검색
-
-
과학이 풀어야 할 가장 큰 미스터리 5가지
- 과학은 세상에 대한 우리의 이해를 크게 발전시켰지만, 여전히 많은 미스터리가 남아 있다. 특히 우주의 기원이나 지구의 생명의 기원등은 가설은 많지만 아직까지 명확한 답이 나오지 않고 있다. 스페인 매체 마스 인포르마시온(Mas informacion)은 과학자들이 여전히 답을 찾지 못하고 있는 다섯 가지 핵심 질문을 소개했다. 1. 우주의 구성 요소는 무엇인가? 우주의 신비는 우리가 기존에 인지하고 있던 것보다 훨씬 더 깊고 복잡하다. 우리가 알고 있는 우주를 구성하는 물질은 전체의 약 5%에 불과하며, 나머지 약 95%는 미지의 영역인 암흑물질과 암흑에너지로 채워져 있다. 암흑물질은 우주 전체의 약 27%를 차지할 것으로 추정되는, 관측되지 않는 물질이다. 이 물질은 중력의 영향을 미치며, 우주의 팽창을 억제하는 중요한 역할을 한다. 암흑에너지는 우주의 약 68%를 구성하는 것으로 추정되며, 관찰할 수 없는 에너지 형태이다. 암흑에너지는 우주의 팽창을 가속화하는 데 결정적인 역할을 하는 것으로 여겨진다. 우주의 심오한 미스터리를 풀기 위해, 암흑물질과 암흑에너지의 본질을 밝히는 것은 중대한 과학적 과제로 남아 있으나, 현재까지 이들의 정체에 대한 명확한 답은 아직 발견되지 않았다. 암흑물질의 잠재적 후보로는 중성미자, 윔프(WIMP), 액시온(axion) 등이 거론되고 있다. 중성미자는 전하를 갖지 않아 빛을 발하지 않으며 질량이 있어 관측이 어렵다. 윔프는 그 무거운 질량과 강력한 중력으로 인해 우주의 구조 형성에 기여할 것으로 추정된다. 액시온은 중력과 전자기력 사이의 힘을 가짐으로써 우주의 팽창에 영향을 미칠 수 있다고 여겨진다. 암흑에너지의 가능한 후보로는 진공 에너지, 쿼크-글루온 플라즈마, 반물질 등이 제시되고 있다. 진공 에너지는 우주 공간 자체에 내재된 기본적인 힘의 에너지 형태로, 쿼크-글루온 플라즈마는 초기 우주의 고온 상태에서 존재했던 물질이다. 반물질은 물질과 상호작용하여 완전히 소멸되는 특성을 지니며, 이 과정은 우주 팽창에 중요한 역할을 할 수 있다. 과학자들은 이러한 후보들을 관측하고 실험을 통해 그 본질을 밝히려는 지속적인 노력을 기울이고 있으나, 아직까지는 이들의 정확한 성질과 역할에 대한 확실한 결론을 내리지 못하고 있다. 2. 생명은 어떻게 생겨났나? 생명의 기원은 과학계가 오랜 시간 동안 탐구해온 가장 심오한 미스터리 중 하나다. 지구상의 생명체가 어떻게 탄생했는지에 대해서는 아직도 명확한 해답이 제시되지 않았다. 과학자들은 다양한 이론을 제시하고 있으나, 아직까지 어느 하나의 가설도 정설로 자리 잡지 못하고 있다. 가장 널리 인정받는 가설 중 하나는 '원시 수프(Primordial soup)' 이론이다. 이 이론은 초기 지구의 바다가 생명체 형성에 필수적인 단순 화학 물질로 가득 차 있었고, 대기 중의 가스와 번개 에너지의 결합으로 아미노산과 같은 단백질 구성 요소가 형성될 수 있었다고 주장한다. 1920년대에 알렉산더 오파린과 J.B.S. 할데인이 제안한 이 가설은 이후 실험을 통해 그 타당성이 일부 입증됐다. 대표적인 예로, 1953년 스탠리 밀러와 하럴드 우레이는 초기 지구의 환경을 모사한 실험을 통해 아미노산의 합성에 성공했다. 하지만 원시 수프 가설에는 여전히 미해결의 문제가 존재한다. 아미노산이 우연히 결합하여 복잡한 생명체로 발전할 수 있는지에 대한 의문, 그리고 원시 수프에서 생명체가 어떻게 진화했는지에 대한 설명이 미흡하다는 지적이 있다. 또한, 지구 생명체의 기원에 대한 다른 이론도 존재한다. 일부 과학자들은 우주에서 온 운석이나 혜성에 생명의 씨앗이 실려 지구에 도착했을 가능성을 제시하는 '판스페르미아(Panspermia)' 이론을 주장한다. 이처럼 생명의 기원에 대한 탐구는 여전히 과학계의 중요한 도전 과제로 남아 있다. 3. 무엇이 우리를 인간으로 만드는가? '무엇이 우리를 인간으로 정의하는가?'는 과학과 철학의 경계를 넘나드는 깊이 있는 질문이다. 인간은 다른 동물들과 구별되는 특유의 특성들을 가지고 있지만, 이러한 특성들이 무엇인지에 대한 명확한 합의는 아직 이루어지지 않았다. 언어 사용, 도구 활용, 추상적 사고, 자기 인식 능력 등은 전통적으로 인간만의 고유한 특성으로 여겨져 왔다. 하지만, 최근의 과학 연구는 다른 동물들 또한 이러한 특성들을 어느 정도 보유하고 있음을 증명하고 있다. 예를 들어, 코끼리는 복잡한 의사소통을 위해 고유의 언어 체계를 사용하며, 침팬지는 도구를 사용해 먹이를 얻거나 사냥하는 능력을 지니고 있다. 돌고래는 추상적인 사고를 할 수 있으며, 침팬지는 거울을 통해 자신을 인식하는 자기 인식 능력을 갖추고 있다고 알려져 있다. 이러한 발견들은 인간과 다른 동물들 사이의 경계가 생각보다 모호하다는 것을 시사하며, 인간을 정의하는 것이 단순한 문제가 아님을 보여준다. 인간의 독특한 특성들에 대한 이해는 계속해서 진화하고 있으며, 이는 우리가 인간성에 대해 더 깊이 고민하고 탐구해야 함을 의미한다. 한편으로는, 인간을 특별하게 만드는 요소가 단일 특성이 아니라, 여러 특성들의 복합적인 상호작용이라는 주장이 제기되고 있다. 이에 따르면, 인간은 언어를 통한 복잡한 의사소통 능력, 도구를 활용한 환경 변형 능력, 그리고 추상적 사고를 통해 새로운 것을 창조하는 능력을 결합하여 독특한 문화와 사회 구조를 형성하였다는 것이다. 이러한 능력들의 결합은 인간만의 특별한 문화적, 사회적 발전을 가능하게 했다. 인간의 언어 사용 능력은 복잡한 의사소통과 지식 전달을 가능하게 했으며, 도구 사용 능력은 환경을 변화시키고 적응하는 방법을 혁신적으로 발전시켰다. 또한, 추상적 사고는 예술, 과학, 철학 등 인간만의 다양한 창조적 영역을 탄생시켰다. 그럼에도 불구하고, 인간을 인간답게 만드는 근본적인 요소가 무엇인지에 대한 질문은 여전히 해결되지 않은 미스터리로 남아 있다. 4. 의식이란 무엇인가? 의식은 인간 존재의 가장 심오하고 미스테리한 특성 중 하나로 여겨진다. 우리는 아직 의식이 구체적으로 무엇이며, 그것이 어떻게 기능하는지 완전히 이해하지 못하고 있다. 의식은 뇌의 복잡한 기능과 밀접하게 연관되어 있을 것으로 추측되지만, 뇌의 어떤 부분이 의식을 조절하는지, 그리고 의식이 어떻게 형성되고 발현되는지에 대한 구체적인 메커니즘은 아직 명확하게 밝혀지지 않았다. 의식은 우리가 세계를 인식하고 경험하는 방식의 핵심을 이루며, 이에 대한 깊은 이해는 인간 본성과 지적, 정서적, 영적 측면에 대한 우리의 이해를 크게 향상시킬 것으로 기대된다. 의식에 대한 연구는 인간 뇌의 복잡성과 그 신비를 탐구하는 과정에서 핵심적인 역할을 하며, 이는 인지 과학, 신경학, 철학, 심리학 등 여러 학문 분야에 걸쳐 진행되고 있다. 5. 우리는 왜 꿈을 꾸는가? 인간이 꿈을 꾸는 이유는 심리학과 신경과학의 오랜 미스터리 중 하나이며, 이에 대한 확실한 답변은 아직 없다. 꿈에는 여러 가설이 존재하고 있다. 예를 들어, 무의식의 표현에 관한 가설은 꿈이 우리의 억압된 감정과 생각을 드러내는 역할을 한다고 주장한다. 기억 정리와 학습 지원에 관한 가설은 꿈이 기억을 재구성하고 새로운 정보를 처리하는 데 중요한 역할을 한다고 설명한다. 스트레스 해소 기능에 관한 가설은 꿈이 심리적 압박을 완화하고 정서적 균형을 찾는 데 도움을 준다고 주장한다. 그러나 이러한 가설들 중 어느 것도 아직 확실하게 입증되지 않았다. 꿈은 인간의 정신적, 감정적 삶에 중요한 영향을 미친다. 꿈은 우리의 무의식을 반영하고, 내면을 이해하는 데 도움을 줄 뿐만 아니라, 창의적 사고와 문제 해결 능력에도 기여할 수 있다. 그러나 꿈의 본질과 목적에 대한 신비는 여전히 베일에 싸여 있다. 이와 같은 질문들에 대한 답은 과학이 발전함에 따라 점차 밝혀질 것으로 기대되지만, 그 과정은 간단하지 않을 것이다. 과학자들은 새로운 기술과 방법론을 개발하고, 기존 가설들을 실험적으로 검증함으로써 꿈의 신비를 풀기 위해 지속적으로 노력하고 있다.
-
- 생활경제
-
과학이 풀어야 할 가장 큰 미스터리 5가지
-
-
달걀보다 단백질이 더 많은 식물성 식품 9가지
- 단백질이 풍부한 식품 하면 대개 달걀을 떠올리지만, 식물성 단백질을 섭취하고자 하는 사람들에게는 달걀보다 더 많은 단백질을 함유한 대체 식품들이 많이 있다. 미국 농무부(USDA)의 데이터에 따르면, 한 개의 달걀에는 대략 6g의 단백질이 들어있다. 이는 닭가슴살 두 조각에 해당하는 양이다. 미국의 건강 및 식생활 전문 매체 이팅웰(EatingWell)은 달걀보다 단백질 함량이 더 높은 식물성 식품 9가지를 소개했다. - 세이탄 세이탄은 밀가루 반죽을 수차례 씻어 전분을 제거한 후 남은 식물성 단백질 덩어리로, 주로 밀의 글루텐이 주성분이다. 이는 포만감을 주고 쫄깃한 식감을 지녀, 다양한 요리에 사용되며 특히 채식주의자나 비건들에게 인기가 높다. 세이탄은 직접 만들 때 글루텐 가루, 허브, 향신료, 조미료, 육수 등을 활용해 취향에 맞게 조절할 수 있다. 미 농무부에 따르면 세이탄은 2온스(약 57g)당 17g의 단백질을 함유하고 있다. 이는 달걀 1개(약 6g)에 함유된 단백질 양보다 약 3배 더 많은 수치이다. 세이탄을 활용한 대표적인 요리로는 크리스피 세이탄 볶음, 타코, 카레, 샐러드, 스테이크, 너겟 등이 있다. 이처럼 세이탄은 채식주의자나 비건 식단을 따르는 사람들에게 우수한 단백질 공급원으로 자리잡고 있다. - 템페 템페는 두부와 마찬가지로 콩을 기반으로 하는 식물성 단백질이지만, 발효 과정을 거쳐 만들어져 두부와 다른 특성을 지닌다. 이 발효 과정을 통해 템페는 두부보다 더 단단한 질감과 견과류를 연상시키는 독특한 풍미를 갖는다. 또한, 단백질 함량도 두부보다 높다. 미 농무부에 따르면, 두부 100g당 약 8g의 단백질이 함유되어 있는 반면, 템페 100g에는 약 17g의 단백질이 들어 있다. 템페는 두부와 같이 다양한 요리에 활용할 수 있다. 샐러드, 볶음요리, 타코 등에 넣어 단백질 섭취를 높일 수 있으며, 템페 조각을 꼬치에 꿰어 꼬치구이로 만들 수도 있다. 이러한 다양한 요리 방법은 템페를 풍미가 풍부하고 영양적으로도 우수한 식품으로 만들어준다. 템페는 특히 채식주의자나 비건 식단을 따르는 사람들에게 인기 있는 단백질 공급원이다. - 렌틸콩 렌틸콩은 작고 둥근 형태의 콩과 식물로, 다양한 색상으로 알려져 있다. 이는 빨간색, 노란색, 검은색, 갈색, 녹색 등으로 다양하며, 그 작은 크기에 비해 영양가가 매우 풍부한 건강 식품이다. 미 농무부의 데이터에 따르면, 조리된 렌틸콩 1컵에는 약 18g의 단백질이 함유되어 있다. 이는 계란 2개나 닭 가슴살 100g과 비슷한 단백질 함량을 지닌다. 더욱이, 렌틸콩은 완전한 단백질 원으로, 신체가 스스로 생성할 수 없는 필수 아미노산을 모두 포함하고 있다. 렌틸콩은 또한 섬유질이 풍부하여 건강에 매우 유익하다. 렌틸콩 1컵에는 대략 15g의 섬유질이 들어 있는데, 이는 하루 권장 섬유질 섭취량의 약 60%를 차지한다. 섬유질은 포만감을 주고, 혈당 조절에 도움을 주며, 소화기 건강을 개선하는 데 기여한다. 렌틸콩은 수프, 스튜, 샐러드, 볶음 요리 등 다양한 요리에 활용할 수 있으며, 조리 시간이 짧아 간편한 요리 재료로도 잘 알려져 있다. 렌틸콩은 건강에 좋은 영양소를 제공함과 동시에 맛과 다양성을 더해주는 식재료로 인식되고 있다. -대마 하트 대마 하트, 즉 껍질을 벗긴 대마 씨앗은 비약용 대마 식물의 씨앗이다. 이 대마 식물은 향정신성 화합물인 THC를 0.3% 미만 함유하고 있어, 마약으로 분류되지 않는다. 미국 농무부 데이터에 따르면, 대마 하트는 3테이블스푼당 약 9g의 단백질을 함유하고 있는데, 이는 대략 달걀 1개에 해당하는 양이다. 또한, 대마 하트는 마그네슘과 아연이 풍부해 이 두 영양소의 중요한 공급원으로 꼽힌다. 마그네슘은 면역 체계, 근육, 신경 건강에 필수적이며, 아연은 상처 치유와 혈액 응고에 중요하다. 대마 하트는 그 고소한 맛과 질감 덕분에 다양한 요리에 활용될 수 있다. 샐러드, 스무디, 요거트, 오트밀 등에 추가하여 고소한 맛을 더할 수 있으며, 땅콩 버터와 함께 샌드위치나 토스트에 넣어 먹어도 매우 좋다. -완두콩 완두콩은 식료품점의 얼어붙은 통로에서 볼 수 있는 녹색 아기 콩이다. 꼬투리 또는 껍질을 벗긴 상태로 판매되는 완두콩은 USDA에 따르면 반 컵 제공량당 약 10g의 단백질을 제공하는 훌륭한 식물성 단백질 옵션이다. 완두콩은 마트의 냉동 식품 코너에서 쉽게 찾아볼 수 있는 녹색 작은 콩이다. 대부분 꼬투리나 껍질을 벗겨 판매된다. 미국 농무부에 따르면 반 컵 분량의 완두콩에는 약 10g의 단백질이 들어 있어 우수한 식물성 단백질 공급원으로 알려져 있다. 2019년 영양학 저널(The Journal of Nutrition)에 발표된 콩 단백질에 대한 46건의 대조 시험에 대한 메타 분석에 따르면, 여러 식물성 단백질 옵션 중 완두콩이 LDL 콜레스테롤, 즉 '나쁜' 콜레스테롤 수치를 낮추는 데 도움을 줄 수 있는 잠재력을 가지고 있다. 완두콩은 다양한 요리에 활용될 수 있는 매우 다재다능한 식재료다. 예를 들어, 이집트식 완두콩 스튜, 국수 요리, 볶음 요리, 체리와 피칸이 들어간 슬로우 쿠커 완두콩 밥 그릇 등 다양한 레시피에 추가할 수 있다. 또한, 완두콩으로 만든 후무스나 쪄서 소금을 약간 뿌려 간식으로 먹는 것도 좋다. 완두콩은 단백질 함량이 높을 뿐만 아니라, 콜레스테롤 관리와 다이어트에도 도움이 되는 건강에 좋은 식재료다. -녹두 녹두는 식물성 단백질과 섬유질이 풍부한 건강식으로 잘 알려져 있다. USDA의 자료에 따르면, 녹두 1컵에는 단백질 8g과 섬유질 9g이 포함되어 있다. 단백질이 풍부한 녹두는 근육 성장과 유지, 포만감 유지, 면역력 강화에 도움을 주는 식품이다. 더불어 섬유질이 많이 함유되어 있어 소화기 건강을 개선하고, 콜레스테롤 수치를 낮추는 데에도 유익하다. 녹두는 다양한 요리에 활용하기 좋은 다재다능한 식재료다. 수프, 캐서롤, 파스타, 샐러드, 튀김 요리 등에 넣어 사용할 수 있어, 맛과 영양 모두를 충족시키는 식재료로 많은 사람들에게 사랑받고 있다. -해바라기 씨 해바라기 씨는 단백질, 건강한 단일 불포화 지방, 섬유질이 풍부한 영양 간식으로 알려져 있다. USDA에 따르면 껍질을 벗긴 해바라기씨 알맹이 1/4컵에는 단백질 7g, 불포화 지방 12g, 섬유질 3g이 함유되어 있다. 해바라기 씨에는 단백질이 풍부해 근육 성장과 유지, 포만감 유지, 면역력 강화에 도움이 된다. 또한, 건강에 좋은 단일 불포화 지방은 심장 건강을 증진시키고, 섬유질은 포만감을 유지하며 소화기 건강을 개선하는 데 기여한다. 해바라기씨 알맹이는 간식으로 먹어도 좋고, 샐러드, 요거트, 오트밀 등에 뿌려 먹어도 좋다. 또한, 빵, 쿠키, 스무디 등 다양한 요리에 활용할 수 있다. 껍질을 벗긴 해바라기 씨는 간식으로 먹거나, 샐러드, 요거트, 오트밀 등에 뿌려 먹어도 좋다. 또한 빵, 쿠키, 스무디 등 다양한 요리에 활용할 수 있어, 요리의 풍미와 영양 가치를 높이는 데 효과적이다. -리마 콩 리마 콩은 단백질이 풍부한 식품으로, 익힌 콩 반 컵당 7g의 단백질이 들어 있으며, 이는 달걀 1개와 비슷한 양이다. 또한, 섬유질이 풍부해 포만감을 충족시키고 혈당 수치 조절에도 도움이 된다. 하지만 주의할 점은 리마 콩은 생으로 섭취하면 건강에 해로울 수 있어 반드시 익혀서 먹어야 한다. 리마 생콩에는 리파아제라는 효소가 들어 있는데, 이 효소는 콩을 10분 이상 가열하면 파괴된다. 리마 콩은 다양한 요리에 활용할 수 있다. 삶은 리마 콩을 반찬으로 먹거나, 토스트 위에 양배추와 함께 찜한 리마 콩을 얹은 토스트, 오렌지 민트 프리케와 함께 먹는 샐러드 등에 추가할 수 있다. 또한, 파스타, 스튜, 카레, 딥, 스프레드 등 다양한 요리에 넣어 풍미와 질감을 더하는 데 활용할 수 있다. -치아씨드 치아씨드는 단백질, 섬유질, 칼슘, 철분, 식물성 오메가-3 지방산인 알파-리놀렌산(ALA)이 풍부한 식품으로 잘 알려져 있다. USDA에 따르면 2테이블스푼의 치아씨드에는 단백질 5g, 섬유질 5g, 칼슘 100mg, 철분 2mg, ALA 1.7g이 들어있다. 특히, 알파-리놀렌산은 심장 건강에 유익할 수 있다고 알려져 있다. 2021년 영양 및 건강(Nutrition and Health)에 발표된 연구에 따르면, 당뇨병 환자가 12주 동안 매일 약 1.5온스(3테이블스푼)의 치아씨드를 섭취한 경우 대조군에 비해 수축기 혈압이 감소하는 효과가 나타났다. 치아씨드는 요리에 활용도가 높아 샐러드, 요거트, 오트밀, 스무디 등에 뿌려 먹거나, 빵이나 쿠키와 같은 제과류에 첨가할 수 있다. 식물성 식품을 통해 완전한 단백질을 섭취하는 것은 건강 증진에 기여할 뿐만 아니라 환경 보호에도 도움을 줄 수 있다. 다양한 식물성 단백질 식품을 함께 섭취함으로써 필요한 모든 아미노산을 얻고, 완전한 단백질 섭취를 도모할 수 있다.
-
- 생활경제
-
달걀보다 단백질이 더 많은 식물성 식품 9가지
-
-
달걀, 경제적이고 영양가 풍부한 건강식의 대표주자
- 새해를 맞이하며 많은 사람들이 건강한 생활을 위한 새로운 계획을 세우는데, 건강한 식단이 그 중심에 있다. 건강한 식단을 구성하기 위해 필수적인 단백질과 다양한 영양소의 섭취는 매우 중요하다. 미국 매체 유에스에이 투데이(USA TODAY)에 따르면, 달걀은 경제적이며 효율적인 영양소 공급원으로 꼽힌다. 영양사 애비 샤프(Abbey Sharp)는 달걀이 단백질의 완벽한 출처이며, 우리 몸에서 자체적으로 생성할 수 없는 9가지 필수 아미노산을 모두 포함하고 있다고 말했다. 이는 달걀이 영양학적으로 매우 가치 있는 식품임을 의미한다. 달걀에는 또한 비타민 A, 비타민 D, 철분, 콜린 등 다양한 영양소가 풍부하게 들어 있어, 전반적인 건강 유지에 도움을 줄 수 있다. 2020년 연구에 따르면, 달걀로 만든 아침 식사를 한 사람들이 곡물 기반의 식사를 한 사람들보다 더 오랜 시간 동안 포만감을 느낄 수 있었다고 한다. 이러한 결과는 달걀이 풍부한 단백질과 필수 영양소를 제공함으로써 포만감을 오래 유지하는 데 기여하기 때문으로 분석된다. 달걀은 경제적인 면에서도 여러 장점이 있다. 한 개의 달걀에는 약 6그램의 단백질이 함유되어 있는데, 이는 닭가슴살 2조각에 해당하는 양이다. 그러나 달걀은 닭가슴살에 비해 보다 저렴한 가격으로 구입할 수 있다. 달걀은 이처럼 경제적이면서도 영양가가 풍부하여, 건강한 식단을 구성하는 데 있어 중요한 식품으로 자리매김하고 있다. 달걀로 건강한 다이어트하기 달걀은 단백질, 비타민, 미네랄이 풍부한 영양가 높은 식품으로 포만감을 오래 유지시켜 주기 때문에 체중 감량에 도움이 될 수 있다고 알려져 있다. 그럼에도 불구하고, 달걀의 콜레스테롤 함량 때문에 일부 사람들은 체중 감량에 부정적일 것이라고 생각하는 사람들도 있다. 영양사 애비 샤프는 체중 감량을 목표로 할 때 달걀을 섭취하는 가장 건강한 방법은 지방 함량이 낮은 요리 방법을 선택하는 것이라고 조언했다. 삶은 달걀, 데친 달걀, 구운 달걀 등은 기름이나 버터를 적게 사용하거나 사용하지 않기 때문에 체중 관리에 더욱 효과적이다. 튀긴 달걀을 선호하는 사람들의 경우에는 붙지 않는 프라이팬을 사용하고, 사용하는 기름의 양을 최소화하는 것이 좋다. 이런 방법은 달걀의 영양소를 최대한 보존하면서도 체중 감량에 도움을 줄 수 있는 방법으로 간주된다. 따라서, 달걀을 체중 감량에 효과적으로 활용하기 위해서는 조리 방법과 재료 선택이 중요하다. 달걀노른자, 건강에 유익해 달걀노른자에 대한 일반적인 인식은 그것이 콜레스테롤 함량이 높아 건강에 해롭다는 것이었지만, 최근 연구들은 이러한 인식을 재평가하고 있다. 달걀노른자가 심장 건강에 해로울 수 있다는 과거의 견해와 달리, 현재는 달걀노른자가 오히려 건강에 유익할 수 있다는 연구 결과가 나오고 있다. 미국 심장 협회(American Heart Association)의 2019년 리뷰에 따르면, 식이 콜레스테롤과 심혈관 위험 사이에 직접적인 연관성은 발견되지 않았다. 실제로, 일부 연구에서는 매일 달걀 노른자를 섭취하는 것이 심장 질환 위험을 낮출 수 있음을 시사하고 있다. 달걀노른자에는 단백질, 엽산, 오메가-3 지방산, 루테인, 제아잔틴 등 다양한 영양소가 풍부하게 함유되어 있다. 특히 루테인과 제아잔틴은 눈 건강에 도움이 되는 항산화제로 알려져 있다. 그러나 혈중 콜레스테롤 수치가 높은 사람의 경우, 식이 콜레스테롤 섭취를 제한하는 것이 바람직할 수 있으므로, 이러한 개인들은 달걀 노른자의 섭취를 줄여야 할 필요가 있다. 샤프는 "가능한 모든 영양적 이점을 얻기 위해서는 달걀 전체를 섭취하는 것이 바람직하다"고 권장했다.
-
- 생활경제
-
달걀, 경제적이고 영양가 풍부한 건강식의 대표주자
-
-
파킨슨병, 단백질 응집체 분해 메커니즘 규명...치료제 개발 기대
- 독일 과학자들이 α-시누클레인 단백질의 분해 과정에 숨겨진 메커니즘을 발견함으로써 파킨슨병 치료에 새로운 가능성을 제시하고 있다. 독일에서는 약 20만 명이 파킨슨병을 앓고 있다. 이 병은 치매와 같이 퇴행성 신경 질환으로 분류되며, 현재까지는 완치가 어려운 것으로 알려져 있다. 그러나 최근 이루어진 과학적 진전은 파킨슨병을 이해하고 치료하는 데 있어 중요한 단계를 나타낸다고 볼 수 있다. 독일의 매체 24vita는 보흠 루르 대학교(Ruhr University Bochum·RUB)의 연구원들은 α-시누클레인 단백질이 분해되는 과정에서 중요한 메커니즘을 발견했다고 최근 보도했다. 파킨슨병의 주요 특징 중 하나는 특정 뇌 영역에서 단백질 응집체(주로 α-시누클레인 단백질로 구성)가 형성되는 것이다. 막스플랑크학회의 정보에 따르면, 인체 세포 내 노폐물을 처리하는 시스템에 결함이 발생하거나 과부하가 걸리면 이러한 응집체가 축적되기 시작한다. 이는 결국 신경 세포의 기능 상실과 사멸로 이어지며, 궁극적으로 파킨슨병을 유발한다. 학술지 네이처 커뮤니케이션즈(Nature Communications)에 실린 연구 보고서에 따르면, 콘스탄즈 윙클호퍼(Konstanze Winklhofer) 박사는 세포 내 단백질 분해 과정에 관여하는 유비퀴틴 분자 사슬의 존재를 밝혀냈다. 유비퀴틴이라는 작은 단백질이 특정 단백질에 부착되어 그것을 분해 대상으로 식별하는 데 중요한 역할을 한다는 것이다. 유비퀴틴은 76개 아미노산으로 구성된 단백질로, 세포 내에서 다양한 기능을 수행한다. 윙클호퍼 박사는 유비퀴틴 분자 사이의 연결 유형과 유비퀴틴 사슬의 길이 및 구조에 따라 세포의 폐기물 처리 시스템이 어떤 프로세스를 사용해야 할지 결정할 수 있다고 설명했다. 특히, 소위 선형 유비퀴틴 사슬은 신경세포 내 단백질 응집체에 풍부하게 존재하며, 이는 단백질 응집체의 독성을 줄이는 데 도움이 된다. 이러한 보호 메커니즘의 배경에는 과학자들이 밝혀낸 중요한 요소가 있다. 네모(NEMO) 단백질이 단백질 응집체에 존재하는 선형 유비퀴틴 사슬에 결합하여 α-시누클레인 단백질의 분해를 촉진하는 것으로 나타났다. 이러한 발견은 파킨슨병과 같은 신경퇴행성 질환의 치료법 개발에 중요한 단서를 제공할 수 있다. 연구팀에 따르면, 네모(NEMO) 단백질의 보호 효과는 자가포식(autophagy)이라는 세포의 폐기물 처리 과정을 억제함으로써 제한될 수 있다. 자가포식은 세포 내 노폐물과 손상된 구성 요소를 제거하는 중요한 기능을 한다. 연구원들은 네모 단백질이 자가포식 과정에 관여하는 다른 단백질과 상호 작용하는 것을 발견했다. 윙클호퍼 박사는 이번 연구가 미국의 한 신경과 전문의가 치료한 환자의 사례에서 출발했다고 밝혔다. 해당 환자는 40대 초반에 진행성 파킨슨병을 진단받았다. 유전자 검사 결과, 이 환자의 네모 유전자에는 희귀한 돌연변이가 존재했으며, 이 변이된 네모는 선형 유비퀴틴 사슬과 결합할 수 없었다. 결과적으로, 이 돌연변이로 인해 환자의 뇌에서 α-시누클레인 단백질 응집체의 현저한 침착이 관찰됐다. 연구에 따르면, 네모(NEMO) 단백질은 알츠하이머병에서 발생하는 것과 유사한 다른 형태의 단백질 응집체도 감지할 수 있는 능력을 가지고 있다. 윙클호퍼 박사는 "이 발견은 네모와 관련된 질병의 병리학적 과정을 설명하고, 단백질 응집체의 품질 관리에서 네모가 수행하는 일반적인 역할을 강화한다"고 말했다. 한편, α-시누클레인은 140개의 아미노산으로 구성된 작은 단백질로, 주로 뇌에서 발견되며 심장과 근육을 비롯한 다른 조직에서도 소량 발견된다. 특히 파킨슨병이나 치매 환자의 뇌에서는 루이 소체라고 불리는 특정 부위에 섬유소의 형태로 집중되어 나타난다. 이러한 특성 때문에 과학자들은 α-시누클레인과 퇴행성 신경 질환 간의 연관성에 대해 적극적으로 연구를 진행하고 있다. 이 연구는 파킨슨병, 알츠하이머병, 그리고 기타 신경퇴행성 질환의 이해와 치료법 개발에 중요한 기여를 할 수 있다.
-
- 생활경제
-
파킨슨병, 단백질 응집체 분해 메커니즘 규명...치료제 개발 기대
-
-
실리콘밸리 억만장자, 폴리스타틴 요법으로 노화 방지 도전
- 노령화 사회로 접어들면서 건강하게 젊어지는 방법에 대한 관심이 높아지고 있다. 미국의 경제 매체 비즈니스 인사이더(Business Insider)는 최근 실리콘밸리의 억만장자 벤처캐피탈리스트인 브라이언 존슨(Bryan Johnson)이 미국 식품의약국(FDA)의 승인을 받지 않은 유전자 치료를 받고 있다고 보도했다. 46세인 존슨은 지난 9월 카리브해의 외딴 섬을 방문해 생명공학 스타트업 미니서클(Minicircle)이 제안한 폴리스타틴 요법을 받았다고 인스타그램에 밝혔다. 폴리스타틴 요법이란? 폴리스타틴은 근육량을 늘리고 염증을 줄이는 데 도움이 되는 인체 단백질 기반의 치료법이다. 이 요법의 평균 비용은 한 번에 2만5000달러(약 3247만원)에 달한다. 그러나 이 치료법은 FDA의 승인을 받지 않았으며, 몇몇 과학자들은 그 효과에 대해 확신하지 못하고 있다. 미니서클은 억만장자 피터 틸(Peter Thiel)과 오픈AI CEO 샘 알트만(Sam Altman)의 지원을 받고 있다. 하지만 이 치료법은 FDA의 승인을 받지 않았으며, 일부 과학자들은 그 효과에 대해 확실하지 않다는 입장을 보이고 있다. 생명공학 스타트업 미니서클은 억만장자 피터 틸(Peter Thiel)과 오픈AI의 CEO 샘 올트먼(Sam Altman)의 지원을 받고 있다. 존슨은 노화 방지에 수백만 달러를 투자하고 있는 것으로 알려져 있지만, 미니서클의 공동 설립자는 언론매체와의 인터뷰에서 회사가 존슨에게 비용을 청구하지 않을 것이라고 말했다. 그는 '프로젝트 블루프린트(Project Blueprint)'라는 이름의 노화 방지 프로그램에 참여하고 있다. 이 프로그램은 다양한 보충제, 비건 식단, 그리고 최근에 추가된 유전자 치료 등을 포함하고 있다. 존슨은 프로젝트 블루프린트의 의사 팀이 28세의 피부, 37세의 심장, 18세의 폐활량을 갖도록 도왔다고 말했다. 물론 이러한 주장은 독립적으로 검증되지 않았다고 비즈니스 인사이더는 전했다. 노화 방지 프로젝트 참여 존슨의 노화 방지 프로젝트는 크게 다음과 같은 세 가지 요소로 구성된다. 첫째, 영양제와 식단으로 존슨은 매일 아침 100알이 넘는 영양제를 섭취하고, 채소 위주의 비건 식단을 고수하고 있다. 아침 식단에는 스퍼미딘(스페르미딘), 아미노산, 크레아틴, 콜라겐 등이 포함된 그린 자이언트라는 음료와 슈퍼 베지, 너티 푸딩이라는 음식이 포함되어 있다. 둘째, 운동으로 존슨은 매일 1시간씩 3단계로 나누어 운동을 하고 있다. 저강도 운동은 스트레칭과 자세 교정을 위한 것이고, 중강도 운동은 근력 운동, 고강도 운동으로는 히트(HIIT) 프로그램이나 크로스핏 운동 등이 포함된다. 셋째, 유전자 치료로 존슨은 지난 9월에 FDA의 승인을 받지 않은 폴리스타틴 요법을 받았다. 폴리스타틴은 근육량을 늘리고 염증을 줄이는 데 도움이 되는 인체 단백질이다. 한편, 존슨은 자신의 노화 방지 프로젝트가 성공적이라고 주장하고 있다. 그는 2년 만에 노화 속도가 31세로 늦춰졌다고 말했다. 존슨의 심혈관 염증 수치인 고감도 CRP 검사 결과는 18세의 수준이고, 골밀도와 테스토스테론 수치도 20대 초반을 기록하고 있다. 피부 나이 역시 본인의 생체 나이보다 22세가량 젊다. 그러나 존슨의 주장은 독립적이고 객관적으로 검증되지 않았으며, '생물학적 나이'가 정확히 무엇인지에 대한 격렬한 논쟁이 있다. 전문가 찬반 의견 팽팽 존슨의 노화 방지 프로젝트에 대한 전문가들의 의견은 엇갈리고 있다. 긍정적인 평가를 내리는 전문가들은 존슨의 프로젝트가 노화 방지 분야에 새로운 돌파구를 마련할 수 있을 것으로 기대하고 있다. 노화생물학자인 제럴드 루이스 박사는 "존슨의 프로젝트는 영양제, 식단, 운동의 조화를 통해 노화 속도를 늦추는 데 효과적일 것으로 보인다"고 말했다. 반면, 부정적인 평가를 내리는 전문가들은 존슨의 프로젝트가 위험할 수 있다고 우려하고 있다. 노화생물학자인 폴 포스 박사는 "존슨의 프로젝트는 단기적으로는 효과적일 수 있지만, 장기적으로는 부작용을 초래할 수도 있다"고 말했다. 포스 박사는 "폴리스타틴 요법은 아직 임상 시험 단계에 있으며, 장기적인 안전성은 아직 검증되지 않았다"며 "특히 면역 체계에 영향을 미칠 수 있는 유전자 치료는 신중하게 고려해야 한다"고 말했다. 존슨은 이러한 우려에 대해 "나는 내 건강을 위해 최선을 다하고 있다"며 "나의 프로젝트가 성공한다면, 노화 방지 분야에 새로운 돌파구를 마련할 수 있을 것"이라고 말했다. 한편, 존슨은 2005년 결제처리회사인 브레인트리(Btriatree)를 설립했으며 2013년에 페이팔에 매각해 대부분의 자산을 모았다. 존슨은 또한 초기 단계의 과학 기술 기업에 투자하는 벤처 캐피탈 회사인 OS펀드(OS Fund)의 창립자이자 CEO이다. OS Fund는 2017년 설립된 이후, 100개 이상의 기업에 투자했다.
-
- 포커스온
-
실리콘밸리 억만장자, 폴리스타틴 요법으로 노화 방지 도전