검색
-
-
비예나 보물의 비밀? 두 유물의 '운석철' 가능성
- 황금 보물들로 가득 찬 이베리아 청동기 시대 유적에서 두 개의 녹슨 물체가 지구 저편에서 온 운석에서 나온 금속일 가능성이 제기됐다. 과학 전문매체 사이언스얼럿(Science Alert)은 23일 스페인 국립고고학박물관의 연구팀의 검사 결과, 무딘 팔찌와 금으로 장식된 녹슨 중공 반구(가운데가 비어 있는 반구)는 지상에서 채굴된 금속이 아니라 하늘에서 떨어진 운석 철로 만들어졌음을 밝혔다고 보도했다. 이번 발견은 스페인 국립고고학박물관 전 보존부장 살바도르 로비라-요렌스 박사가 이끄는 연구팀에 의해 이루어졌다. 이 발견은 3000년 이상 전 이베리아에서 금속 가공 기술과 기법이 우리가 이전에 생각했던 것보다 훨씬 더 발전했음을 시사한다. 66개의 대부분 금으로 된 물체로 구성된 '비예나의 보물'은 1963년 12월 고고학자 호세 마리아 솔러가 비예나에서 5km(약 3.1 마일) 떨어진 현재 스페인 알리칸테에서 발견했다. 이는 이베리아 반도와 유럽 전체 청동기 시대 금세공술의 가장 중요한 사례 중 하나로 여겨져 왔다. '비예나의 보물'(스페인어: 테소로 데 비예나·Tesoro de Villena)은 유럽 청동기 시대 최고의 금 매장지 중 하나다. 금, 은, 철, 호박으로 구성되어 있다. 총 무게는 약 10킬로그램에 달하며 그중 9개는 23.5캐럿 금으로 만들어졌다. 이는 이베리아 반도에서 가장 중요한 선사시대 금 유물이자 그리스 미케네의 왕실 무덤에 이어 유럽에서 두 번째로 발견된 것이다. 금 조각에는 그릇 11개, 병 3개, 팔찌 28개가 포함되어 있다. 그러나 홀(scepter)이나 칼자루(sword hilt)의 일부로 추정되는 작고 속이 빈 반구와 하나의 토르크 유형(torc-like)의 팔찌, 이 두 물체 때문에 비예나의 보물 연대를 정확히 판단하기 어려웠다. 두 물체 모두 고고학자들이 '철분질'이라고 묘사하는 외관을 가지고 있다. 다시 말하면 금을 제외하고 표면이 일부 부식된 속이 빈 이 반구와 거의 대부분이 부식된 팔찌는 철로 만들어진 것처럼 보인다. 이베리아 반도에서 용해된 지상 철이 청동을 대체하기 시작한 철기 시대는 기원전 850년경에 시작됐다. 문제는 금제품의 연대가 기원전 1500~1200년 사이로 추정된다는 것이다. 따라서 철분처럼 보이는 유물이 빌레나의 보물과 어떤 연관성이 있는지 파악하는 것은 난제였다. 하지만 지구 지각의 철광석은 유연한 철의 유일한 공급원이 아니다. 전 세계적으로 철기 시대 이전 시대에 운석 철로 만든 철 유물들이 다수 발견됐다. 가장 유명한 것은 파라오 투탕카멘의 운석 철 단검이지만, 청동기 시대 무기 중 다른 것들도 이 재료로 만들어졌고 매우 높게 평가됐다. 운석 철, 니켈 함량 높아 운석 철인지 아닌지 철의 출처를 구분하는 방법이 있다. 운석 철은 지상에서 채굴된 철보다 니켈 함량이 훨씬 높다. 연구팀은 빌레나 시립 고고학 박물관(컬렉션 소장)의 허가를 받아 두 유물을 신중하게 테스트하고 니켈 함량을 확인했다. 연구팀은 두 유물 모두에서 조심스럽게 시료를 채취해 질량 분광기를 사용하여 성분을 분석했다. 유물의 원소 조성을 변화시키는 높은 부식에도 불구하고 조사 결과는 반구와 팔찌 모두 운석 철로 만들어졌다는 것을 강하게 시사했다. 이것은 두 유물이 나머지 컬렉션과 어떻게 연관되는지에 대한 딜레마를 간단하게 해결했다. 즉, 비예나의 유물은 기원전 1400~1200년경으로 거슬러 올라가는 같은 시대에 만들어졌다. 연구팀은 논문에서 "현재 연구 결과는 비예나의 보물에서 처음으로 운석 철로 만든 것으로 추정되는 반구와 팔찌이며, 이는 지상 철의 대량 생산 시작 이전인 청동기 시대 후반 연대와 일치한다"고 썼다. 두 물체가 운석으로 제작된 것으로 추정되지만, 심한 부식으로 인해 결론을 내리기에는 결과가 명확하지 않다. 그럼에도 불구하고, 연구팀은 최신의 비침습 기술을 사용해 더 정밀한 데이터를 획득함으로써 운석 제작을 확증할 수 있을 것이라고 밝혔다. 이번 연구 결과는 스페인 학술지 '선사시대 논고(Trabajos de Prehistoria)'에 게재됐다. 비침습 기술이란? 한편, 비침습 기술(Non-invasive technology)은 대상의 물리적 구조나 기능을 검사하거나 분석할 때 대상에 물리적인 손상이나 침입을 가하지 않는 기술을 말한다. 이 기술은 인체, 동물, 환경, 문화재 등 다양한 분야에서 사용될 수 있으며, 대상을 직접적으로 접촉하거나 변형시키지 않고 정보를 얻을 수 있어 매우 유용하다. 의료 분야에서 비침습 기술은 MRI(자기공명영상), CT(컴퓨터 단층 촬영), 초음파 검사와 같이 몸 안의 구조나 기능을 마치 투명한 눈으로 살펴볼 수 있는 다양한 진단 도구로 사용된다. 이를 통해 환자에게 통증이나 불편함을 최소화하면서 정확한 진단 정보를 제공할 수 있다. 고고학이나 문화재 보존 분야에서는 X-레이 또는 라이다(LiDAR) 기술 같은 비침습적 방법을 사용해 유물이나 유적의 구조를 파악하고, 보존 상태를 평가하며, 숨겨진 정보를 밝혀낼 수 있다. 이 방법들은 대상을 손상시키지 않으면서 아직 알려지지 않은 귀중한 정보를 얻을 수 있다. 환경 분야에서는 위성 이미지나 드론을 이용한 원격 감지 기술로 지표면의 변화를 관찰하고 분석하는 등의 비침습적 관찰이 이루어 진다. 이를 통해 환경 변화를 모니터링하고, 생태계를 보호하는 데 필요한 데이터를 수집할 수 있다. 이처럼 비침습 기술은 대상에 물리적인 손상을 주지 않으면서도 필요한 정보를 얻을 수 있어, 다양한 분야에서 그 가치가 인정되고 있다. 기원전 1400~1200년경 한반도도 청동기 시대 아울러 기원전 1400~1200년경 한반도는 청동기 시대에 속한다. 이 시기는 청동 도구와 무기의 발달, 농업 발달, 계급 분화 등의 특징을 가진다. 청동은 구리와 주석을 합금하여 만든 금속으로, 돌 도구보다 훨씬 단단하고 날카로워 농업이 발달하는 등 생산력과 군사력 향상에 기여했다. 청동 도끼와 삽 등의 발달로 농경 기술이 발전하고, 벼농사가 확산됐다. 또한 생산력 향상으로 인해 사회 계층이 분화되고, 지배 계층과 피지배 계층이 형성됐다. 청동기 시대 후기에는 대형 무덤이 나타나기 시작하며, 이는 사회 계층 분화와 권력 집중을 보여주는 증거로 해석된다. 한반도 청동기 시대의 주요 유적으로는 돌산리 유적과 서삼릉 유적, 송산리 유적이 있다. 돌산리 유적은 청동기 시대 초기 유적이며, 청동 도구와 무기, 토기 등이 출토됐다. 반면, 서삼릉 유적은 청동기 시대 중기 유적이며, 대형 청동기 유물들이 나왔다. 송산리 유적은 청동기 시대 후기 유적이며, 왕족 무덤과 함께 다양한 청동기 유물들이 출토됐다.
-
- 생활경제
-
비예나 보물의 비밀? 두 유물의 '운석철' 가능성
-
-
우주 먼지, 지구 생명 탄생에 결정적인 역할
- 우주 먼지가 생명에 필요한 성분을 지구에 전달해 생명의 탄생에 결정적인 역할을 했을 수 있다는 연구 결과가 발표됐다. 지구에는 생명의 기원에 중요한 인, 황 등의 원소가 부족하지만, 우주 먼지는 이러한 원소가 풍부하다. 과거에는 운석이나 소행성 충돌 등을 통해 이러한 원소가 전달되었다는 주장이 있었지만, 이는 지속적인 공급을 설명하지 못했다. 영국 과학 기술 전문지 뉴 사이언티스트(NewScientist)는 19일(현지시간) 케임브리지 대학의 크레이그 월튼(Craig Walton) 연구팀은 빙하가 우주 먼지를 가두고 생명체에 필요한 요소가 풍부하게 축적될 수 있는 환경을 제공해 지구의 생명 탄생에 중요한 역할을 했다는 연구 결과를 발표했다고 보도했다. 연구팀은 빙하가 우주 먼지를 가두는 데 탁월한 능력을 지녔다고 밝혔다. 빙하는 방대한 양의 먼지를 흡수하고 보관할 수 있으며, 육지 먼지로 인한 오염이 거의 없기 때문에 생명체 발생에 필요한 순수한 환경을 제공한다고 주장했다. 또한 우주 먼지가 빙하에 떨어지면 햇빛을 흡수하여 열을 발생시키는데 이 열에 의해 빙하가 녹아 작은 구멍이 생기고, 이 구멍은 마치 먼지를 가두는 함처럼 작동한다. 시간이 지남에 따라 쌓인 먼지는 빙하 가장자리에 있는 연못으로 흘러 들어간다. 이 연못은 우주 먼지가 제공하는 다양한 영양소와 빙하의 깨끗한 환경이 결합된 생명체 발생에 최적의 장소가 됐다는 설명이다. 월튼의 연구팀은 이번 연구에 대해 "우리의 연구는 빙하가 단순히 얼음덩어리 이상의 의미를 가진다는 것을 보여준다. 빙하는 생명체 발생에 필요한 요소를 모으고 보호하는 역할을 했을 가능성이 높다"라며 "이 연구는 생명체가 어떻게 발생했는지에 대한 새로운 가능성을 제시하며, 앞으로 더 많은 연구를 통해 빙하가 지구 생명의 기원에 어떤 역할을 했는지 밝혀낼 수 있을 것이다"라고 덧붙였다. 이 연구는 초기 지구 환경과 생명의 기원에 대한 새로운 가능성을 제시하지만, 아직 검증해야 할 부분도 많다. 과학자들은 초기 지구에 빙하가 얼마나 흔했는지에 대한 논쟁도 있다. 전문가들은 이 연구가 초기 지구 환경과 생명의 기원에 대한 새로운 가능성을 제시한다고 평가 하지만 아직 검증해야 할 부분도 많으며, 초기 지구에 빙하가 얼마나 흔했는지에 대한 논쟁도 있다. 이 연구는 앞으로 더 많은 연구를 통해 검증될 필요가 있다. 이 연구의 중요성은 우주 먼지가 지구 생명의 기원에 중요한 역할을 했을 수 있다는 새로운 가능성을 제시했다는 점이다. 이는 생명체가 어떻게 발생했는지에 대한 우리의 이해를 바꿀 수 있는 중요한 발견이다. 앞으로 더 많은 연구를 통해 이 연구의 결과가 검증될 필요가 있다.
-
- 산업
-
우주 먼지, 지구 생명 탄생에 결정적인 역할
-
-
캐나다 화산호수, 생명의 기원 새로운 가능성 제시
- 캐나다 브리티시 컬럼비아 대학교의 연구팀이 화산암반 위에 위치한 '라스트 찬스 호수(Last Chance Lake)'에서 주목할 만한 발견을 했다. 이 호수에서는 지구상의 자연 수역 중에서 가장 높은 농도의 인산염이 검출되었으며, 이는 지구상의 생명 기원과 연관될 수 있다는 가능성을 제시했다. 18일(현지시간) 인도 매체 인디아 타임즈에 따르면 연구팀은 2021년부터 2022년까지의 연구에서 캐나다 브리티시 컬럼비아 주에 있는 이 호수의 물과 퇴적물 샘플 분석을 통해, 인산염과 인을 축적하는 데 유리한 탄산염 광물인 돌로마이트가 풍부하다는 사실이 밝혀졌다. 인산염은 생명체 분자의 핵심 구성 요소로, 리보핵산(RNA), 디옥시리보핵산(DNA), 아데노신 삼인산(ATP) 등에 필수적인 역할을 한다. 돌로마이트(Dolomite)는 탄산칼슘(CaCO₃)과 탄산마그네슘(MgCO₃)으로 이루어진 퇴적암으로, 약 40억 년 전의 원시 지구 환경에서 흔히 발견되던 광물이다. 이러한 발견은 라스트 찬스 호수가 초기 지구 환경과 유사한 특성을 가지고 있음을 시사하며, 생명의 기원에 대한 연구에 중요한 단서를 제공할 수 있다. 18일 CNN은 연구의 공동 저자인 워싱턴 대학교 지구과학 데이비드 캐틀링 교수는 화산암 위에 위치한 얕고 짠 수역인 라스트 찬스 호수는 고대 지구의 탄산염이 풍부한 호수가 '생명의 요람'이었을 수 있다는 단서를 담고 있다고 전했다. 캐틀링은 "우리는 사람들이 자연에서 생명의 구성 요소를 합성하는 데 사용하는 특정 조건을 찾을 수 있었다"고 말했다. 그는 "우리는 생명의 기원에 대한 매우 유망한 장소를 가지고 있다고 생각한다"고 덧붙였다. 캐틀링과 그의 동료들은 문헌 검토를 통해 1990년대 미발표 석사 논문에서 비정상적으로 높은 수준의 인산염이 기록된 것을 발견한 후 이 호수를 연구 대상으로 처음 알게 되었다. 하지만 연구자들은 직접 눈으로 확인해야만 했다. 라스트 찬스 호수는 수심이 1피트(30.48cm)를 넘지 않다. 해발 1000미터(3280피트)가 넘는 브리티시 컬럼비아의 화산 고원에 위치한 이 호수에는 지구상의 자연 수역 중 가장 높은 수준의 농축 인산염이 함유되어 있다. 세바스찬 하스(Sebastian Haas) 박사가 이끄는 브리티시 컬럼비아 대학교 연구팀은 이 연구 결과를 바탕으로 지난 1월 9일 '화산 호수가 생명의 기원을 위한 가능한 환경을 제공했을 수 있다'라는 제목의 논문을 네이쳐(Nature) 저널에 게재했다. 이 발견은 생명체가 어떻게 시작되었는지에 대한 과학적 이해를 발전시킬 수 있다. 라스트 찬스 호수와 같은 독특한 환경을 연구함으로써 과학자들은 고대 역사의 수수께끼를 해결해 나갈 수 있다. 그러나 라스트 찬스 호수가 생명의 기원과 실제로 연관되어 있는지, 그리고 그 환경이 40억 년 전의 지구 환경과 얼마나 유사했는지를 확인하기 위해서는 추가적인 연구가 필요하다. 이 연구는 생명의 기원에 대해 새로운 시각을 제공하며, 앞으로 화산 호수와 같은 독특한 환경에 대한 연구가 활발히 이루어질 것으로 전망된다. 과학자들은 라스트 찬스 호수와 생명의 기원 사이의 실제 연관성을 밝히기 위해 지속적으로 연구를 수행할 계획이다.
-
- 산업
-
캐나다 화산호수, 생명의 기원 새로운 가능성 제시
-
-
토성의 위성 미마스, '지하 바다' 존재⋯생명체 존재 가능
- 토성의 소형 위성 미마스(Mimas)에서 지하 바다가 발견되었다는 사실은 과학계에 큰 파장을 일으켰다. 영화 '스타워즈'에 등장하는 '데스 스타(Death Star)'와 흡사한 외관을 가진 미마스에서 생명체 존재 가능성을 암시하는 바다가 발견되었다는 것은 과학적 흥미뿐만 아니라 대중의 상상력을 사로잡았다. 포브스 재팬은 미마스 내부에 바다가 존재할 수 있다는 발견이 지질학적으로 활발한 천체에만 해당될 것이라는 기존의 생각을 뒤집는, 실로 놀라운 발견이라고 지난 14일 보도했다. 프랑스 파리 천문대의 발레리 레이니 박사팀은 지난 2월 8일 과학 저널 '네이처(Nature)'에 게재된 연구에서 토성 탐사선 카시니(Cassini)의 관측 자료를 분석한 결과, 미마스가 수많은 충돌 분화구로 덮인 얼음 표면 아래에 비교적 최근에 형성되어 여전히 진화 중인 바다가 존재할 가능성이 있다고 발표했다. 지름이 390km로 토성의 주요 위성 중 가장 작으며 가장 안쪽 궤도를 22시간 만에 공전하는 미마스는 표면이 분화구(crater, 운석 충돌 등으로 생기는 거대한 구덩이)로 덮여 있고 변화가 없다는 점에서 지질학적으로 비활성 상태로 여겨져 왔다. 하지만 2010년 카시니 탐사선이 관찰한 미마스의 '흔들림(libration)' 현상은 과학자들의 관심을 끌었다. 이는 미마스 내부에 액체 상태의 물이 존재할 가능성을 시사하는 중요한 증거였다. 미마스는 표면의 광범위한 부분을 차지하는 거대한 충돌 분화구 '허셜'로 인해 영화 '스타워즈'에 등장하는 우주 요새 '데스 스타(Death Star)'와 유사한 외관을 가지고 있다. 허셜은 1789년 미마스를 처음 확인한 천문학자 윌리엄 허셜의 이름을 딴 분화구를 말한다. 하지만 미마스에서는 지질 활동의 징후가 발견됐다. 특히 남극 지역의 크레이터가 다른 지역의 크레이터보다 작게 보이는 것은, 이 지역에서 최근에 융해 현상이나 새로운 표면 형성이 일어나고 있음을 간접적으로 나타내고 있다. 일반적으로 얼음이나 다른 고체 표면 아래 존재하는 바다는 액체 상태로 인한 내부 역학이 표면에 변형을 일으키며 드러나곤 한다. 연구팀은 그러나 미마스의 경우, 표면 변화가 거의 관찰되지 않아, 그 아래에 액체 상태의 바다가 존재할 가능성이 매우 낮은 후보로 여겨졌다고 밝혔다. 카시니 탐사선의 관측 데이터를 활용한 이전 연구에서 미마스의 자전 운동과 궤도상의 흔들림 현상이 관찰됐으며, 이러한 현상을 설명하기 위해 내부에 길게 뻗은 암석 핵이 존재하거나, 심지어는 내부에 전체적으로 바다가 있을 수 있다는 가설이 제시됐다. 지질학적으로 활동하지 않는 것으로 여겨졌던 미마스 이번 연구를 요약한 논문에 따르면, 미마스의 바다는 약 20~30km 두께의 얼음층 아래에 위치하며, 형성 시기는 약 2500만 년 전보다 젊은 것으로 추정된다. 네이처에 따르면 미마스 내부에 전구적 규모의 액체 상태의 물로 이루어진 바다가 존재하는 것으로 확인됐다. 이 바다는 대략 1500만년에서 500만년 전 사이에 형성된 것으로 추정된다. 논문의 공동 저자이자 영국 런던 대학교 퀸 메리 대학의 물리화학 및 천문학 부문 명예 연구원인 닉 쿠퍼는 "이번 발견으로 미마스가 엔켈라두스나 유로파와 같이 내부 바다를 가진 위성 가운데 하나로 자리매김하게 됐다. 미마스의 바다가 특히 눈에 띄는 점은 그 젊은 나이다"라고 말했다. 미마스 내부의 바다는 토성과 미마스 간의 조류력 상호작용을 통해 탐지됐다. 연구 결과, 미마스 궤도의 불규칙성이 지하 바다에 의해 발생할 수 있는 현상이 아님을 밝혀냈다. 이 연구에는 미국 항공 우주국(NASA)의 토성 궤도 탐사선 카시니가 2004년부터 2017년까지 13년 동안 수집한 관측 데이터가 활용됐다. 미마스는 반경이 198km에 불과한 작은 천체이지만, 이번 발견이 큰 파장을 일으킬 수 있다고 포브스 재팬은 강조했다. 활발한 지질 활동의 징후가 없는 작은 위성이 숨겨진 바다를 가지고 있으며, 이로 인해 생명 유지에 필수적인 조건을 제공할 가능성이 있다는 것은, 과학자들이 태양계 어느 곳에서든 생명의 존재 가능성을 탐색할 수 있는 새로운 전망을 열어준다는 것이다. 바다 연대 젊어 생명체 없을 수도 영국의 일간지 가디언은 지난 7일 미마스의 바다 연대가 너무 젊어 생명체가 출현할 충분한 기회가 없었을 수 있다는 주장이 제기됐다고 보도했다. 가디언에 따르면 프랑스 파리 천문대의 천문학자 발레리 레이니는 미마스 내부에 따뜻한 암석과 접촉하는 물이 존재함으로써 생명체가 존재할 가능성을 완전히 배제할 수 없다고 말했다. 그러나 이 숨겨진 바다의 연대가 수천만 년에 불과하다면, 생명체가 출현할 기회가 부족했을 가능성도 있다. 레이니는 "바다의 나이가 생명체 출현에 충분히 오래되었는지 여부에 대해 아무도 확신할 수 없다"고 덧붙였다. 일반적으로 위성의 암석질 핵과 지하 바다 사이의 상호작용으로 인해 생명 유지에 필요한 화학 에너지가 생성될 수 있다고 여겨진다. 쿠퍼는 "최근에 발견된 액체 상태의 물 바다는 생명의 기원을 연구하는 학자들에게 미마스를 주요 조사 대상이 됐다"고 말했다. 미마스에서 바다가 발견되었다는 사실이 예상 밖일 수 있지만, 태양계 내 다른 행성의 위성에서 바다가 발견된 것은 이번이 처음이 아니다. 토성의 위성 엔켈라두스와 타이탄, 그리고 목성의 위성 유로파, 가니메데, 칼리스토에서 이미 행성 해양학자들이 지하 바다를 탐지해 왔다. 미마스에서의 이러한 바다 발견은 예상치 못한 장소에서 이루어졌으며, 이는 태양계 곳곳의 소형 얼음 위성에 대한 철저한 조사가 곧 시작될 것임을 시사한다.
-
- 산업
-
토성의 위성 미마스, '지하 바다' 존재⋯생명체 존재 가능
-
-
소행성 표면서 물 분자 첫 발견
- 과학자들이 지금은 폐기된 적외선 천문학 성층권 천문대(SOFIA)의 데이터를 활용해 소행성 표면에서 물 분자를 최초로 발견했다고 사이테크데일리가 14일(현지시간) 보도했다. 이 매체에 따르면 사우스웨스트 연구소(Southwest Research Institute, SwRI)의 연구원들은 미 항공우주국(NASA·나사) 과학자들과 독일 우주국 DLR의 공동 프로젝트인 SOFIA 데이터를 활용하여 소행성 표면에서 물 분자를 확인했다. 이는 태양계 형성과 생명체 지원 가능성에서 물의 분포와 물의 역할을 이해하는 데 중요한 진전을 이루었다는 평가를 받고 있다. SOFIA의 포캐스트(FORCAST) 장비는 이전에는 건조하다고 여겨졌던 소행성에서 물을 발견했다. 과학자들은 규산염이 풍부한 소행성 4개를 조사하여 그 중 2개에서 분자 물을 나타내는 중적외선 스펙트럼 시그니처를 분리하기 위해 FORCAST 장비를 사용했다. 해당 연구는 지난 2월 12일 행성과학저널(The Planetaey Science Journal)에 게재됐다. 소행성 물 분포의 중요성 이 발견에 관한 행성 과학 저널 논문의 수석 저자인 SwRI의 아니시아 아레돈도(Anicia Arredondo) 박사는 "소행성은 행성 형성 과정에서 남은 찌꺼기이기 때문에 태양 성운의 형성 위치에 따라 구성 성분이 달라진다"라고 말했다. 아레돈도 박사는 "특히 소행성의 물 분포는 물이 지구에 어떻게 전달되었는지를 밝힐 수 있기 때문에 특히 흥미롭다"고 부연했다. 무수 또는 건조한 규산염 소행성은 태양 가까이에서 형성되는 반면 얼음 물질은 더 멀리 떨어져서 합쳐진다. 소행성의 위치와 구성 성분을 이해하면 태양 성운의 물질이 어떻게 분포하고 형성 이후 어떻게 진화했는지 알 수 있다. 태양계의 물 분포는 다른 태양계의 물 분포에 대한 통찰력을 제공하며, 물은 지구상의 모든 생명체에 필요하기 때문에 태양계와 그 너머에서 잠재적 생명체를 찾을 수 있는 곳을 찾을 수 있게 해줄 것으로 예상된다. 아레돈도는 "소행성 아이리스(Iris)와 마살리아(Massalia)에서 분자 물로 추정되는 특징을 발견했다"고 말했다. 그는 "저희는 달 표면에서 햇빛을 받은 분자 물을 발견한 연구팀의 성공을 바탕으로 연구를 진행했다. 다른 천체에서도 이 스펙트럼 시그니처를 찾기 위해 SOFIA를 사용할 수 있다고 생각했다고 설명했다. 이전에는 달 햇빛이 비추는 표면에서만 분자 물이 발견되었으며, 소행성에서의 물 존재는 처음 확인된 사례다. SOFIA는 달 남반구에서 가장 큰 크레이터 중 하나에서 물 분자를 감지했다. 달과 소행성에 대한 이전 관측에서는 어떤 형태의 수소가 검출되었지만 물과 가까운 화학적 친척인 하이드 록실을 구별하지 못했다. 과학자들은 달 표면에 펼쳐진 1㎥(세제곱미터)의 토양에 화학적으로 결합된 12온스(340g)짜리 물 한 병에 해당하는 양의 물이 광물에 갇혀 있는 것을 발견했다. 아레돈도는 "스펙트럼 특징의 밴드 강도에 따르면 소행성의 풍부한 물은 태양이 비추는 달의 물과 일치한다"며 "마찬가지로 소행성에서도 물이 결합되어 있을 수 있다고 설명했다. 연구팀은 "태양계 물 분포는 다른 항성계 물 분포에도 영향을 미칠 가능성이 있다"고 밝혔다. 또한 "지구 생명체의 필수 요소인 물은 생명체 탐사 시 중요한 기준이 될 것"이라고 덧붙였다. 앞으로 연구팀은 소행성 물의 정확한 양과 분포를 파악하기 위해 추가 관측을 진행할 계획이다.
-
- 산업
-
소행성 표면서 물 분자 첫 발견
-
-
[퓨처 Eyes(23)] 콘크리트보다 강하고 환경친화적인 차세대 건축자재 '페록'
- 기존 콘크리트보다 5배 강하고 이산화탄소(CO₂)를 흡수하는 환경친화적인 건축 자재 페록이 개발됐다. 콘크리트가 건축 자재로 사용되기 시작한 시기는 고대 로마 시대로 거슬러 올라간다. 로마인들은 기원전 3세기경부터 콘크리트를 사용하기 시작했으며, 이를 활용해 수많은 건축물, 교량, 도로 등을 건설했다. 로마 콘크리트는 화산재와 석회석을 혼합한 것으로, 현대 콘크리트의 전신이라 할 수 있다. 그 당시에 건설된 많은 구조물들이 오늘날까지도 남아 있어 그 내구성을 입증하고 있다. 미국 애리조나 대학에서 개발된 '페록(Ferrock)'이라는 새로운 건축 자재가 과학 저널을 통해 최근 또 다시 주목받고 있다. '페록(Ferrock)'은 '철'과 '돌'이 결합된 용어다. 시멘트 대용품으로 사용되는 친환경 건축 자재인 페록은 주로 폐철강 분진과 유리 분쇄물에서 나온 실리카 등 재활용 재료로 생산된다. 철강 분진은 이산화탄소와 반응해 탄산철을 생성하고, 이것이 응고되면 페록이 된다. 미국 매체 쿨다운(TCD)에 따르면 페록은 기존 콘크리트보다 강하면서 환경친화적이라는 특징을 지니고 있어 건물이나 인프라 구조물 설계에 혁신을 가져올 수 있다는 평가를 받고 있다. 강철 분진과 실리카의 혼합물을 철암 및 물과 혼합하고 고농도의 이산화탄소에 노출시키면 페록 경화 과정이 진행된다. 페록의 강도는 일반 포틀랜드 시멘트로 만든 콘크리트의 5배에 달한다. 또한 기존 콘크리트에 비해 더 유연하다. 균열 없이 움직임과 압력을 견디는 페록은 콘크리트에 비해 지진에 의한 압축 하중을 더 많이 견딘다. 일반적으로 페록 강도는 34.5 Mpa(메가파스칼)에서 48 Mpa 사이이며 일부 페록 테스트에서는 69 Mpa에 도달했다. 갓 만들어진 페록은 빠르게 굳으며 최대 강도에 도달하는 데 약 1주일이 걸린다. 페록의 개발은 10여 년 전, 데이비드 스톤 박사 연구원이 시멘트 대체재 개발 대회에서 폐철강 분진을 사용해 우승하면서 시작됐다. 2013년 특허를 획득한 스톤 박사는 '아이언쉘(Iron Shell)' 회사를 설립해 페록 상용화에 나섰다. 스톤 박사는 "실험실에서의 우연한 발견에서 시작됐다"라고 말했다. 보다 지속 가능한 건축 산업 혁신은 짚을 포함한 모든 종류의 재료를 사용하는 전 세계 연구자들의 관심사다. 폐 철강도 바로 여기에 속한다. 건설업계 전문지 사이언스다이렉트(ScienceDirect)에 따르면 페록은 기존 콘크리트보다 압축 강도 13.5%, 인장 강도 20%, 휨 강도 18%가 강하다. 또한 주재료인 철강 분진과 유리 분말을 포함해 페록 제조 과정에 사용되는 재료의 95%는 재활용 재료로 이루어져 비용 효율이 높은 것으로 알려졌다. 아울러 경화 과정에서 특별한 화학 반응을 통해 대기 중 이산화탄소를 흡수해 오염을 줄이는 효과도 있다. 전 세계 시멘트 연간 생산량은 40억 톤이며, 제조 과정에서 지구 대기 오염의 8%를 차지한다고 로이터통신은 전했다. 현재 공개된 페록 사진은 벽돌 모양의 슬라브와 굳어서 벽을 형성하는 슬러리 형태를 보여준다. 보고서는 폐철강 확보 등 과제가 아직 남아있지만 소규모 프로젝트부터 적용 가능하다고 전했다. 페록 외에도 콘크리트보다 더 강한 신소재에 대한 연구는 다양한 분야에서 활발히 이루어지고 있다. 그래핀이나 탄소 나노튜브, 고성능 폴리머,금속 매트릭스 복합 재료 등의 신소재들은 건축, 항공, 자동차 등 여러 산업에서의 응용 가능성을 탐색하고 있다. 먼저 그래핀은 탄소 원자가 2차원 평면상에서 벌집 모양의 격자를 이루는 형태로, 강철보다 약 100배 강하면서도 매우 가벼운 물질이다. 그래핀은 높은 전도성, 유연성, 투명성을 가지며, 이러한 특성으로 인해 전자기기, 에너지 저장 장치, 심지어 건축재료에 이르기까지 광범위한 응용이 기대되고 있다. 탄소 나노튜브(Carbon Nanotubes, CNTs)는 그래핀을 원통형으로 말아 만든 나노스케일의 튜브 형태로, 뛰어난 인장 강도와 탄성 모듈러스를 가지고 있다. 이러한 속성으로 탄소 나노튜브는 항공우주, 군사, 스포츠 용품 등의 고성능 재료에 유용하게 활용될 수 있다. 고성능 폴리머 등 여러 고분자 재료들은 새로운 제조 기술과 결합해 콘크리트보다 훨씬 강하면서도 가벼운 신소재를 만드는 데 사용된다. 이들은 높은 내구성, 우수한 열 저항성 및 화학 저항성을 제공한다. 금속 매트릭스 복합재료(Metal Matrix Composites, MMCs)는 금속을 기반으로 해 다른 금속이나 비금속 재료를 강화재로 추가하여 제작된다. 이러한 복합재료는 원래 금속의 좋은 성질에 강화재의 특성을 더해, 더 높은 강도와 경도, 개선된 내구성을 제공한다. 그밖에 세라믹 매트릭스 복합재료(Ceramic Matrix Composites, CMCs)는 세라믹을 기반으로 하며, 강화재로 탄소 나노튜브나 그래핀 같은 나노물질을 사용할 수 있다. 이들은 높은 온도에서의 안정성, 낮은 밀도, 뛰어난 내마모성 등을 제공한다. 이러한 신소재들은 각각의 독특한 특성으로 인해 콘크리트와 같은 전통적인 건축 재료를 대체하거나, 그 성능을 크게 향상시킬 수 있는 잠재력을 가지고 있다. 연구와 개발이 계속됨에 따라, 페록과 그래핀 등 신소재들의 생산 비용이 절감되고, 더 넓은 적용 범위와 함께 실용화될 것으로 기대된다.
-
- 포커스온
-
[퓨처 Eyes(23)] 콘크리트보다 강하고 환경친화적인 차세대 건축자재 '페록'
-
-
미지의 RNA 조각 '오벨리스크', 인간 장과 입에서 발견
- 과학자들이 인간의 장과 입 안에 존재하는 박테리아를 감염시키는 새로운 유형의 RNA 조각인 '오벨리스크'를 발견했다고 과학 학술지 네이처(Nature)가 최근 보도했다. 논문의 공동 저자이자 캘리포니아 스탠퍼드 대학교의 생화학자인 이반 젤루데프((Ivan Zheludev)와 그의 연구팀은 새로 발견된 납작한 원으로 이루어진 납작한 원 모양의 RNA에 '오벨리스크'라는 이름을 붙였다. 저자들의 분석에 따르면 이 원은 막대 모양의 구조로 접혀 있다. 표준 생명체로 간주하기에는 너무 작은 이 유전 물질 조각은 세포가 읽을 수 있는 정보를 전달하는 가장 작은 요소 중 하나이며, 이들이 암호화하는 염기서열은 과학계에서 처음 밝혀진 것이라고 네이처는 전했다. 젤루데프와 그의 연구팀은 바이로이드(viroids, 바이러스와 비슷한 작은 RNA)의 특징적인 원형 구조를 이용해 인간 대변의 RNA 데이터베이스에서 유사한 요소를 검색했다. 그 결과, 연구팀은 오벨리스크를 발견했다. 이 연구는 지난 1월 21일 '바이오아카이브(bioRxiv)' 프리프린트 서버에 게시됐으며, 아직 동료 심사를 거치지 않았다. 바이오아카이브는 생물학 분야의 프리프린트 서버로 과학자들이 아직 동료 검토를 거치지 않은 연구 결과를 공유하고 논의할 수 있는 플랫폼이다. 채플힐 노스캐롤라이나 대학의 세포 및 발달 생물학자 마크 페이퍼는 이 연구에 참여하지는 않았지만 "이 연구를 통해 과학적 발견이 가져다주는 기쁨에 대한 감각을 다시금 되살렸다고 말했다. 그는 "세상은 새로운 것들로 가득하다. 그리고 일단 찾기 시작하면 찾을 수 있다"고 했다. 납작한 원은 이전에도 바이러스와 비슷하지만 훨씬 작은 RNA로 만들어진 구조물인 '바이로이드'의 형태로 관찰된 적이 있다. 바이로이드는 1970년대에 처음 발견되었는데, 그 중 일부는 식물에 질병을 일으키는 것으로 밝혀졌다. 곧이어 과학자들은 인간에게 감염을 일으킬 수 있는 유사한 요소를 발견했다. 지난 5년 동안 다양한 동물과 곰팡이에서 바이러스와 유사한 요소가 발견됐다는 연구 결과가 속속 보고되었으며, 작년 논문에서는 이러한 요소가 박테리아에도 존재할 수 있다는 첫 번째 힌트를 제공했다. 오벨리스크는 많은 바이로이드와 동일한 모양을 갖고 있지만 유전자 서열은 매우 다르다. 즉, 서로 별개이지만 관련된 그룹을 구성하고 있음을 의미한다. 후속 검색 결과 모든 대륙의 사람들로부터 채취한 대변 샘플에서 수많은 오벨리스크가 발견됐다. 연구팀은 대부분 북미 지역 출신인 472명의 개인으로부터 수집한 장내 미생물군 샘플 중 약 10%에서 오벨리스크에 대한 증거를 발견했다. 오벨리스크가 인간의 건강에 어떤 영향을 미치는지는 아직 알려져 있지 않다. 연구팀은 오벨리스크 계열을 발견한 일반적인 구강 박테리아 스트렙토코커스 상귀니스(Streptococcus sanguinis)에서 그 해답을 찾을 수 있을 것으로 기대하고 있다. 마르케즈-몰린스와 부코비치는 S. 상귀니스는 성장하기 쉽기 때문에 과학자들이 이 박테리아를 사용하여 오벨리스크의 복제 방식, 박테리아에 미치는 영향, 단백질의 기능에 대한 의문을 해결할 수 있을 것이라고 가정하고 있다. 이러한 실험을 통해 생명의 기원에 대한 진실을 밝혀낼 수도 있다고 네이처는 전했다. 부코비치는 일부 과학자들은 바이로이드와 그 친척들이 작고 단순하며 자기복제 능력이 있기 때문에 지구상의 모든 생명체의 선구자라고 추측하고 있다고 말했다. 과학자들은 오벨리스크를 처음 발견했지만, 오벨리스크는 처음부터 우리를 형성했을지도 모른다는 분석도 있다. 향후 연구에서는 오벨리스크의 기능과 인간 건강에 미치는 영향에 대한 보다 자세한 조사가 필요하다. 젤루데프 연구원은 "오벨리스크는 생명체의 기본적인 구성 요소에 대한 새로운 통찰력을 제공한다. 이는 생명의 기원과 진화에 대한 우리의 이해를 크게 바꿀 수 있는 흥미로운 발견이다"라고 말했다.
-
- IT/바이오
-
미지의 RNA 조각 '오벨리스크', 인간 장과 입에서 발견
-
-
JN.1 변종, 코로나19 판도 전환
- 2023년 후반 발견된 코로나19 변종 JN.1은 바이러스 진화에 중요한 변곡점을 맞이했다. 이 변종의 등장은 지속적인 글로벌 보건 노력의 중요성을 더욱 강조하고 있다. JN.1 변종은 2023년 8월 처음 발견된 이후 호주를 비롯한 전 세계적으로 급속히 확산됐다. 최근 1년 동안 대부분의 국가에서 관찰된 가장 큰 코로나19 확산의 주범으로 지목되고 있다. 과학기술 전문 매체 사이테크데일리(SciTechDaily)는 세계보건기구(WHO)가 2023년 12월 JN.1을 '관심 변이체'로 분류했고, 1월에는 장기적인 건강 결과를 초래할 우려가 있는 "훨씬 많은" 예방 가능한 질병을 유발하는 지속적인 세계적인 건강 위협이라고 강력하게 언급했다고 전했다. JN.1은 병원체로서 놀랍게도 새로운 버전의 사스-CoV-2(코로나를 일으키는 바이러스)이고 다른 순환 균주(오미크론 XBB)를 빠르게 대체하고 있다. 또한 코로나바이러스의 진화에 대해 언급하고 있기 때문에 중요하다. 일반적으로 사스-CoV-2 변이체는 이전에 있었던 것과 매우 비슷해 보이며, 한 번에 몇 개의 변이만 축적되어 바이러스가 부모보다 의미 있는 이점을 제공한다. 그러나, 2년 전 오미크론(B.1.1.529)이 발생했을 때와 같이, 때때로, 이전에 있었던 것과 현저하게 다른 특징들을 가진, 겉보기에는 변형들이 출현한다. 이것은 질병과 전염에 중대한 영향을 미친다. 지금까지, 특히 꾸준히 진화하는 오미크론 변종의 지속적인 성공을 고려할 때, 이러한 "단계 변화" 진화가 다시 일어날 것이라는 것은 확실하지 않았다. JN.1은 매우 독특하고 새로운 감염의 물결을 일으키기 때문에 많은 사람들이 WHO가 JN.1을 자체 그리스 문자에 대한 다음 우려의 변종으로 인정할지 궁금해하고 있다. 어쨌든 JN.1을 통해 우리는 팬데믹의 새로운 단계에 진입했다. JN.1의 기원은? JN.1(또는 BA.2.86.1.1) 이야기는 2023년 중반경 모 계통 BA.2.86의 출현으로 시작되며, 이는 2022년 오미크론 하위 변종 BA.2에서 유래했다. 몇 달 동안 해결되지 않은 채 지속될 수 있는 만성 감염은 이러한 단계적 변화 변이체의 출현에 한 역할을 할 가능성이 높다. 만성적으로 감염된 사람들에게서 바이러스는 조용히 테스트를 하고 결국 면역을 피하고 그 사람에게서 생존하는 데 도움이 되는 많은 돌연변이를 보유한다. BA.2.86의 경우 스파이크 단백질(SARS-CoV-2 표면에 있는 단백질이 우리 세포에 부착되도록 한다)의 돌연변이가 30개 이상 발생했다. 전 세계적으로 발생하는 엄청난 양의 감염은 바이러스의 대규모 진화를 예고하고 있다. 사스-CoV-2의 변이율은 매우 높기 때문에 JN.1 자체도 이미 변이가 빠르게 진행되고 있다. JN.1와 다른 변종의 차이점 BA.2.86과 현재 JN.1은 두 가지 측면에서 실험실 연구에서 독특하게 보이는 방식으로 행동하고 있다. 첫 번째는 바이러스가 면역을 어떻게 회피하는지에 관한 것이다. JN.1은 스파이크 단백질에서 30개 이상의 돌연변이를 물려받았다. 또한 항체가 바이러스에 결합하고 감염을 예방하는 능력(면역 체계의 보호 반응의 한 부분)을 더욱 감소시키는 새로운 돌연변이 L455S를 얻었다. 두 번째는 JN.1이 우리 세포에 들어가 복제하는 방식에 대한 변화를 포함한다는 것이다. 미국과 유럽의 최근 세간의 이목을 끄는 실험실 기반 연구에서는 분자 세부 사항을 자세히 설명하지 않고 BA.2.86이 델타와 같은 마이크로미크론 이전 변이체와 유사한 방식으로 폐에서 세포로 들어가는 것을 관찰했다. 그러나 이와는 대조적으로 호주의 커비 연구소가 다른 기술을 사용한 예비 연구에서는 오미크론 계통과 더 잘 일치하는 복제 특성을 발견했다. 이러한 다양한 세포 진입 결과를 해결하기 위한 추가 연구는 바이러스가 질병의 심각성과 전염에 영향을 미칠 수 있는 체내 복제를 선호할 수 있는 위치에 영향을 미치기 때문에 중요하다. 이런 연구 결과들은 JN.1 그리고 일반적으로 SARS-CoV-2가 우리의 면역체계를 돌아다닐 수 있을 뿐만 아니라, 세포를 감염시키고 효과적으로 전염시킬 수 있는 새로운 방법들을 발견하고 있다는 것을 보여준다. 우리는 이것이 사람들에게 어떻게 작용하는지, 그리고 그것이 임상 결과에 어떻게 영향을 미치는지에 대해 더 연구할 필요가 있다. JN.1의 면역 회피 기능과 결합된 BA.2.86의 단계적 변화 진화는 이 바이러스에 2023년에 직면한 XBB.1 기반 계통을 훨씬 뛰어넘는 글로벌 성장 이점을 제공했다. 이러한 특징에도 불구하고 우리의 적응 면역 체계가 여전히 BA.286과 JN.1을 효과적으로 인식하고 반응할 수 있다는 증거가 있다. 업데이트된 1가 백신, 테스트 및 치료법은 JN.1에 대해 여전히 효과적이다. '심각도'에는 두 가지 요소가 있다. 첫째는 더 '본질적으로' 심각한 경우(면역력이 없는 감염으로 인해 질병이 더욱 악화됨), 두번 째는 바이러스가 전염성이 더 강해 단순히 감염시키기 때문에 더 큰 질병과 사망을 초래하는 경우다. JN.1은 후자에 속한다. 다음은 어떤 바이러스가 퍼질까? 현재 JN.1 변종이 '차세대 일반 감기'로 진화하는 진화적 궤도에 있는지, 그 진화 과정이 얼마나 걸릴지는 불확하다. 과거 네 가지 역사적인 코로나바이러스의 진화 궤적을 분석함으로써 미래 방향을 어느 정도 예측할 수 있지만, 이는 단순히 하나의 가능성에 불과하다. 우리는 비상사태 이후 새로운 팬데믹 단계에 진입했다. 하지만 코로나 바이러스는 여전히 전 세계적으로 피해를 입히는 주요 전염병으로 남아 있다. 사회적 및 개인적 차원에서 새로운 감염 물결에 대한 위험성을 인지해야 한다. 개인 보호와 주변 사람들 보호를 위한 적극적인 조치가 필요하다. 새로운 위협에 대한 팬데믹 대비를 개선하고 현재의 위기에 대한 대응을 개선하기 위해서는 글로벌 감시를 지속하는 것이 중요하다. 또 저소득 및 중소득 국가는 우려할 만한 사각지대라는 것도 고려해야 할 상황이다. 코로나19는 지난 2019년 11월 중국 후베이성 우한시에서 처음으로 발생하여 보고된 새로운 유형의 변종 코로나바이러스인 SARS-CoV-2에 의해 발병한 급성 호흡기 전염병이다. 2019년 11월부터 중국에서 최초 보고되고 퍼지기 시작해 현재까지 전 세계에서 지속되고 있는 범유행전염병이자 사람과 동물 모두 감염되는 인수공통전염병이다. 또한 제1급 감염병 신종감염병 증후군의 법정 감염병이었다.
-
- IT/바이오
-
JN.1 변종, 코로나19 판도 전환
-
-
중국, 넥슨 '던전앤파이터' 등 외국산 게임 32종 인가
- 중국 당국이 2일(현지시간) 넥슨의 '던전앤파이터 모바일', 일본 닌텐도(任天堂)의 '별의 커비' 등 외국산 게임 32종에 대해 중국내 소비자들에 제공하는 것을 인가했다. 이날 로이터통신 등 외신들에 따르면 중국 국가신문출판서는 이날 외국산 게임 32종에 외자판호를 발급했다. 이중에는 넥슨의 '던전앤파이터 오리진(地下城与勇士: 起源)', 네오위즈의 '고양이와 스프(猫咪和汤)'를 비롯해 넷마블의 '킹오브파이터즈 올스타(拳皇全明星)' 등이 포함됐다. 중국은 심의를 거친 자국 게임사 게임에 내자 판호를, 해외 게임사 게임에는 외자 판호를 발급해 서비스를 허가하고 있다. 먼저 넥슨은 '지하성여용사: 기원'이라는 제목으로 판호를 받았다. 이는 넥슨이 지난 2017년 받은 '던전앤파이터 모바일' 판호와는 별개로, 플랫폼은 '모바일'로 기재된 점을 통해 볼 때 새롭게 판호를 발급받은 것으로 추정된다. 현재 넥슨은 "관련 사실을 확인 중"이라고 밝혔다. 이에 앞서 넥슨은 2020년 텐센트와 함께 '던전앤파이터 모바일'을 중국 시장에 출시하기로 하고 사전 예약까지 진행했으나 출시를 불과 하루 앞두고 일정을 무기한 연기했다. 당시 사전 예약에는 6000만명 이상이 몰린 것으로 전해졌다. 이후 '던전앤파이터 모바일'은 2022년 국내에 먼저 출시됐다. 네오위즈의 방치형 모바일게임 '고양이와 스프'도 중국 외자판호를 획득했다. 네오위즈는 지난해 5월 중국 킹소프트 그룹 산하 게임사 '킹소프트 시요'와 퍼블리싱 계약을 체결했다. 고양이와 스프는 네오위즈의 자회사 하이디어가 개발한 힐링 모바일 방치형 게임이다. 아기자기한 만화풍의 일러스트와 손쉬운 조작법으로 대중성과 게임성을 인정받았다. 넷마블의 '킹 오브 파이터즈 올스타'도 이번에 판호를 받은 것으로 전해졌다. 킹 오브 파이터즈 올스타는 유명 격투 게임 '킹오브파이터즈' IP를 기반으로 한 액션 RPG로 국내에서는 2019년 서비스를 시작했다. 역대 킹오브파이터즈 시리즈에 등장한 캐릭터들이 등장하는 점이 특징이다. 일본 닌텐도는 '태극의 달인'과 함께 '호시의 카비'도 함께 외자판호를 받아 중국 텐센트를 통해 사용자들에게 제공한다.
-
- IT/바이오
-
중국, 넥슨 '던전앤파이터' 등 외국산 게임 32종 인가
-
-
신비한 천체, 블랙홀일까 중성자별일까?
- 최근 천문학자들이 발견한 신비한 천체가 블랙홀인지 중성자별인지 논란이 되고 있다. 천문학자들은 최근 지구에서 약 4만 광년 떨어진 천체인 콜드웰 73(NGC 1851)에서 빠르게 회전하는 밀리초 펄서를 발견했다. 이 펄서는 태양 질량의 약 3.887배에 달하는 동반 천체를 가지고 있는데, 이는 태양 질량의 2배보다 큰 중성자별보다 무겁고, 태양 질량의 5배보다 작은 블랙홀보다 가볍다. 이러한 천체는 블랙홀 질량 간격에 위치하는 것으로 알려져 있으며, 태양 질량의 2~5배 사이의 질량을 가진 천체는 중성자별과 블랙홀 중 어느 것으로 분류될지 명확하지 않은 상태이다. 과학 전문 매체 유니버스투데이(universetoday)는 최근 남아프리카의 전파천문대 미어캣(MeerKAT, TRAPUM 프로젝트) 망원경을 사용하여 천문학자들이 'NGC 1851'이라는 구상성단 내에 위치한 PSR J0514-4002E라는 특별한 천체를 발견했다고 보도했다. 나사에 따르면 콜드웰 73(NGC 1851)은 1826년 스코틀랜드 천문학자 제임스 던롭(James Dunlop)이 발견했다. 콜드웰 73은 콜롬바 별자리 방향으로 지구에서 약 4만 광년 떨어진 곳에 위치해 있다. 이 조밀한 구상성단은 쌍안경을 통해 발견할 수 있으며, 흐릿한 빛 조각처럼 보인다. 소형 망원경은 성단의 조밀한 중심에서 멀리 떨어져 있는 성단의 개별 별 중 일부를 분해할 수 있다. 콜드웰 73은 겨울에는 북반구의 적도 위도에서, 여름에는 남반구에서 가장 쉽게 볼 수 있다. 과학 저널 '사이언스(Science)'에 실린 연구에 따르면, 이 천체는 편심 이진 밀리초 펄서로, 펄서와 동반 천체의 총 질량은 약 3.887 ± 0.004 태양 질량으로, 이는 블랙홀의 질량 격차에 위치해 있다. 이 연구의 주요 저자는 맥스 플랑크 전파천문학 연구소(Max Planck Institute for Radio Astronomy)의 이완 바르(Ewan Barr)이며, 논문 제목은 '중성자별과 블랙홀 사이의 질량 간격에 컴팩트한 물체가 있는 쌍성계의 펄서'다. 바르와 그의 팀은 초신성 폭발의 결과로 생성된 빠르게 회전하는 중성자별인 밀리초 펄서의 궤도를 도는 컴팩트한 물체를 발견했다. 펄서는 극에서 전자기 에너지 빔을 방출하며 회전한다. 지구와 펄서가 정확히 맞춰져 있을 때, 우리는 펄서의 깜박임을 관찰할 수 있으며, 이로 인해 펄서는 우주의 등대로 불리게 된다. 밀리초 펄서는 초당 1~10밀리초의 회전 주기를 가지며, 이는 분당 6만회에서 6000회 사이의 회전 속도를 의미한다. 이 연구에서, 천문학자들은 펄서의 정밀한 타이밍 분석을 통해 펄서와 블랙홀로 구성된 이진(쌍성계) 시스템 내에 있는 다른 물체를 감지했다. 그들은 아직 펄서와 블랙홀로 구성된 이진 시스템을 발견하지 못했지만, 그러한 발견을 간절히 원하고 있다. 이러한 이진 시스템은 블랙홀 연구에 새로운 접근법을 제공할 수 있으며, 아인슈타인의 일반상대성이론을 새롭게 검증할 기회를 마련할 수 있다. 이 경우 동반체는 작은 블랙홀이 아니라 무거운 중성자별다. 맨체스터 대학의 천체물리학 교수이자 공동 저자인 벤 스태퍼스(Ben Stappers)는 "펄서-블랙홀 시스템은 중력 이론을 시험하는 데 중요한 대상이 될 것이며, 무거운 중성자별은 고밀도 핵물리학에 대한 새로운 통찰을 제공할 것"이라고 말했다. 중성자별은 거대한 별이 초신성으로 붕괴한 후 남은 극도로 밀도가 높은 천체다. 다른 별의 물질과 상호작용하면서 질량을 증가시키고, 더욱 붕괴될 가능성이 있다. 그러나 천문학자들은 중성자별이 붕괴하여 어떤 상태로 변화하는지 확실히 알지 못한다. 그것이 블랙홀로 변할 수도 있는데, 이는 바로 블랙홀 질량 격차를 연구하는 데 중요한 포인트다. 과학자들은 중성자별이 붕괴하려면 태양 질량의 약 2.2배가 되어야 한다고 추정한다. 이것이 붕괴가 발생하는 데 필요한 임계값이다. 그러나 이론과 관찰 모두 이러한 붕괴된 중성자별이 태양보다 5배 더 큰 블랙홀을 생성할 수 있음을 보여준다. 이로 인해 블랙홀 질량 격차가 발생한다. 과학자들은 중성자별이 블랙홀로 붕괴하기 위한 임계 질량이 태양 질량의 약 2.2배라고 추정한다. 이는 붕괴가 발생하기 위해 필요한 임계값이다. 그러나 이론과 관측 모두에서, 이러한 붕괴 과정이 태양 질량보다 5배 더 큰 블랙홀을 형성할 수 있다는 것이 확인됐다. 이는 블랙홀 질량 격차의 원인이다. 그러나 질량 격차에 존재하는 물체의 정체에 대해서는 확실한 결론이 없다. 관측 결과에 따르면, 해당 구역에는 분명히 어떤 물체가 존재하지만, 그 본질을 명확히 식별하기 어렵다. 연구자들은 이 동반체가 두 중성자별의 합병 결과일 가능성을 제시했다. 만약 동반성이 거대한 중성자별일 경우, 이는 펄서일 가능성이 있다. 그러나 연구진은 어떠한 맥동도 감지하지 못했다. 이 쌍성계 내 물체의 기원은 해당 물체가 무엇인지에 대한 해석을 가능하게 한다. 천체물리학자들은 쌍성계의 진화에 대해 상세한 모델을 개발했으며, 이 모델들은 물질의 전달이 중요한 역할을 한다는 것을 보여준다. 저자들은 더 낮은 질량의 초기 동반 물체가 펄서에 질량을 전달했다고 여긴다. 이러한 유형의 상호 작용은 별이 촘촘하게 밀집되어 있는 쌍성계 물체가 있는 구상 성단에서 발생할 가능성이 더 높다. 펄서는 또한 매우 빠르게 회전하는데, 이는 동반성으로부터 질량을 얻었다는 또 다른 징후다. 연구팀은 펄서의 초기 동반 물체가 비교적 낮은 질량이었으며, 이 물체로부터 펄서가 질량을 획득했다고 추정한다. 이런 종류의 상호 작용은 별들이 밀집하여 있는 구상 성단 내의 쌍성계에서 발생할 확률이 높다. 펄서의 매우 빠른 회전 속도도, 동반성으로부터 질량을 얻었다는 추가적인 증거를 제공한다. MPIA의 공동 저자 아루니마 듀타(Arunima Dutta)는 "이 쌍성의 진정한 성질을 규명하는 것은 중성자별, 블랙홀, 블랙홀 질량 격차에 숨겨진 모든 가능성에 대한 우리의 이해를 한 단계 발전시킬 것"이라고 말했다.
-
- 생활경제
-
신비한 천체, 블랙홀일까 중성자별일까?
-
-
과학이 풀어야 할 가장 큰 미스터리 5가지
- 과학은 세상에 대한 우리의 이해를 크게 발전시켰지만, 여전히 많은 미스터리가 남아 있다. 특히 우주의 기원이나 지구의 생명의 기원등은 가설은 많지만 아직까지 명확한 답이 나오지 않고 있다. 스페인 매체 마스 인포르마시온(Mas informacion)은 과학자들이 여전히 답을 찾지 못하고 있는 다섯 가지 핵심 질문을 소개했다. 1. 우주의 구성 요소는 무엇인가? 우주의 신비는 우리가 기존에 인지하고 있던 것보다 훨씬 더 깊고 복잡하다. 우리가 알고 있는 우주를 구성하는 물질은 전체의 약 5%에 불과하며, 나머지 약 95%는 미지의 영역인 암흑물질과 암흑에너지로 채워져 있다. 암흑물질은 우주 전체의 약 27%를 차지할 것으로 추정되는, 관측되지 않는 물질이다. 이 물질은 중력의 영향을 미치며, 우주의 팽창을 억제하는 중요한 역할을 한다. 암흑에너지는 우주의 약 68%를 구성하는 것으로 추정되며, 관찰할 수 없는 에너지 형태이다. 암흑에너지는 우주의 팽창을 가속화하는 데 결정적인 역할을 하는 것으로 여겨진다. 우주의 심오한 미스터리를 풀기 위해, 암흑물질과 암흑에너지의 본질을 밝히는 것은 중대한 과학적 과제로 남아 있으나, 현재까지 이들의 정체에 대한 명확한 답은 아직 발견되지 않았다. 암흑물질의 잠재적 후보로는 중성미자, 윔프(WIMP), 액시온(axion) 등이 거론되고 있다. 중성미자는 전하를 갖지 않아 빛을 발하지 않으며 질량이 있어 관측이 어렵다. 윔프는 그 무거운 질량과 강력한 중력으로 인해 우주의 구조 형성에 기여할 것으로 추정된다. 액시온은 중력과 전자기력 사이의 힘을 가짐으로써 우주의 팽창에 영향을 미칠 수 있다고 여겨진다. 암흑에너지의 가능한 후보로는 진공 에너지, 쿼크-글루온 플라즈마, 반물질 등이 제시되고 있다. 진공 에너지는 우주 공간 자체에 내재된 기본적인 힘의 에너지 형태로, 쿼크-글루온 플라즈마는 초기 우주의 고온 상태에서 존재했던 물질이다. 반물질은 물질과 상호작용하여 완전히 소멸되는 특성을 지니며, 이 과정은 우주 팽창에 중요한 역할을 할 수 있다. 과학자들은 이러한 후보들을 관측하고 실험을 통해 그 본질을 밝히려는 지속적인 노력을 기울이고 있으나, 아직까지는 이들의 정확한 성질과 역할에 대한 확실한 결론을 내리지 못하고 있다. 2. 생명은 어떻게 생겨났나? 생명의 기원은 과학계가 오랜 시간 동안 탐구해온 가장 심오한 미스터리 중 하나다. 지구상의 생명체가 어떻게 탄생했는지에 대해서는 아직도 명확한 해답이 제시되지 않았다. 과학자들은 다양한 이론을 제시하고 있으나, 아직까지 어느 하나의 가설도 정설로 자리 잡지 못하고 있다. 가장 널리 인정받는 가설 중 하나는 '원시 수프(Primordial soup)' 이론이다. 이 이론은 초기 지구의 바다가 생명체 형성에 필수적인 단순 화학 물질로 가득 차 있었고, 대기 중의 가스와 번개 에너지의 결합으로 아미노산과 같은 단백질 구성 요소가 형성될 수 있었다고 주장한다. 1920년대에 알렉산더 오파린과 J.B.S. 할데인이 제안한 이 가설은 이후 실험을 통해 그 타당성이 일부 입증됐다. 대표적인 예로, 1953년 스탠리 밀러와 하럴드 우레이는 초기 지구의 환경을 모사한 실험을 통해 아미노산의 합성에 성공했다. 하지만 원시 수프 가설에는 여전히 미해결의 문제가 존재한다. 아미노산이 우연히 결합하여 복잡한 생명체로 발전할 수 있는지에 대한 의문, 그리고 원시 수프에서 생명체가 어떻게 진화했는지에 대한 설명이 미흡하다는 지적이 있다. 또한, 지구 생명체의 기원에 대한 다른 이론도 존재한다. 일부 과학자들은 우주에서 온 운석이나 혜성에 생명의 씨앗이 실려 지구에 도착했을 가능성을 제시하는 '판스페르미아(Panspermia)' 이론을 주장한다. 이처럼 생명의 기원에 대한 탐구는 여전히 과학계의 중요한 도전 과제로 남아 있다. 3. 무엇이 우리를 인간으로 만드는가? '무엇이 우리를 인간으로 정의하는가?'는 과학과 철학의 경계를 넘나드는 깊이 있는 질문이다. 인간은 다른 동물들과 구별되는 특유의 특성들을 가지고 있지만, 이러한 특성들이 무엇인지에 대한 명확한 합의는 아직 이루어지지 않았다. 언어 사용, 도구 활용, 추상적 사고, 자기 인식 능력 등은 전통적으로 인간만의 고유한 특성으로 여겨져 왔다. 하지만, 최근의 과학 연구는 다른 동물들 또한 이러한 특성들을 어느 정도 보유하고 있음을 증명하고 있다. 예를 들어, 코끼리는 복잡한 의사소통을 위해 고유의 언어 체계를 사용하며, 침팬지는 도구를 사용해 먹이를 얻거나 사냥하는 능력을 지니고 있다. 돌고래는 추상적인 사고를 할 수 있으며, 침팬지는 거울을 통해 자신을 인식하는 자기 인식 능력을 갖추고 있다고 알려져 있다. 이러한 발견들은 인간과 다른 동물들 사이의 경계가 생각보다 모호하다는 것을 시사하며, 인간을 정의하는 것이 단순한 문제가 아님을 보여준다. 인간의 독특한 특성들에 대한 이해는 계속해서 진화하고 있으며, 이는 우리가 인간성에 대해 더 깊이 고민하고 탐구해야 함을 의미한다. 한편으로는, 인간을 특별하게 만드는 요소가 단일 특성이 아니라, 여러 특성들의 복합적인 상호작용이라는 주장이 제기되고 있다. 이에 따르면, 인간은 언어를 통한 복잡한 의사소통 능력, 도구를 활용한 환경 변형 능력, 그리고 추상적 사고를 통해 새로운 것을 창조하는 능력을 결합하여 독특한 문화와 사회 구조를 형성하였다는 것이다. 이러한 능력들의 결합은 인간만의 특별한 문화적, 사회적 발전을 가능하게 했다. 인간의 언어 사용 능력은 복잡한 의사소통과 지식 전달을 가능하게 했으며, 도구 사용 능력은 환경을 변화시키고 적응하는 방법을 혁신적으로 발전시켰다. 또한, 추상적 사고는 예술, 과학, 철학 등 인간만의 다양한 창조적 영역을 탄생시켰다. 그럼에도 불구하고, 인간을 인간답게 만드는 근본적인 요소가 무엇인지에 대한 질문은 여전히 해결되지 않은 미스터리로 남아 있다. 4. 의식이란 무엇인가? 의식은 인간 존재의 가장 심오하고 미스테리한 특성 중 하나로 여겨진다. 우리는 아직 의식이 구체적으로 무엇이며, 그것이 어떻게 기능하는지 완전히 이해하지 못하고 있다. 의식은 뇌의 복잡한 기능과 밀접하게 연관되어 있을 것으로 추측되지만, 뇌의 어떤 부분이 의식을 조절하는지, 그리고 의식이 어떻게 형성되고 발현되는지에 대한 구체적인 메커니즘은 아직 명확하게 밝혀지지 않았다. 의식은 우리가 세계를 인식하고 경험하는 방식의 핵심을 이루며, 이에 대한 깊은 이해는 인간 본성과 지적, 정서적, 영적 측면에 대한 우리의 이해를 크게 향상시킬 것으로 기대된다. 의식에 대한 연구는 인간 뇌의 복잡성과 그 신비를 탐구하는 과정에서 핵심적인 역할을 하며, 이는 인지 과학, 신경학, 철학, 심리학 등 여러 학문 분야에 걸쳐 진행되고 있다. 5. 우리는 왜 꿈을 꾸는가? 인간이 꿈을 꾸는 이유는 심리학과 신경과학의 오랜 미스터리 중 하나이며, 이에 대한 확실한 답변은 아직 없다. 꿈에는 여러 가설이 존재하고 있다. 예를 들어, 무의식의 표현에 관한 가설은 꿈이 우리의 억압된 감정과 생각을 드러내는 역할을 한다고 주장한다. 기억 정리와 학습 지원에 관한 가설은 꿈이 기억을 재구성하고 새로운 정보를 처리하는 데 중요한 역할을 한다고 설명한다. 스트레스 해소 기능에 관한 가설은 꿈이 심리적 압박을 완화하고 정서적 균형을 찾는 데 도움을 준다고 주장한다. 그러나 이러한 가설들 중 어느 것도 아직 확실하게 입증되지 않았다. 꿈은 인간의 정신적, 감정적 삶에 중요한 영향을 미친다. 꿈은 우리의 무의식을 반영하고, 내면을 이해하는 데 도움을 줄 뿐만 아니라, 창의적 사고와 문제 해결 능력에도 기여할 수 있다. 그러나 꿈의 본질과 목적에 대한 신비는 여전히 베일에 싸여 있다. 이와 같은 질문들에 대한 답은 과학이 발전함에 따라 점차 밝혀질 것으로 기대되지만, 그 과정은 간단하지 않을 것이다. 과학자들은 새로운 기술과 방법론을 개발하고, 기존 가설들을 실험적으로 검증함으로써 꿈의 신비를 풀기 위해 지속적으로 노력하고 있다.
-
- 생활경제
-
과학이 풀어야 할 가장 큰 미스터리 5가지
-
-
일본, 달 착륙 도전...'핀포인트 착륙' 성공할까?
- 일본의 달 탐사선 '슬림(SLIM, 달 탐사 스마트 랜더)'이 최초의 달 착륙을 불과 8시간 앞두고 있다. 19일 일본 매체 니케이 보도에 따르면, 일본 우주항공연구개발기구(JAXA)의 소형 탐사선 '슬림'은 20일 오전 0시 무렵 달에 착륙 강하를 시작할 예정이다. 이 탐사선은 목표 지점에 대한 오차범위를 100미터 이내로 줄이는 정확한 '핀포인트 착륙'을 목표로 하고 있다. 슬림은 2023년 9월 7일 일본의 대형 로켓 'H2A'를 통해 다네가시마 우주센터에서 발사되었으며, 이후 약 38만km 떨어진 달로의 여정을 시작했다.이후 작년 10월 지구 궤도를 벗어나 달로 향하기 시작했고, 작년 12월 25일 달 궤도에 진입했다. 이번 착륙 시도가 성공한다면 일본 달 탐사선으로는 첫 착륙으로, 일본의 달 탐사 역량 강화에 크게 기여할 것으로 기대된다. 이 로켓은 600km의 계획된 고도에 근접하고 있으며, 1월 19일 오후 10시 40분에는 약 15km까지 낮춰 최종 준비 단계에 들어간다. 달 착륙은 20일 오전 0시 20분로 예정되어 있다. 20일 오전 0시 현재 슬림은 시속 약 6400km로 제트기보다 몇 배 빠른 속도로 항행할 예정이다. 엔진의 역분사로 속도를 줄여 20분 후 착륙 목표 지점인 약 800km 떨어진 곳으로 항행한다. 일본 지역으로 비유하면 히로시마현 상공에서 감속을 시작해 도쿄돔 지붕에 딱 떨어지는 정확도가 요구된다. 착륙 마지막 단계의 이 과정은 매우 정밀하며, JAXA 기술진은 이를 '마의 20분'이라고 부른다. 이 시간 동안 슬림은 자동으로 항행하여 목표 지점에 도달하게 된다. 고정밀 착륙을 위해서는 지상에서 판단하는 것만으로는 제어를 따라잡을 수 없기 때문이다. 일본이 2007년 발사한 달 궤도 위성 '카구야'가 제공한 달 표면의 고정밀 지도가 슬림 착륙에 도움이 되는 것으로 알려졌다. 슬림은 지도와 카메라로 촬영한 달 표면 이미지를 대조해 자신의 세부 위치를 파악하고 자세와 속도를 조정한다. 목표 지점 바로 위에서는 기체 자세를 수직으로 가깝게 하고, 도중에 장애물인 암석 등이 있으면 수평으로 움직여 회피할 수 있다. 착륙 직전, JAXA는 세계적으로 드문 두 대의 소형 로봇 '레브1'과 '레브2'(통칭 SORA-Q=소라큐)를 발사할 예정이다. 스프링이 장착된 '레브1'은 중앙대, 도쿄농공대와 공동 개발한 약 2kg 무게의 로봇으로, 달 표면에 착륙한 후 반동을 이용해 튀어 오르며 이동한다. '레브2'는 다카라토미와 공동 개발한 야구공 크기의 로봇으로, 중앙에 카메라를 장착하고 바퀴가 달린 외피로 주행한다. 이 로봇들은 슬림과 달 표면의 영상을 촬영하여 데이터 중계 역할을 하는 '레브1'을 통해 지상으로 전송한다. 이들 로봇의 기술은 향후 달 지하 탐사나 경사진 지형 탐사에 유용하게 활용될 수 있다. 레브1에서 쌓은 기술을 활용하면 향후 달 지하에 있는 동굴로 방출해 뛰어다니며 탐사할 수 있다. 레브2의 기술은 가파른 경사가 있는 달 분화구를 오르내리는 등 일반 탐사 차량이 진입하기 어려운 곳을 탐사하는 데 도움이 될 수 있다. 두 로봇이 이번에 계획대로 움직일 수 있을지 주목된다. 슬림, 달 지면에 비스듬히 착륙 슬림의 착륙 방식은 독특하다. 전통적인 수직 착륙 방식이 아닌, 스스로 쓰러지면서 착륙하는 방법을 채택하고 있다. 이 방식은 험준한 절벽이나 경사면에서도 안전한 착륙을 가능하게 한다. 착륙 지점은 '시오리'라 불리는 분화구 근처로, 여기서 탐사선은 적외선 카메라를 사용해 달의 맨틀 성분을 관측하며 지구와의 차이점을 연구할 계획이다. 달이 탄생한 기원과 달과 지구와의 관계에 대한 데이터를 확보하는 것이 목표다. 이번 임무가 성공한다면 일본은 달 탐사 경쟁에 중요한 이정표를 세우게 된다. 과거 냉전 시대에 미국과 소련이 주도했던 달 탐사는 이제 전 세계적인 경쟁으로 확대되고 있다. 미국은 아폴로 프로그램을 통해 여러 차례 유인 달 착륙을 성공적으로 수행했다. 최초의 달 탐사 성공 국가인 미국은 무인 탐사선을 여러 차례 달에 착륙시켰다. 러시아는 작년 8월 달 탐사선을 쏘아올렸으나 착륙에 실패했다. 러시아는 1976년 달 탐사선인 루나 24 이후 47년 동안 어떤 우주선도 달 궤도에 재진입하지 못했다. 현재 달 탐사 분야를 주도하는 중국은 2013년 미국과 소련에 이어 세 번째로 달 착륙에 성공한 국가로, 지금까지 3회의 연속 착륙 성공을 기록했다. 중국은 창어 프로그램을 통해 무인 탐사선을 달에 착륙시켰으며, 유인 달 착륙을 계획하고 있다. 인도는 무인 탐사선 '찬드라얀' 프로그램을 통해 달 탐사를 시도하하고 있다. 작년 8월 달 탐사선 찬드라얀 3호가 달 남극에 무사히 착륙했다. 중국에 대항하기 위해 미국은 현재 아폴로 계획 이후 유인 달 착륙을 목표로 하는 '아르테미스 계획'을 세웠고, 일본도 참여한다. 미국과 중국은 달에서 채굴한 물과 광물 등 자원을 활용해 거주 가능한 달 기지 건설을 구상하고 있다. 한편, JAXA는 20일 새벽 슬림의 달 착륙 결과를 판단해 발표할 예정이다. 성공하면 약 1~2주 후 카메라와 로봇으로 촬영한 달의 이미지를 공개한다. 핀포인트 착륙의 성패를 알 수 있는 것은 약 한 달 후가 될 전망이다.
-
- 산업
-
일본, 달 착륙 도전...'핀포인트 착륙' 성공할까?
-
-
[신년사] 이창용 한국은행 총재, "물가 안정 위해 완화적 통화정책 유지"
- 이창용 한국은행 총재는 3일 "물가 안정을 위해 완화적 통화정책을 유지하겠다"고 밝혔다. 은행연합회(회장 조병용) 등 6개 금융업권별 협회는 3일 오후 2시 소공동 롯데호텔 크리스탈 볼룸에서 '2024년 범금융신년인사회'를 개최했다. 이날 신년인사회에는 금융사 대표들과 정부 관계자, 국회의원, 언론인, 금융 관련 기관 대표 등 약 500명이 참석해 활발한 논의와 교류의 장을 마련했다. 이 총재는 이날 신년사를 통해 "지난해는 주요국 중앙은행의 가파른 금리 인상, 미 실리콘밸리은행 사태, 이스라엘-하마스 전쟁 등 긴장의 연속이었다"며 "그럼에도 우리 경제가 이러한 어려움을 잘 이겨 내온 것은, 국민들께서 고통을 분담해주시고, 금융인 여러분도 함께 노력해주셨기 때문"이라고 감사를 표했다. 이어 "올해도 대외 여건은 녹록지 않을 것으로 예상된다"며 "지정학적 리스크, 주요국의 선거 등 국제 정세의 불확실성이 높은 가운데, 세계 경제 성장세가 약화될 것으로 전망된다"고 진단했다. 다만 "올해는 주요국의 경기 둔화가 점쳐지고 있는 상황에서, 우리 경제는 완만하게나마 나아질 것으로 보여 고무적"이라고 평가했다. 이 총재는 "지난해에는 대부분의 중앙은행이 고물가에 대응하여 한 방향으로 금리를 인상하는 상황이었지만, 올해는 국가별로 정책이 차별화될 것으로 전망된다"고 말했다. 이어 "우리도 국내 여건에 더 큰 비중을 둘 여지가 커지면서 물가와 경기, 금융안정 상황에 따라 금리 향방에 대한 여러 계층의 다양한 의견이 표출되고 있다"며 "우리는 다르다는 생각보다는 국제적으로 검증된 방식에 근거하여, 한국은행은 균형을 유지하면서도 정교한 정책조합을 통해 라스트 마일(last mile)에서 인플레이션과의 싸움을 잘 마무리하도록 하겠다"고 강조했다. 또한 "긴축 기조가 지속되는 과정에서 촉발될 수 있는 금융 불안 가능성에도 철저히 대비해야 한다"며 "부동산 프로젝트 파이낸싱(PF)의 경우, 질서있는 정리 과정에서 한국은행도 정부 및 금융기관과의 협력을 통해 금융안정을 달성하는 데에 힘을 보태겠다"고 밝혔다. 이 총재는 "2024년 청룡의 해를 맞아 새해에 품은 기대와 희망대로, 우리 금융산업과 경제가 더 높이 날아오를 수 있기를 기원한다"며 "아울러 금융인 여러분과 여러분의 가정에도 건강과 행운이 늘 함께하기를 바란다"고 말했다.
-
- 경제
-
[신년사] 이창용 한국은행 총재, "물가 안정 위해 완화적 통화정책 유지"
-
-
태양계 행성, 45억 년 간 태양 주위 안정적 공전
- 태양계 행성들이 태양 주위를 도는 궤도의 횟수는 각 행성의 공전 주기와 밀접하게 연관되어 있으며, 이들 궤도는 태양계가 형성된 초기부터 현재까지 크게 변하지 않았다는 연구 결과가 나왔다. 지구에서는 체감하기 어렵지만, 우리는 지금 초당 30km, 시속 약 10만7800km의 놀라운 속도로 태양 주위를 공전하고 있다. 더욱이, 지구와 유사한 속도로 태양을 도는 다른 7개의 행성이 있으며, 이 8개 행성 모두 수십억 년 동안 태양 주위를 끊임없이 돌고 있다는 사실은 떠올리기가 쉽지 않다. 그러나 미국 우주 전문지 스페이스 닷컴(SPACE.COM)은 최근 태양 주위를 공전하는 각 행성의 궤도는 그들이 생성된 이후로 현재까지 큰 변화 없이 유지되고 있다고 보도했다. 태양계 형성과 행성의 궤도 태양계의 기원은 약 46억 년 전으로 거슬러 올라간다. 당시 거대한 별의 폭발로 남겨진 먼지 구름, 즉 성운에서 태양계가 형성되기 시작했다. 이 성운, 천문학자들이 '태양계 성운'이라 부르는 곳에서 태양이 탄생했고, 이후 약 45억 9000만 년 전에는 목성, 토성, 천왕성, 해왕성과 같은 거대 가스 행성들이 형성됐다. 행성협회(The Planetary Society)에 따르면, 이 거대 가스 행성들이 생겨난 뒤 약 45억 년 전에는 수성, 금성, 지구, 화성과 같이 더 작고 암석으로 이루어진 행성들이 형성됐다. 흥미롭게도, 이 행성들이 처음 형성되었을 때의 궤도는 현재와는 다른 형태였다. 특히 거대 행성들의 초기 궤도는 오늘날과 상이했다. 최초의 행성들이 형성된 후 약 1억 년 동안, '역학적 불안정'으로 인해 거대 천체들 간의 중력적 상호작용이 이루어졌고, 이것이 외태양계 행성들의 형성에 중요한 역할을 했다. 프랑스 보르도 천체물리학 연구소의 천문학자이자 행성 전문가인 션 레이먼드 교수는 태양계의 형성에 대해, 초기의 역학적 불안정성에서 벗어나 새로 형성된 원시 행성들이 점차 자신의 궤도를 찾아가며 태양계의 전체적인 구조를 완성했다고 말했다. 그 결과, 행성들은 안정적인 궤도에 자리 잡게 되었고, 이후로는 큰 변화 없이 일관된 궤도를 유지해왔다고 설명했다. 레이먼드 교수는 또한, "태양계의 수명 중 약 98~99% 동안 행성의 궤도가 매우 안정적이었다"고 강조했다. 그는 이러한 안정성 덕분에 현재의 행성 궤도 역학을 활용하여 태양 주위를 도는 행성의 공전 횟수를 매우 정확하게 계산할 수 있다고 덧붙였다. 각 행성의 궤도 횟수 차이 이유 각 행성이 태양 주위를 도는 데 걸리는 시간, 즉 공전 주기를 고려하면, 행성마다 태양을 공전한 총 횟수는 상당히 차이가 난다. 예를 들어, 지구는 태양 주위를 공전하는 데 약 1년이 걸리므로, 지구가 약 45억 년 동안 존재했다면 대략 45억 번 정도 태양 주위를 돌았다고 계산할 수 있다. 그러나 다른 행성들의 경우 이 공전주기는 매우 다르다. 예를 들어, 태양에 가장 가까운 행성인 수성은 태양 주위를 한 바퀴 도는 데 단 88일(지구 시간으로 1년의 약 0.24년)밖에 걸리지 않는다. 따라서 수성은 지난 45억 년 동안 약 187억 번 태양 주위를 돌았다고 할 수 있다. 반면에 태양에서 가장 멀리 떨어진 행성인 해왕성은 태양 주위를 한 바퀴 도는 데 약 60만190일(또는 164.7년)이 소요된다. 이는 해왕성이 지난 45억 9000만 년 동안 태양 주위를 약 2790만 번 돌았다는 것을 의미한다. 이는 수성이 해왕성에 비해 태양 주위를 약 670배 더 많이 공전했다고 할 수 있다. 태양계 행성들의 공전 주기가 얼마나 다양한지는 그들이 태양 주위를 돈 횟수를 비교함으로써 명확히 드러난다. 태양계의 여덟 행성 모두 약 46억 년의 비슷한 나이를 가지고 있지만, 그들의 공전 주기는 수성의 88일에서부터 해왕성의 6만759일에 이르기까지 매우 다양하다. 태양계 여덟 행성의 나이는 약 46억 년으로 비슷하지만, 그 공전 주기는 수성의 88일부터 가장 바깥 행성인 해왕성의 60,759일로 아주 다양하다. 따라서 그 궤도 횟수도 수성 187억 회, 금성 73억 회, 화성 24억 회, 목성 3억 8700만 회, 토성 1억 5600만 회, 천왕성 5500만 회, 해왕성 3800만 회 등이다. 결과적으로, 이러한 공전 주기의 차이로 인해 각 행성의 궤도 완성 횟수는 수성이 약 187억 회, 금성이 73억 회, 화성이 24억 회, 목성이 3억 8700만 회, 토성이 1억 5600만 회, 천왕성이 5500만 회, 그리고 해왕성이 3800만 회 등으로 크게 다르다. 이러한 숫자들은 엄청나게 보일 수 있지만, 대부분의 행성은 남은 수명 동안 이 횟수의 약 2배에 달하는 궤도를 돌 것으로 예상된다. 약 45억 년 후, 태양은 팽창하여 적색 거성으로 변하면서 지구 궤도까지 도달할 것이며, 이 과정에서 수성, 금성, 지구를 삼키게 될 것이다. 다른 행성들은 태양에 의해 직접적으로 불타지 않을 수도 있지만, 그들의 궤도는 상당한 변화를 겪을 가능성이 높다. 태양계 행성들은 태양 주위를 맹렬히 공전하고 있다. 그 궤도 횟수는 행성의 공전 주기와 밀접한 관련이 있으며, 태양계 형성 초기부터 크게 변하지 않았다. 대부분의 행성은 남은 수명 동안 그 2배에 달하는 궤도 횟수를 기록할 것으로 예측된다. 이렇듯 태양계 행성들은 태양 주위를 격렬하게 공전하고 있으며, 이 궤도 횟수는 각 행성의 공전 주기와 밀접한 관련이 있다. 태양계 형성 초기부터 큰 변화 없이 유지된 이 궤도들은, 대부분의 행성에게 그들의 남은 수명 동안 이전의 2배에 달하는 궤도 횟수를 안겨줄 것으로 예측된다.
-
- IT/바이오
-
태양계 행성, 45억 년 간 태양 주위 안정적 공전
-
-
[퓨처 Eyes(15)] 20m 미만 소형 입자 가속기, 의료·반도체 혁신 예고
- 미국 텍사스대학교(UT) 오스틴 캠퍼스 연구원들이 전자 에너지가 높고 공간도 적게 차지하는 소형 입자 가속기를 개발했다. '입자 가속기'는 우주를 구성하는 기본 입자들의 속성과 상호작용을 연구하는 데 필수적인 장치다. 현대 물리학의 중심에 서 있는 이 기술은 반도체 응용 분야, 의료 영상 및 치료, 재료, 에너지 및 의학 연구에 큰 잠재력을 가지고 있다는 평가다. 특히 기존 가속기는 수 킬로미터에 달하는 넓은 공간을 차지해 가격이 비싸고 소수의 국립연구소와 대학에서만 사용할 수 있었다. 미국 과학 기술 매체 사이테크데일리에 따르면, UT 연구팀이 개발한 소형 입자 가속기는 길이 20m 미만으로, 기존 가속기보다 훨씬 콤팩트하다. 또한, 100억 전자볼트(10 GeV)의 에너지를 가진 전자빔을 생성할 수 있어, 기존 가속기와 동일한 수준의 성능을 갖는다. 현재 미국 내에서 이와 같은 높은 전자 에너지 수준에 도달할 수 있는 가속기는 단 두 대에 불과하며, 둘 다 길이가 약 3km에 달한다. 이 연구의 공동 저자인 비요른 마누엘 헤겔리히(Bjorn "Manuel" Hegelich) UT 물리학 부교수는 "우리는 이제 이러한 에너지 수준에 매우 가까운 거리, 약 10cm 내에서 전자 빔에 도달할 수 있다"고 말했다. 이번 연구는 입자 가속기 기술의 발전에 중요한 진전을 의미하며, 향후 다양한 과학적, 의료적 응용에 사용될 수 있다. 헤겔리히 교수는 저널 '극한에서의 물질과 방사선(Matter and Radiation at Extremes)'에서 "우리의 가속기는 우주 장치의 방사선 내성 테스트, 새로운 반도체 칩의 3D 내부 구조 이미지화, 심지어 혁신적인 암 치료법과 고급 의료 영상 기술 개발에 활용될 수 있다"고 말했다. 또한, 이 가속기는 X선 자유 전자 레이저 구동에도 사용될 수 있다. 이 레이저는 원자나 분자 수준에서 일어나는 프로세스를 슬로우 모션으로 촬영하는 데 이용 가능하다. 가속기 기술의 혁신 '소형 입자 가속기' 입자 가속기는 원자와 같은 작은 입자들을 매우 높은 속도로 가속시켜, 이들을 서로 충돌시키거나 특정 표적에 충돌시킴으로써 그 속성을 탐구한다. 이러한 과정을 통해 과학자들은 입자들과 이를 구성하는 힘에 대해 깊이 있게 연구할 수 있다. 입자 가속기는 주로 하전 입자의 속도를 증가시키는 데 사용된다. 양성자, 원자핵, 전자와 같은 양전하나 음전하를 지닌 입자들이 이에 해당한다. 이 입자들은 때때로 빛의 속도에 근접한 속도로 가속된다. 입자가 표적 물질이나 다른 입자와 충돌할 때, 다양한 현상이 발생한다. 충돌로 인해 에너지가 방출되고, 핵 반응이 일어나며, 입자가 산란되고 새로운 입자가 생성된다. 예를 들어, 중성자와 같은 다른 입자들이 이러한 충돌에서 생겨날 수 있다. 이 과정을 통해 과학자들은 원자, 원자핵, 핵자를 결합하는 힘과 '하이그스 보손(Higgs boson)'과 같은 특별한 입자들의 성질을 연구할 수 있다. 하이그스 보손, 우주 기본 입자의 질량 부여하는 '신의 입자' '하이그스 보손'은 기본 입자 물리학의 중요한 개념 중 하나로, 입자들이 질량을 갖게 되는 메커니즘을 설명하는 데 핵심적인 역할을 한다. 이 입자는 1964년 물리학자 피터 하이그스와 다른 몇몇 이론 물리학자들에 의해 처음으로 제안됐다. 2012년 유럽입자물리연구소(CERN)의 대형 강입자 충돌기(LHC)에서 처음 발견됐다. 하이그스 보손은 매우 무거운 입자로, 질량은 약 125GeV이다. 이는 약 125억 전자볼트와 같다. 하이그스 보손은 또한 매우 불안정한 입자로, 평균 수명은 약 1.56x10¯²²초로 추정된다. 이는 하이그스 보손이 생성된 직후 거의 즉시 다른 입자들로 붕괴한다는 것을 의미한다. 하이그스 보손의 발견은 물리학 연구에 새로운 동력을 불어넣었다. 이로 인해 피터 하이그스와 프랑수아 앵글레르는 2013년 노벨 물리학상을 수상했다. 이 발견은 우주의 근본적인 성질에 대한 이해를 크게 향상시켰으며, 여전히 많은 연구가 진행 중이다. 입자 가속기 활용 분야 입자 가속기는 우주의 기원과 구조, 물질의 기본 구성 요소, 자연법칙 등을 연구하는 데 사용된다. 입자 가속기를 이용하여 새로운 입자를 발견하거나, 기존 입자의 성질을 연구할 수 있다. 또한 입자 가속기는 생물학, 의학, 재료과학, 나노기술 등 다양한 분야의 응용과학 연구에 활용된다. 입자 가속기를 이용하여 새로운 약물이나 치료법을 개발하거나, 새로운 재료나 소재를 개발할 수 있다. 예를 들어, 암 치료를 위한 정밀 방사선 요법이나 새로운 재료의 연구에 활용될 수 있다. 종양을 제거하거나 염증을 치료하는 방사선 치료를 수행할 수 있다. 입자 가속기를 사용하여 의료용 동위원소를 생산할 수도 있다. 의료용 동위원소는 암 진단, 치료, 방사선 치료 등 다양한 의학 분야에서 사용된다. 입자 가속기는 반도체 제조, 금속 재료 연구, 환경 오염 측정 등 산업 분야에도 다양한 용도로 활용되고 있다. 입자 가속기를 이용하여 반도체의 미세 회로를 제조할 수 있다. 또 식품이나 의약품을 살균하거나, 디스플레이 등을 제조할 수 있다. 아울러 새로운 물리학 이론을 탐구할 수 있다. 표준 모델 이외의 이론, 예를 들어 초대칭성, 여분의 차원, 양자 중력 이론 등을 실험적으로 탐구하는 것이 다음 세대 가속기의 중요한 목표 중 하나가 될 것이다. 또한 대규모 입자 가속기 프로젝트는 국제적 협력을 필요로 한다. 이러한 협력은 물리학뿐만 아니라 정치적, 경제적, 교육적 측면에서도 광범위한 영향을 미칠 것으로 보인다. 웨이크필드 레이저 가속기 웨이크필드 레이저 가속기는 1979년에 처음으로 개념이 제시된 이후 괄목할 만한 발전을 거듭해왔다. 이 기술은 강력한 레이저를 헬륨 가스에 충돌시켜 플라즈마 상태로 가열하고, 이 과정에서 고에너지 전자 빔이 가스의 전자를 밀어내며 파동을 생성한다. 지난 수십 년간 여러 연구 그룹이 이 기술을 발전시켜 더욱 강력한 버전을 개발했다. 헤겔리히 교수와 그의 연구팀은 나노기술을 이용해 주요 발전을 이루었다. 부가적인 레이저가 가스 셀 내의 금속판과 충돌하면, 금속 나노입자들이 흘러나와 파동에서 전자로 에너지 전달을 증가시키는 역할을 한다. 이 과정은 보트가 호수를 가로질러 나아가며 남기는 항적과 유사하며, 전자는 서퍼가 파도를 타는 것처럼 이 플라즈마 파동을 타고 이동한다. 이러한 혁신적인 접근 방식은 웨이크필드 레이저 가속기 기술의 효율성과 성능을 높이는 데 크게 기여하고 있다. 앞으로도 이 분야의 연구와 개발에 중요한 역할을 할 것으로 예상된다. 헤겔리히 교수는 웨이크필드 가속기의 원리를 비유를 통해 설명했다. 그는 "웨이크 서핑을 하려면 큰 파도에 들어가기 어렵기 때문에 서퍼들은 제트 스키에 끌려들어간다"고 비유했다. 이어서 "우리 가속기에서는 제트 스키와 유사한 역할을 하는 것이 적절한 시간과 위치에서 전자를 방출하는 나노입자이다. 이를 통해 파도 위에 더 많은 전자를 끌어들여 가속하는 것이 우리의 '비밀 소스'"라고 부연했다. 이 실험을 위해 연구팀은 세계에서 가장 강력한 펄스 레이저 중 하나인 '텍사스 페타와트 레이저(Texas Petawatt Laser)'를 사용했다. 이 레이저는 UT에 설치되어 있으며, 매시간 한 번씩 초강력 빛 펄스를 발사한다. 단일 페타와트 레이저 펄스의 전력은 미국 전력의 약 1000배에 달하지만, 지속 시간은 150펨토초에 불과하다. 이는 번개 방전의 10억분의 1도 안 되는 짧은 시간이다. 웨이크필드 레이저 가속기는 강력한 레이저를 헬륨 가스에 충돌시켜 플라즈마 상태로 가열하고, 이 과정에서 고에너지 전자 빔이 가스의 전자를 밀어내며 파동을 생성한다. 전자는 이 플라즈마 파동을 타고 이동하면서 에너지를 얻게 된다. 헤겔리히 교수와 그의 연구팀은 나노기술을 이용해 주요 발전을 이루었다. 부가적인 레이저가 가스 셀 내의 금속판과 충돌하면, 금속 나노입자들이 흘러나와 파동에서 전자로 에너지 전달을 증가시키는 역할을 한다. 소형 입자 가속기 연구의 의미와 전망 UT 연구팀의 이번 연구는 소형 입자 가속기 기술의 발전에 중요한 진전을 이루었다는 점에서 의미가 있다. 소형 입자 가속기는 기존 가속기의 단점인 비용과 공간 제약을 극복할 수 있어 다양한 분야에서 활용될 가능성이 높다. 연구팀은 향후 현재 개발중인 소형 입자 가속기를 테이블 위에 올려 놓고 초당 수천 번 반복적으로 발사할 수 있는 레이저로 시스템을 구동하여 기존 가속기보다 훨씬 더 콤팩트하고 훨씬 더 넓은 환경에서 사용할 수 있는 가속기를 만드는 것을 목표로 하고 있다. 한편 현재 세계 각국은 입자 가속기의 성능을 향상시키기 위한 연구에 박차를 가하고 있다. 유럽입자물리연구소(CERN)는 현재 운영 중인 대형 강입자 충돌기(LHC)의 성능을 개선하기 위한 작업을 진행하고 있다. 또한, 미국, 중국, 일본 등에서도 새로운 입자 가속기의 건설을 추진하고 있다. 이러한 노력을 통해 입자 가속기는 우주와 물질의 기본 법칙을 이해하고 새로운 기술을 개발하는 데 더욱 중요한 역할을 할 것으로 기대된다.
-
- 포커스온
-
[퓨처 Eyes(15)] 20m 미만 소형 입자 가속기, 의료·반도체 혁신 예고
-
-
지구의 자전축 이동, 지하수 고갈이 원인
- 지하수 고갈이 지구 자전축 이동의 원인이라는 새로운 연구 결과가 나왔다. 미국 매체 인디100(indy100)은 본질적으로 지구의 기울기는 시간이 지남에 따라 변하고 있으며, 몇 년 전 과학자들은 이를 지구 온난화와 극지방의 만년설이 녹는 현상으로 분류했다고 지적했다. 그러나 과학자들은 최근 연구에서 지구 자전축의 이동이 기존에 알려진 원인 이외에 다른 요소로 인해 발생하고 있다는 사실을 발견했다. 이 새로운 연구는 지하수 고갈이 지구의 물리적 균형에 어떻게 영향을 미치는지에 대한 이해를 넓히는데 중요한 역할을 하며, 기후 변화 및 지구 시스템에 대한 우리의 이해를 더욱 심화시킬 것으로 기대된다. 이는 지구의 물 순환 및 환경 관리에 대한 새로운 관점을 제공할 수 있다. 지구의 극은 빙상이 녹는 현상으로 움직일 수 있는 것으로 알려졌지만, 관개로 인한 지하수의 고갈도 같은 일이 일어날 수 있다는 것이다. 북극은 현재 점차 영국 방향으로 느린 속도로 이동하고 있으며, 이론적으로 이러한 극의 이동은 시간이 지나면서 지구의 계절 변화에 영향을 미칠 수 있는 능력을 가지고 있다. 가장 우려되는 점은 최근 '지구물리학 연구 학술지(Geophysical Research Letters)'에 게재된 연구에서 밝혀진 것으로, 지구 천연자원의 소비 방식, 특히 탈수된 땅에서 사용되는 염수와 관련한 연구 결과들이다. 이 연구에 공동으로 참여한 서울대학교 지구과학교육과 서기원 교수는 "지구의 회전 극은 실제로 큰 변화를 겪고 있으며, 우리 연구에 따르면 지하수의 재분배가 지구의 회전 극의 표류에 가장 큰 영향을 미치는 것으로 나타났다"고 우려했다. 서기원 교수가 이끄는 연구팀은 1993년부터 2010년까지 인류가 사용한 지하수의 양이 약 2조 1500톤에 달하며, 이로 인해 해수면이 약 6mm 상승하고, 지구의 자전축이 약 80cm 이동했다고 주장했다. 이 연구는 인간 활동이 해수면 상승에 중요한 영향을 미치고 있음을 시사한다. 지하수 사용이 증가함에 따라 육지의 물은 감소하고, 대신 바닷물이 증가하여 지구의 물질량 분포와 자전축의 위치에 변화를 가져왔다. 이 연구 결과는 물이 지표면에서 천천히 지하로 새어 나가는 현상을 발견한 최근의 과학적 발견에 이어 나온 것이다. 연구에 따르면, 액체는 지각판 아래로 하강하여 약 2900km 이동한 후 지구의 코어에 도달한다. 이 과정은 느리지만 수십억 년에 걸쳐 지구의 외핵 용융 금속과 맨틀 사이에 새로운 표면이 형성되었다. 이러한 발견은 지구과학에서의 중요한 이정표로, 인간 활동이 지구의 물리적 균형과 환경에 미치는 영향을 이해하는 데 중요한 기여를 한다. 지구의 자전축이 변하면 각 지역이 태양에 노출되는 정도에 변화가 생겨, 이로 인해 심각한 기후 변화가 발생할 수 있다. 특히 해수면 상승은 해발고도가 낮은 섬나라와 해안 도시들에게 큰 위협이 되며, 한국도 이러한 위험에서 자유롭지 못하다. 한국 해양수산부의 자료에 따르면, 1991년부터 2020년까지 한국의 평균 해수면은 매년 3.03mm씩 상승하여 총 9.1cm 높아진 것으로 나타났다. 국립해양조사원과 서울대학교의 연구에 따르면, 2100년까지 한국의 해수면은 최대 82cm까지 상승할 것으로 예측되며, 이는 2021년 발표된 예측치보다 10cm 높은 수치다. 전 세계적으로 해수면이 1미터 상승한다면 약 4억 명의 인구가 피해를 입을 것으로 추정된다. 이러한 상황은 우리가 탄소 배출을 줄여야 하는 중요한 이유를 제시한다.
-
- 생활경제
-
지구의 자전축 이동, 지하수 고갈이 원인
-
-
美 슈미트 해양연구소, 태평양서 1.5km 높이 거대 해산 발견
- 연구선 팔코르(Falkor)호가 과테말라 해역에서 두바이의 부르즈 칼리파보다 두 배 더 높은 해산을 발견했다. 미국 비영리 운영재단 슈미트 해양 연구소(Schmidt Ocean Institute·SOI)에서 진행하는 해저 매핑 프로젝트가 태평양에서 1.5km 높이의 해산을 발견했다고 야후 뉴스가 최근 보도했다. 이 해산은 세계에서 가장 높은 건물인 두바이의 부르즈 칼리파보다 두 배 더 높다. 연구선 팔코르 호 팀이 발견한 해산은 과테말라 배타적 경제 수역에서 약 84해리(154.92km) 떨어진 곳에 위치하고 있으며, 14.19㎢(5.4 평방마일)의 면적을 차지하고 있다. 해산은 일반적으로 화산으로 시작되는 수중 산으로 이번에 발견한 해산은 전형적인 화산 모양을 하고 있으며, 가파른 둥근 측면과 평평한 꼭대기를 가지고 있다. 국립해양대기국(NOAA)은 이 해산이 화산 기원과 활동의 잔재인 분화구가 잠재되어 있다고 전했다. 해산은 심해 산호와 해면동물, 그리고 수많은 무척추동물이 서식하는 '생명의 오아시스' 역할을 한다. 따라서 이번 발견은 과학적으로 중요한 의미를 갖는다. 슈미트 해양 연구소의 죠티카 비르마니(Jyotika Virmani) 전무 이사는 "지금까지 파도 밑에 숨겨져 있던 1.5km가 넘는 해산은 우리가 아직 발견하지 못한 것이 얼마나 많은지를 강조한다"고 말했다. 이 해산은 과테말라 분지에 위치하고 있으며, 약 2000만 년 전에 형성된 것으로 추정된다. 해산의 꼭대기에는 다양한 종류의 해양 생물이 서식하고 있으며, 특히 심해 산호와 해면동물이 풍부하다고 한다. 연구진이 발견한 해산은 새로운 생명체의 발견으로 이어질 가능성이 높으며 해양 생태계의 보존과 지속 가능한 개발에도 기여할 수 있을 것으로 전망하고 있다. 팔코르호는 이번 발견 외에도, 갈라파고스 제도 해양보호구역에 있는 두 개의 미지의 해산, 세 개의 새로운 열수 분출구, 열수 분출구 아래의 새로운 생태계, 두 개의 깨끗한 냉수 산호초 등 일련의 해저 발견을 했다.
-
- 산업
-
美 슈미트 해양연구소, 태평양서 1.5km 높이 거대 해산 발견
-
-
나사, 최신 우주 망원경으로 4억5천만 개 은하 조사...우주지도 작성 목표
- 미국 항공우주국(NASA)의 새로운 우주 탐사 프로젝트인 SPHEREx 망원경이 우주 지도 작성을 위한 중요 단계에 진입했다고 과학 전문 매체 사이테크데일리가 15일(현지시간) 보도했다. 사이테크데일리에 따르면, SPHEREx는 지금까지 볼 수 없었던 방식으로 우주의 지도를 작성할 계획이며, 현재 지구 궤도에 도착해 전체 하늘의 지도를 그릴 준비를 하고 있다. '우주의 역사, 재이온화 시대 및 빙결체 탐사를 위한 분광-광도계(Spectro-Photometer for the History of the Universe, Epoch of Reionization, and Ices Explorer)'로 알려진 SPHEREx는 약 2.6미터(8.5피트) 높이와 3.2미터(10.5피트) 너비의 독특한 형태를 가진 망원경이다. 이 우주 망원경의 특이한 외형은 원뿔 모양의 광자 차폐막으로 만들어졌으며, 남부 캘리포니아에 위치한 NASA 제트 추진 연구소(Jet Propulsion Laboratory, JPL)의 클린룸에서 조립 중이다. 차폐막의 구조와 기능 나사의 SPHEREx 망원경은 태양과 지구로부터 오는 빛과 열을 차단하기 위해 세 개의 중첩된 원뿔 모양의 차폐막으로 둘러싸여 있다. 이 차폐막들은 각각 다른 크기의 원뿔 안에 위치새 망원경을 효과적으로 보호한다. SPHEREx는 하늘의 모든 영역을 스캔하여 매년 두 장의 상세한 천체 지도를 완성할 예정이다. JPL의 사라 수스카 뷔페이로드 관리자 겸 시스템 엔지니어는 "SPHEREx는 매우 빠른 속도로 하늘을 스캔해야 하기 때문에 높은 기동성이 요구된다"고 밝혔다. 그는 "차폐막은 보기에는 무겁게 보일 수 있지만 실제로는 매우 가볍고 여러 층의 재료로 구성되어 있다. 외부는 알루미늄 시트로, 내부는 알루미늄 벌집 구조로 되어 있어 가볍지만 견고하다"고 설명했다. 세부적인 미션 목표 2025년 4월까지 발사 예정인 SPHEREx는 과학자들이 생명에 필요한 주요 성분, 특히 물의 기원에 대한 더 깊은 이해를 제공할 것으로 기대된다. 이를 위해 SPHEREx 미션은 새로운 별이 탄생하고 행성이 형성되는 곳인 성간 가스와 먼지 구름 속의 물 얼음의 분포를 측정할 예정이다. 또한 우주 은하들이 내뿜는 빛의 양을 분석하여 은하의 역사를 연구할 계획이다. 이러한 관측을 통해 은하들이 언제 형성되기 시작했으며, 시간이 지남에 따라 그 형성 과정이 어떻게 변화했는지를 밝혀낼 수 있을 것이다. 또한, 수백만 은하의 위치를 서로에 대해 매핑함으로써, SPHEREx는 빅뱅 직후의 우주의 급격한 팽창, 또는 인플레이션이 어떻게 일어났는지에 대한 새로운 단서를 찾아 낼수 잇을 것으로 보인다. 냉각과 안정성 확보 SPHEREx는 적외선 광을 감지하여 다양한 임무를 수행할 예정이다. 적외선은 가시광선보다 긴 파장을 가지며 열 복사의 한 형태로도 알려져 있다. 모든 따뜻한 물체는 적외선을 방출하므로, 망원경 자체도 적외선을 생성할 수 있다. 이 적외선이 탐지기와 상호작용하면 문제가 될 수 있기 때문에, 망원경은 극도로 추운 상태인 섭씨 약 -210도(화씨 -350도) 이하로 유지되어야 한다. 망원경을 보호하는 외부 광자 차폐막은 태양과 지구로부터의 빛과 열을 차단하며, 각 뿔 사이의 공간은 열이 망원경 내부로 침투하는 것을 방지한다. 그러나 SPHEREx가 적절한 온도에 도달하도록 보장하기 위해서는 V-그루브 라디에이터라는 특별한 장치가 필요하다. 이 장치는 우산을 거꾸로 뒤집은 것처럼 생긴 세 개의 원뿔형 거울로 구성되어 있으며, 광자 차폐막 아래에 위치한다. 각 거울은 적외선 광을 우주로 튕겨내는 일련의 쐐기 모양으로 되어 있어, 실온의 우주선 버스에 위치한 컴퓨터와 전자 장치에서 발생하는 열을 제거하는 데 도움이 된다. JPL의 콘스탄틴 페나넨 페이로드 매니저 "우리는 SPHEREx가 얼마나 차가운지뿐만 아니라 온도가 일정하게 유지되는지도 중요하게 생각한다"라고 말했다. 그는 "온도가 변하면 감지기의 감도가 달라져 잘못된 신호로 해석될 수 있다"고 설명했다. 하늘을 관측하는 창 SPHEREx의 주요 구성요소인 망원경은 3개의 거울과 6개의 감지기를 통해 멀리 떨어진 광원으로부터 적외선을 수집한다. 이 망원경은 광자 차폐막이 제공하는 보호 범위 내에서 가능한 한 넓은 하늘 영역을 관측할 수 있도록 설계된 기울기 조절 받침대에 장착되어 있다. 콜로라도주 볼더의 볼 에어로스페이스에서 제작된 이 망원경은 지난 5월 캘리포니아주 패서디나의 칼텍(Caltech, 캘리포니아 공과대학교)에 도착해, 검출기 및 V-그루브 라디에이터와 통합됐다. JPL의 엔지니어들은 로켓 발사 시 견뎌야 할 진동 모사 테스트를 위해 진동 테이블에 망원경을 부착했다. 진동 테스트 후, 망원경은 다시 칼텍으로 이송되어 과학자들이 거울의 초점이 여전히 정확하게 맞춰져 있는지 확인할 수 있었다. SPHEREx의 적외선 '탐색 능력' SPHEREx 망원경 내부의 거울은 멀리 떨어진 물체로부터 빛을 모으는 역할을 하지만, 실제로 적외선 파장을 감지하는 것은 '검출기'다. 태양과 같은 별들은 전체 가시광선 범위의 빛을 방출한다. 이 빛은 프리즘을 통해 구성 파장, 즉 무지개 색상으로 분리될 수 있는데, 이를 분광학이라고 한다. SPHEREx는 검출기에 장착된 필터를 이용해 분광학적 분석을 수행한다. 각 필터는 무지개 색상처럼 보이는 여러 개의 세그먼트로 구성되어 있어 특정 적외선 파장을 제외한 모든 파장을 차단한다. SPHEREx가 관측하는 모든 물체는 이 세그먼트별로 이미지화되며, 과학자들은 별이든 은하든 해당 물체가 방출하는 특정 적외선 파장을 확인할 수 있다. 이 망원경은 100개 이상의 다양한 고유 파장을 관측할 수 있다. 이러한 기능을 통해 SPHEREx는 이전에 없던 우주 지도를 작성할 계획이다.
-
- IT/바이오
-
나사, 최신 우주 망원경으로 4억5천만 개 은하 조사...우주지도 작성 목표
-
-
美 칼텍, "지구 내부 '덩어리'는 다른 행성의 '흔적'"
- 달을 생성한 것으로 추정되는 원시 행성의 흔적이 지구 내부에서 발견되어 큰 관심을 끌고 있다. 최근의 이 발견은 지구와 달의 기원에 대한 이론에 중요한 증거가 될 수 있다. 영국의 과학 전문 매체 사이키(phys.org)는 미국 캘리포니아 공대(칼텍, Caltech) 과학자들이 '네이처' 학술지에 발표한 논문을 인용해 지구 내부에서 원시 지구와 충돌한 행성의 흔적을 발견했다고 보도했다. 이 연구는 두 가지 중요한 과학적 미스터리를 해결할 수 있는 가능성을 제시한다. 하나는 수천 년 동안 인류를 매혹시켜온 달의 기원에 관한 것이고, 다른 하나는 그 충돌이 지구 내부에 어떤 영향을 미쳤는지에 관한 것이다. 주된 이론은 약 45억 년 전, 화성 크기의 행성이 아직 형성 중이던 지구와 충돌하여 달이 생성되었다는 것이다. 수천 년 동안, 달의 기원은 과학자부터 호기심 많은 어린이까지 모두를 매혹시켜왔다. 가장 널리 받아들여지는 이론은 약 45억 년 전, 지구가 형성되는 과정에서 화성 크기의 행성인 '테이아(Theia)'와의 거대한 충돌로 인해 달이 생성되었다는 것이다. 당시 지구는 현재 크기의 약 85%에 불과했으며, 이 충돌로 인한 엄청난 양의 잔해가 우주로 튕겨져 나가 달을 형성했다. 이 이론에도 불구하고, 수십 년 동안 테이아의 존재를 뒷받침할 명확한 증거는 발견되지 않았다. 그러나 최근 네이처에 발표된 미국 연구팀의 새로운 연구 결과는 우리가 테이아에 대해 이해하는 방식에 대해 새로운 관점을 제시할 수 있음을 나타낸다. 이 연구는 과학자들이 테이아의 흔적을 찾는 방식에 대해 재고할 필요가 있음을 시사하고 있다. '원시지구' 충돌 행성 흔적 2곳 추정 1980년대에 지진파를 통해 발견된 지구 표면 아래 약 2900킬로미터(1800마일) 깊이에 위치한 두 개의 거대한 '덩어리'는 지질학자들에게 오랫동안 의문을 제기해왔다. 이 대륙 크기의 물질 덩어리는 지구의 암석 맨틀의 바닥, 즉 녹아 있는 핵 근처에 걸쳐 있다. 하나는 아프리카 아래, 다른 하나는 태평양 아래에 위치해 있다. 과학자들은 이 덩어리들이 주변 암석에 비해 훨씬 더 뜨겁고 밀도가 높다는 것을 발견했다. 그러나 이 덩어리들의 정확한 성질과 기원에 대해서는 여전히 많은 것이 불확실하다. 최근 연구에 따르면, 이 덩어리들은 지구 형성 당시 테이아라는 원시 행성과의 충돌로 지구 내부로 들어온 ‘매장된 유물'일 수 있다. 이 충돌로 인해 테이아의 잔해가 지구의 깊은 내부에 숨겨져 있었을 가능성이 제시되고 있다. 연구팀은 달을 형성시킨 테이아와의 충돌이 지구가 생명을 유지할 수 있는 독특한 행성으로 발전하는 데 중요한 역할을 했을 것이라고 주장했다. 캘리포니아 공과대학의 지구역학 연구원이자 이번 연구의 주 저자인 첸 위안(Qian Yuan)은 AFP와의 인터뷰에서 테이아 충돌의 증거가 아직 발견되지 않은 것이 "매우, 매우 이상하다"고 언급했다. 위안에 따르면, 테이아는 원시 지구와 충돌할 때 초당 10km(약 6마일) 이상의 속도로 이동하고 있었으며, 이 속도로 인해 일부 잔해가 지구의 하부 맨틀까지 침투할 수 있었다고 한다. 맨틀은 지각과 외핵 사이의 암석층을 의미한다. 철분 함량 높아 지구 멘틀에 축적 연구팀이 개발한 시뮬레이션 동영상은 테이아의 맨틀 덩어리가 지구 내부에서 어떻게 움직이는지 보여주고 있다. 이 덩어리들은 수십 킬로미터에 이르는 너비를 가지고 있으며, 지구 내부를 소용돌이치며 이동하고 있다. 과학자들은 녹은 테이아 물질이 냉각되고 굳어지면서, 높은 철분 함량으로 인해 지구 맨틀과 핵의 경계에까지 가라앉았다고 설명했다. 이 물질들은 오랜 시간에 걸쳐 대규모저속지역(LLVP)으로 알려진 별도의 두 개의 덩어리로 축적되었으며, 현재는 각각 달보다 더 큰 크기에 이르렀다. 첸 위안은 이러한 발견에 대해 "지구의 깊은 내부에 대한 이론을 검증하는 것은 매우 어렵고, 모델링이 100% 확실할 수 없다"고 말했다. 이는 지질학적 연구에서 자주 마주치는 복잡성과 불확실성을 반영하는 발언이다. 이 이론이 만약 사실이라면 그 의미는 중대할 수 있다. 지구는 현재까지 알려진 바에 의하면 우주에서 생명이 존재할 수 있는 유일한 행성이다. 첸 위안은 테이아와의 충돌이 지구의 구성을 단 24시간 만에 극적으로 변화시켰을 수 있다고 말했다. 위안은 초기 조건이 지구를 독특하게 만드는 중요한 요소, 즉 다른 암석 행성과 구별되는 이유라고 주장했다. 이전 연구들은 테이아가 생명의 핵심 성분인 물을 지구에 가져왔을 가능성을 제시했다. 또한, 이 덩어리가 맨틀 기둥(마그마 기둥)을 형성하여 지구 표면에 영향을 미치고 초대륙의 진화와도 연관이 있을 수 있다는 관찰이 있었다. 위안은 "테이아는 지구에 중요한 무언가를 남겼고, 이는 지난 45억 년 동안 지구의 진화에 중요한 역할을 했다"고 강조했다. 스코틀랜드 스털링 대학교의 지구 과학 및 행성 탐사 전문가 크리스티안 슈뢰더는 이 이론이 다양한 증거와 일치한다며, 이것이 매우 중요하고 흥미로운 발견임을 강조했다. 슈뢰더는 달의 형성에 대한 미스터리가 여전히 완전히 해결되지 않았다고 언급하면서도, 이번 연구가 테이아 충돌 이론에 무게를 두고 있으며 핵과 맨틀의 경계에서 관찰되는 이상 현상에 대한 신뢰할 수 있는 설명을 제공한다고 말했다. 이처럼 지구 내부에 보존될 가능성이 있는 테이아의 잔해가 오늘날 지구상에서 진행되는 중요한 과정들에 영향을 미쳤을 수 있다는 의견에 힘이 실리고 있다.
-
- 생활경제
-
美 칼텍, "지구 내부 '덩어리'는 다른 행성의 '흔적'"
-
-
나사, 베누 소행성 샘플서 '탄소와 물' 존재 확인
- 나사(NASA)가 우주에서 채취해 지구로 가져온 45억 년 된 소행성 '베누(Bennu)' 샘플에 탄소와 물의 존재가 확인됐다. 베누 샘플 연구는 지구 생명체의 구성 요소가 암석에서 어떻게 출현했는지 실마리를 제공할 것으로 보인다. 미국 항공우주국(NASA)은 11일(현지시간) 텍사스주 휴스턴에 있는 존슨우주센터(JSC)에서 지난 9월 24일 귀환한 소행성 탐사선 '오시리스-렉스'(OSIRIS-REx)가 채취한 '베누' 샘플을 처음으로 공개했다. 이 발견은 NASA의 오시리스-렉스(OSIRIS-REx, 기원, 스펙트럼 해석, 자원 식별 및 보안 - 레골리스 탐사선) 과학팀의 예비 평가의 일부였다. 빌 넬슨 NASA 국장은 "오시리스-렉스 샘플의 돌과 먼지에는 물과 많은 양의 탄소를 포함하고 있다"며 "과학자들이 앞으로 여러 세대에 걸쳐 지구 생명체의 기원을 조사하는 데 도움이 될 것"이라고 밝혔다. 풍부한 물과 탄소 함유 NASA는 소행성의 암석과 먼지에 담긴 비밀은 앞으로 수십 년 동안 연구되어 태양계가 어떻게 형성되었는지, 지구에 생명체의 전구 물질이 어떻게 뿌려졌는지, 지구와의 소행성 충돌을 피하기 위해 어떤 예방 조치를 취해야 하는지에 대한 통찰력을 제공할 것으로 기대했다. 넬슨 국장은 "오시리스-렉스 샘플은 지금까지 지구로 보내진 소행성 샘플 중 가장 탄소가 풍부하다"며 "첫 번째 분석 결과, 점토 광물 속에 물이 상당히 많이 함유돼 있다. 광물과 유기 분자 모두에 탄소도 있다"고 말했다. NASA 존슨의 큐레이션 전문가들은 특별히 지어진 새로운 클린룸에서 지난 열흘 동안 샘플 반환 하드웨어를 조심스럽게 분해하여 그 안에 들어 있는 대량의 샘플을 엿볼 수 있었다. 당초 소행성 샘플은 60g으로 계획됐지만 과학자들은 처음 과학용 캐니스터 뚜껑을 열었을 때 수집기 헤드, 캐니스터 뚜껑, 베이스 외부를 덮고 있는 소행성 물질을 추가로 발견했다. 여분의 물질이 너무 많아서 기본 샘플을 수집하고 담는 세심한 과정이 느려졌다는 설명이다. 넬슨은 "이 물질들은 지구 형성에 중요한 요소"라며 "이는 생명체가 탄생할 수 있었던 원소의 기원을 규명하는 데 도움이 될 것"이라고 말했다. 태양계와 지구 원소 규명 기대 처음 2주 동안 과학자들은 주사 전자 현미경, 적외선 측정, X-선 회절, 화학 원소 분석을 통해 이미지를 수집하여 행성 초기 물질에 대한 "빠른" 분석을 수행했다. 또한 X-선 컴퓨터 단층 촬영을 통해 입자 중 하나의 3D 컴퓨터 모델을 생성하여 다양한 내부를 들여다봤다. 이 초기 모습을 통해 샘플에 탄소와 물이 풍부하다는 증거를 확인할 수 있었다. 오시리스-렉스 소행성 탐사선에 탑재된 캡슐은 2016년 9월 케이프 커내버럴 우주센터에서 발사된 지 7년 만에 38억6000마일(62억km)에 달하는 대장정 끝에 지난 2023년 9월 24일 지구로 무사히 귀환했다. 이 탐사선은 2020년 10월 지구에서 약 3억3300만㎞ 떨어진 곳에 있는 베누 표면에서 흙과 자갈 등 샘플 250g을 채취한 뒤 2021년 5월 지구로의 귀환을 시작했다. 이는 미국으로선 첫 번째 소행성 샘플 채취였지만, 앞서 일본이 이토카와(2010년), 류구(2020년) 소행성으로부터 각각 채취한 샘플 1g 미만과 5.4g보다는 많은 양이다. 기상 현상과 지각 변동 등으로 크게 변형된 지구와 달리 베누는 45억년 전 태양계 형성 초기의 물질을 그대로 간직하고 있을 것으로 추정되고 있다. 투손 애리조나 대학교의 오시리스-렉스 수석 연구자인 단테 로레타(Dante Lauretta)는 "소행성 베누의 먼지와 암석 속에 보존된 고대의 비밀을 들여다보면서 우리는 태양계의 기원에 대한 심오한 통찰력을 제공하는 타임캡슐을 열어보고 있다"라고 말했다. 로레타는 "탄소가 풍부한 물질과 물을 함유한 점토 광물이 풍부하게 존재하는 것은 우주 빙산의 일각에 불과하다. 수년간의 헌신적인 협력과 최첨단 과학을 통해 이루어진 이러한 발견은 우리가 살고 있는 천체뿐만 아니라 생명의 시작에 대한 잠재력을 이해하는 여정으로 우리를 이끌고 있다"고 전했다. 우주 신비 규명 기대 한편, NASA는 존슨우주센터 내 전용 청정실에서 앞으로 2년간 베누의 샘플을 정밀 분석할 예정이다. 베누에서 채취된 샘플이 어떻게 소행성이 형성되고 진화했는지 우주 유산의 신비를 풀 수 있을 것으로 기대를 모으고 있다. 또한 이를 통해 지구에 생명체 출현에 대한 인류의 오랜 궁금증을 풀고 앞으로 이 소행성이 지구를 어떻게 비껴갈 수 있는지를 연구하는 데에도 도움을 줄 수 있을 것으로 보고 있다. 과학자들은 베누가 지금부터 약 160년 후 지구와 충돌할 가능성이 큰 것으로 추정하고 있다. NASA는 미래 세대의 과학자를 포함한 전 세계 과학자들의 추가 연구를 위해 베누 소행성 샘플의 최소 70%를 존슨 기지에 보존할 예정이다. 아울러 올가을에는 스미소니언 박물관, 휴스턴 우주 센터, 애리조나 대학교에 추가 샘플을 대여하여 공개적으로 전시할 계획이다.
-
- 산업
-
나사, 베누 소행성 샘플서 '탄소와 물' 존재 확인