검색
-
-
[우주의 속삭임(66)] 달, 지구가 '낚아챈' 외계 천체?⋯새로운 기원설 등장
- 달은 약 45억 년 전 지구와 테이아(Theia)라는 작은 행성의 충돌로 형성된 것으로 널리 알려져 있다. 그런데 최근 연구에서 달의 기원에 대한 새로운 이론이 제안돼 관심을 끌고 있다고 어스닷컴이 전했다. 연구에 따르면 초기의 젊은 지구가 쌍성계에 가까이 접근해 달을 낚아챘을 가능성이 있다고 한다. 지금까지의 통설과는 큰 차이가 나는 이론 제안이다. 지난 1969~1972년 사이, 여섯 차례의 달 탐사 임무를 통해 아폴로 우주비행사들은 800파운드(약 363kg)가 넘는 달의 암석과 토양을 수집했다. 이 샘플에 대한 화학 및 동위원소 분석 결과, 그것들이 지구의 암석 및 토양과 유사하다는 사실이 밝혀졌다. 칼슘이 풍부하고 현무암질이었으며 태양계가 형성된 후 약 6000만 년이 지난 것으로 나타났다. 아폴로 샘플 데이터를 바탕으로 1984년 하와이에서 열린 코나 회의에 모인 행성 과학자들은 달이 지구와의 대규모 충돌 후 파편으로 형성되었다 합의에 도달했다. 달의 기원에 대한 이 이론은 수십 년 동안 정론으로 받아들여져 왔다. 그런데 펜실베이니아 주립대학의 연구진은 최근 연구에서 오랫동안 유지되어 온 이 이론에 이의를 제기했다. 다렌 윌리엄스, 마이클 저거 교수가 주관한 연구팀이 달은 지구와 한 쌍의 암석체가 근접 조우했을 때 만들어졌다는 새로운 관점을 제시한 것이다. 윌리엄스는 "코나 회의를 통해 40년 동안 달 형성 이론이 확립됐지만 몇 가지 미해결 의문이 남아 있었다"고 지적했다. 그중 하나는 달의 궤도에 관한 것이다. 달이 지구 충돌의 잔해에서 만들어져 지구 궤도에 정착했다면, 지구의 적도 바로 위를 공전해야 한다. 그러나 달의 궤도는 지구 적도와 정렬되지 않고 태양과 더 일치한다. 이에 따라 연구팀은 달의 형성을 이진 교환 포획 이론(binary-exchange capture theory)으로 해석했다. 지구의 중력은 이진법에 따라 두 천체를 분리했고, 그중 달을 붙잡고 다른 천체는 떨어져 나갔다는 것이다. 지구 중력으로 붙잡힌 달은 오늘날의 궤도에 안착했다. 연구팀은 이를 태양계의 다른 사례와 비교하면서 "전례가 있었다"고 설명했다. 해왕성의 가장 큰 위성인 트리톤을 비슷한 사례로 제시했다. 트리톤은 카이퍼 벨트((Kuiper Belt)에서 궤도로 끌려온 것으로 여겨지고 있다. 카이퍼 벨트에서는 약 10%의 천체가 쌍성계로 이루어진 것으로 추정된다. 트리톤의 역행 궤도(해왕성의 자전과 반대)가 행성 적도에서 67도 기울어진 것이 이를 반증한다. 연구팀은 지구가 달보다 더 큰 위성, 즉 수성이나 화성 크기의 천체를 붙잡을 수 있다고 계산했다. 그러나 그들은 궤도를 유지할 만큼 안정적이지 않았을 수 있다는 지적이다. 연구원들은 달의 궤도가 처음에는 원이 아닌 타원으로 시작했다고 설명한다. 시간이 지남에 따라 지구의 조수가 궤도에 영향을 미쳐 궤도가 바뀌었다. "지구의 만조는 궤도를 가속한다. 궤도에 추진력을 줌으로써 시간이 지남에 따라 달이 조금씩 멀어진다"는 것이다. 이 같은 작용으로 초기 달의 타원형 궤도는 수천 년에 걸쳐 수축되어 점차 원형이 되었을 것으로 추정했다. 결국 달의 자전은 지구를 도는 달의 궤도에 고정되었고, 이 상태는 오늘날에도 지속되고 있다. 한편 연구팀은 달이 매년 지구에서 약 3cm씩 더 멀어진다고 설명했다. 현재 달은 23만 9000마일(약 38만km) 떨어져 있으며, 태양과 지구 모두로부터 중력의 영향을 받는다. 태양과 지구 모두가 달을 끌어당기고 있다는 얘기다. 윌리엄스와 저거는 "달이 어떻게 형성되었는지는 아무도 모른다. 지난 40년 동안 달의 형성에 대한 하나의 가능성이 제시됐는데, 이번 연구로 이제는 두 가지가 되었다. 새로운 추가 연구가 필요하다”고 밝혔다. 이 연구는 행성과학 저널(The Planetary Science Journal)에 게재됐다.
-
- IT/바이오
-
[우주의 속삭임(66)] 달, 지구가 '낚아챈' 외계 천체?⋯새로운 기원설 등장
-
-
[우주의 속삭임(54)] 허블·찬드라 망원경, 충돌하는 은하 속 초거대 블랙홀 쌍 발견
- 미 항공우주국(나사·NASA)의 허블 망원경과 찬드라 X선 망원경을 이용해 약 300광년 떨어진 초거대 블랙홀 쌍이 관측됐다. 나사 허블사이트는 9일(현지시간) 홈페이지를 통해 이 블랙홀들은 충돌 중인 두 은하 중심에 위치하며, 가스와 먼지 유입으로 활동성 은하핵(AGN)으로 밝게 빛나고 있다고 밝혔다. 유럽우주국(ESA) 또한 같은 날 나사/ESA 허블 망원경과 NASA의 찬드라 X선 관측소는 매우 가까운 거리에 있는 두 개의 초 거대 블랙홀의 존재를 확인했다고 전했다. 나사에 따르면 이 AGN 쌍은 가시광선과 X 선 관측을 통해 발견된 지역 우주에서 가장 가까운 쌍이다. 된 이 쌍은 이전에 발견된 수십 개의 블랙홀 쌍보다 훨씬 가까운 거리에 위치한다. 이러한 AGN 쌍은 은하 병합이 빈번했던 초기 우주에서 더 흔했을 것으로 추정된다. 약 8억광년 떨어진 이번 발견은 가까운 곳에서 이를 관찰할 수 있는 독특한 기회를 제공한다. 이 발견은 허블 망원경의 고해상도 이미지에서 은하 내 작은 영역에 밝은 산소 가스가 집중되어 있음을 나타내는 세 개의 광학 회절 스파이크가 발견되면서 우연히 이루어졌다. 논문의 수석 저자인 매사추세츠 케임브리지에 있는 하버드 및 스미소니언 천체물리학 센터의 안나 트린다데 팔카오 박사는 "우리는 이런 것을 볼 수 있을 것이라고 예상하지 못했다"며 "이 모습은 가까운 우주에서 흔히 볼 수 있는 모습이 아니며 은하 내부에서 다른 일이 일어나고 있음을 말해준다"고 밝혔다. 연구팀은 찬드라 망원경을 사용해 X 선으로 동일한 은하를 조사했고, 허블 망원경으로 관측된 밝은 광점과 일치하는 두 개의 강력한 고에너지 방출원을 발견했다. 이를 통해 두 개의 블랙홀이 가까이 위치하고 있다는 결론을 내렸다. 연구팀은 추가적으로 뉴멕시코에 있는 칼 G. 잰스키 초대형 전파 망원경의 자료를 활용해 이 블랙홀 쌍이 강력한 전파를 방출한다는 사실도 확인했다. 허블 망원경이 관측한 세 번째 밝은 광원의 기원은 아직 밝혀지지 않았으며, 추가적인 데이터 분석이 필요하다. 나사는 "두 초거대 블랙홀은 각각 원래 은하의 중심에 있었지만, 은하 병합으로 인해 가까워졌다"며 "앞으로 두 블랙홀은 계속해서 서로에게 접근하여 결국 병합될 것이며, 이 과정에서 시공간에 중력파를 발생시킬 것"이라고 추정했다. 미국 국립과학재단의 레이저 간섭계 중력파 관측소(LIGO)는 이미 수십 개의 항성 질량 블략홀 병합에서 발생하는 중력파를 감지했지만, 초거대 블랙홀 병합에서 발생하는 더 긴 파장의 중력하는 LIGO로 감지할 수 없다. 차세대 중력파 검출기인 LISA(Laser Interferometer Space Antenna)는 2030년대 중반 발사될 예정이며, 수백만 마일 떨어진 세 개의 검출기를 통해 심우주에서 발생하는 긴 파장의 중력파를 포착할 수 있을 것으로 기대된다. 허블망원경은 나사와 유럽우주국(ESA)간의 국제 협력 프로젝트로 30년 이상 운영되어 왔다. 팔카오는 "허블의 놀라운 분해능이 없었다면 우리는 이 복잡한 현상을 볼 수 없었을 것"이라고 말했다. 이 연구 결과는 9일 '천체물리학' 저널에 게재됐다.
-
- IT/바이오
-
[우주의 속삭임(54)] 허블·찬드라 망원경, 충돌하는 은하 속 초거대 블랙홀 쌍 발견
-
-
[우주의 속삭임(46)] 화성 운석 200개, 단 5개 분화구에서 지구로
- 화성에서 지구로 떨어진 운석 약 200개가 단 5개의 분화구에서 방출됐다는 연구 결과가 나왔다고 사이언스얼러트가 전했다. 지구와 화성은 직접적인 충돌은 없었지만, 물질 교환은 빈번하게 이루어져 왔다. 태양계의 격렬한 환경으로 인해 화성에서 떨어져 나온 물질들이 우주 공간을 가로 질러 지구로 떨어지는 현상이 발생한다. 태양계의 네 번째 행성인 화성의 표면적은 지구의 4분의 1에 해당하는 작은 행성이지만 태양계에서 가장 높은 화산 지대가 있다. 타르시스는 화성 서반구 적도 부근을 중심으로 한 거대한 용암 지대로 태양계에서 가장 큰 화산 지대이다. 현재까지 지구에서 발견된 운석 중 약 390개가 화성 기원으로 확인됐으며, 과학자들은 이 중 200개의 운석이 화성 표면의 특정 지역에서 유래됐음을 밝혀냈다. 놀랍게도 이 200개의 운석은 모두 화성의 타르시스(Tharsis)와 엘리시움(Elysium) 지역에 위치한 단 5개의 충돌 분화구에서 떨어져 나온 것으로 확인됐다. 캐나다 앨버타 대학교의 지질학자 크리스토퍼 허드는 "이제 우리는 이 운석들을 공통된 역사와 지구로 오기 전 화성 표면에서의 위치에 따라 분류할 수 있다"고 말했다. 물론 화성의 암석이 지구에 도달하는 과정은 쉽지 않다. 먼저 거대한 암석이 화성 표면에 강력하게 출동해 큰 분화구를 만들고, 화성 암석들을 탈출 속도에 도달할만큼 충분한 힘으로 날려 보내야 한다. 그 후 이 파편들은 수백만년이 걸릴 수 있는 지구까지의 여정을 견뎌내야 한다. 마지막으로 암석이 지구에- 도착하면 대기권 진입 시의 열과 압력을 견뎌내고 지구 표면에 충돌해0야 한다. 다행히도, 암석이 지구에 도착하면 과학자들은 암석의 특징을 연구해 비슷한 특성을 가진 운석들과 비교 분석하고, 어떤 암석들이 같은 충돌 사건 및 지구로의 여정을 공유하는 지 파악할 수 있다. 허드 박사와 그의 연구팀은 5개의 화성 운석 그룹의 발원지를 파악하기 위해 원격 감지, 모델령 및 분화ㅑ구 연대 측정과 같은 기술의 발전을 활용했다. 연구팀은 운석 그룹의 광물 프로파일을 바탕으로 화성 표면에서 해당 프로파일과 일치하는 위치를 찾았다. 대부분의 화성 운석은 화성암이기 때문에 화성의 화산 지역 중 운석의 연령과 광물 성분이 일치하는 지역을 찾는 작업이 포함됐다. 또한 적절한 연령의 분화구를 찾는 것도 중요했다. 10개의 화성 운석 그룹은 모두 60만년에서 2000만년전 사이에 방출됐다. 암석 자체와 암석이 지구에 도달할만큼 강하게 날아갔단느 사실을 바탕으로, 연구팀은 암석을 날려보낸 충돌을 모델링해 원래 분화구를 식별하는 데 도움을 얻을 수 있었다. 팀은 한 운석 그룹의 가능성을 단일 분화구로 좁힐 수 있었다. 나머지 네 그룹의 경우 각각 여러 ㅂ후보가 확인됐지만, 5개 모두 타르시스 또는 엘리시움 화산 지역으로 좁힐 수 있엇다. 향후 연구에 추가적인 제약 조건을 추가함으로써 위치를 더욱 좁힐 수 있으며, 이는 화성을 정밀하게 연구할 수 있는 훌륭한 도구를 제공한다. 허드는 "어쩌면 우리는 화성 표면에서 날아가기 전에 모든 암석의 위치, 화산 층서를 재구성할 수도 있다. 생각해보면 정말 놀랍다. 실제로 허ㅏ성에 가서 암석을 집어드는 것과 가장 가까운 것이다"라고 말했다. 이 연구는 학술지 '사이언스 어드밴시스(Science Advances)'에 게재됐다.
-
- IT/바이오
-
[우주의 속삭임(46)] 화성 운석 200개, 단 5개 분화구에서 지구로
-
-
[기후의 역습(46)] 태양 복사열의 미세한 변화, 지구 기후 대변혁 일으켰다
- 지구의 주요 열원인 태양 복사열의 지속적 감소가 약 100만 년 전 지구 기후의 재편을 일으켰다는 연구 결과가 나왔다. 지구에 도달하는 태양 복사의 누적된 미세한 변화가 지구의 빙하기를 변화시키는 주요 기후 변화를 촉발하는 데 큰 영향을 미쳤다는 증거가 발견됐다고 SCMP(사우스차이나모닝포스트)가 전했다. 복사는 빛으로 열이 전달되는 것으로 태양이 지구에 열을 전달하는 방식이다. 따라서 태양이 지구로 보내는 빛은 지구 표면에서 복사열 또는 복사 에너지로 지구의 기후에 절대적인 영향을 미치게 된다. 중국 과학아카데미(CAS) 지구환경연구소의 진장둥 박사 연구팀이 수행한 이 연구는 지난 200만 년 동안 지구의 기후를 조사한 것으로, 지구로 유입된 태양 복사가 어떻게 바다를 가열하거나 냉각시켜 기후 변화를 촉진시켰는지의 내막을 밝힌 것이다. 분석 결과 지구로 유입된 태양 복사량은 93만 5000년 전까지 지속적으로 감소했다. 이는 당시 차가운 해수면 온도의 직접적인 원인일 가능성이 높으며, 지구가 더 춥고 더운 기간 사이의 순환 방식을 변화시킨 중요한 과도기적 기후 전환기였다. 일사량이라고 불리는 지구에 유입되는 태양 복사는 지구 기후 시스템의 주요 열원 역할을 한다. 연구팀은 "우리는 누적된 일사량 교란(감소)이 지구 기후 시스템 내의 열 균형을 깨뜨려 플라이스토세(홍적세)의 장기 기후 변화에 영향을 미쳤다고 본다"고 말했다. 플라이스토세는 지구 지질 시대에서 기원전 260만 년부터 기원전 9700년까지 약 257만 년 동안의 시기로, 신생대 제4기의 대부분의 시기를 말한다. 플라이스토세 시대에는 세계 많은 지역에 빙상과 빙하가 광범위하게 반복적으로 형성됐는데, 이것이 당시의 냉각 때문이라는 것이다. 일사량은 기후 변화를 주도하는 것으로 알려져 있지만, 일사량이 장기 기후 변화에 미치는 영향은 여전히 미지의 영역이다. 일사량은 플라이스토세 동안 해수면 온도가 섭씨 2.3도 하락한 것을 포함, 장기적인 냉각 추세의 주요인으로는 간주되지 않았었다. 냉각 추세는 중기 플라이스토세 전환으로 이어졌는데, 이는 전 세계 빙하기 사이의 기간을 의미하는 빙하기 주기의 길이를 약 4만 1000년에서 10만 년으로 연장한 주요 기후 사건이었다. 한편 사이언스 저널에 실린 또 다른 논문에서 중국 연구팀은 지구에 도달하는 태양 복사열의 감소에 따른 누적된 영향이 바다의 열을 크게 낮춰 빙상이 성장하는 데 필요한 조건을 만들었다고 밝혔다. 연구팀은 장기적인 기후 변화에 미치는 일사량의 영향을 조사하기 위해 전 세계 해수면 온도에 대한 26개의 기록을 수집하고 일사량 이상치를 정량화할 수 있는 새로운 지수를 도입했다. 연구팀은 일사량의 변화는 작았지만, 지구로 유입되는 태양 복사선의 작은 변화조차도 바다의 열 함량을 변화시켜 열 균형에 영향을 미칠 수 있으며, 누적된 변화는 큰 열 불균형을 초래할 수 있다고 말했다. 지구 표면의 70% 이상을 덮고 있는 바다는 인간이 생성하는 열의 90% 이상을 흡수하는 주요 열 저장소다. 연구팀은 약 90만 년 전 일어난 '기후 시스템의 재편'으로 인해 지구상의 얼음 부피가 증가했다고 밝혔다. 연구팀은 "우리의 시뮬레이션 결과는 누적 일사량의 감소가 '냉각 사건'에 기여했음을 시사한다"고 말했다. 연구팀은 "대기 중 이산화탄소와 기타 측정치를 통합한 추가 시뮬레이션을 통해 장기적인 기후 추세에 대한 더 깊은 지식과 이해를 얻어야 할 것"이라고 지적했다.
-
- 포커스온
-
[기후의 역습(46)] 태양 복사열의 미세한 변화, 지구 기후 대변혁 일으켰다
-
-
[우주의 속삭임(41)] 적색 왜성, 강력한 극자외선 복사로 생명체 생존 가능성 낮춰
- 적색 왜성이 기존에 생각했던 것보다 훨씬 높은 수준의 극자외선을 복사하는 항성 플레어(항성의 표면에서 엄청난 양의 빛과 에너지가 일시적으로 터져 나오는 현상)를 생성할 수 있다는 사실이 발견됐다. 적색 왜성은 크기가 작고 온도가 낮으며 적색을 띈 별로, 태양이 8~50% 정도의 질량을 가진 작은 천체를 말한다. 이는 항성 플레어들로부터 나오는 강렬한 극자외선이 적색 왜성 주변의 행성들에 생명이 거주할 수 있는지의 여부에 상당한 영향을 미칠 수 있음을 시사한다. 결국 극자외선으로 인해 주변 행성들에서는 생명체의 생존 가능성이 낮아진다는 연구 결과라고 PHYS가 전했다. 이 연구는 하와이 대학이 주도했으며 영국 왕립천문학회지에 발표됐다. 하와이 대학에서 연구를 이끌었던 베라 버거 박사는 "행성에서의 생명체 거주 가능성에 영향을 미칠 수 있을 만큼 충분한 극자외선을 플레어를 통해 방출하는 별은 거의 없다. 그러나 연구 결과에 따르면 의외로 더 많은 별들이 극자외선을 방출하는 능력을 가지고 있을지도 모른다"고 말했다. 버거는 현재 케임브리지 대학 교수로 있다. 연구팀은 GALEX 우주 망원경으로 축적된 데이터를 사용해 근처에 있는 30만 개의 별에서 플레어를 찾았다. GALEX는 2003~2013년까지 전체 하늘을 근자외선과 극자외선 파장으로 동시에 관측한 나사(NASA)의 임무였다. 팀은 새로운 계산 기술을 사용해 데이터로부터 충분한 근거 정보를 획득했다. 오하이오 주립대학 마이클 터커 박사는 "현대의 컴퓨터 성능과 수십 년 쌓인 방대한 기가바이트 관측 데이터를 결합함으로써 우리는 근처 수천 개의 별에서 플레어를 찾을 수 있었다"고 말했다. 조사 결과 플레어를 방출하는 별이 예상외로 많았다는 의미로 읽힌다. 연구팀에 따르면 항성 플레어에서 나오는 극자외선은 행성 대기를 침식해 생명을 유지할 가능성을 위협한다. 연구는 항성 플레어와 외계 행성 거주 가능성에 대한 기존 모델에 새로운 이론을 제시하고 있다. 플레어에서 나오는 극자외선 방출은 지금까지 알려진 것보다 에너지가 평균 3배 더 높고 예상 에너지 수준의 최대 12배에 이를 수 있음을 보여준다. 3배의 차이는 노출된 사람의 피부가 10분 이내에 햇볕에 그을릴 수 있는 알래스카 앵커리지와 하와이 호놀룰루의 여름철 자외선의 차이와 같다. 이 강력한 극자외선 방출의 정확한 원인은 여전히 불분명하다. 연구팀은 플레어 복사가 특정 파장에 집중돼 탄소와 질소와 같은 원자의 존재를 나타낼 수 있다고 추정하고 있다. 연구팀의 제이슨 힝클은 "이 연구는 플레어 외부에서 자외선을 거의 방출하지 않는 태양보다 질량이 덜한 적색 왜성 주변 환경의 그림을 바꿨다"고 말했다. 버거 박사는 극자외선을 연구하기 위해 더 많은 우주 망원경 데이터가 필요하며, 이는 플레어 방출의 원천을 이해하는 데 결정적 역할을 할 것이라고 지적했다. 버거는 "우리의 연구는 항성 플레어가 외계 행성의 환경에 미치는 영향에 대한 추가 탐사에 초점을 맞추고 있다, 우주 망원경을 이용해 별들의 자외선 스펙트럼을 얻음으로써 플레어 방출의 기원을 더 잘 이해할 수 있게 될 것“이라고 밝혔다.
-
- IT/바이오
-
[우주의 속삭임(41)] 적색 왜성, 강력한 극자외선 복사로 생명체 생존 가능성 낮춰
-
-
트럼프, 선거 유세 중 총격 피격…귀에 피 흘리며 긴급 대피
- 도널드 트럼프 전 미국 대통령이 13일(현지시간) 펜실베이니아에서 열린 선거 유세 중 총격을 당해 귀에 피를 흘리며 긴급 대피하는 사건이 발생했다. 트럼프 캠프는 그가 "안전하다"고 밝혔으며, 트럼프 전 대통령은 현지 의료 시설에서 검진을 받고 있다. 공화당 대선 후보인 트럼프 전 대통령은 펜실베이니아주 버틀러에서 열린 야외 유세 도중 여러 발의 총격 소리가 들리자 비밀경호국 요원들에 의해 무대를 떠났다. 그는 오른쪽 귀에서 피를 흘리며 주먹을 불끈 쥐고 퇴장했다. 현장에서 총격범과 지지자 1명이 사망했다. 트럼프 전 대통령은 유세 시작 5분 만에 총소리를 듣고 몸을 숙였으며, 비밀경호국 요원들에 의해 무대를 내려와 귀와 뺨에서 피를 흘리며 차량에 실려 갔다. 비밀경호국 대변인은 트럼프 전 대통령이 안전하다고 확인하며 사건을 조사 중이라고 밝혔다. 이 사건의 오디오에는 최소 두 발의 초기 총성이 들린다. 영상에서 트럼프는 귀를 막고 연단 아래에 웅크리고 있다. 경호원들이 "덕, 덕, 덕, 덕"이라고 외치는 소리가 들린다. 트럼프가 경호원에게 "내 신발을 가져와"라고 말하는 소리가 들린다. 두 번째 총성도 들리지만, 보안 요원들이 총격범을 향해 반격했을 가능성이 있다고 분석가들은 CNN에 말했다. AP통신은 버틀러 카운티 지방 검사 리처드 골딩거의 말을 인용해 총격 용의자가 사망했으며, 집회 참석자 최소 한 명이 사망했다고 보도했다. 정치 웹사이트 리얼클리어폴리틱스가 집계한 여론조사 평균에 따르면, 트럼프는 가장 치열한 격전지인 7개 주에서 모두 선두를 달리고 있다. 현직 대통령인 조 바이든은 6월 27일 대선 토론에서 부진한 성적을 거둔 후, 자신이 트럼프를 이길 수 있는 최고의 후보라는 점을 동료 민주당원들에게 설득하기 위해 고군분투하고 있다. 조 바이든 대통령은 총격 사건 발생 후 트럼프 전 대통령의 안전을 기원하는 성명을 발표하며, "미국에는 이런 폭력이 설 자리가 없다"고 강조했다. 민주당의 낸시 펠로시 전 하원의장도 트럼프 전 대통령의 무사함에 감사하며 정치적 폭력을 규탄했다. 이 사건은 트럼프 전 대통령의 암살 시도로 규정되었으며, 사법당국이 본격적인 수사에 착수했다. 트럼프 전 대통령은 공화당 전당대회를 앞두고 있었으며, 이번 사건이 대선에 미칠 파장이 주목된다. 분석가들은 이번 사건이 미국의 민주주의와 정치적 폭력에 대한 새로운 논의를 불러일으킬 것으로 보고 있다. 트럼프 전 대통령의 피격은 1981년 로널드 레이건 전 대통령의 총격 사건 이후 처음 있는 일이다. 레이건 전 대통령은 심각한 부상을 입었으나 회복했으며, 이번 사건에서도 비밀경호국의 신속한 대응이 큰 역할을 했다. 트럼프 전 대통령은 이후 의료 검진을 받으며 안정된 상태로 알려졌다. 이번 사건은 공화당 전당대회와 대선 레이스에 큰 영향을 미칠 것으로 예상된다.
-
- 경제
-
트럼프, 선거 유세 중 총격 피격…귀에 피 흘리며 긴급 대피
-
-
[우주의 속삭임(23)] 달의 신비한 소용돌이는 '지하 마그마' 때문?
- 달의 표면은 회색의 여러 반점 모양으로 유명하다. 망원경을 들여다 보면 달의 표면에서는 또한 밝게 보이는 반점도 발견된다. 달 소용돌이로 알려진 이러한 특징적인 반점들이 지난 1600년대에 처음 발견된 이후, 천문학계는 그 기원이 무엇인지를 계속 탐구해 왔다. 학계에 잘 알려진 ‘라이너 감마’ 소용돌이와 같은 밝은색의 반점 영역은 오늘날까지도 수수께끼로 남아 있다. 라이너 감마는 달 표면 밝게 보이는 반점 형상의 평평한 지대다. 그런 가운데 스탠포드 대학교와 세인트루이스 워싱턴 대학교(WUSL) 과학자팀이 반점에 대한 새로운 연구 결과를 내놓아 주목된다고 사이언스얼라트가 전했다. 새로운 이론을 제시한 것이다. 이 연구는 '지구물리학 연구저널: 행성(Journal of Geophysical Research: Planets)'에 게재됐다. 지구와 달리 달은 태양의 하전 입자로부터 자신을 보호하기 위해 자기장을 발생시키지 않는다. 이는 태양풍이 달 표면과 충돌할 때 화학 반응을 일으켜 시간이 지남에 따라 암석이 더 어둡게 만든다. 즉, 달의 일부 반점처럼 보이는 주머니는 작은 자기장에 의해 보호되는 것으로 보인다. 지금까지 학자들이 발견한 모든 밝은 음영의 달 소용돌이는 이 지역의 자기장들 중 하나와 일치한다. 그러나 그 안에 있는 모든 암석이 반사되는 것은 아니며, 달의 모든 자기장이 소용돌이를 포함하는 것도 아니다. 그렇다면 여기에서는 무슨 일이 벌어지고 있는 것일까. 최근 일부 연구에서는 달과 미세 운석의 충돌이 하전된 먼지 입자를 일으킬 수 있으며, 이 입자가 표면에 도달하는 곳마다 국지적인 자기장이 생성되고 이로 인해 태양풍이 반사된다는 주장이 나왔다. 그러나 스탠포드와 WUSL의 연구팀은 그 가설에 대해 이의를 제기했다. 무언가 다른 힘이 달의 소용돌이를 자화시켜 태양풍 입자를 편향시켰다는 것이다. WUSL의 행성 과학자 미하일 크로친스키는 "충돌로 인해 이러한 유형의 자기 이상 현상이 발생할 수 있지만, 충격에 의한 것이라고 확신할 수 없는 모양과 크기의 소용돌이가 있다"고 지적했다. 크로친스키는 이에 대해 "지각 아래로부터의 힘도 작용할 수 있다"고 제안했다. "지하에 용암이 있다는 것이고, 자기장에서 천천히 냉각되면서 자기 이상 현상을 일으켰다"는 것이다. 연구팀은 그 근거로 달 표면 아래에서 한때 암석이 녹아 흐르고 있었던 레이더 영상 증거를 제시했다. 냉각된 마그마의 지하 흐름은 수십억 년 전의 화산 활동 시기를 나타낸다. 연구팀은 이 마그마 냉각 속도 모델을 사용, 달에 풍부하게 존재하고 화산암에서 흔히 발견되는 일메나이트라는 티타늄-산화철 광물이 어떻게 자화 효과를 낼 수 있는지 조사했다. 그들의 실험은 적절한 조건에서 일메나이트의 느린 냉각이 달의 지각과 상부 맨틀 내의 금속 철 및 철-니켈 합금 입자를 자극해 강력한 자기장을 생성할 수 있음을 보여준다. 팀은 "이 효과가 달 소용돌이와 관련된 강한 자기 영역을 설명할 수 있다"고 결론지었다. 이 결론이 입증되기 위해서는 지하 마그마에 티타늄 함량이 충분해야 한다. 그러나 지금까지 달의 국지적 자기장에 대해 알려진 대부분은 공중을 도는 우주선의 레이더를 사용해 얻은 데이터 측정에서 얻어진 것이다. 실제로 정확히 이해하려면 달 표면을 직접 시추해야 한다. 나사(NASA)는 이를 구체적으로 규명하기 위해 2025년 루나 버텍스(Lunar Vertex) 임무의 일환으로 라이너 감마 소용돌이에 탐사선을 직접 보낸다. 향후 수 년 안에 이 수수께끼를 해결할 증거가 수집될 것으로 기대된다.
-
- IT/바이오
-
[우주의 속삭임(23)] 달의 신비한 소용돌이는 '지하 마그마' 때문?
-
-
[우주의 속삭임(22)] 태양 입자 폭발, 지구 오존층 파괴⋯방사선 노출 위험 고조
- 핀란드와 영국, 미국 등 국제 연구팀이 태양에서 발생하는 강력한 입자 폭발 현상이 지구의 오존층을 심각하게 파괴해 장기간 지구 표면에 방사선 노출량을 증가시킬 수 있음을 밝혔다고 PHYS.org가 2일(현지시간) 보도했다. 올해 5월초 발생한 강력한 오로라는 태양 폭풍이 방출하는 방사선 에너지를 보여주는 사례였다. 태양은 때때로 더 파괴적인 현상을 일으키기도 한다. '태양 입자 방출(solar particle events)'이라고 알려진 이 현상은 태양 표면에서 직접 방출되는 양성자 폭발로, 마치 탐조등처럼 우주 공간으로 뻗어 나갈 수 있다. 연구에 따르면, 지구는 약 1000년마다 극심한 태양 입자 방출 현상에 노출되며, 이는 오존층에 심각한 손상을 입히고 지표면의 자외선(UV) 복사량을 증가시킬 수 있다. 지난 7월 1일 미국 국립과학원 아카데미 회보에 게재된 논문에서 연구팀은 이러한 극한 상황이 발생했을 때 나타나는 현상을 분석했다. 또한 지구 자기장이 약화되었을 때 이러한 현상이 지구 생명체에 미치는 영향이 매우 클 수 있음을 보여줬다. 이 논문의 주저자는 판란드 오울루대학교(University of Oulu)의 프레이드리그 아르세노비치(Predrag Arsenovic)이며, 공동 저자는 영국 레딩대학교(University of Reading)의 매튜 오웬스(Mathew Owens), 미국 콜로라도대학교 볼더(University of Colorado Boulder)의 마이크 록우드(Mike Lockwood), 오울루대학교의 일리야 우소스킨(Ilya Usoskin), 레딩대학교의 루크 바나드(Luke Barnard) 등이다. 극지방 자기장, 오로라 형성 지구 자기장은 태양에서 방출되는 전하를 띤 방사선을 막아주는 중요한 보호막 역할을 한다. 일반적인 상태에서 지구 자기장은 거대한 막대 자석처럼 기능하며, 한쪽 극에서 나온 자기장 선이 다른 극으로 돌아가는 형태를 띠고 있다. 극지방에서는 자기장 선이 수직으로 배열되어 일부 이온화된 우주 방사선이 상층 대기까지 침투해 공기 분자와 상호작용하며 오로라를 생성한다. 그러나 지구 자기장은 시간이 지남에 따라 크게 변화한다. 지난 세기 동안 북극 자기는 연간 약 40km 속도로 캐나다 북부를 가로질러 이동했으며, 자기장 강도는 6% 이상 약화됐다. 지질학적 기록에 따르면, 지구 자기장이 매우 약하거나 완전히 사라진 시기가 수백년 또는 수천 년 지속된 경우도 있었다. 고대에 자기장을 잃고 그 결과 대기의 대부분을 잃은 화성을 살펴보면 지구 자기장이 없다면 어떤 일이 일어날지 알 수 있다. 지난 5월 지구에 오로라 발생 직후 강력한 태양 입자 방출 현상이 화성을 강타했다. 이로 인해 화성 탐사선 오디세이의 작동이 중단됐고, 화성 표면의 방사선 수치가 흉부 X선 촬영시 받는 방사션보다 약 30배나 높은 수준을 기록했다. 태양의 외기는 '태영풍'이라고 알려진 전자와 양성자의 끊임없이 변동하는 흐름을 방출한다. 그러나 태양 표면은 태양 입자 방출 현상에서 에너지, 주로 양성자인 에너지 폭발을 산발적으로 방출한다. 이는 종종 태양 플레어와 관련 있다. 오존 감소, 방사선 증가 양성자는 전자보다 훨씬 무겁고 더 많은 에너지를 가지고 있기 때문에 지구 대기의 더 낮은 고도애 도달해 공기 중의 기체 분자를 들뜨게 자극한다. 그러나 이러한 들뜬 분자는 육안으로 볼 수 없는 X선만 방출한다. 매 태양 주기(약 11년)미디 수 백건의 약한 태양 입자 방출 현상이 발생하지만, 과학자들은 지구 역사 전체에 걸쳐 훨씬 더 강력한 사건의 흔적을 발견했다. 가장 극단적인 것 중 일부는 현대 장비로 기록된 것보다 수전 배 더 강했다. 이러한 극단적인 태양 압자 방출 현상은 대략 수천 년마다 발생한다. 가장 최근의 사건은 993년 경에 발생했다. 즉각적인 영향 외에도 태양 입자 방출 현상은 상층 대기에서 오존을 고갈시킬 수 있는 일련의 화학 반응을 일으킬 수도 있다. 오존은 유해한 태양 자외선을 흡수해 시력과 DNA를 손상시킬 수 있으며, 피부암 위험을 증가시키고 기후에도 영향을 미친다. 새로운 연구에서 연구팀은 극심한 태양 입자 방출 현상의 영향을 조사하기 위해 대규모 컴퓨터 모델을 사용했다. 연구팀은 이러한 사건이 1년 정도 오존층을 고갈시켜 지표면의 자외선 수치를 높이고 DNA 손상을 증가시킬 수 있음을 발견했다. 그러나 지구 자기장이 매우 약한 시기에 태양 양성자 사건이 발생하면 오존 손상이 6년 동안 지속되어 자외선 수치가 25% 증가하고 태양에 의한 DNA 손상률이 최대 50%까지 증가할 수 있다. 진화와 자기장과의 상관관계 그렇다면 약한 자기장과 극심한 태양 양성자 사건의 이러한 치명적인 조합은 얼마나 자주 일어날까. 이 두 현상은 상대적으로 자주 함께 발생할 가능성이 크다. 실제로 이러한 사건의 조합은 과거 지구의 여러 가지 미스터리한 사건을 설명할 수 있다. 가장 최근의 약한 자기장 기간(북극과 남극의 일시적인 전환 포함)은 4만2000년 전에 시작되어 약 1000년 동안 지속됐다. 유럽에서 마지막 네안데르탈인의 멸종과 호주에서 거대 웜뱃과 캥거루를 포함한 유대류 거대 동물군의 멸종과 같은 몇가지 주요 진화 사건이 이 시기에 발생했다. 훨씬 더 큰 진화적 사건 또한 지구의 자기장과 관련이 있다. 남호주 플린더스 산맥의 화석에 기록된 에디아카라기 말(약 5억6500만년) 다세포 동물의 기원은 2600만 년 동안 자기장이 약하거나 없는 시기 이후에 발생했다. 마찬가지로 캄브리아기 대폭발(약 5억3900만년 전)에서 다양한 동물 그룹의 급속한 진화는 지자기 및 높은 자외선 수준과 관련이 있다. 관련 없는 여러 그룹에서 눈과 단단한 몸 껍질의 동시 진화는 '빛으로부터의 도피'에서 유해한 자외선 유입을 감지하고 피하는 가장 좋은 수단으로 설명됐다. 이제 막 첫발을 뗀 진화와 자기장과의 연구는 지구 생명체의 역사와 미래에 대한 이해를 넓히는 데 중요한 영향을 미칠 수 있다. 아울러 지구 온난화로 인한 자기장 변화가 생태계에 미칠 영향을 예측하고 대비하는 데 도움을 줄 수 있다.
-
- IT/바이오
-
[우주의 속삭임(22)] 태양 입자 폭발, 지구 오존층 파괴⋯방사선 노출 위험 고조
-
-
[우주의 속삭임(21)] 중국, 달 샘플서 '그래핀' 발견⋯달 기원에 도전장
- 중국 달 탐사선이 달에서 채취한 샘플에서 자체 토착 탄소인 그래핀이 발견돼 달의 기원에 도전장을 내밀고 있다. 달의 기원에 대해서는 여러 가지 가설이 존재하지만, 현재 가장 유력한 가설은 '거대 충돌설'이다. 약 45억년 전 원시 지구와 화성 크기의 천체 테이아(Theia)가 충돌해 두 천체가 합쳐지고, 그, 충격으로 떨어져 나간 파편들이 지구 주위를 돌며 뭉쳐져 달이 형성됐다는 이론이다. 이 가설은 달 샘플의 화학적 구성, 달 공전 궤도, 지구와 달의 자전축 기울기 등 여러 증거를 통해 뒷받침되고 있다. 중국 지린 대학교 과학자들은 2020년 12월 창어 5호가 달 표면에서 채취한 샘플을 분석하는 과정에서 특이하게 그래핀을 발견했다. 연구팀은 자연 상태에서 생성된 '소수층 그래핀(few-layer graphene)'을 달 샘플에서 처음으로 발견했다고 국영 통신사 글로벌 타임스가 보도했다. 이는 향후 인류가 달 현지 자원을 활용하는 계획에 중요한 영향을 미칠 수 있다. 그래핀은 탄소 원자들이 욱각형 벌집 모양으로 연결되어 2차원 평면 구조를 이루는 소재다. 그래핀은 원자 한 층으로 이루어져 세상에서 가장 얇은 물질이다. 쉽게 말하면 연필심에 사용되는 흑연을 아주 얇게 한 겹만 떼어낸 것으로 볼 수 있다. 이번 발견은 달의 초기 지질학적 진화 과정에 대한 새로운 통찰력을 제공할 수 있으며, 달이 지구와 소행성의 충돌로 형성되었고 탄소 대부분이 이 충돌에서 유래했다는 기존 이론에 의문을 제기할 수 있다고 퓨처리즘은 전했다. 연구팀은 "널리 받아들여지는 '거대 충돌 이론'은 (미국 우주선) 아폴로 샘플의 초기 분석에서 파생된 '탄소 결핍 달'이라는 개념에 의해 강력하게 뒷받침되어 왔다"고 논문에서 밝혔다. 그러나 이번 연구 결과는 달에서 '탄소 포집 과정'이 존재하며, '토착 탄소의 점진적 축적'이 일어났음을 시사한다. 이는 '달의 화학 성분 및 역사에 대한 이해를 재정립할 수 있는 발견'이라는 점에서 중요하다. 연구팀은 비파괴 화학 분석 방법인 '라만 분광법'을 사용하여 소수층 그래핀의 존재를 확인했다. 소수층 그래핀은 2~10개 층으로 이루어진 그래핀으로, 실험실에서도 제조될 수 있다. 연구팀은 이 물질이 태양풍이 달 표면을 강타하고 초기 화산 폭발이 일어나는 과정에서 형성되었을 가능성을 제시했다. 순수한 '토착 탄소'의 존재는 약 44억 5000만 년 전 화성 크기의 소행성이 지구와 충돌하여 달이 형성되었다는 기존 가설에 배치되는 점이다. 그러나 연구팀은 이전 연구 결과와 마찬가지로 운석 충돌이 달에서 흑연 탄소 형성에 기여했을 가능성도 인정했다. 연구팀은 "자연 그래핀의 특성에 대한 심층적인 연구는 달의 지질학적 진화에 대한 더 많은 정보를 제공할 것"이라고 말했다. 한편, 중국은 무인 달 탐사선 창어-6호가 세계 최초로 달 뒷면의 샘플을 채취해 지난 6월 25일 내몽골에 성공적으로 착륙했다. 창어-6호는 달 뒷면에 있는 거대한 분화구인 남극 에이컨 분지(South Pole-Aitken Basin) 분지에서 달 토양을 수집해 지구로 53일만에 귀환한 것. 최대 2kg(4.4 파운드)에 달하는 이 샘플은 지난 26일 새벽 베이징으로 공수돼 중국 우주 기술 아카데미(CAST)로 이송됐다. 스페이스닷컴에 따르면 중국이 달 뒷면에처 채취한 샘플은 2020년 창어-5호가 수집한 샘플과 마찬가지로 재료를 분류한 다음 중국 전역의 과학자 및 기관의 연구에 사용할 수 있도록 제공될 예정이다. 이 자료는 2년 후 국제 그룹과 연구자들의 응용 프로그램에 제공될 가능성이 높다고 한다. 미 항공우주국(나사·NASA)의 자금 지원을 받은 연구원들은 지난해 말 달 샘플에 대한 접근을 신청할 수 있는 특별 허가를 받았다. 과학자들은 이 샘플이 달, 지구, 태양계의 형성에 중요한 단서를 제공할 것으로 기대하고 있다. 중국은 우주 강국으로 자리매김하기 위해 2026년 창어-7호를 달 남극에 발사하고, 2028년에는 창어-8호를 발사해 자원 활용에 집중할 계획이다. 아울러 중국은 2030년까지 우주비행사를 달 남극에 보낼 계획이다. 달 남극은 인간의 생존에 필수적인 물과 각종 희토류 등이 있는 것으로 알려져 인도와 미국 등 세계 각국의 탐사 목표지로 급부상했다.
-
- IT/바이오
-
[우주의 속삭임(21)] 중국, 달 샘플서 '그래핀' 발견⋯달 기원에 도전장
-
-
[우주의 속삭임(20)] 소행성 베누 샘플서 생명체 구성요소인 인산염 발견
- 미국 항공우주국(나사·NASA)의 소행성 연구 우주 탐사선 오시리스-렉스(OSIRIS-REx)가 소행성 베누(Bennu)로부터 채취한 4.3온스(121.6g)의 샘플을 분석한 결과 생명체의 구성 요소인 인산염이 발견됐다. 나사는 공식 홈페이지에서 "오시리스-렉스 샘플 분석팀은 소행성 베누가 우리 태양계를 형성하는 성분들을 함유하고 있음을 발견했다"고 밝혔다. 베누의 먼지에는 생명체에 필수적인 구성 요소인 탄소와 질소, 유기 화합물이 풍부한 것으로 나타났다는 것. 지구로 가져온 베누 샘플에는 또한 마그네슘-나트륨 인산염이 포함돼 연구팀을 놀라게 했다. 이는 베누 우주선이 수집한 원격탐사 데이터에서는 나타나지 않았었다. 점토 광물, 특히 사문석(뱀 문양의 돌)이 대부분인 이 샘플은 지구 지각 아래층 맨틀 물질이 물과 만나는 지구의 대양 중간 능선에서 발견되는 암석과 유사한 유형이다. 지구로부터 떨어져 나갔을 가능성을 시사하는 대목이다. 이는 점토 형성에 그치지 않고 탄산염, 산화철, 황화철 등 다양한 광물을 만들었다. 그 중에서도 가장 놀라운 발견은 수용성 인산염의 존재였다. 인산염은 오늘날 지구상에 알려진 모든 생명체의 생화학 구성 요소다. 지난 2020년 JAXA(일본우주항공연구개발기구)의 하야부사2 임무에서 채취한 소행성 류구(Ryugu) 샘플에서도 유사한 인산염이 발견됐었다. 그러나 베누 샘플에서 검출된 마그네슘-나트륨 인산염은 어떤 운석 샘플에서도 유례가 없을 정도로 순도가 탁월하다. 연구진은 이것이 베누의 역사에 대한 귀중한 단서를 제공한다고 지적했다. 연구진의 단테 로레타 애리조나 대학 박사는 "베누 샘플에서 나타난 각종 원소, 특히 인산염의 존재와 상태는 과거 소행성에 물이 존재했음을 암시한다"며 “베누는 과거 한때 습한 행성이었을 수 있지만, 이는 추가 조사가 필요하다"고 말했다. 나사의 제이슨 드워킨 박사도 오시리스-렉스가 과거에는 습했으며 질소와 탄소가 풍부했을 것으로 추정되는 원시 소행성 베누 샘플을 가져왔다"고 밝혔다. 베누는 물이 존재한 역사가 있었을 가능성에도 불구하고, 화학적으로 원소 비율이 태양과 매우 유사한 원시 소행성으로 남아 있다. 로레타는 "가져온 샘플의 구성에서 45억 년 이상 전 우리 태양계 초기 모습을 엿볼 수 있다. 이 샘플은 생성된 이래 녹거나 재응고되지 않은 원래의 상태를 유지하면서 고대의 기원을 보여준다"고 의미를 부여했다. 연구진은 샘플을 통해 소행성 베누에 탄소와 질소가 풍부하다는 사실을 확인했다. 이 원소들은 베누의 물질이 탄생한 환경과 함께, 단순한 원소가 복잡한 분자로 변환하는 화학적 과정을 이해하는 데 매우 중요하다. 지구상의 생명체의 기원을 밝히는 기초를 마련할 가능성도 있다. 태양계 형성의 복잡한 과정과 지구에 생명체가 출현한 프리바이오틱 화학을 밝히는 열쇠를 쥐고 있다는 것이다. 향후 수 개월 안에 미국과 전 세계의 연구소가 휴스턴에 있는 나사의 존슨 우주센터로부터 베누 샘플의 일부를 제공받게 된다. 베누 샘플 분석이 활발해지고, 더 많은 연구 결과가 발표될 것이라는 기대다. 2016년 9월 발사된 오시리스-렉스 우주선은 지구 근처 소행성 베누로 이동해 베누 표면에서 암석과 먼지 샘플을 수집했고 2023년 9월 이 샘플을 지구로 가져왔다. 나사의 고다드 우주 비행센터가 오시리스-렉스 임무를 관리했다. 이 임무는 국제적인 협력 아래 이루어졌으며 CSA(캐나다 우주국), JAXA 등이 함께했다.
-
- IT/바이오
-
[우주의 속삭임(20)] 소행성 베누 샘플서 생명체 구성요소인 인산염 발견
-
-
[우주의 속삭임(19)] 우주의 새벽에 최초로 병합되는 은하핵 '퀘이사 쌍' 발견
- 은하계는 광대하지만, 여전히 충돌하고 합쳐지며 겹쳐진다. 그런 가운데 일본 에히메 대학의 마쓰오카 요시키 교수를 필두로 한 국제 천문학자 팀이 지금까지 발견된 것 중 가장 먼 우주 가장자리에서 한 쌍의 퀘이사(Quasar)를 발견했다고 퍼퓰러사이언스가 전했다. 연구팀은 하와이에 있는 지상 제미니 노스(Gemini North) 및 스바루 망원경으로 이를 관측하고 데이터를 분석했다. 발견된 두 개의 은하핵 퀘이사는 먼지와 가스가 중앙의 초거대 블랙홀로 떨어지는 가운데 서로 합쳐(병합)지고 있다. 그 과정에서 이 퀘이사 쌍은 엄청난 양의 빛을 방출했다. 연구팀은 이 빛을 찾아냈고, 이것이 두 개의 퀘이사 쌍임을 밝혔다. 연구팀은 발견된 퀘이사 쌍이 우주의 새벽(Cosmic Dawn: 빅뱅 이후 약 5000만~10억 년), 즉 초창기 우주 여명기에 해당하는 은하핵이라고 말했다. 특히 우주의 새벽 중에서도 우주 암흑기를 끝내고 별과 은하와 같은 요즘과 같은 천체가 구성되기 시작하고 어두운 우주가 처음으로 빛으로 가득 찰 무렵인 ‘재이온화 시기’에 해당하는 천체다. 퀘이사란? 우주는 빅뱅 이후 거의 140억 년 동안 팽창해 왔다. 초기 우주는 지금보다 매우 작았으며 은하계 서로 상호 작용하고 병합될 가능성이 컸다. 퀘이사는 거대 블랙홀이 주변 물질을 집어삼키는 에너지에 의해 형성되는 발광체를 말한다. 블랙홀은 퀘이사의 중심에 있으며, 주위에는 원반이 둘러싸고 있고, 원반 물질은 소용돌이 모양으로 회전하며 블랙홀로 빨려 들어간다. 은하 병합은 가스와 먼지가 초거대 질량의 블랙홀로 떨어지면서 퀘이사를 밝게 빛나게 하는 에너지다. 블랙홀로 떨어지는 원반 물질의 중력 에너지는 빛 에너지로 바뀌고, 여기에서 거대한 빛이 방출된다. 즉, 퀘이사는 지구에서 멀리 떨어진 우주 가장자리에서 발견되는 광원으로서, 멀리 떨어져 있기 때문에 우주 탄생 초창기인 우주의 새벽 시기의 천체다. 재이온화 시대의 의미 천문학자들은 우주의 재이온화 시대를 빅뱅 이후 대략 4억 년으로 잡는다. 우주 탄생 직후 우주 온도가 높았을 때는 수소의 양성자와 전자가 분리돼 이온화된 상태였다. 시간이 지나면서 우주의 온도는 낮아졌고, 양성자와 전자는 중성수소 원자로 결합됐다. 이를 우주 재결합시대라고 한다. 그 후 일어난 우주 재이온화는 중성수소 원자가 양성자와 전자로 다시 이온화되던 시기를 말한다. 천문학자들에 따르면 재이온화 시대 당시의 수소 이온화는 우주 역사에서 매우 중요한 시대였다. 이 시기는 우주의 암흑시대의 종말이며, 오늘날 지구상에서 볼 수 있는 별이 빛나는 은하구조의 시작이었다. 이번에 발견된 방합 중인 퀘이사는 우주 암흑기를 지나 최초의 별과 은하가 나타났던 우주의 새벽 기간, 그 중에서도 우주 재이온화 시대에서 나타난 것이다. 빨간색 광원 퀘이사 쌍의 합병 천문학자들은 우주의 재이온화 시대에 퀘이사가 수행한 정확한 역할을 이해하기 위해 우주의 초기 및 먼 시대에서 퀘이사를 찾고 있다. 마쓰오카 교수는 "재이온화 시대 퀘이사의 통계적 특성은 재이온화의 진행과 기원, 우주의 새벽 동안 초거대 블랙홀의 형성, 퀘이사 은하의 최초 진화 등 많은 것을 말해준다"고 말했다. 재이온화 시대에 약 300개의 퀘이사가 발견됐지만, 쌍을 이루는 퀘이사가 관측된 것은 이번이 처음이다. 연구팀의 퀘이사 발견은 우연이었다. 망원경으로 촬영한 이미지를 검토하다가 희미한 빨간색 광원을 발견했던 것. 팀은 그러나 나타난 붉은 색 광원 두 개가 퀘이사 쌍이었는지를 확신할 수 없었다. 팀은 스바루 망원경과 제미니 노스의 분광기를 사용해 빛을 분석했고, 결국 두 개의 블랙홀을 품은 퀘이사 쌍임을 확인했다 또한 둘 사이에 가스로 이어진 다리 구조도 찾아냈다. 연구팀은 감지된 빛의 일부가 실제로 퀘이사 자체에서 나오는 것이 아니라고 추정했다. 팀은 또한 중앙에 있는 두 개의 블랙홀이 태양 질량의 약 1억 배에 달하는 크기임을 밝혔다. 발견된 현상을 종합해 보면 두 퀘이사는 대규모의 합병을 진행하고 있음을 시사했다. 재이온화 시대의 병합 퀘이사 존재는 오랫동안 예상돼 왔지만, 이번에 처음으로 확인된 순간이었다.
-
- IT/바이오
-
[우주의 속삭임(19)] 우주의 새벽에 최초로 병합되는 은하핵 '퀘이사 쌍' 발견
-
-
[우주의 속삭임(13)] 느린 태양풍의 미스터리, 태양 궤도 우주선 '솔라 오비터'가 밝혀
- 태양 궤도선 솔라 오비터(Solar Orbiter) 우주선의 첫 번째 태양 근접 여행으로 수집된 데이터에를 통해 느린 태양풍의 신비한 미스터리가 풀릴 실마리가 밝혀졌다고 전문 매체 PHYS가 전했다. 초당 수백 킬로미터의 속도로 이동하는 태양풍은 수년 동안 과학자들의 연구 대상이었다. 그런데 '네이처 천문학지(Nature Astronomy)'에 발표된 최근의 연구에서 마침내 태양풍이 어떻게 형성되는지가 밝혀졌다는 것이다. 이 연구는 영국 노섬브리아 대학교 스테판 야들리 박사팀이 수행했다. 태양풍은 전하를 띠는 플라즈마 입자가 태양에서 우주로 계속 유출되는 것을 말한다. 바람은 초속 500km을 기준으로, 그 이상일 경우 '빠름'으로, 그 미만을 '느림'으로 규정한다. 태양풍이 지구까지 날아와 대기에 부딪히면 북극광으로 알려진 오로라가 나타난다. 그러나 더 많은 양의 플라즈마가 코로나 질량 방출의 형태로 방사되면 위험할 수 있으며, 위성과 통신 시스템에 심각한 손상을 초래할 수 있다. 수십 년 동안의 관찰에도 불구하고, 태양이 태양풍 플라즈마를 태양계로 방출, 가속 및 이동시키는 원인과 메커니즘, 특히 느린 태양풍에 대해서는 제대로 규명되지 않았다. 지난 2020년 유럽우주국(ESA)은 나사(NASA)의 지원을 받아 태양 궤도선 임무를 시작했다. 이 임무의 주요 목표 중 하나는 태양의 가장 가깝고 상세한 이미지를 포착하는 것 외에도, 태양풍을 측정해 분석하는 것이었다. 이를 위해 쏘아 올려진 솔라 오비터 우주선에는 10개의 서로 다른 과학 장비가 탑재됐다. 일부는 우주선을 통과할 때 태양풍 샘플을 현장에서 수집하고 분석하며 원격 감지도 수행한다. 태양 표면 활동에 대한 고품질 이미지를 캡처하도록 설계된 장비다. 연구팀은 솔라 오비터가 촬영한 사진과 기기 데이터를 결합함으로써 처음으로 느린 태양풍이 어디서 발생하는지 더 명확하게 식별하는 데 성공했다. 연구팀은 "우주선이 현장에서 측정한 태양풍 흐름의 변동성은 우리에게 그 근원에 대한 많은 정보를 제공했다. 태양에 가까이 접근함으로써 태양풍의 복잡한 특성을 포착할 수 있었으며, 태양풍의 기원과 복잡성이 발생 지역의 변화에 따라 어떻게 변화하는지에 대한 그림을 얻을 수 있었다"고 밝혔다. 연구팀은 빠른 태양풍과 느린 태양풍의 속도 차이가 태양풍의 기원이 되는 대기의 가장 바깥층인 코로나의 영역이 다르기 때문이라고 추정했다. 개방형 코로나는 자기장 선의 한쪽 끝이 태양에 고정되고 다른 쪽 끝은 우주로 뻗어나가 플라즈마와 같은 우주 물질이 우주로 나갈 수 있는 고속도로를 만드는 영역을 말한다. 이는 빠른 태양풍의 근원지로 여겨진다. 반대로 폐쇄형 코로나는 태양의 자기장 선이 닫혀 있는 영역을 의미한다. 태양 표면의 양쪽 끝이 연결되어 닫혀 있다는 뜻이다. 이는 자기 활성 영역 위에 형성되는 크고 밝은 루프로 볼 수 있다. 때로는 닫힌 자기 루프가 끊어지는 현상이 발생하고 끊어진 루프가 다시 연결되는 사이에 짧은 시간차가 발생하고, 그 사이에 플라즈마가 탈출하게 된다. 이는 개방형 코로나와 폐쇄형 코로나가 만나는 지역에서 발생한다. 솔라 오비터의 미션 중 하나는 느린 태양풍이 폐쇄형 코로나에서 발생하고, 자기장 선이 끊어지고 다시 연결되는 과정을 통해 우주로 탈출할 수 있다는 이론을 테스트하는 것이었다. 태양풍의 구성을 측정하는 방법을 통해서다. 태양 물질에 포함된 중이온의 조합은 그것이 어디서 유래되었는지에 따라 달라진다. 연구팀은 솔라 오비터에 탑재된 장비를 사용해 태양 표면에서 일어나는 활동을 분석한 후 이를 우주선이 수집한 태양풍 흐름과 대비했다. 솔라 오비터가 포착한 태양 표면의 이미지를 사용해 연구팀은 느린 태양풍의 흐름이 열린 코로나와 닫힌 코로나가 만나는 지역에서 발생했다는 것을 정확히 찾아낼 수 있었다. 결국 끊어지고 다시 연결되는 과정을 통해 느린 태양풍이 닫힌 자기장에서 벗어날 수 있다는 이론을 증명했다. 야들리 박사는 "솔라 오비터에서 측정한 태양풍의 다양한 구성은 코로나 소스 전체의 구성 변화와 일치했다. 코로나의 폐쇄 루프와 개방 루프 사이에서 발생하는 재연결 과정에서 발생한다는 강력한 증거를 제공했다"고 설명했다. 이로써 태양풍의 기원을 구체적으로 연구할 수 있는 길을 열어줄 것이라는 기대다.
-
- IT/바이오
-
[우주의 속삭임(13)] 느린 태양풍의 미스터리, 태양 궤도 우주선 '솔라 오비터'가 밝혀
-
-
똑똑한 까마귀…숫자까지 알아보고 큰 소리로 센다고?
- 까마귀가 창의적이고 지능적인 새라는 사실은 이미 비밀이 아니다. 여러 연구를 통해 까마귀가 대단히 똑똑하다는 결과가 발표됐다. 그런데 이번에 새로 발견된 까마귀의 숫자를 세는 능력은 사람들을 더욱 놀라게 하기에 충분하다고 PHYS, 사이언스얼러트 등이 전했다. 독일 튀빙겐 대학 신경생물학 연구소의 안드레아스 니더 교수와 다이애나 A. 리아오 박사가 주도하고 카타리나 F. 브레히트 박사, 레나 베이트 교수 등이 참가한 연구팀이 행동 실험을 통해 까마귀가 소리를 내 숫자를 셀 수 있다는 사실을 보여주었다. 꿀벌 등 다른 동물이나 곤충이 숫자를 이해하는 능력을 보인 경우는 있지만, 이번 까마귀 실험에서처럼 인간 이외의 다른 종이 구체적인 숫자를 읽을 수 있는 능력을 발휘한 경우는 없었다고 한다. 까마귀에게 숫자로 3이 써진 판을 보여주면 까마귀는 10초 이내에 "깍, 깍, 깍" 하고 세 번을 외친다. 그 다음 그 판으로 다가가 부리로 판을 쫀다. 그렇게 하면 성공으로 간주하는 데, 이를 까마귀가 수행했다는 것이다. 연구팀은 "어떤 목적을 가지고 특정한 숫자를 외치려면 숫자 인식 능력과 발성을 제어하는 정교한 조합이 필요한데 까마귀는 그 조합이 가능한 것으로 보인다"라고 썼다. 보고서는 "이러한 능력이 인간 이외의 동물에 존재하는지 여부는 아직 알려져 있지 않다. 그런데 행동 실험에서 까마귀는 숫자에 반응해 1~4개의 다양한 발성을 정확하게 만들어 낼 수 있음을 보여주었다"고 밝혔다. 큰 소리로 셀 수 있는 능력은 숫자를 이해하는 능력과 다르다. 숫자의 이해뿐만 아니라 의사소통을 목적으로 하는 의도적인 발성 조절도 필요하다. 인간은 말을 사용해 숫자를 세고 전달하는데, 이는 어릴 때부터 배우는 능력이다. 기호 계산의 생물학적 기원은 알려져 있지 않지만 까마귀는 0과 같은 어려운 수치 개념을 이해하는 것으로 알려져 있다. 이에 착안해 연구팀은 세 마리의 캐리온 까마귀(중간 정도 크기의 까마귀 종류)를 대상으로 연구를 수행했다. 까마귀들에게는 1~4까지의 임의의 아라비아 숫자를 보거나 오디오 신호를 듣고 숫자에 해당하는 만큼의 소리를 외치도록 훈련했다. 까마귀들은 필요한 수 만큼 울고 숫자판을 쪼아 작업이 끝났음을 스스로 선언해 마무리해야 했다. 놀랍게도 까마귀 세 마리 모두 신호에 반응해 정확한 수의 소리를 외쳤다. 간헐적으로 오류가 발생했는데 숫자가 너무 많거나 너무 적을 때 발생했다. 숫자 발성은 쪼거나 머리를 움직이는 것보다 훨씬 어렵고 반응 시간이 더욱 길다. 그래서 까마귀가 이 정도의 성취를 보여 준 것은 대단히 인상적이라는 분석이다. 연구팀은 어린 유아가 숫자를 세는 방식과 유사하다고 말했다. 연구팀은 까마귀의 이런 능력은 야생 조류 세계에서 지금까지 알려지지 않았던 의사 소통 채널일 수도 있다고 추정했다. 예를 들어 특정한 숫자나 독특한 외침은 자신들을 위협하는 포식자가 접근하고 있음을 경고할 때 내는 소리일 수 있다는 것이다. 연구진은 논문에서 "우리의 행동 실험 결과는 까마귀가 인간과 동물이 공유하는 비기호 숫자 추정 시스템을 사용해 지시된 수의 발성을 유연하고 의도적으로 생성할 수 있음을 보여준다“라고 썼다. 이 연구는 '사이언스(Science)' 지에 게재됐다.
-
- IT/바이오
-
똑똑한 까마귀…숫자까지 알아보고 큰 소리로 센다고?
-
-
[우주의 속삭임(10)] 우주 최초의 은하 탄생, 처음으로 관측
- 제임스 웹 우주 망원경을 통해 130억 년 이상 전에 우주에서 가장 초기의 은하 세 개가 형성되는 것이 최초로 목격됐다고 PHYS가 전했다. 이는 덴마크 코펜하겐 대학 닐스 보어 연구소(Niels Bohr Institute)가 발견했으며, 학술지 '사이언스(Science)'에 게재됐다. 이 발견은 우주 지식의 중요한 기여로 평가받고 있다. 연구소의 천문학자들은 초기 은하의 발견이 천문학 역사상 처음이며 이 세 은하의 탄생은 133억~134억 년 전에 이루어졌다고 밝혔다. 연구원들은 망원경을 통해 작은 은하가 만들어지는 과정에서 축적되는 대량의 가스가 내보내는 신호를 포착했다. 이론과 컴퓨터 시뮬레이션으로만 알려진 은하 형성 방식이 이번에 실제로 목격된 것이다. 닐스 보어 연구소의 카스퍼 엘름 하인츠 교수는 "이는 천문학자가 관측한 최초의 은하 형성에 대한 '직접적인' 이미지라고 말할 수 있다. 과거 진화 후기 단계에 있는 초기 은하들을 제임스 웹 망원경으로 관측한 적은 있지만, 이번에 은하의 탄생과 우주 최초의 항성 체계의 구축을 목격하는 데 성공했다”고 설명했다. 빅뱅 직후에 탄생한 은하들 연구자들은 세 은하의 탄생이 빅뱅(138억 년 전 대폭발을 통해 우주가 탄생하고 그 이후 계속 팽창하고 있다는 이론) 이후 대략 4억~6억 년 후에 발생한 것으로 추정했다. 4억 년이라고 하면 긴 시간처럼 들리지만, 우주 전체 수명을 138억 년이라고 가정하면 매우 짧은 기간에 해당한다. 빅뱅 직후 우주는 수소 원자로 이루어진 거대하고 불투명한 가스였다. 맑은 날 청정한 밤하늘에 수없이 많이 보이는 별들로 도배되는 오늘날과는 전혀 다른 모습이었다. 관측 보고서는 "빅뱅 이후 수억 년 동안 별과 가스가 은하로 합쳐지기 전, 첫 번째 별이 형성됐는데, 이번 관찰이 그 단계“라고 밝혔다. 은하계의 탄생은 우주 역사상 재이온화기(Epoch of Reionization)로 알려진 시기에 일어났다. 빅뱅 뒤 약 4억 년 쯤 뒤에 수소의 이온화가 이루어진 것. 이때 일부 최초의 은하계 에너지와 빛이 수소 가스를 뚫고 나왔다. 닐스 보어 연구소가 망원경의 적외선 비전을 사용해 포착한 것이 바로 이 대량의 수소 가스다. 이는 현재까지 천문학계가 발견한 별과 은하의 구성 요소인 차가운 중성 수소 가스 중 가장 먼 거리 측정이다. 우주 기원에 대한 이해 높여 이 연구는 하인츠 교수가 연구소의 동료 천문학자들과 협력해 수행했다. 연구소는 새로운 발견을 더욱 확장하고, 은하 형성의 가장 초기 시대에 대한 추가 연구를 위해 제임스 웹 우주 망원경 관측 시간을 확대 신청했다. 연구소는 발견된 최초 은하를 토대로 매핑하는 작업에 착수할 계획이다. 시각적으로 볼 수 있는 우주의 한계를 더욱 확장하겠다는 것. 연구팀은 우주의 첫 생성 순간을 포착한 것 자체가 우주에 대한 지식을 한 차원 끌어올린 것이라고 지적하고, 앞으로도 이를 지속적으로 관찰함으로써 좀 더 많은 해답을 모으고 퍼즐을 맞추어 우주의 기원을 밝히는 데 기여한다는 방침이다.
-
- IT/바이오
-
[우주의 속삭임(10)] 우주 최초의 은하 탄생, 처음으로 관측
-
-
고대 생명나무 바오밥나무, 그 신비가 풀렸다
- 바오밥나무의 기원에 관한 미스터리가 풀렸다. DNA 연구에 따른 결과다. 이 연구는 중국 우한 식물원, 영국 큐의 왕립 식물원, 마다가스카르의 안타나나리보 대학교 및 런던 퀸 메리 대학교의 협력으로 수행됐으며, 연구 결과는 학술지 '네이처'에 발표됐다고 영국 BBC 방송이 보도했다. '고대 생명나무'라 불리는 바오밥나무는 2100만 년 전 마다가스카르에서 처음 나타났다. 바오밥나무 씨앗은 이곳에서 해류를 타고 호주와 아프리카 본토로 운반돼 독특한 종으로 진화했다. 아프리카에서는 씨와 잎을 식량 자원으로 이용한다. 그러나 바오밥나무는 현재 멸종 위기에 처해 있다. 연구팀은 이 나무를 보호하기 위한 더욱 적극적인 노력이 필요하다고 강하게 요구하고 있다. 바오밥나무는 둥치가 큰 북 모양으로 비대하고, 높이는 20m에 달하며, 수관 지름이 10m에 달하는 특이한 모양으로 쉽게 구별되며 수명도 길기 때문에 '생명의 나무(the tree of life)' 또는 '거꾸로 선 나무(upside down tree)', 숲의 어머니(mother of the forest)'로 알려져 있다. 이들은 기후 변화와 광범위한 산림 벌채로 인해 생사의 기로에 서 있다. 남편인 런던 퀸 메리 대학교의 앤드류 리치 교수와 함께 연구에 참여한 큐 왕립식물원의 일리아 리치 박사는 BBC와의 인터뷰에서 "우리는 다양한 동식물의 생태계를 유지하는 핵심이자 상징적인 종인 바오밥나무의 기원을 정확히 찾아낼 수 있었다"라고 말했다. 그녀는 "이번 연구에서 취득한 데이터를 통해 우리는 바오밥나무를 보호하기 위한 정보와 지식을 제공할 수 있다“고 덧붙였다. 연구팀은 이번에 바오밥나무 8종을 대상으로 분석을 진행했다. 그중 6종은 마다가스카르에서 발견되었으며, 1종은 아프리카 전역에, 1종은 호주 북서부에 널리 퍼져 있다. 네이처에 따르면 자구 상에 퍼져있는 바오밥나무는 모두 아프키카 섬나라 마다가스카르에서 왔다. 바오밥나무 중에서 가장 작은 종은 16피트(약 4.87m)까지 자라며, 가장 키가 큰 나무는 82피트(약 25m)까지 자란다. 팀은 마다가스카르의 바오밥나무 중 가장 큰 자이언트 바오밥나무를 포함해 멸종 위기에 처한 마다가스카르 소재 2종에 대해 더 높은 보전 등급을 부여할 것을 요구했다. 그러면서 바오밥나무의 가치에 대해 지구상에서 가장 놀라운 나무 중 하나이며 지역 문화 및 전통과 깊이 얽혀 있다고 높이 평가했다. 이 나무는 수천 년 동안 살 수 있으며, 거대한 크기로 자라고, 건기(최대 9개월)에도 생존할 수 있도록 줄기에 많은 양의 물을 저장한다. 바오밥나무 열매는 슈퍼 푸드로 간주되며, 줄기는 밧줄이나 옷에 사용되는 섬유를 만드는 데 사용된다. 나무는 해질녘에 큰 흰색 꽃을 피운다. 수분 매개자는 박쥐다. 어둠 속에서 움직이는 박쥐의 생태를 감안해 저녁 무렵에 꽃을 피우는 것이다. 박쥐는 바오밥나무 꽃의 꿀을 따먹기 위해 먼 거리를 이동하며, 바오밥나무 자체는 새들의 중요한 보금자리이기도 하다. CBS에 따르면 연구팀은 기후변화가 마다가스카르에 기반을 둔 종 중 하나에 심각한 위협을 가할 것이며, 이는 2080년 이전에 멸종하게 만들 수 있음을 시사한다고 우려했다. 샌디에고 동물원 야생동물 연합은 또한 남부 아프리카에서 바오밥나무의 죽음이 급증하고 있음을 주목했다. 이들은 "대륙에서 가장 큰 바오밥나무 13개 중에서 9개가 쓰러져 죽었다"며 "원인은 불분명하지만 과학자들은 지구의 기후 변화가 이 나무의 멸종에 영향을 미칠 수 있다고 의심하고 있다"고 말했다.
-
- 포커스온
-
고대 생명나무 바오밥나무, 그 신비가 풀렸다
-
-
[먹을까? 말까?(14)] 사과사이다 식초, 체중 조절 효과⋯치아 애나멜 침식·식도 손상 등 부작용
- 사과 사이다 식초가 체중 조절 효과가 있지만 과도하게 섭취할 경우 치아 에나멜(법랑질)을 침식하고 목을 상하게 하는 것으로 밝혀졌다고 씨넷이 전했다. 식초는 기원전 5000년 이상 전부터 사용되어 온 오랜 역사를 가진 식품으로 보존료, 향미제, 피클이나 장아찌 등의 절임 재료, 약으로 사용됐다. 특히 이집트, 중국, 그리스 등에서 건강 유지 보조제로 활용됐다. 사과 사이다 식초란? 사과 사이다 식초(Apple Cider Vinegar, 일명 '애사비')는 사과 주스를 발효시켜 만든 식초의 한 종류다. 사과사이다 식초는 사과와 설탕, 효모를 혼합하여 발효시켜 만든다. 먼저 사과를 갈아 주스를 만들고, 이 주스를 효모와 함께 발효시켜 알코올로 변환한다. 그 후, 박테리아를 이용해 이 알코올을 초산으로 변환시키면 사과 사이다 식초가 완성된다. 발효 과정에서 효모가 설탕을 분해하여 알코올을 생성하고, 그 후 박테리아가 알코올을 아세트산으로 변환시켜 사과 사이다 식초 특유의 독특한 냄새와 맛이 형성된다. 이 아세트 산은 건강에 도움이 되는 다양한 성분을 함유하고 있다. 사과 사이다 식초는 특유의 신맛과 강한 향을 가지고 있으며, 여러 용도로 사용된다. 일반적으로 요리에 사용되며, 샐러드 드레싱이나 소스를 만들때 자주 들어간다. 또한, 건강 보조제로도 인기가 많아, 일부 사람들은 체중 감량, 혈당 조절, 소화 개선 등을 위해 소량을 물에 희석해 마시기도 한다. 뿐만 아니라, 피부 관리나 머리카락 세정 등 미용 목적으로도 사용된다. 사과 사이다 식초는 여과해서 저온 살균처리한 투명한 제품과 미생물 덩어리가 남아있는 탁한 제품의 생 사과 사이다 식초 두 가지 종류가 있다. 식초 병 바닥에 모이는 흐린 침전물은 박테리아와 효모의 조합인 '모체'다. 일부에서는 모체에 미량의 건강한 박테리아와 프로바이오틱스가 함유되어 있어 건강상의 이점을 제공하는 것으로 추정하고 있다. 사과사이다 식초는 항균 및 항산화 특성을 가지고 있으며, 일부 연구에서는 미생물 덩어리가 건강에 도움이 되는 프로바이오틱스를 함유하고 있다고 추측한다. 사과 사이다 식초의 잠재적 이점 아직 더 많은 연구가 필요하지만, 일부 연구 결과에 따르면 사과 사이다 식초는 특정 건강 문제 개선과 체중 조절에 도움이 될 수 있다. 사과 사이다 식초는 체중 감량, 제2형 당뇨병, 혈당 및 콜레스테롤 조절에 도움이 될 수 있으며 음식에서 유해한 박테리아의 번식을 예방할 수 있다. ◇혈당 조절 및 당뇨 관리 미국 질병통제예방센터에 따르면 당뇨병 환자의 최대 95%가 제2형 당뇨병을 앓고 있다고 한다. 제2형 당뇨병은 인슐린 저항성 또는 인슐린 생성 부족으로 인해 발생한다. 연구에 따르면 사과 사이다 식초는 인슐린 반응을 개선하고 식후 혈당 수치를 낮출 수 있다고 한다. 잠들기 전에 사과 사이다 식초를 섭취하면 기상 후 공복 혈당도 감소하는 것으로 나타났다. 그러나 당뇨병, 특히 당뇨병 치료제를 복용하고 있는 경우 사과 사이다 식초를 섭취하기 전에 반드시 의사와 상담하는 것이 좋다. ◇ 유해균 제거 효과 식초는 천연 살균제로 알려져 있으며 스태피로코쿠스균, 칸디다균과 같은 미생물을 제거하는 데 효과적이다. 사과 사이다 식초의 아세트산은 대장균, 노로바이러스 등의 번식을 억제하여 식중독을 예방하는 데 도움이 된다. 식초는 대장균과 노로바이러스가 음식에서 자라는 것을 방지할 수 있기 때문에 한국에서 인기 있는 보존제로 사용된다. 대장균은 섭취 시 식중독을 일으킬 수 있지만 사과 사이다 식초의 아세트산 살균 효과로 식중독을 예방할 수 있다. ◇ 체중 감소 사과사이다 식초는 식전 또는 식사 중 섭취 시 포만감을 증가시켜 체중 조절에 도움이 된다는 연구 결과가 있다. 연구에 따르면 식사와 함께 사과사이다 식초를 섭취한 사람들은 하루 200~275kcal 정도 더 적게 섭취한 것으로 나타났다. 3개월 동안 하루 1~2큰술의 사과사이다 식초를 섭취한 사람들은 최대 3.7파운드(약 1.7kg)의 체중 감소와 체지방 감소 효과를 보였다. ◇ 콜레스테롤 수치 개선 높은 콜레스터롤과 중성지방(트리글리세리드) 수치는 심장질환의 위험을 증가시킬 수 있다. 하루 최대 30ml의 사과사이다 식초를 저칼로리 식단과 함께 섭취하면 총 콜레스테롤과 중성지방 수치를 낮추는 동시에 HDL '좋은' 콜레스터롤 수치를 높이는 데 도움이 될 수 있다. 제2형 당뇨병 환자도 식단에 14.17g(0.5온스)의 사과 사이다 식초를 추가하면 총 콜레스테롤과 중성지방 수치에 긍정적인 결과를 볼 수 있다. 사과 사이다 식초 부작용 사과 사이다 식초는 이점이 있지만 메스꺼움이나 구토를 유발하는 등 잠재적인 부작용도 있다. 게다가 식초의 높은 산성도는 치아 에나멜을 침식할 수 있다. 한번 벗겨진 치아 에나멜은 복구되지 않는다. 또한 식초를 희석하지 않고 마시는 경우 식도 또는 인후에 손상을 입힐 수 있다. 또한 저칼륨혈증(칼륨 수치 저하)을 유발할 수 있다. 이뇨제, 인슐린 및 기타 약물과 상호작용할 수 있다. 사과 사이다 식초를 물이나 주스에 타서 마시면 목과 치아 손상 위험도 줄일 수 있다. 1~2스푼을 물이나 주스에 섞어 마시면 배탈을 완화시킬 수도 있다. 사과 사이다 식초 복용량 사과 사이다 식초의 복용량은 사용 목적에 따라 다르다. 권장량은 일반적으로 2티스푼에서 2테이블스푼이다. 사과 사이다 식초를 마시고 싶다면 물이나 좋아하는 주스나 차에 희석하여 마시면 된다. 드레싱이나 마요네즈를 직접 만들 때 섞어 먹을 수도 있다. 피부 트러블을 위해 목욕에 한두 컵을 넣을 수도 있다. 사과사이다 식초 한 스푼과 물 한 컵을 섞은 다음 거즈나 면을 용액에 적셔 습포를 만들에서 사용할 수 있다. 사과 사이다 식초를 헤어 린스로 사용하려면 물 한 컵에 최대 2큰술을 섞은 다음 샴푸 후 모발에 부어준 뒤. 5분 정도 기다렸다가 헹구어 준다. 사과 사이다 식초는 두피를 자극할 수 있으므로 약하게 희석해서 사용하는 것이 좋다. 일부 연구에서 사과 사이다 식초의 효능이 밝혀졌지만, 사과 사이다 식초의 효능이 얼마나 유익한지 확실히 증명하려면 더 많은 연구가 필요하다. 다른 자연 요법과 마찬가지로 사과 사이다 식초를 복용하기 전에 의사와 상담하고 피부에 사용하기 전에 피부 테스트를 해야 한다. 여기서 있는 사과 식초 사이다에 대한 내용은 교육 및 정보 제공 목적으로만 제공되며 건강 또는 의학적 조언이 아니다. 건강 상태나 건강 목표에 대해 궁금한 점이 있으면 반드시 의사나 기타 자격을 갖춘 의료 전문가와 상담해야 한다.
-
- 생활경제
-
[먹을까? 말까?(14)] 사과사이다 식초, 체중 조절 효과⋯치아 애나멜 침식·식도 손상 등 부작용
-
-
[신소재 신기술(32)] 획기적인 '종이 기반' 배터리 개발⋯"식물에서 영감 얻어"
- 일본에서 희귀 금속이 필요 없는 종이 기반의 물로 활성화되는 배터리가 개발됐다. 일본 도호쿠대학(東北大學)의 재료연구소(AIMR) 연구진은 GPS 센서나 맥박 산소 측정기 센서에 사용할 수 있는 종이 기반의 고성능 마그네슘-공기(Mg-air) 배터리를 개발했다고 오일 프라이스가 14일(현지시간) 보도했다. 이변 연구는 종이의 재활용성과 가벼운 특성을 활용해 보다 환경 친화적인 에너지원으로 발전할 수 있는 가능성을 제시했다. 연구 보고서 논문 '희귀 금속이 없는 고성능 물 활성화 종이 배터리: 웨어러블 센싱 장치를 위한 일회용 에너지원'은 'RSC 인터페이스 응용(RSC Applied Interfaces)' 저널에 게재됐다. 종이는 지난 2000년 동안 인류 문명의 필수품이었다. 종이는 일반적으로 중국 후한 시대 105년 경에 채륜이 발명했다고 알려져 있다. 하지만 최근 중국에서 기원전 2세기 경으로 거슬러 올라가는 종이가 발견되기도 해 종이의 정확한 기원은 알 수가 없다. 글 쓰기를 통해 그동안 인류 역사를 기록해온 종이가 이제는 배터리에 활용돼 친환경적인 미래를 여는 중요한 역할을 하게 됐다. 가볍고 얇은 종이 기반 디바이스는 금속이나 플라스틱 소재에 대한 의존도를 낮추는 동시에 폐기하기도 더 쉽다. 이 연구의 교신 저자인 히로시 야부(Hiroshi Yabu) 교수는 "우리는 식물의 호흡 메커니즘에서 이 장치에 대한 영감을 얻었다"고 말했다. 야부 교수는 "광합성은 배터리의 충전 및 방전 과정과 유사하다. 식물이 태양 에너지를 이용해 땅의 물에서 설탕을, 공기에서 이산화탄소를 합성하는 것처럼, 우리 배터리는 마그네슘을 기질로 활용해 산소와 물에서 전력을 생성한다"고 설명했다. 연구팀은 배터리를 제작하기 위해 마그네슘 호일을 종이에 접착하고 음극 촉매와 가스 확산층을 종이 반대편에 직접 추가했다. 종이 배터리는 1.8V(볼트)의 개방 회로 전압, 100mA/cm²의 1.0V 전류 밀도, 103mA/cm²의 최대 출력을 달성했다. 야부 교수는 " 이 배터리는 인상적인 성능 결과를 보여줬을 뿐 아니라 독성 물질을 사용하지 않고 엄격한 평가를 통과한 탄소 음극과 안료 전기 촉매를 사용해서 작동한다"라고 덧붙였다. 연구팀은 맥박 산소 측정기 센서와 GPS 센서에서 이 배터리를 테스트해 웨어러블 디바이스에 대한 다용도성을 입증했다.
-
- 포커스온
-
[신소재 신기술(32)] 획기적인 '종이 기반' 배터리 개발⋯"식물에서 영감 얻어"
-
-
지구 700km 지하에서 해양 전체 부피 3배의 거대한 바다 발견
- 미국 일리노이 주 에번스턴에 있는 노스웨스턴 대학 연구팀이 지하 깊은 곳에 존재하는 거대한 바다를 발견해 주목된다고 글로벌 소식을 전하는 위오뉴스(WION)와 WECB등 다수 외신이 전했다. 발견된 지하 바다는 지구 전체 해양 부피의 3배에 달하는 거대한 것이었으며, 지구 각지의 지하수원 역할도 하는 것으로 나타났다. 거대 해양은 무려 지상에서 700km나 깊은 곳에 위치해 있었다. 보도에 따르면 지구에 존재하는 물의 기원을 찾으려는 연구를 통해 연구팀은 지표면 아래로 700km 이상, 지구 맨틀 내에 거대한 바다가 자리잡고 있다는 획기적인 사실을 발견하게 됐다고 한다. 지금까지 숨겨졌던 바다는 지하 깊은 곳 링우다이트(Ringwoodite)로 알려진 푸른 암석 밑에 잠겨 있었다. 연구팀은 이 지하 바다를 통해 지구의 물이 어디서 왔는지를 이해할 수 있다고 밝혔다. 해양의 모든 바닷물 합계의 3배에 달한다는 엄청난 규모가 놀라움을 더한다고 연구팀은 말했다. 새로운 발견은 거대한 규모의 경이로움뿐 아니라, 지구의 물 순환에 대한 새로운 이론이 만들어질 가능성도 있음을 시사한다. 일부 이론이 주장하는 것처럼 혜성 충돌에서 그 기원을 찾는 대신, 지구의 바다가 지하 중심부에서 서서히 스며 나왔을 수 있다는 것이다. 발견 뒤에 숨겨진 과학 연구팀을 이끈 노스웨스턴 대학 스티븐 제이콥슨 박사는 지하 바다의 발견은 지구상의 물이 외부가 아닌 내부에서 유래됐다는 실질적인 증거라고 주장했다. 지하 바다를 발견하기 위해 연구원들은 미국 전역에서 2000개의 지진계를 사용하여 500회 이상의 지진에서 발생하는 지진파를 분석했다. 핵을 포함한 지구의 내부 층을 통과하는 파장은 젖은 암석을 통과할 때 속도가 느려지게 되고, 과학자들은 이 과정에서 광대한 물 퇴적물의 존재를 가정할 수 있었다고 한다. 재해석된 지구의 물 순환 지구 맨틀에 물이 존재하고 암석 알갱이 사이에 수액이 흘렀을 가능성은 지구의 물 순환에 대한 우리의 인식에 근본적 변화를 가져다 준다. 제이콥슨은 이 저수지의 중요성을 강조하면서, 저수지가 없었다면 물은 모두 지구 표면에만 존재할 것이며 눈에 보이는 유일한 땅은 산봉우리뿐일 수 있다고 주장했다. 이러한 혁신적인 발견을 통해 연구팀은 맨틀이 녹는 것이 흔한 일인지 확인하기 위해 전 세계에서 더 많은 지진 데이터를 수집하는 데 열중하고 있다. 그들의 발견은 지구상의 물 순환에 대한 우리의 인식에 혁명을 일으키고, 지구의 가장 근본적인 과정 중 하나에 대한 새로운 가능성을 제공하고 있다.
-
- IT/바이오
-
지구 700km 지하에서 해양 전체 부피 3배의 거대한 바다 발견
-
-
[신소재 신기술(21)] 홍게껍질로 반도체 및 에너지 저장 기능 갖춘 나노시트 개발
- 일본 과학자들이 홍게의 껍질에 포함된 키토산으로 만든 나노섬유에서 반도체와 에너지 저장 특성을 발견했다. 26일(이하 현지시간) 뉴스마이네비에 따르면 일본 도호쿠대학(東北大學) 연구팀은 홍게 껍질에 포함된 불용성 식이섬유의 일종인 '키토산'으로 만든 나노섬유(ChNF) 조직을 제어해 만든 나노미터 두께의 시트 소재에서 반도체 특성과 에너지 저장 특성을 나타내는 것을 발견했다고 25일 밝혔다. 이번 성과는 도호쿠대 미래과학기술공동연구센터 후쿠하라 미키오 학술연구원, 동 대학 하시타 토시유키 특임교수, 도쿄대 이소카이 아키라 특임교수 등의 공동연구팀에 의해 이루어졌다. 연구 결과는 미국 물리학 협회에서 발행하는 학술지 'AIP-Advances'에 게재됐다. 이번 연구는 친환경적인 반도체와 에너지 저장 소재 개발에 기여할 것으로 기대된다. 반도체는 실리콘으로 대표되는 원소 반도체와 갈륨비소(GaAs) 및 '파이(π) 공액 고분자'와 같은 화합물 반도체로 크게 두 가지로 분류된다. 두 반도체 모두 광물이나 인공 화합물에서 금속을 정제해 만드는데, 생산 과정에서 많은 양의 에너지가 필요하고 환경에 미치는 영향이 크다. 연구팀은 절연체로 인식되는 종이와 셀룰로오스의 나노 크기 미세 구조체인 케나프 식물에서 추출한 셀룰로오스 나노섬유(Cellulose Nanofibers·CNF)를 이용해 전하 분포와 전자 이동을 측정했다. 그 결과, '템포 산화 CNF(TEMPO-oxidized CNF, TEMPO 촉매를 사용해 산화 처리된 셀룰로오스 나노섬유)'는 고전압 단시간 충전 특성을, CNF는 n형 음의 저항을 나타내는 n형 반도체의 다양한 특성을 발견했다. 이 연구에서는 식물 셀룰로오스와 분자 구조가 유사하고 지구상에서 두 번째로 풍부한 바이오매스 화합물인 동물성 키토산에 초점을 맞췄다. 연구팀에 따르면, 키토산에는 케나프(CNF)에서 발현되지 못했던 고속 충전 특성이 발견됨과 동시에 액체 누출 등의 문제를 극복할 수 있는 고체형 축전지를 제공할 수 있는 잠재력을 가지고 있는 것으로 밝혀졌다. 또한 키토산과 같은 자연 유래의 해양 바이오매스 소재를 반도체, 에너지 저장 분야에 활용할 수 있다면 폐기물을 줄여 자원순환형 사회 조성에 기여할 수 있다. 이번 연구에서는 홍게 껍질로 만든 키토산 나노섬유(ChNF)를 대표적인 동물성 소재로 활용하고, 섬유 길이를 300nm 이하로 제어한 ChNF 시트에 Al 전극을 부착한 소자를 제작했다. ChNF 시트 소자의 I(전류)-V(전압) 특성, AC(교류) 임피던스, 주파수 분석, 축전성을 측정한 결과, 전압 제어에 의한 전압 유도 반도체와 같은 특성이 나타나는 것을 확인했다. 또한, ChNF 시트의 -210~+80V 범위에서 동작 속도 1.24V/s의 승강 전압에 대한 I-V 특성에서 음전압 영역에서 전류의 전압 의존성이 역전되는 거동, 이른바 n형 반도체 특성을 보였다. 즉, I-V 특성은 옴의 법칙을 따르지 않고, 전압 상승에 따라 일정 전압 이상에서 전류가 감소하는 음극 저항이 발현된 것이다. 반면, R(저항)-V(전압) 특성을 분석한 결과, 승압 -1V~0V, 강압 +2V~0V 사이에서 3자리 스위칭 효과를 보이는 특성이 관찰됐다. 또한 10~500V에서 2mA의 전류로 5초간 충전한 후 1μA의 정전류로 방전했을 때 충전 전압 대비 저장 용량의 변화를 조사한 결과, 전압 증가에 따라 저장 용량이 선형적으로 증가하며 450V부터 급격히 증가하는 것으로 나타났다. 다음으로 ChNF 시트의 AC 임피던스 특성을 측정한 결과, 저저항과 고저항의 두 개의 반원을 가진 나이키스트 선도(The Nyquist diagram)를 얻었다. 두 개의 반원은 원자간력 현미경 이미지 관찰을 통해 각각 120~350nm의 바늘 모양과 구형으로 이루어진 갑각류 외골격과 세포벽 조직의 기여하는 것으로 추론했다, 이 나이키스트 선도의 특성으로부터 ChNF 시트는 직류와 교류 영역에서 동일한 회로를 가질수 있음을 시사했다. 연구팀은 또한, 반도체 특성의 전자의 기원을 규명하기 위해 ESR 분석을 시도했다. 전자의 기원을 결정하는 단수 대칭의 피크를 관찰했고, 스펙트럼 강도의 선도가 횡축과 교차하는 자기장의 g값을 통해 키토산의 생성 전자는 비정질 키토산에서 발생하는 아미닐 라디칼(NH¯₂)에서 생성된 전자임을 확인했다. 연구팀은 이번 성과에 대해 "저밀도 경량 반도체 및 에너지 저장 장치 제작을 통해 천연 유래의 바이오 소재 자원을 활용함으로써 지구의 생물 순환 시스템을 활용한 바이오 일렉트로닉스가 발전할 수 있을 것으로 기대한다"고 밝혔다.
-
- 포커스온
-
[신소재 신기술(21)] 홍게껍질로 반도체 및 에너지 저장 기능 갖춘 나노시트 개발
-
-
제임스 웹 우주망원경, 원시 별에서 에탄올과 얼음 성분 발견
- 제임스웹 우주 망원경이 행성 형성 초기 단계의 젊은 두 개의 원시별에서 메탄과 아세트산 등 다양한 복합 유기 분자를 발견했다. 웹 스페이스 텔레스콥은 13일(현지시간) 국제 천문학 연구이 미국 항공우주국(NASA·나사)의 제임스 웹 우주망원경을 이용하여 항성 형성 초기 단계인 두 개의 원시 별 IRAS 2A와 IRAS 23385 주변에서 복합 유기 분자(COMs)를 포함한 다양한 얼음 화합물을 발견했다고 밝혔다. 이 연구는 이전의 암흑 성운 연구에서 탐지된 다양한 얼음체 연구를 기반으로 이루어졌다. 연구팀이 웹의 중적외선 망원경(MIRI)을 사용해 검출한 복합 유기 분자에는 에탄올(알코올)과 아세트산(식초의 주성분)이 포함된다. 이는 잠재적으로 생명체가 거주할 수 있는 환경을 형성하는 데 중요한 물질들이다. 이번 연구는 이러한 복합 유기 분자가 얼음 상태에서 형성될 수 있다는 것을 시사하며, 우주에서의 복합 유기 분자 생성 과정에 대한 이해를 넓혀줄 것으로 기대된다. 네덜란드 라이덴 대학교의 팀 리더인 윌 로차(Will Rocha)는 "이 발견은 천체화학의 오랜 질문 중 하나에 기여한다"고 말했다. 로차 박사는 "우주에 존재하는 복잡한 유기 분자, 즉 COM의 기원은 무엇일까? 기체 상에서 만들어질까, 아니면 얼음에서 만들어질까? 얼음에서 COM이 검출된 것은 차가운 먼지 입자 표면의 고체상 화학 반응이 복잡한 종류의 분자를 만들 수 있음을 시사한다"라고 설명했다. 이번 연구에서 고체상에서 검출된 COM을 포함한 여러 COM은, 이전에는 따뜻한 기체상에서 검출되었기 때문에 얼음의 승화에서 비롯된 것으로 추정된다. 승화란 액체가 되지 않고 고체에서 바로 기체로 변하는 것을 말한다. 따라서 천문학자들은 얼음에서 COM을 검출함으로써 우주에 존재하는 다른 더 큰 분자의 기원에 대한 이해를 높일 수 있을 것으로 기대하고 있다. 과학자들은 또한 원시 별 진화의 훨씬 후기 단계에서 이러한 COM이 행성으로 어느 정도까지 운반되는지 탐구하기를 원한다. 차가운 얼음 속의 COM은 따뜻한 기체 분자보다 분자 구름에서 행성을 형성하는 원반으로 운반하기가 더 쉽다고 여겨진다. 따라서 이러한 얼음 COM은 혜성과 소행성에 포함될 수 있으며, 이는 형성되는 행성과 충돌하여 생명체가 번성할 수 있는 재료를 제공할 수 있다. 또한 연구팀은 개미에 쏘였을 때 타는 듯한 느낌을 주는 개미산, 메탄, 포름알데히드, 이산화황 등 더 간단한 분자도 검출했다. 연구에 따르면 이산화황과 같은 황 함유 화합물은 원시 지구의 대사 반응을 주도하는 데 중요한 역할을 했을 가능성이 있다. 특히 연구 대상 중 하나인 저질량 원시 별 IRAS 2A는 우리 태양계의 초기 단계와 유사할 수 있다는 점이 주목할 만하다. 이 원시 별 주변에서 발견된 화합물들은 우리 태양계 형성 초기 단계에 존재했고, 이후 원시 지구로 운반되었을 가능성이 있다. 과학 프로그램의 조정자 중 한 명인 라이덴 대학교의 이원 반 디스호크(Ewine van Dishoeck)는 "이 모든 분자들은 원시 별이 진화함에 따라 얼음 물질이 행성을 형성하는 원반으로 안쪽으로 운반될 때 혜성과 소행성의 일부가 될 수 있으며 결국 새로운 행성계가 될 수 있다"고 말했다. 연구팀은 향후 관측 자료를 통해 우주화학적 진화 과정을 단계별로 더욱 명확하게 규명할 것을 기대하고 있다. 이 연구는 '천문학 및 천체물리학(Astronomy & Astrophysics)' 저널에 게재됐다.
-
- 산업
-
제임스 웹 우주망원경, 원시 별에서 에탄올과 얼음 성분 발견