검색
-
-
간헐적 단식, 제2형 당뇨병 완화 가능⋯운동과 비슷한 효과
- 간헐적 단식과 빠른 걸음걸이가 제2형 당뇨병의 증상 완화에 도움이 될 수 있다는 연구 결과가 나왔다. 이러한 식이요법은 운동과 유사한 효과를 나타내며, 인슐린 민감도를 증진시켜 제2형 당뇨병 완화에 기여할 수 있다는 것이 주요 내용이다. 영국의 익스프레스는 마이크 한센(Mike Hansen) 박사가 제2형 당뇨병을 역전시킬 수 있는 가능성을 제시하는 식단으로 간헐적 단식을 추천했다고 보도했다. 건강에 해로운 식습관이 높은 인슐린 수치와 인슐린 저항성을 초래하는 주요 원인이며, 이는 제2형 당뇨병 발병으로 이어질 수 있는 문제임이 알려져 있다. 운동은 인슐린 민감도를 개선하여 당뇨병 관리에 필수적인 역할을 한다는 사실이 다수의 연구를 통해 확인됐다. 한센 박사는 간헐적 단식이 인슐린 민감성 향상에 있어 운동과 유사한 효과를 제공할 수 있다고 설명했다. 이 식습관에는 여러 방식이 존재하지만, 기본적으로는 매일이나 매주 정해진 기간 동안 음식 섭취를 자제하는 것이 핵심이다. 이 식이요법은 여러 접근 방식을 포함하고 있으며, 주된 원칙은 매일 또는 매주 정해진 시간 동안 음식 섭취를 하지 않는 것이다. 간헐적 단식의 인기 있는 방법 중 하나는 일주일 동안 5일은 평소대로 식사하고 2일은 단식하는 5:2 방식이다. 또 다른 방법으로는 매일 8시간 동안만 식사하고 나머지 시간은 단식하는 시간 제한 식사가 있다. 한센 박사는 자신의 유튜브 채널에서 간헐적 단식이 운동과 유사한 건강상의 이점을 제공한다고 말했다. 그는 "간헐적 단식과 운동은 모두 세포가 스스로를 복구하는 자가포식 과정을 촉진하며, 미토콘드리아의 보충을 유도하는 미토파지를 자극한다"고 설명했다. 더 나아가, "운동과 간헐적 단식을 병행할 경우, 세포는 미토콘드리아의 수와 크기를 증가시키는데, 이 둘은 각각의 이점을 제공할 뿐만 아니라 함께 시너지 효과를 낳는다"고 덧붙였다. 최근 임상 내분비학 및 대사 저널(The Journal of Clinical Endocrinology and Metabolism)에 게재된 연구에 따르면, 간헐적 단식이 제2형 당뇨병을 '완전히 뒤집을' 수 있는 가능성을 보여줬다. 이 연구에서는 38세에서 72세 사이의 제2형 당뇨병 환자 72명을 대상으로 하여, 참가자들을 두 그룹으로 분류했다. 하나의 그룹은 일반적인 관리를 받는 통제 그룹으로 설정되었고, 다른 하나는 간헐적 단식을 실시하는 실험 그룹이었다. 연구진은 이번 연구를 통해 간헐적 단식이 모든 당뇨병 약물의 사용을 중단한 상태에서도 당뇨병을 역전시킬 수 있는지를 검증하고자 했다. 이를 위해 당뇨병 완화가 이루어진 후 12개월 동안의 지속 가능성을 평가하기 위한 후속 조사도 진행됐다. 연구 결과, 간헐적 단식 그룹에서는 36명 중 17명이 당뇨병 완화를 경험한 반면, 대조군에서는 오직 1명만이 당뇨병 완화를 보고함으로써, 간헐적 단식이 제2형 당뇨병 관리에 긍정적인 영향을 미칠 수 있음을 시사했다. 한센 박사에 따르면, 연구 참가자 중 항당뇨병 약물이나 인슐린을 복용하고 있던 거의 90%가 긴헐적 식단을 시행한 후 당뇨병 약물의 필요성이 줄어들었다고 말했다. 이 의료 전문가는 간헐적 단식이 인슐린 반응성을 개선하여 세포를 더 민감하게 만들고, 이를 통해 당뇨병 위험을 감소시키며, 일부 경우에는 제2형 당뇨병을 역전시케는 데 매우 효과적이라고 설명했다. 한센 박사는 "운동을 하지 못하거나 할 수 없는 사람들에게도 간헐적 단식은 포도당과 인슐린 수치를 정상 범위 내로 유지하고 이를 정상화하는 데 도움을 줄 수 있다"고 말했다. 그는 건강한 식단과 규칙적인 운동이 인슐린 민감성을 향상시키고 인슐린 수치를 감소시키는 것이 잘 알려져 있다며 “이제 우리는 간헐적 단식이 동일한 효과를 발휘할 수 있고 심지어 제2형 당뇨병을 역전시킬 수 있다는 증거를 얻었다”고 설명했다. 간헐적 단식뿐만 아니라 빠른 걸음걸이가 제2형 당뇨병 발병 위험을 감소시킨다는 연구 결과도 나왔다. 영국 스포츠 의학 저널(British Journal of Sports Medicine)에 실린 최신 연구에 따르면, 걷기 속도가 빨라질수록 제2형 당뇨병 발병 위험이 줄어드는 것으로 밝혀졌다. 이 연구에서 분석한 결과, '보통 속도로 걷기'를 하는 사람들이 '느리게 걷기'를 하는 사람들에 비해 제2형 당뇨병 발병 위험이 15% 낮았으며, '빠르게 걷기'는 24%, '매우 빠르게 걷기'는 최대 39%까지 발병 위험이 감소하는 것으로 나타났다. 걷기 속도가 1km/h 증가할 때마다 당뇨병 위험이 9% 감소하는 것으로 분석됐다. 이는 걷기 속도가 빨라질수록 운동 강도가 증가해 당뇨병 위험 감소에 더욱 효과적일 수 있음을 시사한다.
-
- 생활경제
-
간헐적 단식, 제2형 당뇨병 완화 가능⋯운동과 비슷한 효과
-
-
美 MIT, 액체 금속 이용한 고속 3D 프린팅 기술 개발
- 미국 매사추세츠 공과대학(MIT) 연구진이 액체 금속을 사용해 대형 알루미늄 부품을 몇 분 만에 제작할 수 있는 새로운 3D 프린팅 기술을 개발했다고 미국 기술 전문 매체 엔가젯(Engadget)이 최근 보도했다. 액체 금속을 활용한 이 3D 프린팅 기술은 기존 금속 3D 프린팅 기술에 비해 상당한 시간 단축이 가능하며, 대형 알루미늄 부품을 빠르게 제작할 수 있다. 이 기술은 이미 테이블 다리와 의자 프레임 등 가구 부품 제작에 사용되고 있다. '액체 금속 프린팅(Liquid Metal Printing, LMP)'으로 불리는 이 기술은 용융된 알루미늄을 미리 정의된 경로를 따라 작은 유리 비드 층 위로 분사하는 방식으로 작동한다. 이 유리 비드들은 알루미늄이 빠르게 굳어지며 3D 구조를 형성하도록 한다. 연구팀은 이 기술이 기존 금속 제조 공정보다 최소 10배 더 빠르다고 밝혔다. 그러나, 해상도가 낮은 한계로 인해 복잡한 형상의 부품 제작보다는 저해상도의 부품 제작에 더 적합하다는 설명이다. 연구팀은 저해상도 한계가 미세한 디테일이 필수적이지 않은 더 큰 구조물의 구성 요소 제작에는 심각한 문제가 되지 않을 것이라고 말했다. 이러한 구성 요소에는 가구 부품뿐만 아니라 건설 및 산업 디자인 부품도 포함된다. 예를 들어, 액체 금속 프린팅 기술을 통해 테이블 다리 등과 같은 가구 부품을 몇 분 만에 제작할 수 있다. 이와 함께, 건물이나 공장 구조에 필요한 대형 알루미늄 부품의 제작도 가능하다. 이 기술이 아직 초기 단계임에도 불구하고, 금속 제조 분야에서 혁신적인 가능성을 제시하고 있다는 평가를 받고 있다. 액체 금속 프린팅의 한계 액체 금속 프린팅으로 제작된 부품은 해상도가 낮음에도 불구하고 높은 내구성을 지니며 추가 가공을 견딜 수 있는 것으로 나타났다. 연구팀은 이 기술로 제작된 제품이 기존의 와이어 아크 적층 제조 방식으로 제작된 제품보다 내구성이 뛰어나다고 보고했다. 또한, 연구팀은 빠른 속도와 높은 해상도가 동시에 필요한 작업에 대해 액체 금속 프린팅 기술을 다른 기술과 결합하는 것을 권장했다. 이 기술은 알루미늄 외에도 다양한 금속에 적용 가능하다. 연구팀은 알루미늄을 선택한 주된 이유로 건축 분야에서의 인기와 재활용 용이성을 들었다. 연구팀은 가열 과정의 일관성을 향상시키고, 금속의 고착 문제를 방지하며, 용융 금속의 흐름을 더 정밀하게 제어하기 위해 이 기술을 지속적으로 개선하는 작업을 계획하고 있다. 특히, 더 큰 노즐 직경으로 인해 불규칙한 인쇄를 일으키는 문제를 해결하는 것도 연구 과제 중 하나다. 연구팀은 이 기술이 금속 제조 분야에서 중대한 변화를 일으킬 수 있는 '게임 체인저'가 될 것으로 기대하고 있다. 최근 몇 년 동안 3D 프린팅 기술은 눈에 띄게 발전했다. 과학자들은 신체에 삽입되어 손상된 조직을 복구하고 청소할 수 있는 작은 3D 프린터를 개발했다. 또한 인간 심장의 작동 가능한 부분을 3D 프린팅하는 데 성공했다. 액체 금속 인쇄 기술이 상용화되면 기존 금속 제조 방식보다 부품을 훨씬 빠르고 효율적으로 제작할 수 있는 가능성을 열게 된다. 이는 제조업체의 생산성을 크게 향상시키고, 제품 비용을 절감하는 데 기여할 것으로 예상된다. 한국의 액체 금속 3D 프린팅 현황 그렇다면 한국의 액체 금속 3D 프린팅 기술은 어느 단계까지 왔을까. 국내 액체 금속 3D 프린팅 기술에 대한대표적인 연구기관으로는 한국과학기술원(KAIST), 한국생산기술연구원(KITECH), 한국전자통신연구원(ETRI) 등이 있다. KAIST에서는 액체 금속을 활용한 3D 프린팅용 합금 개발에 주력하고 있다. 이 합금은 기존의 금속 프린팅 합금에 비해 내구성과 인장 강도가 뛰어난 것으로 평가되어, 건설, 자동차, 항공우주 등의 분야에서의 응용 가능성이 기대된다. KITECH에서는 액체 금속 프린팅 기술을 통해 자동차 부품 제작에 관한 연구를 수행 중이다. 이 연구는 자동차 부품의 제조 공정 단축과 품질 개선을 목표로 하고 있다. 한국전자통신연구원의 경우, 인공지능(AI)을 적용한 3D 프린팅 시스템 개발에 착수했다. 이 시스템은 AI를 활용해 3D 프린팅 공정을 최적화하고, 부품 제조의 효율성 및 품질을 향상시키는 데 중점을 두고 있다. 이러한 연구 개발 노력을 바탕으로, 한국에서의 액체 금속 인쇄 기술 상용화 가능성이 점점 더 커지고 있다.
-
- 산업
-
美 MIT, 액체 금속 이용한 고속 3D 프린팅 기술 개발
-
-
전기화학 기술, 가축 분뇨에서 친환경 자원 생산
- 환경 오염을 주범으로 여겨지는 가축 분뇨에서 친환경적으로 전기를 생산하는 기술이 개발됐다. 매년 전 세계 축산농가에서 30억톤 이상의 동물 배설물이 발생하고 있다. 이는 미국 엠파이어 스테이트 빌딩 9000개 이상에 해당하는 양이다. 모든 분뇨는 수질을 악화시키며 유독한 연기와 온실가스를 방출한다. 그러나 저렴한 전기를 이용해 동물 배설물을 재활용하고 귀중한 화학물질을 회수할 수 있는 기술이 개발돼 환경 오염을 크게 줄일 수 있을 것으로 기대된다. 학술지 '사이언스 어드밴스(Science Advances)'에서는 '네이처 서스테이너빌리티(Nature Sustainability)'에 발표된 연구를 소개했다. 이 연구는 전기를 이용하여 동물 배설물에서 유기 영양소를 분해하고, 동시에 가치 있는 화학물질을 회수하는 새로운 방법을 제시한다. 초기 예측에 따르면, 이 방법으로 얻어지는 화학물질의 경제적 가치가 기술 구현 비용을 상회할 것으로 예상된다. 이는 농부들에게 수익성이 높은 선택지가 될 수 있음을 시사한다. 클락슨 대학의 김태영 화학자는 이번 연구에는 참여하지 않았지만 "풍력, 태양열 발전소에서 발생하는 값싸고 재생가능한 전기를 결합하면 거름이 풍부한 시골 농업 지역에서도 찬환경 전기가 생산될 수 있다"고 말했다. 많은 축산업자들은 이미 동물 배설물을 재활용하기 위해 노력하고 있다. 이들은 배설물을 분뇨 라군(연못)에 저장하여, 바닥에 침전된 암모니아가 풍부한 고형물을 준설하여 비료로 재사용한다. 또한, 남은 유기 화합물을 미생물이 메탄으로 분해하게 하여 이를 수집, 태워 전기를 생산할 수 있다. 이러한 방식은 지속 가능한 에너지와 농업 사이의 상호 작용을 보여주는 예이다. 그럼에도 불구하고, 엄청난 양의 암모니아와 기타 화합물이 자연환경으로 방출되어 해조류가 번성하고 물고기가 죽게 되는 환경오염이 발생한다. 이에 최근 몇 년 동안 몇몇 연구팀에서는 분뇨 라군에서 암모니아와 기타 귀중한 화학물질을 포착하기 위한 전기화학적 방법을 탐색하기 시작했다. 예를 들어, 2021년 실험실 연구에서 김태영 교수와 그의 동료들은 전류를 사용해 막을 통해 양으로 하전된 암모늄 이온을 유도하여 비료 전구체를 농축하고 쉽게 복구할 수 있는 배터리 유형 설정을 보고했다. 그러나 멤브레인(두께가 얇은 막) 설정은 운영하기 어렵고 확장하는 데 비용이 많이 들 수 있다. 위스콘신 매디슨 대학교 환경 엔지니어인 모한 킨(Mohan Qin)과 동료 송진이 이끄는 연구팀은 2단계 접근 방식을 채택해 멤브레인을 없앨 수 있는 가능성을 확인했다. 두 단계 모두 KNiHCF(칼륨·니켈·헥사시아노철산염)라는 배터리 전극 재료를 사용한다. KNiHCF는 이온이 들어오고 나갈 수 있는 간격이 있는 층 구조를 가지고 있다. 연구원들은 KNiHCF의 층 간격이 나트륨이나 칼슘과 같이 분뇨에서 일반적이지만 가치는 떨어지는 이온 대신 암모늄 및 칼륨 이온을 끌어들이는 데 이상적이라는 것을 발견했다. 연구진은 이후 이온으로 채워진 KNiHCF 전극을 폐수 용액에서 제거하고, 이를 이온 전도성 전해질을 첨가한 깨끗한 물이 담긴 두 번째 용기에 두 번째 전극과 함께 배치했다. 전압을 가하면 전자가 두 번째 전극으로 흘러 들어갔고, 이로 인해 KNiHCF 전극에서 양전하를 띤 암모늄 및 칼륨 이온을 용액으로 끌어당겨 농축하고 쉽게 복구할 수 있는 음전하가 생성됐다. 이 설정에는 보너스가 있다. 두 번째 전극의 음전하는 용액의 물과 산소를 유발하여 수소 가스나 과산화수소로 반응했는데, 두 가지 모두 회수된 암모니아 및 칼륨과 함께 판매될 수 있는 귀중한 화학물질이다. 연구팀은 KNiHCF 전극은 반복적으로 사용하면 성능이 저하되는데, 이 문제는 이미 해결 방안을 찾았다고 밝혔다. 연구원들은 또한 1000마리의 젖소가 있는 낙농장의 폐기물을 확장하고 관리하기 위한 설정의 잠재력을 평가하기 위한 분석을 수행했다. 그들은 전기 가격이 미국 평균인 킬로와트시(kWh)당 약 0.08달러(약 100원)로 책정될 경우 해당 운영에서 연간 최대 20만달러(약 2억6320만원)의 이익을 창출할 수 있을 만큼 귀중한 화학 물질을 생성할 수 있다는 사실을 발견했다. 송진 연구원은 재생 가능 전력이 일부 농촌 지역의 전기 비용을 2030년까지 kWh당 약 0.03달러(약 39원)로 낮출 수 있을 것으로 예상했다. 풍력이나 태양열 발전소는 종종 전력망이 처리할 수 있는 것보다 더 많은 전기를 생산하므로 엔지니어는 전력을 버리거나 터빈을 꺼야 했다. 이에 송진은 "풍력, 태양광과 결합할 수 있다면, 가격이 저렴할 때만 전기를 사용하도록 설계할 수 있다"고 말했다. 모한 킨은 "전체 공정이 얼마나 효율적인지 고려할 때, 전기화학적 처리는 거름에 있는 암모니아의 거의 70%를 포착하고 비슷한 양만큼 농장에서 배출되는 암모니아를 줄일 수 있다"며 "이것은 오래된 (가축 분뇨)문제를 처리하는 매우 간단하고 효율적인 방법"이라고 주장했다.
-
- 산업
-
전기화학 기술, 가축 분뇨에서 친환경 자원 생산
-
-
美 노스웨스턴대 "바다 쓰레기 주범 나일론, 촉매로 순식간에 '분해'"
- 바닷속 쓰레기로 전 세계가 몸살을 앓고 있다. 특히, 어망 등이 고래나 바다거북, 물개 등 해양생물을 칭칭 감싸고 있는 모습은 충격을 던져줬다. 나일론 어망 등은 뛰어난 내구성 때문에 자연 분해가 불가능해 해양동물과 산호초, 새, 바다 등을 위험에 빠뜨리고 있다. 해양 환경에 유입된 이들 물질은 분해되지 않고 수천 년 동안 머무를 수 있어 더욱 큰 폐해가 예상되고 있다. 그러나 최근 미국 노스웨스턴대학교 연구팀이 나일론을 분해하는 새로운 촉매를 개발해 이 같은 해양오염을 크게 줄일 수 있을 것으로 기대된다. 이 촉매는 몇 분 만에 내구성 높은 플라스틱 오염을 완전히 분해하는 것으로 알려졌다. 과학기술 전문 매체 '사이테크데일리(SciTechDaily)'는 미국 노스웨스턴 대학 연구팀이 개발한 새로운 나일론 분해 촉매에 대해 최근 보도했다. 연구팀은 유해한 부산물을 생성하지 않고 몇 분 만에 나일론-6을 빠르고 깨끗하며 완전히 분해하는 새로운 촉매를 개발했다. 더 좋은 점은 이 공정에는 독성 용매, 고가의 재료 또는 극한 조건이 필요하지 않아 일상적인 응용 분야에 실용적이라는 점이다. 연구팀은 이 촉매를 활용해 해양 플라스틱 오염을 줄이는 것은 물론, 폐기물 재활용과 순환경제 활성화에도 기여할 수 있을 것으로 기대하고 있다. 이번 연구 결과는 국제 학술지 '켐(chem)'에 게재됐다. 이번 연구의 수석 저자인 노스웨스턴 대학의 토빈 마크스(Tobin Marks) 교수는 "전 세계가 플라스틱 문제의 심각성을 인식하고 있다"며 "우리는 플라스틱을 재활용하기 위해 폴리머를 분해하여 원래 형태로 되돌려 재사용할 수 있는 촉매를 개발하고 있다"고 말했다. 어망, 태평양 쓰레기 46% 차지 나일론-6은 의류, 카펫, 안전벨트 등 매일 사용되는 다양한 제품에 사용되는 소재다. 하지만 사용 후에는 매립되거나 해양을 포함한 환경에 방치되는 경우가 많다. 세계야생생물연맹(World Wildlife Federation) 보고에 따르면 매년 약 45만3592kg(약 100만 파운드)의 낚시 장비가 해양에 버려지며, 이 중 나일론-6로 만들어진 어망이 태평양의 거대한 쓰레기 더미에서 차지하는 비율이 최소 46%에 이른다. 현재 나일론-6 처리 방법은 주로 매립에 의존하고 있다. 나일론-6가 연소될 때는 질소산화물 같은 독성 오염물질을 배출해 조기 사망과 온실가스인 이산화탄소 배출 등의 문제를 야기한다. 마크스 교수는 플라스틱을 분해하는 과정에서 발생하는 오염물질 문제를 지적하며, 친환경 용매의 사용이 중요하다고 강조했다. 그는 "플라스틱을 분해하면 오염된 물이 남게 되며, 친환경 용매의 사용은 필수적"이라며 "어떤 종류의 용매가 환경에 더 적합한지 연구해야 한다"고 말했다. 업사이클링을 위한 나일론 복구 마크스 교수와 연구팀은 실험실에서 새로운 촉매를 개발했다. 이 촉매는 이트륨(지구상에 풍부한 경제적인 금속)과 란탄족 이온을 활용한다. 나일론-6를 녹는 온도까지 가열한 뒤 촉매를 추가하자, 용매 없이도 플라스틱이 분해되어 부산물 없이 원래의 빌딩 블록으로 복구됐다. 마크스 교수는 이 과정을 목걸이와 진주에 비유하며 설명했다. 그는 "폴리머는 목걸이와 같으며, 각 진주는 하나의 단위체, 즉 단량체다. 우리는 이 목걸이를 해체하여 진주, 즉 빌딩 블록을 회수하는 방법을 찾은 것"이라고 말했다. 실험을 통해 연구팀은 플라스틱의 원래 모노머를 99% 회수할 수 있었다. 원칙적으로 이러한 모노머는 현재 강도와 내구성에 대한 수요가 높은 고부가가치 제품으로 재활용될 수 있다. 이 실험을 통해 연구팀은 나일론의 원래 모노머를 99% 회수하는 데 성공했다. 이러한 모노머는 내구성과 강도가 높은 고부가가치 제품으로 재활용될 수 있다. 마크스 교수는 재활용된 나일론이 일반 나일론보다 경제적 가치가 더 높다고 강조했다. 나일론-6를 효율적으로 타깃팅 새롭게 개발된 촉매는 높은 수율의 단량체 회수뿐만 아니라, 선택성도 뛰어나 나일론-6 중합체에만 작용한다. 이는 폐기물 중에서도 나일론-6를 효과적으로 분리해낼 수 있다는 것을 의미하며, 업계에 대량의 분류되지 않은 폐기물에도 적용 가능함을 보여준다. 마크스 교수는 이 과정의 경제성과 효율성을 강조했다. 그는 "나일론 폐기물을 사람이 일일이 분류하는 것은 비용이 많이 들고 비효율적이다. 하지만 이 촉매가 나일론만을 대상으로 하고 다른 물질은 그대로 두기 때문에 효율적이다"라고 설명했다. 이 기술을 통해 회수된 모노머를 재활용하면 신규 플라스틱 생산의 필요성도 줄어들 수 있다. 마크스 교수와 연구팀은 이 새로운 공정에 대한 특허를 출원했으며, 이미 여러 산업 파트너로부터 관심을 받고 있다. 이들은 자신들의 촉매가 대규모로 활용되어 글로벌 플라스틱 문제 해결에 기여하기를 기대한다. 현재 이 연구는 폴리머 재활용 및 지속 가능한 재료 관리 분야에서 중요한 진전을 보이고 있다. 이러한 접근 방식은 현재 재활용 기술의 중요한 격차를 해결하고 나일론 폐기물 문제에 대한 실용적이고 효율적인 솔루션을 제공한다. 이는 플라스틱의 환경 발자국을 줄이고 순환경제에 기여하는 데 영향을 미칠 것으로 기대된다.
-
- 생활경제
-
美 노스웨스턴대 "바다 쓰레기 주범 나일론, 촉매로 순식간에 '분해'"
-
-
박테리아 게놈서 희귀 CRISPR 시스템 188종 발견
- 최근의 한 연구에서 과학자들은 박테리아 게놈에서 188종의 새롭고 희귀한 CRISPR(크리스퍼, 유전자 가위) 시스템을 발견했다. 새로 발견된 이 시스템들은 인간 세포의 DNA를 편집할 수 있는 잠재력을 가지고 있으며, RNA를 표적으로 하는 것은 물론 다양한 기능을 가진 여러 세포를 편집할 수 있다고 알려져 있다. 사이테크데일리에 따르면 188종의 CRISPR에는 수십억 개의 단백질 서열 중에서 발견된 새로운 7형 CRISPR-Cas 시스템이 포함된다. 이 접근법의 발견은 CRISPR 시스템을 활용하고 방대한 미생물 단백질의 다양성을 탐구할 수 있는 새로운 가능성을 제시한다. 미국의 IT전문 매체 인터레스팅 엔지니어링(INTERESTING ENGINEERING)은 CRISPR는 유전자 가위와 같은 역할을 하는 유전자 편집 도구로, 과학자들이 원하는 위치의 DNA의 원하는 위치를 원하는 방식으로 변경할 수 있게 해준다고 보도했다. 이 기술에는 원하는 표적 유전자와 일치하는 가이드 RNA와 이중 가닥 DNA 절단을 유발하는 엔도뉴클레아제인 Cas9(크리스퍼 관련 단백질 9)의 두 가지 필수 구성 요소가 포함되어 있다. 하나는 원하는 표적 유전자와 일치하는 가이드 RNA이고, 다른 하나는 이중 가닥 DNA 절단을 유발하는 엔도뉴클레아제인 Cas9이다. CRISPR의 두 가지 구성 요소 중 가이드 RNA는 DNA 분자에서 표적 유전자를 인식한다. Cas9는 가이드 RNA를 따라 표적 유전자에 결합한 다음, DNA를 절단한다. 이 절단은 유전자의 활성이나 발현을 변화시킬 수 있다. CRISPR 시스템은 유전자 가위처럼 작용하여 DNA를 정밀하게 편집할 수 있는 혁신적인 유전자 편집 도구이다. CRISPR는 유전적 질병의 치료에 큰 잠재력을 가지고 있으며, 유전적 질병을 유발하는 유전자를 제거하거나 교체하는 데 사용될 수 있다. 예를 들어, 혈우병이나 암과 같은 질병의 치료에 크리스퍼 기술을 활용할 수 있다. 그러나 크리스퍼의 사용은 윤리적인 문제를 야기하고 있다. 크리스퍼를 통해 인간의 유전자와 배아를 수정할 수 있다는 점은 유전적 우월주의를 조장하거나 개인의 신체적 자율성에 대한 침해 가능성을 제기한다. 이러한 윤리적 고려사항은 CRISPR 기술의 발전과 적용에 있어 중요한 고려사항으로 남아 있다. 새로운 알고리즘 '플래시클러스터' 이 연구는 MIT와 하버드 대학교의 브로드 연구소, MIT 맥거번 뇌 연구소, 그리고 미국 국립보건원(NIH) 산하 국립 생명공학 정보 센터(NCBI)의 과학자들이 참여했다. 연구팀은 새로운 알고리즘인 '플래시클러스터(FLSHclust)'를 사용하여 이번 발견을 주도했다. 플래시클러스터는 대규모 게놈 데이터베이스를 신속하게 검색할 수 있는 기술로, 지역성 민감성 해시 기반으로 작동하여 유사한 개체를 클러스터링하는 방식으로 구성되어 있다. 이 기술을 활용함으로써 연구팀은 수십억 개의 단백질 및 DNA 염기서열을 훨씬 더 짧은 시간 안에 분석할 수 있게 됐다. 새로운 기능 발견 연구팀은 이 시스템 중 두 가지가 인간 세포의 DNA에 작은 변화를 일으킬 수 있다는 것을 확인했다. 또한 이러한 Type I 시스템은 CRISPR-Cas9과 크기가 유사하기 때문에 현재 CRISPR에 사용되는 것과 동일한 유전자 전달 방법을 사용하여 동물이나 인간의 세포에 전달될 수 있다. 또한, 또 다른 Type I 시스템은 셜록(SHERLOCK)과 같은 신속한 질병 진단에 사용되는 방법과 유사하게 표적화 후 광범위한 핵산 분해를 일으켰다. 이 연구는 또한 RNA 편집 및 유전자 발현 또는 세포 활동 감지에 유용한 Type IV 및 Type VII CRISPR 시스템의 새로운 기능을 발견했다. CRISPER의 잠재적 응용 이 연구는 CRISPR 시스템의 다양성과 게놈 편집, 진단 및 세포 활동 이해와 같은 다양한 분야에서의 잠재적 응용 분야를 탐구하는 것을 목표로 했다. 연구팀은 이 새로운 알고리즘을 통해 과학자들이 결과를 복구하고 생물학적 가설을 세울 수 있을 만큼 충분히 짧은 시간 프레임에 데이터를 분석할 수 있다고 설명했다. 연구소에 따르면 알고리즘은 분석 시간을 몇 달에서 몇 주로 단축했다. 이 연구는 박테리아 게놈에 존재하는 다양한 CRISPR 시스템의 잠재적 응용 분야를 탐구하는 데 중요한 단계이다. 새로운 알고리즘은 과학자들이 이러한 시스템을 더 빠르고 효율적으로 연구할 수 있도록 하여 새로운 치료법과 기술 개발에 도움이 될 수 있으로 기대된다.
-
- IT/바이오
-
박테리아 게놈서 희귀 CRISPR 시스템 188종 발견
-
-
콜레스테롤 55%↓ 유전자 편집 치료제, 사망자 발생
- 유전자 편집 치료제가 콜레스테롤 수치를 55%나 낮췄으나 사망자가 발생해 안전성 문제가 제기됐다. 과학 전문 매체 네오스코프(NEOSCOPE)는 최근 과학 저널 '네이처'를 인용해 연구진이 실험적인 유전자 편집 치료법을 통해 인간 피험자의 나쁜 콜레스테롤 수치를 극적으로 낮추는 데 성공했다고 발표했으나 이 치료법을 시험한 피험자 중 한 명이 사망하면서 안전성에 대한 우려가 나타났다고 보도했다. 임상시험에서는 선천적으로 저밀도 지단백(LDL), 즉 나쁜 콜레스테롤 수치가 높은 10명의 피험자를 대상으로 염기 편집 기술을 활용한 유전자 편집 치료제인 VERVE-101을 투여했다. 이 치료법은 간에서 발견되며 LDL 콜레스테롤 수치를 조절하는 PCSK9 단백질의 유전자를 차단하는 방식으로 작동한다. LDL 수치가 높으면 관상동맥 심장 질환과 같은 심각한 건강 문제를 유발할 수 있는 위험 요소로 알려져 있다. 염기 편집 기술, 특히 '크리스퍼(CRISPR)'를 이용한 방식은 세균이 외부 유전자로부터 자신을 보호하기 위해 사용하는 자연적인 방어 시스템을 기반으로 한다. 이 시스템은 DNA 내에 특정 염기 서열과 일치하는 DNA 절단효소를 결합하여 DNA를 절단하는 방식으로 작동한다. 절단된 후, 세포의 DNA 복구 시스템이 활동하여 절단된 부분을 복구하면서, 연구자들이 원하는 새로운 염기 서열로 교체된다. 임상 실험 결과, 피험자들에게 VERVE-101 치료제를 투여한 후 28일이 지난 시점에서 LDL(나쁜 콜레스테롤) 수치가 평균 55% 감소하는 등의 놀라운 효과가 나타났다. 실험에 앞서 피험자들의 평균 LDL 수치는 193mg/dL로, 의학적으로 권장되는 100mg/dL을 크게 초과하는 매우 높은 수치였다. 치료제 주사 6개월 후에도, 고용량의 VERVE-101을 투여받은 참가자들의 LDL 수치는 지속적으로 낮은 상태를 유지했다. 이는 VERVE-101이 장기간 LDL 수치를 효과적으로 낮출 수 있는 가능성을 시사하는 결과로, 심혈관 질환의 예방과 관리에 중요한 영향을 미칠 수 있는 중대한 발견이다. 피츠버그 대학의 심장 전문가인 리투 탐만(Ritu Thamman) 박사는 VERVE 101의 유전자 편집 기술이 기존의 스타틴 치료법에 비해 더 효과적일 수 있다고 언급했다. 탐만 박사는 이번 임상시험에 직접 참여하지는 않았지만, 유전자 편집 기술이 기존의 치료법과 비교하여 혁신적인 가능성을 가질 수 있다고 강조했다. 이 연구는 유전자 편집 기술이 콜레스테롤 수치를 낮추는 데 있어 새로운 효과적인 방법을 제공할 수 있음을 보여준다. 그러나, 임상 시험 참가자들 중 일부는 치료 후 독감과 유사한 증상으로 오한, 발열, 두통을 겪었으며, 간 효소 수치가 일시적으로 증가하는 부작용을 경험했다. 임상시험 결과, 10명의 참가자 중 1명은 투여 후 약 5주 만에, 또 다른 피험자는 투여 후 단 하루 만에 심장마비로 사망하는 사건이 발생했다. 이와 관련하여, '네이처(Nature)'는 제3자 전문가들로 구성된 안전성 패널이 이 두 건의 사망 사례가 VERVE-101 치료제 때문이 아니라, 피험자들이 이미 앓고 있던 진행성 심장병 상태 때문이라고 전했다. 이러한 사건은 임상시험의 복잡성을 보여주며, 피험자의 건강 상태와 같은 다양한 요인을 고려해야 할 필요성을 강조한다. 또한 새로운 치료법의 안전성과 효과성을 평가할 때 주의 깊은 접근이 필요함을 나타낸다. 한편, 네이처에 따르면 매사추세츠주 보스턴의 생명공학 기업 버브 테라퓨틱스(Verve Therapeutics)는 2025년 VERVE-101의 임상 2상을 시작할 예정이다.
-
- IT/바이오
-
콜레스테롤 55%↓ 유전자 편집 치료제, 사망자 발생
-
-
[퓨처 Eyes(6)] SF가 현실로? 금속도 자가 치유한다
- 금속이 자체적으로 균열을 복구하는 모습이 관찰됐다. 10일(현지시간) 과학 전문 매체 '사이테크데일리'에 따르면, 텍사스 A&M대학교 마이클 뎀코비츠 박사가 예측했던 금속의 자가 치유 현상이 올여름에 발견되어 세계 과학자들을 충격에 빠뜨렸다. 연구 과정에서 아주 작은 백금 조각에 지속적인 스트레칭을 가하자 미세한 균열이 형성됐다. 항공기 사고나 교각 붕괴 등으로 이어지는 '금속의 피로' 현상의 균열 성장을 살펴보기 위해 설계된 이 실험은 처음에는 과학자들의 예상대로 진행됐다. 견고한 금속은 외부의 힘이 반복해서 작용하면 눈에 보이지 않는 미세한 균열이 발생하고, 마침내 부러지게 된다. 그러나 실험도중 예기치 않게, 균열이 더 이상 커지지 않고 오히려 줄어들기 시작하는 금속이 스스로를 '치유 복구'하는 모습이 관찰됐다. 금속의 피로 현상은 교각이나 건축물이 망가지거나, 항공기의 부품 파손 등 기계가 손상되는 주요 원인으로 꼽힌다. 그로 인해 학계는 금속 피로 현상을 스스로 복구하는 소재 개발에 집중해왔다. 미국 샌디아 국립연구소(SNL)의 연구팀은 올 여름 나노 결정질 금속의 균열 실험 중 놀라운 금속 자가치유 현상을 발견했다. 그 결과는 국제 학술지 '네이처(Nature)'에 게재됐다. 금속의 이런 자가 복구 능력은 지금까지 공상 과학 소설에서나 나올 법한 이야기로 여겨졌다. 하지만, 텍사스 A&M 대학의 재료 과학 및 공학부 교수이자 이 연구의 공동 저자인 마이클 뎀코비츠 박사는 그런 가정을 뒤엎는 놀라운 발견을 했다. '금속 피로 복구' 10년 전 예측이 현실로 뎀코비츠 박사와 그의 팀은 10년 전 매사추세츠 공과대학의 조교수 시절 이미 금속의 자가 치유 현상을 예상했다. 당시 뎀코비츠 교수는 일정 조건이 갖춰지면 비록 나노 수준이지만 금속의 균열 복구가 이론적으로 가능하다고 주장했다. 뎀코비츠 박사는 "처음엔 금속의 치유나 복구를 목표로 한 것은 아니다. 저의 제자 구오샹 쉬가 골절에 관한 시뮬레이션을 진행 중이었다"며 회상했다. 이어 "우연히 시뮬레이션에서 금속의 자연 치유 현상을 발견, 이에 대한 추가 연구를 시작하기로 결정했다"고 덧붙였다. 2013년 당시의 연구 결과도 이번만큼이나 눈길을 끌었다. 특수 전자현미경인 투과형 전자 현미경기술이 발달하면서 금속의 나노 스케일 피로 균열 관찰이 가능해진 점도 이 현상을 발견하는 데 도움이 됐다. 뎀코비츠 박사의 공동 연구팀은 금속 피로현상 조사 과정에서 백금의 자가치유 능력을 발견했다. 뎀코비츠 박사는 "진공 상태의 백금 조각에 나노 스케일의 균열을 내고 이를 초당 200회 당겨 군열 변화를 관찰했다며 실험 시작 40분 뒤 백금 표면의 균열이 복구됐다"고 설명했다. 그는 "당시 나와 우리 팀, 동료들까지도 모두 이 이론에 대해 의구심을 가지고 있었다"고 회상했다. 그렇지만, 그의 시뮬레이션은 이후 몇 년 간 여러 연구자들에게 검증되며 확장되어왔다. 뎀코비츠 박사는 "다른 연구자들도 같은 결과를 시뮬레이션에서 확인해, 우리의 모델링에 오류가 없다는 것이 확실해졌다"면서도 "그럼에도 불구하고, 지금까지 실제 실험은 이루어지지 않았다"고 덧붙였다. 2013년의 모델과 최근의 실험에서는 둘다 나노 단위로 결정 구조나 입자 크기가 측정되는 나노결정 금속이 사용됐다. 이 단위는 100만분의 1밀리미터(mm)를 의미한다. 뎀코비츠 박사에 따르면, 이러한 나노결정 금속은 엔지니어링에서는 널리 활용되지 않지만 대다수의 금속을 이 형태로 제작할 수 있다. 뎀코비츠는 나노 결정 금속의 작은 입자 크기 때문에 더 많은 미세 구조적 특징이 있어, 균열 사이의 상호작용이 쉽게 일어난다고 설명했다. 이는 자가 치유 연구를 용이하게 했다. 두 연구에서 모두 입자 경계의 이동 방향이 균열의 치유에 영향을 미친다는 공통점을 발견했다. 뎀코비츠 박사는 이런 특징이 다양한 금속과 합금에서도 확인될 수 있으며, 조절이 가능하다고 말했다. 진공 환경에서 실험 성공 뎀코비츠 박사는 "현재 연구의 주요 성과는 이론적 예측이 단순히 '도면 상의 아이디어'에서 벗어나 실제로 가능하다는 것을 입증한 것"이라고 강조했다. 그는 "아직 우리는 자가 치유를 위한 미세 구조의 최적화 작업에 발을 들이지도 않았다. 어떤 구조적 변화가 금속의 자가 치유를 더욱 촉진시킬지를 파악하는 것은 앞으로의 연구에서의 큰 도전"이라고 말했다. 이 연구의 발전 가능성은 매우 광범위하다. 뎀코비츠는 입자 크기의 더 큰 일반적인 금속에서도 이런 자가 치유 과정이 일어날 수 있을 것이라고 지적하면서, 그에 대한 추가적인 연구가 필요하다고 밝혔다. 2013년의 이론과 최근 실험 사이의 주요 연결점은 둘 다 외부 물질이 혼입되지 않는 진공 상태에서 이루어졌다. 외부 요소는 금속의 균열 표면이 재결합하거나 냉간 용접 과정을 방해할 수 있기 때문이다. 이런 제한사항에도 불구하고, 이 기술은 우주선 혹은 외부 대기로부터 보호되는 내부 균열처럼 특정 환경에서는 유용하게 활용될 수 있다. 10년이 흐른 지금, 뎀코비츠의 금속 자가치유 초기 이론은 샌디아 국립연구소의 실험을 통해 그 가치가 입증됐다. 이번 연구를 통해, 뎀코비츠는 최근에 관찰된 결과가 그의 초기 시뮬레이션 모델과 일치함을 확인할 수 있었다. 뎀코비츠 박사는 "이 실험은 진정으로 놀랍다. 이론적 측면에서도 의미가 크다"고 말했다. 그는 "물질의 복잡한 특성으로 인해 자신있게 새로운 현상을 예측하는 것은 종종 매우 어려운 일이다. 이번 발견은 물질의 반응에 대한 우리의 이론적 접근이 옳은 방향을 향하고 있다는 확신을 갖게 해준다"고 말했다. '퓨처 아이즈(Future Eyes)'는 지금까지 경험하지 못한 혁신 기술이 어떻게 새로운 세상을 창조하는지 탐색한다. 애플의 아이폰은 휴대폰 산업의 판도를 바꾸었으며, 오픈AI의 챗GPT는 AI의 유행을 일으키며 우리의 일상과 기업 환경에 변화를 가져왔다. 메타버스부터 플라잉카, 휴머노이드 로봇, 양자 컴퓨팅, 핵 융합에 이르기까지, 이 시리즈는 혁신적인 기술과 그것이 우리 생활에 미치는 영향을 짚어본다.
-
- 포커스온
-
[퓨처 Eyes(6)] SF가 현실로? 금속도 자가 치유한다
-
-
암 예방 식단 6가지…"야채·과일·통곡물 섭취"
- 야채와 과일, 통곡물 등이 암을 예방하는 식품으로 다시 한 번 확인됐다. 폭스 뉴스는 "최근 암의 발병에는 여러 가지 위험 요인이 있다. 성별이나 나이, 가족력과 같은 일부 요소는 우리가 통제할 수 없지만 올바른 영양 섭취는 암 발병 위험을 감소시킨다"며 균형잡힌 식단의 중요성을 강조했다. 플로리다 마이애미 비치의 마운트 시나이 메디컬 센터(Mount Sinai Medical Center)의 여성 산부인과 의학 센터 이사 겸 암 연구 위원회 공동 의장인 브라이언 슬로모비츠 박사는 "비만률이 높아지고 있고 계속 증가하는 추세다. 이는 많은 암의 위험 요소"라며 "건강하고 균형잡힌 식단은 이러한 암을 줄이는 데 도움이 된다"고 말했다. 워싱턴주 케너윅(Kennewick)에서 암환자와 생존자들과 함께 작업하는 등록 영양사이자 암 영양 전문가인 니콜 앤드류스는 암 발병 위험을 줄이기 위해 채식 위주의 식품을 주식으로 하라고 조언했다. 그녀는 "과일, 야채, 통곡물, 견과류나 씨앗류를 풍부하게 섭취하는 식이요법이 좋다"고 설명했다. 앤드류스는 "이러한 식품에는 필수 비타민, 미네랄, 섬유질 및 항상화제가 함유되어 있어 다양한 유형의 암 발병을 감소시킨다"고 설명했다. 식물성 식품 위주 식단 앤드류스는 "식물성 식품 위주의 식단은 암 위험 감소뿐만 아니라 전반적으로 건강에 필요한 영양소를 공급한다"며 "이런 식이요법은 암 예방과 암 생존자의 건강에 장기적으로 긍정적인 효과를 줄 수 있다"고 말했다. 또 "식물성 식품에는 비타민, 미네랄, 섬유질, 파이토케미컬(산화 스트레스와 염증 방지)과 항산화제(조직의 유해한 손상 예방)와 같은 건강을 지키는 영양소들이 풍부하게 들어있다"고 지적했다. 그녀는 이러한 성분들은 세포 사멸(해로운 세포 제거), DNA 복구, 호르몬 조절 및 염증 반응 등의 메커니즘을 통해 암세포 생성을 억제한다고 설명했다. 방사선 종양학 전문의이자 어드밴스헬스(AdventHealth, 재림교회의 비영리 의료 시스템)의 수명의학 전문가인 엠버 오르만 박사는 "식물 중심의 식이요법과 운동 등의 건강한 라이프스타일을 함께 실천하면 암을 최대 40%를 예방할 수 있다"고 말했다. 그는 "강력한 항암 효과를 가진 식품에는 진한 녹색 잎 채소, 십자화 채소, 버섯, 두유 및 대두 제품, 베리, 껍질이 있는 사과, 생강, 마늘, 우코린, 그라운드 플랙스, 그리고 레몬이 있다"고 설명했다. 그는 "가능하면 현지에서 재배된 유기농 식품을 선택하는 것이 좋다"면서, 암 위험을 감소시키기 위해 반드시 고기를 피하거나 완전한 채식을 할 필요는 없다고도 말했다. 가공육과 알코올 배제 오르만 박사는 "식물성 식단은 가공육과 알코올 음료를 제외한 모든 음식을 포함한다"며, "식사나 간식의 3분의 2는 야채, 과일, 통곡물, 콩류, 견과류 또는 씨앗을 중심으로 구성되어야 한다. 나머지 3분의 1은 유제품, 계란, 저지방 동물성 단백질, 건강한 지방과 절제된 양의 디저트로 구성되는 것이 좋다"고 설명했다. 그는 환자에게 동물성 제품을 '조미료'라고 여기면서 식물 섭취를 늘리라고 조언했다. 그는 "대부분의 환자들은 최소 80%의 식물로 구성된 식단을 섭취한다"고 말했다. 앤드류스는 가공되지 않은 육류 중심의 닭고기, 칠면조, 생선, 해산물 및 식물성 단백질과 같은 저지방 단백질 공급원을 선호하고 붉은 색 육류 소비를 줄이는 것은 여러 가지 암 예방에 도움이 된다고 말했다. 암 예방 단백질 식품 앤드류스가 추천한 암을 예방하는 단백질 식품은 다음과 같다. 1). 육류, 가금류 및 달걀: 소고기, 양고기, 염소고기, 돼지고기 등심, 껍질을 벗기지 않은 닭고기 및 칠면조, 메추라기, 오리, 강화 오메가-3 달걀의 살코기, 생선 및 해산물: 연어, 참치, 대구, 새우, 고등어, 랍스터, 메기, 게, 저지방 유제품: 요구르트, 우유, 치즈 및 코티지 치즈 2). 콩류: 콩, 완두콩, 렌즈콩(렌틸콩), 현미, 통밀, 퀴노아, 귀리와 같은 통곡물은 섬유질이 풍부해 소화를 돕고 암 예방의 핵심 요소인 건강한 체중을 유지하는 데 도움이 된다. 또한 통곡물의 섬유질은 혈당 수치를 조절하고 인슐린 저항성을 감소시켜 결장직장암과 같은 특정 암의 위험을 낮출 수 있다. 정제된 곡물보다 통곡물을 선택하면 암 위험을 줄일 수 있다. 또 전반적인 건강을 개선하는 데 도움이 되는 풍부한 영양소와 보호 화합물을 우리 몸에 제공할 수 있다. 섬유질 섭취 증대 앤드류스는 암 위험 감소 다이어트 계획의 일환으로 매일 30g의 섬유질 섭취를 권했다. 섬유질 섭취를 늘리기 위한 팁은 다음과 같다. 1). 아침 식사로 고섬유질 시리얼 또는 오트밀 섭취가 좋다. 2). 백미와 파스타를 현미나 통밀 파스타와 같은 통곡물로 바꾼다. 3). 콩이나 렌틸콩과 같은 콩류로 만든 수프, 스튜, 샐러드 등을 섭취한다. 4). 가공 된 스낵 대신 과일, 채소와 견과류를 섭취한다. 5). 아티초크, 치아씨드, 완두콩, 아보카도, 퀴노아, 라즈베리, 배, 보리 등 다양한 고섬유질 식품을 식사에 포함시킨다. 앤드류스는 "섬유질이 풍부한 음식을 식단에 포함시키면 일일 섬유질 섭취에 크게 기여하고 암 위험을 낮추는 데 도움이 될 수 있다"며, 단 "알코올 섭취는 구강암, 인후암, 식도암, 간암, 유방암 및 결장직장암을 포함한 다양한 유형의 암 위험 증가와 밀접한 관련이 있다"고 경고했다. 또 "알코올은 DNA를 손상시키고 염증을 촉진하며 신체가 필수 영양소를 흡수하는 능력을 방해할 수 있으며, 발암에 기여한다"며 많은 여성들이 알코올 관련 질환으로 사망하고 있다는 연구 결과가 나왔다고 전했다. 안드류스는 암 발병 위험을 줄이고 더 건강한 생활을 유지하기 위해 알코올 음료를 무알코올 음료로 대체할 것을 권장했다. 알코올 대체 추천 음료로는 1). 감귤류 또는 허브가 함유된 탄산수, 2). 카모마일 또는 페퍼민트와 같은 허브 차, 3). 신선한 과일 스무디, 4). 아이스 녹차 레모네이드, 5). 코코넛 워터, 6). 레몬을 곁들인 무가당 아이스티, 7). 수제 과일 주스나 과일 물 등이 있다. 앤드류스는 이러한 음료는 갈증을 해소할 뿐만 아니라 알코올 섭취와 관련된 잠재적인 암 위험 없이 수분과 필수 영양소를 제공하며, 일일 나트륨 섭취량을 2400mg 이하로 줄이는 효과가 있다고 말했다. 나트륨 섭취 감소 또 과도한 나트륨 섭취는 위벽을 손상시키고 위암 발병 가능성을 높일 수 있다. 나트륨을 줄이는 세 가지 실용적인 팁은 첫째 식품 라벨을 주의 깊게 읽고 '저염' 또는 '소금 무첨가'라고 표시된 제품을 선택한다, 둘째 나트륨 함량이 높은 가공 식품이나 포장 식품을 제한하고 과일과 채소, 저지방 단백질과 같은 신선한 식품을 우선시한다, 셋째 소금 대신 허브, 향신료, 마늘, 레몬, 식초와 같은 천연 양념을 사용해 식사하는 게 좋다. 앤드류스는 "이러한 전략을 채택함으로써 일일 나트륨 섭취량을 크게 줄이고 위암 위험을 줄일 수 있다"면서 "핵심은 점진적으로 건강한 식습관을 통합하는 것으로 일상생활에서 지속적으로 실천하는 것이 좋다"고 말했다. 전문가들은 "그러나 개인마다 건강상태나 몸의 상태가 다르기 때문에 종합적인 건강 관리를 통해 암에 대한 위험을 최소화하는 것이 중요하다"고 조언했다.
-
- 생활경제
-
암 예방 식단 6가지…"야채·과일·통곡물 섭취"
-
-
발각시 액화되는 '스파이 로봇' 개발
- 서울대 재료공학부 강승균 교수팀 연구원들이 자외선(UV)과 열에 반응해 자가 붕괴하는 '에퍼멀 로봇(Ephemeral Robot)'의 프로토타입(본격적인 상품화에 앞서 성능을 검증 및 개선하기 위해 간단히 핵심 기능만 넣어 제작한 기본모델)을 개발했다. 연구원들이 개발한 이번 에퍼멀 로봇은 자외선(UV)과 열에 접촉하면 스스로 분해 될 수 있는 실리콘 엘마스토머(silicone elastomer)를 이용해 제작했다. 임무 중에는 기능을 유지하고 필요에 따라 액화해 수명 주기를 제어하여 중요한 데이터의 보안을 유지 할 수 있다. 이 로봇은 적에게 노출되면 스스로 녹아 사라질 수 있는 장점을 보유하고 있어 정찰 로봇 등 군사적 활용도가 높을 것으로 기대된다. 그러나 애퍼멀 로봇의 대표적인 소재인 열경화 실리콘은 내열성 및 내화학성이 강해 소재 분해에 적합하지 않는 지적이다. 열경화 실리콘 기반의 소프트 로봇의 분해를 위해서는 300°C까지의 극한 온도와 유사한 극단적인 pH 수준에 견뎌야 하는 문제를 먼저 해결해야 한다. 서울대 연구팀은 자외선 감응형 소재를 활용해 본연의 장점을 유지하면서 강한 자외선을 통해 가교 고분자를 쉽고 빠르게 분해할 수 있으며, 큰 열에너지나 극단적인 pH 조건이 갖춰지지 않아도 로봇이 스스로 액화될 수 있다고 말했다. 개발 소재를 소프트 로봇에 적용해 분해를 쉽게 함으로써 다양한 분야로의 응용 가능성을 열었다. 광 감응형 플루오린 발생제를 첨가한 실리콘 탄성 복합체 기반 자외선 감응형 소재는 복구할 수 없는 분해 가능한 소재다. 기존 실리콘과 같은 간단한 합성 프로세스와 뛰어난 기계적 특성을 가졌으며, 가교 구조의 고분자를 쉽고 빠르게 분해할 수 있도록 설계됐다. 연구팀은 해당 재료 시스템을 기반으로 소프트 로봇을 제작하고 주위 환경을 정찰할 수 있는 초박형 전자소자를 제작·탑재해 자외선, 온도, 로봇의 움직임까지 실시간으로 측정하는 로봇 시스템을 구현했다. 프로젝트 주요 저자인 서울대학교 재료과학 및 공학부의 오민하 박사는 "유연한 로봇이 주어진 미션을 완료 후에 붕괴가 필요한 상황이 되면, 로봇이 스스로 붕괴 절차를 밟으며 2시간 이내에 붕괴된다"고 설명했다. 이번에 개발한 로봇의 소재는 경직되지 않은 실리콘 엘라스토머(실리콘 수지)를 기반으로 한다. 내부에는 자외선으로 활성화되는 디페닐요오노늄 플루오라이드(DPI-HFP) 생성기가 분산되어 있으면서, 작은 LED를 통해 자외선 빛에 노출되면 실리콘 소재는 플루오라이드 이온(F −)을 방출하여 구조 전체가 즉시 붕괴된다. 자외선 자극에 반응해 Si-O-Si 결합이 F− 이온을 통해 균열되며 전체 구조가 파괴된다. 연구자들은 이 장치를 테스트하기 위해 다양한 전자 기기(온도 및 자외선을 측정하는 응력 센서 등)에 장착해 테스트를 진행했다. 로봇의 형태는 생분해성 폴리락틱 애씨드(생분해성 폴리머) 형태의 몰드 내에서 DPI-HFP-실리콘 혼합물을 60°C에서 30분 동안 경화시켰으며, 자가파괴 과정은 자외선을 활성화하고 60분 동안 120°C로 녹이는 것으로 시작된다. 이 시스템이 적용돼 파괴된 로봇은 실리콘 복합물과 기능이 없는 얇은 전자 부품을 포함한 오일 형태의 잔여물만 남긴다. 연구팀은 이 기술이 로봇 폐기물을 줄이는 데 도움을 주는 것뿐만 아니라 군사 작전과 접근하기 힘든 지역의 탐사 로봇에도 적용될 수 있다고 예상하고 있다. 연구원들은 사용자 안전을 고려한 액화 로봇 후속 연구를 계속 진행할 계획이라고 전했다.
-
- IT/바이오
-
발각시 액화되는 '스파이 로봇' 개발