검색
-
-
NASA, 리튬 배터리 에너지 밀도 '획기적' 개선
- 높은 에너지 효율로 주목 받아온 리튬 배터리가 환경 문제와 비싼 비용 문제로 여론의 뭇매를 맞고 있다. 에너지 기업들은 이에 대응해 대체재와 새로운 처리 기술 개발에 열을 올리고 있다. 이러한 가운데 미국 항공우주국(NASA)이 리튬을 대체하면서도 에너지 밀도를 눈에 띄게 개선했다는 소식이 전해져, 산업계에 큰 주목을 받고 있다. 미국 매체 '굿뉴스네트워크(GoodNewsNetwork)'는 나사가 기존 리튬 이온 배터리보다 배터리 수명과 방전 능력이 월등히 뛰어난 새로운 기술을 연구 중이라고 전했다. 현재 전기차의 핵심 기술로 자리 잡고 있는 리튬 이온 배터리는 사용 시간이 길어질수록 과열과 화재 위험, 전원 손실 등의 문제를 안고 있다. 이에 나사의 최신 프로젝트인 'SABERS(Solid-state Architecture Batteries for Enhanced Rechargeability and Safety)'는 이 문제점을 해결할 수 있는 고체 상태 배터리 팩 개발에 성공했다. 나사의 이번 연구 성과가 상용화된다면 전기차는 물론 다양한 전자기기의 배터리 수명과 안전성 문제에 긍정적인 영향을 미칠 것으로 보인다. SABERS는 항공 분야의 중대한 도전과제를 극복하기 위해 설계된 나사의 'CAS(Convergent Aeronautics Solutions)' 프로젝트에서 투자를 받아왔다. 이 프로젝트의 주요 연구 목표는 배터리를 활용한 항공기 운용이다. 현재 항공기는 전 세계 온실가스 배출량 중 약 2%를 차지하고 있어, 환경 오염 문제의 주요 원인 중 하나로 꼽힌다. 배터리는 탄소 배출이 많은 제트 연료에 대한 잠재적인 개선책으로 간주된다고 굿뉴스네트워크는 설명했다. SABERS의 최근 연구 성과로, 고체 상태 배터리는 지난해 시장의 다른 제품들보다 10배나 빠른 에너지 방출 속도를 보였으며, 기술 개선을 통해 이 수치가 추가로 5배 향상됐다. 또한 배터리 내의 황과 셀레늄 셀은 케이스 없이 직접 적층되어 무게 절감이 가능하다. 이로 인해 여러 배터리를 분리 과정 없이 쉽게 쌓을 수 있어 효율성이 높아졌다. 나사의 글렌 연구 센터에서 활동 중인 SABERS팀의 수석 연구원 로코 비기아노(Rocco Viggiano) 박사는 "현대 배터리 중 가장 첨단으로 여겨지는 리튬 이온 배터리에 비해, 새롭게 연구 중인 배터리의 에너지 저장 능력이 2~3배 높아질 것이며, 이에 따른 배터리의 중량도 30~40% 감소할 것"이라고 밝혔다. 또한 SABERS 연구팀은 이번 연구 성과로 현재 전기 자동차의 2배에 해당하는 1kg당 500와트시로 물체에 동력을 공급할 수 있게 됐다. 나사는 "올해 SABERS 프로젝트의 핵심 목표는 배터리의 성능이 에너지 및 안전 기준을 만족하면서도 실제 환경에서 최대 출력에서도 안전하게 작동할 수 있다는 것을 입증하는 것이었다"고 전했다. 나사의 SABERS 팀은 배터리 연구를 위해 조지아 공과대학과 협력을 펼쳐왔다. 비기아노 박사는 "조지아 공과대학은 배터리 셀의 작동 중 미세한 변화에 주목하고 있으며, 이러한 연구가 SABERS 팀에게 배터리 내부 압력의 변화를 관찰하는 데 큰 도움을 줬다"고 설명했다. 비기아노 박사는 또 "조지아 공과대학과의 협업을 통해 셀 제조 방식을 실질적으로 어떻게 최적화할 수 있는지에 대한 인사이트를 얻을 수 있었고, 이는 다양한 개선 방안으로 이어졌다"라고 강조했다. 나사가 연구 중인 'SABERS' 배터리는 고체 형태로 구성돼 화재 위험이 없어 항공기에 필요한 동력 공급에서 큰 장점을 보인다. 특히 이 배터리는 현존하는 리튬 배터리보다 두 배 더 높은 온도에도 안정적으로 작동하며, 경량화된 구조로 인해 제한된 공간 내에 더 많은 에너지를 저장할 수 있다는 강점을 가지고 있다. 하지만, 이런 고성능 배터리의 제작 비용이 상당히 높아 실제 상용화까지는 시간이 소요될 것으로 전망된다.
-
- 산업
-
NASA, 리튬 배터리 에너지 밀도 '획기적' 개선
-
-
전기차 '나트륨 이온 배터리' 급부상
- 전기 자동차 시장에서 오랫동안 리튬 이온 배터리가 주류를 차지해왔지만, 최근 나트륨 이온 배터리가 주목받기 시작했다. 지난 7일(현지시간) 독일 매체 아그라호이테(agrarheute)에 따르면 중국의 배터리 제조업체들은 이미 나트륨 이온 배터리 대량 생산에 돌입하며, 일부 전기차에도 탑재되기 시작했다. 독일에서도 이 기술에 대한 연구가 활발하게 진행 중이다. 나트륨 이온 배터리는 현재 경쟁하는 기술과 마찬가지로 높은 에너지 밀도를 자랑하고 있다. 그리고 리튬 이온 배터리보다 더 가볍고 안전하며, 경제적이고 친환경적인 장점도 갖추고 있다. 중국 배터리 제조업체가 상하이 모터쇼에서 선보인 도시형 자동차는 나트륨 이온 배터리를 탑재하여 주행 거리 300km를 실현했다. 나트륨 배터리, 경제성·친환경성 장점 전세계적으로 배터리 패권 전쟁은 심화되고 있는 실정이다. 지난 9월 개최된 '2023 북미 배터리쇼'에서 연사로 나선 유니그리드(UNIGRID) 배터리의 CEO인 탄 다렌(Tan Darren) 최고경영자(CEO) 는 '첨단 나트륨이온배터리' 확보의 중요성에 대해 강조했다. 다렌 CEO는 "나트륨이온배터리는 리튬이온배터리와 구조가 유사하지만 가격이 높아진 '리튬' 대신 소금의 주 원소인 '나트륨'을 쓰기 때문에 재료가 풍부하고 생산 단가가 낮다는 장점이 있어 리튬이온배터리를 대체할 차세대 배터리로 주목받고 있다"라며 "나트륨 이온의 산화·환원 반응을 이용한 이 배터리는 합금 양극을 사용할 경우 출력 및 에너지 밀도에 있어서도 리튬이온배터리를 충족하거나 능가할 수 있다"라고 말했다. 실제로 리튬이 지구 지표면에 0.005%만 존재하는 반면 나트륨은 그 500배 이상인 2.6% 존재하는 것으로 알려져 있다. 다렌 CEO는 이어 "기업들은 나트륨 원료 확보와 공급망에 주목해야 할 때"라고 덧붙였다. 리튬 자원의 한정성과 그에 따른 환경적 부담, 코발트와 니켈 채굴의 문제점 등을 감안할 때 나트륨 이온 배터리로의 전환이 드롭인(drop-in) 기술로 제안되고 있다. 이는 기존의 배터리 생산 라인에서 빠르게 전환할 수 있다는 장점이 있다. 나트륨 이온 배터리의 가장 큰 장점은 코발트나 니켈과 같은 민감한 물질을 필요로 하지 않는다는 것이다. 또한, 가격 경쟁력도 높아져 리튬 이온 배터리 대비 약 40% 저렴하게 제조할 수 있으며, 온도 변동에 강한 점도 특징이다. 나트륨 이온 배터리는 1980년대부터 알려져 왔지만 초기의 낮은 에너지 밀도 문제가 크게 개선되면서 주목받기 시작했다. 배터리 전문가들은 특히 낮은 온도에서의 우수한 성능을 강조하며, 이 기술이 전기 자동차산업에 큰 변화를 가져올 것으로 예상하고 있다.
-
- 산업
-
전기차 '나트륨 이온 배터리' 급부상
-
-
AI 워터마크, 뚫기 쉽다⋯보안 강화 촉구
- 디지털 워터마크는 다양한 분야에서 활용되는 보안 기술로, 우표부터 현금, 이미지까지 폭넓게 적용되며 그 핵심 역할은 정보의 신뢰성 확보와 위조 방지에 있다. 최근 '엔가제트(engadget)' 매체에 따르면 디지털 워터마크의 취약점에 대한 우려가 커지고 있다. 인공지능(AI)을 활용한 딥 페이크와 생성 예술 등의 확산으로 인해 디지털 워터마크의 중요성이 갈수록 커지고 있다. 특히 AI로 만들어진 콘텐츠를 정확히 식별하고, 해당 콘텐츠가 실제로 AI에 의해 생성됐는지 확인하는 것이 중요한 과제로 부상했다. 이러한 워터마크는 AI에 의한 콘텐츠의 오용을 방지하는 목적으로 이미지 등에 적용되기도 한다. 딥 페이크나 허위 정보의 생성이 급증하자 이를 방어하고 정보의 신뢰성을 보장하기 위해 많은 기업들이 워터마크 기술의 개발에 힘쓰고 있다. 구체적으로 오픈AI, 메타, 아마존 등 주요 기업들이 이러한 문제점에 대응하기 위한 워터마킹 기술 개발에 앞장서고 있다. 메릴랜드 대학교(UMD)의 컴퓨터 과학 연구팀은 워터마크의 추가나 제거에 관한 연구를 수행했다. UMD의 쇼헤이 페이지(Soheil Feizi) 교수는 와이어드(Wired)와의 인터뷰에서 현재 신뢰할 수 있는 워터마킹 응용 프로그램이 없다는 연구 결과를 얻었다고 밝혔다. 실제로, AI를 사용하지 않고 이미지에 가짜 워터마크를 추가하는 것은 상대적으로 간단한 일이었다. 반면, 워터마크를 완전히 제거하는 것은 여전히 복잡한 작업으로 판명되었다. 일부 연구진은 워터마크를 거의 완전히 제거하기 어렵게 만드는 기술의 개발에 힘쓰고 있으며, 이런 기술은 제품의 도난 감지에도 활용될 전망이다. 캘리포니아 대학교 산타 바바라 캠퍼스와 카네기 멜론 대학교의 연구팀은 디지털 워터마크의 제거 방법에 대한 공동 연구를 진행했다. 이 연구에서는 디지털 워터마크를 쉽게 제거할 수 있다는 사실을 확인했다. 두 가지 주요 워터마크 제거 방법, 즉 파괴적 접근과 건설적 접근이 탐색되었다. 파괴적 접근은 워터마크를 이미지의 일부로 간주하고 이를 조정하여 제거하는 방식인데, 이 과정에서 이미지 품질이 떨어질 수 있다. 반면, 건설적 접근은 워터마크를 유지한 채로 제거하는 복잡한 방법을 취한다. 이 연구는 디지털 워터마크의 취약성을 드러내면서 그 개선의 필요성을 부각시켰다. 디지털 워터마킹 기술은 지속적으로 발전해야 하며, 특히 AI가 잠재적으로 잘못된 정보를 만들어내어 사회에 혼란을 줄 수 있기 때문에, AI 생성 콘텐츠의 식별 도구와 기술의 발전이 필요하다.
-
- IT/바이오
-
AI 워터마크, 뚫기 쉽다⋯보안 강화 촉구
-
-
청색 OLED, 고효율 상향변화 ⋯전력 수요 대폭 낮춰
- 새로운 OLED(유기발광다이오드) 전력 절감 기술이 세상에 나왔다. OLED는 색상 왜곡 없이 정확하게 표현 가능하며, LCD(액정디스플레이) 대비 낮은 전력 소모와 빠른 응답 속도로 잔상 없이 동영상 재생이 가능한 점에서 큰 주목을 받고 있다. 이번에 개발된 기술은 OLED를 훨씬 적은 전력으로 원하는 밝기까지 높일 수 있게 만드는 것으로, 디스플레이 산업에서 큰 혁신으로 평가받고 있다. 미국의 산업 전문지 '핵스터(Hackster)'는 최근에 학술지 '네이처 커뮤니케이션즈(Nature Communications)'에 게재된 연구를 인용, 청색 OLED가 100cd/m²(칸델라 매 제곱미터)의 밝기를 얻기 위해 필요한 전력이 기존의 절반만으로도 가능하다는 내용의 에너지 효율적인 OLED 개발 사례를 전하며, 이 기술의 중요성을 강조했다. 도쿄공업대학과 오사카대학, 일본과학기술진흥원(JST), 도야마대학, 시즈오카대학, 분자과학연구소의 연구팀이 함께 연구한 결과, 청색 OLED의 전력 효율성이 크게 개선되었다. 이 연구팀은 청색 OLED가 100cd/m²의 밝기를 얻기 위해 오직 1.47V의 전력만 필요로 하는 에너지 효율적인 기술을 선보였다. 이 수치는 다른 경쟁사 제품의 요구 전력의 절반에 불과하다. 휘도를 나타내는 국제 단위인 칸델라 매 제곱미터(cd/m²)는 단위 면적당 빛의 양을 측정할 때 주로 사용되며, 디스플레이의 밝기를 표현하는 데 핵심적인 역할을 한다. OLED는 선명하고 밝은 화면 표현으로 큰 인기를 얻고 있지만, 비용이 많이 드는 문제점이 있었다. 특히 빨간색과 녹색 OLED의 제작은 상대적으로 용이했으나, 청색은 그렇지 않았는데, 이번 연구로 그 문제점이 해결될 수 있을 것으로 보인다. 연구팀은 "풀 컬러 디스플레이를 위해서는 청색 OLED가 필수적이며, 이는 빨간색과 녹색 기기보다 전력 소모가 월등히 높다"라고 설명했다. 또한 "일반적으로 100cd/m²의 밝기를 달성하기 위해 약 4V의 전압이 필요하지만, 대다수 스마트폰과 태블릿의 배터리는 3.7V의 출력만을 제공하는 상황이다. 우리 연구팀은 이 문제점을 극복했다"고 덧붙였다. 최근에 개발된 청색 OLED 프로토타입은 전원 공급 전압이 단지 1.47V에 불과하며, 기존 설계에 비해 훨씬 낮은 1.97V만으로도 100cd/m²의 밝기를 달성할 수 있다는 것이 특징이다. OLED의 효율성 향상의 비결은 특정 재료의 선별적 사용을 통한 상향 변환 원리에 있다. 이 방식에서는 정공과 전자가 주체 및 수용체 층으로 주입되며, 이후 인터페이스에서 다시 결합하여 전하를 전달한다. 이번 연구를 주도한 도쿄공과대학과 오사카대학의 세이치로 이자와 교수는 "CT 상태의 에너지가 방광체의 밴드갭 에너지보다 낮아, 삼중항(TTA)과 결합된 상향 변환(UC) 메커니즘이 발광체를 구동하는 데 필요한 전압을 크게 줄여준다"고 말했다. 개선된 UC-OLED는 단지 1.97V에서 상업용 디스플레이와 동등한 100cd/m²의 밝기에 도달했다. 그렇지만 이 연구의 세부 로드맵은 아직 공개되지 않았다. 인하대, 고품위 진청색 OLED 소자 개발 한편, 한국 인하대학교의 신소재공학과 이정환 교수 연구팀은 최근 고색순도 및 고효율의 청색 발광 OLED 소자를 성공적으로 개발했다. 이 기술은 발광체 간의 상호작용을 최소화함으로써 진청색을 표현하는 것에 중점을 둔 것이다. 연구 결과, 에너지 전달 효과는 8분의 1로 크게 감소하였으며, 외부 발광 효율은 최대 29%에 도달한 것으로 알려졌다. 연구팀은 발광체 간의 상호작용을 최소화하는 접근법을 통해 진청색을 구현하고자 했다. 이 목적을 달성하기 위해, 트립티센(Triptycene) 분자를 다중 공명 구조를 가진 DABNA 분자에 도입함으로써 고색순도 및 고효율 발광체 특성을 동시에 가진 Tp-DABNA를 개발했다. 이번 연구를 통해 구현된 Tp-DABNA를 기존 DABNA-1 발광체와 비교했을 때 덱스터(Dexter) 에너지 전달 효과를 8분의 1 이하로 줄일 수 있다는 결과를 도출했다. 연구팀은 이를 기반으로 29%의 최대 외부발광효율, 462nm 발광스펙트럼 피크·30nm 이하의 발광 반치폭을 가진 고품위 진청색 OLED 소자를 개발했다고 설명했다. 결국 고색순도를 바탕으로 색공간 CIE1931에서 표현 가능한 색의 범위를 넓혀, 생동감 있는 이미지를 전달할 수 있는 차세대 디스플레이 패널에 적용 가능하다. 이정환 교수는 "최근 융합연구와 공동연구의 중요성이 대두되는 시점에서 울산대 연구팀과 공동연구를 진행해 OLED 디스플레이 분야에서 좋은 연구 성과를 거둬 기쁘다"며 "앞으로도 인하대학교의 우수한 학생들과 차세대 디스플레이·반도체 분야 발전에 도움이 되는 기술 개발에 매진할 계획"이라고 말했다. 한편, OLED시장 세계 1~2위를 달리고 있는 한국의 뒤를 이어, 중국과 대만, 일본이 기술 격차를 줄이며 바짝 추격하고 있다. 이에 한국은 차세대 디스플레이 OLED를 뛰어 넘어 iLED(무기발광) 디스플레이 연구개발에도 힘쏟고 있다.
-
- 산업
-
청색 OLED, 고효율 상향변화 ⋯전력 수요 대폭 낮춰
-
-
상온서 작동하는 '자성 양자 컴퓨팅 물질' 개발
- 상온에서 작동하는 자성 양자 컴퓨팅 물질이 개발돼 학계의 주목을 받고 있다. 과학 전문매체 테크놀로지 네트웍스(technologynetworks)는 텍사스 주립대학교 엘 패소 캠퍼스(The University of Texas at El Paso, UTEP) 물리학부 연구원들이 상온에서 작동하는 자성 양자 컴퓨팅 물질을 개발했다고 전했다. 양자 컴퓨팅은 세계를 혁신할 수 있는 잠재력을 가지고 있다. 신약 개발이나 의료 분야뿐만 아니라 과학 연산 문제를 기존 컴퓨팅보다 지수적으로 빠르게 해결할 수 있다. 그러나 양자 컴퓨터는 초저온에서만 작동한다는 큰 단점이 있다. UTEP 물리학부의 아흐마드 엘-겐디(Ahmed El-Gendy) 박사는 "양자 컴퓨터를 작동시키려면 실온에서 사용할 수 없다"고 말했다. 그는 "컴퓨터를 식히고, 그밖에 다른 모든 물질을 식혀야 하는데, 비용이 매우 많이 든다"고 설명했다. 2019년 이후로 UTEP 팀은 양자 컴퓨팅을 위한 완전히 새로운 자성 물질을 개발하기 위해 노력해왔다. 상온에서 작동뿐만 아니라 희귀 희토류 재료로 만들어지지 않은 자석에 중점을 두었다. 마침내 엘-겐디 박사가 이끄는 팀은 일정한 온도에서 작동하는 고자성 양자 컴퓨팅 재료(순수 철의 100배 강한 자성)를 개발했다. 이 논문은 물리학회 저널 「어플라이드 피직스 레터(Applied Physics Letters)」 여름 호에 소개됐다. 희토류 원석으로 만든 자석은 현재 스마트폰, 차량, 솔리드 스테이트 드라이브(SSD)를 포함한 많은 최신 응용 분야에서 사용된다. 이 자석에 컴퓨터 정보가 저장된다. 양자 컴퓨터에서 자석은 속도를 향상시키기 위해 사용된다. 엘-겐디는 현재 강한 자기 특성은 저온에서만 작동한다고 말했다. 실제로 현재 양자 컴퓨터는 절대 영도(-273.15℃) 바로 위 부근인 섭씨 약 -273도(화씨 -459도)의 저온에서 기능이 유지된다. 그는 "모든 자석은 희토류 원소로 만들어져 있으며, 그런 자석을 만들 재료가 부족하다"고 지적했다. 또한 "우리는 곧 어떤 산업에서도 이러한 자석을 만들 수 있는 이러한 재료가 없다는 문제를 직면하게 될 것"이라고 우려했다. 엘-겐디 박사 팀은 수년간의 시행착오 끝에 아미노페로세늄(aminoferrocene)과 그래핀의 혼합물을 찾아냈다. 이 물질은 극도로 강력한 자성을 나타낸다는 점이 특징이다. 그는 "우리는 그 자성을 의심했지만, 실험 결과는 명백한 초자성 동작을 보여준다"고 말했다. 이어 "이런 종류의 물질을 이전에 아무도 만들어보지 않았다. 이 물질을 사용해 상온에서 양자 컴퓨터를 만들 수 있을 것으로 생각한다"고 기대했다. 그러나 이 제품을 상용화하기 위해서는 아직 해결해야 할 과제가 많다. 상온에서 작동하는 자성물질을 만드는 것은 어렵기 때문이다. 엘-겐디 박사 팀은 준비 과정을 최적화하고 물질의 효율성을 계속 향상시키기 위해 더욱 노력하겠다고 밝혔다.
-
- 산업
-
상온서 작동하는 '자성 양자 컴퓨팅 물질' 개발
-
-
파나소닉, 2029년까지 드론용 전고체 배터리 생산
- 최근 우크라이나와 러시아 전쟁에서 승리의 판도를 뒤흔들고 있는 무기가 있다. 바로 '드론'이다. 드론은 '웅웅'하는 소리 때문에 붙여진 애칭으로 최근 일본의 파나소닉을 비롯해 한국의 SK온 등 여러 기업들이 소형 드론용 배터리 생산에 집중하고 있다. 일본 매체 닛케이아시아(Nikkei Asia)는 최근 테슬라와 협업하는 공급업체나 도요타 같은 기업들이 전기차에 적용되는 전고체 배터리 개발에 집중하는 가운데, 파나소닉 홀딩스는 2029년까지 소형 드론 및 공장 로봇을 위한 전고체 배터리 판매를 시작할 계획이라고 보도했다. 도요타와 같은 대기업들은 리튬 이온 배터리를 대체할 더 안전한 전기차용 배터리 기술의 개발 경쟁을 벌이고 있다. 파나소닉 그룹의 타츠오 오가와(Tatsuo Ogawa) 최고기술책임자(CTO)는 "새로운 배터리 기술은 초기에는 산업용으로 사용될 예정이며, 전고체 배터리 기술 중 일부는 자동차에도 적용될 것"이라고 밝혔다. 전고체 배터리는 액체 전해질을 쓰는 리튬이온 배터리와 달리, 고체 전해질을 사용해 만들어진 배터리로, 가연성 유기용제를 사용하지 않는다. 그 결과, 이 배터리는 리튬이온 배터리보다 안전성이 높고, 에너지 밀도가 높아져 전기차의 주행 거리를 늘릴 수 있다는 장점이 있다. 하지만 높은 비용과 대량 생산의 어려움이 주요 단점으로 지적된다. 도요타는 2027년까지 전고체 배터리를 장착한 전기차를 시장에 출시하는 것을 목표로 하여 1회 충전만으로 주행 가능 거리를 2배 이상으로 확장하려고 한다. 그 외에도 한국의 삼성SDI, SK온, LG에너지솔루션 등도 전고체 배터리의 개발에 박차를 가하고 있다. 현재 LG에너지솔루션은 2026년 고분자계 전고체 배터리와 2030년 황화물 전고체 배터리의 대량 생산을 목표로 하고 있다. 삼성SDI 역시 2027년에 황화물계 전고체 배터리를 대량 생산할 계획을 가지고 있다. 그러나 테슬라의 핵심 배터리 공급업체인 파나소닉은 차량용 전고체 배터리의 대량 생산 계획을 공개하지 않았다. 파나소닉 관계자에 따르면, 최근에 개발된 전고체 배터리는 기존의 최첨단 리튬 이온 배터리에 비해 에너지 용량은 작지만, 충전 속도는 훨씬 빠르다. 또한, 가장 큰 약점으로 지적되었던 수명 제한 문제도 개선되었다고 전했다. 파나소닉은 이 배터리가 수만 번의 충전 주기를 견딜 수 있다고 발표했다. 이에 전문가들은 전고체 배터리 생산 회사들에게 긍정적인 영향을 미칠 것이라고 전망했다. 테크노 시스템 리서치(Techno Systems Research)의 후지타 미츠타카 연구원은 "드론은 제한된 시장일 수 있지만 새로운 기술의 발전은 여전히 견고하다"고 말했다. 전고체 배터리 개발에는 아직 극복해야 할 여러 문제점이 있지만, 소형 드론을 위한 전고체 배터리의 연구와 개발로 향후 더 큰 발전이 기대된다.
-
- 산업
-
파나소닉, 2029년까지 드론용 전고체 배터리 생산
-
-
美 샌디아 국립연구소, 내구성 높인 분자 개발 성공⋯장단점은?
- 미국 샌디아 국립연구소(Sandia National Laboratories)의 연구팀이 내구성을 높인 획기적인 분자 구조를 개발했다. 일반적으로 열을 가하면 팽창하는 대부분의 재료와 달리, 이 새로운 분자는 열을 가할 경우 수축한다는 놀라운 특성을 보인다. 과학 및 기술 전문 매체 '사이테크데일리(SciTechDaily)'에 따르면, 이 연구팀이 개발한 분자는 폴리머와 결합될 경우 뛰어난 내구성을 발휘한다. 이러한 특성 덕분에 휴대폰 케이스부터 미사일에 이르기까지 다양한 분야에서 활용 가능성이 높아 보인다. 폴리머는 작은 분자들이 결합해 만들어진 고분자로, 섬세한 구성 요소를 보호하는 이상적인 재료로 알려져 있다. 그러나 재료가 오래 사용되거나 다양한 환경에 노출될 경우 성능이 저하되는 문제가 있다. 이와 관련해 대부분의 물질이 가열될 때 팽창하고, 냉각될 때 수축하는 반면, 이 새로운 분자는 그렇지 않다. 일반적으로 폴리머는 가장 높은 팽창률과 수축률을 보이며, 금속이나 세라믹은 상대적으로 낮은 수준을 보인다. 샌디아 연구팀의 이번 발견은 물질의 온도에 따른 변화율을 조절할 수 있는 새로운 가능성을 열어놓았다. 이로써 다양한 산업 분야에서의 응용이 기대된다. 샌디아 연구팀을 이끄는 재료 과학자 에리카 레드라인(Erica Redline)은 "많은 제품들이 플라스틱, 유리, 금속 등 여러 재료로 구성되어 있는데, 이 재료들이 서로 다른 속도로 팽창하거나 수축하기 때문에 시간이 지날수록 제품이 갈라지거나 뒤틀리는 현상이 발생한다"고 지적했다. 레드라인은 이 문제점을 극복하기 위한 새로운 아이디어를 생각하게 되었고, 그 아이디어를 팀원들과 함께 실제로 구현하는 데 성공했다고 말했다. 그는 "우리 팀은 고분자와 잘 결합하면서 그 특성을 바꿀 수 있는 새로운 분자를 개발했다. 이 분자는 흥미롭게도 가열될 때 팽창하는 대신 수축하는 특징을 가진다"고 설명했다. 레드라인은 "이 분자를 폴리머에 첨가하면, 폴리머의 팽창과 수축이 금속과 유사한 수준으로 조절되게 된다. 실제로 금속과 같은 특성을 갖게 만든 이 분자의 개발은 큰 도전이었다"고 강조했다. 이 새로운 분자는 다양한 방식으로 활용될 수 있는 잠재력을 보여주고 있다. 폴리머는 전자부터 통신 시스템, 태양광 패널, 자동차 부품, 인쇄 회로 기판, 항공우주 응용, 국방 시스템, 바닥재 보호 코팅에 이르기까지 광범위한 분야에서 사용되는데, 이 분자가 그 활용성을 더욱 확장시킬 것으로 보인다. 화학 엔지니어인 제이슨 더거(Jason Dugger)는 "이 분자는 국방 시스템에서 특히 큰 잠재력을 발휘할 것"이라며 미래의 혁신을 위한 길을 열 것으로 기대하고 있다. 더거는 또 3D 프린팅 분야에서의 활용성에 대해서도 언급했다. 그는 "하나의 영역에서는 특정한 열적 반응을 보이는 반면, 다른 영역에서는 다른 열적 반응을 보이게끔 인쇄하는 것이 가능하다"며 "재료의 무게를 줄일 수 있어 위성 등에도 적용될 수 있다"고 덧붙였다. 또한, 한 에폭시 제조 회사가 이 분자를 접착제로 활용하려는 시도를 했다는 소식이 전해졌다. 물론, 이 기술에도 단점이 있다. 유기 화학자 샤드 스티커(Chad Staiger)에 따르면, 7~10그램(g)의 분자를 합성하는데 약 10일이 소요된다. 이런 점은 대량 합성 시에 추가적인 시간과 비용이 들 수 있다는 것을 의미한다. 현재 연구팀은 시장에 출시될 제품을 준비하는 과정에서 10만 달러(한화 약 1억3276만원)를 투자해 분자 합성 시간을 단축시키는 연구에 집중하고 있다. 이 분자의 활용 가능성은 무궁무진해 보인다.
-
- 산업
-
美 샌디아 국립연구소, 내구성 높인 분자 개발 성공⋯장단점은?
-
-
[퓨처 Eyes(3)] 양자 컴퓨터, AI·챗GPT보다 더 큰 기술 혁신 온다
- 미래 기술에서 양자 컴퓨터를 빼고 이야기할 수 없다. 양자 컴퓨터는 독특한 도전과제를 제시하고 전례 없는 연산 능력을 약속하는 최첨단 기술이다. 양자 컴퓨터는 양자역학의 원리를 이용하여 작동한다. 이진 논리(0과 1)와 순차적 계산으로 작동하는 기존 컴퓨터와 달리, 양자 컴퓨터는 무한한 수의 가능한 결과를 나타낼 수 있는 양자 비트, 즉 '큐비트(qubit)'라는 정보 단위를 사용해 계산을 수행한다. 이를 통해 양자 컴퓨터는 양자역학의 확률적 특성을 활용하여 엄청난 수의 계산을 동시에 수행할 수 있다. 인공지능(AI) 챗 GPT보다 더 큰 기술혁신을 몰고 올 것으로 기대되는 양자 컴퓨터의 장점은 첫째, 기존 컴퓨터보다 어떤 작업도 더 빠르게 수행할 수 있다. 양자 컴퓨터에서는 원자가 기존 컴퓨터보다 더 빠르게 움직이기 때문이다. 둘째, 높은 수준의 정밀도로 국가 보안 및 메가데이터 처리에 적합하다. 셋째, 에너지 낭비가 적다. 양자 컴퓨터는 아직 초기 단계에 있지만 암호화부터 신약 개발에 이르기까지 다양한 분야에 혁신을 가져올 잠재력을 가지고 있다. 양자 컴퓨터를 사용하면 부작용이 적고 더 효과적인 신약을 개발할 수 있다. 또한 IT 보안의 주요 도전 과제이기도 하다. 연구자와 기술 기업은 양자 컴퓨터의 성능을 견딜 수 있는 새로운 암호화 방법을 모색해야 한다. 여기에는 새로운 암호화 알고리즘을 개발하거나 양자역학의 원리를 사용하여 '양자 암호화'로 알려진 것을 만드는 게 포함될 수 있다. 프랑스 일간 경제지 라 트리뷘(LATRIBUNE)에 따르면 2030년까지 2000~5000대의 양자 컴퓨터가 작동할 것으로 보인다. 이 매체는 양자 컴퓨터 퍼즐에는 많은 조각이 있기 때문에 가장 복잡한 문제를 처리하는 데 필요한 하드웨어와 소프트웨어는 2035년 이후에나 존재할 수 있다고 전망했다. 또 대부분의 기업은 2035년까지 양자 컴퓨터를 통해 상당한 가치를 창출할 수 없겠지만, 일부 기업은 향후 5년 동안 이득을 볼 수 있을 것으로 내다봤다. 양자 컴퓨터 시장 규모는 2022년 약 10억 달러에서 2030년 80억 달러로 증가할 것으로 추정된다. 퓨처 아이즈에서는 양자 컴퓨터 작동 원리와 금융이나 생명공학, 공급망 등의 적용 분야, 향후 양자 컴퓨터 개발 과제 등을 점검해본다. 양자 컴퓨터의 작동 원리 1) 중첩 양자컴퓨터의 '중첩(Quantum superposition)'은 양자역학의 기본 원칙 중 하나로, 양자시스템이 두 개 이상의 상태를 동시에 가질 수 있다는 개념을 의미한다. 전통적인 컴퓨터에서 비트는 0 또는 1의 값을 갖는다. 그러나 양자컴퓨터에서 '큐비트'는 중첩의 원칙 덕분에 0과 1의 상태를 동시에 가질 수 있다. 이러한 특성은 양자컴퓨터가 복잡한 계산을 전통적인 컴퓨터보다 훨씬 빠르게 수행할 수 있게 해준다. 2) 양자 얽힘 양자 얽힘은 큐비트가 서로 결합하여 한 큐비트의 상태가 다른 큐비트의 상태에 즉각적으로 영향을 미칠 수 있게 함으로써 큐비트 사이의 거리에 관계없이 큐비트를 연결할 수 있게 한다. 이 특성 덕분에 양자 컴퓨터는 기존 컴퓨터보다 복잡한 문제를 더 효율적으로 해결할 수 있다. 3) 양자 게이트 양자 게이트는 큐비트 집합에서 수행할 수 있는 연산이다. 양자 게이트는 고전 컴퓨팅의 논리 게이트와 유사하지만, 중첩과 얽힘 덕분에 양자 게이트는 가능한 모든 입력을 동시에 처리할 수 있다. 양자 컴퓨터의 적용 잠재력 양자 컴퓨터의 잠재력은 방대한 양의 정보를 병렬로 처리할 수 있어 기존 컴퓨터에 비해 계산 능력이 기하급수적으로 증가한다는 데 있다. 기존 컴퓨터는 한 사람의 경주 결과를 계산할 수 있지만, 양자 컴퓨터는 서로 다른 경로를 가진 수백만 명의 참가자가 참여하는 경주를 동시에 분석하고 확률 기반 알고리즘을 사용하여 가장 가능성이 높은 우승자를 결정할 수 있다. 양자 컴퓨터는 특히 여러 가지 확률적 결과가 나오는 최적화 문제와 시뮬레이션을 해결하는 데 적합하며 물류, 의료, 금융, 사이버 보안, 날씨 추적, 농업 등의 분야에 혁신을 가져올 수 있다. 양자 컴퓨터의 영향력은 지정학까지 확장되어 전 세계적으로 힘의 역학 관계를 재편할 수 있다. 양자 컴퓨터는 금융과 생명공학, 공급망 등 많은 산업 분야에 혁신을 가져올 것이다. ◇ 금융 금융 및 투자 산업은 양자 AI(퀀텀 AI)의 혜택을 크게 받을 수 있는 분야 중 하나다. 대량의 데이터를 실시간으로 분석할 수 있는 양자 AI 알고리즘은 금융회사가 보다 정보에 입각한 투자 결정을 내리고 리스크를 보다 효과적으로 관리하는 데 도움이 될 수 있다. 예를 들어, 양자 AI는 시장 동향을 분석하고 주식, 채권 및 기타 금융상품의 움직임을 예측하는 데 사용될 수 있다. 이는 투자자가 투자 시점에 대해 더 많은 정보를 바탕으로 구매, 판매 또는 보유 결정을 내리는 데 도움이 될 수 있다. 또한 금융회사가 새로운 투자 기회를 파악하는 데도 도움이 될 수 있다. 양자 AI 알고리즘은 대량의 데이터를 분석하여 새로운 트렌드와 성장 가능성이 있는 산업을 파악할 수 있다. 이를 통해 투자자는 새로운 산업의 초기 단계에 진입하고 잠재적으로 상당한 투자 수익을 얻을 수 있다. ◇ 생명공학 양자 AI는 유전자 데이터와 기타 복잡한 의료 정보를 분석할 수 있는 능력을 통해 질병에 대한 새로운 치료법과 치료법을 찾아내는 데 도움을 줄 수 있다. 예를 들어, 양자 AI는 대량의 유전자 데이터를 분석하여 암과 같은 질병의 근본적인 원인을 파악하는 데 사용될 수 있다. 이는 연구자들이 이러한 질병을 유발하는 특정 유전자 돌연변이를 표적으로 하는 새로운 치료법을 개발하는 데 도움이 될 수 있다. 또한 의료진이 환자 개개인에게 맞춤화된 치료를 제공하는 데 도움이 될 수 있다. 양자 AI 알고리즘은 환자의 유전자 데이터를 분석하여 해당 환자의 특정 질환에 가장 효과적인 치료법을 찾아낼 수 있다. 이를 통해 의료진은 보다 효과적인 치료를 제공하고 환자 치료 결과를 개선할 수 있다. ◇ 공급망 및 물류 물류 및 공급망 관리는 양자 AI의 혜택을 크게 받을 수 있는 또 다른 분야다. 복잡한 물류 네트워크를 최적화함으로써 기업은 비용을 절감하고 효율성을 개선할 수 있다. 양자 AI는 배송 경로와 배송 시간을 분석하여 가장 효율적인 상품 운송 방법을 파악하는 데 사용될 수 있다. 양자 AI 알고리즘은 판매 데이터 및 기타 요인을 분석하여 제품 수요를 예측하고 기업이 재고 수준을 최적화할 수 있도록 도울 수 있다. 이를 통해 기업은 낭비를 줄이고 수익성을 개선할 수 있다. ◇ 기후 및 환경 모델링 양자 AI는 기후 및 환경 모델링에도 큰 영향을 미칠 수 있다. 연구자들은 대량의 환경 데이터를 분석함으로써 기후 변화의 영향을 더 잘 이해하고 그 영향을 완화하기 위한 전략을 개발할 수 있다. 양자 AI는 위성 데이터를 분석하여 해수면 변화를 추적하고 해수면 상승이 해안 지역 사회에 미치는 영향을 예측하는 데 사용될 수 있다. 또 기상 조건을 분석하고 허리케인이나 토네이도와 같은 자연재해의 발생 가능성을 예측하는 데에도 사용될 수 있다. 양자 컴퓨터의 개선점 양자 컴퓨터는 큐비트 수정과 양자 오류 등의 수정, 양자 알고리즘 개발 등이 문제점으로 거론된다. 이를 개선하면 양자 컴퓨터는 상상할 수 없는 혁신적인 단계로 접어들 것으로 보인다. 1) 큐비트 개선 양자 컴퓨팅의 기본 단위인 큐비트는 고전적인 비트에 해당한다. 연구자들은 양자 정보를 보다 안정적으로 저장하고 조작할 수 있는 더 안정적이고 일관된 큐비트를 개발하기 위해 노력하고 있다. 초전도 큐비트, 갇힌 이온 기반 큐비트, 광자 기반 큐비트 등 다양한 기술이 연구되고 있다. 2) 큐비트 수 증가 양자 계산의 규모와 복잡성은 사용 가능한 큐비트 수에 따라 달라진다. 연구자들은 더 강력한 양자 알고리즘을 실행하기 위해 큐비트 수를 크게 늘리고자 한다. 큐비트 수가 많은 양자 컴퓨터는 기존 컴퓨터로는 접근할 수 없는 계산을 수행할 수 있게 해준다. 3) 양자 오류 수정 양자 시스템은 노이즈, 간섭, 불안정성 등의 요인으로 인해 오류가 발생하기 쉽다. 양자 오류 수정은 양자 오류를 감지하고 수정하는 기술을 개발하여 실제 시스템에서 양자 계산의 신뢰성을 보장하는 것을 목표로 하는 활발한 연구 분야다. 4) 양자 알고리즘 연구원들은 양자 컴퓨터에서 실행되도록 설계된 특정 알고리즘을 개발하기 위해 노력하고 있다. 이러한 알고리즘은 양자 속성을 활용하여 기존 알고리즘보다 복잡한 문제를 더 빠르게 해결한다. 유망한 양자 알고리즘의 예로는 쇼 인수분해 알고리즘, 그로버 검색 알고리즘, 양자 시뮬레이션 알고리즘 등이 있다. 5) 양자 머신 러닝과 양자 인공 지능의 사용 연구자들은 양자 시스템의 고유한 특성을 활용할 수 있는 새로운 머신러닝 및 인공 지능 알고리즘을 개발하기 위해 양자 컴퓨팅의 활용을 모색하고 있다. 6) 양자 클라우드 서비스의 부상 큐비트 수와 일관성 시간이 증가함에 따라 많은 기업이 사용자에게 양자 클라우드 서비스를 제공하여 자체 양자 컴퓨터를 구축하지 않고도 양자 컴퓨팅의 성능을 이용할 수 있도록 하고 있다. 7) 양자 오류 수정의 발전 양자 컴퓨터를 실질적으로 유용하게 사용하려면 계산 중에 발생하는 오류를 최소화하는 양자 오류 수정 기술이 필요하다. 이 목표를 달성하기 위해 많은 새로운 기술이 개발되고 있다. 양자 컴퓨팅은 아직 개발 초기 단계에 있으며, 널리 사용 가능하고 상업적으로 실행 가능한 양자 시스템이 현실화되려면 많은 기술적 과제를 극복해야 한다. 하지만 이러한 혁신 분야의 지속적인 발전은 가까운 미래에 양자 컴퓨팅에 대한 흥미로운 전망을 열어줄 수 있다. 양자 컴퓨팅은 새로운 논리 패러다임으로 인해 프로그래밍에 완전히 다른 접근 방식이 필요하다. 이 기술의 잠재력을 효과적으로 활용하려면 불확실성과 반복적인 휴리스틱 접근 방식을 수용하는 것이 필수적이다. 그러나 양자 컴퓨팅의 한 가지 중요한 과제는 오류 확률을 높이지 않고 여러 큐비트를 연결해야 한다는 점이다. 이는 양자 컴퓨팅 기술의 상업적 성장을 가로막는 중요한 장애물로 남아 있다. 양자 상태를 저하시키는 디코히어런스를 피하기 위해 큐비트를 실제 환경으로부터 격리해야 한다는 현실적인 제약이 있다. 현재는 극도로 낮은 온도로 냉각하는 것이 격리에 사용된다. 현재 진행 중인 연구에서는 양자 프로세서의 확장성과 상업적 실용성을 높이기 위해 포토닉스 및 다양한 소재를 포함한 다양한 방법론을 모색하고 있다. 또한 양자 컴퓨터는 '1000큐비트'의 강력한 성능이 필요하다. 지난 10년 동안 양자 컴퓨팅은 괄목할 만한 발전을 이루었다. 예를 들어 IBM은 2017년에 50큐비트 칩을 출시했으며, 2019년에는 특정 계산에서 가장 빠른 기존 슈퍼컴퓨터를 능가하는 성능을 보였다고 주장했다. 1000큐비트 양자 컴퓨터 개발 경쟁이 이미 진행 중이며, 더 많은 발전이 기대된다. 양자 컴퓨터의 잠재력을 최대한 발휘하려면 오류 수정 큐비트의 개발이 필수적이다. 현재의 양자 프로세서는 하나의 오류 수정 큐비트를 구현하기 위해 상당한 수의 표준 큐비트가 필요한 경우가 많다. 그러나 이 문제는 향후 몇 년 내에 해결될 것이라는 낙관적인 전망이 나오고 있다. 현재 거론하는 양자 컴퓨터에 대한 단기적인 전망은 과장된 것일 수 있지만, 장기적인 결과는 판도를 바꿀 가능성이 높다. 다양한 분야에서 전 세계적으로 관심이 높아지면서 상당한 자본이 투입되고 있으며, 향후 몇 년 동안 놀라운 실용적 혁신이 이루어질 수 있는 기반을 마련하고 있다. 양자 컴퓨터는 전례 없는 연산 능력을 제공하고 다양한 산업과 분야에 혁명을 일으켜 세상을 변화시킬 수 있는 가능성을 지니고 있다. 아직 해결해야 할 과제가 남아 있지만, 양자 기술의 지속적인 발전은 언제든 획기적인 발전이 일어날 수 있음을 시사한다. 양자 컴퓨터의 잠재력을 활용하면 모든 첨단 기술 중에서 가장 영향력 있는 기술이 되어 우리 사회에 큰 발전을 가져올 것으로 기대된다.
-
- 포커스온
-
[퓨처 Eyes(3)] 양자 컴퓨터, AI·챗GPT보다 더 큰 기술 혁신 온다
-
-
전기차 시장, '전고체 배터리'가 뜬다…10대 리드 기업 어디?
- 최근 전기차 업계가 주목하는 기술 중 하나는 '전고체 배터리'다. 이 기술은 기존 리튬 이온 배터리보다 에너지 저장 용량이 뛰어나고, 충전 시간도 단축되는 등 탁월한 성능을 자랑한다. 그렇다면 이 전고체 배터리는 기존 배터리와 다른 점은 무엇일까. 전고체 배터리는 이름에서도 알 수 있듯이 액체 전해질이 아닌 고체 전극과 고체 전해질을 사용한다. 이로 인해 배터리의 누출이나 열 문제가 크게 줄어들어 사용자의 안전을 더욱 보장한다. 게다가 작은 크기로도 높은 에너지 밀도를 구현할 수 있어 휴대성과 효율성 모두에서 높은 점수를 받는다. 시장의 변화에 민감하게 반응하는 글로벌 자동차 기업들도 전고체배터리 개발에 발빠르게 뛰어들었다. 토요타와 폭스바겐은 이미 전고체 배터리 기술 개발에 속도를 내고 있다. 이러한 대기업들이 전고체 배터리의 선봉에 서게 될 것인가, 아니면 다른 참여 기업들이 이를 따라잡거나 앞질러 나갈 것인가. 전기차 시장의 미래는 어떻게 전개될지 기대된다. 폭스바겐과 퀀텀스케이프는 전기 자동차용 고체 상태 배터리 기술 개발에 손을 잡았다. 전기차의 두 가지 큰 걸림돌인 '주행 거리'와 '충전 시간'을 해결하기 위해서는 향상된 '에너지 저장 능력'과 '빠른 충전'이 선결과제다. 이 두 마리 토끼를 잡을 수 있는 전고체 배터리는 소비자의 전기차에 대한 인식을 크게 바꿔놓을 것으로 보인다. 전고체 배터리 개발 진행중인 선도적인 10개 기업은 다음과 같다. 1. 도요타 토요타는 21세기 자동차 혁신의 핵심으로 전고체 배터리를 지목하며, 2027년까지 상용화를 목표로 연구개발을 가속화하고 있다. 도요타의 이러한 움직임은, 배터리가 전기차 업계의 핵심 부품임을 감안하면, 전기차 시장에서의 선두 주자로의 복귀를 알리는 신호로 해석된다. 그들은 이미 2012년부터 전고체 배터리 기술 개발에 뛰어들었고, 현재 200명 이상의 전문가로 구성된 팀이 이를 주도하고 있다. 그 결과, 토요타는 1000개 이상의 특허를 보유하게 되었다. 이 기업의 최종 목표는 전고체 배터리의 장점을 살려 완충 상태에서 약 700km (435마일)의 주행 거리를 달성하는 전기차와 하이브리드 차량을 출시하는 것이다. 2. 폭스바겐(Volkswagen) 폭스바겐은 전고체 배터리 연구의 선구자 중 하나인 퀀텀스케이프와 파트너십을 맺고 전기 자동차용 고에너지 밀도 배터리를 개발하고 있다. 2018년 폭스바겐은 퀀텀스케이프와 함께 전기차용(EV) 배터리 기술 개발을 추진했고, 2020년 추가적으로 2억 달러의 투자를 통해 이 연구의 가속화를 선언했다. 퀀텀스케이프는 기존 배터리 대비 전고체 배터리가 약 80% 더 긴 주행 거리와 80% 더 많은 충전량을 제공한다고 주장했다. 2022년 말 현재, 퀀텀스케이프는 전고체 배터리 셀의 시험을 진행 중이다. 폭스바겐은 다른 기업들과 협업하여 고체 상태 기술 및 전극 건조 코팅 공정과 같은 다양한 배터리 기술을 연구 중이며, 이를 2030년에 대량 생산에 투입할 계획이다. 3. 파나소닉(Panasonic) 전세계적인 전기차 시장의 확대와 함께 배터리 기술의 중요성이 강조되는 가운데, '파나소닉'과 '도요타'의 조합이 눈길을 끈다. 두 기업은 2020년 '프라임 플래닛 에너지 솔루션(Prime Planet Energy & Solutions, Inc.)'이라는 이름의 합작기업을 설립, 생산성과 용량 모두에서 우수한 배터리 솔루션을 제공하기 위해 노력하고 있다. 도요타는 이미 전고체 배터리 기술 관련 1000개 이상의 특허를 보유하고 있으며, 파나소닉도 445개의 특허로 그 기술력을 과시하고 있다. 파나소닉은 지난 수십 년 동안 배터리 기술을 선도해 왔다. 특히 전고체 배터리 기술 연구에 주력하며, 액체 전해질로 인한 화재, 폭발 위험 등의 문제점을 해결하고자 고체 상태 배터리로의 전환에 큰 희망을 걸고 있다. 파나소닉은 기술에 대한 구체적인 일정을 제공하지는 않았지만, 연구 및 개발에 적극적으로 투자하고 있다. 특히 도요타, 테슬라, 포드와 같은 국제적인 자동차 기업들과의 협력은, 전고체 배터리의 시장 출시 때 그들이 이 분야의 혁신을 주도할 가능성을 제시한다. 4. 베이징 웨이란신에너지기술(Beijing WeLion New Energy Technology) 중국 기업 니오(Nio)는 배터리 제조업체인 중국 베이징 웨이란신에너지기술(北京卫蓝新能源科技·Beijing WeLion New Energy Technology, 이하 '웨이란'-WeLion)과 파트너십을 맺어 새로운 배터리 기술을 선보였다. 이들 두 기업은 전기 자동차에 대한 반고체 상태 배터리 셀을 생산했다. 반고체 상태 배터리는 리튬 이온 배터리의 젤 전해질과 고체 전해질을 결합한 것이다. 니오는 특히 이번 파트너십을 통해 웨이란으로부터 150 kWh 용량의 반고체 배터리 셀을 공급받게 되었으며, 이 배터리는 'Nio ET7' 전기자동차에 적용될 예정이다. 이러한 혁신적인 기술을 탑재한 세단 'Nio ET7'은 CLTC 기준으로 약 1000킬로미터(621 마일), EPA 기준으로는 740킬로미터(460 마일)의 높은 주행 거리를 자랑한다. 또한, 이 배터리는 'Nio ES6 SUV'에도 적용되어, 약 689킬로미터(428 마일)의 주행 거리를 제공하게 된다. 5. 중국 CATL(Amperex Technology Co. Limited) 중국 배터리 대기업 CATL은 2023년 4월 전기 항공기 전동화를 향한 새로운 움직임을 위해 고체 상태 배터리 기술의 한 형태인 압축형 배터리 셀을 출시했다. 이 배터리 셀은 에너지 밀도가 500 Wh/kg로 매우 높다. 중국의 배터리 대기업 'CATL'은 2023년 4월 전기 항공기의 전동화를 목표로 고채 상태 배터리 기술의 한 형태인 압축형 배터리 셀을 출시했다. 이번에 선보인 배터리 셀은 무려 500 Wh/kg의 높은 에너지 밀도를 자랑한다. 반면, 테슬라가 자랑하는 4680 배터리 셀의 에너지 밀도는 244 Wh/kg에 불과하다. 이를 비교하면 CATL의 신제품은 기존 리튬 이온 배터리에 비해 약 두 배의 충전량을 가지고 있음을 알 수 있다. 이렇게 혁신적인 배터리 기술은 중국 지리자동차(Geely)의 2023년 형 전기차 '지커-001(Zeekr-001 EV)'에도 적용될 수 있으며, 해당 차량은 CLTC 기준으로 641 마일의 주행 거리를 달성할 수 있다. CATL의 압축형 배터리 셀은 이보다 훨씬 더 긴 주행 거리를 제공할 전망이다. 6. 혼다 혼다는 2050년까지 탄소 중립을 목표로 하고 있으며, 이를 위해 제너럴 모터스(GM)와 소니 같은 기업들과 파트너십을 맺어 고체 상태 배터리 기술을 연구하고 있다. 또한 혼다는 일본의 사쿠라에 4300억 엔 (약 2950만 달러)을 투자해 2028년까지 전기 자동차에 고체 상태 배터리 셀을 도입하는 생산 라인을 구축하는 작업을 진행 중이다. 고체 상태 배터리 기술의 가장 큰 단점은 세포의 무결성을 위협하는 덴드라이트(dendrites)의 존재다. 혼다는 덴드라이트 문제를 해결하기 위한 새로운 연구를 진행하고 있다. 이를 통해 2030년까지 연간 200만 대의 배터리 전기 자동차 생산을 목표로 하고 있다. 7. 닛산 닛산은 2028년까지 고체 상태 배터리로 구동되는 차량을 시장에 선보이기 위한 연구를 본격화했다. 가나가와에 위치한 닛산의 연구 센터에서는 2024년까지 고체 상태 셀 프로토타입을 생산하기 위한 공장 건립 작업이 진행 중이다. 고체 상태 배터리 기술 도입 후, 닛산은 EV 배터리 비용을 최소 50% 절감하며, 충전 능력을 현존하는 기술의 세 배로 향상시키고, 에너지 밀도를 두 배로 늘리는 것을 목표로 삼고 있다. 시장에서 현재 주목받는 최고 성능의 배터리 셀은 에너지 밀도 240 Wh/kg을 제공하는데, 닛산의 목표는 이를 480~500 Wh/kg로 높이는 것이다. 이외에도 닛산은 액체 전해질을 사용하지 않는 올 고체 상태 배터리와 나트륨을 활용한 셀에 대한 연구를 활발히 진행하고 있다. 8. 솔리드에너지시스템(SolidEnergy Systems) 솔리드에너지시스템(SES)은 치차오 후 박사(Dr. Qichao Hu)가 2012년에 매사추세츠주 워본(Woburn)에 설립했다. 이 회사는 리튬 금속 기술을 사용하며, 리튬 이온 배터리 셀에서 발견되는 전통적인 젤 대신 분리 막으로 사용한다. SES 리튬 금속 배터리 셀은 에너지 밀도가 400 Wh/kg이며, 전통적인 리튬 이온 배터리 셀의 주행 거리를 두 배로 늘릴 수 있다. SES는 안전하고 효율적인 배터리 개발에 중점을 둔다. 인공 지능 알고리즘을 활용해 배터리의 안전성을 향상시켰고, 가볍고 비용 효율적으로 제작될 수 있다. 게다가 15분만에 배터리의 80%까지 빠르게 충전할 수 있다는 것은 큰 강점이다. 차량 제조업체들과의 협력도 활발한 편이다. 제너럴 모터스(GM), 혼다, 현대자동차, 지리, 기아와 같은 주요 자동차 기업들과 파트너십을 체결하고 있다. 특히 2021년에는 GM이 SES에 1억 3900만 달러를 투자했으며, 2025년부터는 SES의 리튬 금속 배터리 셀을 자동차에 적용할 계획이다. 9. 솔리드 파워(Solid Power) 솔리드 파워는 2011년 콜로라도 대학의 스핀오프로 탄생했으며 현대자동차, BMW, 포드와 같은 글로벌 자동차 제조업체들의 후원을 받으며 빠르게 성장했다. 2021년에는 콜로라도 주의 손턴(Thornton)에 7만5000평방 피트(약 6967제곱미터) 규모의 최첨단 생산 공장을 설립했다. 솔리드 파워의 주요 기술은 전통적인 리튬 이온 배터리의 액체 전해질을 황화물 기반의 고체 전해질로 교체하는 것이다. 이 고체 전해질은 액체 전해질보다 안전하며, 안정적인 성능을 제공한다. 이 회사는 2028년까지 연간 80만 대의 전기차 배터리 셀 생산을 목표로 하고 있으며, 그를 위한 생산 확장 계획을 세우고 있다. 또한, 솔리드 파워는 미국 에너지부의 "전기 자동차를 위한 미국 저탄소 생활 (EVs4ALL)" 프로그램에서 총 4200만 달러 중 560만 달러의 지원을 받아 연구 및 개발 활동을 지속적으로 진행하고 있다. 10. 실라 나노 테크놀로지스(Sila Nanotechnologies) 실라 나노 테크놀로지스는 BMW, 다임러 AG(Daimler AG), 지멘스(Siemens), CATL과 같은 세계적인 기업들과 전략적 파트너십을 체결해 전기 자동차용 고체 상태 배터리의 상용화를 위한 강력한 투자 지원을 확보했다. 산업 내 주요 플레이어들의 지원 아래, 이 회사는 2028년까지 150 GWh 이상의 대규모 배터리 셀 생산을 목표로 하는 로드맵을 구축하고 있다. 특히, 실라 나노는 20% 더 긴 주행 거리와 20분만에 10-80%까지 충전이 가능한 타이탄 실리콘(Titan Silicon) 배터리 셀을 선보였다. 이 기술은 메르세데스-벤츠의 EQG 모델에 적용될 예정이다. 더욱이, 회사는 기존 고체 상태 배터리 기술의 덴드라이트 현상과 부피가 큰 세라믹 전해질의 한계를 극복하기 위한 방안으로, 중간 온도에서 다공성 분리막-양극 스택에 고체 전해질을 용융 침투시키는 방식을 도입할 계획이다.
-
- IT/바이오
-
전기차 시장, '전고체 배터리'가 뜬다…10대 리드 기업 어디?
-
-
효율성 높은 리튬 배터리, 문제점은 무엇?
- 알카라인, 니켈수소, 리튬 등 여러 종류의 배터리가 시장에 나와 있지만, 리튬이온 배터리가 가장 인기 있고 널리 사용되는 것으로 알려져 있다. 리튬 배터리는 고에너지 밀도와 오래 지속되는 수명 때문에 휴대용 장치에 주로 선호되지만, 최근에는 높은 생산 비용과 화재 위험 등이 문제점으로 부각되고 있다. IT 전문 매체 슬래시기어(Slash Gear)는 영국 패러데이 연구소(Faraday Institution) 비아트리체 브라우닝(Beatrice Browning) 박사를 인용, 리튬이온 배터리의 경우 리튬 이온이 전극 안팎으로 순환할 때 발생하는 전극 구조가 손상되면 배터리 수명이 단축될 수 있다고 보도했다. 또한 영국 왕립화학회(Royal Society of Chemistry)의 연구에 따르면, 온도와 충전상태(SoC), 부하 프로필 등의 외부 스트레스 요인이 배터리 성능 저하에 영향을 미쳤으며 시간이 지남에 따라 용량이 감소하는 모습을 보였다. 뉴어크 일렉트로닉스(Newark Electronics)는 배터리를 사용하지 않아도 지속적인 방전으로 인해 노화될 수 있음을 확인했다. 또 제조 결함과 같은 여러 제어 불가능한 이유로 치명적인 결과를 초래할 수도 있다고 지적했다. 배터리는 과충전 혹은 부적절한 전압 사용으로 문제가 발생할 수 있으며, 이러한 문제는 잠재적으로 위험을 수반한다. 실제로 2019년 뉴저지와 2021년 캘리포니아에서는 애플 배터리의 부풀림 이슈 때문에 집단소송이 제기됐다. 물론, 애플 외에도 리튬이온 배터리를 사용하는 많은 다른 전자 제품 회사들이 같은 문제를 겪고 있다. 에너지 효율성과 가벼운 특성으로 오늘날 많은 자동차 제조업체에서 선택하고 있는 리튬이온 배터리는 여전히 화재의 위험이 있다. 미국 환경보호국(Environmental Protection Agency)에 따르면 2013년부터 2020년까지 미국의 64개 지자체 폐기물 시설에서 240건 이상의 리튬이온 배터리 화재가 발생했다. 특히, 2016년에는 삼성이 설계 결함으로 갤럭시 노트7 라인 생산을 영구 중단하는 등 미국 내 190만 대의 갤럭시 노트7을 리콜했다. 더 큰 문제는 리튬 배터리를 처분하는 방법에 여전히 제한이 있다는 점이다. 이러한 배터리는 화재 위험이 있어 운송 과정에서부터 실제 폐기물 처리 장소에 도착해서도 문제를 일으킬 수 있다. 미국 환경보호국은 리튬이온 배터리 단자를 테이프로 감싸고 플라스틱 봉지에 보관하는 것을 권장하고 있다. 슬래시기어는 "리튬을 재활용하는 새로운 방법이 발견되었지만, 가정용 배터리 제품을 적절히 처분하는 것은 많은 노력이 필요하다”며 “모든 사람이 인증된 전자 제품 재활용업자에 가는 시간과 여력이 있지는 않다"고 지적했다. 또한, 비싼 생산 비용도 걸림돌이다. 미국환경보호국에 따르면, 2021년 기준 리튬 배터리의 가격은 1kWh 당 약 132달러(약 17만5810원) 정도로 다른 배터리에 비해 높다. 리튬이온 배터리는 여전히 많은 종류의 전자 제품에서 최고의 선택이지만, 미래에는 보다 더 효율적인 배터리 구성 요소가 필요하다. 이에 업계에서는 리튬 기반 배터리보다 빠르게 충전되는 알루미늄 이온 배터리와 같은 새로운 배터리 기술을 개발하고 있다.
-
- IT/바이오
-
효율성 높은 리튬 배터리, 문제점은 무엇?
-
-
홍채 스캔 '월드코인', 영국·독일 등 조사 직면...문제점은 무엇?
- 오픈AI 샘 알트먼 최고경영자(CEO)가 지난 7월 24일 출시한 홍채 스캔 암호화폐 프로젝트 '월드코인'이 개인 정보 보호 문제로 영국 , 독일, 프랑스 등 세계 각국 규제 기관의 조사에 직면했다. 월드코인은 알트먼이 독일 출신 알렉스 블라니아와 2019년 공동 창립한 블록체인 프로젝트다. 범용인공지능 시대에 인간의 일자리가 줄어들면 보편적 기본소득(UBI)을 보장해야 한다는 비전을 가지고 시작했다. 홍채 인식을 통해 인간임을 증명하면 디지털 신분증명인 월드ID가 발급되고, 매주 월드코인 1개가 지급되는 구조다. 영국과 프랑스 독일 등 선진국 규제 기관은 지난 7월 월드코인이 출시 직후 데이터 수집에서 홍채 스캔을 통해 사용자에게 암호화폐를 지급하는 방식에 주목해 월드코인을 조사하겠다고 발표했다. 홍채 스캔 '월드코인' 프로젝트란? 월드코인 프로젝트의 핵심 서비스는 실제 인간만이 가질 수 있는 계정인 '월드 ID'다. 신원을 확인하고 월드 ID를 발급받기 위해 고객은 볼링공 크기의 은색 공인 '오브(orb)'를 사용해 직접 홍채 스캔을 신청해야 한다. 오브의 홍채 스캔을 통해 실제 사람임을 확인하면 월드 ID가 생성된다. 일부 국가에서는 망막 스캔을 제공하면 새로운 '신원 및 금융 네트워크'를 구축하기 위한 계획의 일환으로 월드코인에서 만든 자체 암호화폐 WLD를 무료로 제공하기도 한다. 이 프로젝트는 시범 테스트에서 이미 2백만 명의 사용자를 확보했으며, 지난 7월 말 출시와 함께 20개국 35개 도시에서 홍채 스캔을 위해 오브 운영을 확대하고 있다. 월드코인 측은 인간과 매우 유사한 언어를 구사하는 챗GPT(ChatGPT)와 같은 생성형 AI 챗봇의 시대에는 월드 ID가 필요할 것이라고 주장했다. 알트먼은 월드코인이 생성형 AI로 인해 경제가 어떻게 재편될 것인지에 대한 해답을 제시할 수 있을 것이라고 말했다. 그는 월드코인 출시 직후 트위터 통해 "(월드코인 프로젝트의) 목표는 인간성 증명(proof of personhood, PoP)을 통해 글로벌 금융 및 신분증명 네트워크를 만드는 것"이라고 밝혔다. 또 "이런 일은 AI 시대에 특히 중요하며, 월드코인이 미래 AI 시스템의 접근권한, 혜택, 거버넌스에 대한 논의에 기여하길 바란다"고 말했다. '망막 스캔'으로 개인정보 노출...사기 악용 우려 그러나 월드코인의 홍채 스캔 방식은 개인 정보 유출과 사기 위험에 노출될 수 있다는 비판을 받고 있다. 영국, 독일, 프랑스 등 여러 국가의 데이터 규제 기관은 월드코인의 개인 데이터 수집 방식을 조사하겠다고 나섰다. 이더리움 공동 창시자 비탈릭 부테린도 월드코인의 인증 시스템이 개인 정보 보호와 보안 등 여러 문제점을 가지고 있다고 지적했다. 월드코인 측은 홍채 스캔 과정에서 사용자의 개인 정보를 저장하지 않으며, 오브는 단지 실제 사람임을 확인하는 역할만 한다고 주장했다. 또한 월드 ID는 온라인에서 실제 사람과 AI 봇을 구분하는 데 도움이 될 것이라고 말했다. 그럼에도 영국의 데이터 규제 당국인 정보위원회는 월드코인 출시 다음날 개인 데이터 수집이 의심스럽다면서 홍채 스캔 프로젝트를 조사하겠다고 밝혔다. 프랑스와 독일, 심지어 아프리카 국가인 케냐도 월드코인의 홍채 스캔에 대해 우려를 제기했다. 암호화폐 이더리움 공동 창시자 비탈릭 부테린(Vitalik Buterin) 또한 지난 7월 25일 새로 출시된 월드코인의 인증 시스템인 '인간성 증명(PoP)' 방식에 대해 우려를 표명했다. 부테린은 "월드코인의 인증 시스템은 접근성, 개인 정보 보호, 보안 및 중앙 집중화와 관련된 문제에 직면해 있다"고 지적했다. 부테린에 따르면 맞춤형 생체 인식 장치는 모든 개인이 접근할 수 없으며 동일한 장치의 적절한 구성을 보장하지 않는다. 그는 다른 사람이 월드 아이디 소지자의 홍채를 스캔하면 사기 가능성이 높아진다고 우려를 표명했다. 또 전화 해킹 우려가 있고 사이버 공격의 가능성을 제기했다. 반면 월드코인은 인증 과정에서 사용자의 개인 정보를 저장하지 않으며, 홍채 스캔은 단지 사용자가 봇이 아닌 사람인지 확인해 사기 행위를 방지하는 것이 목적이라고 주장했다. 프랑스 국가정보자유위원회(BayLDA)에서도 월드코인의 홍채 스캔 데이터 수집 방식에 대해 "의심스럽다"고 밝혔다. 독일 바이에른 주 데이터 보호 감독청(BayLDA) 또한 홍채를 스캔하는 인간 신원 확인 프로젝트인 월드코인에 대해 조사 중이다. 로이터에 따르면 독일의 데이터 감시 기관은 민감한 생체 인식 데이터의 대규모 처리에 대한 우려 때문에 작년 말부터 샘 알트먼의 월드코인 프로젝트를 조사해 왔다. 마이클 윌 BayLDA 청장은 "망막 스캔 데이터 기술이 금융 정보 전송에 사용하기에 적합하지 않다"며 "월드코인 사용자들에게 잠재적인 위험을 초래할 수 있다"고 지적했다. 선진국 외에 암호화폐 거래가 활발한 아프리카 국가인 케냐도 지난 2일 공공 안전에 대한 잠재적 위험을 이유로 월드코인의 현지 활동을 중단시켰다. 키투레 킨디키 케냐 내무부 장관은 성명에서 "관련 보안, 금융 서비스 및 데이터 보호 기관이 앞서 언급한 활동의 진위 여부와 적법성을 확인하기 위해 문의와 조사를 시작했다"고 말했다. 케냐 통신청과 데이터 보호 위원회는 월드코인의 운영에 대한 예비 검토 결과, 금전적 보상에 대한 대가로 소비자 동의를 얻는 것이 유인 행위에 해당한다고 밝혔다. 킨디키 장관은 정부가 월드코인의 활동에 대해 우려하고 있으며, 정부 기관은 월드코인이 수집한 데이터를 어떻게 사용할 것인지 조사할 것이라고 말했다. 그는 자세한 설명 없이 월드코인의 활동에 관여하는 모든 사람에 대해 조치가 취해질 것이라고 덧붙였다. 현지 언론은 2일 현재 35만 명 이상의 케냐인이 약 7000 케냐 실링(49달러) 상당의 무료 암호화폐 토큰을 받고 월드코인에 가입했다고 보도했다. 케이맨 제도에 본사를 둔 월드코인 재단은 케냐 및 기타 국가에서 시행 중인 개인정보 보호 조치에 대한 이해를 높이기 위해 당국과 협력할 것이라고 밝혔다. 월드코인 재단은 성명에서 "월드코인은 글로벌 디지털 경제에 포용적이고, 개인정보를 보호하며, 탈중앙화된 진입로를 제공하기 위해 최선을 다하고 있으며, 현지 규제 당국 및 기타 이해관계자와 긴밀히 협력하면서 케냐에서 서비스를 재개하기를 고대하고 있다"고 말했다. 월드코인의 암호화폐 WLD 코인 가격은? 한편, 월드코인의 WLD 토큰은 바이낸스와 OKX 등 주요 거래소에 상장된 지난 7월 24일 출시 직후 20% 이상 급등해 최고가인 3.30달러를 기록했다. 이후 각국의 규제 기관의 반대 등에 부딪혀 가격이 하락한 WLD 코인은 16일 현재 약 1.5 달러에 거래되고 있다. 국내 가상자산 거래소 중에는 빗썸과 코빗이 월드코인의 WLD 토큰을 상장해 거래를 지원하고 있다. 빗썸에선 한때 7000원까지 이상 급등하기도 했으나, 16일 현재는 글로벌 평균 수준인 2200원을 유지하고 있다. 개인 정보가 고스란히 노출될 수 있는 인간 신원 확인을 위한 홍채 스캔과 코인 무료 제공을 결합한 월드코인이 향후 어떻게 발전할지 귀추가 주목되고 있다.
-
- 경제
-
홍채 스캔 '월드코인', 영국·독일 등 조사 직면...문제점은 무엇?