검색
-
-
플라스틱 먹는 '효소' 연구 활성화⋯고비용 과제
- 플라스틱을 먹는 효소가 개발이 활성화돼 폐플라스틱 처리에 힘을 보탤 전망이다. 환경오염 주범으로 꼽히는 지구를 뒤덮은 폐플라스틱을 재활용하기 위해 수 많은 연구팀들은 다양한 해결책을 찾고 있다. 특히, 벌집나방 애벌레와 같은 생물학적 자원 활용은 소각이나 매립보다 환경친화적으로 플라스틱을 처리하는 유용한 도구가 될 수 있다. 미국 생화학·분자 생물학 매거진 'ASBMB 투데이'에 따르면, 스페인 생물학자 페데리카 베르토치니(Federica Bertocchini)는 약 10년 전 벌집나방의 애벌레가 플라스틱의 일종인 폴리에틸렌을 먹어 치운다는 사실을 발견했다. 폴리에틸렌은 플라스틱 용기 등을 만드는 데 흔하게 이용되지만, 잘 분해 되지 않는 특성이 있어 폐기가 어렵다는 단점이 있다. 최근 과학자들은 매립지나 자동차폐차장 등을 찾아다니면서 플라스틱을 분해할 수 있는 유기체를 찾고 있다. 이를 채취해 플라스틱의 구성 요소를 회수하는 효율적인 방법을 찾길 기대하고 있는 것. 이후 새로운 재료를 조합해 ‘무한 재활용’이 가능하도록 한다는 계획이다. 영국 포츠머스대 효소혁신센터 존 맥기한(John McGeehan)은 "놀랍게도 전 세계의 수백 개 그룹과 수천 명의 과학자들이 이 문제를 연구하고 있다"고 설명했다. 폐플라스틱, 환경오염 주범 플라스틱은 1950년대 들어 본격적으로 생산됐고 생산량도 급증했다. 매년 약 4억6000만 톤에 가까운 플라스틱이 생산되는 것으로 추정된다. 하지만 이렇게 생산된 플라스틱은 아쉽게도 소각하거나 매립지에 묻히고 있다. 플라스틱은 지구상의 심해나 극지방을 비롯해 비를 타고 내려오거나, 심지어 태반이나 모유, 사람의 혈액에서도 흔적이 보고 되는 등 우리 눈에 보이지 않는 구석구석까지 침투했다. 이처럼 플라스틱은 건강과 환경 문제와 직접 연결되어 있다. 그럼에도 수요는 줄어들지 않고 있으며, 생산량은 오는 2050년까지 10억 톤을 넘길 것으로 예상된다. 플라스틱은 가볍고, 형태를 잡기 쉬운 특성 때문에 이를 대체할 마땅한 소재가 없기 때문이다. 현실적으로 모든 플라스틱을 교체하거나 재활용할 수 없다는 점에서 차선책은 덜 만드는 것이다. 또 약 9%에 불과한 전 세계 플라스틱 재활용률을 높이는 것이 과제다. 하지만, 재활용 과정에서 유해한 화학물질을 흡수할 수 있으며, 수천 가지의 플라스틱 유형에는 각각 고유한 구성과 화학 첨가물이나 착색제가 들어 있어 대다수는 재활용할 수 없는 것이 문제다. 효소 재활용 회사 버치 바이오사이언스(Birch Biosciences) 공동 창립자이자 합성 생물학자인 요한 커스(Johan Kers)는 "우리는 심각한 플라스틱 순환성 문제를 안고 있다"며 "알루미늄과 종이 등은 재활용할 수 있지만 플라스틱 재활용은 힘들다"고 지적했다. '자연'에서 착안한 '효소' 주목 캘리포니아대학교 버클리 캠퍼스 고분자 과학자 팅 쉬(Ting Xu)는 "효소를 통한 접근법은 폐플라스틱을 폐기물의 원천이 아닌 귀중한 자원으로 전환시킬 수 있다"고 설명했다. 이미 1970년대에 플라스틱을 먹는 효소에 대한 연구가 시작됐다. 그러다가 2016년 일본 과학자팀이 사이언스 학술지에 플라스틱을 먹는 획기적인 박테리아의 새로운 변종에 대한 논문을 발표하면서 효소 연구에 다시 불을 지폈다. 교토공과대학 미생물학자 코헤이 오다(Kohei Oda)가 이끄는 연구팀은 이데오넬라 사카이엔시스(Ideonella sakaiensis) 201-F6이라고 불리는 미생물이 음료수병과 섬유에 널리 사용되는 폴리에스터인 PET 플라스틱을 주요 에너지와 식품 공급원으로 사용한다는 사실을 발견했다. 그 이후로 과학자들은 독일 라이프치히 묘지의 퇴비 더미, 그리스 하니아(Chania) 해변 등 전 세계 여러 장소에서 플라스틱을 먹는 미생물을 발견했다. 그리고 바다, 북극 툰드라 표토, 사바나 및 다양한 숲을 포함한 환경에서 자유롭게 떠다니는 DNA에서 발견된 2억 개 이상의 유전자에 대한 대규모 분석을 통해 플라스틱 분해 가능성이 있는 3만 개의 다양한 효소가 있다는 것을 찾아냈다. 맥기한은 콜로라도를 포함해 다른 지역의 국립 재생 에너지 연구소(National Renewable Energy Laboratory)의 동료들과 함께 이데오넬라 사카이엔시스의 플라스틱 섭취 능력을 담당하는 두 가지 효소를 조작해 성능을 높이고 연결해 플라스틱을 분해할 수 있는 효소 칵테일을 만들었다. 그 결과 이전보다 6배 더 빠르게 PET를 분해할 수 있었다. 최근 과학자들은 인공지능(AI)을 사용해 플라스틱을 더 빠르게 해중합[해중합은 유색 페트(PET)병이나 폴리에스터 섬유 등 플라스틱 분자를 화학적으로 분해하는 기술]하고, 표적 기질에 대해 덜 까다롭고, 더 높은 온도를 견딜 수 있는 효소를 찾아내고 있다. 초기 데이터에 따르면 생물학적 효소를 이용한 재활용은 플라스틱을 새로 만드는 것보다 탄소 배출량이 더 적은 것으로 알려졌다. 탄소와 산소가 얽혀 있는 PET 재활용 플라스틱은 생물학적 재활용에 가장 적합하다. 영국 포츠머스 대학교의 분자 생물물리학자 앤디 픽포드(Andy Pickford)는 이 물질이 '일종의 아킬레스건'이라고 말했다. PET은 탄소가 산소와 얽혀 있다. 직물과 음료수병에서 흔히 발견되며 매년 생성되는 플라스틱의 약 5분의 1을 차지하는 PET는 생물학적 재활용 업체들 사이에서 인기 있는 대상이자 상업적으로 이용 가능한 제품이기도 하다. 실제로 프랑스 회사 카르비오(Carbios)는 연간 5만 톤의 PET 폐기물을 재활용하는 것을 목표로 2025년 프랑스 북부에 바이오 재활용 공장을 열 계획이다. 호주에 본사를 둔 삼사라에코(Samsara Eco)는 2024년 멜버른에 PET에 초점을 맞춘 2만 톤 규모의 재활용을 계획하고 있다. 플라스틱 유형을 연구하고 있는 픽퍼드(Pickford)는 "PET와 유사한 화학적 구성을 가진 폴리아미드와 폴리우레탄도 본질적으로 효소에 의해 분해되기 쉬워 효소 재활용의 유망한 대상"이라고 말했다. 삼사라에코는 합성 폴리아미드의 일종인 나일론을 연구하고 있다. 지난 5월 버려진 옷으로 '세계 최초의 무한 재활용' 나일론-폴리에스테르 의류를 생산하기 위해 인기 운동복 브랜드 룰루레몬(Lululemon)과 다년간의 파트너십을 발표했다. 아직은 연구가 미진하지만 연구원들은 폴리우레탄을 분해하는 미생물에 대해서도 연구 중이다. '슈퍼웜' 유충 활용 기술 향상 효소 재활용은 순수 탄소 골격을 가진 플라스틱의 경우 전망은 흐리다. 비닐봉지를 만드는 데 사용되는 폴리염화비닐(PVC), 폴리비닐알코올(PVA), 폴리스티렌 및 폴리에틸렌을 포함하는 제품은 기름기가 많아 투입된 효소를 붙잡을 수 없기 때문이다. 그런데 페데리카 베르토치니는 데메트라(Demetra)와 세레스(Ceres)라는 이름을 붙인 왁스 벌레 타액에서 플라스틱 분해 효소를 확인했다. 이 효소는 탄소 골격에 산소를 주입해 실온에서 몇 시간 내에 폴리에틸렌을 분해하는 것으로 나타났다. 폴리스티렌을 연구하는 호주 퀸즈랜드 대학교의 미생물학자 크리스 린케(Chris Rinke) 박사는 '슈퍼웜(Superworm)'이라고 불리는 미국왕딱지벌레(Zophobas morio) 유충을 발견했다. 플라스틱을 기계적으로 작은 조각으로 파쇄하고 산소 원자를 투입해 '노화'한 다음 특수 기술을 사용해 해당 조각을 해중화하는 두 가지 과정을 통해 폴리스티렌을 분해한다. 린케 박사는 "곤충에서 발견되는 효소가 열쇠를 쥐고 있을 수 있다"고 말했다. 반면, 일부 전문가들은 생물학적 재활용 전망에 대해 낙관적이지 않다. 픽포드는 "아직 폴리에틸렌, 폴리프로필렌, PVC와 같은 폴리올레핀이 대규모 효소 재활용을 위한 현실적인 목표가 될 것이라고 확신하지 못했다"며 "이런 경우 재활용이 가능한 새로운 플라스틱을 만드는 방향으로 전환하는 것이 더 현실적"이라고 말했다. 한국의 경우, 2020년 포스텍의 차형준 교수 팀은 '산맴돌이거저리(Plesiophthalmus davidis)'라고 불리는 검은 딱정벌레의 유충에서 폴리스티렌 소화 능력을 부여한 장내 세균인 '세라티아 폰티콜라(Serratia Fonticola)'에 대해 보고했다. 또 다른 그룹은 PLA를 포함한 특정 유형의 생분해성 플라스틱을 분해할 수 있는 두 가지 저온 적응성 곰팡이 균주[고산 토양과 북극 해안에서 분리된 라크네룰라(Lachnellula)와 네오데브리에시아(Neodevriesia)]를 발견했다고 보고했다. 하지만 효소를 활용하는 프로세스를 확장하는 것이 얼마나 쉬울지, 그리고 확장된 환경이 어떤 모습일지는 불분명하다. 한편, UN은 오는 2024년 세계 최초의 글로벌 플라스틱 오염 조약을 만들 예정이다. 플라스틱 오염을 억제하는 것을 목표로 하며, 특히 재활용을 더 쉽게 하기 위해 플라스틱 제품의 생산 과 설계에 대한 새로운 규칙을 도입할 것으로 예상된다. 다음 해에는 워싱턴과 캘리포니아, EU에서 플라스틱 용기와 음료수병 재료의 25%를 재활용 플라스틱으로 규정하는 법률이 시행될 예정이다. 그러나 추가적인 변화와 인센티브가 없다면 이러한 노력은 물거품이 될 수도 있다는 지적이다. 화석 연료의 저렴한 가격으로 인해 순수 플라스틱이 저렴하게 유지되는 한 생물학적 효소 활용은 비용 면에서 경쟁력이 없기 때문이다. 맥기한은 "과거 석유 및 가스 산업이 혜택을 누렸던 방식으로 PET 또는 기타 생분해성 공정에 인센티브를 부여해야 한다"며 "생물학적 재활용 기술이 향상되면 새로운 플라스틱과 경쟁할 수 있을 만큼 비용면에서 효율적일 것"이라고 강조했다. 그럼에도 그는 "효소가 전체 플라스틱 문제를 해결하지 못하지만 이제 막 첫 걸음을 뗐다"며 향후 발전에 기대감을 드러냈다.
-
- IT/바이오
-
플라스틱 먹는 '효소' 연구 활성화⋯고비용 과제
-
-
달, 고대 얼음 없다..."달 탐사 전략 수정"
- 달의 영구음영 지역에 존재하는 것으로 알려진 얼음이 탄생 초기에 생성된 '고대 얼음'이 아니라는 연구 결과가 공개됐다. 달의 영구음영 지역(permanently shadowed regions, PSR)은 달의 남극과 북극 등 햇빛이 전혀 들지 않는 영원한 음지를 말한다. 과학 기술 전문 매체 인터레스팅엔지니어링에 따르면 행성과학연구소의 새로운 연구 결과, 달의 얼음이 우리가 알고 있는 것보다 훨씬 '젊다'는 사실이 밝혀졌다. 이번 발견으로 달 탐사 전략이 크게 수정될 전망이다. 행성과학연구소의 노버트 쇼르호퍼 선임 연구원이 이끄는 연구팀은 최근 '사이언스 어드밴스(Science Advances)' 학술지에 발표한 논문에서 달의 영구음영 지역(PSR)에 저장된 얼음은 약 34억년 전에 형성된 것으로 기존 추정치인 45억년보다 훨씬 '젊다'는 연구 결과를 공개했다. 쇼르호퍼 박사는 "이번 연구 결과로 달의 지질학적 이해뿐만 아니라 얼음 발견 예측에 대한 전략도 크게 수정될 것"이라고 말했다. 특히, 이 얼음은 달에서의 인간 생명 유지와 연료 생산 자원으로의 활용 가능성 때문에 많은 주목을 받고 있다. 달은 지구로부터 점점 멀어지면서 중요한 스핀 축 방향의 변화를 겪었다. 이 변화 이후에 영구적으로 그림자가 드리운 지역(PSR)이 등장하고 확장됐다. 달의 얼음은 수십억 년에 걸쳐 보존된 것으로 알려져 왔으며, 이로 인해 태양빛에서 가려진 PSR 지역은 여러 탐사 임무의 핵심으로 여겨져 왔다. 그러나 이번 연구 결과는 달 탐사의 궤도를 크게 변경할 필요가 있다는 점이 밝혀졌다. 지난해 발표된 프랑스의 한 연구와도 일치하는 이번 연구 결과는 지구와 달 사이의 거리 변화를 중심으로 진행됐다. 쇼르호퍼 박사는 이에 대한 깊은 통찰을 얻고 즉각 이를 달의 얼음 탐사에 반영하기 위한 조사를 시작했다고 밝혔다. 랄루카 루푸 공동 저자와 논문 작업을 협업한 쇼르호퍼는 지구와 달 사이의 거리 변화 모델을 바탕으로 달의 스핀 축 방향을 추정하고 PSR 지역을 정확하게 매핑했다. 11억년 '젊은' PSR 얼음 일반적으로는 달이 45억 년 전 초기에 혜성과 화산 활동으로 물이 생기거나 수증기를 내뿜었다고 믿어져 왔다. 그러나 이 연구에서는 PSR이 실제로는 약 34억 년 전에 형성되기 시작했다는 사실을 밝혀냈다. 쇼르호퍼는 "현재 극지방에서 발견되는 물은 달 초기의 물이 아니다. 데이터를 기반으로 PSR의 평균 연령은 최대 18억 년으로 추정된다. 따라서 달에는 실제로 '고대 얼음 저장소'가 없다"라고 강조했다. 또한 2009년에 달의 분화구 관측 및 감지 위성을 통해 발견된 물이 위치한 지점의 PSR은 10억 년보다 더 젊다. 쇼르호퍼는 이것이 긍정적인 발견이라고 지적하며, 젊은 PSR에도 얼음이 있을 가능성이 높다는 것을 시사했다. 한편, 이 연구는 얼음이 풍부하게 있는 것으로 보이는 수성의 극지방에 대한 관심을 증대시키고 있다. 쇼르호퍼는 "수성의 PSR이 오래되었을 것이며, 초기에 물을 포착했을 수 있다. 이것이 두 행성 간의 불일치를 설명할 수 있을 것"이라고 추측했다. 쇼르호퍼의 이번 연구는 NASA의 달 데이터 분석 프로그램 보조금과 태양계 탐사 연구 가상 연구소(SSERVI)의 GEODES 노드 지원을 받아 진행했다. 한국 달 탐사선 '다누리' 한편, 한국 달 탐사선 '다누리'도 달의 영구음영 지역 사진을 전송해 우리나라 달 탐사 위상을 높이고 있다. 다누리가 담은 달의 북극 지역 관측 사진은 지난 8월 7일 공개됐다. 달의 북극 지역에 있는 직경 약 20km의 분화구 에르미트-A는 내부에 영원히 태양빛이 닿지 않는 영구음영 지역을 포함하고 있다. 아울러 다량의 물이 얼음 형태로 존재할 것으로 예상되는 지역이기도 하다. 이외에도 다누리는 지구에서 관측하기 쉽지 않은 남극 지역 대형 분화구 드라이갈스키, 미국 아르테미스 III 계획의 착륙 후보지 중 하나인 아문센 분화구 영역 등의 고해상도 이미지를 담아 달의 민낯을 적극 탐사하고 있다. 이들 사진은 지난 8월 7일 대전 한국항공우주연구원에서 열린 '다누리 발사 1주년 기념식 및 우주탐사 심포지엄'에서 공개됐다. 다누리는 작년 8월 5일 오전 8시 8분 미국 플로리다주 케이프커내버럴 우주군 기지에서 발사된 후, 145일 간의 지구-달 항행을 통해 2022년 12월 27일 달 임무궤도에 진입했다. 이후 약 1개월의 시운전을 거쳐 2월 4일 정상 임무운영에 들어갔다. 다누리는 6개의 탑재체로 달 착륙후보지 탐색, 달 과학연구, 우주인터넷기술 검증 등 과학기술 임무를 수행 중이다. 지난 3월에는 우리나라 최초로 달 뒷면 촬영 사진을 전송하기도 했다. 지난 6월 다누리는 잔여 연료량과 본체 영향성 분석을 거쳐 임무운영기간을 2025년까지 연장했다.
-
- 포커스온
-
달, 고대 얼음 없다..."달 탐사 전략 수정"
-
-
화성 정착지 건설, 최소 인원은 몇명? 연구 결과 공개
- 화성에 인간 정착지를 세우려면 몇 명이 필요할까? 최근 조지 메이슨 대학교의 연구팀은 이 질문에 대한 답을 제시했다. 이 팀의 컴퓨터 시뮬레이션 연구에 따르면, 화성에서 지속 가능한 식민지를 세우기 위해선 최소한 22명의 인원이 필요하다는 결론을 내렸다. 이 연구는 단순히 물자나 기술적인 측면만을 고려한 것이 아니다. 인간의 다양한 성격 유형이 극한의 환경에서 어떻게 작용하는지도 중요하게 고려했다. 유쾌한 성격 유형의 사람이 장기 정착에 더 적합하며, 반면 신경이 예민한 성격을 가진 사람은 화성에서의 적응이 어려울 것이라는 연구 결과도 나왔다. 연구팀은 논문에서 "화성 환경은 매우 척박하며, 생활에 필요한 대부분의 자원들을 현지에서 얻어내야 한다. 그렇기에 식민지의 멤버들은 화성에서 물을 채굴하고, 그 물을 이용해 호흡용 산소나 연료를 제조하는 등의 복잡한 기술을 구사해야 한다"고 강조했다. 사우스뉴스웨스트에 따르면 이 연구에서는 고립된 환경에서의 성격 유형과 그 영향력을 분석하기 위해 잠수함과 북극 탐사, 국제우주정거장, 전시(전쟁 상황) 등 다양한 상황에서의 팀 작업 연구를 참조했다. 한 연구원은 "실제로 화성에서 생활하는 것은 굉장히 어렵다. 그러나 이 연구를 통해, 화성에서의 정착이 가능하다는 것을 알게 됐다. 그리고 그 정착을 위해 필요한 최소한의 인원과 성격 유형을 파악할 수 있었다"라고 평가했다. 이 연구를 통해 화성 탐사와 정착에 대한 인간의 꿈이 한걸음 더 현실로 다가왔다고 볼 수 있다.
-
- 산업
-
화성 정착지 건설, 최소 인원은 몇명? 연구 결과 공개