강렬한 방사선 폭발을 일으킬 때 발생한다. 태양 플레어는 강도에 따라 다양하며, 단 몇 분에서 몇 시간까지 지속될 수 있다. 나사는 이러한 강도에 기반해 태양 플레어를 분류하며, B급은 가장 약한 수준이고 최근에 감지된 X급은 가장 강력한 수준이다. 비교적 약한 태양 플레어는 우리 지구에서는 눈에 띄지 않지만, X등급으로 분류되는강력한 에너지를 지닌 플레어는 무선 통신, 전력망, 그리고 항법 신호에 양향을 미칠 수 있는 잠재력을 가지고 있다. 나사에 따르면 X45급 태양 플레어는 극단적인 경우, 우주선과 우주 비행사에게 심각한 위험을 초래할 수도 있다고 한다. 태양 플레어의 강도를 나타내는 'X-5급'과 같은 분류에서, 각 문자는 에너지 출력이 10배 증가함을 나타낸다. 각 등급에는 1부터 9까지의 서브 등급이 포함된다. 하지만 X 등급에서는 X-1 등급의 출력보다 10배 이상 높은 강도를 나타내는 예외적인 경우도 기록된다. 나사에 따르면 가장 강력한 태양 플레어는 지난 2003년에 발생했으며, 이때 측정 센서는 과부하 상태에 이르렀다. 이 플레어는 나중에 X-45급 정도로 추정됐다. 이는 위성에 손상을 줄 뿐만아니라 심지어 극 지방을 비행하는 항공사 승무원에게 소량의 방사선을 노출시키고, 장기간 지속되는 방사선 폭풍을 생성할 수 있는 충분한 강도를 가졌다. X급 플레어는 또한 전 세계적으로 무선 전송 문제를 일으키고, 심지어는 대규모 정전을 초래할 가능성이 있다고 나사는 설명했다. 다행히도 최근에 발생한 태양 플레어는 2003년에 발생한 플레어 강도에는 미치지 못했다. NOAA에 따르면 X-5 등급으로 평가된 이번 태양 플레어는 X 8.2 플레어가 발생한 2017년 9월 10일 이후 관측된 것 중 가장 강력했다. 이 기관은 또한 2023년 12월 14일 남미에서 무선 정전을 초래한 X-2.8 등급의 태양 플레어를 생성한 동일한 태양 지역과 연관 지었다. 태양 플레어와 태양 폭풍과 같은 기타 태양 활동은 태양이 약 11년 주기로 발생하는 태양 최대치에 도달함에 따라 2025년에 더욱 빈번해 질 것으로 예상된다. 태양 플레어 활동이 증가함에 따라 장기간 인터넷 중단이 발생할 경우, 이는 잠재적으로 '인터넷 종말'에 대한 우려를 낳을 수 있다.
-
- 생활경제
-
태양 플레어, 6년 만에 X급 폭발
-
-
[퓨처 Eyes(18)] 지구 온난화, 폭주 온실 효과로 '금성化' 위기⋯시뮬레이션 결과 '지옥 방불'
- 기후 변화로 인한 폭주 온실 효과로 지구가 금성화 위기에 처했다는 연구 결과가 나왔다. 제네바대학교(UNIGE)의 천문학자 연구팀은 파리와 보르도의 프랑스 국립과학연구소(CNRS)의 지원을 받아 온실효과 폭주의 모든 단계를 시뮬레이션 한 최초의 연구 결과를 발표했다고 과학 매체 '사이언스얼랏'이 최근 보도했다. 연구원들은 처음으로 온실 효과의 모든 단계를 시뮬레이션하여 앞으로 몇 세기 안에 우리의 녹색 행성을 사람이 살 수 없는 '지옥'으로 만들 수 있다는 사실을 발견했다. 미국 우주항공국(NASA)에 따르면 지구는 폭주 온난화를 촉진하기 위해 수십도만 가열하면 평균 표면 온도가 섭씨 464도(화씨 867도)인 금성만큼 살기 어려운 행성이 될 것이라고 한다. 온실 효과는 지구 대기의 특정 가스가 태양의 열을 가두는 과정을 말한다. 폭주 온실 효과란? 일부 온실 가스는 수증기처럼 자연적으로 발생한다. 이산화탄소와 같은 다른 온실가스는 인간이 석탄, 석유, 가스 등 오염 물질인 화석 연료를 태울 때 생성될 수도 있다. UNIGE-CNRS 연구에서 조사된 폭주 온실 효과는 태양 조사가 증가하여 지구의 온도가 눈덩이처럼 급격하게 상승할 때 발생한다. 천문학자들은 성명에서 "이 과정의 초기 단계부터 대기 구조와 구름의 범위가 크게 변화하여 거의 멈출 수 없고 되돌리기 매우 복잡한 폭주 온실 효과를 초래한다"라고 말했다. 돌이킬 수 없는 기후 변화 이 연구는 부분적으로 다른 행성, 특히 소위 외계 행성의 기후를 연구하는 도구를 제공하기 위해 설계됐다. 또한 앞으로 수 세기 동안 지구 기후에 미칠 위험에 대한 통찰력도 제공한다. 연구진은 바다와 생명체로 뒤덮인 멋진 파란색과 녹색 점인 지구와 태양계에서 가장 뜨거운 무균 상태의 유황 행성인 금성의 차이점을 강조했다. 그러나 천문학 및 천체물리학 리뷰에 게재된 이 연구에 따르면 "지구 온도를 수십도만 상승시키는 아주 작은 태양 복사량 증가만으로도 지구에서 돌이킬 수 없는 폭주 과정을 촉발하고 지구를 금성처럼 살기 힘든 곳으로 만들 수 있다"는 사실이 밝혀졌다. 온실 효과의 폭주라는 개념은 새로운 것이 아니다. 이 개념은 지구와 같은 온대 상태에서 표면 온도가 섭씨 1000℃(화씨 1832℃)가 넘는 행성으로 진화하는 것을 상상한다. 연구진은 온실 효과가 없다면 지구의 평균 기온은 영하로 떨어지고 지구는 생명체에 적대적인 얼음으로 덮인 공이 될 것이라고 지적하면서 어느 정도의 온실 효과는 유용하다고 말했다. 그러나 이 효과가 너무 크면 해양의 증발이 증가하여 대기 중 천연 온실가스인 수증기의 양이 증가하여 구조 담요처럼 열에 갇히게 된다. 임계값 전 UNIGE 박사후 연구원이며 이 연구의 수석 저자인 기욤 샤베로(Guillaume Chaverot)는 "이 정도의 수증기에는 지구가 더 이상 식을 수 없는 임계점이 있다"라고 말했다. 샤베로는 "거기서부터 바다가 완전히 증발하고 온도가 수백도에 도달할 때까지 모든 것이 사라진다"라고 설명했다. 이전의 시뮬레이션은 폭주 효과가 시작되기 전의 온화한 상태나 폭주 후의 사람이 살 수 없는 상태에만 초점을 맞췄지만, 연구진은 전체 과정을 시뮬레이션 한 것은 이번이 처음이라고 말했다. 전체 과정을 보여줌으로써 처음부터 높은 대기에서 폭주 효과를 증가시키고 그 과정을 되돌릴 수 없게 만드는 매우 특이하고 밀도가 높은 구름 패턴이 어떻게 나타나는지 설명할 수 있었다. 차베로는 "대기의 구조가 크게 바뀌었다"고 했다. 그는 현재 인간이 배출하는 온실 가스가 태양 광도의 약간의 증가와 동일한 폭주 과정을 유발할 수 있는지 여부를 조사하고 있다고 성명을 통해 밝혔다. 기후 과학자들은 지구의 평균 기온이 산업화 이전 수준보다 1.5°C 이상 상승하면 통제할 수 없는 기후 변화를 촉발할 위험이 있다고 경고했다. 이는 온실 폭주 과정과는 다르지만, 연구자들은 지구가 '종말 시나리오'에서 멀지 않았다고 경고했다. 한편, 3일 기상청 기상자료개방포털 자료에 따르면 지난해 한국의 전국 평균기온은 13.7℃를 기록, 전국에 기상관측망이 대폭 확충돼 각종 기상기록의 기준으로 삼는 시점인 1973년 이후 가장 높았다. 지난해 제주도의 평균기온은 역대 두 번째로 높았던 것으로 나타났다. 제주도의 연평균 최고기온은 20.4℃로, 2021년(20.6℃)에 이어 두 번째로 높았다. 게다가 지난 12월 공개된 해양기후예측센터의 자료에 따르면 지난 8월 동아시아 해역의 해면 수온은 평년보다 0.9℃높아 역대 2위를 기록했으며, 전 지구 해역의 해면 수온은 평년보다 0.6℃높아 역대 최고치였다. 올해 전 지구 표면온도가 사상 최고치를 기록할 것이라는 전망은 이젠 '기정사실'로 받아들여지고 있다. 엘니뇨는 적도 부근 동태평양 해수면 온도가 비정상적으로 상승하는 현상으로, 지구의 평균 온도를 높이며 폭풍우, 가뭄 등의 기상 이변을 유발한다. 엘리뇨는 2월께 최고조에 이르며 6개월은 더 갈 것이라는 예측이다.
-
- 포커스온
-
[퓨처 Eyes(18)] 지구 온난화, 폭주 온실 효과로 '금성化' 위기⋯시뮬레이션 결과 '지옥 방불'
-
-
미국 과학자, 남극서 150만년 전 얼음 탐사
- 미국 과학자들이 남극에서 약 150만년 전에 형성된 얼음을 탐사하고 있다. 이들은 과거의 기후와 생태계 비밀을 탐구하며, 특히 대기 중 온실가스 농도가 높았던 시기를 연구하는 것을 목표로 하고 있다. 미국 방송매체 CBS뉴스는 미국 과학자들은 기후변화 이해에 도움이 될 수 있는 가장 오래된 얼음 샘플을 찾고 있다고 보도했다. 남극 대륙은 지구에서 가장 건조하고 추운 곳으로, 강한 바람이 불기로 유명하다. 한국, 미국, 유럽, 호주 등 여러 나라의 과학자들이 남극에 연구기지를 설립하고 이곳의 신비를 탐구하고 있다. 이번 남극 탐험은 미국 대학과 과학 기관이 연방 자금을 지원받는 협력 단체인 콜덱스(COLDEX)의 일환으로 진행되고 있다. 콜덱스 팀들은 남극 근처에서 7주 동안 화장실 없이 샤워도 하지 못하고 얼음 위에서 캠핑하며 연구를 수행한다. 연구팀이 남극에서 수집한 얼음 샘플을 통해 미국 과학자들은 수십만 년 전의 기후 상태에 대한 중요한 정보를 얻을 수 있을 것으로 기대된다. 콜덱스의 에드 브룩(Ed Brook) 이사는 "얼음 연구는 인간이 지구 환경에 어떠한 영향을 미치고 있는지를 명확하게 보여주는 중요한 역할을 한다"고 말했다. 이러한 연구를 통해 과거 기후 변화의 패턴을 이해함으로써 현재와 미래의 기후 변화에 대한 이해를 높일 수 있다. 얼음 트랩 온실가스의 기포 확인 눈이 내리면서 남극의 얼음 속에 작은 기포들이 갇히게 되는데, 이 지역의 추운 날씨로 인해 눈이 녹지 않고 얼음으로 변환되어 층을 이룬다. 이 얼음 속에 갇힌 기포들은 과거 온실가스의 수준을 담고 있어, 과학자들은 이를 분석하여 과거의 기후 변화를 재구성할 수 있다. 콜덱스의 현장 연구 책임자 피터 네프(Peter Neff)는 "빙하 코어에서 얻은 정보가 지구 기후의 작동 원리를 이해하는데 매우 중요하다"고 강조했다. 현재까지 발견된 가장 오래된 빙하 코어는 약 80만 년 전의 것으로, 이를 분석함으로써 과학자들은 기후 변화의 주요 원인인 이산화탄소 수준의 변화를 확인할 수 있었다. 특히 산업 혁명 이후 이산화탄소 수준이 급격히 증가하여 지구 온난화를 가속화시키고 있음을 알 수 있다. 빙하서 온실가스 수준 높았던 시기 탐사 콜덱스의 주요 목표는 현재의 80만년 전으로 거슬러 올라가는 빙하 코어 기록을 150만년 전으로 확장하여, 과거에 대기 중 온실가스 수준이 더 높았던, 지구가 지금보다 더 따뜻했던 시기를 연구하는 것이다. 브룩 이사는 "과거를 연구한다고 해서 현재의 상황과 똑같은 결과를 얻을 것이라고 주장하는 것은 아니다"라며, "우리가 찾고 있는 것은 지구의 기후 시스템이 따뜻한 날씨에서 어떻게 작동하는지에 대한 다양한 가능성들이다"라고 설명했다. 콜덱스 팀은 150만년 동안 잘 보존된 얼음층이 형성될 가능성이 높은 남극 대륙의 특정 지점을 식별하는 데 수년이 걸릴 수 있다. 일단 얼음층이 확인되면, 연구팀은 드릴을 사용하여 얼음 코어를 추출할 계획이다. 얼음 샘플은 녹지 않도록 온도 조절이 가능한 포장재에 담겨 미국 콜로라도의 국립 과학 재단 아이스 코어 시설로 운송될 예정이다. 만약 콜덱스의 임무가 성공한다면, 발견된 얼음 샘플은 콜덱스 현장 연구원인 사라 샤클레톤(Sarah Shackleton)이 근무하는 프린스턴 대학을 비롯한 여러 대학 연구실로 전송될 예정이다. 또한, 가장 오래된 얼음 탐사 임무는 미국 과학자들만의 도전이 아니다. 다른 여러 국가의 팀들도 남극 대륙에서 같은 목표를 가지고 자체적인 탐사 임무를 수행하고 있다. 유럽과 호주의 연구 팀들은 남극 대륙의 다양한 지역에서 시추 작업을 진행 중이다. 이들 중 먼저 얼음 샘플을 발견하는 팀은 국제적인 주목을 받을 것으로 예상된다.
-
- 생활경제
-
미국 과학자, 남극서 150만년 전 얼음 탐사
-
-
태양계 행성, 45억 년 간 태양 주위 안정적 공전
- 태양계 행성들이 태양 주위를 도는 궤도의 횟수는 각 행성의 공전 주기와 밀접하게 연관되어 있으며, 이들 궤도는 태양계가 형성된 초기부터 현재까지 크게 변하지 않았다는 연구 결과가 나왔다. 지구에서는 체감하기 어렵지만, 우리는 지금 초당 30km, 시속 약 10만7800km의 놀라운 속도로 태양 주위를 공전하고 있다. 더욱이, 지구와 유사한 속도로 태양을 도는 다른 7개의 행성이 있으며, 이 8개 행성 모두 수십억 년 동안 태양 주위를 끊임없이 돌고 있다는 사실은 떠올리기가 쉽지 않다. 그러나 미국 우주 전문지 스페이스 닷컴(SPACE.COM)은 최근 태양 주위를 공전하는 각 행성의 궤도는 그들이 생성된 이후로 현재까지 큰 변화 없이 유지되고 있다고 보도했다. 태양계 형성과 행성의 궤도 태양계의 기원은 약 46억 년 전으로 거슬러 올라간다. 당시 거대한 별의 폭발로 남겨진 먼지 구름, 즉 성운에서 태양계가 형성되기 시작했다. 이 성운, 천문학자들이 '태양계 성운'이라 부르는 곳에서 태양이 탄생했고, 이후 약 45억 9000만 년 전에는 목성, 토성, 천왕성, 해왕성과 같은 거대 가스 행성들이 형성됐다. 행성협회(The Planetary Society)에 따르면, 이 거대 가스 행성들이 생겨난 뒤 약 45억 년 전에는 수성, 금성, 지구, 화성과 같이 더 작고 암석으로 이루어진 행성들이 형성됐다. 흥미롭게도, 이 행성들이 처음 형성되었을 때의 궤도는 현재와는 다른 형태였다. 특히 거대 행성들의 초기 궤도는 오늘날과 상이했다. 최초의 행성들이 형성된 후 약 1억 년 동안, '역학적 불안정'으로 인해 거대 천체들 간의 중력적 상호작용이 이루어졌고, 이것이 외태양계 행성들의 형성에 중요한 역할을 했다. 프랑스 보르도 천체물리학 연구소의 천문학자이자 행성 전문가인 션 레이먼드 교수는 태양계의 형성에 대해, 초기의 역학적 불안정성에서 벗어나 새로 형성된 원시 행성들이 점차 자신의 궤도를 찾아가며 태양계의 전체적인 구조를 완성했다고 말했다. 그 결과, 행성들은 안정적인 궤도에 자리 잡게 되었고, 이후로는 큰 변화 없이 일관된 궤도를 유지해왔다고 설명했다. 레이먼드 교수는 또한, "태양계의 수명 중 약 98~99% 동안 행성의 궤도가 매우 안정적이었다"고 강조했다. 그는 이러한 안정성 덕분에 현재의 행성 궤도 역학을 활용하여 태양 주위를 도는 행성의 공전 횟수를 매우 정확하게 계산할 수 있다고 덧붙였다. 각 행성의 궤도 횟수 차이 이유 각 행성이 태양 주위를 도는 데 걸리는 시간, 즉 공전 주기를 고려하면, 행성마다 태양을 공전한 총 횟수는 상당히 차이가 난다. 예를 들어, 지구는 태양 주위를 공전하는 데 약 1년이 걸리므로, 지구가 약 45억 년 동안 존재했다면 대략 45억 번 정도 태양 주위를 돌았다고 계산할 수 있다. 그러나 다른 행성들의 경우 이 공전주기는 매우 다르다. 예를 들어, 태양에 가장 가까운 행성인 수성은 태양 주위를 한 바퀴 도는 데 단 88일(지구 시간으로 1년의 약 0.24년)밖에 걸리지 않는다. 따라서 수성은 지난 45억 년 동안 약 187억 번 태양 주위를 돌았다고 할 수 있다. 반면에 태양에서 가장 멀리 떨어진 행성인 해왕성은 태양 주위를 한 바퀴 도는 데 약 60만190일(또는 164.7년)이 소요된다. 이는 해왕성이 지난 45억 9000만 년 동안 태양 주위를 약 2790만 번 돌았다는 것을 의미한다. 이는 수성이 해왕성에 비해 태양 주위를 약 670배 더 많이 공전했다고 할 수 있다. 태양계 행성들의 공전 주기가 얼마나 다양한지는 그들이 태양 주위를 돈 횟수를 비교함으로써 명확히 드러난다. 태양계의 여덟 행성 모두 약 46억 년의 비슷한 나이를 가지고 있지만, 그들의 공전 주기는 수성의 88일에서부터 해왕성의 6만759일에 이르기까지 매우 다양하다. 태양계 여덟 행성의 나이는 약 46억 년으로 비슷하지만, 그 공전 주기는 수성의 88일부터 가장 바깥 행성인 해왕성의 60,759일로 아주 다양하다. 따라서 그 궤도 횟수도 수성 187억 회, 금성 73억 회, 화성 24억 회, 목성 3억 8700만 회, 토성 1억 5600만 회, 천왕성 5500만 회, 해왕성 3800만 회 등이다. 결과적으로, 이러한 공전 주기의 차이로 인해 각 행성의 궤도 완성 횟수는 수성이 약 187억 회, 금성이 73억 회, 화성이 24억 회, 목성이 3억 8700만 회, 토성이 1억 5600만 회, 천왕성이 5500만 회, 그리고 해왕성이 3800만 회 등으로 크게 다르다. 이러한 숫자들은 엄청나게 보일 수 있지만, 대부분의 행성은 남은 수명 동안 이 횟수의 약 2배에 달하는 궤도를 돌 것으로 예상된다. 약 45억 년 후, 태양은 팽창하여 적색 거성으로 변하면서 지구 궤도까지 도달할 것이며, 이 과정에서 수성, 금성, 지구를 삼키게 될 것이다. 다른 행성들은 태양에 의해 직접적으로 불타지 않을 수도 있지만, 그들의 궤도는 상당한 변화를 겪을 가능성이 높다. 태양계 행성들은 태양 주위를 맹렬히 공전하고 있다. 그 궤도 횟수는 행성의 공전 주기와 밀접한 관련이 있으며, 태양계 형성 초기부터 크게 변하지 않았다. 대부분의 행성은 남은 수명 동안 그 2배에 달하는 궤도 횟수를 기록할 것으로 예측된다. 이렇듯 태양계 행성들은 태양 주위를 격렬하게 공전하고 있으며, 이 궤도 횟수는 각 행성의 공전 주기와 밀접한 관련이 있다. 태양계 형성 초기부터 큰 변화 없이 유지된 이 궤도들은, 대부분의 행성에게 그들의 남은 수명 동안 이전의 2배에 달하는 궤도 횟수를 안겨줄 것으로 예측된다.
-
- IT/바이오
-
태양계 행성, 45억 년 간 태양 주위 안정적 공전
-
-
일본 소행성 탐사선 '하야부사2', 지구 방어 기술 실증 실험 착수
- 일본 우주항공연구개발기구(Japan Aerospace eXploration Agency, JAXA)는 소행성 탐사선 '하야부사2'를 활용하여 지구와 충돌할 위험이 있는 소행성의 궤도를 변경하는 기술을 실증하기 위한 준비에 착수했다. 일본 요미우리신문에 따르면, 하야부사2는 2020년 12월 소행성 류구에서 샘플을 지구로 가져온 뒤, 남은 연료를 절약하며 비행을 계속하고 있다. 2023년 7월에는 소행성 2001CC21을 통과한 후, 2026년에는 최종 목적지인 소행성 1998KY26에 도착할 예정이다. 일본 우주항공연구개발기구는 이번 실증 실험을 소행성 2001CC21에서 진행할 계획이다. 하야부사2는 지름 약 700m로 추정되는 소행성에 서로 10km 이내로 접근해 충돌 없이는 거의 불가능한 궤적으로 고속으로 통과할 예정이다. 이는 지구와 충돌 가능성이 있는 소행성의 궤도를 조정하는 기술을 검증하기 위한 실험이다. 소행성에 도달할 때 하야부사2의 상대 속도는 초속 5km에 이르며, 소행성과의 중력 상호작용으로 인해 소행성의 궤도가 약간 변경될 것으로 예상된다. 이 실험을 통해 소행성의 궤도를 조정하는 기술을 개발하는 데 기대가 높다. 하야부사2는 2014년 12월에 발사되었으므로 설계 수명이 초과됐고, 일부 장치가 노후화됐다. 따라서, 일본 우주항공연구개발기구는 2024년 초에 자세 제어 시스템의 프로그램을 원격으로 업데이트할 계획이다. 자세 제어 시스템은 우주선의 자세를 제어하는 장치로, 이를 통해 자세 제어 시스템의 일부에 문제가 발생해도 다른 장치가 보완하여 정밀한 비행이 가능하도록 할 계획이다. 미국 항공우주국(NASA)은 지난해 9월, 지구에서 약 1100만km 떨어진 곳에 있는 소행성 디모르포스에 무인 탐사선 '다트(DART)'를 충돌시켜 궤도를 변경하는 실험을 성공적으로 수행했다. 현재까지 지구에 접근한 소행성 및 기타 천체는 3만3000개 이상으로 추정되며, 그 중 위험 요소가 있는 천체는 2000개 이상이다. 일본 우주항공연구개발기구는 소행성 류구 탐사를 마친 하야부사2의 '확장 임무'에 도전하고 있다. 하야부사2의 확장 임무 운영 책임자인 유야는 "궤도 제어가 어떻게 이뤄질 수 있는지에 초점을 맞추고 있으며, 가능한 한 하야부사2의 작업을 지속하고 싶다"라고 말했다. 일본 우주항공연구개발기구는 현재 자체 웹사이트를 통해 내년 5월 9일까지 누구나 소행성 '2001CC21'의 후보를 추천할 수 있도록 접수를 받고 있다. 이 추천은 8월 말까지 진행되며, 세계 각국의 천문학자로 구성된 국제천문연맹(International Astronomical Union)에 제출될 예정이다. 이 실험이 성공한다면, 지구와 충돌 가능성이 있는 소행성을 발견하고 그 궤도를 변경하는 기술의 발전에 기여할 것으로 기대된다.
-
- 산업
-
일본 소행성 탐사선 '하야부사2', 지구 방어 기술 실증 실험 착수
-
-
NASA, '보이저 1호' 컴퓨터 오작동…데이터 전송 중단
- 미국 항공우주국(NASA)은 행성 탐사기 보이저 1호의 컴퓨터에 문제가 발생했다고 밝혔다. 일본 기술 전문매체 IT미디어뉴스는 최근 나사를 인용해 보이저 1호에 탑재된 3대의 컴퓨터 중 하나인 '플라이트 데이터 시스템(Flight Data System·FDS)'에서 문제가 발생했다고 보도했다. 플라이트 데이터 시스템은 관측 장치 및 기타 과학 장비에서 수집한 데이터와 탐사기의 상태에 관한 데이터를 수집하고, 이러한 데이터를 하나의 패키지로 묶어 '텔레메트리 변조 장치(Telemetry Modulator Unit·TMU)'를 통해 지구로 전송한다. 최근 TMU가 1과 0의 반복 패턴을 전송했다. 보이저 팀의 조사에 따르면 탐사기는 지구에서 보낸 명령을 수신하고 실행하고 있지만, 플라이트 데이터 시스템이 텔레메트리 변조 장치와 올바르게 통신하지 못하고 있는 것으로 밝혀졌다. 팀은 플라이트 데이터 시스템을 다시 시작하고 문제 발생 전의 상태로 되돌리려고 시도했지만, 여전히 유용한 데이터는 전송되지 않고 있다고 한다. 1977년 발사된 보이저 1호는 45년 넘게 우주를 탐사해 온 역사상 가장 오래 운용 중인 탐사선이다. 캄퓨터 오작동 문제 해결에는 '현재 발생한 문제를 예상하지 않았던 엔지니어가 쓴, 몇십 년 전의 원래 문서를 참조해야 하는 작업'이 필요한 것으로 알려졌다. 그러나 새로운 명령이 탐사선의 작동에 어떤 영향을 미칠지를 조사해야 하기 때문에 문제 해결을 위한 계획 수립에는 몇 주가 걸릴 것으로 예상하고 있다. 현재 보이저 1호는 지구에서 240억km 이상 떨어진 곳에 있으며, 지구에서 가장 먼 위치에 있는 인공물로 알려져 있다. 지구에서 보낸 명령이 보이저 1호에 도달하는데는 왕복으로 22.5시간이 걸리기 때문에, 엔지니어가 명령을 보내고 결과를 확인하기까지 총 45시간이 필요하다고 한다. 나사는 "보이저 1호의 문제 해결을 위해 최선을 다하고 있다"고 밝혔으며, 엔지니어들이 몇 주 내에 해결책을 찾을 것으로 기대하고 있다. 이번 문제로 보이저 1호의 탐사 활동에 차질이 빚어질 수 있다는 우려가 나오고 있다. 하지만 미국 항공우주국은 "데이터 전송이 재개될 때까지 탐사 활동을 지속할 계획"이라고 밝혔다. 보이저 1호는 1977년 9월 5일 미국 플로리다 케이프 커내버럴 공군기지에서 발사됐다. 목성에 도착한 후, 태양계를 가장 먼저 벗어나며 총 거리 240억km를 기록하는 등 '지구에서 가장 멀리 날아간 탐사선'이다.
-
- 산업
-
NASA, '보이저 1호' 컴퓨터 오작동…데이터 전송 중단
-
-
달 뒷면서 발견된 네모난 구조물⋯외계인 하우스?
- 중국 달 탐사선 '창어 4호'에 실린 로버 '위투 2호(Yutu-2, 玉兔2号)'가 달 뒷면에서 정체불명의 네모난 구조물을 발견해 이목을 끌고 있다. 과학 기술 전문 매체 기즈모도 일본어판은 최근 중국의 달 탐사선 창어 4호에 실려온 위투 2호(영어 The rover Jade Rabbit 2·로버 제이드 래빗 2호)가 달 반대편에서 신비한 사각형 물체를 발견했다고 보도했다. 이 매체는 이 구조물은 폰 카르만(Von Kármán) 분화구 너머 약 80m 떨어진 지평선에서 발견했으며 ‘신비한 오두막(Mystic Hut, 미스틱 헛)’으로 명명돼 많은 대중의 관심을 끌었다고 전했다. 이 구조물은 지구에서 보이지 않는 달의 저편에 있기 때문에 인지 능력이 있는 지적인 생명체에 의한 UFO 기지인지, 아니면 영화 2001: 스페이스 오디세이에서 본 모놀리식 물체인지 상상을 자극하고 있다. 그러나 중국 우주 프로그램을 취재하는 저널리스트 앤드류 존스는 "사진만으로는 알 수 없다"며 "분명 조사해야 할 부분이지만, 기념물이나 외계인에 관한 것은 아니다"라고 말했다. 존스는 2013년 12월 창어 3호(嫦娥3号)의 임무에서 본 것처럼, 운석의 충돌로 융기한 큰 암석일 것이라는 현실적인 추측을 내놓고 있다. 실제로 이 구조물의 정체로 가장 가능성이 높은 것은 바위인데, 유투 2호가 탐사 활동 중인 폰 카르만 분화구는 지름 180km에 이르는 충돌 분화구로 뽀죡한 바위들이 많고, 꽤 많은 암석 덩어리 조각들이 있는 것으로 알려졌다. 중국은 2007년에 창어 1호, 2010년에 창어 2호, 2013년에 창어 3호를 발사했다. 2019년 발사된 창어 4호에는 창어 3호와 달리 네덜란드의 저무선주파수 탐지기, 독일의 달 표면 뉴트론과 방사선량 탐지기, 스웨덴의 중성원자 탐지기, 사우디아라비아의 소형 광학 이미징 탐지기 등 4대 과학 탑재체를 탑재했다. 이 구조물은 지난 2023년 11월, 달 뮛면 탐사 미션 36일째 발견됐다. 중국 국가항천국(CNSA) 로버팀은 향후 유투 2호를 분화구 등 장애물을 피하면서 2~3일 후(지구 2~3개월 후)에 이 물체의 정체를 더 가까이서 조사할 것으로 알려졌다. 한편, 지난 2019년 1월 중국의 달 탐사선 ‘창어 4호(嫦娥四號)’가 지구에서 보이지 않는 달의 뒷면에 성공적으로 착륙해 본격적인 탐사에 들어갔다. 인간이 달 뒷면에 착륙한 것은 창어 4호가 처음이다. 탐사 초기 달과 태양계에 관한 중요한 단서를 제공할 것으로 기대를 모았다. 창어 4호는 2020년에는 달 암석과 흙을 지구로 가져왔고, 2021년에는 착륙선과 궤도선, 탐사 로버를 동시에 화성에 안착시켰다. 중국은 2022년에는 독자적으로 달 우주정거장까지 건설했다. 중국은 현재 중국 국가 우주국가운영위원회(CNSA)를 통해 달 우주정거장 프로젝트를 진행 중이다. 이 프로젝트는 '톈궁(Tiangong)'라고 불리는 달 정거장을 구축하는 것을 목표로 하고 있다. 이는 중국의 우주 탐사 및 연구 노력의 일부다. 중국이 단독 건설하는 우주정거장 톈궁은 길이 37m, 무게 90t으로 현재 미국과 러시아 등이 공동 운영하는 국제우주정거장(ISS)의 3분의 1 정도 크기에 해당한다. 중국은 톈궁 건설이 완료되면 향후 10년 동안 매년 두 차례 유인 우주선을 발사해 우주 비행사들이 정거장에 머물며 과학실험을 수행하도록 할 예정이다.
-
- 산업
-
달 뒷면서 발견된 네모난 구조물⋯외계인 하우스?
-
-
입자물리학, 양자 우주 탐사 위한 10개년 계획 공개
- 입자 물리학 프로젝트 우선 순위 지정 패널(Particle Physics Projects Prioritization Panel·P5)은 최근 향후 5년에서 10년 간의 연구 자금 지원에 대한 권장 사항을 담은 상세한 보고서를 발표했다. 입자물리학은 기본입자의 특성과 상호작용을 탐구하는 물리학의 한 분야이다. 이 권고안은 뮤온, 중성미자, 암흑물질, 힉스 입자 등의 연구를 포함하고 있으며, 비록 구속력은 없지만 미국 입자 물리학 커뮤니티의 의견을 반영한다. 이는 물리학 연구 분야에서 가장 창의적인 아이디어 중 일부를 제시하는 것으로, 해당 분야의 발전 방향을 제안하고 있다. 인터넷 포럼 빅씽크(Big Think)는 최근 보도를 통해 미국 입자 물리학 커뮤니티가 다년간의 검토를 거쳐 향후 5년에서 10년간의 연구 비전을 발표했다고 전했다. 이들은 다양한 프로젝트들이 자금을 지원받을 경우, 연구자들이 자연의 법칙을 더 깊이 이해하는 데 크게 기여할 수 있을 것이라고 강조했다. 이번 권고안은 '양자 우주 탐사: 입자 물리학의 혁신과 발견을 위한 길'이라는 제목의 보고서에서 발표됐다. 이 보고서는 고에너지 물리학 자문 패널(HEPAP)의 하위 패널인 입자 물리학 프로젝트 우선순위 지정 패널(P5)에 의해 작성됐다. 이 권고안은 미국 에너지부 과학국과 국립과학재단 등 자금 지원 기관에 제출되어 향후 10년간의 자금 지원 결정을 안내하는 데 사용될 예정이다. 입자 물리학자들은 실험실에서 달성 가능한 최극단의 조건에서 물질의 거동을 연구한다. 이들은 양성자와 전자와 같은 아원자 입자를 거의 광속에 가까운 속도로 가속시키고, 크고 강력한 입자 가속기를 사용하여 이들을 충돌시킨다. 세계에서 가장 강력한 가속기를 사용하는 과학자들은 약 섭씨 7조도에 달하는, 상상하기 어려운 극도의 고온에 도달할 수 있다. 이는 태양의 핵심보다도 10만 배 더 뜨겁고, 초신성의 중심보다 약 100배 더 뜨겁다. 빅뱅 직후 1조분의 1초도 안 되는 시점부터 우주 전체에 걸쳐 온도가 균일하지 않았다. 미국 입자 물리학 커뮤니티는 약 5년마다 지난 5년 동안의 진전을 평가한다. 이 정보를 바탕으로, 단기적으로 진전을 이룰 가능성이 높은 연구에 우선 순위를 둔다. 커뮤니티는 예산, 필요한 기술의 존재 여부 및 개발 상황과 같은 실질적인 사항을 고려해야 한다. 과학적 영향력도 중요한 고려 대상이다. P5와 HEPAP는 모두 어떤 프로젝트를 추진해야 할지에 대한 권고를 제시하는 자문 및 정부 자금 지원 기관에 불과하다. P5 보고서는 다양한 규모와 영향력을 가진 프로젝트를 권장한다. 이 중 더 큰 프로젝트 중 하나는 우주의 우주 마이크로파 배경을 연구하기 위한 4세대 노력이다. 이 마이크로파는 빅뱅 이후 남은 가장 오래된 탐지 가능한 잔해로, 초기 우주의 모습을 직접 관찰할 수 있게 해 준다. 또 다른 주요 프로젝트는 세계적 수준의 중성미자 연구 프로그램을 강화하기 위해 페르미랩(Fermilab) 가속기 단지를 업그레이드하는 것이다. 페르미랩은 미국의 주요 입자물리학 연구소로, 지구 전체를 통과할 수 있는 드물게 상호작용하는 중성미자의 행동을 연구하기 위해 특별한 노력을 기울이고 있다. 중성미자 연구는 우주가 왜 물질로만 보이는지에 대한 해답을 찾는 데 중요한 역할을 할 수 있으며, 우리가 가진 최고의 이론은 반물질도 동등하게 존재해야 한다고 가정한다. P5 보고서는 또한 일반 물질보다 약 5배 더 널리 퍼져 있을 것으로 추정되는, 형태가 알려지지 않은 암흑물질을 찾기 위한 3세대 실험을 권장하고 있다. 만약 암흑물질이 실제로 존재한다면, 그것은 거의 상호작용 없이 지구를 통과할 것으로 예상된다. 이러한 이론적 형태의 물질을 탐지하기 위해서는 집중적인 연구 노력과 첨단 기술이 필요하다. 보고서는 또한 미국이 유럽이나 아시아에서 개발될 힉스 입자에 대한 심층 연구를 수행할 미래의 가속기 프로젝트에 참여하는 것을 권장한다. 이는 2012년에 발견된 힉스 입자가 다른 아원자 입자에 질량을 부여하는 역할을 한다는 것을 더 상세히 연구하는 데 중요하다. 또한, 고에너지 뮤온 충돌기의 개발 가능성을 탐구하는 것도 야심 찬 제안 중 하나다. 뮤온은 전자보다 무겁고, 빠르게 붕괴하는 특성을 가지고 있다. 뮤온 충돌기를 만들기 위해서는 연구자들이 뮤온을 생성하고 포획한 후, 매우 짧은 시간 내에 가속하고 충돌시켜야 한다. 이러한 시설의 구현 가능성은 아직 확실하지 않지만, 국가 가속기 과학 커뮤니티가 협력하여 이를 확인하는 것이 중요하다. 더 적당한 가격의 미래 시설에는 아이스큐브(IceCube) 감지기의 업그레이드가 포함된다. 아이스큐브는 남극 대륙의 입방 킬로미터 규모의 얼음을 활용하여, 현재까지 발견된 가장 강력한 에너지를 가진 우주 중성미자를 포함해 우주 중성미자를 연구한다. 이러한 연구는 초신성, 중성자별 충돌, 거대한 블랙홀 주변에서 가속되는 물질과 같은 격렬한 천문학적 현상에 대한 중요한 통찰력을 천문학자들에게 제공할 수 있다. 2세대 아이스큐브는 10배 더 많은 얼음을 사용하여 훨씬 더 정밀한 측정이 가능하다. P5 위원회의 권고안은 구속력은 없지만, 미국 입자물리학 커뮤니티의 판단을 반영하고 있다. P5 소집 전에는 수천 명의 물리학자들이 스노우매스 프로세스(Snowmass Process)를 통해 함께 작업했다. 여러 해에 걸쳐 이들은 최고의 아이디어를 제안하고, 이에 대한 토론을 위해 대규모 회의에 모였다. 토론, 비평 및 개선을 거쳐 스노우매스의 제안은 자연 법칙에 대한 우리의 이해를 향상시키는 가장 창의적인 아이디어 중 일부를 제시한다. P5 위원회는 스노우매스의 제안을 검토하여 일부는 개선하고, 나머지는 자금 지원 기관에 제출할 예정이다. 이 과정의 다음 단계는 미국 DOE(에너지부) 및 NSF(국립과학재단)와 같은 기관들이 국제적 차원의 협력을 고려하고 재정적 실제 상황을 반영하는 것이다. 2024년이 되면 미국 입자물리학 연구의 미래 방향이 더욱 명확해질 것으로 기대된다. 반면, 한국의 경우 연구 지원금이 끊기면서 연구진이 어려움을 겪고 있다. 한국의 연구팀은 우주에서 가장 높은 에너지를 가진 것으로 알려진 우주선(cosmic ray) 관측에 성공한 '텔레스코프 어레이(TA) 코퍼레이션' 국제 공동 연구에 참여 하고 있었다. 박일흥 성균관대 물리학과 교수가 이끄는 연구팀은 지난 연구 최종 평가에서 최우수 등급을 받았음에도 불구하고 한국연구재단의 우수연구자교류지원사업에서 탈락하여 연구 중단 위기에 직면했다. 이 연구팀이 관측하는 우주선은 우주공간에서 지구로 끊임없이 도달하는 다양한 입자와 방사선으로, 이를 통해 암흑물질을 비롯한 미지의 우주 구성물질을 규명하는 데 중요한 역할을 할 수 있다. 그러나 아쉽게도 2023년 1월, 연구비 확보의 불확실성으로 인해 박 교수 연구팀의 연구가 중단됐다. 결과적으로 한국 연구팀은 최소 1~2년 동안 TA 코퍼레이션 국제 공동 연구에 기여할 수 없게 됐다.
-
- 산업
-
입자물리학, 양자 우주 탐사 위한 10개년 계획 공개
-
-
NASA 프시케, 8주간 성공적 임무 수행
- 미국항공우주국(NASA)의 프시케(Psyche) 탐사선이 순항 중이다. 지난 2023년 10월 13일 지구를 떠난 후 8주 동안 과학 장비의 전원을 켜고 데이터를 지구로 전송하고 전기 추진기로 심우주 기록을 세우는 등 성공적인 작업을 차례로 수행했다. 프시케는 이미 지구에서 2,600만km 떨어져 있으며 2029년에 화성과 목성 사이에 있는 주 소행성대에 있는 소행성 프시케(Psyche)에 도착할 예정이라고 학술지 사이언스 어드밴스(Science Advances)가 보도했다. 이미지 장비, 정상 작동 확인 프시케의 이미지 장비는 물고기자리 별자리의 별장 내에서 총 68개의 이미지를 캡처했다. 이미지 팀은 데이터를 사용해 적절한 명령, 원격 측정 분석 및 이미지 보정을 확인했다. 애리조나 주립대학교의 프시케 이미지 장비 책임자인 짐 벨(Jim Bell) 교수는 "이 초기 이미지는 단지 시작을 알리는 것일 뿐"이라며 "이 정교한 장비를 설계하고 운영하는 팀에게 첫 번째 빛은 스릴이다"라고 밝혔다. 이어 "우리는 이와 같은 별 이미지가 포함된 카메라를 확인하기 시작해 2026년에 탐사선이 비행하는 동안 화성의 테스트 이미지를 촬영할 것"이라며 "마지막으로 2029년에 우리는 목표 소행성 프시케(Psyche)의 가장 흥미로운 이미지를 얻게 될 것이며, 이 모든 영상을 대중과 공유하기를 기대한다"고 말했다. 이미지는 여러 색상 필터를 통해 사진을 찍으며, 이 필터는 모두 초기 관찰에서 테스트됐다. 필터를 통해 팀은 인간의 눈에 보이는 빛과 보이지 않는 빛의 파장의 사진을 사용해 금속이 풍부한 소행성 프시케의 구성을 결정하는 데 도움을 줄 것으로 보인다. 자력계, 소행성 형성 과정 규명에 기여할 듯 프시케는 임무 초기인 10월 말에 자력계의 전원을 켰다. 자력계는 소행성이 어떻게 형성되었는지 결정하는 데 도움이 되는 중요한 데이터를 제공할 것으로 기대된다. 프시케는 태양 폭발을 감지하는 등 예상치 못한 선물도 안겼다. 팀은 탐사선이 소행성으로 이동하는 동안 우주 날씨를 계속 모니터링할 예정이다. 자력계 데이터를 통해 팀은 소행성의 자기장이 매우 작지만 정확하게 감지할 수 있음을 확인했다. 또한 탐사선이 자기적으로 ‘조용함’을 확인했다. 전기 추진기, 심우주 기록 세우다 프시케는 11월 8일 과학 장비를 사용한 모든 작업 중에 4개의 전기 추진기 중 2개를 발사해 깊은 우주에서 홀 효과 추진기를 최초로 사용하는 기록을 세웠다. 또한 일주일도 채 지나지 않은 11월 14일에는 심우주 광학 통신(DSOC)이라는 실험인 탐사선에 내장된 기술 시연을 자체적으로 하는 기록도 세웠다. DSOC는 달 너머 멀리서 광학 데이터를 주고받아 최초의 빛을 얻었다. 이 장비는 거의 1,600만km 떨어진 곳에서 테스트 데이터로 인코딩된 근적외선 레이저를 발사했는데, 이는 광통신의 가장 먼 시연이기도 했다. 중성자 감지센서, 소행성 표면 물질 구성 규명에 기여 프시케 팀은 또한 세 번째 과학 장비인 감마선 및 중성자 분광계의 감마선 감지 구성 요소를 성공적으로 가동했다. 다음으로, 장비의 중성자 감지 센서는 12월 11일 주에 켜질 것으로 예상된다. 이 기능은 팀이 소행성 표면 물질을 구성하는 화학 원소를 결정하는 데 도움이 될 전망이다. 프시케 팀은 "모든 과학 장비가 예상대로 작동하고 있다는 사실에 매우 기쁘다"라며 "이러한 성공은 프시케가 소행성 프시케에 대한 중요한 발견을 할 수 있는 잠재력을 보여준다"고 말했다.
-
- 산업
-
NASA 프시케, 8주간 성공적 임무 수행
-
-
일본, 세계 최대 핵융합로 'JT-60SA' 첫 플라즈마 발생 성공
- 일본이 최근 핵융합 연구의 새로운 이정표를 세웠다. 초전도 자석을 활용해 도넛 모양의 챔버 내에 고온의 플라즈마를 안정적으로 유지하는 새로운 핵융합로 'JT-60SA'가 성공적으로 가동 됐다. 일본의 새 핵융합로 'JT-60SA'는 세계 최대 규모의 융합로로, 프랑스에서 진행중인 국제핵융합실험로(ITER) 프로젝트의 연구를 지원하는 것을 목적으로 한다. 에너지 전문매체 인터레스팅 엔지니어링에 따르면 15년이 넘는 건설 기간과 테스트를 거친 JT-60SA가 지난 2023년 10월 26일, 첫 플라즈마 발생에 성공했다. 플라즈마는 기체가 초고온 상태로 가열되어 전자와 양전하를 가진 이온으로 분리된 상태를 말한다. JT-60SA는 일본의 국립 양자과학기술연구소(QST)가 개발한 핵융합로로, 섭씨 2억도까지 가열된 플라즈마를 약 100초 동안 유지할 수 있었다. 이는 이전의 핵융합로에 비해 상당한 개선으로, 핵융합 반응을 일으키기 위한 충분한 온도와 지속 시간을 달성할 수 있는 가능성을 보여준다. 에너지 핵융합 프로젝트 매니저 샘 데이비스는 "이 기계가 기본적인 기능을 성공적으로 수행했다는 것을 전 세계에 증명한 것"이라고 평가했다. 이 프로젝트는 유럽연합(EU) 기관과 일본 국립 양자과학기술연구소(QST) 간의 협력을 바탕으로 진행되었으며, JT-60SA 및 관련 프로그램을 통해 양 기관은 지속적인 연구 협력을 이어갈 예정이다. 핵융합 작동 방식 핵융합은 태양이 에너지를 만드는 원리와 유사한 방식으로 에너지를 생성한다. 이 과정에서 두 개의 수소 원자핵이 융합해 헬륨 원자핵을 형성하며, 이때 질량의 일부가 에너지로 전환된다. 이 방법은 화석 연료와 같은 전통적인 에너지원에 비해 훨씬 더 청정하고 지속 가능한 대안으로 여겨진다. 핵융합 반응에서는 두 원자핵이 결합하여 더 큰 원자핵을 만들며, 이 과정에서 발생하는 질량 손실이 상당한 에너지를 방출한다. 태양의 중심에서는 핵융합을 통해 수소 원자핵이 헬륨 원자핵으로 변환되며, 이때 방출되는 에너지가 태양의 빛과 열의 원천이 된다. 지구에서도 핵융합을 통해 에너지를 생산할 수 있다. 핵융합로에서는 수소와 중수소를 주입해 융합 반응을 일으키고, 이 과정에서 방출되는 에너지를 전기로 변환해 사용한다. 이를 통해 얻어진 에너지는 청정하고 지속 가능한 에너지원으로, 환경에 미치는 영향이 적은 특징을 가지고 있다. 희귀 동위원소 중수소 사용 연기 JT-60SA는 토카막(Tokamak)이라는 형태의 핵융합로다. 토카막은 핵융합 연구에서 일반적으로 사용되는 디자인으로 도넛 모양의 초전도 자석을 사용하여 플라즈마를 가두는 방식이다. JT-60SA의 첫 번째 플라즈마 실험에서는 희귀 동위원소인 중수소 대신 수소를 사용했다. 중수소는 핵융합 반응을 일으키는 데 더 효율적이지만, 희귀하고 비용이 많이 들기 때문에 충분한 양을 확보하기가 어렵다. QST는 2024년 말부터 중수소를 사용한 플라즈마 실험을 시작할 계획이다. 중수소 사용 실험을 통해 핵융합 반응의 효율성을 높이고, 핵융합로의 안정성을 평가할 예정이다. 중수소 사용의 기대 효과 중수소 사용 실험에서 예상되는 주요 효과는 다음과 같다. 첫째, 중수소는 일반 수소에 비해 핵융합 반응을 더 효율적으로 일으키기 때문에, 중수소를 사용할 경우 핵융합로에서 생성되는 에너지의 양이 증가할 수 있다. 이는 핵융합 반응의 전반적인 효율성을 향상시킬 것이다. 둘째, 중수소는 안정적인 핵 구조를 가지고 있어 핵융합로의 안정성 평가에 기여할 수 있다. 셋째, 중수소를 사용하면 일반 수소에 비해 적은 양으로도 핵융합 반응을 유도할 수 있으므로, 핵융합로의 크기와 운영 비용을 줄일 수 있다. /이러한 특성 덕분에 중수소 사용은 핵융합 기술 발전에 있어 중요한 역할을 할 것으로 기대된다./킬 일본 QST의 향후 계획 QST는 2024년 말부터 중수소를 사용한 플라즈마 실험을 시작할 계획으로 중수소 사용 실험을 통해 핵융합 반응의 효율성을 높이고, 핵융합로의 안정성을 평가할 예정이다. 일본의 국립 양자과학기술연구소(QST)는 2024년 말부터 중수소를 활용한 플라즈마 실험을 시작할 계획이다. 이 실험을 통해 QST는 핵융합 반응의 효율성을 향상시키고 핵융합로의 안정성을 평가하려고 한다. 더 나아가, QST는 중수소 사용 실험을 통해 2030년까지 핵융합로에서 전력 생산에 필요한 핵심 기술을 개발하는 것을 목표로 하고 있다. 이러한 연구와 개발 작업은 핵융합 에너지의 상용화를 향한 중요한 단계로, 장기적으로는 지속 가능하고 청정한 에너지원의 확보에 기여할 것으로 기대된다. 일본은 2050년까지 핵융합 에너지 상용화를 목표로 하고 있다. JT-60SA의 성공적인 가동은 이러한 목표 달성에 중요한 기여를 할 것으로 보인다. JT-60SA 성공의 의의 JT-60SA의 성공은 핵융합 에너지의 실현에 한 걸음 더 가까워졌다는 것을 의미한다. JT-60SA는 프랑스에서 건설중인 국제핵융합실험로(ITER, International Thermonuclear Experimental Reactor) 프로젝트를 지원하기 위해 개발됐다. ITER는 핵융합 에너지의 상용화를 목표로 하는 국제 협력 프로젝트다. 주요 참여 국가로는 유럽연합, 미국, 러시아, 중국, 일본, 대한민국, 인도 등이 있으며, 이들 국가들이 자원, 기술, 재정을 공동으로 제공한다. JT-60SA의 데이터는 ITER의 개발에 중요한 역할을 할 것으로 기대된다. ITER의 성공적인 가동은 지구에서 핵융합 에너지를 실용적인 에너지원으로 만드는 데 기여할 것으로 전망된다.
-
- 산업
-
일본, 세계 최대 핵융합로 'JT-60SA' 첫 플라즈마 발생 성공
-
-
국제유가, 낙폭 과대 따른 반발매수 유입에 3거래일 만에 반등
- 국제유가는 9일(현지시간) 낙폭과대에 따른 반발매수세 유입에 3거래일만에 반등했다. 국제유가는 여전히 3개월래 최저치 수준이다. 이날 로이터통신 등 외신들에 따르면 미국 뉴욕상업거래소(NYMEX)에서 미국 서부텍사스산원유(WTI) 12월물 가격은 전거래일보다 0.54%(41센트) 오른 배럴당 배럴당 75.74달러에 마감했다. 이달들어 WTI는 6.5% 떨어졌다. 북해산 브렌트유 1월물은 0.5%(42센트) 상승한 배럴당 79.96달러에 거래됐다. 국제유가가 소폭 상승한 것은 전일 급락에 따른 반발 매수 때문으로 분석된다. 판공셩 중국 인민은행 행장이 올해 경제성장률 목표인 5%를 달성할 수 있다고 발언한 것도 유가를 끌어올린 요인으로 꼽힌다. 하지만 국제 유가는 최근 중국의 경제 지표 부진 등 전 세계 경기가 다시 둔화할 가능성에 하락 압력을 받고 있다. 이스라엘과 하마스 간 전쟁 이슈에도 공급에 대한 차질이 제한적일 것이라는 전망에 수요 둔화 우려가 더해지며 하반기 공급 과잉에 대한 우려는 더욱 커졌다. 이스라엘이 이날 가자지구에서 일시적 교전 중지에 합의했다는 소식이 나왔으나 정식 휴전은 아닌 것으로 알려지면서 유가에 미치는 영향도 제한됐다. 이날 백악관은 이스라엘이 민간인 도피를 돕기 위해 가자지구 북부에서 일시적으로 매일 4시간씩 교전을 중지하는 데 동의했다고 밝혔다. 조 바이든 미국 대통령은 양측 간 전면 휴전이 이뤄질 가능성은 없다고 밝혔다. 베냐민 네타냐후 이스라엘 총리도 인질 석방 없는 휴전은 없다는 입장을 이날 재차 확인했다. 이날 제롬 파월 연방준비제도(연준·Fed) 의장이 추가 긴축 가능성을 열어두면서 달러화 가치가 상승한 점도 유가 상승을 제한했다. 주요 6개 통화에 대한 달러화 가치를 보여주는 ICE달러지수는 전날보다 0.46% 오른 105.860 근방에서 움직였다. 파월 의장은 인플레이션이 둔화하고 있다는 점은 환영할 만하지만 인플레이션을 목표치로 되돌릴 만큼 충분히 제약적인 정책 기조를 달성했는지는 여전히 확신하지 못하고 있다고 밝혔다. 파월의장은 추가 금리 인상 가능성을 열어두면서 여전히 갈 길이 멀다는 입장을 유지했다. S&P글로벌 커머더티 인사이츠의 짐 버크하드 원유 시장 담당 부사장 겸 리서치 대표는 이스라엘과 하마스 간의 전쟁 이전보다는 공급 차질 위험이 크지만 원유 시장의 펀더멘털상 공급 위기가 임박했다고 보이지는 않는다고 분석했다. 그는 "이스라엘과 하마스 간의 전쟁은 중동의 정치적 흐름을 분명히 바꿨으나 전쟁이 억제되는 한 석유시장의 펀더멘털에 미치는 영향은 제한적일 것"이라고 말했다.
-
- 산업
-
국제유가, 낙폭 과대 따른 반발매수 유입에 3거래일 만에 반등