검색
-
-
[신소재 신기술(31)] 나트륨 전고체 배터리 혁신으로 전기자동차 주행거리 2배 향상 가능
- 일본 과학자들이 현재 전기자동차(EV)의 주행 거리를 두 배 이상 늘릴 수 있는 차세대 충전 배터리로의 전환을 가속화할 수 있는 새로운 프로세스를 발견했다. 인디펜던스는 오사카 메트로폴리탄 대학 연구팀이 수행한 이 연구는 스마트폰부터 전기 자동차까지 모든 것에 사용되는 기존 리튬 이온 배터리에서 더 저렴하고 안전한 고체 나트륨 배터리로의 전환을 촉진하는 데 도움이 될 수 있다고 지난 12일(현지시간) 보도했다. 연구원들은 현재 사용되고 있는 리튬 이온 배터리보다 여러 가지 장점이 있는 고체 상태 나트륨 배터리에 주목했다. 고체 상태 나트륨 배터리 개발의 핵심적인 과제는 양산 제조였다. 이번에 개발된 새로운 공정은 배터리 성능에 중요한 역할을 하는 고체 전해질의 대량 합성에 초점을 맞추고 있다. 전고체 나트륨 배터리는 리튬 이온 배터리보다 훨씬 더 풍부한 재료로 만들어졌지만 지금까지 대량 생산이 어려웠다. 일본 오사카 메트로폴리탄 대학 연구팀은 전도성이 높은 전해질의 대량 합성을 통해 이러한 장애물을 극복할 수 있다고 주장했다. 연구팀은 학교 공식 홈페이지를 통해 "대량 합성으로 이어질 수 있는 공정을 통해 세계에서 가장 높은 나트륨 이온 전도성을 지닌 고체 황화물 전해질과 높은 성형성을 지닌 유리 전해질을 생산한다"고 밝혔다. 이번 연구를 주도한 오사카 메트로폴리탄 대학의 아츠시 사쿠다 교수는 "새로 개발된 공정은 고체 전해질과 전극 활성 물질을 포함한 거의 모든 나트륨 함유 황화물 물질 생산에 유용하다"고 말했다. 사쿠다 교수는 "이 공정은 또한 기존 방식에 비해 더 높은 성능을 발휘하는 소재를 쉽게 얻을 수 있어 향후 전고체 나트륨 배터리용 소재 개발의 주류 공정이 될 것으로 기대한다"고 말했다. 고체 황화물 전해질은 상업적 사용에 필요한 것보다 약 10배 높은 세계 최고 수준의 나트륨 이온 전도성을 제공한다. 리튬 이온 배터리에 사용되는 액체 전해질과 달리, 고체 전해질은 배터리를 떨어뜨리거나 잘못된 방식으로 충전할 때도 화재의 위험이 없다. 이러한 획기적인 기술은 전기차 산업에서 뛰어난 성능, 비용 절감, 지속 가능성 개선을 통해 가장 유망한 기술로 입증될 잠재력을 가지고 있다. 또한 이 기술은 전기차 배터리의 충전 용량을 대폭 개선해 주행거리 불안감을 해소할 수 있다. 일본 자동차 제조업체인 도요타는 전고체 배터리를 사용하면 현재 시판 중인 전기 자동차의 2배가 넘는 거리인 1200km의 주행거리를 제공할 수 있다고 주장했다. 이 새로운 배터리의 충전 시간은 10분 정도로 짧을 수 있다. 이번 연구는 '전고체 나트륨 배터리용 황화물 고체 전해질 합성을 위한 반응성 폴리설파이드 플럭스 Na2Sx 활용'이라는 제목의 논문으로 과학 저널 '에너지 저장 재료(Energy Storage Materials)'와 '무기 화학(Inorganic Chemistry)'에 게재됐다. 전문가들은 "그러나 전고체 상태 나트륨 배터리가 상용화되기 전에 추가적인 연구 개발이 필요하다"고 지적했다. 한편, PR뉴스와이어는 15일(현지시간) 보고서 "배터리 종류(나트륨-황, 나트륨-염), 기술 유형(수용액 및 비수용액), 최종 사용 분야(에너지 저장, 자동차, 산업), 지역(아시아 태평양, 유럽, 북아메리카)별 나트륨 이온 전지 시장 - 2028년까지 전망"을 인용해 전 세계 나트륨 이온 전지 시장은 2023년 5억 달러에서 2028년 12억 달러까지 연평균 성장률(CAGR)이 21.5%에 달할 것으로 예상된다고 전했다. 이 매체는 리튬 이온 배터리 대비 경제성으로 인해 나트륨 이온 배터리 시장 성장이 확대될 것으로 예상된다고 덧붙였다. 이는 풍력 및 태양열과 같은 재생 에너지의 변동성을 해결하기 위한 대규모 에너지 저장 장치에 적합하다는 것. 또한 나트륨 이온 배터리는 일반적인 원소인 나트륨을 사용하기 때문에 지속 가능성이 높은 옵션으로 자리 잡고 있으며, 전 세계적인 환경 영향 저감 노력과 맞물려 시장이 성장할 것으로 전망했다. 그러면서 이 시장의 주요 업체로는 중국의 리튬 배터리 제조기업인 닝보 산산(Ningbo Shanshan Co.)과 장시 정투 신에너지 기술(Jiangxi Zhengtuo New Energy Technology), 일본의 레소낙 홀딩스(Resonac Holdings Co.)와 미쓰비시 화학, 한국의 포스코 퓨처엠(POSCO FUTURE M), 독일의 SGL 카본 등이 있다고 덧붙였다.
-
- 포커스온
-
[신소재 신기술(31)] 나트륨 전고체 배터리 혁신으로 전기자동차 주행거리 2배 향상 가능
-
-
[신소재 신기술(29)] 물 엔진, 역사적 첫 작동! 수소 엔진 능가하는 성능 기록
- 역사상 최초로 움직이는 물 엔진(Water engine·수력 엔진)이 오스트리아에서 개발됐다. 오스트리아의 레이싱 기업 AVL 레이스텍(AVL Racetech)은 물을 주입하는 분사 시스템을 통해 강력한 수소 연소 엔진을 개발했다고 에코뉴스가 전했다. 최근 수소는 경제의 탈탄소화 과정에서 주목받는 대안 에너지원으로 부상하고 있다. 수소 생산에 대한 투자는 전 세계적으로 증가하고 있으며, 스페인의 경우 2022년 1분기에 세계 신규 수소 프로젝트의 20%를 차지했다. 하지만 기존 수소 연소 엔진은 출력 문제가 있었다. 이러한 문제를 해결하기 위해 AVL 레이스텍은 헝가리의 훔브다(HUMDA) 연구소와 협력해 혁신적인 수소 연소 엔진을 개발했다. 이 엔진은 물 분사 시스템을 통해 기존 수소 연소 엔진의 문제점을 개선했다. 이 수소 연소 엔진은 더 나아가 레이싱카에 사용될 가능성도 있다. 물 분사 시스템 통한 성능 향상 AVL 레이스텍은 기존의 물 주입 방식인 PFI(포트 액체 분사)를 사용해 엔진의 공기 흡입 시스템에 물을 주입했다. 이를 통해 부품 손상을 유발할 수 있는 조기 점화를 방지하고 안정적인 연소를 촉진한다. 회사 측은 이는 '린번 엔진(lean-burn engine)'의 잠재적인 단점을 보완할 수 있다고 설명했다. 린번 엔진은 공연비(공기와 연료의 비율)가 일반적인 엔진보다 훨씬 높다. 이는 엔진이 연료 대비 더 많은 양의 공기를 사용해 연소시키는 것을 의미하며, 결과적으로 연료 효율이 개선되고 배출가스 중 일부 오염 물질의 양이 줄어든다. 린번 방식은 특히 질소산화물(NOx) 같은 오염물질의 배출을 줄이는 데 효과적일 수 있으며, 이는 환경에 미치는 부정적 영향을 감소시키는 데 도움이 된다. 하지만 이 기술은 연소 과정에서 고온이 발생할 수 있어, 질소산화물의 생성을 억제하기 위한 추가적인 기술이나 장치가 필요할 수 있다. 린번 엔진은 주로 가솔린 엔진에 적용되지만, 디젤 엔진에서도 유사한 원리의 연소 방식이 사용된다. 수소 연소 엔진의 미래 물 주입 방식인 PFI분사와 같은 개선을 통해 분당 3000~4000회 회전에서 410hp(마력)과 500Nm(뉴터 미터)의 토크를 내는 2리터 수소 엔진이 탄생했다. 이 엔진 리터당 약 205마력(리터당 150kW)의 특정 출력 밀도를 달성했다. 실제 테스트 결과 이 엔진은 하이 레벨 모터 레이싱 대회에서도 경쟁력을 갖출 것으로 예상된다. 모터스포츠 AVL 디렉터이자 전 프로 레이싱 드라이버인 엘렌 로어(Ellen Lohr)는 "H2 레이싱 엔진으로 얻은 결과는 이 기술로 매우 경쟁력 있는 패키지를 제공할 수 있다는 것을 확인시켜 주었다"고 설명했다. AVL 레이스텍은 이번 개발을 통해 모터스포츠의 지속 가능성 확보에도 기여하고자 한다. 이 수소 연소 엔진은 레이싱뿐만 아니라 일반 자동차의 탈탄소화 전환에도 활용될 수 있으며, 수소 에너지의 자동차 산업 활용 가능성을 한층 더 높였다. 이처럼 수소의 잠재력은 지금까지 우리가 가지고 있었던 자동차의 수소 개념을 바꾸고 있다.
-
- 포커스온
-
[신소재 신기술(29)] 물 엔진, 역사적 첫 작동! 수소 엔진 능가하는 성능 기록
-
-
[신소재 신기술(27)] 전고체배터리 스타트업 타이란신에너지, 초고에너지밀도 셀 공개
- 중국의 신재생 에너지 기업 타이란신에너지(太藍新能源·Talent New Energy)가 초고에너지 밀도를 갖춘 새로운 전고체 배터리 셀을 공개했다. 중국 전기차 전문매체 CNEV포스트는 전고체 리튬배터리 스타트업 타이란신에너지(이하 타이란)는 단일 셀 용량이 120Ah이고 실제 에너지 밀도가 720Wh/kg인 자동차 등급 전고체 리튬 금속 배터리 시제품을 세계 최초로 개발하는 데 성공했다고 지난 3일(현지시간) 보도했다. 타이란은 지난 2일 성명에서 이 수치가 리튬 배터리의 단일 셀 용량과 에너지 밀도 부분에서 새로운 업계 기록이라고 밝혔다. 참고로 전기차 제조사 니오(Nio)의 150kWh 반고체 배터리 팩은 베이징 위리온 뉴 에너지 테크놀로지(위리온)의 셀을 사용하며, 용량은 360Wh/kg이다. 니오는 지난달 이 반고체 배터리 팩이 2분기에 출시될 예정이며, 니오 차량에 탑재돼 1회 충전으로 최대 주행 거리(단일 충전 기준)를 1000km 이상으로 늘릴 것이라고 밝혔다. 타이란의 전고체 배터리는 위리온의 반고체 배터리보다 에너지 밀도가 두 배 높기 때문에 대량 생산이 가능하다면 전기차의 주행 가능 거리가 약 2000km에 달할 것으로 예상된다. 전고체 배터리와 반고체 배터리는 모두 차세대 에너지 저장 기술로 주목받고 있다. 두 배터리 기술의 주된 차이점은 전해질의 상태에 있다. 전고체 배터리는 액체나 젤 형태의 전해질 대신 고체 전해질을 사용한다. 고체 전해질은 일반적으로 폴리머, 세라믹 또는 복합체로 만들어진다. 고체 전해질은 불연성이기 때문에 전통적인 리튬 이온 배터리보다 화재나 폭발 위험으로부터 더 안전하다. 또한 고체 전해질을 사용함으로써 더 높은 에너지 밀도를 달성할 수 있다. 즉, 더 적은 공간에 더 많은 에너지를 저장할 수 있다. 반고체 배터리는 고체와 액체 성분을 혼합한 전해질을 사용한다. 즉, 부분적으로는 고체 물질을 포함하지만 액체 성분이 일부 존재한다. 반고체 배터리는 전고체 배터리로의 전환을 위한 중간 단계로 볼 수 있다. 타이란은 성명에서 초박막 고밀도 복합 산화물 전고체 전해질, 고용량 양극 및 음극 소재, 전고체 배터리 성형 공정 등 전고체 리튬 배터리의 여러 핵심 기술에서 혁신을 이뤄냈다고 밝혔다. 새로 발표된 배터리의 양극은 고용량, 수명이 긴 리튬이 풍부한 망간 기반 소재를 사용하고 음극은 초광대폭, 초박막이며 높은 사이클 안정성과 다양한 이점을 갖춘 리튬 금속 기반 복합 소재를 사용한다고 회사 측은 설명했다. 타이란은 또 양극 내 이온 및 전자 수송 네트워크를 효율적으로 구축해 양극 내부의 하전 입자 이동을 개선했다고 밝혔다. 아울러 자체 개발한 유연한 층 소재를 통해 배터리의 종합적인 성능 향상을 실현했으며, 이는 기존 리튬 이온 배터리의 주행거리와 안전성 문제 등을 근본적으로 해결할 수 있을 것으로 기대된다고 전했다. 2018년에 설립된 타이란은 전고체 리튬 배터리 및 소재 기술 개발에 주력하고 있다. 2022년 3월 중국 부동산 개발업체 비구이위안(碧桂園·컨트리 가든)으로부터 투자를 유치한 바 있다. 타이란은 산화물 시스템을 기반으로 고체 전해질과 고체 리튬 배터리를 개발했으며 다양한 소재와 반고체 및 전고체 배터리에 대한 기술 파이프라인을 완성했다. 지난해 보도자료에 따르면 1세대 반고체 배터리의 에너지 밀도는 최대 400Wh/kg, 2세대 준고체 배터리는 400Wh/kg에서 500Wh/kg의 에너지 밀도를 달성했다. 타이란은 이러한 1세대 및 2세대 배터리는 여전히 액체 전해질을 포함하고 있으며, 2023년 7월에 3세대 전고체 배터리는 더 이상 액체 전해질을 포함하지 않을 것이라고 말했다.
-
- 포커스온
-
[신소재 신기술(27)] 전고체배터리 스타트업 타이란신에너지, 초고에너지밀도 셀 공개
-
-
[신소재 신기술(23)] 조약돌 활용해 초효율 에너지 저장 시스템 설계
- 스웨덴 과학자들이 조약돌을 활용해 에너지 저장 효율을 향상시킨 새로운 시스템을 설계했다. 과학 전문매체 더쿨다운은 27일(현지시간) 스웨덴의 KTH 왕립 공과대학교의 연구원들은 기존의 열에너지 저장 기술에 조약돌을 추가해 개선된 시스템을 개발했다고 보도했다. 현재 최첨단 태양열 에너지 시스템에서는 장기간 에너지를 저장하기 위해 용융염을 사용한다. 용융염은 녹는점이 800.7°C 이상일 때 액체 상태가 되는 녹은 소금으로, 일반적인 조건에서는 이온성 고체다. 그러나 용융염은 사용에 있어 작동 온도의 한계와 부식성, 비료로의 사용 가능성으로 인한 추가 비용 발생 등의 문제점을 가지고 있다. 반면, 조약돌은 저렴하고 쉽게 구할 수 있는 재료다. KTH 연구팀은 조약돌을 사용한 시스템이 솔라스페이스(SolarPACE)에서 90% 이상의 높은 열효율을 달성하면서도 최대 800℃(화씨 1472도)까지의 열을 저장할 수 있음을 발견했다. 이는 용융염 시스템의 한계 온도인 600℃(화씨 111도)를 훨씬 초과하는 수치다. 이러한 혁신적인 발전은 태양 전지로부터 얻은 깨끗하고 재생 가능한 에너지를 저장하는 과정을 더욱 간단하고, 경제적이며, 효율적으로 만들 수 있음을 의미한다. 화석 연료와 같은 전통적인 에너지원에서 태양이나 바람과 같은 깨끗하고 재생 가능한 에너지원으로의 전환이 진행되면서, 미래에 사용할 에너지를 효과적으로 저장하는 방법이 중대한 도전 과제 중 하나로 부상했다. 가스는 간편하게 저장하고 사용할 수 있는 것과 달리, 태양 에너지는 그렇게 단순하게 다룰 수 없다. 이 문제를 해결하기 위해 과학자들은 열에너지를 저장하는 데 액체 주석, 수소, 황과 같은 다양한 재료를 사용한 여러 시스템을 개발했다. 한편, 조약돌을 활용한 에너지 저장 시스템을 연구하는 과학자들은 이 시스템을 효율적으로 작동시키는 데 필요한 추가적인 전력 소비와 같은 도전 과제에 직면해 있다. KTH 왕립 공과대학교 에너지부의 열과 전력 부문 책임자인 라파엘 게데즈 박사는 "공기와 암석을 이용한 축방향 포장재는 본질적으로 비용이 저렴하다고 할 수 있지만, 공기를 효율적으로 순환시키고 특히 전기가 비싼 시간에 대량의 전력을 소비할 수 있다는 점이 채택에 있어 주요한 장애물 중 하나"라고 말했다. 그럼에도 게데즈 박사와 그의 연구팀은 이 시스템을 상업적으로 실행 가능한 옵션으로 만들 수 있다고 낙관하고 있다. 게데즈 박사는 "우리의 연구는 실제로 적용되고 있으며, 최종 사용자와 기술 개발자 모두 산업 이해 관계자들과 긴밀히 협력하고 있다. 궁극적으로 넷제로를 지원하고 연구와 교육 프로그램을 통해 사회에 가시적인 영향을 창출하려는 동기에 의해 주도되고 있다"고 전했다.
-
- 포커스온
-
[신소재 신기술(23)] 조약돌 활용해 초효율 에너지 저장 시스템 설계
-
-
지구 온난화로 극지방 얼음 녹아 지구 자전 속도 변화
- 기후 변화로 극지방 얼음이 녹으면서 지구의 자전 속도에 영향을 미친다는 연구 결과가 나왔다. CNN은 지난 27일(현지시간) 앞으로 몇 년 안에 1초를 잃는 음의 윤초 현상이 나타나게 될 것이라며 북극의 얼음이 녹으면 자구의 자전 속도가 바뀌고 그로 인해 시간 자체가 바뀐다는 새로운 연구가 나왔다고 보도했다. 이날 학술 저널 '네이처(Nature)' 저널에 발표된 연구에 따르면 지구 온난화의 영향으로 윤초가 나타날 가능성이 크다. 보고서는 북극 얼음이 녹으면서 윤초가 3년 늦어져 2026년에서 2029년으로 늦춰진다고 밝혔다. 하루를 결정하는 시간과 분은 지구의 자전에 의해 결정된다. 그러나 그 회전은 일정하지 않아서, 지구 표면과 중심의 핵에서 일어나는 현상에 따라 조금씩 변할 수 있다. 거의 눈에 띄지 않는 이같은 시간의 변화는 세계의 시계를 때때로 '윤초(1초를 더하거나 빼는 것)'로 조정해야 함을 의미하며, 이는 컴퓨팅 시스템에 큰 영향을 미칠 수 있다. 실제로 2017년은 365일하고도 1초가 더 있는 해였다. 한국 시간으로 2017년 1월 1일에 1초가 추가됐다. 세계협정시(UTC)는 세슘 원자의 진동수를 기준으로 측정하기 때문에 오차(3000년에 1초)가 거의 없다. 원자시에 따르면 하루는 정확히 8만6400초다. 그런데 온난화 영향으로 인류는 처음으로 1초를 빼야할 위기에 처한 것. 1972년부터 26초의 윤초가 추가됐고 2017년 1월에 추가된 윤초는 27번째였다. 지금까지 음의 윤초가 실시된 적은 없다. 사상 첫 '음의 윤초' 도입할 수도 1972년부터 지금까지 윤초로 인해 27초가 추가됐으며 오랜 기간 둔화 추세를 보인 끝에 지구 중심 핵의 변화로 인해 지구의 자전 속도가 이제 빨라지고 있다. 그로 인해 음의 윤초를 실시해야 할 때가 다가온다는 지적이다. 프랑스 국제 도량형국 시간 부서의 일원인 파트리샤 타벨라(Patrizia Tavella)는 연구에 첨부된 글에서 "음의 윤초는 추가되거나 테스트된 적이 없으므로 이로 인해 발생할 수 있는 문제는 전례가 없다"라고 적었다. 캘리포니아 대학교 샌디에고 지구물리학 교수이자 이번 연구의 저자인 던컨 애그뉴(Duncan Agnew)는 "지구 시간을 측정하는 과정에서 예상되는 변화들을 파악하는 것은 지구 온난화가 미치는 영향을 이해하는 데 달려 있다"고 말했다. 1960년대 후반부터 전 세계는 세계협정시(UTC)를 사용해 시간대를 설정하기 시작했다. UTC는 원자시계의 정확성에 기반하지만 지구의 자전 속도도 반영한다. 그러나 지구 자전의 불규칙성으로 인해 UTC와 지구 자전 기반의 시간 차이에 미묘한 차이가 발생한다. 이 차이를 조정하기 위해 때때로 '윤초'를 추가해야 한다. 장기적으로 보면, 지구의 자전 속도 변화는 주로 해저의 조수 마찰에 의해 영향을 받아 왔으며 이는 자전 속도의 저하로 이어졌다. 애그뉴 교수는 최근 인간이 화석 연료 사용으로 인한 열이 북극 얼음이 녹는 것에 커다란 영향을 미쳤으며, 이 현상은 지구의 자전 속도에 중대한 영향을 미치고 있다고 지적했다. 얼음이 바다로 녹아내리면, 이 녹은 물이 극지방에서 적도 쪽으로 이동하면서 지구의 자전 속도가 더욱 느려진다는 설명이다. 그는 극지방의 얼음이 녹는 현상이 지구의 회전에 전례 없는 방식으로 영향을 미쳤다며 "인간 활동이 지구의 자전을 변화시킬 수 있다는 사실이 정말 놀랍다"고 말했다. 그러나 보고서에 따르면 얼음이 녹아 지구의 자전 속도가 느려질 수 있지만 지구의 핵과 같은 다른 요소도 세계의 시간 측정에 영향을 미치고 있다. 이는 지구 자전 속도 변화의 복합적인 원인을 시사한다. 지구의 핵, 외부 지각과 독립적으로 회전 액체상태인 지구의 핵은 단단한 외부 지각과 독립적으로 회전한다. 애그뉴는 지구 핵의 회전 속도가 느려지면 단단한 지각의 속도가 상대적으로 증가해 전체적인 추진력이 유지된다고 설명했다.그리고 이것이 바로 현재 발생하고 있는 현상이라고 지적했다. 지구 표면 아래 약 2897km(약 1800마일)에서 발생하는 현상에 대해서는 거의 알려진 바가 거의 없으며 핵의 회전 속도 변화 원인 역시 분명하지 않다. 애그뉴는 이에 대해 "근본적으로 예측이 불가능하다"고 말했다. 연구 결과 분명한 것은 극지방의 얼음이 녹는 것이 지구 자전 속도를 늦추는 영향에도 불구하고 전반적인 지구의 자전 속도는 빨라지고 있다는 것이다. 이는 세계가 음의 윤초, 즉 1초를 제거해야 하는 상황에 처음으로 직면해야 할 수도 있음을 의미한다. 1초는 짧은 시간처럼 보일 수 있지만 증권 거래와 같은 민감한 활동을 위해 설계된 컴퓨팅 시스템은 1000분의 1초까지의 정확성을 요구한다. 대부분의 컴퓨터 시스템은 1초를 추가할 수 있는 소프트웨어가 있지만 1초를 제거할 수 있는 기능을 갖춘 시스템은 드물다. 음의 윤초가 도입되면 많은 시스템이 새로운 프로그래밍을 필요로 하게 되며, 이는 오류를 유발할 가능성이 있다. 애그뉴 교수는 "지구의 자전 속도가 윤초를 제거해야 할 정도로 빨라질 것이라고 예상한 사람은 거의 없다"고 말했다. 콜로라도 대학교 볼더 빙하학자인 스캄보스(Scambos) 박사는 이 연구에서 주목할 점으로 "지난 10년 간 지구의 핵 변화가 극지방의 증가하는 얼음 손실 추세보다 더욱 두드러진 경향을 보이고 있다"고 지적했다. 애그뉴는 "얼음이 지금처럼 많이 녹아 지구의 자전 변화가 실제로 측정할 수 있는 수준에 이르렀으면 '이건 정말 심각한 문제다'라고 느껴질 것"이라고 말했다. 극소용돌이 궤도 변화 한편, 지난 27일 라이브사이언스에 따르면 3월 초, 대기권의 기습적인 온난화로 인해 북극의 극소용돌이의 궤도가 변경됐다. 이는 최근 발생한 가장 극단적인 대기권 변화 중 하나로 기록됐다. 라이브사이언스는 차가운 공기를 담은 극소용돌이가 잘못된 방향으로 회전하고 있으며, 이로 인해 발생하는 '오존 급증'이 전 세계 기상 패턴에 영향을 미칠 수 있다고 전했다. 과거, 북극을 둘러싼 차가운 공기의 회전 덩어리인 극소용돌이의 붕괴는 미국의 전역에 걸쳐 극심한 추위와 폭풍을 초래했다. 극소용돌이의 방향이 갑자기 바뀌면서 북극 상공에서는 기록적인 '오존 증가' 현상이 관측됐다. 극소용돌이는 주로 겨울철에 가장 두드러지며 지표면에서 약 50km(약 30마일) 위까지 대기의 두 번째 층인 성층권까지 확장된다. 영국 기상청에 따르면, 이 소용돌이는 시계 반대 방향으로 회전하며 최대 풍속은 약 250km/h로, 5등급 허리케인과 비슷한 속도다. 유사한 극소용돌이 현상은 남반구의 겨울 동안에 남극 주변에서 발생한다. 기상청은 극소용돌이는 때때로 일시적으로 방향을 바꾼다고 설명했다. 이러한 현상은 갑작스러운 성층권 온난화(SSW)에 의해 발생할 수 있으며, 이때 성층권의 온도가 화씨 90도(섭씨 50도)만큼 상승할 수 있으며 짧게는 며칠, 몇 주 또는 길게는 몇 달 동안 지속될 수 있다. 음의 윤초 도입에 앞서 지속 가능한 방식으로 온실 가스 배출을 줄이고, 기후 변화에 대응하기 위한 국제적인 노력이 더욱 시급한 때라고 할 수 있다.
-
- IT/바이오
-
지구 온난화로 극지방 얼음 녹아 지구 자전 속도 변화
-
-
[신소재 신기술(21)] 홍게껍질로 반도체 및 에너지 저장 기능 갖춘 나노시트 개발
- 일본 과학자들이 홍게의 껍질에 포함된 키토산으로 만든 나노섬유에서 반도체와 에너지 저장 특성을 발견했다. 26일(이하 현지시간) 뉴스마이네비에 따르면 일본 도호쿠대학(東北大學) 연구팀은 홍게 껍질에 포함된 불용성 식이섬유의 일종인 '키토산'으로 만든 나노섬유(ChNF) 조직을 제어해 만든 나노미터 두께의 시트 소재에서 반도체 특성과 에너지 저장 특성을 나타내는 것을 발견했다고 25일 밝혔다. 이번 성과는 도호쿠대 미래과학기술공동연구센터 후쿠하라 미키오 학술연구원, 동 대학 하시타 토시유키 특임교수, 도쿄대 이소카이 아키라 특임교수 등의 공동연구팀에 의해 이루어졌다. 연구 결과는 미국 물리학 협회에서 발행하는 학술지 'AIP-Advances'에 게재됐다. 이번 연구는 친환경적인 반도체와 에너지 저장 소재 개발에 기여할 것으로 기대된다. 반도체는 실리콘으로 대표되는 원소 반도체와 갈륨비소(GaAs) 및 '파이(π) 공액 고분자'와 같은 화합물 반도체로 크게 두 가지로 분류된다. 두 반도체 모두 광물이나 인공 화합물에서 금속을 정제해 만드는데, 생산 과정에서 많은 양의 에너지가 필요하고 환경에 미치는 영향이 크다. 연구팀은 절연체로 인식되는 종이와 셀룰로오스의 나노 크기 미세 구조체인 케나프 식물에서 추출한 셀룰로오스 나노섬유(Cellulose Nanofibers·CNF)를 이용해 전하 분포와 전자 이동을 측정했다. 그 결과, '템포 산화 CNF(TEMPO-oxidized CNF, TEMPO 촉매를 사용해 산화 처리된 셀룰로오스 나노섬유)'는 고전압 단시간 충전 특성을, CNF는 n형 음의 저항을 나타내는 n형 반도체의 다양한 특성을 발견했다. 이 연구에서는 식물 셀룰로오스와 분자 구조가 유사하고 지구상에서 두 번째로 풍부한 바이오매스 화합물인 동물성 키토산에 초점을 맞췄다. 연구팀에 따르면, 키토산에는 케나프(CNF)에서 발현되지 못했던 고속 충전 특성이 발견됨과 동시에 액체 누출 등의 문제를 극복할 수 있는 고체형 축전지를 제공할 수 있는 잠재력을 가지고 있는 것으로 밝혀졌다. 또한 키토산과 같은 자연 유래의 해양 바이오매스 소재를 반도체, 에너지 저장 분야에 활용할 수 있다면 폐기물을 줄여 자원순환형 사회 조성에 기여할 수 있다. 이번 연구에서는 홍게 껍질로 만든 키토산 나노섬유(ChNF)를 대표적인 동물성 소재로 활용하고, 섬유 길이를 300nm 이하로 제어한 ChNF 시트에 Al 전극을 부착한 소자를 제작했다. ChNF 시트 소자의 I(전류)-V(전압) 특성, AC(교류) 임피던스, 주파수 분석, 축전성을 측정한 결과, 전압 제어에 의한 전압 유도 반도체와 같은 특성이 나타나는 것을 확인했다. 또한, ChNF 시트의 -210~+80V 범위에서 동작 속도 1.24V/s의 승강 전압에 대한 I-V 특성에서 음전압 영역에서 전류의 전압 의존성이 역전되는 거동, 이른바 n형 반도체 특성을 보였다. 즉, I-V 특성은 옴의 법칙을 따르지 않고, 전압 상승에 따라 일정 전압 이상에서 전류가 감소하는 음극 저항이 발현된 것이다. 반면, R(저항)-V(전압) 특성을 분석한 결과, 승압 -1V~0V, 강압 +2V~0V 사이에서 3자리 스위칭 효과를 보이는 특성이 관찰됐다. 또한 10~500V에서 2mA의 전류로 5초간 충전한 후 1μA의 정전류로 방전했을 때 충전 전압 대비 저장 용량의 변화를 조사한 결과, 전압 증가에 따라 저장 용량이 선형적으로 증가하며 450V부터 급격히 증가하는 것으로 나타났다. 다음으로 ChNF 시트의 AC 임피던스 특성을 측정한 결과, 저저항과 고저항의 두 개의 반원을 가진 나이키스트 선도(The Nyquist diagram)를 얻었다. 두 개의 반원은 원자간력 현미경 이미지 관찰을 통해 각각 120~350nm의 바늘 모양과 구형으로 이루어진 갑각류 외골격과 세포벽 조직의 기여하는 것으로 추론했다, 이 나이키스트 선도의 특성으로부터 ChNF 시트는 직류와 교류 영역에서 동일한 회로를 가질수 있음을 시사했다. 연구팀은 또한, 반도체 특성의 전자의 기원을 규명하기 위해 ESR 분석을 시도했다. 전자의 기원을 결정하는 단수 대칭의 피크를 관찰했고, 스펙트럼 강도의 선도가 횡축과 교차하는 자기장의 g값을 통해 키토산의 생성 전자는 비정질 키토산에서 발생하는 아미닐 라디칼(NH¯₂)에서 생성된 전자임을 확인했다. 연구팀은 이번 성과에 대해 "저밀도 경량 반도체 및 에너지 저장 장치 제작을 통해 천연 유래의 바이오 소재 자원을 활용함으로써 지구의 생물 순환 시스템을 활용한 바이오 일렉트로닉스가 발전할 수 있을 것으로 기대한다"고 밝혔다.
-
- 포커스온
-
[신소재 신기술(21)] 홍게껍질로 반도체 및 에너지 저장 기능 갖춘 나노시트 개발
-
-
목성의 위성 유로파, 얼음 지각 두께 최소 20km
- 미국 천문학자들이 목성의 얼음 위성인 유로파의 얼음 지각 두께가 최소 20km(킬로미터)에 달한다고 밝혔다. 행성 과학자들은 최근 충돌 크레이터(분화구) 이미지와 물리 법칙을 이용해 유로파의 얼음 두께를 측정했다. 유로파는 얼음 지각으로 둘러싸인 지구의 두 배에 달하는 바닷물이 있는 암석의 위성이다. 과학자들은 오랫동안 유로파가 태양계에서 외계 생명체를 찾기에 가장 좋은 곳 중 하나라고 추정했다. 생명체의 존재 가능성과 성격은 얼음 껍질의 두께에 따라 크게 달라지는데, 천문학자들은 아직 이 부분을 밝혀내지 못했다. 20일(이하 현지시간) 과학전문 웹사이트 피즈닷오그(Phys. ORG)에 따르면 미국 퍼듀대학교 과학대학 지구, 대기 및 행성 과학과의 브랜든 존슨 부교수와 연구 과학자 시게루 와키타 등 행성 과학 전문가로 구성된 연구팀이 유로파의 얼음 지각의 두께가 최소 20km에 달한다고 발표했다. 또다른 매체 IFL사이언스도 이날 갈릴레오 탐사선의 데이터 분석에 따르면 유로파의 바다를 보호하는 얼음 지각의 두께는 최소 20km에 달하는 것으로 시사한다고 전했다. 행성 과학자들은 유로파의 대형 분화구를 연구하고 다양한 모델을 실행하여 어떤 물리적 특성의 조합이 그와 같은 표면 구조를 만들 수 있는지 조사했다. MIT의 시게루 와키타(Shigeru Wakita) 박사가 이끄는 팀은 유로파의 '타이어(Tyre)'와 '칼라니쉬(Callanish)'로 알려진 두 개의 분지가 지각 두께를 결정하는 데 핵심이 될 수 있음을 발견했다. 타이어(Tyre)와 칼라니쉬(Callanish)는 모두 다중 고리 분지다. 와키타 박사와 연구팀은 적절한 크기의 소행성이 서로 다른 두께의 지각에 충돌할 때 어떤 일이 일어날지 모델링하고 두께가 20km 이상인 얼음만이 유로파 표면과 같은 결과를 가져올 것이라고 추정했다. 이 연구는 학술 저널 ‘사이언스 어드밴스’에 게재됐다. 와키타 박사는 "유로파의 이렇게 큰 분화구에 대한 연구는 이번이 처음이다"라고 말했다. 그는 "이전 추정치에서는 두꺼운 바다 위에 매우 얇은 얼음층이 있는 것으로 나타났다. 그러나 우리 연구에 따르면 두꺼운 얼음층이 있고, 그 두께가 너무 두꺼워 이전에 논의되었던 얼음 대류가 일어났을 가능성이 높다"고 설명했다. '얼음 대류(Ice convection)'는 얼음 내부에서 열이나 다른 물리적 성질의 차이로 인해 발생하는 물질의 이동 과정을 말한다. 얼음 대류의 기본 원리는 물질이 온도에 따라 밀도가 변한다는 점에 기반한다. 이 현상은 특히 대규모 얼음층이나 얼음이 두꺼운 행성의 위성, 예를 들어 유로파와 같은 곳에서 중요한 역할을 할 수 있다. 얼음 대류는 얼음의 내부나 얼음과 액체 물 사이에서 열을 전달하는 중요한 메커니즘 중 하나다. 유로파의 얼음 층 아래에 있는 액체 물이 얼음 층과 접촉하는 부분에서 얼음을 녹이면 상대적으로 더 따뜻한 물이 위로 상승하고, 냉각되어 얼음이 될 때 다시 내려갈 수 있다. 과학자들은 오랫동안 유로파의 얼음 두께에 대해 논쟁을 벌여왔지만, 아무도 직접 방문해서 측정한 적이 없다. 이에 과학자들은 유로파의 얼음 표면에 있는 크레이터(분화구)를 활용했다. 존슨 박사는 1998년 유로파를 탐사한 우주선 갈릴레오의 데이터와 이미지를 사용해 충돌 크레이터를 분석해 유로파의 얼음 지각 구조를 분석했다. 행성 물리학 및 거대 충돌 분야의 전문가인 존슨은 태양계의 거의 모든 주요 행성을 연구해 왔다. 그는 "충돌 크레이터는 행성을 형성하는 가장 보편적인 표면 과정"이라며 "분화구는 우리가 지금까지 본 거의 모든 고체에서 발견된다. 분화구는 행성을 변화시키는 주요 동인"이라고 부연했다. 존슨은 "유로파의 분화구의 크기와 모양을 이해하고 수치 시뮬레이션으로 그 형성을 재현함으로써 얼음 지각의 두께에 대한 정보를 유추할 수 있다"고 덧붙였다. 유로파는 얼어붙었만, 빙하 속에는 바위로 이루어진 핵이 있다. 하지만 얼음 표면은 정체되어 있지 않다. 해양의 판구조론과 대류, 얼음 때문에 유로파는 표면이 자주 바뀐다. 유로파는 표면에 크레이터가 거의 없는 특이한 위성으로 얼음 지각이 계속해서 새로 생성되면서 크레이터를 없앴다는 주장이 힘을 얻고 있다. 이는 지표면 자체의 나이가 5000만 년에서 1억 년에 불과하다는 것을 의미하는데, 인간과 같이 수명이 짧은 생물에게는 오래된 것처럼 보이지만 지질학적 시기로 보면 젊다는 지적이다. 표면이 매끄럽고 젊다는 것은 분화구가 명확하게 구분되어 있고 깊지 않다는 것을 의미한다. 분화구는 유로파의 암석 중심부에 대한 많은 정보를 전달하기보다는 얼음 지각과 그 아래 존재할 수 있는 수중 바다에 대해 더 많은 것을 담고 있다. 존슨은 "얼음의 두께를 이해하는 것은 유로파의 생명체 존재 가능성에 대한 이론을 세우는 데 필수적이다"라고 말했다. 그는 "얼음 지각의 두께는 그 안에서 어떤 과정이 일어나고 있는지를 제어하며, 이는 지표와 바다 사이의 물질 교환을 이해하는 데 매우 중요하다. 이는 유로파에서 일어나는 모든 종류의 과정을 이해하는 데 도움이 되며, 생명체의 가능성을 이해하는 데도 도움이 될 것"이라고 말했다. 국립과천과학관에 따르면 천문학자들은 이전 연구를 통해 목성의 위성인 유로파, 가니메데, 칼리스토에 지구의 바다보다 6배나 되는 양의 물을 표면 아래에 품고 있다는 사실을 발견했다. 생명체가 살기 위해서는 물, 원소, 에너지라는 3가지 요소가 필요하다. 외행성계 위성에는 이 3가지 요소가 적절하게 있는 것으로 추측되고 있다. 목성은 태양에서 멀기 때문에 표면 온도가 영하 110도이며, 목성의 위성인 유로파의 표면 온도는 영하 220도에 이른다. 유로파의 얼음 지각의 두께는 생명체가 존재할 수 있는 잠재적인 물 존재의 환경을 숨기고 있을 수 있다. 물 존재는 행성에서 생명의 가능성을 탐색하는 데 있어 중요한 요소 중 하나가 될 수 있다. 그러나 실제로 생명체가 존재하는지 여부를 확인하기 위해서는 유로파에 대한 추가적인 탐사와 연구가 필요하다.
-
- IT/바이오
-
목성의 위성 유로파, 얼음 지각 두께 최소 20km
-
-
[신소재 신기술(17)] 탄소 배출량 25만 톤 감소! 탄소 네거티브 복합 데크로 건설 산업의 탄소 발자국 줄이기
- 건축 자재에 이산화탄소(CO₂)를 저장해 보다 친환경적인 건축 자재를 만드는 혁신적인 기술이 개발됐다. 건물과 건축에 사용되는 자재의 생산은 일반적으로 지구 온난화와 기후 변화에 영향을 미치는 강력한 온실가스인 이산화탄소를 다량 배출한다. 기술 전문매체 테크익스플로어는 18일(현지시간) 과학자들이 새로 개발한 복합 데크는 제조 과정에서 배출되는 이산화탄소보다 더 많은 이산화탄소를 저장함으로써 탄소 네거티브 특성을 구현했다고 보도했다. 이는 기존 복합 데크의 한계를 극복하는 중요한 성과다. 연구팀은 미국 화학회(ACS) 춘계 회의에서 이번 연구 결과를 발표했다. 이 프로젝트의 수석 연구자 중 한 명인 유기 화학자 데이비드 헬데브란트에 따르면 페록 등 몇 가지 유형의 시멘트를 제외하고는 탄소 네거티브 복합재가 거의 없는 상태다. '페록'은 돌과 철을 결합한 것으로 콘크리트 보다 강도가 5배 높은 친환경 차세대 건축자재다. 시멘트 대용품으로 사용되는 친환경 건축 자재인 페록은 주로 폐철강 분진과 유리 분쇄물에서 나온 실리카 등 재활용 재료로 생산된다. 철강 분진은 이산화탄소와 반응해 탄산철을 생성하고, 이것이 응고되면 페록이 된다. 건축, 전체 탄소 배출량의 11% 차지 헬데브란트는 그의 팀이 개발한 복합 데크는 "사용 기간 동안 이산화탄소를 배출하지 않는 최초의 복합 재료 중 하나"라고 말했다. 데이비드 힐데브란트는 미국 태평양 북서부 국립연구소(PNNL)에서 일하며 CO₂ 포집을 위한 특수 액체를 개발하고 있다. 세계그린빌딩위원회에 따르면 건물 건설에 사용되는 자재와 공정은 전체 에너지 관련 탄소 배출량의 11%를 차지한다. 그로 인해 업계에서는 재활용 또는 식물 유래 제품을 사용하는 등 탄소 배출량을 상쇄할 수 있는 건축 자재를 개발하는 데 많은 노력을 기울이고 있다. 그러나 대부분의 경우 이러한 지속 가능한 건축 자재는 기존 자재보다 비싸거나 강도나 내구성과 같은 특성을 따라갈 수 없는 경우가 많다. 건축 자재의 한 유형인 데크는 수십억 달러 규모의 산업이다. 목재 플라스틱 합성물로 만든 데크 보드는 자외선에 의한 손상이 적고 오래 사용할 수 있기 때문에 목재 보드의 대안으로 인기가 높다. 합성 데크는 일반적으로 목재 칩 또는 톱밥과 고밀도 폴리에틸렌(HDPE)과 같은 플라스틱을 혼합하여 제작한다. 이러한 복합재를 보다 지속가능하게 만들기 위한 대안은 폐기물 또는 태워버릴 수 있는 필러를 사용하는 것이다. 헬데브란트의 동료인 키르티 카파간툴라가는 저품질의 갈탄과 제지 과정에서 남은 목재 유래 제품인 리그닌을 데크 합성물의 충전재로 사용했다. 연구팀은 석탄과 리그닌 입자를 플라스틱과 혼합하여 플라스틱에 부착되게 하기 위해 입자의 표면에 에스테르 기능기를 첨가했다. 헬데브란트는 "에스테르는 본질적으로 카복실산이며, 이는 CO₂가 포집된 상태"라고 설명했다. 연구팀은 이 과정을 검증하기 위해 CO₂와 석탄, 리그닌과 같은 목재 제품에 풍부한 페놀 사이에 새로운 화학 결합을 형성하는 고전적인 화학 반응으로 전환했다. 이 반응을 거친 후 리그닌과 석탄 입자는 무게 기준으로 2~5%의 CO₂를 함유했다. 이어서 연구팀은 이 입자들을 다양한 비율로 고밀도 폴리에틸렌(HDPE)과 혼합해 갈색을 띠는 검은색 복합재를 제작하고 그 성질을 평가했다. 필러를 80%까지 포함한 복합재는 CO₂ 함량을 최대화하면서도 국제적인 건축 자재 규정에 부합하는 강도와 내구성을 보였다. 이 소재는 PNNL의 전단 보조 가공 및 압출(ShAPETM) 기계를 사용해 마찰 압출 공정으로 제조됐다. 연구원들은 이 기술을 이용해 데크나 야외 가구에 적합한, 표준 목재 복합재와 유사한 외형과 질감을 지닌 10피트(약 3m) 길이의 복합재 패널을 제작했다. 이 새로운 합성 데크 재료는 우수한 물리적 성질뿐만 아니라, 상당한 경제적 및 환경적 이점을 제공한다. 이 데크는 표준 합성 데크 재료보다 18% 더 저렴하다. 헬데브란트는 이 데크가 제조 과정과 사용 기간 동안 발생하는 이산화탄소 양보다 더 많은 이산화탄소를 저장할 수 있는 능력을 갖추고 있다고 말했다. 미국, 1년간 목재 데크 판매량은? 미국에서 매년 판매되는 데크의 양은 35억 5000만피트(약 108만 2040km)에 달한다. 헬데브란트는 연구팀이 개발한 CO₂ 네거티브 복합 데크가 이를 대체하게 되면, 연간 약 25만 톤의 CO₂를 격리할 수 있으며, 이는 5만4000대의 자동차가 1년 동안 배출하는 CO₂량과 맞먹는다고 설명했다. 연구팀은 향후 더 다양한 복합재 조합을 개발하고 그 특성을 실험할 계획이다. 또한 울타리나 사이딩(건물 외벽 마감재)과 같은 여러 건축 자재에 대한 탄소 네거티브 복합재를 개발할 수 있을 것으로 기대하고 있다. 동시에, 연구팀은 이 새로운 탄소 네거티브 데크의 상용화를 위해 노력 중이다. 이 혁신적인 데크는 이르면 내년 여름부터 건축 자재 전문 매장에서 판매될 수 있을 것으로 예상된다.
-
- 포커스온
-
[신소재 신기술(17)] 탄소 배출량 25만 톤 감소! 탄소 네거티브 복합 데크로 건설 산업의 탄소 발자국 줄이기
-
-
제임스 웹 우주망원경, 원시 별에서 에탄올과 얼음 성분 발견
- 제임스웹 우주 망원경이 행성 형성 초기 단계의 젊은 두 개의 원시별에서 메탄과 아세트산 등 다양한 복합 유기 분자를 발견했다. 웹 스페이스 텔레스콥은 13일(현지시간) 국제 천문학 연구이 미국 항공우주국(NASA·나사)의 제임스 웹 우주망원경을 이용하여 항성 형성 초기 단계인 두 개의 원시 별 IRAS 2A와 IRAS 23385 주변에서 복합 유기 분자(COMs)를 포함한 다양한 얼음 화합물을 발견했다고 밝혔다. 이 연구는 이전의 암흑 성운 연구에서 탐지된 다양한 얼음체 연구를 기반으로 이루어졌다. 연구팀이 웹의 중적외선 망원경(MIRI)을 사용해 검출한 복합 유기 분자에는 에탄올(알코올)과 아세트산(식초의 주성분)이 포함된다. 이는 잠재적으로 생명체가 거주할 수 있는 환경을 형성하는 데 중요한 물질들이다. 이번 연구는 이러한 복합 유기 분자가 얼음 상태에서 형성될 수 있다는 것을 시사하며, 우주에서의 복합 유기 분자 생성 과정에 대한 이해를 넓혀줄 것으로 기대된다. 네덜란드 라이덴 대학교의 팀 리더인 윌 로차(Will Rocha)는 "이 발견은 천체화학의 오랜 질문 중 하나에 기여한다"고 말했다. 로차 박사는 "우주에 존재하는 복잡한 유기 분자, 즉 COM의 기원은 무엇일까? 기체 상에서 만들어질까, 아니면 얼음에서 만들어질까? 얼음에서 COM이 검출된 것은 차가운 먼지 입자 표면의 고체상 화학 반응이 복잡한 종류의 분자를 만들 수 있음을 시사한다"라고 설명했다. 이번 연구에서 고체상에서 검출된 COM을 포함한 여러 COM은, 이전에는 따뜻한 기체상에서 검출되었기 때문에 얼음의 승화에서 비롯된 것으로 추정된다. 승화란 액체가 되지 않고 고체에서 바로 기체로 변하는 것을 말한다. 따라서 천문학자들은 얼음에서 COM을 검출함으로써 우주에 존재하는 다른 더 큰 분자의 기원에 대한 이해를 높일 수 있을 것으로 기대하고 있다. 과학자들은 또한 원시 별 진화의 훨씬 후기 단계에서 이러한 COM이 행성으로 어느 정도까지 운반되는지 탐구하기를 원한다. 차가운 얼음 속의 COM은 따뜻한 기체 분자보다 분자 구름에서 행성을 형성하는 원반으로 운반하기가 더 쉽다고 여겨진다. 따라서 이러한 얼음 COM은 혜성과 소행성에 포함될 수 있으며, 이는 형성되는 행성과 충돌하여 생명체가 번성할 수 있는 재료를 제공할 수 있다. 또한 연구팀은 개미에 쏘였을 때 타는 듯한 느낌을 주는 개미산, 메탄, 포름알데히드, 이산화황 등 더 간단한 분자도 검출했다. 연구에 따르면 이산화황과 같은 황 함유 화합물은 원시 지구의 대사 반응을 주도하는 데 중요한 역할을 했을 가능성이 있다. 특히 연구 대상 중 하나인 저질량 원시 별 IRAS 2A는 우리 태양계의 초기 단계와 유사할 수 있다는 점이 주목할 만하다. 이 원시 별 주변에서 발견된 화합물들은 우리 태양계 형성 초기 단계에 존재했고, 이후 원시 지구로 운반되었을 가능성이 있다. 과학 프로그램의 조정자 중 한 명인 라이덴 대학교의 이원 반 디스호크(Ewine van Dishoeck)는 "이 모든 분자들은 원시 별이 진화함에 따라 얼음 물질이 행성을 형성하는 원반으로 안쪽으로 운반될 때 혜성과 소행성의 일부가 될 수 있으며 결국 새로운 행성계가 될 수 있다"고 말했다. 연구팀은 향후 관측 자료를 통해 우주화학적 진화 과정을 단계별로 더욱 명확하게 규명할 것을 기대하고 있다. 이 연구는 '천문학 및 천체물리학(Astronomy & Astrophysics)' 저널에 게재됐다.
-
- 산업
-
제임스 웹 우주망원경, 원시 별에서 에탄올과 얼음 성분 발견
-
-
목성의 달 '유로파'에 생명체 존재할 수 있을까?
- 목성의 달 유로파(Europa)에 산소와 탄소가 있는 것이 알려지면서 지하 바다의 생명 존재에 대한 기대감도 더욱 커지고 있다. 태양계에서 목성의 위성 유로파만큼 사람들의 상상력을 사로잡는 곳은 거의 없다. 과학자들은 유로파에 외계 생명체가 존재할 수 있다고 오랫동안 의심해 왔다. 거대한 얼음덩어리를 닮은 '유로파'는 20~30km 두께의 얼음 껍질 아래에 액체 상태의 바닷물 바다가 존재하는 것으로 알려졌다. 이는 보이저호와 갈릴레오 우주 탐사선의 측정과 모델 계산에 의한 추정이다. 독일 매체 메르커닷컴(Merker)은 11일(현지시간) 몇 달 전, 연구자들은 '유로파'에서 생명체의 가장 중요한 구성 요소인 탄소를 발견했다고 전했다. 그러나 유로파에서 생명체를 가능하게 할 수 있는 또 다른 원소인 산소는 이전에 추정했던 것보다 훨씬 더 희귀할 것이라는 관측이 나왔다. 비즈니스 인사이더는 지난 9일(현지시간) 미 항공우주국(NASA·나사)의 주노(Juno) 탐사선은 목성의 얼음 위성 유로파가 24시간마다 1000톤의 산소를 생산한다는 사실을 발견했다고 보도했다. 유로파에서 매일 발생하는 1000톤이라는 산소는 1백만 명의 사람이 하루 동안 숨을 쉴 수 있는 충분한 양이지만 이전에 생각했던 것보다 훨씬 적은 양이다. 이 새로운 데이터는 유로파가 광대한 지하 바다에서 생명체를 유지할 수 있는 확률이 낮아질 수 있다. NASA, 유로파 산소 생산량 현저히 낮아 NASA의 연구원들은 '유로파' 표면이 이전 연구에서 추정했던 것만큼 많은 산소를 생산하지 못한다고 계산했다. 지난 3월 4일, NASA는 유로파가 24시간마다 1000톤의 산소를 생산한다며 이는 이전 추정치보다 86배 이상 적은 양이라고 발표했다. NASA에 따르면 유로파에 생명체가 존재한다면 미생물처럼 보일 수도 있고 더 복잡한 것일 수도 있다. 하지만 그것들은 얼어붙은 사막인 유로파 표면에서는 보이지 않을 수도 있다. 유로파 표면의 산소 생산량 데이터는 NASA의 주노(Juno) 탐사선에서 가져온 것이다. 목성의 위성인 유로파는 초당 12kg(킬로그램)의 산소를 생산하는데, 이는 이전에 생각했던 것보다 휠씬 적은 양이다. 이전 연구에서 추정치는 초당 몇 킬로그램에서 1000킬로그램 이상까지 다양했다. 유로파, 수중기도 탐지 NASA에 따르면 1979년 7월 9일 보이저(Voyager) 우주선은 목성의 위성 중 하나인 유로파(Europa)의 근접 촬영 이미지를 처음으로 촬영했다. 이를 통해 달의 얼음 표면을 자르는 갈색 균열이 드러났는데, 유로파는 마치 핏줄이 있는 눈알처럼 보였다. 그 이후로 수십 년 동안 외부 태양계에 대한 임무는 유로파에 대한 충분한 추가 정보를 축적하여 NASA의 생명체 탐색에서 최우선 조사 대상이 됐다. NASA는 2019년 11월 17일 메릴랜드 주 그린벨트에 있는 NASA의 고다드 우주 비행 센터 의 국제 연구팀이 유로파 표면 위에서 처음으로 수증기를 감지했다. 이 연구팀은 하와이에 있는 세계 최대 망원경 중 하나를 통해 유로파를 들여다보며 증기를 측정했다. 당시 유로파의 물 탐지 조사를 주도한 NASA 행성 과학자 루카스 파가니니는 “생명의 세 가지 요구 사항 중 두 가지인 필수 화학 원소(탄소, 수소, 산소, 질소, 인, 황)와 에너지원은 태양계 전체에서 발견된다. 그러나 세 번째인 액체 물은 지구 밖에서는 찾기가 다소 어렵다”라고 말했다. 유로파가 산소를 생산하는 방법 산소 생산은 지구와 유로파에서 매우 다르다. 지구는 광합성을 통해 산소를 얻는 반면, 유로파는 모행성인 목성으로부터 얻는다. 목성은 유로파에 고에너지 입자를 쏟아붓는 강력한 방사선을 방출한다. 이 입자들은 달 표면의 얼어붙은 얼음(H₂O)과 상호작용한다. 유로파에서 입자들의 상호 작용은 H₂O 분자를 수소와 산소 가스로 분리한다. 그러나 그 산소가 어디로 가는지는 아직 상세히 밝혀지지 않았다. 산소 중 일부는 얼음 속에 갇힐 수도 있고, 일부는 우주로 탈출할 수도 있으며, 일부는 유로파의 지하 바다로 내려가는 경우도 있다. 충분한 산소가 지하에 도달한다면, 이는 유로파의 바다가 우리가 알고 있는 생명체에 중요한 요소 중 하나를 가지고 있다는 것을 의미한다. 뉴저지 주 프린스턴 대학교의 과학자 제이미 샬레이는 "'유로파'는 목성의 알려진 95개 위성 중 네 번째로 큰 위성이며 목성의 방사선 벨트 중간에 있다. 이 거대 가스 행성은 위성에 하전 입자 또는 이온화 입자를 쏟아붓는다. 이것들은 물 분자를 두 부분으로 나누어 얼음 표면에 산소를 생성한다"고 말했다. 샬레이는 "유로파는 흐르는 시냇물 속에서 서서히 물을 잃어버리는 얼음 덩어리와 같다"면서, 입자들이 표면의 얼음을 분자 단위로 분해하는 과정을 비교했다. 그는 "어떤 면에서, 전체 얼음 표면은 해변으로 밀려온 하전 입자의 파도에 의해 지속적으로 침식된다"라고 말했다. NASA의 주노 탐사선은 유로파 표면에서 생성되는 총 산소량에 대해 더 많은 정보를 제공한다. 그러나 지하 바다로 얼마나 많은 양의 산소가 스며드는지는 아직 확실하지 않다. 유로파에서 산소 측정 유로파 표면에서 생성되는 산소의 양을 측정하기 위해 과학자들은 주노에 탑재된 목성 오로라 분포 실험(JADE) 장비를 사용했다. JADE는 목성의 오로라 영역 에서 하전 입자를 측정하도록 설계됐다. 그러나 2022년 9월 주노가 유로파를 비행했을 때 JADE는 최초로 달 대기에서 떨어져 나온 하전 입자를 성공적으로 측정했다. 과학자들은 JADE 데이터를 사용해 유로파의 얇은 대기에 있는 수소(산소 아님) 가스의 총량을 추정했다. 물 분자에는 수소(H) 원자 2개당 산소(O) 원자 1개가 있기 때문에 과학자들은 수소 가스 데이터를 사용해 표면에서 생성된 산소의 양을 계산할 수 있다. NASA의 과학자들은 이제 생산된 산소의 일부가 달 표면 아래로 떨어질 수 있다고 추정한다. 그곳에서 산소는 지하 소금 바다로 추정되는 곳에서 대사 에너지원이 될 수 있다. NASA에 따르면 연구원들은 "표면 아래에서 생명을 유지할 수 있는 조건의 잠재력에 대해 궁금해하고 있다"고 한다. 목성의 위성이 생명체가 거주 가능한지 아닌지에 대한 질문은 앞으로도 계속 될 것이다. 샌안토니오에 있는 사우스웨스트 연구소의 주노 수석 연구원인 스콧 볼튼은 "아직 끝나지 않았다. 더 많은 달 비행과 목성의 가까운 고리와 극지방의 대기에 대한 첫 번째 탐사는 아직 오지 않았다"고 말했다. NASA의 유로파 클리퍼(Europa Clipper) 탐사선은 2024년 10월에 발사될 예정이다. 이 탐사선의 주요 목표는 유로파가 거주 가능한지 여부를 결정하는 것이다. 유로파에 도착하면 클리퍼 탐사선은 유로파 표면, 기;ㅍ은 ㅁ내부, 얇은 대기, 지하 바다와 잠재적으로 더 작은 활성 통풍구에 대해 자세한 조사를 수행항 계획이다.
-
- 산업
-
목성의 달 '유로파'에 생명체 존재할 수 있을까?
-
-
[신소재 신기술(10)] 쓰레기 아닌 자원! 세탁 세제로 플라스틱 용기 재활용 시대 열리다
- 영국에서 액체 세탁 세제로 플라스틱을 재활용하는 기술이 개발됐다. 과학 기술 전문매체 더쿨다운(TCD)은 10일(현지시간) 영국 킹스 칼리지 런던의 과학자들이 세탁 세제를 사용해 플라스틱을 분해하여 재활용할 수 있는 새로운 방법을 개발했다고 보도했다. 이 연구는 일회용 플라스틱의 일반적인 유형인 폴리락틱산(PLA)에 초점을 맞췄다. 킹스 칼리지 런던의 연구원들은 극한의 열을 사용하지 않고도 PLA를 분해할 방법을 찾던 중 대부분의 세탁 세제에서 흔히 발견되는 칸디다 안타르크티카 리파제 B(Candida antarctica lipase B·CALB)라는 효소를 발견하고 이를 변형해서 이온성 액체에 용해시켰다. 연구팀은 CALB 용액에 플라스틱 컵을 담근 후 24시간이 지나면 플라스틱이 완전히 녹는 것을 확인했다. 이 연구 결과는 과학 저널 셀 물리 과학 보고서(Cell Reports Physical Science)에 게재됐다. 폴리락틱산(Polylactic Acid, PLA)은 옥수수 전분과 사탕수수와 같은 식물성 자원에서 추출한 락틱산을 중합하여 만들어지는 가장 일반적인 상업용 생분해성 플라스틱이다. 그러나 일단 플라스틱으로 바뀌면 생분해되지 않고 매립지를 막거나 바다에 버려지게 된다. PLA는 석유 기반 플라스틱과 달리 식물로부터 얻어지므로 재생 가능한 자원을 사용하며, 사용 후에는 자연 조건 하에서 미생물에 의해 분해되어 이산화탄소와 물로 환원되는 특성을 갖는다. 이로 인해 환경 친화적인 대안으로 주목받으며, 일회용품, 포장재, 섬유, 의료 분야 등 다양한 용도로 사용돼 왔다. 하지만, PLA의 분해 속도는 환경 조건(온도, 습도, 미생물의 존재)에 따라 크게 달라질 수 있다. PLA는 산업적 규모의 퇴비화 시설에서는 빠르게 분해되지만, 자연 상태에서는 분해되는 데 수년이 걸릴 수 있다. 또한, PLA의 생산 과정에서 사용되는 식물 자원이 식량으로 사용될 수 있는 농작물을 사용한다는 점에서 지속 가능성에 대한 논쟁이 뜨거웠다. 연구팀은 "환경에 플라스틱 쓰레기가 쌓이는 것은 생태학적 재앙이며, 이를 해결하기 위해 다양한 접근 방식이 필요하다"고 설명했다. 인류세(Anthropocene)에 따르면 연구팀 중 한 명인 알렉스 브로건 화학과 교수는 "폴리락틱산은 제대로 재활용할 방법이 없기 때문에 선택했다"고 말했다. 브로건 교수는 "우리의 (기술) 개발로 90°C에서 40시간 이내에 플라스틱을 구성 요소로 전환할 수 있게 되었다"고 설명했다. 다음 연구 단계는 CALB 용액에 용해된 플라스틱을 재활용하기 위해 용도를 변경하는 방법을 알아내는 것이다. 브로건 교수는 "현재 엔지니어들과 협력하여 파쇄와 같은 보다 정밀한 전처리를 통해 이 공정을 개선하여 더 큰 규모로 작업할 수 있는 방법을 모색하고 있다"고 말했다. 그는 이어 "우리가 보여줘야 할 주요 개선 사항은 분해된 플라스틱으로 실제로 플라스틱을 다시 만들 수 있다는 점이며, 이를 통해 순환 고리를 끊는 것"이라고 강조했다.
-
- 포커스온
-
[신소재 신기술(10)] 쓰레기 아닌 자원! 세탁 세제로 플라스틱 용기 재활용 시대 열리다
-
-
벤조일 과산화물 여드름 치료제에 발암 물질 검출
- 벤조일 과산화물 여드름 치료제에 발암 물질인 벤젠이 다량 포함될 수 있다는 의견이 제기됐다. 미국 경제매체 폭스 비즈니스는 6일(현지시간) 미국의 독립시험기관인 밸리슈어(Valisure)는 특정 온도에서 관리 또는 보관된 일반의약품 벤조일 과산화물 여드름 치료제에 발암물질인 벤젠이 다량 생성될 수 있다고 밝혔다고 보도했다. 이에 따라 Valisure는 연방 보건 당국에 해당 제품 리콜을 촉구했다. 실험 결과에 따르면, Valisure는 크림, 로션, 젤, 세안제, 액체, 바 형태 등 66가지 벤조일 과산화물 여드름 치료제를 검사했다. Valisure 공동 설립자인 데이비드 라이트는 연구 결과 클리어실, 프로액티브, 타겟 업 & 업 브랜드, 클리니크 등 유명 브랜드 제품에서 'FDA 규제 한계치의 수백 배'에 달하는 벤젠이 생성될 수 있다고 성명을 통해 밝혔다. 현재 이 시험기관은 연구 결과에 따르면 "현재 시장에 판매되고 있는 벤조일 과산화물 제품 전반에 걸쳐 광범위하게 적용될 가능성이 높다"고 밝혔다. 미 식품의약국 (FDA)은 극한적인 경우 의약품 내 벤젠 허용 기준을 100만 분의 2 미만으로 설정하고 있다. 하지만 실험 결과는 벤조일 과산화물 제품을 섭씨 50도에 보관할 경우 벤젠 함유량이 이 기준치의 800배 이상, 실온 보관 시에도 최대 9배까지 상승할 수 있다는 사실을 보여줬다. 발암물질인 벤젠은 제품 내부뿐만 아니라 외부 공기 중에도 검출됐다. 이에 Valisure는 통보문을 통해 "일부 제품 포장에서 벤젠이 누출되어 흡입 흡수 위험을 야기할 수 있다"고 밝혔다. 미국 환경보호국(EPA)은 대기 중 벤젠 기준치를 설정하고 있다. 이 기관에 따르면 표준 규제 수준에서 암 발생 위험이 증가하기 시작하는 농도는 10억 분의 0.4(ppb)다. Valisure가 벤젠 대기 오염 결과를 계산한 바에 따르면 일부 경우 EPA 기준치의 1270배에 달하는 수치가 검출됐다. Valisure는 지난 5일 FDA에 벤조일 과산화물 함유 제품에 대한 조사 및 시장 회수를 요청하는 청원서를 제출했다. 벤젠 생성 양상에 대한 라이트의 설명은 선크림, 손 소독제와 같은 다른 소비자 제품에서 발견된 이전 연구 결과와 "실질적으로 다르다"고 한다. 라이트는 "우리가 선크림 및 기타 소비자 제품에서 발견한 벤젠은 오염된 성분에서 기인하는 불순물이었다. 하지만 벤조일 과산화물 제품에서 검출된 벤젠은 벤조일 과산화물 자체에서 생성되며, 때로는 FDA 규제 한계치의 수백 배에 달할 수 있다"고 설명했다. FDA 웹사이트에 따르면 벤젠은 염료와 세제부터 일부 플라스틱까지 광범위한 산업 제품 생산에 사용된다. 또한 담배 연기와 자동차 배출 가스, 석탄 및 기름 연소를 통해 대기 중으로 방출된다. 하지만 최근 몇 년 동안 드라이 샴푸, 손 소독제, 선크림 등 여러 제품에서 과도한 수준의 벤젠이 검출되어 리콜되는 사례가 발생했다. 클리어실 브랜드를 소유한 레킷은 "모든 클리어실 제품은 라벨에 지시된 대로 사용하고 보관할 때 안전하다"고 주장하며 "제품의 안전성과 유효성을 확보하기 위해 전 세계 규제기관과 긴밀하게 협력한다"고 밝혔다. 타겟은 "고객의 안전을 매우 중요하게 생각하며, 현재 관련 문제를 파악하고 있다"고 말했다. 에스티 로더 컴퍼니스는 "발암 물질 검출에 대한 소식을 인지하고 있으며, 관련 제품의 안전성을 검증하기 위해 FDA와 협력하고 있다"고 발표했다. 프로액티브는 아직 공식 입장을 내지 않고 있다. FDA는 "발암 물질 검출 보고에 대해 주시하고 있으며, 관련 제품의 안전성을 평가하고 있다"고 밝혔다. 미국 피부과 학회는 "벤조일 과산화물은 여드름 치료에 효과적인 성분이지만, 잠재적인 건강 위험도 존재한다"고 밝히며 "환자들은 의료 전문가와 상담하여 자신에게 적합한 치료 방법을 선택해야 한다"고 조언했다. FDA는 벤조일 과산화물 여드름 치료제에 대한 안전성 평가 결과를 바탕으로 후속 조치를 취할 것으로 예상된다. 벤조일 과산화물 제품의 안전성에 대한 논란이 지속될 것으로 보이며, 이에 따라 제품 개선 또는 리콜 등의 조치가 취해질 가능성도 있다. 벤조일 과산화물 여드름 치료제의 안전성에 대한 논란은 이번이 처음이 아니다. 2019년에도 일부 연구에서 벤조일 과산화물이 DNA 손상을 유발할 수 있다는 가능성이 제기된 바 있다. 벤조일 과산화물은 여드름 치료에 효과적인 성분이지만, 잠재적인 건강 위험도 존재한다는 점을 인지하고 사용하는 것이 중요하다.
-
- 생활경제
-
벤조일 과산화물 여드름 치료제에 발암 물질 검출
-
-
[신소재 신기술(9)] 땅콩 껍질로 리튬 이온 배터리 생산 기술 개발
- 중국 과학자들이 땅콩 껍질을 활용하여 리튬 이온 배터리를 생산하는 새로운 기술을 개발했다. 이 연구는 폐기물 활용과 리튬 이온 배터리 성능 개선이라는 두 가지 문제를 동시에 해결했다. 과학기술 전문 매체 더 쿨다운은 지난 5일(현지시간) 중국 과학기술대학교 연구팀이 땅콩 껍질에서 추출한 산화철을 이용하여 리튬 이온 배터리 음극을 제조하는 새로운 방법을 개발했다고 전했다. 연구 결과 땅콩 껍질 기반 음극은 높은 전기 용량과 우수한 사이클 안정성을 보였다. 게다가 떵콩 껍질 기반은 기존 흑연 기반 음극보다 저렴하고 친환경적이다. 이 연구 결과는 지난해 11월 14일 에너지 저장 기술과 시스템에 관한 연구를 다루는 국제 학술지 '저널 오브 에너지 스토리지(Journal of Energy Storage)'에 게재됐다. 리튬 이온 배터리는 양극과 음극(각각 양전극과 음전극) 사이에서 리튬 이온을 이동시켜 작동한다. 현재 대부분의 리튬 이온 배터리 음극은 흑연, 규소, 또는 이 둘의 복합체와 같은 탄소 기반 물질로 제조된다. 그러나 리튬 이온 배터리 연구에 종사하는 과학자들은 이러한 기존 소재보다 더 우수한 물질을 개발할 수 있다고 기대해 왔다. 땅콩 껍질 기반 음극, 높은 전기 용량 지녀 또 다른 학술지 '응용 표면 과학 언드밴스(Applied Surface Science Advances)' 저널에 게재된 「리튬 이온 전지용 음극 재료: 리뷰」라는 제목의 연구 논문에서 연구팀은 "흑연 음극은 용량이 적고 안전상의 문제가 있다는 것이 잘 알려져 있다"고 지적했다. 연구팀은 이러한 문제를 해결하기 위해 "다음 세대 리튬 이온 전지용 새로운 음극 재료로서 많은 고성능 음극 재료들이 연구되고 있다"고 덧붙였다. 이같은 상황에서 최근 개발된 음극 재료 중 하나가 바로 땅콩 껍질을 활용한 것이다. 연구팀은 땅콩 껍질이 저렴하다는 점에서 재료로 매력적이라고 설명했다. 연구 논문에서 저자들은 "싸고 반복 성능을 개선하는 데 적합한 열분해 공정을 위한 탄소 원천으로 저렴한 원료를 찾기 위해 노력했다"고 밝혔다. 폐기되는 유기물질인 땅콩 껍질을 활용하여 리튬 이온 배터리를 제조하는 것은 두 가지 문제를 동시에 해결하는 훌륭한 방법이다. 이는 배터리의 효율, 안전성 및 비용을 개선하는 데 도움이 될 뿐만 아니라 식품 폐기물 문제 해결에도 기여한다. 땅콩 껍질을 이용해 배터리를 만들면 쓰레기 매립지에 폐기되어 지구 온난화 가스를 배출하는 대신 유용한 자원으로 활용될 수 있다. 연구팀은 또한 대나무, 흰목이버섯의 일종인 트레멜라(tremella), 뽕잎, 목재, 녹차 등에서 추출한 탄소 함유 물질 등을 사용해 동일한 실험을 진행했다. 감귤 껍질로 리튬 배터리 재활용 비슷한 맥락에서 또 다른 연구팀은 최근 감귤류 껍질을 이용해 리튬 배터리를 재활용하는 방법을 개발했다. 싱가포르 난양 기술 대학교(Nanyang Technological University·NTU) 과학자들은 감귤 껍질을 활용해 리튬 배터리를 재활용하는 기술을 개발했다. 새로운 방법은 과일 껍질을 이용해 사용한 배터리에서 귀금속을 추출한 다음 새 배터리에 재사용할 수 있었다. 이는 리튬 배터리를 재활용하는 가장 환경 친화적인 방법일 수도 있다. 이 연구팀의 일원인 마다비 스리니바산(Madhavi Srinivasan) 교수는 "현재 산업적으로 전자 폐기물을 재활용하는 과정은 에너지 집약적이며, 유해한 오염 물질과 액체 폐기물을 배출하므로 전자 폐기물의 양이 증가함에 따라 친환경적인 재활용 방법이 시급히 필요하다. 우리 팀은 생분해성 물질로 재활용하는 것이 가능하다는 것을 입증했다"며 "이러한 발견은 우리의 기존 작업을 기반으로 한다"고 설명했다. NTU 팀은 극한의 온도를 요구하지 않고 오렌지 껍질과 감귤류에서 발견되는 약한 유기산인 구연산만을 사용하여 산업 재활용 공정과 동일한 결과를 얻을 수 있었다.
-
- 포커스온
-
[신소재 신기술(9)] 땅콩 껍질로 리튬 이온 배터리 생산 기술 개발
-
-
[신소재 신기술(5)] 미국 스타트업 H2MOF, 상온 수소 저장 솔루션 개발
- 캘리포니아 스타트업이 인공지능(AI)을 활용해 상온 수소 저장 솔루션을 개발했다. 세계 각지에서 전 세계 수소 생산 능력 확대를 위한 투자가 이루어지고 있다. 특히 탄소 배출 없는 재생 에너지 사용을 통해 생산되는 녹색 수소에 대한 관심이 높아지고 있다. 하지만 수소 활용의 주요한 어려움 중 하나는 저장 과정에 있다. 수소는 기체 또는 액체 상태로 저장할 수 있으며, 기존 저장 방법에는 많은 문제점들이 있다. 미국 과학 기술 전문매체 오일프라이스는 지난 24일(현지시간) 캘리포니아 스타트업 H2MOF가 AI와 첨단 연구를 활용하여 효율적인 상온 수소 저장 솔루션을 개발함으로써 다양한 산업에 혁신을 불러일으키고 있다고 전했다. 대표적인 수소 저장 기술 수소 저장 기술의 발전은 수소 및 연료전지 기술의 발전에 필수적이다. 수소는 모든 연료 중에서 질량당 에너지 밀도가 가장 높지만, 이를 연료나 가스로서 효율적으로 활용하기 위해서는 고도의 저장 기술이 요구된다. 먼저 압축 수소 저장은 현재 가장 널리 사용되는 수소 저장 방식 중 하나다. 이 방식은 수소를 높은 압력에서 저장하는 방법으로, 주로 수소 연료 전지 차량에 적용되고 있다. 액체 수소 저장 기술은 수소를 극저온에서 액화하여 저장하는 방식이다. 이 기술은 높은 에너지 밀도를 가지며 우주항공 분야 등에서 활용된다. 고체 수소 저장 기술은 금속 수소화물, 화학 수소 저장 매체 등을 활용하여 수소를 고체 형태로 저장하는 방법이다. 이 기술은 상대적으로 낮은 압력과 온도에서 수소를 저장할 수 있어 안전성이 높고, 수소 탱크의 크기를 줄일 수 있는 장점이 있다. 미국에서는 수소 및 연료전지 기술 사무소(HFTO)가 바이든 행정부의 2022 인플레이션 감축법(IRA)으로부터 자금을 지원 받아 수소 저장 시스템 기술 발전을 위한 연구 개발 활동을 진행하고 있다. 현재까지 수소 저장 기술 개발은 다양한 도전으로 인해 진전이 더디게 이루어지고 있다. 수소 저장 기술의 중요성 수소 연료 셀 기술 발전을 위해서는 효과적인 수소 저장 기술 개발이 필수적이다. 수소는 단위 질량당 가장 높은 에너지를 가지고 있지만, 에너지 손실 없이 연료를 효과적으로 활용하기 위해서는 첨단 저장 기술이 필요하다. 앞서 밝혔듯이 수소는 기체 또는 액체로 저장할 수 있다. 기체 상태에서는 고압 탱크에 저장할 수 있고, 액체 상태에서는 기체로 다시 끓는 것을 방지하기 위해 극저온(약 -252.8°C)에 저장할 수 있다. 또한 흡수 과정을 통해 고체 물질에 저장할 수도 있다. 그러나 실제 사용을 위한 수소 저장과 관련된 몇 가지 과제가 있다. 예를 들어, 현재 수소를 사용하는 운송수단은 장거리 이동에 필요한 대량의 압축 연료를 저장할 수 없다. 또한 현재의 저장 기술은 매우 비효율적이어서 이 과정에서 많은 양의 에너지가 손실된다. 상온 수소 저장 기술 2021년 설립된 캘리포니아의 스타트업 H2MOF는 이러한 문제를 해결한 상온 수소 저장이라는 혁신적인 수소 저장 기술을 개발했다고 발표했다. 이 기술은 고압 또는 저온을 사용하지 않고 압축 상태의 수소를 저온에서 안정적으로 저장하는 것을 목표로 하고 있다. 상용화에 성공한다면 차량 연료 공급 등 다양한 분야에서 수소를 실온 보관할 수 있게 된다. H2MOF는 인공지능과 컴퓨터 생성 모델을 활용하여 연구 속도를 가속화했다. 이 회사는 수소를 녹색 전환의 핵심 기술로 보고 있으며, 전기와 달리 수소는 산업 운영, 조리 및 난방과 같은 분야에서 연료로 사용될 수 있다고 강조했다. 또한 실온 저장 수소는 대용량 전지를 필요로 하는 선박이나 항공기와 같은 대형 운송 수단의 전기 동력 대체에도 사용될 것으로 기대된다. H2MOF 기술은 친환경 에너지원으로서 수소 활용을 확대하고 탄소 배출 감소에 기여할 것으로 보인다. 또한, 수소 연료 셀 자동차 보급을 촉진하고 새로운 에너지 시장을 창출할 수 있다. 그러나 H2MOF만이 유일한 수소 저장 혁신 사례는 아니다. 2023년 네덜란드의 에인트호벤 공과대학 학생 그룹은 철 펠렛(작은 철구)을 이용한 수소 저장 방법을 제안했다. 연구팀은 이를 실현하기 위해 스팀 다리미 공정을 개발했다. 이 방법은 수소와 철 산화물을 생성하는 증기 철 공정을 기반으로 한다. 생성된 철 산화물은 다시 수소와 결합하여 철로 재생되고, 이 과정을 통해 수소를 반복적으로 저장 및 방출할 수 있다. 현재 수소 저장 기술은 아직 초기 개발 단계에 있으며, 실제 산업 규모로 적용하기 위한 과제들이 남아 있다. 하지만 전 세계적인 투자 및 연구 개발 활동을 통해 수소 활용의 장애물을 극복하고 미래 에너지 전환에 기여할 것으로 기대된다. 2016년 노벨 화학상 수상자이자 H2MOF의 공동 설립자인 프레이저 스토다트는 상온 수소 저장 기술에 대해 "내가 아는 한 수소 생산은 이미 해결된 문제"라고 말했다. 그는 "수소를 생산할 수 있는 효율적인 방법은 충분히 많다. 남은 큰 과제는 저압과 상온에서 많은 양을 저장하는 방식으로 수소를 저장하는 것이다"라면서 "어떤 식으로든 우리는 당연히 거기에 도달할 것이라고 확신한다"라고 말했다.
-
- 포커스온
-
[신소재 신기술(5)] 미국 스타트업 H2MOF, 상온 수소 저장 솔루션 개발
-
-
스페이스X, 인도네시아 위성 발사 성공⋯궤도 진입 완료
- 미국 민간 우주 기업 스페이스X(SpaceX)가 인도네시아의 광대역 인터넷 접근성을 높일 위성을 궤도에 올렸다. 지난 20일(현지시간) UPI통신에 따르면, 스페이스X의 팰컨9 로켓은 미국 플로리다 케이프 커내버럴 우주군 기지에서 동부 표준시 오후 3시 11분에 텔콤사트 메라 푸티 2호(Telkomsat Merah Putih2) 위성을 발사했다. 텔콤사트 메라 푸티 2호는 인도네시아 통신 위성 업체인 텔콤사트(Telkomsat)가 운영하는 통신 위성이다. 이번 발사는 팰컨9(Falcon9) 2단계 로켓의 17번째 비행이었다. 이 로켓은 이전에 크루-3, 크루-4, 8개의 스타링크 임무, 그리고 국제 우주 정거장(ISS)으로 2대의 카고 드래곤 우주선 임무를 수행했다. 발사 8분 후 로켓의 1단계 부스터는 스페이스X 드론십 'Just Read the Instructions(JRTI)'에 정확하게 착륙했다. 팰컨9 로켓의 2단계에서 분리된 메라 푸티 2호 위성은 발사 후 약 34분 만에 궤도에 진입했다. 스페이스X에 따르면, 이 위성은 1월 말 플로리다에 도착해 이번 발사를 위해 팰컨9 로켓 2단계에 통합됐다. 2018년 스페이스X는 팰컨9 로켓을 이용해 텔콤-4라는 이름으로 알려진 첫 번째 메라 푸티 위성을 발사했다. 이번에 발사된 메라 푸티2호는 텔콤사트가 탈레스 알레니아 스페이스와 계약해 제작한 것으로, 인도네시아에 32Gbps 이상의 인터넷 속도를 제공할 예정이라고 제작사 측은 설명했다. 스페이스X의 팰컨9은 2단계 중형-중량 액체 추진 로켓으로, 최대 저궤도(LEO)에 2만2800kg(5만300lb)의 페이로드를 운송할 수 있다. 현재 운영 중인 가장 강력한 로켓 중 하나이며 최초로 재사용 가능한 궤도 발사체다. 지금까지 150회 이상 성공적으로 발사되어, 우주 접근 비용을 크게 줄이는 데 기여했다.
-
- 산업
-
스페이스X, 인도네시아 위성 발사 성공⋯궤도 진입 완료
-
-
[신소재 신기술(3)] 리튬 금속 음극 전고체 배터리, -25~120℃에서 작동
- 리튬 금속 음극을 채용해 -25℃부터 120℃까지 작동하는 전고체 전지가 개발됐다. 일본의 기술 전문 매체 EE타임스는 지난 19일(현지 시간) 덴소와 큐슈대학교 연구진이 새로운 소결 메커니즘을 활용해 750℃의 저온 소결과 리튬(Li) 금속에 대한 안정성을 갖춘 '고체 전해질'을 개발했다고 보도했다. 덴소는 일본의 대표적인 자동차 부품 전문 기업으로 자동차 전자 제어 시스템, 엔진 관련 부품, 내연기관, 하이브리드 및 전기차용 시스템, 자율 주행 기술, 정보 및 통신 기술 등 다양한 분야에서 기술을 보유하고 있다. 또한, 덴소는 에어컨 시스템, 차량 내부 및 외부 조명, 제동 시스템 등과 같은 자동차 주변 시스템도 제조한다. 연구팀은 리튬 금속 음극을 사용하여 제작한 전고체 전지가 -25℃~120℃까지의 광범위한 온도 범위에서 작동하는 것을 확인했다. 재료 간 연속적으로 일어나는 상호 반응으로 인해 저온에서 소결이 진행된다. 리튬 음극 전고체 배터리의 경우 '소결'은 전기화학적인 과정을 의미한다. 리튬 음극 전고체 배터리는 리튬 금속 또는 리튬 이온의 이동을 통해 전기 에너지를 저장하고 방출하는 전지를 말한다. 소결은 이 배터리의 전극(음극) 부분을 제작하는 과정 중 하나다. 리튬 이온 배터리의 음극은 일반적으로 그래핀, 석탄 블랙 또는 다른 탄소 기반 물질로 만들어진다. 소결 과정은 이러한 물질을 압력과 온도를 가하여 밀착시키고, 전해질과 함께 전지 구조에 통합시키는 것을 말한다. 이러한 과정은 음극의 전기적 특성을 최적화하고, 전지의 성능과 안전성을 향상시키는 데 중요하다. 소결은 전지의 제조과정에서 핵심 단계 중 하나이며, 배터리의 성능과 안전성에 직접적인 영향을 미친다. 따라서 소결 과정은 배터리 제조 과정에서 특히 중요한 부분이다. 덴소의 임진대 연구원(당시 규슈대학교 대학원 종합이공학부 박사과정 3년)과 규슈대학교 대학원 종합이공학연구원의 와타나베 켄 조교수, 시마노에 켄고 교수 등으로 구성된 연구팀은 2024년 2월, 새로운 소결 메커니즘을 활용해 750℃의 저온 소결과 리튬 금속에 대한 안정성을 겸비한 '고체 전해질'을 개발했다고 발표했다. 산화물 전해질을 사용한 전지는 발화 등이 없어 안전성이 높다. 하지만 재료 간 접합을 위해서는 1000℃ 이상의 고온에서 소결해야 한다. 연구팀은 이때 전극재와 전해질재가 반응하는 등 배터리화가 어려웠다고 전했다. 연구팀은 지금까지 전해질 소재인 'Li7La3Zr2O12(LLZ)에 저융점 소결 보조제를 나노 수준으로 복합화해 750℃에서 소결을 실현했다. 그러나 소결 보조제를 첨가하기 때문에 음극 재료인 리튬 금속에 대한 안정성이 현저하게 떨어졌다. 이번 연구에서는 새로운 소결 메커니즘을 활용해 안전성 문제를 해결했다. 연구팀은 열분석과 미세구조 분석 결과, 'Li-Sb-O 산화물' 및 'Li-B-O 산화물'이라는 두 종류의 소결 보조제와 'CO₂'가 연속적으로 상호 반응하는 것을 확인했다. 이를 통해 (Li-)-B-O 산화물은 용융 상태를 유지하며 저온에서 소결이 진행됨을 확인했다. 이 소결 메커니즘을 활용하면 Bi를 포함한 재료 조성을 사용하지 않고도 저온 소결이 가능하다. 또한, Sb를 포함한 조성으로 변경할 수 있어 Li 금속에 대한 안정성이 높은 고체 전해질을 개발하는데 성공했다. 이온전도도는 3.1×10-4S/cm를 달성했다. 'Bi'는 화학 원소 기호로 비스무트(Bismuth)를 나타낸다. 비스무트는 주기율표의 15번째 그룹에 속하는 비금속 원소로, 주로 광산에서 추출된다. 비스무트는 주변환경에서 자연적으로 발견되며, 비스무트의 화합물은 농업, 의약품, 화장품 등 다양한 분야에서 사용된다. 아울러 비스무트는 낮은 독성을 가지고 있어서 의료용 약물로 사용되는 경우가 많다. 또한, Bi는 납의 대체재로서 전자기 기기에 사용되기도 한다. 그러나 높은 가격과 기술적인 제한으로 인해 사용이 제한될 수도 있다. Sb는 화학 원소 기호로 안티모니(Antimony)를 말한다. 안티모니는 주기율표의 15번째 그룹에 속하는 비금속 원소로, 자연적으로 화학적으로 비동정된 형태로 발견된다. 안티모니와 그 화합물은 여러 산업 분야에서 사용되며, 특히 화학, 전자, 의료, 화장품 산업에서 사용되는 경우가 많다. 안티모니의 화합물은 화장품, 화학 처리, 납의 합금, 방사선 차폐재 등 다양한 용도로 사용된다. 또한, 안티모니는 반도체 산업에서 사용되는 반도체 소재의 일부이며, 화합물로서는 일부 의약품에서도 쓰인다. 그러나 안티모니와 그 화합물은 높은 독성을 가지고 있어서 적절한 관리가 필요하다. 연구팀은 개발된 소재를 이용해 제작한 전고체전지의 특성을 평가했다. 그 결과, 상온 환경에서 60회 충전·방전 후 용량 유지율은 98.6%로 나타났다. 전고체 배터리 기술은 지속적으로 발전하고 있다. 이 기술은 전기차 및 재생 에너지 저장 시스템 등의 분야에서 중요한 역할을 할 것으로 예상된다. 전고체 기술은 전통적인 액체 전해질 전지에 비해 안전성이 뛰어나며 에너지 밀도와 충방전 속도를 향상시키는 잠재력이 있다.
-
- IT/바이오
-
[신소재 신기술(3)] 리튬 금속 음극 전고체 배터리, -25~120℃에서 작동
-
-
올리브 오일, 건강에 정말 좋은 것일까?
- 올리브 오일은 건강에 좋은 식용유로 널리 알려져 있다. 그러나 산화되거나 발효된 올리브 오일은 건강에 유해할 수 있다. 19일(현지시간) 미국 CNN에 의하면 많은 사람들이 올리브 오일을 치매 위험 감소, 심장 건강 개선, 인지 기능 저하 방지 등 다양한 건강상의 이점을 가지고 있어서 건강에 좋은 식용유로 알고 있지만, 실제로 모든 올리브 오일이 건강에 좋은 것은 아니며 건강을 위해 올리브 오일을 구입할 때 고려해야 할 중요한 사항들이 있다. 19일(현지시간) 미국 CNN에 따르면, 많은 사람들은 올리브 오일이 치매 위험 감소, 심장 건강 개선, 인지 기능 저하 방지 등 다양한 건강상의 이점을 가지고 있다고 생각하지만, 실제로 모든 올리브 오일이 건강에 좋은 것은 아니다. 올리브 오일을 구매할 때 고려해야 할 중요한 사항이 있다. 올리브는 완전히 익지 않은 초록색 상태에서 수확해야 한다. 완전히 익지 않은 올리브로 만든 오일은 건강에 유익한 성분이 더 많이 함유되어 있기 때문이다. 올리브의 가공 방법으로 엑스트라 버진 올리브 오일은 고온이나 화학 용제를 사용하지 않고 냉압착 방식으로 가공해야 한다. 이는 올리브의 영양분을 최대한 보존할 수 있는 방법이다. 또한 올리브 오일은 수확 후 3개월 이내에 병입(액체나 가루 등을 병에 넣음)되어야 한다. 오랜 시간 방치된 올리브는 산화되거나 발효될 수 있으며, 이는 건강에 좋지 않다. 유통기한이 지난 올리브 오일은 맛과 영양분이 떨어질 수 있으므로 병입 후 2년 이내에 섭취하는 것이 가장 좋다. 햇빛이나 공기에 노출되면 올리브 오일이 산화될 수 있으며, 이는 건강에 좋지 않다. 따라서 올리브 오일은 서늘하고 어두운 곳에 보관해야 하며, 보관 용기로는 유리 용기에 담아 보관하는 것이 가장 좋다. 플라스틱 용기는 올리브 오일에 냄새가 배거나 오염될 수 있다. 올리브 오일을 구입한 후에는 가능한 빨리 맛을 살펴보는 것이 좋다. 좋은 올리브 오일은 강렬하지 않고 순한 맛을 가지며, 왁스나 상한 견과류와 같은 부정적인 특징이 나타나지 않는다. 올리브 오일을 구입 후 바로 맛을 보는 것이 좋은데 좋은 올리브 오일은 강렬하지 않고 순한 맛을 가지고 있으며, 왁스 크레용이나 상한 견과류 맛이 나지 않는다. 일반적으로 건강에 좋은 올리브 오일은 가격이 비싸지만, 저렴한 올리브 오일은 품질이 낮거나 다른 오일과 혼합된 경우가 많다. 또한 올리브 오일은 생산 국가와 지역에 따라 맛과 향이 다를 수 있으므로, 다양한 올리브 오일을 시도해보고 자신이 선호하는 맛과 향을 찾는 것이 좋다. 예일 공중보건대학(Yale School of Public Health) 타소스 키리아키데스(Thassos Kyriakides) 교수는 "올리브 오일에 함유된 다양한 요인이나 성분이 건강에 도움을 주며 주요 성분인 올레산은 건강에 매우 유익하며, 폴리페놀은 세포 손상과 염증을 예방하는 데 도움이 된다'"고 말했다. 올리브 오일의 건강상의 이점 올리브 오일의 건강상의 이점을 살펴보면 다음과 같다. 첫째, 치매 위험을 감소시킬 수 있다. 스페인 나바라 대학교 연구에 따르면, 올리브 오일을 섭취하는 사람들은 치매 발병 위험이 40% 감소하는 것으로 나타났다. 둘째, 심장 건강 개선에 도움이 된다. 올리브 오일에 함유된 올레산은 나쁜 콜레스테롤(LDL) 수치를 감소시키고 좋은 콜레스테롤(HDL) 수치를 증가시켜 심장 건강을 개선하는 데 도움이 된다. 또한 혈압을 낮추고 혈전 형성을 예방하는 데 도움이 될 수 있다. 셋째, 올리브 오일은 인지 기능 저하를 방지하고 기억력을 향상시키는 데 도움이 될 수 있으며 올리브 오일에 함유된 폴리페놀은 뇌세포 손상을 예방하고 뇌신경세포 재생을 촉진하는 데 도움이 된다. 넷째, 올리브 오일은 혈당 수치를 조절하는 데 도움이 될 수 있다. 올리브 오일에 함유된 올레산은 인슐린 민감도를 향상시켜 혈당 수치를 안정적으로 유지하는 데 도움이 된다. 다섯째, 염증을 감소 기능으로 올리브 오일에 함유된 폴리페놀은 염증을 유발하는 물질의 생성을 억제하는 데 도움이 된다. 그러나 올리브 오일은 고칼로리 식품으로 과다 섭취는 체중 증가로 이어질 수 있다. 아울러 올리브 오일에 알레르기가 있는 사람은 섭취하지 않는 것이 좋다. 올리브 오일은 건강에 좋은 식용유이지만, 모든 올리브 오일이 건강에 좋은 것은 아니다. 올리브 오일을 구입할 때 위의 사항들을 고려하여 건강에 좋은 올리브 오일을 선택하는 것이 중요하다
-
- 생활경제
-
올리브 오일, 건강에 정말 좋은 것일까?
-
-
[신소재 신기술(2)] 박테리아, 극한 환경서 이산화탄소 암석화 가속
- 일부 박테리아가 극한 조건에서 이산화탄소를 암석으로 변환하는 데 기여할 수 있다는 연구 결과가 발표됐다. 미국의 과학 전문 매체 뉴스사이언티스트는 지난 14일(이하 현지시간) 미국 사우스다코타 연구팀의 박테리아 연구 결과를 인용, 이산화탄소를 신속하게 암석으로 전환시킬 수 있는 미생물이 폐유정이나 버려진 가스 저장소와 같은 깊은 지하 공간에 온실가스를 저장하는 데 활용될 수 있다고 전했다. IFL사이언스는 지하 1250미터 깊이에서 발견된 특정 박테리아가 이산화탄소를 결정 형태로 변환할 수 있으며, 이러한 탄소 포집 기능을 가진 박테리아를 사용해 버려진 화석 연료 저장소에 온실가스를 안정적으로 저장할 수 있다고 지난 15일 보도했다. 미국 사우스다코타 광업기술대학의 고크체 우스투니식(Gokce Ustunisik) 교수와 그의 동료들은 워싱턴주의 퇴비 더미에서 고온과 고압을 견디는 것으로 알려진 지오바실러스 박테리아 종을 분리했다. 연구팀에 따르면 극한 환경에서 작동하는 박테리아를 활용해 이산화탄소의 광물화 과정을 가속화함으로써, 포집된 이산화탄소를 지하에 주입하고 이를 통해 온실가스를 장기간 안정적으로 저장할 수 있는 가능성이 제시됐다. 사우스다코타의 블랙힐스 지역 깊숙한 곳에는 CO₂를 고체 광물로 신속하게 변환할 수 있는 잠재력을 지닌 박테리아가 서식하고 있다. 과학자들이 이 독특한 미생물을 활용하는 방법을 개발한다면, 고갈된 화석 연료 저장소에서 온실가스를 포집하는 새로운 접근법을 제안할 수 있게 될 것으로 전망된다. 이번 연구는 이러한 박테리아가 이산화탄소를 암석으로 전환하는 과정에서 중요한 역할을 할 수 있음을 시사한다. 미생물, 단 10일 만에 고체 탄산염 변환 실험실 실험에서 연구팀은 해당 미생물이 존재하는 경우와 그렇지 않은 경우에 이산화탄소가 물에 용해됐을 때의 광물화 속도를 비교했다. 연구팀은 CO₂가 저장될 수 있는 지하 깊은 곳에서 발견될 수 있는 극한의 조건, 즉 다양한 온도, 압력, 그리고 염분 조건에서 이 과정을 시험했다. 이와 함께, 여러 종류의 현무암을 사용하여 이 과정을 검증했다. 이들 미생물이 없을 경우, 연구팀은 CO₂의 광물화 과정을 관찰하지 못했다. 우스투니식 교수는 이 과정이 이상적인 지질학적 조건에서조차 보통 수년이 소요될 수 있다며, "실질적으로 영원히 걸릴 수도 있다"고 말했다. 그러나 미생물이 있을 때는 상황이 달라졌다. 우스투니식 교수에 따르면, 80°C(176°F)의 온도와 해수면 압력의 약 500배에 해당하는 극한의 조건에서 CO₂가 광물 결정 형태를 이루는 데 단 10일이 걸렸다고 한다. 유망한 미생물 후보 3 종류 소더 지오사이언스 LLC와 사우스다코타 광업기술대학의 연구팀은 최근 유전의 극심한 온도와 압력을 견딜 수 있는 탄소 격리용 미생물을 탐색하는 데 주력했다. 이 과정에서 세 가지 유망한 후보 미생물을 발견했다. 이들 중 하나는 미국 내에서 가장 깊은 곳에 위치한 사우스다코타 블랙힐스의 샌포드 지하 연구 시설의 지하 1250미터(4100피트)에서 발견된 바실러스 박테리아 종이다. 다른 두 종은 각각 고온과 고압 조건을 견딜 수 있는 지오바실러스 종과, 최대 110°C(230°F)의 고온과 바닷물의 염분 그리고 고압을 견뎌낼 수 있는 태평양 열수구에서 발견된 고온성 페르세포넬라 마리나(Persephonella marina)이다. 이들 박테리아는 압력, 온도, 산도의 극한 조건을 다루는 일련의 실험실 실험을 성공적으로 견뎌냈다. 위에서 지적했듯이 예비 연구 결과에 따르면, 이 미생물이 CO₂를 방해석 결정으로 전환하는데 최적의 조건은 해수면 압력의 약 500배 높은 압력과 80°C(178°F)온도였다. 이러한 극한의 환경에서, 해당 박테리아는 10일 이내에 CO₂를 탄산염 결정으로 변환할 수 있었다. 이 박테리아가 CO₂와 물과의 반응을 촉매하는 데에는 탄산탈수효소라는 효소가 핵심 역할을 했다. 이 효소 덕분에 박테리아는 CO₂를 효과적으로 광물화할 수 있었다. 이 연구는 작년 말 샌프란시스코에서 열린 미국 지구물리연합 회의(American Geophysical Union conference)에서 발표됐다. 폐유전·가스전, CO₂ 저장에 이상적 장소 폐유전이나 고갈된 가스전에 남겨진 공간은 포집된 CO₂를 저장하는 데 이상적인 장소로 여겨지며, 이 방법을 통해 CO₂가 대기 중으로 방출되어 온실가스로 작용하고 기후 변화를 촉진하는 것을 방지할 수 있다. 이러한 박테리아는 고갈된 유전이나 가스전의 까다로운 조건에서도 CO₂를 안정적으로 격리하고, 지하 공간에 효과적으로 저장함으로써 영구적인 탄소 격리의 가능성을 제시한다. 또한 고체 탄산염은 버려진 유정에 남아 있는 액체와 가스가 새어 나오는 것을 막는 '플러그' 역할을 효과적으로 수행할 수 있다. 현재 이러한 탄소 포집 기술은 여전히 가설적인 단계에 있지만, 이 기술의 발전은 기후 위기 대응에 있어 중요한 역할을 할 수 있다. 하지만 이 기술만으로는 기후 변화 문제를 해결할 수 없으며, 화석 연료 사용 감소를 위한 노력과 함께 지속 가능한 에너지 시스템 구축을 위해 노력이 필요하다.
-
- 포커스온
-
[신소재 신기술(2)] 박테리아, 극한 환경서 이산화탄소 암석화 가속
-
-
토성의 위성 미마스, '지하 바다' 존재⋯생명체 존재 가능
- 토성의 소형 위성 미마스(Mimas)에서 지하 바다가 발견되었다는 사실은 과학계에 큰 파장을 일으켰다. 영화 '스타워즈'에 등장하는 '데스 스타(Death Star)'와 흡사한 외관을 가진 미마스에서 생명체 존재 가능성을 암시하는 바다가 발견되었다는 것은 과학적 흥미뿐만 아니라 대중의 상상력을 사로잡았다. 포브스 재팬은 미마스 내부에 바다가 존재할 수 있다는 발견이 지질학적으로 활발한 천체에만 해당될 것이라는 기존의 생각을 뒤집는, 실로 놀라운 발견이라고 지난 14일 보도했다. 프랑스 파리 천문대의 발레리 레이니 박사팀은 지난 2월 8일 과학 저널 '네이처(Nature)'에 게재된 연구에서 토성 탐사선 카시니(Cassini)의 관측 자료를 분석한 결과, 미마스가 수많은 충돌 분화구로 덮인 얼음 표면 아래에 비교적 최근에 형성되어 여전히 진화 중인 바다가 존재할 가능성이 있다고 발표했다. 지름이 390km로 토성의 주요 위성 중 가장 작으며 가장 안쪽 궤도를 22시간 만에 공전하는 미마스는 표면이 분화구(crater, 운석 충돌 등으로 생기는 거대한 구덩이)로 덮여 있고 변화가 없다는 점에서 지질학적으로 비활성 상태로 여겨져 왔다. 하지만 2010년 카시니 탐사선이 관찰한 미마스의 '흔들림(libration)' 현상은 과학자들의 관심을 끌었다. 이는 미마스 내부에 액체 상태의 물이 존재할 가능성을 시사하는 중요한 증거였다. 미마스는 표면의 광범위한 부분을 차지하는 거대한 충돌 분화구 '허셜'로 인해 영화 '스타워즈'에 등장하는 우주 요새 '데스 스타(Death Star)'와 유사한 외관을 가지고 있다. 허셜은 1789년 미마스를 처음 확인한 천문학자 윌리엄 허셜의 이름을 딴 분화구를 말한다. 하지만 미마스에서는 지질 활동의 징후가 발견됐다. 특히 남극 지역의 크레이터가 다른 지역의 크레이터보다 작게 보이는 것은, 이 지역에서 최근에 융해 현상이나 새로운 표면 형성이 일어나고 있음을 간접적으로 나타내고 있다. 일반적으로 얼음이나 다른 고체 표면 아래 존재하는 바다는 액체 상태로 인한 내부 역학이 표면에 변형을 일으키며 드러나곤 한다. 연구팀은 그러나 미마스의 경우, 표면 변화가 거의 관찰되지 않아, 그 아래에 액체 상태의 바다가 존재할 가능성이 매우 낮은 후보로 여겨졌다고 밝혔다. 카시니 탐사선의 관측 데이터를 활용한 이전 연구에서 미마스의 자전 운동과 궤도상의 흔들림 현상이 관찰됐으며, 이러한 현상을 설명하기 위해 내부에 길게 뻗은 암석 핵이 존재하거나, 심지어는 내부에 전체적으로 바다가 있을 수 있다는 가설이 제시됐다. 지질학적으로 활동하지 않는 것으로 여겨졌던 미마스 이번 연구를 요약한 논문에 따르면, 미마스의 바다는 약 20~30km 두께의 얼음층 아래에 위치하며, 형성 시기는 약 2500만 년 전보다 젊은 것으로 추정된다. 네이처에 따르면 미마스 내부에 전구적 규모의 액체 상태의 물로 이루어진 바다가 존재하는 것으로 확인됐다. 이 바다는 대략 1500만년에서 500만년 전 사이에 형성된 것으로 추정된다. 논문의 공동 저자이자 영국 런던 대학교 퀸 메리 대학의 물리화학 및 천문학 부문 명예 연구원인 닉 쿠퍼는 "이번 발견으로 미마스가 엔켈라두스나 유로파와 같이 내부 바다를 가진 위성 가운데 하나로 자리매김하게 됐다. 미마스의 바다가 특히 눈에 띄는 점은 그 젊은 나이다"라고 말했다. 미마스 내부의 바다는 토성과 미마스 간의 조류력 상호작용을 통해 탐지됐다. 연구 결과, 미마스 궤도의 불규칙성이 지하 바다에 의해 발생할 수 있는 현상이 아님을 밝혀냈다. 이 연구에는 미국 항공 우주국(NASA)의 토성 궤도 탐사선 카시니가 2004년부터 2017년까지 13년 동안 수집한 관측 데이터가 활용됐다. 미마스는 반경이 198km에 불과한 작은 천체이지만, 이번 발견이 큰 파장을 일으킬 수 있다고 포브스 재팬은 강조했다. 활발한 지질 활동의 징후가 없는 작은 위성이 숨겨진 바다를 가지고 있으며, 이로 인해 생명 유지에 필수적인 조건을 제공할 가능성이 있다는 것은, 과학자들이 태양계 어느 곳에서든 생명의 존재 가능성을 탐색할 수 있는 새로운 전망을 열어준다는 것이다. 바다 연대 젊어 생명체 없을 수도 영국의 일간지 가디언은 지난 7일 미마스의 바다 연대가 너무 젊어 생명체가 출현할 충분한 기회가 없었을 수 있다는 주장이 제기됐다고 보도했다. 가디언에 따르면 프랑스 파리 천문대의 천문학자 발레리 레이니는 미마스 내부에 따뜻한 암석과 접촉하는 물이 존재함으로써 생명체가 존재할 가능성을 완전히 배제할 수 없다고 말했다. 그러나 이 숨겨진 바다의 연대가 수천만 년에 불과하다면, 생명체가 출현할 기회가 부족했을 가능성도 있다. 레이니는 "바다의 나이가 생명체 출현에 충분히 오래되었는지 여부에 대해 아무도 확신할 수 없다"고 덧붙였다. 일반적으로 위성의 암석질 핵과 지하 바다 사이의 상호작용으로 인해 생명 유지에 필요한 화학 에너지가 생성될 수 있다고 여겨진다. 쿠퍼는 "최근에 발견된 액체 상태의 물 바다는 생명의 기원을 연구하는 학자들에게 미마스를 주요 조사 대상이 됐다"고 말했다. 미마스에서 바다가 발견되었다는 사실이 예상 밖일 수 있지만, 태양계 내 다른 행성의 위성에서 바다가 발견된 것은 이번이 처음이 아니다. 토성의 위성 엔켈라두스와 타이탄, 그리고 목성의 위성 유로파, 가니메데, 칼리스토에서 이미 행성 해양학자들이 지하 바다를 탐지해 왔다. 미마스에서의 이러한 바다 발견은 예상치 못한 장소에서 이루어졌으며, 이는 태양계 곳곳의 소형 얼음 위성에 대한 철저한 조사가 곧 시작될 것임을 시사한다.
-
- 산업
-
토성의 위성 미마스, '지하 바다' 존재⋯생명체 존재 가능
-
-
NASA, 137광년 떨어진 '슈퍼지구' 발견⋯거주 가능성 높아
- 미 항공우주국(NASA·나사)은 태양보다 작고 차가운 적색 왜성을 도는 지구 질량 1.5배의 '슈퍼 지구'를 발견했다고 NDTV가 4일(현지시간) 보도했다. NASA에 따르면 이는 잠재적으로 생명체 거주 가능한 행성으로 추정되며, TOI-715 b로 명명됐다. 발견 과정은 NASA 주관 트랜짓 엑소플래닛 서베이 위성(TESS)을 통해 이루어졌다. NASA는 지난 1월 31일 공식 발표문을 통해 "추가 조사가 필요한 '슈퍼지구'는 천문학적 기준으로 볼때 우리와 상당히 가까운 137광년 떨어진 작고 붉은 별을 돌고 있다"면서 "동일한 항성계 내에 지구 크기의 두 번째 행성이 있을 수도 있다"고 설명했다. 행성 TOI-715 b는 지구보다 1.5배 크고, 모항성을 19일(1년=19일)만에 도는 짧고 낯선 공전 주기를 갖고 있다. 행성 b는 모항성 주위의 '보존적' 거주 가능 영역 내에서 궤도를 돌고 있다. 하지만 NASA는 행성 표면에 액체 물이 존재하기 위해서는 적절한 대기 등 다른 여러 요소가 필요하다고 강조했다. 생명체 거주 가능 영역은 좀 더 엄격한 기준을 적용하며, 현재 관측 결과만으로는 정확한 판단을 내리기 어렵다는 입장이다. 또한 같은 항성계 내에 TOI-715 b보다 약간 더 작은 또 다른 지구 크기의 행성이 존재할 수도 있다고 덧붙였다. TOI-715 b가 도는 별은 적색 왜성이다. 적색 왜성은 태양보다 작고 차가운 별 종류로, 이러한 별 주변에서는 암석 행성이 가깝게 붙으면서도 생명체 거주 가능 영역 내에 머물 수 있다는 특징이 있다. 또한 짧은 공전 주기 덕분에 우주 망원경을 통한 관측 기회가 많아 연구에 유리하다. NASA는 "만약 이 태양계에서 지구 크기의 두 번째 행성이 확인된다면, 지금까지 TESS가 발견한 행성 중 가장 작은 거주 가능 영역의 행성이 될 것"이라면서 "이번 발견은 또한 거주 가능 영역에서 지구 크기의 행성을 발견함으로써 TESS에 대한 초기 예상을 뛰어넘었다"고 평가했다. 하지만 NASA는 앞으로 제임스 웹 우주 망원경을 활용해 TOI-715 b의 대기 등 다양한 특성을 조사해야 정확한 평가가 가능하다고 설명했다. NASA에 따르면 거주 가능 행성으로 추정되는 '슈퍼 지구'는 영국 버밍엄 대학교의 조지나 드랜스필드(Georgina Dransfield)가 이끄는 국제 과학자팀이 발견했다. 이 연구은 2024년 1월 '황도 남극 근처의 M4 항성인 TOI-715가 주관하는 1.55 R⊕ 거주 가능 영역 행성' 발견에 관한 논문을 "왕립 천문학회 월간지"에 발표했다. 이 행성을 확인하는 데 사용된 국제적인 시설에는 제미니-사우스, 라스 쿰브레스 천문대 망원경, ExTrA 망원경, 스페쿨루스 네트워크, 트랩피스트-사우스 망원경 등이 포함된다. 이번 발견은 인류의 지구 외 생명체 탐사 노력에 중요한 발걸음이며, 향후 지속적인 연구를 통해 TOI-715 b의 생명체 거주 가능성 여부를 밝혀낼 수 있을 것으로 기대된다.
-
- IT/바이오
-
NASA, 137광년 떨어진 '슈퍼지구' 발견⋯거주 가능성 높아