검색
-
-
지하수 30% 오염, 분해되지 않는 독성 화학물질 기준치 이상 발견
- 과불화화합물(PFAS)이라고 불리는 독성 화학 물질이 국제 규제기관이 허용하는 기준치보다 훨씬 높은 수준으로 전 세계 지표수와 지하수에서 발견되고 있다는 새로운 연구 결과가 나와 주목된다고 CNN이 보도했다. PFAS는 자연 상태에서는 영원히 분해되지 않는 화합물로 Perfluoroalkyl and polyfluoroalkyl substances(퍼플루오로알킬 및 폴리플루오로알킬 물질)의 약자다. 지난 1946년 듀폰이 테플론이라는 이름으로 처음 발표했으며 자연에서 분해되지 않고 결국 인체에 흡수되기 때문에 심각성을 더한다. PFAS는 자연 환경에서 완전히 분해되지 못하기 때문에 '영원한 화학물질'이라고 불린다. 연구에 따르면 오염원이 알려지지 않은 지역에서도 지하수 시료의 31%가 미국 환경보호청이 2023년 3월에 제시한 기준치를 초과했고, 거의 70%가 캐나다 보건부가 정한 기준치를 초과했다. 지하수 시료 31% 기준치 초과 조만간 최종 확정될 것으로 예상되는 미 환경보호국(EPA) 안은 과불화옥탄술폰산(PFOS)과 과불화옥탄산(PFOA) 등 2개의 대표적인 PFAS에 대한 구체적인 한도를 1조분의 4로 설정하는 한편, 이를 대체하기 위해 업계에서 개발한 4가지 화학물질의 혼합물에 대한 새로운 제한도 설정했다. EPA에 따르면 PFOA와 PFOS와 같이 가장 많이 연구된 PFAS 중 일부는 암, 비만, 갑상선 질환, 높은 콜레스테롤, 생식력 감소, 간 손상 및 호르몬 파괴와 같은 심각한 건강 문제를 일으킨다. 미국 국립과학기술원이 2022년 7월 발표한 보고서에 따르면 PFAS에 노출되면 성인과 어린이 모두에서 영유아 및 태아 성장 감소와 백신에 대한 항체 반응 감소가 발생했다. 보고서에 따르면 임산부, 어린이 및 노인과 같은 취약계층에게 일부 새로운 PFAS에서 동일한 건강 영향이 발견되었다. PFAS 및 기타 화학 물질에 대한 노출을 감시하는 소비자 단체 '환경작업그룹'의 과학자인 데이비드 앤드루스는 "이번 보고서는 화학 정책이 실패했다는 점을 강조하고 있으며, PFAS가 전 세계 모든 곳의 물을 오염시킬 정도로 광범위하게 노출되고 있음을 입증하고 있다는 점에서 의미가 크다"고 말했다 . 북극이나 에베레스트에서도 발견 앤드류스는 "이 독성 화학물질은 북극, 에베레스트 산 비탈과 같은 외딴 지역은 물론, 펭귄, 북극곰, 고래, 바다표범 등 다양한 생물종에서 발견됐다"며 "이 화학물질은 제조업체에 의해 방출되고 토양, 공기, 물 등으로 다양하게 흡수되고 퍼지기 때문에 지구촌 어디에나 있을 수밖에 없다”고 강조했다. 지금까지 이루어진 대부분의 PFAS 샘플링이 선진국과 연구원이 밀집된 지역에서 이루어졌기 때문에, 분석 지역을 넓힌다면 훨씬 많은 노출이 드러날 것“이라고 덧붙였다. 미국 국립과학원, 공학원, 의학원의 다른 보고서에 따르면, 미국인의 98%의 혈액에서 다양한 PFAS 화학물질이 검출되었고, 이 물질은 신체의 다른 기관에 수년간 보관될 수도 있다. 그러나 인체 흡수원 중에서 식수는 노출의 약 20%에 불과할 수 있으며, 가장 심각한 원인은 음식, 먼지 및 기타 요인에서 발생한다. 이는 PFAS가 음식 포장지를 비롯한 식품 포장을 포함, 수천 개의 소비자 제품에서 수십 년 동안 사용되었기 때문이다. PFAS는 카펫, 의류 및 가구 등이 얼룩, 물 및 기름에 손상되지 않도록 강화하는 데도 쓰인다. 또는 끈적이지 않는 조리기구, 휴대폰, 상업용 항공기 및 배기가스가 소형 차량 등도 용도에 포함된다. 각계의 우려와 과학자 및 시민단체의 노력으로 2008년 제조업체들은 PFOA와 PFOS의 사용을 단계적으로 중단하겠다고 약속했다. 그러나 독성물질 및 질병 등록기관은 웹사이트에서 "PFOS와 PFOA가 폐지되고 다른 물질로 교체돼도 다른 PFAS에 노출될 수 있다"고 경고한다. 또한 EPA가 2023년 6월 발표한 건강 경보에 따르면 특정 PFAS 화학 물질은 과학자들이 원래 생각했던 것보다 수천 배 낮은 수준으로도 훨씬 더 인간의 건강에 치명적이라는 사실이 드러났다. '네이처 지오사이언스' 저널에 발표된 이 연구는 2004년 이후 전 세계에서 수집된 4만 5000개 이상의 물 샘플에서 사용 가능한 데이터를 수집하고 분석한 결과다. 연구팀을 이끈 시드니 뉴사우스웨일스대 데니스 오코넬 교수는 "생명을 구하는 화재 진압에 쓰이는 엄청난 양의 거품(폼), 매립지, PFAS를 사용하는 제조업, 폐수처리장(하수처리장) 등이 모두 PFAS의 원천”이라고 지적한다. 역삼투압 필터, PFAS 여과에 효과 PFAS는 종류만도 1만 4000개 이상에 달한다. 그러나 검사받는 것은 그 중 극히 일부에 불과하다. 이는 오염의 정도와 그에 따른 인간의 건강에 대한 해악이 현재 알려진 것보다 훨씬 더 광범위할 수 있다는 또 다른 시사점이다. 더 많은 PFAS 검사가 이루어져야 한다는 주장이 제기되는 이유이기도 하다. 주요 도시의 처리장에서는 대부분 PFAS를 여과하고 있다. 새로운 EPA 가이드라인으로 인해 앞으로 3년 이내에 더 많은 처리장이 PFAS를 여과해야 한다. 그러나 미국 지질조사국에 따르면 미국 인구의 약 15%, 즉 4300만 명 이상의 인구가 우물물을 사용하고 있으며, 이는 연방정부의 규제를 받지 않는다. 소비자들은 수도꼭지에 사용할 물 필터를 시중에서 구입해 오염 노출을 피할 수 있다. 정부는 권장 필터 목록도 게시하고 있다. 그 중 PFAS에 가장 효과적인 물 필터는 역삼투압 필터다. 이 필터는 약 200달러로 가격이 비싼 편이다. 역삼투압 필터는 다양한 필터를 통해 물을 강제로 통과시킴으로써 용해된 고체를 포함해 다양한 오염 물질을 제거할 수 있다. 입상 활성탄 필터는 더 일반적이고 비용이 적게 들지만 PFAS에 효과적이지는 않다는 평가다.
-
- IT/바이오
-
지하수 30% 오염, 분해되지 않는 독성 화학물질 기준치 이상 발견
-
-
손소독제 등 가정용 화학용품, 자폐증 유발 가능성 제기
- 손소독제나 세탁 세제 등 개인 위생용품과 가구에서 발견되는 화학물질을 포함한 특정 가정용 화학물질은 뇌 건강에 위험을 초래해 잠재적으로 다발성 경화증과 자폐증을 유발할 수 있다는 연구 결과가 나왔다. 25일(현지시간) 뉴로사이언스뉴스닷컴에 따르면 미국 오하이오주의 케이스 웨스턴 리저브 대학교 의과대학 연구팀은 1800가지 화학물질을 조사한 결과 가구에서 헤어 제품에 이르기까지 다양한 품목에서 발견되는 일반 가정용 화학물질이 다발성 경화증과 자폐 스펙트럼 장애와 관련이 있을 수 있다고 주장했다. 연구팀은 일부 가정용 화학물질이 신경 세포 보호에 필수적인 역할을 하는 뇌의 희소돌기아교세포(올리고덴드로세포·oligodendrocytes)를 손상시킨다는 사실을 규명했다. 생쥐 실험에서 세 가지 4차 화합물 중 하나를 경구 투여한 새끼는 며칠 후 뇌 조직에서 해당 화학 물질이 검출 가능한 수준으로 나타났다. 이는 해당 화합물이 혈류와 뇌 세포 사이의 보호 요새인 혈액 뇌 장벽을 통과할 수 있음을 시사한다. 신경학적 문제는 수백만 명의 사람들에게 영향을 미치지만 유전적 요인만으로 설명할 수 있는 경우는 극히 일부에 불과하다. 이는 알려지지 않은 환경적 요인이 신경 질환의 중요한 원인임을 나타낸다. 이 연구의 수석 연구자인 폴 테사르(Paul Tesar) 도널드 앤드 루스 웨버 굿맨 혁신 치료학 교수 겸 의과대학 신경교과학연구소 소장은 "희소돌기아교세포의 손실은 다발성 경화증 및 기타 신경 질환의 기초가 된다"고 말했다. 테사르 소장은 "이번 연구는 소비자 제품의 특정 화학물질이 희소돌기아교세포에 직접적으로 해를 끼칠 수 있으며, 이는 이전에는 인식되지 않았던 신경 질환의 위험 요인이라는 것을 보여준다"고 설명했다. 1800가지 화학물질 분석 연구팀은 '화학물질이 뇌 건강에 미치는 영향에 대한 철저한 연구가 충분히 이루어지지 않았다'는 전제하에 인간에게 노출될 수 있는 1800여 가지 화학물질을 분석했다. 연구 결과 유기인산계 난연제와 소독제 성분의 제4급 암모늄 화합물 등 두 종류의 가정용 화학물질이 희소돌기아교세포에 더욱 유해한 것으로 밝혀졌다. 유기인산 난연제는 플라스틱의 내연소성을 높이기 위해 추가하는 첨가제다. 특히 제4 암모늄 화합물은 최근 코로나19 대유행과 함께 소독제 사용량 증가로 인해 노출 가능성이 급격히 높아졌다. 연구팀은 이들 화학물질이 희소돌기아교세포의 성숙을 저해하거나 직접 세포 사멸을 유발한다는 사실을 규명했다. 희소돌기아교세포는 뇌 신경 세포를 보호하는 절연막 생성에 중요한 역할을 하는 세포다. 연구팀은 실험실에서 세포 및 오가노이드 시스템을 사용해 제4급 암모늄 화합물이 희소돌기아교세포를 사멸시키는 반면 유기인산염 난연제는 희돌기아교세포의 성숙을 막는다는 것을 보여줬다. 코로나19 후 손소독제 등 사용증가 또한 연구팀은 동일한 화학물질이 생쥐의 발달 중인 뇌에서 희돌기아교세포를 어떻게 손상시키는지 확인했다. 아울러 화학물질 중 하나에 대한 노출이 어린이들의 신경학적 결과 저하와 관련있다는 사실도 밝혀냈다. 소독제인 제4급 암모늄 화합물의 사용이 증가하면서 특히 어린이의 신경학적 결과와 연관된 맥락에서 뇌에 미치는 장기적인 영향에 대한 우려가 커지고 있다. 케이스 웨스턴 리저브 의과대학 의료 과학자 훈련 프로그램의 수석 저자이자 대학원생인 에린 콘(Erin Cohn)은 "우리는 다른 뇌 세포가 아닌 희소돌기아교세포가 제4급 암모늄 화합물과 유기인산염 난연제에 놀랍도록 취약하다는 사실을 발견했다"고 말했다. 콘 연구원은 "이러한 화학 물질에 대한 인간의 노출을 이해하면 일부 신경계 질환이 어떻게 발생하는지에 대한 누락된 연결 고리를 설명하는 데 도움이 될 수 있다"고 설명했다. 연구에서 콘과 동료 연구팀은 2013년부터 2018년까지 미국 CDC의 국민건강영양조사에서 수집한 어린이 소변 샘플에서 한 가지 난연제 대사산물인 BDCIPP의 수순을 연구해 난연제 수치를 분석했다. 3~11세 어린이 1763명 중 거의 모두의 소변에서 BDCIPP가 발견됐다. 가장 높은 수준의 사람들은 노출이 낮은 사람들보다 운동 기능 장애나 교육 지원 요구 사항과 같은 부정적인 신경 발달 결과를 경험할 가능성이 2배, 6배 더 높았다. 그러나 관찰 데이터는 직접적인 원인이 아닌 연관성을 가리킬 뿐이다. 이 연구처럼 대부분의 데이터가 동물과 세포에서 나온 것이기 때문에 이러한 화학물질이 인간에게 미치는 영향에 대한 이해에는 여전히 큰 차이가 있다. 연구팀은 그렇기 때문에 특히 어린이를 대상으로 이러한 화합물이 건강에 미치는 영향을 지속적으로 조사해야 한다고 주장했다. 이들은 "발달 중인 중추신경계는 환경에 특히 민감하며, 화학물질 노출이 중요한 발달 시기에 발생하면 어린이에게 특히 해로울 수 있다"고 말했다. 전문가, 추가 조사 필요성 강조 한편, 전문가들은 이러한 화학물질에 대한 인체 노출과 뇌 건강에 미치는 영향 사이의 연관성에 대해서는 추가 조사가 필요하다고 경고했다. 이 획기적인 연구는 이러한 화학물질이 신경계 질환에 미치는 영향에 대한 추가 조사의 필요성을 시사하며 공중 보건을 위해 보다 엄격한 조사와 규제가 필요하다는 점을 강조한다. 향후 연구에서는 성인과 어린이의 뇌에서 화학물질 수준을 추적하여 질병을 유발하거나 악화시키는 데 필요한 노출의 양과 기간 등을 밝혀내야 한다. 테사르 소장은 "우리의 연구 결과는 이러한 일반적인 가정용 화학물질이 뇌 건강에 미치는 영향에 대한 보다 포괄적인 조사가 필요하다는 것을 시사한다"고 말했다. 그는 "우리의 연구가 화학물질 노출을 최소화하고 인간의 건강을 보호하기 위한 규제 조치 또는 행동 개입에 관한 정보에 입각한 결정에 기여할 수 있기를 바란다"고 말했다. 이번 연구는 뇌 질환 발생에 미치는 환경적 요인의 중요성을 다시 한 번 확인시켜주며, 신경 질환 예방을 위한 화학물질 규제 및 사용 제한 필요성을 제안한다. 케이스 웨스턴 리저브 의과대학과 미국 환경보호청의 벤자민 클레이튼, 마유르 마다반, 크리스틴 리, 사라 야콥, 유리 페도로프, 마리사 스카부조, 케이티 폴 프리드먼, 티모시 셰퍼 등이 이 연구에 추가로 참여했다. 이번 연구 결과는 '네이처 뉴로사이언스(Nature Neuroscience)'에 게재됐다.
-
- 생활경제
-
손소독제 등 가정용 화학용품, 자폐증 유발 가능성 제기
-
-
'바이오플라스틱' 환경 문제의 해답인가, 새로운 문제의 시작인가?
- 생분해성 혹은 식물 기반의 바이오 플라스틱은 급성장하고 있지만 여전히 기후 및 화학 물질에 대한 우려가 제기됐다. 환경건강뉴스(EHN)은 지난 11일(현지시간) 바이오 플라스틱은 미국 멕시칸 푸드 프랜차이즈 치폴레의 퇴비화 가능한 부리또 그릇부터 코카콜라의 식물성 병, 슈퍼마켓의 불투명한 농산물 봉투에 이르기까지, 식품 산업 전반에 걸쳐 확산되고 있다며 이같이 보도했다. 바이오 플라스틱은 그 외에도 자동차 쿠션, 전자제품, 의류, 건축 자재 등에도 사용되고 있다. EHN에서 소개한 바이오 플라스틱의 정의와 장점과 단점을 다음과 같이 정리했다. 전 세계 바이오 플라스틱 산업은 2023년 87억 달러(약 11조 4031억원)에서 2030년 310억 달러(약 40조 6317억 원)로 급성장세를 보이고 있다. 이는 전통적인 플라스틱 산업보다 빠른 성장률이다. 바이오 플라스틱은 전체 플라스틱 시장의 1%에 불과하지만, 일각에서는 바이오 플라스틱이 플라스틱의 지속 가능한 미래라고 선전하고 있다. 오는 4월, 플라스틱 오염 문제에 대한 해결책을 모색하기 위해 개최되는 국제 조약 회담을 앞두고 있는 대표단 중 일부는 바이오 플라스틱을 조약의 대안 및 대체품으로 포함시키려는 움직임을 보이고 있다. 유럽 바이오플라스틱 협회는 웹사이트에서 "바이오플라스틱이 플라스틱의 진화를 주도하고 있다"고 주장하며 바이오플라스틱의 장점으로 기존 플라스틱에 비해 '탄소 중립성'과 특정 조건에서의 생분해성을 꼽았다. 그러나 바이오 플라스틱이 분해 속도가 빠르고, 더 안전한 소재일 뿐만 아니라 탄소 발자국이 적다는 주장은 과장된 면이 있다. 전문가들은 바이오 플라스틱이 다양한 해결책 중 하나가 될 잠재력을 가지고 있음을 인정하면서도, 제품의 수명 종료 시 관리 및 화학적 안전성을 설계에 포함시키고, 기업의 그린워싱을 방지할 수 있는 더 강력한 표준과 규제의 필요성을 강조했다. 그린워싱(Greenwashing)은 기업이나 조직이 자신들의 제품, 서비스, 정책이 환경에 미치는 영향이 실제보다 훨씬 친환경적이거나 지속 가능하다는 인상을 주기 위해 마케팅 전략이나 홍보 활동을 하는 행위를 말한다. 이러한 행위는 대중에게 오해를 불러일으키거나 잘못된 정보를 제공하여, 실제로는 환경에 해를 끼칠 수 있는 제품이나 서비스를 친환경적인 것처럼 포장하는 것을 포함할 수 있다. 바이오 플라스틱 폐기물 규제 없어 노르웨이 과학기술연구소의 마틴 와그너 생물학 부교수는 바이오 기반 플라스틱을 안전한 방법으로 제조할 수 있다면, 물론 이는 매우 큰 전제이지만, 우려되는 화학 물질을 배제하고, 나노 및 미세 플라스틱의 생성을 최소화하는 방식으로 생산될 경우, 바이오 기반 플라스틱이 해결책의 한 부분이 될 수 있다고 말했다. 와그너의 연구에 따르면, 환경에 우호적인 것으로 여겨지는 퇴비화 가능한 그릇과 식물 기반 음료수 병이 전통적 플라스틱 제품에서 발견되는 것과 같은 수준의 건강에 해로운 화학 물질을 방출할 수 있다는 사실이 밝혀졌다. 또한, 생분해성 바이오 플라스틱이 플라스틱 쓰레기 문제를 근본적으로 해결하지 못한다는 지적도 있다. 바이오 플라스틱은 사용 후 적절한 관리가 필요함에도 불구하고, 바이오 플라스틱 폐기물을 산업적으로 퇴비화하거나 안전하게 관리할 수 있는 인프라나 규정이 아직 충분히 마련되지 않았다. 그로 인해 과학자들과 플라스틱을 지지하는 이들은 플라스틱 사용을 줄이는 것이 플라스틱 위기에 대응하는 가장 핵심적인 해법이라고 강조했다. 특히, 일회용 바이오플라스틱의 사용이 문제를 야기한다고 우려를 표명했다. 플라스틱 재사용을 지지하는 단체인 업스트림(Upstream)의 전무이사 크리스탈 드리스바흐 전무이사는 "지구에서 자원을 수십억 번 채취하고 제조해 단 한 번 사용한 뒤 버리는 행위 자체가 문제의 본질이다"라고 말함으로써, 지속 가능성에 대한 근본적인 접근 필요성을 강조했다. 바이오 플라스틱의 오해 바이오 플라스틱은 생분해성 또는 바이오 기반과 같은 용어가 명확하지 않아 많은 오해를 불러일으킨다는 지적이 있다. 해양 생물학 교수이자 플리머스 대학교 해양 연구소의 리처드 톰슨 소장은 "냉소적인 시각으로 보면 바이오플라스틱은 혼란을 일으키기 위해 의도적으로 만들어진 용어라고 생각한다"고 꼬집었다. 많은 사람들이 모든 바이오 플라스틱이 환경에서 생분해되거나 분해된다고 잘못 알고 있다는 지적이다. 또한 많은 사람들이 바이오 플라스틱이 식물 기반이라고 생각하지만, 폴리부틸렌 아디페이트 테레프탈레이트(PBAT)와 같이 화석 연료로만 만들어진 제품도 있다. 업계에서는 PBAT와 같은 물질을 바이오 플라스틱이라고 부르는데, 이는 화학 결합의 유형과 환경 조건에 따라 식물 기반 바이오 플라스틱과 마찬가지로 분해되도록 설계됐기 때문이다. 또한 업계에서는 바이오 플라스틱을 주로 생분해성 플라스틱과 비생분해성 플라스틱으로 나누며, 이들 각각의 범주 안에서 식물 기반 플라스틱과 화석 연료 기반 플라스틱을 동일한 그룹으로 분류하는 경향이 있다. 전 세계적으로 생산되는 플라스틱은 대체로 이 두 범주로 구분된다. 퇴비화 가능한 바이오 플라스틱은 업계 표준에 따라 산업 퇴비화 시설에서 12주 이내에 완전히 분해될 수 있는 생분해성 바이오플라스틱의 특정 부류에 속한다. 다른 한편으로, 비생분해성 바이오 플라스틱에는 사탕수수, 사탕무, 당밀, 또는 옥수수 등에서 추출된 바이오 기반의 폴리에틸렌(바이오-PE), 바이오 기반 폴리에틸렌 테레프탈레이트(바이오-PET), 폴리아미드(나일론) 등이 포함된다. 이 바이오 플라스틱들은 사탕수수 등 천연 자원에서 추출되었음에도 불구하고, 기존의 화석 연료 기반 플라스틱과 유사한 기능성을 제공하도록 설계됐다. 가장 흔히 사용되는 생분해성 바이오플라스틱 중 하나는 폴리락트산(PLA)으로, 옥수수와 같은 전분 기반의 폴리에스테르로 제조된다. 또한, 셀룰로오스 기반의 바이오 플라스틱 섬유도 이 범주에 포함되며, 농업 부산물, 해조류, 효모, 박테리아에서 추출한 폴리하이드록시알카노에이트(PHA)와 폴리부틸렌숙신산염(PBS)으로 제작된 바이오플라스틱도 동일한 범주 안에 속한다. '3세대' 바이오플라스틱은 농업 폐기물, 음식물 쓰레기, 다시마, 스위치그래스, 폐유, 박테리아, 목재 폐기물 등 다양한 원료를 활용하여 제작되며, 식량 작물을 사용하지 않기 때문에 보다 지속 가능한 대안으로 간주된다. 이러한 3세대 바이오플라스틱 제품들은 이미 시장에 출시되어 있지만, PLA나 바이오 폴리아미드를 사용한 제품들의 규모에는 아직 미치지 못하고 있다. 바이오 플라스틱 사용 용도는? 플라스틱 산업 협회의 지속 가능성 담당 매니저 헤더 노츠는 일회용 바이오 플라스틱 음료 용기, 퇴비화 가능한 식품 서비스 용기, 소매 포장, 그리고 기타 식품 산업 관련 제품이 바이오 플라스틱 사용의 약 43%를 차지한다고 말했다. 그중에서도 PLA와 바이오 PET의 사용이 가장 많다. 노츠에 따르면, 생분해성 멀치 필름 및 기타 농업용 제품이 주로 PLA와 PHA로 제조되어 전체 바이오 플라스틱 사용량의 약 21%를 차지한다. 또한, 안경, 섬유, 컵, 아이폰 케이스, 커피 포드 등의 소비재들은 전체 사용량의 13%를 차지하며, 이들 제품은 생분해성 및 비생분해성 다양한 바이오 플라스틱으로 제작된다. 자동차 산업도 바이오 플라스틱의 또 다른 중요한 소비자 군이다. 자동차 쿠션, 대시보드, 범퍼, 배터리 커버 및 기타 부품들이 점점 더 바이오 기반의 폴리아미드 및 바이오 PP로 제작되고 있다. 바이오 플라스틱의 사용은 또한 건축 및 건설, 전자, 코팅 산업에서도 확장되고 있지만, 상대적으로 더 적은 비율을 차지한다. 대규모 바이오 플라스틱 제조업체들은 대부분 화석 연료 기반 플라스틱을 생산하는 대형 석유화학 회사의 내부 사업부이거나, 이러한 대기업에서 독립한 분사 회사들이다. 그럼에도 불구하고, 어떤 회사가 시장에서 선도적인 위치를 차지하고 있는지에 대해서는 재무 분석가들 사이에 의견이 분분하다. 예를 들어, 인사이더 몽키는 바이오 플라스틱 부문이 전체 시가총액에서 차지하는 비중이 비록 작지만, 전체 시가총액 기준으로 BASF SE, 다우, 라이온델바젤 인더스트리, LG화학, 셀라니즈를 상위 5대 제조업체로 지목했다. 반면, 다른 분석가들은 석유화학 기업에 인수되었거나, 석유화학 기업과의 합작 투자를 통해 성장한 기업들을 시장의 선두 주자로 보는 경향이 있다. 이러한 기업으로는 네덜란드 암스테르담에 본사를 둔 다국적 식품 및 바이오케미컬 기업 코비온(Corbion), 영국 옥스퍼드에 본사를 둔 바이오플라스틱 생산 및 개발회사 바이옴 바이오플라스틱(Biome Bioplastics), 텐마크 코펜하겐의 플랜틱(Plantic), 미국 미시건 주의 네이처웍스(NatureWorks), 태국 방콕에 본사를 둔 바이오플라스틱 및 바이오케미컬 회사 PTT MCC바이오케미(PTT MCC Biochem) 등이 포함된다. 환경과 건강에 미치는 영향 바이오플라스틱은 전통적인 플라스틱과 유사한 제조 공정을 거쳐 생산된다. 이 폴리머는 최소한 부분적으로 식물 재료에서 추출한 화학 물질을 기반으로 하며, 때로는 화석 연료에서 완전히 추출한 화학 물질로 구성된다. 제품의 유연성, 내구성, 색상 및 기타 특성을 조정하기 위해 다양한 화학적 충전재, 첨가제 및 염료가 첨가된다. 세계자연기금(WWF)의 플라스틱 폐기물 및 사업 책임자인 에린 사이먼 부사장은 바이오 플라스틱이 여전히 독성 화학 물질을 포함할 수 있다고 말했다. 사이먼은 “PET를 제조할 때, 오래된 탄소 또는 새로운 탄소를 사용하더라도, 궁극적으로 같은 제품을 만들기 때문에 많은 가공 화학 물질이 여전히 필요하다”며, 바이오 플라스틱 생산 과정에서도 화학 물질의 사용이 불가피함을 지적했다. 와그너의 2020년 연구에 따르면 PLA, PBAT, PHA, PBS, 바이오 PE 및 바이오 PET로 만든 43개의 일상적인 바이오 플라스틱 제품이 기존 제품과 마찬가지로 독성이 있는 것으로 나타났다. 이 중 3분의 2가 환경 내 다양한 생명체에 유해할 가능성이 있는 것으로 나타났으며, 42%는 DNA 손상을 유발할 수 있는 자유 라디칼을 생성하는 화학물질의 존재로 인해 산화 스트레스를 일으키는 것으로 조사됐다. 또한, 4분의 1의 샘플에서는 호르몬 교란 특성이 관찰됐다. 분석된 개별 바이오 플라스틱 샘플에는 평균적으로 1000개에서 최대 2만965개에 이르는 다양한 화학적 특성이 포함되어 있었다. 연구를 주도한 와그너는 "이런 종류의 연구를 진행하면서 가장 충격적인 발견은 개별적인 플라스틱 제품에 엄청나게 많은 화학 물질이 존재한다는 사실이었다"고 말했다. 이 연구 과정에서 발견된 다수의 화학 물질들 중 상당수는 특정되지 않았지만, 와그너는 프탈레이트 같은 '자주 지목되는 화학물질들'은 검출되지 않았다고 말했다. 그는 "바이오플라스틱을 기능적으로 제조하는 데 쓰이는 화학물질들에 대한 우리의 이해가 상당히 제한적임을 발견했다. 폴리머의 화학 구조가 다르기 때문에, 사용되는 첨가제 역시 다를 가능성이 있다"고 밝혔다. 바이오 플라스틱과 기후 변화 바이오플라스틱을 옹호하는 주요 주장 중 하나는 이들이 이론상으로 재생 가능한 자원에서 탄소를 추출할 때 순 이산화탄소 배출량이 증가하지 않으므로, 전체 수명주기 동안 전통적 플라스틱에 비해 훨씬 적은 온실가스를 배출한다는 것이다. 예컨대, 유럽 바이오플라스틱 협회는 전 세계적으로 화석 연료 기반의 폴리에틸렌 수요를 바이오 PE로 대체할 경우, 연간 약 8000만 톤의 이산화탄소 배출을 절감하여 마치 매년 2000만 번의 항공 여행을 줄인 것과 동등한 효과를 가져올 수 있다고 주장한다. 2017년 진행된 연구에서는 미국 내 기존 플라스틱을 옥수수 기반의 PLA로 대체할 경우, 미국 플라스틱 산업에서 발생하는 온실가스 배출량을 25% 감소시킬 수 있을 것으로 추정했다. 이 연구는 또한 화학 산업이 재생 가능 에너지 및 스위치그래스와 같은 더 지속 가능한 원료로 전환함으로써 더 큰 탄소 배출 감소 효과를 달성할 수 있다고 제시했다. 앞서 설명했듯이 바이오 플라스틱 샘플에는 평균적으로 1,000개에서 최대 2만965개에 이르는 다양한 화학적 특성이 포함되어 있음이 밝혀졌다. 드레이스바흐는 세라믹, 스테인리스 스틸, 유리로 만든 재사용 가능한 용기는 수명 기간 동안 일회용 바이오 플라스틱보다 이산화탄소 배출량이 3~10배 적다고 말했다. 하지만 바이오플라스틱이 가져올 수 있는 이산화탄소 절감의 잠재적 이점은, 비료와 살충제의 사용 증가, 그리고 옥수수나 사탕수수 같은 원료의 생산을 위한 토지 개간과 산림 태우기로 인해 일부 상쇄될 수 있다. 또한, 생분해성 플라스틱이 매립지에 매립될 경우, 분해 과정에서 메탄 같은 강력한 온실가스가 배출되어 환경에 또 다른 부담을 줄 수 있다. 바이오 플라스틱 폐기물 규정은? 생분해성 바이오플라스틱의 폐기물 관리는 생분해성을 정의하는 명확한 규정이 부재하기 때문에 복잡한 과제로 남아있다. 업계 자발적 기준에 따르면, 생분해성 제품은 대부분 6개월 이내에 자연적으로 분해되어야 하지만, 생분해성이라고 표시된 일부 제품은 완전히 분해되기까지 수년이 걸릴 수 있다. 예를 들어, 한 연구에 따르면 토양에 묻힌 생분해성 비닐봉지가 3년 후에도 여전히 분해되지 않은 채 발견됐다. 이러한 물질이 퇴비 시설에 매립되면 오염 물질이 되어 걸러내야 한다. 톰슨에 따르면, 재활용 시설에서도 이런 종류의 폐기물은 전체 재활용 플라스틱의 품질을 저하시킬 수 있어 기피 대상이다. 게다가 많은 지역에서는 산업 퇴비화 시설이나 도로변 수거 시설이 부족해, 퇴비화 가능한 포장재와 운반 용기가 결국 매립지나 소각장으로 향하는 경우가 많다. 퇴비화되지 않는 플라스틱이 퇴비화 가능한 플라스틱으로 잘못 인식되는 경우가 빈번하여, 라벨링이 명확하지 않을 때 혼란이 가중된다. 미국 퇴비화 위원회의 린다 노리스-월트 부국장은 이러한 문제를 “그린워싱, 모조품, 짝퉁”이라고 지칭했다. 다수의 퇴비화 업체들이 이러한 재료로 인해 퇴비화 가능한 식품 포장을 기피하며, 이는 업체의 수익성에 부정적인 영향을 미친다. 노리스-월트는 이 문제를 두 가지 주요 요인으로 설명했다. 첫 번째는 처리 과정에서 발생하는 노동력 문제이며, 두 번째는 최종 퇴비 제품의 품질 저하로 인해 농장, 조경업체, 골프장 등의 시장에 미치는 영향이다. 따라서, 바이오플라스틱은 퇴비를 오염시키는 원인이 될 수 있다. 생분해성 인스티튜트(BPI)와 유럽의 대응 기관인 OK컴포스트(OK Compost)는 퇴비화 업체들의 우려에 대응하기 위하여 퇴비화 가능한 포장을 위한 자발적 인증 표준을 마련했다. 이 인증을 획득하기 위해서는 바이오플라스틱 제조업체가 제품의 분해 속도를 증명하는 ASTM 기준을 만족시켜야 하며, PFAS(영구적 화학 물질)를 포함하지 않고, 일반적인 토양 생태독성 테스트를 통과해야 한다. 그러나 노리스-월트는 이러한 인증 프로그램이 퇴비 중 미세 플라스틱 문제를 충분히 고려하지 않는다고 지적했다. 이에도 불구하고, 미국 퇴비화 위원회의 최근 조사 결과, 조사 대상 173개 퇴비업체 중 오직 46개 업체만이 퇴비화 가능한 식품 포장의 사용을 허용하는 것으로 나타났다. 혁신을 위한 기회 전문가들은 바이오플라스틱이 여러 어려움에도 불구하고, 화학적 안전성과 수명이 제품 설계에 주요 고려사항으로 포함될 경우, 농업용 멀치 필름과 같은 특정한 용도에 대해 적합한 대안이 될 수 있다고 지적했다. 린 프로덕션 액션의 마크 로시 전무이사는 플라스틱 사용이 필수적인 상황에서는 바이오플라스틱의 활용을 고려해야 한다고 말했다. 그는 "모든 재료에는 잠재적 문제가 존재한다. 우리는 이러한 재료를 인간의 건강과 안전을 고려하여 어떻게 최적화할 수 있을까?"라고 의문을 제기했다. 플라스틱 산업 내에서 바이오플라스틱은 특정 시장에서의 성장 가능성을 가지고 있지만, 광범위한 대체재로는 여겨지지 않는다. 로시는 바이오플라스틱이 대규모로 기존 플라스틱을 대체할 수 있는 해법이 아니라고 명확히 했다. 다시마나 농업 폐기물로 제작된 차세대 바이오플라스틱은 식량 작물을 원료로 사용함으로써 발생하는 환경적 문제를 어느 정도 해결했으나, 여전히 독성 문제에 대한 해결책을 마련해야 한다는 지적이 있다. 클린 프로덕션 액션은 제조업체들이 자사 제품에서 수천 가지의 유해 화학물질을 식별하고 제거할 수 있도록 돕기 위해, 일회용 식품 포장과 재사용 가능한 용기에 적용할 수 있는 독립적인 표준인 그린스크린(GreenScreen)을 개발했다. 주요 PLA 제조업체 중 하나인 네이처웍스(NatureWorks)는 그린스크린 평가를 통해 자사의 원료가 유해 화학물질을 포함하지 않음을 공식적으로 인증받았다. 그러나 업계 전반에 걸친 변화를 이끌기 위해서는 더 많은 제조업체들이 이러한 제품 인증 과정을 통과해 한다. 노리스-발트는 캘리포니아나 콜로라도에서 시행된 것과 같은 엄격한 라벨링 기준과 법률의 존재가 퇴비화 가능한 바이오플라스틱이 실제로 산업 퇴비화 시설로 올바르게 전달되기 위해 필수적이라고 강조했다. 그녀는 "실수든 의도적이든 시리얼을 퇴비화할 수 있다고 잘못 표시하는 비양심적 기업들에 대해 소송을 제기하는 것만으로도 이러한 오해를 빠르게 중단시킬 수 있다. 여기서 중요한 것은 법의 집행이다"라고 말했다. 전 세계적으로 전문가들은 바이오플라스틱이 현재 직면한 플라스틱 오염 문제에 대응하기 위한 국제적 합의에서 중요한 역할을 하고 있음에 동의하며, 이러한 재료는 기존 플라스틱과는 다르게 관리되어야 한다는 점에 대해 합의했다. 톰슨은 단순히 대안이나 대체재를 찾는 것 이상이 필요하다고 말했다. 그는 "우리가 직면한 문제를 해결할 뿐만 아니라 더 우수한 성능을 제공할 수 있음이 입증된 대안과 대체재가 필요하다"고 강조했다. 톰슨과 와그너가 활동하는 국제적 단체인 '효과적인 글로벌 플라스틱 조약을 위한 과학자 연합'은 플라스틱이 화학물질을 적게 포함하도록 재설계되고, 재료 회수를 간소화할 인센티브를 조약에 포함시키길 바란다. 와그너는 "업계가 1만가지의 화학 물질을 포함하지 않는 제품을 설계하길 바란다"고 말해, 제품 설계 시 화학물질 사용을 대폭 줄이는 것을 목표로 하고 있음을 밝혔다.
-
- 생활경제
-
'바이오플라스틱' 환경 문제의 해답인가, 새로운 문제의 시작인가?
-
-
미국, 대중 반도체 통제 위해 한국과 독일 등 참여국 확대 추진
- 미국 조 바이든 행정부가 네덜란드, 일본, 독일, 한국 등 반도체 공급망의 핵심 국가들에게 중국에 대해 더 엄격한 수출통제를 하라고 압력을 가하고 있다. 이같은 미국 정부 움직임에 대해 일부 국가들 사이에서 반발 기류도 있는 것으로 전해졌다. 연합뉴스는 6일(현지시간) 블룸버그통신을 인용해, 소식통이 바이든 행정부가 지난 2년 간 시행한 중국에 대한 반도체 수출통제 허점을 막기 위해 동맹국들과 새로운 다자 합의를 이끌어내려 하고 있다고 보도했다. 미국의 강력한 수출통제에도 불구 중국 화웨이가 파운드리 기업 SMIC와 협력해 5nm(나노미터, 1nm=10억분의 1m) 반도체 생산에 나서는 등 중국의 반도체 굴기가 지속되는 상황을 염두에 둔 것으로 보인다. 미국은 우선 네덜란드에 네덜란드 반도체 장비 업체 ASML이 올해 수출통제 시행 전에 중국 업체에 판매한 반도체 장비에 대한 AS를 하지 말 것을 촉구하고 있다. 또 일본에게는 반도체 제조에 필수적인 화학물질의 수출을 제한해 줄 것을 요청한 것으로 전해졌다. 일본의 JSR은 반도체 핵심 소재인 포토레지스트 분야 1위 기업으로 글로벌 시장에서 30%의 점유율을 보유하고 있다. 미국측의 한 소식통은 "ASML이 중국에서 제한된 반도체 장비를 수리하려면 라이센스가 필요하지만, 네덜란드가 승인 과정에 다소 느슨하다"고 지적했다. 네덜란드와 일본 정부는 그러나 이같은 미국의 요청에 대해 '기존의 수출통제 효과에 대한 평가가 우선'이라며 냉담한 반응을 보이는 것으로 전해졌다. 바이든 행정부는 아울러 독일과 한국 등에도 대중국 수출통제와 관련한 보다 적극적인 조치를 원하고 있다고 외신은 전했다. 독일의 경우 광학기술로 잘 알려진 칼자이스가 ASML에 첨단 반도체 생산에 필요한 광학 부품을 공급하는데 미국은 칼자이스가 중국에 그런 부품을 수출하지 않도록 독일 정부가 나서기를 바라고 있다. 바이든 행정부는 오는 6월 주요 7개국(G7) 정상회의 전에 관련 합의가 이뤄지도록 독일 측을 압박하고 있는 것으로 알려졌다. 바이든 행정부는 또 이미 일본과 네덜란드가 포함된 기존의 반도체 수출통제 관련 협정에 독일과 한국을 끌어들여 이를 다자 협정으로 확대하는 방안을 추진하고 있다. 미국은 반도체 생산과 반도체 제조 장비 부품 공급에서 한국이 주도적인 역할을 하고 있다는 점을 고려해 한국 정부와도 대중 반도체 수출통제와 관련해 긴밀한 협의를 진행해왔다.
-
- 포커스온
-
미국, 대중 반도체 통제 위해 한국과 독일 등 참여국 확대 추진
-
-
흙 속 미생물로 구동되는 환경친화적 연료 전지 개발
- 미국 노스웨스턴대학교 연구팀이 흙 속 미생물을 이용하여 구동되는 혁신적인 연료 전지를 개발했다. 이 연료 전지는 기존 배터리에 비해 환경적 부담을 대폭 줄일 수 있는 특징을 지니고 있다. 특히, 이 연료 전지는 독성 화학물질을 포함하지 않으며, 환경에 유해한 공급망 문제도 해결했다는 점에서 주목받고 있다. 미국의 과학기술 전문 매체 스터디 파인즈(StudyFinds) 보도에 따르면, 노스웨스턴 연구팀이 개발한 이 연료 전지는 습한 토양과 건조한 토양 조건 모두에서 효율적으로 작동하여 다양한 농업 환경에 적용될 수 있다. 연구팀은 이 기술이 정밀 농업과 녹색 인프라를 위한 지하 센서의 전원 공급원으로 활용될 수 있을 것으로 기대하고 있다. 정밀 농업은 토양의 수분, 영양분, 병충해 등 다양한 정보를 수집하여 농작물 관리를 최적화하는 데 기여하며, 녹색 인프라는 도시의 열섬 현상 완화 및 수질 개선과 같은 환경적 목적을 위해 조성되는 녹지 공간을 의미한다. 이 연료 전지의 상용화가 이루어질 경우, 농업과 환경 분야에 긍정적인 영향을 끼칠 것으로 예상된다. 농민들은 이 기술을 통해 토양 상태를 실시간으로 모니터링할 수 있게 되며, 도시에서는 녹지 공간을 더 효과적으로 관리할 수 있게 될 전망이다. 이러한 혁신적인 기술은 탄소중립을 지향하는 현재의 환경 추세 속에서 매우 중요한 의미를 갖는다. 연구팀은 이 새로운 연료 전지를 토양 수분 측정과 야생 동물 추적 센서에 적용하여 실험을 진행했다. 실험 결과, 두 센서 모두 기존 배터리로 구동되는 센서들보다 성능이 뛰어난 것으로 나타났다. 특히 야생 동물 추적 센서의 경우, 접촉 감지 기능이 중요한데, 이 연료 전지를 사용한 센서는 기존 배터리를 사용하는 센서보다 120% 더 긴 작동 시간을 보였다. 또한, 이 연료 전지는 습한 토양과 건조한 토양 조건 모두에서 효과적으로 작동하는 것으로 확인됐다. 이는 다양한 농업 환경에서의 안정적인 사용 가능성을 시사한다. 연구팀은 이 연구와 관련된 모든 설계, 튜토리얼, 시뮬레이션 도구를 공개적으로 제공함으로써 오픈 소스 방식을 채택했다. 이러한 접근 방식은 해당 분야에서의 추가적인 혁신과 응용을 촉진할 것으로 기대된다. 연구팀의 빌 옌(Bill Yen)은 "사물 인터넷(IoT) 장치의 수가 지속적으로 증가하고 있으며, 이러한 장치가 수조 개에 달하는 미래를 고려할 때 환경에 해로운 리튬, 중금속 및 독소로 모든 장치를 제작하는 것은 불가능하다"고 지적했다. 그는 이어 "분산형 장치 네트워크에 에너지를 공급하기 위한 대체 에너지원을 찾아야 한다"며, "특수한 미생물을 활용해 토양을 분해하고 낮은 에너지로 센서에 전력을 공급하는 토양 미생물 연료 전지를 발견했다"고 설명했다. 옌은 또한 "유기 탄소가 있는 토양을 미생물이 분해할 수 있다면, 이 연료 전지는 잠재적으로 무한히 지속될 수 있다"며, 이 기술의 잠재적 지속 가능성을 강조했다. 미생물 연료 전지(MFC)는 양극, 음극 및 전해질을 갖춘 배터리처럼 작동한다. 하지만 화학 물질 대신 토양에서 자연적으로 발견되는 박테리아를 사용해 유기물이 분해되는 과정에서 전자를 방출하고, 이 전자들이 양극에서 음극으로 흘러 전기 회로를 형성하여 전력을 생성한다. 옌은 "야생, 농장, 습지 등에 센서를 설치하려면 일반적으로 배터리를 사용하거나 태양 에너지를 활용해야 한다"고 말했다. 그는 또한 "태양 전지판은 먼지에 덮여 있거나 태양이 없는 경우에는 작동하지 않으며, 많은 공간을 차지하고 더러운 환경에서는 효과적으로 작동하지 않는다"고 지적했다. 그는 이어 "배터리 역시 전력 공급이 제한적이라는 문제가 있다"며, "농부들이 100에이커(약 40만4600㎡, 12만평)에 달하는 농장을 돌아다니며 배터리를 주기적으로 교체하거나 태양 전지판을 청소하는 일은 현실적이지 않다"고 말했다. 이러한 문제들을 해결하기 위해 MFC 기술이 더욱 중요하게 여겨지고 있다. 한편, 미생물 연료 전지는 100년 넘게 알려져 왔지만 습도가 낮은 조건에서의 성능 저하문제로 인해 그 활용 범위가 제한적이었다. 이 문제를 해결하기 위해 옌과 그의 팀은 다양한 디자인을 시험해보았고, 결국 독특한 수직 구조를 가진 디자인에서 성공을 거두었다. 탄소 펠트로 제작된 양극은 수평으로 배치되어 있으며, 전도성 금속 음극은 수직으로 설치되어 일관된 수분과 산소 공급이 가능하게 한다. 연구팀은 또한 분쟁 광물과 복잡한 공급망을 배제하고, 토양 기반 미생물 연료 전지의 완전히 생분해 가능한 버전을 개발할 계획이라고 밝혔다. 이번 연구는 미생물 연료 전지의 실용성을 크게 향상시킨 것으로 평가되며, 습한 토양은 물론 건조한 토양에서도 효과적으로 작동한다는 점이 입증됐다. 이에 따라, 다양한 농업 환경에서 사물 인터넷 센서에 전력을 공급하는 데 크게 기여할 것으로 기대된다. 이 연구는 학술지 '인터랙티브, 모바일, 웨어러블 및 유비쿼터스 기술에 관한 컴퓨팅 기계 협회(Association for Computing Machinery on Interactive, Mobile, Wearable and Ubiquitous Technologies)' 저널에 최근 게재됐다.
-
- IT/바이오
-
흙 속 미생물로 구동되는 환경친화적 연료 전지 개발
-
-
유방암, 환경적 요인으로 위험도 상승
- 환경적 요소, 특히 일부 화학 물질의 영향이 유방암 발병 위험을 증가시킬 가능성이 높다는 연구 결과가 나왔다. 유방암은 전 세계 여성들 사이에서 암 관련 사망의 주요 원인 중 하나로, 가장 흔하게 발병하는 암 유형 중 하나이다. 특히 미국에서는 여성의 평생 유방암 발병 위험이 폐암에 비해 두 배 가량 높다고 알려져 있다. 의료 전문 매체인 '뉴스 메디컬(NEWS MEDICAL)'은 미국 캘리포니아 대학교 로스앤젤레스(UCLA) 연구 자료를 인용해 젊은 여성들 사이에서 유방암 발병률이 증가하고 있다고 보도했. 특히 20세에서 49세 사이의 여성들에서 유방암으로 인한 사망률이 다른 암들에 비해 두 배에 이른다는 연구 결과도 나타났다. 유방암 발병 위험을 높이는 요인으로는 유전, 나이, 비만, 흡연, 과도한 음주, 운동 부족 등이 꼽힌다. 이와 함께 환경적 요인도 중요한 역할을 할 수 있다는 연구 결과가 제시되고 있다. 이러한 환경적 요인은 특히 화학 물질의 영향에 주목하여 추가적인 연구가 필요함을 시사한다. 유방암 발생과 연관된 환경적 요인들 중에서 주목받는 몇 가지는 다음과 같다. 첫째, 방사선 노출은 유방암 발생의 주요 환경적 요인으로 꼽히며, 특히 젊은 나이에 방사선에 노출될 경우 유방암 위험이 증가할 수 있다. 이는 의료적 방사선 노출뿐만 아니라, 일상 환경에서의 노출도 포함될 수 있다. 둘째, 호르몬의 영향도 중요한 역할을 한다. 특히 에스트로겐과 프로게스테론은 유방암 세포의 성장과 증식을 촉진할 수 있으며, 폐경 후 호르몬 대체 요법을 받는 여성들에서 유방암 발병 위험이 높아질 수 있다. 셋째, 일부 화학 물질이 유방암 발생과 연관될 수 있다. 여기에는 디클로로디페닐트리클로로에탄(DDE), 폴리염화비페닐(PCB), 비스페놀 A(BPA), 프탈레이트 등이 포함된다. 이러한 화학 물질은 식품, 음료, 공기, 물, 토양 등 다양한 경로를 통해 인체에 노출되며, 장기간 노출될 경우 유방암 발병 위험을 증가시킬 수 있다. 또한 최근 연구에서는 유방암 발병과 관련된 화학 물질을 식별하기 위한 혁신적인 방법론이 개발되고 있다. 이러한 발전은 유방암 예방 정책의 수립과 화학 물질 노출 감소 전략 개발에 중요한 기여를 할 것으로 기대된다. 최근 UCLA 연구팀은 '환경 보건 전망(Environmental Health Perspectives)'에 발표한 연구에서 유방암 위험과 연관된 화학 물질을 성공적으로 식별했다. 이 연구팀은 국제암연구소(IARC)의 연구 논문과 미국 환경보호청(EPA)의 톡스캐스트(ToxCast) 데이터베이스를 활용해 유방 종양을 유발하고, 프로게스테론 또는 에스트라디올의 합성을 촉진하며, 에스트로겐 수용체를 활성화하는 능력을 가진 화학 물질을 체외 실험을 통해 식별했다. 이 연구 결과로 총 921개의 화학 물질이 유방암 위험과 연관되어 있음이 밝혀졌으며, 이 중 279개는 프로게스테론 또는 에스트로겐 신호 전달을 촉진하는 핵심적인 특성을 지닌 것으로 확인됐다. 이러한 연구는 유방암 발병 위험 요인을 보다 명확하게 이해하고, 효과적인 예방 및 감소 전략을 개발하는 데 중요한 단서를 제공한다. 또한, 유전독성, 에스트로겐 수용체의 작용제, 스테로이드원성과 같은 다른 주요 특성도 이러한 화학 물질에서 풍부하게 나타났다. 이번 연구 결과는 잠재적인 유방암 물질을 식별하는 데 있어 주요 특성 프레임워크의 중요성을 강조한다. 주요 특성 프레임워크는 알려진 인체 발암물질에 대한 주요 특성 목록을 개발하여 생물학적 영향을 문서화하고 잠재적으로 발암 가능성이 있는 다른 화학 물질을 식별하기 위한 프레임워크를 제공한다. 문서화된 주요 특성에는 유전 독성, 세포 증식 증가, 세포 신호 변경, 염증, 후성유전학적 변형 및 면역 억제가 포함된다. 이러한 주요 특성 중 하나 이상의 존재는 잠재적인 발암 활성을 나타낸다. 이번 연구에서 조사된 화학물질은 내분비활성과 유전독성에 따라 유방암 관련 노출을 기준으로 분류되었으며, 2007년 유방암물질 목록은 유방암과 관련된 내분비 신호전달 경로를 활성화하는 화학 물질을 포함하도록 업데이트되었다. 유방암 관련 내분비 경로를 활성화하는 등 생물학적 효과를 나타내는 유방암 물질의 비율도 연구에서 스크리닝된 모든 화학 물질의 비율로 계산됐다. 이번 연구는 체외 실험을 통해 진행되었기 때문에, 실제 인간의 유방암 위험을 완벽하게 반영하지 못할 수 있다는 한계점을 가지고 있다. 또한, 연구에 사용된 화학 물질의 범위가 제한적이었기 때문에, 유방암 위험과 관련된 화학 물질의 전체적인 스펙트럼을 파악하는 데에는 다소 부족할 수 있다. 향후 연구에서는 보다 다양한 화학 물질을 대상으로 체내 실험을 진행하고, 유방암 발생과 관련된 화학 물질의 종류와 그 영향을 더 정밀하게 조사할 필요가 있다. 이를 통해 유방암 위험과 관련된 화학 물질에 대한 보다 광범위한 이해를 얻을 수 있을 것으로 기대된다. 연구팀은 이 연구 결과가 유방암 위험 감소를 위한 정책 수립과 화학약품 노출을 줄이는 방안 개발에 유용한 정보를 제공할 것으로 기대한다고 밝혔다.
-
- IT/바이오
-
유방암, 환경적 요인으로 위험도 상승
-
-
생수 속 나노플라스틱, 리터당 수천 개…체내 침범 우려
- 연구원들이 생수 속에서 이전 추정치보다 10~100배 더 많은 플라스틱 조각이 포함되어 있다는 사실을 발견했다고 CNN이 8일(현지시간) 보도했다. 미국 컬럼비아 대학의 연구원들은 생수에 있는 나노입자의 화학 구조를 보고, 계산하고, 분석할 수 있는 새로운 기술을 제시했다. 새로운 연구에 따르면, 표준 크기 생수 2개에 해당하는 1리터의 물에는 7가지 유형의 플라스틱에서 평균 24만 개의 플라스틱 입자가 포함되어 있으며, 이 중 90%는 나노플라스틱이고 나머지는 마이크로플라스틱인 것으로 확인됐다. 이 연구 결과는 미국 국립과학원 회보(Proceedings of the National Academy of Sciences) 저널에 이날 발표됐다. 나노 입자는 너무 작아서 현미경으로 볼 수 없다. 전문가들은 인간 머리카락 평균 너비의 1000분의 1인 나노플라스틱은 너무 작기 때문에 소화관이나 폐 조직을 통해 혈류로 이동하여 잠재적으로 유해한 합성 화학 물질을 몸 전체와 세포에 퍼트릴 수 있다고 지적했다. 미세 플라스틱은 0.2인치(5mm) 미만에서 2만5000분의 1인치(1마이크로미터)에 이르는 폴리머 조각이다. 그보다 더 작은 것은 10억분의 1미터 단위로 측정해야 하는 나노 플라스틱이다. 이 연구를 주도한 연구팀은 미국에서 판매되는 인기 생수 브랜드 3곳의 실제 플라스틱 조각 수가 리터당 300개가 아니라 11만 개에서 37만 개 사이라는 사실을 발견했다. 단, 저자들은 어떤 브랜드의 생수를 연구했는지는 언급하지 않았다. 공동 저자이자 환경 화학자인 컬럼비아 대학교 라몬트-도허티 지구 천문대의 부교수인 베이잔 얀(Beizhan Yan)은 "이 새로운 기술은 실제로 물속에서 수백만 개의 나노 입자를 볼 수 있었으며, 이는 무기 나노 입자, 유기 입자 및 우리가 연구한 7가지 주요 플라스틱 유형이 아닌 다른 플라스틱 입자일 수 있다"고 말했다. 이 연구는 나노 플라스틱이 인간 건강에 미치는 잠재적 위험을 탐구하는 새로운 방향을 제시했다. '건강한 아기, 밝은 미래'라는 비영리단체의 연합체에서 일하는 연구 책임자 제인 헐리한은 이 연구에 직접 참여하지는 않았지만, 나노 플라스틱의 인간 건강에 대한 잠재적 위험을 더 깊이 이해하기 위한 추가적인 연구가 필요하다고 강조했다. 이 단체는 아기들이 신경독성 화학물질에 노출되는 것을 줄이기 위해 노력하는 과학자들과 기부자들로 구성되어 있다. 헐리한은 "이 연구는 미세 플라스틱 입자에 대한 광범위한 인체 노출이 거의 연구되지 않은 위험을 초래할 수 있음을 시사한다"고 말했다. 그녀는 "특히 영유아가 이러한 위험에 가장 크게 노출될 수 있는데, 그 이유는 영유아의 발달이 더디기 때문"이라고 덧붙였다. 펜실베이니아주립대 베렌드 캠퍼스의 지속가능성 책임자인 셰리 '샘' 메이슨(Sherri 'Sam' Mason)은 이 연구에 참여하지 않았지만, "이 연구는 인상적이며, 투입된 노력이 매우 심오하다. 나는 이를 획기적이라고 부르고 싶다"라고 평가했다. 이 새로운 발견은 수돗물 유해 물질 노출을 줄이기 위해 유리나 스테인리스 스틸 용기에 담긴 수돗물을 마시라는 오랜 전문가의 조언을 강조한다고 메이슨은 말했다. 이러한 조언은 플라스틱으로 포장된 다른 음식과 음료에도 적용된다고 그녀는 덧붙였다. 메이슨은 9개국 11개 브랜드에서 판매되는 생수 샘플의 93%에서 마이크로플라스틱과 나노 플라스틱의 존재를 처음으로 발견한 2018년 연구의 공동 저자였다. 과거 연구에서 메이슨은 오염된 물 1리터에 인간의 머리카락보다 넓은 평균 10개의 플라스틱 입자와 300개의 작은 입자가 포함되어 있음을 발견했다. 그러나 5년 전인 2018년 기술로는 그 작은 입자를 분석하거나 더 많은 것이 있는지 알아낼 방법이 없었다. 메이슨은 "우리가 나노플라스틱의 존재를 몰랐던 것은 아니다. (당시) 우리는 그것들을 분석할 수 없었다"라고 설명했다. 나노 플라스틱, 인간 건강 위협 전문가들은 나노 플라스틱이 인류 건강에 가장 큰 위협을 주는 플라스틱 오염 유형 중 하나로 지목하고 있다. 이는 나노 플라스틱의 미세 입자가 주요 기관의 세포와 조직을 침입해 세포 활동을 방해하고, 비스페놀, 프탈레이트, 난연제, 과불소화 물질(PFAS), 중금속 등의 내분비 교란 화학물질을 축적할 수 있기 때문이다. 러트거스 대학교 어니스트 마리오 약학대학의 독성학 박사이자 약리학 부교수인 피오피 스태플튼(Phoebe Stapleton) 박사는 쥐를 대상으로 한 연구에서 임신한 쥐가 플라스틱 입자를 섭취하거나 흡입한 후 24시간 만에 그들의 태아의 뇌, 심장, 간, 신장 및 폐에서 플라스틱 화학물질을 발견했다고 보고했다. 스태플튼 박사는 "이 시점에서 인간 태반에서 마이크로플라스틱과 나노 플라스틱이 발견됐다"고 말했다. 그는 "인간의 폐 조직과 인간의 대변, 인간의 혈액에서 (미세 플라스틱이) 발견됐다"고 덧붙였다. 생수에서 나노입자를 식별하는 새로운 연구 방법은 라만 분광법의 개선된 형태에 기반을 두고 있다. 이 기술은 분자가 빛에 반응하여 진동하는 방식을 측정함으로써 세포의 화학적 구성을 분석한다. 이 기술의 공동 발명자이자 컬럼비아 대학교 화학과 교수인 웨이 민(Wei Min) 교수는 “이 변형된 라만 분광법, 자극 라만 산란 현미경(SRS)은 두 번째 레이저를 추가해 이전에는 감지하기 어려웠던 나노입자를 여러 자릿수로 증폭된 신호를 통해 탐지할 수 있다"고 말했다. 민 교수는 2008년 SRS를 공동 개발했다. 민 교수는 "이 연구는 자극 라만 산란 현미경을 나노플라스틱 세계에 적용한 최초의 연구"라고 말했다. SRS는 이미지를 획기적으로 향상시킴으로써 기존 기술에서 몇 시간이 걸리던 나노 입자의 이미지를 마이크로초 단위로 명확하게 식별하고 캡처할 수 있으며, 촬영 대상 조직에 손상을 주지 않고도 이미지를 캡처할 수 있다. 해당 연구에서 개발된 알고리즘은 출판 당시 폴리아미드, 폴리프로필렌, 폴리에틸렌, 폴리메틸메타크릴레이트, 폴리염화비닐, 폴리스티렌, 그리고 폴리에틸렌 테레프탈레이트를 포함한 일곱 가지 주요 플라스틱 유형을 식별할 수 있었다. 컬럼비아 대학교 화학 박사과정 학생이자 이 연구의 수석 저자인 나이신 치안(Naixin Qian)은 "다른 연구들을 통해 우리는 생수에 존재하는 대부분의 미세 플라스틱이 주로 PET(폴리에틸렌 테레프탈레이트) 병에서 누출된 것으로 추정했다"고 말했다. 다양한 유형의 플라스틱 존재 연구팀의 발견에 따르면, 플라스틱 물병 안에는 예상과 달리 다양한 유형의 플라스틱이 존재하며, 각 플라스틱 유형마다 입자 크기가 다르다. 연구팀은 "PET 플라스틱 입자는 크기가 컸지만, 다른 플라스틱 입자는 200나노미터에 불과해 훨씬 더 작았다"고 밝혔다. 연구에 따르면, PET 입자는 병 뚜껑을 반복적으로 여닫거나, 병이 파손되거나, 자동차 안에서 높은 온도에 노출될 때 부서질 수 있는 것으로 밝혀졌다. 컬럼비아 대학교 연구팀은 앞으로 생수에 떠다니는 나노 플라스틱의 출처를 더 깊이 연구할 계획이다. 이들은 나노 플라스틱이 제조 과정 중 오염된 원수에서 유래했을 가능성을 조사하고 있다. 한편, '건강한 아기, 밝은 미래' 재단의 헐리안은 과학이 이와 같은 문제를 탐구하는 동안 사람들이 플라스틱 노출을 줄이기 위해 취할 수 있는 조치들에 대해서도 밝혔다. 그녀는 "플라스틱 용기에 담긴 음식과 음료 섭취를 피하고, 천연 직물로 만든 옷을 입으며, 천연 소재의 소비자 제품을 구매하는 것이 좋다. 일상에서 플라스틱 사용을 줄이고 대안을 찾는 것이 중요하다"고 말했다.
-
- 생활경제
-
생수 속 나노플라스틱, 리터당 수천 개…체내 침범 우려
-
-
전기화학 기술, 가축 분뇨에서 친환경 자원 생산
- 환경 오염을 주범으로 여겨지는 가축 분뇨에서 친환경적으로 전기를 생산하는 기술이 개발됐다. 매년 전 세계 축산농가에서 30억톤 이상의 동물 배설물이 발생하고 있다. 이는 미국 엠파이어 스테이트 빌딩 9000개 이상에 해당하는 양이다. 모든 분뇨는 수질을 악화시키며 유독한 연기와 온실가스를 방출한다. 그러나 저렴한 전기를 이용해 동물 배설물을 재활용하고 귀중한 화학물질을 회수할 수 있는 기술이 개발돼 환경 오염을 크게 줄일 수 있을 것으로 기대된다. 학술지 '사이언스 어드밴스(Science Advances)'에서는 '네이처 서스테이너빌리티(Nature Sustainability)'에 발표된 연구를 소개했다. 이 연구는 전기를 이용하여 동물 배설물에서 유기 영양소를 분해하고, 동시에 가치 있는 화학물질을 회수하는 새로운 방법을 제시한다. 초기 예측에 따르면, 이 방법으로 얻어지는 화학물질의 경제적 가치가 기술 구현 비용을 상회할 것으로 예상된다. 이는 농부들에게 수익성이 높은 선택지가 될 수 있음을 시사한다. 클락슨 대학의 김태영 화학자는 이번 연구에는 참여하지 않았지만 "풍력, 태양열 발전소에서 발생하는 값싸고 재생가능한 전기를 결합하면 거름이 풍부한 시골 농업 지역에서도 찬환경 전기가 생산될 수 있다"고 말했다. 많은 축산업자들은 이미 동물 배설물을 재활용하기 위해 노력하고 있다. 이들은 배설물을 분뇨 라군(연못)에 저장하여, 바닥에 침전된 암모니아가 풍부한 고형물을 준설하여 비료로 재사용한다. 또한, 남은 유기 화합물을 미생물이 메탄으로 분해하게 하여 이를 수집, 태워 전기를 생산할 수 있다. 이러한 방식은 지속 가능한 에너지와 농업 사이의 상호 작용을 보여주는 예이다. 그럼에도 불구하고, 엄청난 양의 암모니아와 기타 화합물이 자연환경으로 방출되어 해조류가 번성하고 물고기가 죽게 되는 환경오염이 발생한다. 이에 최근 몇 년 동안 몇몇 연구팀에서는 분뇨 라군에서 암모니아와 기타 귀중한 화학물질을 포착하기 위한 전기화학적 방법을 탐색하기 시작했다. 예를 들어, 2021년 실험실 연구에서 김태영 교수와 그의 동료들은 전류를 사용해 막을 통해 양으로 하전된 암모늄 이온을 유도하여 비료 전구체를 농축하고 쉽게 복구할 수 있는 배터리 유형 설정을 보고했다. 그러나 멤브레인(두께가 얇은 막) 설정은 운영하기 어렵고 확장하는 데 비용이 많이 들 수 있다. 위스콘신 매디슨 대학교 환경 엔지니어인 모한 킨(Mohan Qin)과 동료 송진이 이끄는 연구팀은 2단계 접근 방식을 채택해 멤브레인을 없앨 수 있는 가능성을 확인했다. 두 단계 모두 KNiHCF(칼륨·니켈·헥사시아노철산염)라는 배터리 전극 재료를 사용한다. KNiHCF는 이온이 들어오고 나갈 수 있는 간격이 있는 층 구조를 가지고 있다. 연구원들은 KNiHCF의 층 간격이 나트륨이나 칼슘과 같이 분뇨에서 일반적이지만 가치는 떨어지는 이온 대신 암모늄 및 칼륨 이온을 끌어들이는 데 이상적이라는 것을 발견했다. 연구진은 이후 이온으로 채워진 KNiHCF 전극을 폐수 용액에서 제거하고, 이를 이온 전도성 전해질을 첨가한 깨끗한 물이 담긴 두 번째 용기에 두 번째 전극과 함께 배치했다. 전압을 가하면 전자가 두 번째 전극으로 흘러 들어갔고, 이로 인해 KNiHCF 전극에서 양전하를 띤 암모늄 및 칼륨 이온을 용액으로 끌어당겨 농축하고 쉽게 복구할 수 있는 음전하가 생성됐다. 이 설정에는 보너스가 있다. 두 번째 전극의 음전하는 용액의 물과 산소를 유발하여 수소 가스나 과산화수소로 반응했는데, 두 가지 모두 회수된 암모니아 및 칼륨과 함께 판매될 수 있는 귀중한 화학물질이다. 연구팀은 KNiHCF 전극은 반복적으로 사용하면 성능이 저하되는데, 이 문제는 이미 해결 방안을 찾았다고 밝혔다. 연구원들은 또한 1000마리의 젖소가 있는 낙농장의 폐기물을 확장하고 관리하기 위한 설정의 잠재력을 평가하기 위한 분석을 수행했다. 그들은 전기 가격이 미국 평균인 킬로와트시(kWh)당 약 0.08달러(약 100원)로 책정될 경우 해당 운영에서 연간 최대 20만달러(약 2억6320만원)의 이익을 창출할 수 있을 만큼 귀중한 화학 물질을 생성할 수 있다는 사실을 발견했다. 송진 연구원은 재생 가능 전력이 일부 농촌 지역의 전기 비용을 2030년까지 kWh당 약 0.03달러(약 39원)로 낮출 수 있을 것으로 예상했다. 풍력이나 태양열 발전소는 종종 전력망이 처리할 수 있는 것보다 더 많은 전기를 생산하므로 엔지니어는 전력을 버리거나 터빈을 꺼야 했다. 이에 송진은 "풍력, 태양광과 결합할 수 있다면, 가격이 저렴할 때만 전기를 사용하도록 설계할 수 있다"고 말했다. 모한 킨은 "전체 공정이 얼마나 효율적인지 고려할 때, 전기화학적 처리는 거름에 있는 암모니아의 거의 70%를 포착하고 비슷한 양만큼 농장에서 배출되는 암모니아를 줄일 수 있다"며 "이것은 오래된 (가축 분뇨)문제를 처리하는 매우 간단하고 효율적인 방법"이라고 주장했다.
-
- 산업
-
전기화학 기술, 가축 분뇨에서 친환경 자원 생산
-
-
플라스틱 폐기물, 새우 등 해양 소형생물 번식에 악영향
- 플라스틱 폐기물이 해양으로 유입되면서 해양 생물의 번식에 악영향을 미치고 있는 것으로 나타났다. 가벼운 쓰레기의 경우 조류를 따라 전 세계 해안에 도착하면서 또 다른 해양 환경오염까지 유발하는 등 악순환이 이어지고 있는 상황이다. 해외 매체 인콰이어러(inquirer)는 최근 영국 포츠머스 대학의 연구팀이 플라스틱 폐기물이 새우 등 작은 해양생물의 번식을 방해한다는 사실을 발견했다고 보도했다. 생태 독성학자인 알렉스 포드(Alex Ford)와 그의 동료들은 특정 종에 대해 몇 가지 화학 첨가물을 테스트했는데, 플라스틱 폐기물에 포함된 화학 첨가물이 갑각류의 행동을 변화시켜 교미 성공률을 감소시키고 있다는 것을 발견했다. 인콰이어러는 인정하지 않을 수도 있지만 인류의 부주의가 환경 오염과 자연의 경로 왜곡을 야기하고 있다고 지적했다. 이 매체는 적극적인 조치가 취해지지 않으면, 우리 생태계의 상당 부분이 심각한 위험에 처할 수 있다고 경고했다. 플라스틱 폐기물, 갑각류 정자수 감소시켜 플라스틱 폐기물이 해양 생태계에 미치는 영향에 대한 연구에서, 작은 갑각류의 정자 수 감소가 관찰됐다. 대부분은 상어와 같은 대형 동물이 해양 생태계에 가장 큰 영향을 미친다고 생각하는데, 새우 등 소형 갑각류는 해양 먹이사슬에서 중요한 역할을 하며, 그들의 손상은 전체 먹이사슬에 영향을 미칠 수 있다. 알렉스 포드는 “이 생물들은 유럽 해안에서 흔히 발견되며, 물고기와 새 등의 먹이의 상당 부분을 차지한다”며 “예를 들어, 고래는 보통 크릴을 주식으로 하는데 만약 이들이 손상되면 전체 먹이사슬에 영향을 미칠 것”이라고 강조했다. 바로 이 점이 환경 독성학자인 비데미 그린-오조(Bidemi Green-Ojo)와 그의 동료들이 '에치노가마루스마리누스(Echinogammarus marinus)라고 불리는 작은 갑각류 종을 플라스틱에서 발견되는 4가지 화학 첨가물에 노출시킨 이유다. 그린 오조는 “이 네 가지 첨가제가 인체 건강에 미치는 위험에 대해 잘 알고 있기 때문에 이를 선택했다”며 "우리가 조사한 두 가지 화학물질(DBP와 DEHP)은 규제를 받고 있으며 유럽에서는 제품에 사용이 허용되지 않는다“고 말했다. 이어 "다른 두 화학물질은 현재 제한이 없으며 많은 가정용품에서 발견된다"며 "우리는 이러한 화학물질이 수중 짝짓기 행동에 미치는 영향을 테스트하고 싶었다"고 연구 배경을 설명했다. 테스트된 화학물질 중 3개는 영국의 지표수와 지하수에서 검출된 상위 30개 화학물질에 포함되어 있다. 이 물질들은 바다 생물의 행동에 영향을 미치며, 특히 짝짓기 성공률 감소에 기여할 수 있는 것으로 밝혀졌다. 샘플 화학 물질 중 두 가지인 디부틸 프탈레이트(DBP)와 트리페닐 인산염(TPHP)은 갑각류의 정자 수를 감소시켰다. 알렉스 포드는 연구팀이 실험한 동물들이 환경에서 일반적으로 발견되는 것보다 높은 농도의 화학물질에 노출되었다고 말했다. 그는 이러한 화학물질들이 정자 수에 영향을 미칠 수 있음을 지적했다. 오랜 기간 동안 또는 생활사의 중요한 단계에서 노출된 새우에 대한 추가 실험을 통해 이러한 영향이 더 명확해질 수 있음을 나타냈다. 독도 괭이갈매기 미세플라스틱 오염 한편, 한국의 독도 괭이갈매기 깃털도 미세플라스틱에 오염된 것으로 밝혀져 충격을 안겨줬다. 국제학술지 해양오염학회지 11월호에 실린 '한국 괭이갈매기 깃털에서 미세플라스틱 검출 첫 보고' 논문에 따르면 5㎜ 미만의 미세플라스틱 170g, 73개가 검출됐다. 경희대 한국조류연구소 연구진은 작년 6월 독도와 울릉도에서 괭이갈매기 17마리를 포획한 후 가슴깃을 떼어내 과산화수소수로 처리한 뒤 적외선분광기로 검사했다. 포획한 괭이갈매기의 몸무게는 평균 490g으로, 몸무게의 2%를 미세플라스틱이 차지하고 있었다. 종류별로는 폴리에틸렌(PE)과 폴리프로필렌(PP)이 각각 26개와 21개로 가장 많이 나왔다. 폴리스타이렌(PS)도 10개, 폴리에틸렌테레프탈레이트(PET) 등도 16개 발견됐다. 체내에 축적된 미세플라스틱이 소화기관에 악영향을 주며, 깃털에 붙은 미세플라스틱은 유기오염물질이나 독성화학물질과 흡착해 건강을 해칠 수 있다. 미세플라스틱이 깃털을 둘러싼 기름막을 흡수하면 방수성과 보온성을 저해해 생존력을 떨어트릴 수 있다.
-
- 생활경제
-
플라스틱 폐기물, 새우 등 해양 소형생물 번식에 악영향
-
-
미국, 이유식 40%서 독성 살충제 검출⋯안전 우려
- 미국의 기존 이유식 제품 중에서 독성 살충제 성분이 약 40%나 검출됐다. 미국 환경단체인 EWG(Environmental Working Group)는 2023년 7월부터 9월까지 미국에서 판매되는 이유식 73개 제품을 대상으로 살충제 검사를 실시하여 22개 제품에서 하나의 살충제가 검출되었으며 이 중 12개 제품에서는 두 가지 이상의 살충제가 검출됐다고 발표했다. 영국 매체 더 가디언(The Guardian)에 따르면 EWG는 이번 연구에서 기존 이유식 제품의 약 40%에서 독성 살충제가 검출되었으며, 유기농 이유식 제품에서는 살충제가 검출되지 않았다. 검출된 살충제 중에는 꿀벌과 인간에게 유해할 수 있는 아세트아미프리드, 암과 연관이 있는 캡탄, 그리고 태아 발달, 면역 체계, 호르몬에 영향을 미칠 수 있는 플루디옥소닐 등이 포함됐다. 특히, 사과를 기반으로 한 제품의 경우 높은 수준의 잔류 농약을 발견될 가능성이 가장 높았다. 블루베리, 배, 딸기와 같은 농산물 역시 일반적으로 높은 수준의 화학 물질을 포함하고 있는 것으로 알려져 있다. EWG는 1995년에 실시한 유사한 연구와 비교한 결과, 이유식의 살충제 수치가 전반적으로 감소하고 있다는 사실을 발견했다. 당시 연구에서는 테스트된 제품의 55%에서 살충제가 검출됐다. 1996년 식품 품질 보호법이 통과된 이후, 미국 환경보호청(EPA)은 잔류 농약이 어린이와 유아에게 해를 끼치지 않는다는 '합리적 확실성'을 보장하는 역할을 맡게 되었다. EWG의 연구 결과에 따르면, 클로르피리포스와 같은, 아기들의 뇌에 영구적인 손상을 줄 수 있는 살충제는 더 이상 이유식에서 검출되지 않는 것으로 확인됐다. EWG의 시드니 에반스(Sidney Evans) 선임 과학 분석가는 "이유식에 잔류 농약이 존재할 수 있다는 부모들의 우려를 이해한다. 하지만 1995년 연구에서 발견된 가장 독성이 강한 살충제들 중 일부는 현재 이유식에서 더 이상 검출되지 않는다는 사실이 확인되어 안심할 수 있다"고 밝혔다. 그럼에도 EWG는 여전히 감독이 미흡하고, 살충제에 대한 노출이 아기의 건강에 미치는 영향에 대한 우려가 있다고 지적했다. 또한, 화학물질을 금지하는 과정은 쉽지 않으며, 소비자는 다양한 이해 관계자로부터 모순된 정보를 접할 수 있다고 강조했다. 따라서, EWG는 대중이 나서서 이유식에 살충제 사용을 금지해야 한다고 주장했다. 한국, 이유식 규정 미비 한국의 식품의약품안전처는 2022년 11월 현재, 이유식에 대한 살충제 잔류 기준을 125종에 대해 설정하고 있다. 그러나 이러한 기준은 미국의 잔류 기준보다 상대적으로 완화된 상태다. 예를 들어, 아세트아미프리드의 경우 미국에서는 1ppm(1mg/kg) 이하로 규정되어 있는 반면, 한국에서는 5ppm(5mg/kg) 이하로 설정되어 있다. 또한 한국에서는 유기농 이유식에 대한 명확한 규정이 부족하다. 유기농 인증을 받은 농산물을 사용한 이유식은 일반적으로 살충제 잔류량이 적을 것으로 예상되지만, 인증되지 않은 유기농 이유식의 경우 그 살충제 잔류량을 정확히 확인하는 데 어려움이 있다. 따라서, 한국의 부모들도 이유식을 선택할 때 살충제 잔류 여부를 면밀히 확인하는 것이 중요하다. 미국의 연구에 따르면, 기존 이유식 제품 중 약 40%에서 독성 살충제가 검출되었다는 사실이 밝혀졌다. 이는 살충제에 대한 규제가 강화되고 있음에도 불구하고, 아이들이 이유식을 통해 살충제에 노출될 가능성이 여전히 존재함을 시사한다. 한국의 경우, 이유식의 살충제 잔류 기준이 미국에 비해 훨씬 완화되어 있으며, 유기농 이유식에 대한 규정도 명확하지 않다. 따라서, 부모들은 이유식을 선택할 때 살충제 잔류량을 확인하고, 유기농 인증을 받은 제품을 선택하는 것이 권장된다.
-
- 생활경제
-
미국, 이유식 40%서 독성 살충제 검출⋯안전 우려
-
-
구리 화학 발견으로 값싼 약품 개발 길 열렸다
- 최근 구리 화학의 발견이 값싼 약품 개발의 새로운 가능성을 열었다. 이제 단 3달러의 비용으로 항암제에 사용될 수 있는 화학 물질을 제조할 수 있게 됐다. 구리는 이미 의학 분야에서 감염과 싸우는 나노 입자 및 임플란트의 형태로 사용되고 있다. 미국의 과학 전문 매체 뉴아틀라스는 미국 캘리포니아대학교 로스앤젤레스(UCLA)의 과학자들이 개발한 새로운 방법으로 간단하고 저렴한 약품 생산이 가능하다고 보도했다. 이 방법은 산소의 한 형태인 오존을 시약으로 사용하고 금속을 촉매로 활용한다. 과학자들은 이를 통해 유기 분자의 탄소-탄소 결합을 끊는데 성공했다. 오존은 이 결합을 알켄, 즉 탄화수소로 분해하고, 구리 촉매는 깨진 결합을 질소와 결합시켜 탄소-질소 결합을 형성한다. 이 결합은 아민이라고 알려진 분자를 형성하게 되는데, 이것이 바로 항암제와 같은 값싼 약품 생산에 필수적인 요소다. 아미노탈알케닐화로 알려진 이 공정은 전통적으로 아민을 생성하는 데 사용되는 다른 유사한 촉매와는 달리 풍부하고 저렴한 금속을 잘 활용하면 된다. 아미노탈알케닐화라고 알려진 이 새로운 공정은 기존의 아민 생성 방법과는 다르다. 이 공정은 전통적으로 사용되는 비싼 금속 촉매 대신에 저렴하고 풍부한 금속을 효과적으로 활용한다. 권오현 유기화학 교수는 이 공정에 대해 설명하면서 "이전에는 이런 방법이 없었다"고 강조했다. 그는 "전통적인 금속 촉매 반응에서는 백금, 은, 금, 팔라듐과 같은 고가의 금속이나 로듐, 루테늄, 이리듐과 같은 귀금속을 사용했지만, 우리는 세계에서 가장 풍부한 비금속 중 하나인 산소와 구리를 사용하고 있다"고 밝혔다. 이러한 접근 방식은 아민을 생성하는 데 필요한 자원과 비용을 크게 줄일 수 있는 가능성을 보여준다. 아민은 의약품과 비료, 농약 생산에 널리 사용되는 중요한 화학물질이다. 이는 식물과 동물에서 발견되는 분자와 강력한 상호 작용을 하며, 암페타민과 도파민과 같은 약물에서도 발견되는 구성 요소다. 이번 연구를 통해 연구팀은 호르몬, 제약 시약, 펩타이드, 뉴클레오시드 등을 아민으로 변형하는 데 성공했다. 이것은 이 새로운 방법이 다양한 분야에 활용될 수 있음을 보여준다. 하지만 권 교수에게 있어서 가장 큰 장점은 훨씬 저렴한 의약품 생산 가능성일 것이다. 일부 항암제에 사용되는 화학물질은 제조 비용이 그램당 약 3200달러(약 412만원)에 달하지만, 연구팀은 그램당 약 3달러(약 3860원)의 비용으로 동일한 약물 분자를 생산할 수 있었다. 기존 12단계 공정 대신 3단계만 사용 연구팀은 항암 c-Jun N-말단 키나제 억제제를 생산하기 위해 기존의 12단계 공정 대신 단 3단계의 화학 과정만을 사용했다. 또한, 이들은 또 다른 실험에서 아데노신이라는 신경 전달 물질과 DNA 구성 요소를 N6-메틸아데노신 아민으로 전환하는 과정을 한 단계만 거쳐서 수행했다. 이 아민은 세포의 유전자 발현, 질병 과정 및 발달에 중요한 역할을 하며, 현재 생산 비용은 그램당 약 103달러(약 13만2,600원)다. 구리는 현재 파운드당 4달러(약 5150원) 미만으로 풍부하게 구할 수 있기 때문에, 과학자들은 은 이 새로운 방법이 아민 기반 의약품과 다른 유기 물질의 생산 비용을 대폭 절감할 수 있기를 기대한다. 한편, 한국원자력연구원(원장 주한규)의 양성자과학연구단은 지난 7월 치료용 방사성동위원소 구리-67(Cu-67)을 고품질로 대량생산할 수 있는 분석법을 개발해 주목을 받았다. 방사성의약품은 방사성동위원소를 포함하여 질병의 진단과 치료에 사용된다. 구리-67은 진단용 감마선과 암세포를 사멸시키는 치료용 베타선을 방출하는 동위원소로, 동시에 진단과 치료가 가능하며, 기존 동위원소보다 반감기가 짧아(2.5일) 체내 피폭 위험도 적다. 이러한 특성으로 인해 구리-67은 높은 활용 가능성을 가지고 있다고 평가된다. 방사성의약품은 암세포에서 발현하는 특정한 단백질을 표적으로 하여 정상세포에는 영향을 주지 않고 암세포만 선택적으로 제거할 수 있다. 이로 인해 강력한 치료 효과와 함께 높은 안전성을 제공한다. 다만, 구리-67은 다른 핵종과 달리 방출하는 감마선 스펙트럼이 불순물인 갈륨-67(이하 Ga-67)과 정확히 겹쳐 물리적인 측정법으로는 이 두 핵종을 구분할 수 없었다. 이에 양성자과학연구단 입자빔이용연구부 박준규 박사 연구팀은 두 핵종의 감마선 방출강도 뿐만 아니라 반감기 차이(Cu-67은 2.5일, Ga-67은 3.2일)까지 고려한 새로운 해석적 분리방법을 제시했다. 연구팀은 구리-67과 Ga-67 각각의 감마선 세기 합이 전체 감마선 세기와 같다는 점과 감마선 방출 강도 비율, 반감기 차이를 이용했다. 이를 통해 화학적 분리 과정 없이도 구리-67의 정확한 핵자료를 얻을 수 있었다. 한국원자력의학원의 김희진, 김정영 연구원은 "구리-67은 방사능 강도가 낮고 담체가 없는(carrier-free) 방사성동위원소로, 이로 인해 효과적인 암 치료가 가능하다"고 말했다. 이 연구팀은 2025년 경주 양성자가속기를 활용해 고품질 구리-67을 본격적으로 대량 생산할 예정이다.
-
- IT/바이오
-
구리 화학 발견으로 값싼 약품 개발 길 열렸다
-
-
박테리아, 암세포 DNA 파괴 화합물의 합성 과정 밝혀내
- 미국 플로리다주 주피터에 위치한 허버트 베르트하임 UF 스크립스 생물의학 혁신 및 기술 연구소의 연구팀이 암을 포함한 인간의 질병과의 싸움에 도움이 될 수 있는 새로운 효소를 발견했다고 과학 전문매체 싸이테크데일리가 최근 보도했다. 연구팀이 발견한 '보조 인자 없는 산소 분해 효소'는 박테리아에서 유래되며, 공기 중의 산소를 획득해 화합물에 통합하는 독특한 특성을 보인다. 이러한 과정을 통해 유기체는 방어 물질을 합성하고, 감염이나 침입자에 대항하는 생존적 장점을 갖게 된다. 연구팀에 따르면, 발견된 보조 인자 없는 산소 분해 효소인 TnmJ와 TnmK2는 항생제 및 항암 화합물인 티안시마이신 A의 효능에 대한 의문을 해결하는 데 중요한 역할을 한다. 연구원 춘귀(Chun Gui)와 에드워드 칼크루터(Edward Kalkreuter)는 이러한 발견이 암 치료 및 항생제 개발에 중요한 기여를 할 수 있을 것으로 기대한다고 전했다. 2016년 처음 발견된 티안시마이신 A는 암세포의 DNA를 끊어 죽이는 효과가 있는 화합물로 바이러스나 다른 세균을 죽이는 데에도 효과적이다. 현재 암 표적 항체 치료제 개발에 중요한 요소로 주목받고 있으며, 이 치료제는 항체와 약물을 결합해 암세포에 결합한 후 약물을 방출하여 암세포를 제거한다. 티안시마이신 A는 종양 크기를 크게 줄이는 효과를 나타내며, 쥐를 대상으로 한 실험에서 암 치료제로의 개발 가능성을 시사했다. 이 화합물은 토양에 서식하는 박테리아에서 발견되었으며, 세 개의 탄소-탄소 결합을 끊어 DNA를 손상시키고 탄소-산소로 결합으로 대체하여 DNA를 파괴해 암세포를 파괴할 수 있게 했다. 허버트 베르트하임 UF 스크립스 생물의학 혁신 및 기술 연구소는 천연 제품 컬렉션에서 발견된 다양한 화합물을 연구하고 있으며, 이를 통해 화학적 다양성이 진화한 이유와 그 유용성에 대한 탐구를 진행하고 있다. 이는 앞으로 더 많은 혁신적인 발견을 기대할 수 있게 하는 연구 분야로 주목받고 있다. 세계 최대의 미생물 천연 컬렉션 중 하나인 이 연구소의 천연물 발견 센터를 이끄는 벤 센 박사는 "신약 발견의 역사에 대한 박테리아 화학물질의 기여는 놀랍다"고 말했다. 센 박사는 "시중에 판매되는 FDA 승인 항생제 및 항암제의 거의 절반이 천연 제품이거나 천연 제품이라는 사실을 아는 사람은 거의 없다"고 말했다. 그는 "자연은 이러한 복잡한 천연 제품을 만드는 최고의 화학자다. 우리는 매혹적인 화학과 효소학을 이해하기 위해 현대 게놈 기술과 계산 도구를 적용하고 있으며 이는 전례 없는 속도로 발전하고 있다. 이 효소는 최근의 흥미로운 사례다"라고 설명했다.
-
- IT/바이오
-
박테리아, 암세포 DNA 파괴 화합물의 합성 과정 밝혀내
-
-
암 치료, "일반 화학요법 약물, 예상과 다르게 작용"
- '암'은 비정상적인 세포 성장으로 인해 발생하는 질병으로, 양성 종양과 악성 종양으로 나누어진다. 그러나 최근 연구에 따르면, 종양 치료를 위해 널리 사용되는 화학요법이 아직 완전한 잠재력을 발휘하지 못하고 있음이 드러났다. 연구원들과 의사들이 암 치료에 사용되는 가장 일반적인 약물 중 일부가 종양을 억제하는 방식에 대해 오랜 기간 잘못 이해해 왔기 때문일 수 있다는 연구 결과가 나온 것. 과학기술 전문매체 '사이테크데일리(SciTechDaily)'에 따르면, 위스콘신-매디슨 대학의 최근 연구는 많은 환자들에게 효과적인 특정 화학요법의 작동 원리를 밝혀냈다. 더 중요한 것은 이 연구는 세포 분할을 막는 데만 의존해 새로운 화학요법 약물을 찾는 노력이 부족했다는 점도 지적했다. 기존의 연구는 주로 암 세포 분할을 막는 방식에 초점을 맞춰왔으나, 이 방식만으로는 충분하지 않음을 강조했다. 수십 년 동안 연구자들은 '미세소관 독성 물질(microtubule poisons)'이라 불리는 약물군이 암 종양의 세포 분할을 중단시키는 것으로 생각했다. 하지만 위스콘신-매디슨 대학의 연구팀은 환자들에서 이러한 미세소관 독성 물질이 실제로 암세포의 분할을 중단시키지 않는다는 것을 발견했다. 이 약물들은 오히려 분할 과정을 변형시키며, 이로 인해 새로운 암세포의 사멸과 질병의 후퇴(종양의 크기가 줄어들거나 증상이 개선되는 것)로 이어졌다. 암은 정상 세포와 달리 무한한 분할과 증식을 통해 성장하고 퍼지는 특성을 가지고 있다. 미세소관 독성 물질이 암세포의 분할을 중단한다는 가설은 실험실 연구를 통해 그 가능성을 제시했지만, 최근의 연구는 이러한 가정에 대해 새로운 시각을 제공한다. 이 연구는 베스 웨버 교수와의 협력 하에 수행되었으며, 그 목적은 종양 치료에 사용되는 미세소관 독성 물질이 파클리텍셀처럼 어떻게 작용하는지를 파악하는 것이었다. 파클리텍셀은 난소와 폐암 같은 일반적인 악성종양 치료에 사용되는 약물이다. 웨버 교수는 이전 연구 결과에 대해 "매우 놀라운 발견"이라고 언급했다. 그는 "수십 년 동안 우리는 파클리텍셀이 종양의 세포분열, 즉 미토시스를 중단시키는 방식으로 작용한다고 생각해왔다"며 "전 세계 실험실에서 진행된 연구들이 이를 뒷받침했지만, 문제는 실제 종양 내에서의 농도보다 훨씬 높은 농도를 사용했다는 점이었다"고 지적했다. 웨버 교수와 그의 동료들은 다른 미세소관 독성 물질이 파클리텍셀과 유사한 방식으로 작동하는지 알아보고자 했다. 이들의 관심사는 단순히 세포 분할을 중단시키는 것이 아니라, 분할 과정을 혼란스럽게 만드는 메커니즘이었다. 이러한 질문은 새로운 암 치료 방법을 모색하는 과학자들에게 매우 중요한 영향을 미친다. 이는 약물의 치료 효과를 담당하는 메커니즘을 파악하고, 이를 복제하거나 개선하는 데 크게 의존하는 약물 개발 노력의 핵심 요소이기 때문이다. 미세소관 독성 물질은 모든 환자에게 효과적인 치료법이 아닐 수 있지만, 연구자들은 이 약물들이 수행하는 작용을 모방하는 다른 치료 방법을 개발하기 위해 오랜 시간 노력해왔다. 암세포의 분열을 중단시키는 새로운 화학물질을 찾는 이전의 시도들은 어려움에 부딪혔지만, 이러한 연구는 계속 진행 중이다. 웨버 교수는 "아직도 유사분열을 중단시키는 것을 종양을 죽이는 메커니즘으로 간주하는 과학 커뮤니티가 많다"며, "이것이 환자에게 중요한지 이해하고자 한다"고 말했다. 연구팀은 윈스콘신 대학교 카본 암센터(UW Carbone Cancer Center)에서 표준 항-미세소관 독성 물질을 기반으로 한 화학요법을 받은 유방암 환자들로부터 얻은 샘플을 연구했다. 연구팀은 종양에 전달된 약물의 양을 측정하고, 종양 세포가 어떻게 반응하는지를 분석했다. 그들은 약물에 노출된 후에도 세포가 계속해서 분열하긴 하지만, 그 분열이 비정상적으로 일어나는 것을 관찰했다. 이러한 비정상적인 세포 분열은 종양 세포의 사멸을 유도할 수 있는 가능성이 있음을 시사한다. 일반적으로, 세포 내에서 유사분열 과정 동안 염색체는 복제되어 이분화되며, 이로 인해 두 개의 동일한 염색체 세트가 새로운 세포로 이동한다. 이 염색체 이동은 방추사(mitotic spindle)라는 특수한 세포 구조에 염색체가 연결되면서 발생한다. 정상적인 방추사에는 두 개의 끝, 즉 방추체 극이 존재한다. 방추사는 세포의 체세포분열 때 생성되는 가는 실 모양의 섬유질 단백질을 의미한다. 한 개의 세포가 두 개의 세포로 분열할 때, 복제된 염색체는 방추사를 통해 정확하게 두 개의 딸 세포로 분리되어야 한다. 이 과정에서 미세소관으로 구성된 방추사가 중요한 역할을 한다. 웨버 박사 팀은 파클리텍셀과 같은 미세소관 독성 물질이 유사분열을 중지시키기보다는 오히려 혼란을 야기하는 비정상적인 상태를 유발한다는 사실을 발견했다. 이 혼란은 종양 세포가 염색체의 한 세트를 넘어서 두 개 이상의 여러 방향으로 당기면서 유전체에 혼란을 일으키는 것이다. 웨버 박사는 "유사분열 후에 유전적으로 동일하지 않은 딸 세포가 생기고, 염색체 손실이 발생하면 세포의 사멸 가능성이 높아진다"고 설명했다. 그는 이어 "이 연구 결과는 미세소관 독성 물질이 많은 환자에게 왜 효과적인지를 밝혀내고, 유사분열을 중지시키는 것만을 목표로 한 새로운 화학요법 약물 개발 시도가 실패한 이유를 설명하는 데 중요한 역할을 한다"고 강조했다.
-
- 생활경제
-
암 치료, "일반 화학요법 약물, 예상과 다르게 작용"
-
-
친환경 배터리 재활용 기술로 알루미늄‧리튬 대량 회수
- 스웨덴 샬머스 대학의 연구팀이 전기차 폐배터리 셀로부터 알루미늄 100%와 리튬 98%를 회수할 수 있는 친환경 배터리 재활용 기술을 개발했다고 광업·금속산업 전문지 마이닝 닷컴(MINING.COM)이 보도했다. 이 연구팀은 식물에서 추출한 옥살산이라는 유기 화합물을 이용해 폐자동차 배터리에서 알루미늄과 리튬을 우선적으로 추출했다. 이후 순차적으로 코발트, 니켈, 망간 등 다른 금속도 회수했다. 이번 연구의 주재료인 옥살산은 일반적으로 시금치나 루바브에서 발견되는 유기화합물로 기존의 무기 화학물질에 비해 독성이 낮고 환경에 미치는 영향이 낮다. 한국에서는 익숙하지 않은 채소인 루바브의 세모꼴 이파리는 옥살산이 과다 함유돼 식용으로 사용하지 못하는 것으로 알려졌다. '세퍼레이션 앤드 퓨러퍼케이션 테크널러지(Separation and Purification Technology)' 저널에 실린 논문에 따르면 이 기술은 폐리튬이온 배터리의 내용물을 고체 미립자로 분쇄하는 것으로 시작한다. 여과 과정을 거친 그 결과, 투명한 액체인 옥살산에 용해된 미세하게 분쇄된 흑색 분말이 생성되면서 각종 금속을 회수하는 원리다. 연구원들은 온도와 농도, 시간의 미세한 조절을 통해 옥살산을 활용해 리튬과 코발트 등을 회수하는 새롭고 획기적인 방법을 발견한 것. 수석 연구원 마르티나 페트라니코바(Martina Petranikova)는 "무기 화학 물질에 대한 대안이 절실히 필요하다. 현재 공정에서 가장 큰 장애물 중 하나는 알루미늄과 같은 잔류 물질의 제거다. 이 새로운 방법은 재활용 산업에 혁신적인 대안을 제시하며, 전기차 폐배터리 개발을 방해하는 문제를 해결하는 데 큰 도움이 될 것"이라고 설명했다. 연구원들이 개발한 이 방법은 '습식 제련'이라고 불리며, 전통적인 습식 야금 공정과는 다르다. 습식 야금에서는 전기차 배터리 셀의 모든 금속이 무기산에 용해된다. 그러나 이 새로운 방법에서는 '불순물'로 분류되는 알루미늄과 구리 같은 재료가 제거된 후에, 코발트, 니켈, 망간, 리튬과 같은 귀금속이 분리 회수된다. 기존 방법은 알루미늄과 구리의 잔여량은 적지만, 여러 번의 정제 과정이 필요하며 이 과정에서 리튬의 손실이 발생할 수 있다. 새롭게 개발된 방법은, 일반적인 순서와는 반대로 리튬과 알루미늄을 먼저 회수함으로써 새 배터리 제조에 필요한 귀중한 금속의 낭비를 줄일 수 있다. 이 과정에서 생성되는 검은색 물질의 여과 과정은 마치 커피 추출을 연상시킨다. 여과 과정을 통해 알루미늄과 리튬이 액체 상태로 분리되며, 다른 금속들은 '고체' 상태로 남게 된다. 그 다음 단계는 알루미늄과 리튬을 분리하는 것이다. 논문의 수석 저자인 레아 루케트(Léa Rouquette)는 "각 금속이 매우 다른 특성을 가지고 있어서 분리 작업은 그리 어렵지 않을 것이라 생각한다. 우리의 방법은 배터리 재활용 분야에서 새로운 가능성을 열고 있으며, 더 깊게 연구할 가치가 있다"라고 말했다. 페트라니코바 수석연구원은 "확장 가능한 방법이기 때문에 앞으로 몇 년 동안 이 분야에서 널리 사용될 것으로 기대한다"고 덧붙였다. 한국 배터리 재활용 기술 시장 전망 전기차의 보급이 확대됨에 따라 한국의 배터리 재활용 시장도 성장세가 예상된다. 정부는 2030년까지 배터리 재활용률을 90%로 끌어올리려는 목표를 세우고 있으며, 이를 향한 기술 개발이 활발히 진행 중이다. 포스코케미칼, LG화학, SK이노베이션 등 주요 기업들이 친환경 배터리 재활용 기술 개발에 투자하고 있다. 특히 포스코케미칼은 리튬이온 배터리에서 리튬을 효과적으로 회수하는 새로운 기술을 연구하고 있다. 이 기술은 리튬이온 배터리의 양극재로부터 리튬을 효율적으로 추출하며, 기존 방법에 비해 리튬의 손실을 줄이는데 초점을 맞추고 있다. 또 포스코케미칼은 최근 스웨덴의 리튬 이온 배터리 재활용 회사인 노르드볼트와 양극재 리사이클링 기술 개발에 관한 협약을 맺었다. LG화학은 리튬이온 배터리로부터 코발트와 니켈을 더 효율적으로 회수하기 위한 기술을 연구 중이다. 이 기술은 배터리의 양극재와 음극재를 분리해 코발트와 니켈을 회수하는 과정을 포함하며, 이를 통해 기존 방법에 비해 코발트와 니켈의 회수율을 향상시킬 수 있다. SK이노베이션은 리튬, 코발트, 니켈, 망간을 리튬이온 배터리로부터 회수하는 새로운 기술을 개발하고 있다. 이 기술은 배터리를 고온에서 처리하여 이들 금속을 추출하는 방식으로, 기존 공정보다 에너지 효율이 높다. 한국의 친환경 배터리 재활용 기술은 국제적으로도 주목받고 있는 분야다. 지속적인 기술 개발이 활발하게 진행됨에 따라, 한국은 전기차 배터리 재활용 분야에서 세계적인 선두 위치를 차지할 것으로 예상된다.
-
- 산업
-
친환경 배터리 재활용 기술로 알루미늄‧리튬 대량 회수
-
-
자폐증·ADHD와 비스페놀 A 간의 연관성 발견
- 플라스틱 병 등에서 흔히 발견되는 환경호르몬 비스페놀 A(BPA)가 자폐증 등에 영향을 미치는 것으로 밝혀졌다고 영국 매체 데일리메일이 최근 보도했다. 미국의 뉴저지 로완(Rowan)대학교와 럿거스(Rutgers) 대학교의 연구자들은 자폐증과 주의력 결핍 과잉행동 장애(ADHD)를 가진 어린이들의 몸에 비스페놀 A(BPA)라고 알려진 화학 물질이 더 많이 남아있음을 밝혀냈다. BPA는 호르몬이 성적 문제와 관련이 있어 '젠더-벤딩' 화학 물질로 분류되는 화학 화합물로 알려져 있다. BPA는 플라스틱 용기, 물병, 식품 캔 내부, 그리고 영수증과 같은 다양한 제품에서 발견된다. 이 화학 물질은 1960년대부터 특정 종류의 플라스틱 제조에 사용되어왔으며, 극소량의 BPA가 포장재를 통해 음식과 음료로 전달될 수 있다. BPA는 남성의 낮은 정자 수, 생식 문제, 유방암이나 전립선 암과 연관이 있는 것으로 알려져 있다. 유럽에서는 BPA를 유아용 병과 플라스틱 영수증에서 사용 금지하고 있다. 프랑스는 이를 음식 포장재, 컨테이너와 식기 전체에서 사용을 금지했다. BPA는 '내분비 교란물질'로 분류되어 있어, 체내의 호르몬을 모방하고 에스트로겐과 같은 천연 호르몬의 생성과 반응에 방해를 일으킬 수 있다. 자폐증·ADHD, BPA 배출 저조해 연구 팀은 3세에서 16세 사이의 66명의 자폐증 어린이와 46명의 ADHD 어린이, 37명의 정상 어린이를 대상으로 BPA와 같은 화학 물질을 배출하는 속도, 즉 해독 효율을 측정했다. 연구 결과에 따르면 자폐증을 가진 어린이가 BPA를 몸에서 배출하는 능력이 10% 부족하고, ADHD를 가진 어린이는 이 화학 물질을 배출하는 능력이 17% 부족하다는 것이 확인됐다. 이번 연구는 이들 어린이가 BPA를 배출하는 데 어려움을 겪고 있음을 나타냈고, 자폐증과 ADHD와의 관련성을 제시했다. 이번 연구는 미국 과학·의학 저널 'PLOS One'에 발표됐다. 미국, 자폐증 발병률 52% 증가 미국 식품의약국(FDA)이 높은 수준의 BPA 허용량을 유지하고 있는데 비해, 유럽은 최대 허용량을 2만 배까지 대폭 감소시켰다. 미국에서는 여전히 높은 BPA 노출이 지속되고 있으며, 그로 인해 자폐증과 ADHD 발병률이 상당히 높아졌다. 특히 자폐증 발병률은 2017년 이후 52% 증가한 것으로 나타났다. 연구팀은 이러한 결과가 BPA 노출이 자폐증과 ADHD 발병 위험을 높일 수 있음을 시사하며, 향후 더 많은 연구가 필요하다고 강조했다. 자폐증과 ADHD의 정확한 원인은 알려져 있지 않지만, 유전적 및 환경적 요인의 조합으로 발생할 가능성이 있다. 자폐증은 초기 뇌 발달에 영향을 미치는 요인으로 여겨지며, 사회적 의사소통과 상호작용 능력, 반복적인 행동 등의 문제를 포함한다. ADHD는 주로 어린 시절에 진단되는 주의력 결핍과 과잉행동으로, 주의를 집중하지 못하고 과잉행동 혹은 충동적 행동 등의 증상을 포함한다. ADHD의 주요 치료법 중 하나는 각성제(스티뮬런트) 약물을 사용하는 것이다. 이러한 약물은 뇌에서 도파민 농도를 조절하여 주의력과 집중력을 향상시키는데 사용된다. 성인도 ADHD 진단 증가 추세 최근에는 성인들도 ADHD 진단과 치료가 증가하고 있다. 코로나바이러스 팬데믹 동안 여성과 남성의 처방전 발급이 크게 증가했다. 이로 인해 학부모와 의료진 간의 대안적 해결책을 모색하는 과정에서 어린이의 학습과 집중 능력에 대한 우려가 커지고 있다. 이번 연구 결과는 BPA 규제와 어린이의 건강에 대한 중요한 고려 요소가 될 것으로 예상된다. 향후 더 많은 연구가 필요하며, BPA와 자폐증, ADHD 사이의 상세한 관계에 대한 근본적인 이해가 높아질 것으로 기대된다.
-
- 생활경제
-
자폐증·ADHD와 비스페놀 A 간의 연관성 발견
-
-
화장지의 종말이 가까워지고 있다
- 환경을 위해 화장지를 사용하지 않는 시대가 가까워지고 있다. 화장지는 환경에 대한 재앙으로 여겨진다. 오염시키는 플라스틱, 중독시키는 화학물질, 사라지는 나무, 고통받는 동물 사이에서 화장지는 이제 과거의 물건이 될 수도 있다. 프랑스 매체 '르포르타주 포토(reportages photos)'에 따르면 프랑스인들은 19세기부터 화장지를 사용하기 시작했다. 현대식 화장지의 발명은 클라렌스와 어빈 스콧['스카티(scott)' 화장지 창립자] 형제 덕분이다. 화장지는 오랜 역사를 갖고 있다. 중국인들은 천 조각을 사용해 몸을 닦았다. 그리스인들은 매우 매끄러운 세라믹 돌을 사용했다. 로마인들은 '자일로스폰지움(xylospongium)'이라는 도구를 사용했는데 스펀지가 달린 막대기 끝에 젖은 스폰지가 달려 있었다. 다른 문화에서는 비슷한 목적으로 동물 가죽을 사용했다. 19세기가 되어서야 비로소 현대판 화장지가 빛을 보기 시작했다. 1857년에 미국 기업가 조셉 가야티(Joseph Gayetti)가 최초로 화장지 롤을 시장에 출시했다. 그는 알로에를 주입하고 민감한 피부를 진정시키는 화장지를 치료상의 이점을 약속하는 이름인 '가야티의 의료용 휴지(Gayetty's Medicated Paper)'라고 불렀다. 이후 클라렌스와 어빈 스콧 형제가 개발한 화장지는 어떤 경쟁 업체도 이것을 대체할 수 없었다. 스콧 형제는 화장지를 더 실용적이고 쉽게 보관할 수 있도록 롤 형태로 만드는 아이디어를 생각해 냈다. 그리하여 대부분의 서구 국가에서 필수적인 위생 제품인 화장지가 탄생했다. 그러나 환경적 영향 때문에 이제는 롤 형태의 화장지를 불가피하게 대체해야 할 필요성이 대두됐다. 화장지는 실용적이지만 이를 제조하려면 수천 그루의 나무를 베어야 하므로 많은 자연 서식지가 파괴된다. 잎의 재활용 여부에 관계없이 목재 섬유를 처리하기 위해 생산에 많은 양의 물이 필요하다는 것은 말할 것도 없다. 화장지 롤이 완성되면 잎은 배수구로 흘러가는 경우가 많으며, 배수구에서 유해 물질이 폐수로 배출 될 수 있다. 플라스틱 오염은 화장지 롤과 관련된 또 다른 문제다. 화장지는 대부분 비닐랩으로 포장되어 있다. 또 완전히 생분해되는 화장지 롤도 매우 드물다. 19세기 혁신 기술 화장지 화장지는 상대적으로 최근의 발명이며, 역사를 통틀어 모든 문명에서 보편적으로 사용되지는 않았다. 우리가 오늘날 알고 있는 화장지의 등장은 19세기로 거슬러 올라가 클라렌스와 어빈 스콧 형제의 노력 덕분에 1890년에 혁신적인 제품이 탄생했다. 그런 다음 분리 가능한 셀룰로오스시트를 사용했다. 그 이후로는 어떤 대안도 그것을 대신할 수 없었다. 그러나 아시아에서는 종이를 사용하면 배수관이 막히기 때문에 화장실 사용 후 개인 위생을 위해 비데가 일반적으로 사용되기도 한다. 이 방법은 더 위생적으로 여겨지지만, 사람들은 화장지를 다른 것으로 바꾸려는 변화를 싫어한다. 화장지 대체품은 무엇? 화장지를 대체하기 위한 제안 중 하나는 재사용 가능한 대체품을 사용하는 것이다. 이 경우, 화장지를 화장실에 버리는 대신 사용 후에 세척해야 한다. 물론 실수로 변기에 버리지 않아야 하며, 그렇게 하면 배관이 막힐 수 있다. 그러나 이 대안은 효과와 위생에 대한 질문이 제기된다. 화장지는 효율성 측면에서 비데와 비교할 때 매우 부족한 면이 많다. 종이는 잔여물과 대변을 충분히 제거하지 못할 수 있다. 게다가 민감한 피부를 가진 사람들 중에서 화장지를 자주 사용하면 피부 자극을 일으킬 수 있다. 일본은 화장지 대신 워시렛을 사용한다. 종이 없이도 깨끗하게 씻을 수 있는 물세척 기능을 갖춘 최첨단 변기다. 환경에 대한 인식이 증가하면서 생태학과 지구 보전에 관심 있는 사람이라면 변화를 고려하는 것이 필수적이다. 우리의 생태계를 보존하기 위해서는 화장지 대체품을 찾는 신속한 조치가 필요하다.
-
- 산업
-
화장지의 종말이 가까워지고 있다
-
-
가정용 청소제품, 도 넘는 유해 화합물 방출
- 우리가 흔히 사용하는 가정용 청소제품에서 수백 개의 유해 화합물을 방출할 수 있다는 연구 결과가 발표됐다. 뉴욕포스트는 최근 환경 화학 저널 「케모스피어(Chemosphere)」에 발표된 새로운 연구 결과를 인용, 가정용 청소제품은 수백 개의 유해 화합물을 방출할 수 있으며, 이러한 화합물은 몇 달 동안 공기에 머무를 수 있으므로 친화경 제품과 무향 청소제를 구입하는 것을 권장한다고 전했다. 환경연구소(Environmental Working Group, EWG)의 과학자들은 일반적인 청소 제품과 친환경 '녹색' 제품을 포함한 30가지 일반적인 청소 제품 중에서 어떤 종류가 더 안전한지 평가하기 위해 향이 있는 제품과 무향 제품을 테스트했다. 연구자들은 하나의 방에 청소용품을 뿌린 뒤 4시간 동안 공기테스트를 통해 휘발성 유기 화합물(VOCs)의 잔류 여부를 확인했다. 환경연구소의 수석 독성학자 알렉시스 템킨(Alexis Temkin)은 “우리 연구는 VOCs의 유해한 영향을 줄이기 위한 방법을 중점적으로 제시하며, 특히 '친환경'과 '무향' 제품의 선택을 권장하고 있다”고 밝혔다. 연구자들은 30개 제품 중 530개의 고유한 VOCs를 감지했으며, 이 중 193개가 유해한 것으로 판명됐다. 유해한 유기 화합물은 천식, 암 위험 증가, 발육 부진과 생식 문제 등을 유발할 수 있다. 반면, '친화경' 제품에도 향이 있는 제품의 경우 평균적으로 유해한 물질이 4개 정도 방출했다. 일반적인 제품의 경우 15개 정도가 나왔다. 유기 화합물은 실내 공기를 실외 공기보다 2배에서 5배 더 오염시킨다. 일부 추정치에 따르면 오염치가 10배 더 높을 수 있다. 게다가 이들 유해 화학물질들은 몇 달 동안 집 안의 공기에 남아 있을 수 있다. EWG의 고문인 데이비드 앤드류스 박사는 'VOCs에 대한 명확한 안전 기준이나 노출 한도가 없으며, 청소 용품에서 방출되는 VOCs에 대한 건강 기준에 대한 구체적인 규제도 부재하다'고 데일리 메일에 전했다. 앤드류스 박사는 "VOCs 중 일부는 다른 것보다 훨씬 더 유해할 수 있지만, 어떤 VOC나 그 화합물이 가장 큰 위험을 초래하는지에 대한 명확한 판단 기준은 아직 확립되지 않았다"고 덧붙였다. 이전 연구에서는 이러한 화학물질에 장기간 노출되었을 때 중대한 건강 위험을 초래할 수 있다는 결과를 제시했다. 템킨 박사는 "이번 연구는 우리 실내 공기에 포함된 다양한 화학물질의 잠재적 위험성에 대해 소비자를 비롯해 연구자와 규제 관계자들이 더욱 주의를 기울여야 함을 알리는 경고"라고 말했다.
-
- 생활경제
-
가정용 청소제품, 도 넘는 유해 화합물 방출
-
-
리튬이온 배터리, 재활용 시장 성장세
- 중국의 리튬이온 배터리(LIB) 관련 기술이 날로 발전하고 있다. 게다가 폐배터리 재활용 연구도 활발해 제조와 생산에 이어 재활용까지 명실상부한 배터리 산업 세계 1위 종주국 자존심을 지키려 애쓰는 모습이 역력하다. 최근 널리 사용되고 있는 리튬이온 배터리는 모바일, 태블릿을 비롯해 전기자동차 등 다양한 분야에 쓰이고 있다. 현존하는 배터리 제품 중 에너지 저장능력이 탁월하다는 장점 등으로 그 수요가 증가하고 있다. 하지만, 리튬 가격 상승과 자원 고갈 문제, 독성 물질을 함유한 방전 배터리 처리 문제 등이 수면 위로 떠오르면서 리튬이온 배터리 재활용에 대한 다양한 연구가 진행되고 있다. 미국 산업 매체 오일프라이스(Oilprice)는 리튬이온 배터리의 재활용은 높은 품질의 리튬을 회수하기 복합하고 비용이 많이 들기 때문에, 대부분의 재활용 공정은 양극에서 리튬을 추출하는데 중점을 두고 있다고 지적했다. 리튬이온 배터리를 재활용하는 것은 매우 까다로운 공정이다. 다시 사용할 수 있을 만큼 높은 품질의 리튬을 회수하는 것은 복잡하고 비용이 많이 들어간다. 중국과학원(ICCAS) 화학연구소와 중국과학원(UCAS) 대학의 위궈궈(Yu-Guo Guo)와 칭하이 멍(Qinghai Meng)이 이끄는 연구팀은 리튬이온 배터리를 재활용 하는 대체 방법을 개발했다. 이 연구팀은 물 대신에 양극에서 리튬을 회수하기 위해 비양성자성 유기 용액을 사용했다. 양성자성 물질은 수소 이온을 방출할 수 없으므로 수소 가스가 생성되지 않는다. 대부분의 재활용 공정은 음극(방전된 배터리의 리튬 대부분이 위치한 곳)에서 리튬을 추출하는 것을 목표로 한다. 그러나 리튬은 음극에 포함된 다른 금속과 함께 침전되기 쉬워 분리하는데 까다로운 작업이 수반되기 마련이다. 주로 흑연(graphite)으로 이뤄진 양극에서 리튬 추출은 훨씬 효율적이며 배터리 방전 없이 수행할 수 있다. 그러나 수용액으로 침출되면 화재와 폭발 위험도 높다. 또 이러한 반응은 많은 양의 에너지를 방출하고 수소를 생성할 수 있다. 이에 연구팀은 양극에서 리튬을 회수하기 위해 물 대신 유기 용매를 사용했다. 유기 용매 물질은 수소 이온을 방출할 수 없어, 수소 가스가 생성되지 않는다. 이 용매는 다환 방향족 탄화수소(PAH)와 에테르를 포함한다. 특정 PAH는 양극의 양성 리튬 이온과 전자 하나를 함께 흡수할 수 있으며, 온화한 조건에서 이 환원 반응은 효과적으로 제어고 매우 효율적이라는 설명이다. 또 연구팀은 PAH 피렌(네 개의 벤젠 고리로 된 여러 고리 방향족 탄화수소)을 테트라에틸렌글리콜디메틸 에테르와 함께 사용하면 양극에서 활성 리튬을 거의 완전히 용해 시킬 수 있었다고 부연했다. 추가로, 얻어진 리튬-PAH 용액은 새로운 양극에 리튬을 추가하거나 전처리 또는 사용된 양극을 재생하는 데 사용될 수 있다. PAH 용매 시스템은 처리되는 물질에 최적화하기 위해 다양하게 조절될 수 있다. PAH는 석탄, 기름, 가스, 쓰레기, 담배, 고기나 기타 물질이 연소될 때 형성되는 화학물질의 한 종류다. 오일프라이스는 "중국의 새로운 리튬 회수 공정은 효율적이고 비용이 저렴하며 안전 위험을 낮추고, 폐기물을 방지하며 리튬이온 배터리의 지속 가능한 재활용에 대한 새로운 전망을 열어준다"며 "아마도 전 세계 해변과 폐기물에 있는 수백만 개의 배터리를 재활용하는 해결책일 수 있다"고 평했다. 그러나 가장 큰 문제가 아직 남아있다. 재활용을 위해서는 먼저 배터리를 회수해야 한다. 어떤 공정을 사용하더라도 배터리를 수거하지 않으면 재활용 자체가 불가능하다. 게다가 화학 물질 사용도 문제다. 대부분의 사람들은 자신의 동네에 불쾌한 화학 물질이 들어오는 것을 원하지 않기 때문이다. PAH와 에테르를 포함한 것은 가스 밀폐 시설이 필요하며 원격 제어 기능이 반드시 필요하다. 한편, 오리온 마켓 리서치(Orion Market Research)에 따르면, 세계의 리튬이온 배터리 재활용 시장은 2022년~2028년까지 약 18.5% 성장할 것으로 예상하고 있다. 리튬이온 배터리 가격 하락에 의한 사용량 증가와 폐기물 처리에 대한 우려, 그리고 정부 정책 등이 재활용을 견인할 것으로 보여진다. 또한 LG에너지솔루션 자료에 따르면 세계 배터리 재활용 시장 규모는 2023년 108억 달러로 추정된다. 아울러 2024년 424억 달러, 2040년 2089억 달러 등으로 연평균 17% 성장할 것으로 전망되고 있다. 오일프라이스는 "하지만 무엇이든지 빨리 (대응을) 해야 한다"며 "사용된 리튬이온 배터리의 재앙적인 사고가 언젠가는 발생할 것이기 때문"이라며 리튬이온 배터리 재활용 방안 마련을 서둘러야 한다고 말했다.
-
- 산업
-
리튬이온 배터리, 재활용 시장 성장세
-
-
플라스틱 먹는 '효소' 연구 활성화⋯고비용 과제
- 플라스틱을 먹는 효소가 개발이 활성화돼 폐플라스틱 처리에 힘을 보탤 전망이다. 환경오염 주범으로 꼽히는 지구를 뒤덮은 폐플라스틱을 재활용하기 위해 수 많은 연구팀들은 다양한 해결책을 찾고 있다. 특히, 벌집나방 애벌레와 같은 생물학적 자원 활용은 소각이나 매립보다 환경친화적으로 플라스틱을 처리하는 유용한 도구가 될 수 있다. 미국 생화학·분자 생물학 매거진 'ASBMB 투데이'에 따르면, 스페인 생물학자 페데리카 베르토치니(Federica Bertocchini)는 약 10년 전 벌집나방의 애벌레가 플라스틱의 일종인 폴리에틸렌을 먹어 치운다는 사실을 발견했다. 폴리에틸렌은 플라스틱 용기 등을 만드는 데 흔하게 이용되지만, 잘 분해 되지 않는 특성이 있어 폐기가 어렵다는 단점이 있다. 최근 과학자들은 매립지나 자동차폐차장 등을 찾아다니면서 플라스틱을 분해할 수 있는 유기체를 찾고 있다. 이를 채취해 플라스틱의 구성 요소를 회수하는 효율적인 방법을 찾길 기대하고 있는 것. 이후 새로운 재료를 조합해 ‘무한 재활용’이 가능하도록 한다는 계획이다. 영국 포츠머스대 효소혁신센터 존 맥기한(John McGeehan)은 "놀랍게도 전 세계의 수백 개 그룹과 수천 명의 과학자들이 이 문제를 연구하고 있다"고 설명했다. 폐플라스틱, 환경오염 주범 플라스틱은 1950년대 들어 본격적으로 생산됐고 생산량도 급증했다. 매년 약 4억6000만 톤에 가까운 플라스틱이 생산되는 것으로 추정된다. 하지만 이렇게 생산된 플라스틱은 아쉽게도 소각하거나 매립지에 묻히고 있다. 플라스틱은 지구상의 심해나 극지방을 비롯해 비를 타고 내려오거나, 심지어 태반이나 모유, 사람의 혈액에서도 흔적이 보고 되는 등 우리 눈에 보이지 않는 구석구석까지 침투했다. 이처럼 플라스틱은 건강과 환경 문제와 직접 연결되어 있다. 그럼에도 수요는 줄어들지 않고 있으며, 생산량은 오는 2050년까지 10억 톤을 넘길 것으로 예상된다. 플라스틱은 가볍고, 형태를 잡기 쉬운 특성 때문에 이를 대체할 마땅한 소재가 없기 때문이다. 현실적으로 모든 플라스틱을 교체하거나 재활용할 수 없다는 점에서 차선책은 덜 만드는 것이다. 또 약 9%에 불과한 전 세계 플라스틱 재활용률을 높이는 것이 과제다. 하지만, 재활용 과정에서 유해한 화학물질을 흡수할 수 있으며, 수천 가지의 플라스틱 유형에는 각각 고유한 구성과 화학 첨가물이나 착색제가 들어 있어 대다수는 재활용할 수 없는 것이 문제다. 효소 재활용 회사 버치 바이오사이언스(Birch Biosciences) 공동 창립자이자 합성 생물학자인 요한 커스(Johan Kers)는 "우리는 심각한 플라스틱 순환성 문제를 안고 있다"며 "알루미늄과 종이 등은 재활용할 수 있지만 플라스틱 재활용은 힘들다"고 지적했다. '자연'에서 착안한 '효소' 주목 캘리포니아대학교 버클리 캠퍼스 고분자 과학자 팅 쉬(Ting Xu)는 "효소를 통한 접근법은 폐플라스틱을 폐기물의 원천이 아닌 귀중한 자원으로 전환시킬 수 있다"고 설명했다. 이미 1970년대에 플라스틱을 먹는 효소에 대한 연구가 시작됐다. 그러다가 2016년 일본 과학자팀이 사이언스 학술지에 플라스틱을 먹는 획기적인 박테리아의 새로운 변종에 대한 논문을 발표하면서 효소 연구에 다시 불을 지폈다. 교토공과대학 미생물학자 코헤이 오다(Kohei Oda)가 이끄는 연구팀은 이데오넬라 사카이엔시스(Ideonella sakaiensis) 201-F6이라고 불리는 미생물이 음료수병과 섬유에 널리 사용되는 폴리에스터인 PET 플라스틱을 주요 에너지와 식품 공급원으로 사용한다는 사실을 발견했다. 그 이후로 과학자들은 독일 라이프치히 묘지의 퇴비 더미, 그리스 하니아(Chania) 해변 등 전 세계 여러 장소에서 플라스틱을 먹는 미생물을 발견했다. 그리고 바다, 북극 툰드라 표토, 사바나 및 다양한 숲을 포함한 환경에서 자유롭게 떠다니는 DNA에서 발견된 2억 개 이상의 유전자에 대한 대규모 분석을 통해 플라스틱 분해 가능성이 있는 3만 개의 다양한 효소가 있다는 것을 찾아냈다. 맥기한은 콜로라도를 포함해 다른 지역의 국립 재생 에너지 연구소(National Renewable Energy Laboratory)의 동료들과 함께 이데오넬라 사카이엔시스의 플라스틱 섭취 능력을 담당하는 두 가지 효소를 조작해 성능을 높이고 연결해 플라스틱을 분해할 수 있는 효소 칵테일을 만들었다. 그 결과 이전보다 6배 더 빠르게 PET를 분해할 수 있었다. 최근 과학자들은 인공지능(AI)을 사용해 플라스틱을 더 빠르게 해중합[해중합은 유색 페트(PET)병이나 폴리에스터 섬유 등 플라스틱 분자를 화학적으로 분해하는 기술]하고, 표적 기질에 대해 덜 까다롭고, 더 높은 온도를 견딜 수 있는 효소를 찾아내고 있다. 초기 데이터에 따르면 생물학적 효소를 이용한 재활용은 플라스틱을 새로 만드는 것보다 탄소 배출량이 더 적은 것으로 알려졌다. 탄소와 산소가 얽혀 있는 PET 재활용 플라스틱은 생물학적 재활용에 가장 적합하다. 영국 포츠머스 대학교의 분자 생물물리학자 앤디 픽포드(Andy Pickford)는 이 물질이 '일종의 아킬레스건'이라고 말했다. PET은 탄소가 산소와 얽혀 있다. 직물과 음료수병에서 흔히 발견되며 매년 생성되는 플라스틱의 약 5분의 1을 차지하는 PET는 생물학적 재활용 업체들 사이에서 인기 있는 대상이자 상업적으로 이용 가능한 제품이기도 하다. 실제로 프랑스 회사 카르비오(Carbios)는 연간 5만 톤의 PET 폐기물을 재활용하는 것을 목표로 2025년 프랑스 북부에 바이오 재활용 공장을 열 계획이다. 호주에 본사를 둔 삼사라에코(Samsara Eco)는 2024년 멜버른에 PET에 초점을 맞춘 2만 톤 규모의 재활용을 계획하고 있다. 플라스틱 유형을 연구하고 있는 픽퍼드(Pickford)는 "PET와 유사한 화학적 구성을 가진 폴리아미드와 폴리우레탄도 본질적으로 효소에 의해 분해되기 쉬워 효소 재활용의 유망한 대상"이라고 말했다. 삼사라에코는 합성 폴리아미드의 일종인 나일론을 연구하고 있다. 지난 5월 버려진 옷으로 '세계 최초의 무한 재활용' 나일론-폴리에스테르 의류를 생산하기 위해 인기 운동복 브랜드 룰루레몬(Lululemon)과 다년간의 파트너십을 발표했다. 아직은 연구가 미진하지만 연구원들은 폴리우레탄을 분해하는 미생물에 대해서도 연구 중이다. '슈퍼웜' 유충 활용 기술 향상 효소 재활용은 순수 탄소 골격을 가진 플라스틱의 경우 전망은 흐리다. 비닐봉지를 만드는 데 사용되는 폴리염화비닐(PVC), 폴리비닐알코올(PVA), 폴리스티렌 및 폴리에틸렌을 포함하는 제품은 기름기가 많아 투입된 효소를 붙잡을 수 없기 때문이다. 그런데 페데리카 베르토치니는 데메트라(Demetra)와 세레스(Ceres)라는 이름을 붙인 왁스 벌레 타액에서 플라스틱 분해 효소를 확인했다. 이 효소는 탄소 골격에 산소를 주입해 실온에서 몇 시간 내에 폴리에틸렌을 분해하는 것으로 나타났다. 폴리스티렌을 연구하는 호주 퀸즈랜드 대학교의 미생물학자 크리스 린케(Chris Rinke) 박사는 '슈퍼웜(Superworm)'이라고 불리는 미국왕딱지벌레(Zophobas morio) 유충을 발견했다. 플라스틱을 기계적으로 작은 조각으로 파쇄하고 산소 원자를 투입해 '노화'한 다음 특수 기술을 사용해 해당 조각을 해중화하는 두 가지 과정을 통해 폴리스티렌을 분해한다. 린케 박사는 "곤충에서 발견되는 효소가 열쇠를 쥐고 있을 수 있다"고 말했다. 반면, 일부 전문가들은 생물학적 재활용 전망에 대해 낙관적이지 않다. 픽포드는 "아직 폴리에틸렌, 폴리프로필렌, PVC와 같은 폴리올레핀이 대규모 효소 재활용을 위한 현실적인 목표가 될 것이라고 확신하지 못했다"며 "이런 경우 재활용이 가능한 새로운 플라스틱을 만드는 방향으로 전환하는 것이 더 현실적"이라고 말했다. 한국의 경우, 2020년 포스텍의 차형준 교수 팀은 '산맴돌이거저리(Plesiophthalmus davidis)'라고 불리는 검은 딱정벌레의 유충에서 폴리스티렌 소화 능력을 부여한 장내 세균인 '세라티아 폰티콜라(Serratia Fonticola)'에 대해 보고했다. 또 다른 그룹은 PLA를 포함한 특정 유형의 생분해성 플라스틱을 분해할 수 있는 두 가지 저온 적응성 곰팡이 균주[고산 토양과 북극 해안에서 분리된 라크네룰라(Lachnellula)와 네오데브리에시아(Neodevriesia)]를 발견했다고 보고했다. 하지만 효소를 활용하는 프로세스를 확장하는 것이 얼마나 쉬울지, 그리고 확장된 환경이 어떤 모습일지는 불분명하다. 한편, UN은 오는 2024년 세계 최초의 글로벌 플라스틱 오염 조약을 만들 예정이다. 플라스틱 오염을 억제하는 것을 목표로 하며, 특히 재활용을 더 쉽게 하기 위해 플라스틱 제품의 생산 과 설계에 대한 새로운 규칙을 도입할 것으로 예상된다. 다음 해에는 워싱턴과 캘리포니아, EU에서 플라스틱 용기와 음료수병 재료의 25%를 재활용 플라스틱으로 규정하는 법률이 시행될 예정이다. 그러나 추가적인 변화와 인센티브가 없다면 이러한 노력은 물거품이 될 수도 있다는 지적이다. 화석 연료의 저렴한 가격으로 인해 순수 플라스틱이 저렴하게 유지되는 한 생물학적 효소 활용은 비용 면에서 경쟁력이 없기 때문이다. 맥기한은 "과거 석유 및 가스 산업이 혜택을 누렸던 방식으로 PET 또는 기타 생분해성 공정에 인센티브를 부여해야 한다"며 "생물학적 재활용 기술이 향상되면 새로운 플라스틱과 경쟁할 수 있을 만큼 비용면에서 효율적일 것"이라고 강조했다. 그럼에도 그는 "효소가 전체 플라스틱 문제를 해결하지 못하지만 이제 막 첫 걸음을 뗐다"며 향후 발전에 기대감을 드러냈다.
-
- IT/바이오
-
플라스틱 먹는 '효소' 연구 활성화⋯고비용 과제
-
-
우산부터 프라이팬까지⋯일상 속 '암 유발' 독성 화학물질 6가지
- 한국의 장마철에는 많은 비가 쏟아진다. 6월 말부터 시작되는 장마철을 대비해 미리 튼튼한 우산을 준비하기도 한다. 그러나 대부분의 사람들이 몰랐던 충격적인 사실이 밝혀졌다. 그 바로 우산에 '암 유발' 위험을 가진 '잔류성 독성 화학물질(Perfluoroalkyl Sulfonate 과불화옥테인술폰산)'이 숨어있다는 것. 그게 끝이 아니다. 음식물이 타지 않도록 코팅 처리된 프라이팬과 심지어 화장품에도 독성 화학물질이 들어 있다. 잔류성 독성 화학물질은 우리 주변 곳곳에 있으나, PFAS와 PFOA(perfluorooctanoic acid 과불화옥탄산)와 같은 물질들은 자연환경이나 인체에서 쉽게 분해되지 않아, 영구적으로 남는 위험이 있다. 야후 뉴스는 최근 이 같은 위험한 화학물질이 함유되어 있을 가능성이 있는 제품 6가지를 소개했다. 다양한 용도를 자랑하는 PFAS와 PFOA는 많은 기업들이 애용하고 있다. 조리용 팬에 적용하면 매끄러운 표면이 형성되며, 셔츠의 얼룩 제거에도 탁월한 효과를 보인다. 일부 규제 기관들은 잔류성 독성 화학물질이 건강에 미치는 영향을 파악하기 위해 지속적인 모니터링을 진행하고 있다. 그러나 해당 물질의 사용을 제한하자, 다른 대체 분자를 개발해 새로운 화학물질이 등장하고 있는 현실이다. 코팅 팬에는 PFAS와 같은 화학물질의 잔류 가능성이 높다. 이들 물질은 고혈압, 심장마비, 뇌졸중, 간 기능 약화, 신장암 및 고환암의 위험성이 증가한다. 심할 경우 불임 문제까지 초래할 수 있다. 유해물질추방국제네트워크(IPEN, International Pollutants Elimination Network) 과학 고문 사라 브로쉐(Sara Brosché) 박사는 "이 물질은 생식력 및 내분비 장애 문제와 관련이 있다"며 "환경 오염으로 인해 부분적으로 발생하는 출산 위기와 관련돼 있다"고 주장했다. 편리함 때문에 자주 이용하는 전자레인지용 팝콘 봉지도 가급적 사용하지 않는 것이 좋다. IPEN이 2023년 3월 발표한 연구자료에 따르면, 전자 레인지용 팝콘 봉지에는 PFBA(perfluorobutanoic acid)와 PFHxA(perfluorohexanoic acid), FTOH(플루오로텔로머 알코올), 오르텔로머 알코올(FTOHs)이 종종 함유됐다. 또 국제적인 환경 분야 학술지 '종합환경과학(Science of the Total Environment)'의 2022년 연구 결과에 따르면, 테프론 코팅 팬에서 발생하는 단 하나의 표면 균열로 인해 최대 9100개의 플라스틱 입자가 인체 내로 들어갈 수 있다고 밝혀졌다. 물건을 구입할 때 받는 영수증도 안전하다고 볼 수 없다. 이런 영수증은 광택이 나며 미끄러운 느낌이 있는데, 그 이유는 내분비계를 교란시킬 수 있는 BPS(비스페놀S)라는 독성 화학물질이 포함되어 있기 때문이다. 패스트푸드의 포장지에도 PFAS가 함유되어 있다. 우산은 방수 효과를 높이기 위해 PFAS 같은 물질이 사용되고 있다. 또한, 로션, 면도크림, 파운데이션, 립스틱, 아이라이너, 아이샤도우, 마스카라와 같은 일부 화장품에도 PFAS가 포함되어 있다. 카펫과 가구에도 내구성을 향상시키기 위해 이 물질이 사용된다. 이처럼 우리가 일상 속에서 흔히 접하게 되는 다양한 제품에 잔류성 독성 화학 물질이 함유되어 있기 때문에 특별한 주의가 요구된다.
-
- 생활경제
-
우산부터 프라이팬까지⋯일상 속 '암 유발' 독성 화학물질 6가지