검색
-
-
해변 담배꽁초 청소하는 로봇 개 첫선…네 발에 진공청소기 노즐 부착
- 이탈리아기술원(IIT: Italian Institute of Technology) 연구팀이 발목에 노즐을 묶고 등에 진공청소기 본체를 달아 쓰레기를 청소하는 4족 로봇개를 개발했다고 뉴아틀라스가 전했다. 이 로봇개는 중국 로봇 개발 회사인 유니트리(Unitree)의 에일리언고(AlienGo) 로봇개를 모델로 해 제작됐다. 베로(VERO: Vacuum-cleaner Equipped RObot)라고 명명된 이 진공청소 로봇개는 해변에서 가장 흔한 쓰레기인 담배꽁초를 주로 제거한다. 베로는 정해진 청소 구역에서 자율적으로 이동하면서 한 쌍의 카메라와 신경망을 이용해 담배꽁초를 찾고, 진공청소기를 켜 이를 빨아들인다. 계획된 경로를 따라 움직이면서 담배꽁초 및 유사한 모양의 쓰레기도 함께 청소한다. 개발된 4족 진공청소 로봇개는 연구 등급의 로봇으로서 현 수준에서는 상대적으로 비싸다고 한다. 대략 5만 달러 정도로 1600달러 수준인 에일리언고에 비해 비싸다. 또한 에일리언고만큼 민첩하거나 빠르게 움직이지 못한다. 다만, 걷거나 뛰는 등 이동의 용도로만 사용되던 로봇의 발을 다른 작업으로 전환할 수 있는 단초를 마련했다는 점에서 의미가 크다. 담배꽁초를 찾아내도 발끝에 부착된 노즐을 꽁초 쪽으로 가져가 빨아들이는 것은 어려운 작업이다. 네 발에 부착한 네 개의 노즐이 두 개 또는 한 개보다 생산적인 청소 작업을 수행할 수 있는 지도 검증되지 않았다. 나아가 해변에서 담배꽁초를 제거할 때 엄청난 양의 모래를 같이 빨아들일 수도 있다. 따라서 개발된 진공청소 로봇개는 현시점에서는 실용적이지 않다는 지적이다. 다만 로보틱스 산업에서 아이디어 측면에서는 크게 발전된 모습이라는 평가다. 다른 분야로의 확대 응용도 기대된다. 즉, 다리 끝에 진공 노즐만 고집할 필요가 없다는 것이다. 정원 가꾸기나 농장 잡초 제거, 건설 현장에서 못질하기 등의 용도로도 활용할 수 있다고 연구팀은 밝혔다. 진공청소 로봇개 개발 소식은 '필드 로보틱스 저널(Journal of Field Robotics)'에 발표됐다.
-
- IT/바이오
-
해변 담배꽁초 청소하는 로봇 개 첫선…네 발에 진공청소기 노즐 부착
-
-
[신소재 신기술(79)] 레이저와 2D 물질로 플라스틱 쓰레기 분해
- 레이저를 활용해 플라스틱 오염을 해결할 수 있는 방법이 개발됐다. 미국 텍사스 대학교 연구진이 주도하는 국제 연구팀은 레이저를 이용해 플라스틱 분자를 기본 요소로 분해해 재활용하는 기술을 개발했다고 사이테크데일리가 전했다. 매년 수백만톤의 플라스틱 폐기물이 매립지와 바다에 쌓이는 등 플라스틱 오염은 전세계적인 환경 문제로 떠올랐다. 기존의 플라스틱 분해 방법은 에너지 집약적이고 환경적으로 유해해 비효율적인 경우가 많았다. 연구팀은 분해하려는 물질을 전이 금속 디칼코게나이드(TMD)라는 2차원 물질 위에 놓고 빛을 비추는 방식을 활용했다. 이는 기존 기술로는 분해가 어려운 플라스틱 폐기물 해결에 기여할 것으로 기대된다. 연구팀은 이 기술을 통해 플라스틱의 화학 결합을 끊고 새로운 화학 결합을 형성해 발광 탄소점(carbon dot)을 생성했다. 탄소 기반 나노 물질은 다양한 분야에서 활용 가능성이 높다. 특히 이 발광 탄소점은 차세대 컴퓨터 메모리 소자로 활용될 가능성도 있다. 텍사스 오스틴 캠퍼스(UT Austin)의 18개 단과대학 중 하나인 콕렐 공과대학 워커 기계공학부 교수이자 프로젝트 리더 중 한 명인 유빙 정은 "이러한 독특한 반응을 활용하면 환경 오염 물질을 가치있고 재사용 가능한 화학물질로 전환하는 새로운 경로를 탐색해 보다 지속 가능한 순환 경제 발전에 기여할 수 있다"고 말했다. 그는 "이 새로운 발견은 환경 문제를 해결하고 친환경 화학 분야를 발전시키는 데 중요한 의미가 있다"고 덧붙였다. 또한 이번 연구는 탄소-수소 결합 활성화(C-H activation)라는 특정 반응을 이용했다. 이 반응은 유기 분자 내 탄소-수소 결합을 선택적으로 분해해 새로운 화학 결합을 형성하는 과정이다. 연구팀은 TMD를 촉매로 사용해 수소 분자를 가스 형태로 변환시키고, 탄소 분자들이 서로 결합해 정보 저장 점을 형성하도록 유도해 플라스틱 분해를 높였다. 이번 연구는 플라스틱 폐기물 문제 해결을 위한 지속 가능한 방안 모색에 중요한 발걸음을 내디뎠다는 평가를 받고 있다. 하지만 산업적 응용을 위해서는 빛 기반 C-H 활성화 공정의 최적화 및 확장에 대한 추가 연구 개발이 필요하다. 빛 기반 C-H 활성화 공정은 플라스틱 외에도 폴리에틸렌, 계면활성제 등 다양한 고분자 유기화합물에도 적용될 수 있을 것으로 기대된다. 연구 결과는 최근 학술지 '네이처 커뮤니케이션즈(Nature Communications)'에 게재됐다. 연구에는 텍사스대학교를 포함해 버클리 캘리포니아 대학교, 일본 도호쿠 대학교, 로렌스 버클리 국립 연구소, 베일리 대학교, 펜실베니아 주립대학교의 연구진이 참여했다.
-
- 포커스온
-
[신소재 신기술(79)] 레이저와 2D 물질로 플라스틱 쓰레기 분해
-
-
[신소재 신기술(71)] 음식물 쓰레기 활용해 기존 소재보다 4배 강한 '식용 콘크리트' 개발
- 해초, 양배추와 오렌지 껍질 등 식물성 재료를 활용해 기존 콘크리트보다 3배 이상 강한 '식용 콘크리트' 건축 자재가 개발되어 주목받고 있다. 일본 도쿄대학 연구팀이 배추와 바나나,양파 껍질 등 식물성 유기물로 기존 콘크리트보다 4배 강한 콘크리트를 개발했다고 더쿨다운이 5일(현지시간) 전했다. 프린스턴 대학교에 따르면, 콘크리트는 물 다음으로 지구상에서 가장 많이 소비되는 제품이지만, 매년 44억 톤의 이산화탄소를 배출하며, 전 세계 오염의 8%를 차지한다. 이에 따라 기존 콘크리트 생산 과정의 대안을 모색하고, 건물의 내구성을 높여 콘크리트 사용량을 줄이는 노력이 중요해졌다. 이러한 맥락에서 도쿄 대학 연구팀이 개발한 '식용 콘크리트'는 기존 콘크리트보다 4배 강할 뿐 아니라 음식물 쓰레기 문제 해결에도 기여할 수 있어 더욱 주목받고 있다. 연구팀은 커피 찌꺼기, 바나나 껍질, 양배추, 오렌지 껍질, 양파 껍질, 호박 등 유기물을 건조 및 압축하고 물, 조미료와 혼합하여 고온 틀에서 압축하는 방식으로 친환경 콘크리트를 제작했다. 연구 수석 저자인 유야 사카이는 "저희의 목표는 해초와 일반 음식물 쓰레기를 사용하여 최소한 콘크리트만큼 튼튼한 재료를 만드는 것이었다"면서 "하지만 먹을 수 있는 음식물 쓰레기를 사용했기 때문에 재활용 과정이 원래 재료의 맛에 영향을 미치는지 확인하는 데도 관심이 있었다"라고 설명했다. 실험 결과, 이 식용 콘크리트는 굽힘 강도가 기존 콘크리트보다 훨씬 뛰어났으며, 소금이나 설탕을 첨가하여 맛을 개선해도 강도에는 영향을 미치지 않았다. 선임 연구원인 코다 마치타는 "호박에서 추출한 표본을 제외하고 모든 재료가 굽힘 강도 목표를 초과했다"며 "콘크리트보다 3배 이상 강한 재료를 생산한 배추 잎을 약한 호박 기반 재료와 섞어 효과적인 보강재를 제공할 수 있다는 것을 발견했다"고 말했다. 이 콘크리트는 또 부패, 곰팡이, 곤충에 강하며 4개월 동안 공기 중에 노출되어도 맛이나 강도가 변하지 않는 것으로 확인됐다. 이 연구는 더욱 견고한 건물을 위한 강력한 콘크리트를 개발하는 동시에, 지구 오염의 또 다른 원인인 음식물 쓰레기를 활용할 수 있는 방법을 제시했다. 미국 농무부에 따르면, 식량 손실 및 폐기물은 인간 소비를 위해 생산된 모든 식량의 3분의 1을 차지하며, 2021년 환경보호국 보고서에서는 식량 손실로 인한 1억 8700만 톤 이상의 이산화탄소 배출량이 석탄 화력 발전소 42개의 연간 오염량과 비슷하다고 밝혔다. 이 기술이 미래 건축물에 적용될지는 아직 미지수지만, 과학자들은 다양한 분야에 활용될 수 있다는 점에서 긍정적인 반응을 보이고 있다. 이는 기존의 틀을 벗어난 사고가 이산화탄소 배출과 환경오염 두 가지 문제를 동시에 해결할 수 있는 가능성을 보여주는 좋은 사례라는 평가다.
-
- 포커스온
-
[신소재 신기술(71)] 음식물 쓰레기 활용해 기존 소재보다 4배 강한 '식용 콘크리트' 개발
-
-
[기후의 역습(12)] 이산화탄소 수치, 역대 최고치 기록…극한 기후 지속돼 가파르게 상승
- 이산화탄소가 그 어느 때보다 빠르게 대기에 축적되고 있다. 역대 최고 수준으로 가파른 상승세를 보이고 있다고 NOAA(미 국립해양대기청)와 캘리포니아 주립대 샌디에이고 캠퍼스 스크립스해양학연구소(Scripps Institution of Oceanography offsite link)의 연구진이 발표했다. NOAA에 따르면 NOAA의 글로벌모니터링연구소(Global Monitoring Laboratory)가 마우나 로아 대기 관측소(Mauna Loa Atmospheric Baseline Observatory)에서 측정한 이산화탄소 수준은 지난 5월 427ppm으로 급상승하며 동월 기준 최고치를 기록했다. 매년 5월은 이산화탄소가 북반구에서 가장 높은 수준에 도달하는 달이다. 이번 측정 수치는 2023년 5월에 비해 2.9ppm 증가한 것이며 NOAA의 50년 기록 중 5번째로 큰 폭의 증가이기도 하다. 2023년의 3.0ppm 증가와 맞물리면, NOAA가 측정을 시작한 이래 2022~2024년까지 2년 동안의 상승폭으로도 최고 기록이다. 불길한 신호를 보내는 이산화탄소 측정 마우나 로아에서 1958년부터 이산화탄소 관측을 시작해 독립적으로 데이터를 축적해 분석해 온 스크립스연구소는 지난 5월 월 평균 이산화탄소 농도를 426.7ppm으로 측정했다. 이는 1년 전인 2023년 5월 측정치 423.78ppm보다 2.92ppm 증가한 수치다. 스크립스연구소에서 이산화탄소 수준이 2년 연속 가파르게 뛰어오른 것은 2020년에 세운 종전 기록에 이은 두 번째다. NOAA와 스크립스 연구진은 1~4월까지 이산화탄소 농도가 다른 해의 동기간 보다 더 빠르게 증가했다고 밝혔다. 최근 몇 년간 기후 변화에 대응하기 위해 화석연료 사용을 억제했고 이에 따른 탄소 배출이 정체 상태에 있다는 보고가 있었지만 실제 대기에서 이산화탄소 농도는 더 짙어진 것이다. NOAA의 릭 스핀래드 박사는 "지난 1년 동안 우리는 기록상 가장 더운 한 해, 기록상 가장 뜨거운 해수 온도, 끝없는 폭염, 가뭄, 홍수, 산불 및 폭풍을 경험했다"라며 "이번에 대기 중 이산화탄소 수준이 그 어느 때보다 빠르게 증가하고 있음이 드러났다. 우리는 이것이 이산화탄소 오염이 기후 시스템에 끼치는 피해를 보여주는 분명한 신호임을 인식하고 가능한 한 신속히 화석연료 사용을 줄이기 위한 조치를 취해야 한다”고 강조했다. 스크립스연구소의 탄소 프로그램 책임자 랄프 킬링 박사는 “이산화탄소의 현재 농도는 수백만 년 만에 최고 수준일 뿐만 아니라 어느 때보다 빨리 증가하고 있다. 화석연료 연소로 인해 매년 최고치를 달성하고 있는 것이다. 화석연료 오염은 마치 매립지의 쓰레기처럼 계속 쌓이고 있다"고 경고했다. 거대한 열을 가두는 담요 다른 온실 가스와 마찬가지로 이산화탄소는 대기에서 담요와 같은 작용을 한다. 지구 표면에서 방출되는 열이 우주로 빠져나가는 것을 막는 것이다. 온난화된 대기는 폭염, 가뭄, 산불은 물론 폭우와 홍수 등 극심한 기상 현상을 촉발한다. 인간이 공기 중으로 방출하는 이산화탄소의 약 절반이 대기 중에 남아 있다. 나머지 절반은 지구 표면에 흡수되어 육지와 바다에 나뉘어 축적된다. 2022~2024년까지 관찰된 2년간의 기록적인 이산화탄소 수준 급증은 2년 째 이어지는 화석연료 연소에 따른 대량의 방출과 엘니뇨 현상의 결합에 따른 것이라는 해석이 많다. NOAA의 글로벌 탄소순환 연구원인 존 밀러 박사는 이를 두고 지구의 자정 능력과 한계를 벗어났다고 진단했다. 이산화탄소의 과다 노출로 인해 해양의 화학적 성질이 변하고 있으며, 이는 해양 산성화와 함께 용존 산소량 감소로 이어져 일부 해양 생물의 생존까지 위협하고 있다. 해양 생태계 전반이 위기에 처하고 있는 것이다.
-
- 포커스온
-
[기후의 역습(12)] 이산화탄소 수치, 역대 최고치 기록…극한 기후 지속돼 가파르게 상승
-
-
해양 폐플라스틱 폴리에틸렌 분해 곰팡이 발견
- 바다에 서식하는 곰팡이 파렝지오돈티움 앨범(Parengyodontium album)이 햇빛에 의한 UV(자외선)에 일정 시간 노출된 플라스틱 폴리에틸렌(PE)을 분해할 수 있는 것으로 나타났다고 PHYS가 전했다. 네덜란드 왕립해양연구소(NIOZ)의 해양 미생물학 연구팀은 이 같은 사실을 밝힌 연구 결과를 '종합환경과학(Science of the Total Environment)' 저널에 발표했다. 연구팀은 더 많은 플라스틱 분해 곰팡이가 깊은 바다에 살고 있을 것으로 예상하고 있다. 이 곰팡이는 바다의 플라스틱 쓰레기 위에 얇은 층을 이루며 다른 해양 미생물과 함께 공존하고 있다. NIOZ의 해양 미생물학자들은 이 곰팡이가 바다에 유입된 모든 플라스틱 중에서도 가장 많은 PE 입자를 분해할 수 있다는 사실을 규명했다. 연구는 NIOZ 연구팀이 위트레흐트 대학, 해양정화재단(Ocean Cleanup Foundation) 및 파리, 코펜하겐, 스위스 세인트 갈렌 등에 소재한 연구기관의 과학자들과 협력해 수행했다. 이번 발견으로 이 곰팡이는 플라스틱을 분해하는 소수의 해양 곰팡이 목록에 합류하게 됐다. 현재까지 발견된 곰팡이는 4종뿐이지만, 더 많은 수의 박테리아가 플라스틱을 분해할 수 있는 것으로 알려져 있다. 플라스틱 분해과정 정확하게 추적 연구팀은 북태평양의 플라스틱 오염 집중지역에서 플라스틱 분해 미생물을 추적했다. 수집된 플라스틱 폐기물에서 탄소가 포함된 특수 플라스틱을 실험실에서 배양해 해양 곰팡이를 분리했다. 연구팀원인 백스마(Vaksma)는 "13C 동위원소는 먹이 사슬에서 추적 가능한 상태로 유지되며 이는 탄소가 어디로 가는지 파악할 수 있게 해주는 태그와 같은 것이고, 연구를 통해 이를 추적했다"고 밝혔다. 이 연구가 과학적으로 뛰어난 이유는 분해 과정을 정량화할 수 있다는 점이라고 백스마는 강조했다. 실험실에서 연구팀은 이 곰팡이에 의한 PE 분해가 하루 약 0.05%의 비율로 발생한다는 것을 관찰했다. 연구팀의 측정에 따르면 곰팡이는 PE를 분해할 때 PE에서 발생하는 탄소를 많이 내보내지는 않았다. 곰팡이가 분해하는 PE의 대부분은 이산화탄소로 변환되어 다시 배출된다. 배출되는 이산화탄소가 강력한 온실가스이지만 환경 등에 새로운 문제를 일으키지는 않는다. 곰팡이가 방출하는 양은 인간이 호흡할 때 방출하는 것처럼 소량에 지나지 않기 때문이다. 자외선의 영향을 받는 경우에만 작용 연구팀은 곰팡이가 PE를 에너지원으로 사용하려면 햇빛의 존재가 필수적이라고 지적했다. 실험실에서 이 곰팡이는 일정한 시간 동안 자외선에 노출된 PE만 분해한다는 것이다. 이는 바다에서 곰팡이가 처음에 해수면 근처에 떠 있던 플라스틱만 분해할 수 있다는 것을 의미한다는 설명이다. 자외선이 플라스틱 자체를 기계적으로 분해한다는 것은 이미 알려져 있지만, 이번 연구 결과는 해양 곰팡이에 의한 생물학적 플라스틱 분해도 활발해질 수 있음을 보여준다. 그 밖의 다른 곰팡이들 많은 양의 다양한 플라스틱이 햇빛에 노출되기 전에 더 깊은 층으로 가라앉기 때문에 곰팡이가 이를 모두 분해할 수는 없다. 연구팀은 바다의 더 깊은 부분에도 플라스틱을 분해하는 아직 알려지지 않은 다른 곰팡이가 있을 것으로 예상했다. 연구진은 해양균류는 탄소로 이루어진 복잡한 물질을 분해할 수 있으며, 해양균류의 양이 많기 때문에 지금까지 확인된 4종 외에 다른 종들도 플라스틱을 분해할 가능성이 높다고 보고 있다. 더 깊은 층에서 플라스틱 분해가 어떻게 일어나는지에 대한 역학에 대해서는 많이 알려지지 않았다. 해저, 폐 플라스틱 집하지 플라스틱을 분해하는 유기체를 찾는 것이 시급하다. 매년 인간은 4000억kg 이상의 플라스틱을 생산하며, 2060년에는 이 양이 적어도 3배 이상 늘어날 것으로 예상된다. 플라스틱 폐기물의 대부분은 바다로 흘러간다. 극지방에서 열대지방에 이르기까지 플라스틱 폐기물은 표층수를 떠돌다가 바다의 더 깊은 곳까지 도달한 후 결국 해저에 묻힌다. 대량의 플라스틱은 결국 바닷물이 거의 정지해 있는 고리 모양 해류인 아열대 환류에 이르게 되는데, 플라스틱이 일단 그곳으로 운반되면 그대로 갇히게 된다. 그 양은 약 8000만kg에 달한다는 추정이다. 떠다니는 거대한 플라스틱의 양은 이미 태평양의 북태평양 아열대 환류에 축적되어 있는데, 이는 전 세계 6대 환류 중 하나일 뿐이다. 그 만큼 해저에 쌓이는 플라스틱의 양이 막대하다는 뜻이다. 해저 플라스틱 분해 박테리아는 플라스틱 오염 문제 해결에 큰 잠재력을 가지고 있다. 그러나 현재 발견된 박테리아는 분해 속도가 느려 플라스틱 오염 해결에 효과적이지 못하다는 문제점이 있다. 지속적인 연구와 투자를 통해 해저 플라스틱 분해 박테리아 기술이 발전한다면 우리는 더욱 깨끗하고 건강한 바다 환경을 유지할 수 잇을 것으로 보인다.
-
- IT/바이오
-
해양 폐플라스틱 폴리에틸렌 분해 곰팡이 발견
-
-
[신소재 신기술(55)] 재활용 플라스틱으로 지속가능한 '냉각 페인트' 개발
- 싱가포르의 과학자들이 재활용 플라스틱을 활용해 새로운 '냉각 페인트(cool paint)'를 개발했다. 난양이공대학교(NTU) 연구팀은 재활용 플라스틱(아크릴, 폐 PVC 파이프, 폴리스티렌 폼)과 황산바륨(BaSO4)을 이용해 새로운 유형의 '냉각 페인트'를 제조하는 방법을 개발했다고 PHYS가 5일(현지시간) 보도했다. 이 페인트는 신규 플라스틱 사용을 대체하는 지속 가능하고 효율적인 방법을 제공한다. 난양이공대학교는 싱가포르 난양에 위치한 연구집약형 공립 종합대학으로 이공계 분야 세계적인 명문대학이다. NTU 연구팀은 '솔-겔(sol-gel)'과 '상 분리(phase inversion)' 등 두 가지 방법을 사용해 냉각 페인트를 개발했다. 먼저 솔-겔 방법으로, 연구팀은 재활용 플라스틱과 황산바륨을 혼합해서 페인트를 제조했다. 싱가포르 건물 옥상에서 실시된 24시간 테스트 결과, 이 페인트는 직사광선에 노출되었을 때 주변 기온보다 최대 1.2°C 낮은 온도를 유지했다. 야간에는 주변 온도보다 최대 3°C 낮은 온도를 유지했다. 이 페인트는 태양열 반사율이 약 97.7%이며 적외선 영역에서 열 방출율이 95%에 달하는 것으로 나타났다. 두 번째인 상 분리 방법 역시 재활용 플라스틱과 황산바륨을 사용하지만, 제조 과정에서 공기가 들어갈 수 있는 미세 기공을 형성시켜 재활용 플라스틱을 다공성으로 만드는 데 중점을 두었다. 이러한 기공은 햇빛을 스펙트럼 전체에 걸쳐 산란시키는 데 도움을 준다. 테스트 결과, 이 페인트로 코팅된 표면은 정오에는 거의 주변 기온과 동일한 온도를 유지했으며 야간에는 주변 온도보다 최대 2.5°C 낮았다. 두 방법 모두를 사용해 개발된 냉각 페인트는, 일반적으로 표면 온도를 주변 온도 이하로 낮추지 못하는 시판용 냉각 페인트보다 성능이 뛰어났다. 또한 분류되지 않은 플라스틱 폐기물(아크릴, PVC 파이프, 폴리스티렌 폼 혼합물)을 사용한 추가 연구에서도 단일 종류의 플라스틱 폐기물만 사용해서 개발된 냉각 페인트와 비슷한 결과를 얻었다. 이는 NTU 연구팀의 접근 방식이 다양한 종류의 플라스틱 분류 필요성을 줄여준다는 것을 시사한다. NTU 방식은 열대 환경의 온도를 낮추는 데 도움이 될 뿐만 아니라 효과적인 플라스틱 폐기물 관리에도 기여할 수 있다. 한편, 모든 플라스틱이 재활용 되는 것은 아니다. 플라스틱 액션 플랫폼인 리퍼포스 글로벌(rePurpose Global)에 따르면 실제로 재활용된 플라스틱은 10% 미만이다. 약 12%는 소각되었으며, 나머지는 매립되거나 바다로 버려졌다. 씨넷에 따르면 플라스틱의 약 91%는 재활용되지 않았다. 실제로 재활용할 수 없는 유형의 플라스틱이 많이 있지만 소비자의 부주의로 인해 재사용에 적합하지 않은 플라스틱도 있다. 예를 들어 플라스틱 용기에 잔여물이나 쓰레기, 또는 기타 물질이 들어 있으면 재활용을 할 수 없다. 따라서 재활용하려는 픍라스틱 용기를 깨끗하게 청소해서 분리수거 통에 버리는 것이 재활용 율을 높일 수 있는 가장 기본적이면서도 제일 중요한 방법이다.
-
- 포커스온
-
[신소재 신기술(55)] 재활용 플라스틱으로 지속가능한 '냉각 페인트' 개발
-
-
누벨칼레도니 고사리, 지구상 가장 큰 게놈으로 기네스 등재
- 태평양의 외딴 섬에서만 자라는 작은 양치류가 지구상 존재하는 유기체 가운데 가장 큰 게놈을 보유, 기네스 세계 기록에 선정됐다고 사이언스얼라트가 전했다. 남태평양의 누벨칼레도니(영어명 뉴칼레도니아)에 서식하는 양치류(Tmesipteris oblanceolata)의 일종인 고사리가 그 주인공으로, 이 양치류는 세포액에 인간보다 무려 50배 이상 많은 DNA를 가지고 있는 것으로 나타났다. 연구팀의 분석에 따르면 폭이 1mm에 불과한 고사리 세포 중 하나의 DNA를 실처럼 풀면 길이가 106m까지 늘어난다. 이 DNA를 똑바로 세우면 런던의 명물 빅벤 타워(높이 96m)보다 더 높이 올라간다. 양치류의 게놈 무게는 무려 160기가염기쌍(Gbp)에 달했는데, 염기쌍(bp)은 DNA 길이를 측정하는 수치다. 즉 염기쌍은 수소 결합에 의해 서로 결합되는 2개의 핵염기로 이루어진 두 가닥 핵산의 기본 단위다. 종전까지 최장 기록 보유자는 일본의 혼슈가 원산지이며, 영국의 정원 등에서도 발견되는 화초인 파리 자포니카(Paris japonica)였다. 이번에 발견된 고사리 게놈은 이보다 7% 더 길다고 한다. 인간 게놈은 상대적으로 작은 3.1Gbps이다. 인간 DNA를 풀어낸다면 길이는 약 2m 정도 된다. 연구를 주도한 영국 왕립식물원 큐(Royal Botanic Gardens Kew) 연구원인 일리아 리치는 "이 분야에서는 이미 생물학적인 한계에 도달했다고 생각했지만, 발견된 고사리의 DNA가 파리 자포니카보다 더 큰 것을 확인하고 한계를 확장할 수 있었다"고 말했다. 키가 5~10cm까지 자라는 이 양치류는 프랑스령 태평양 지역인 뉴칼레도니아에서만 발견된다. 연구팀은 2023년 본섬인 그랑테르(Grand Terre)를 여행하고 현지 과학자들과 협력해 연구를 진행하고 '아이사이언스(iScience)' 저널에 결과를 게재했다. 인간의 몸에는 30조 개 이상의 세포가 있는 것으로 추정된다. 각 세포 안에는 DNA를 포함하는 핵이 존재한다. 이는 유기체가 어떻게 생존하는지 알려주는 지침서라고 할 수 있다. 유기체의 모든 DNA를 게놈이라고 한다. 지금까지 과학자들은 약 2만 종의 유기체의 게놈 크기를 추정했다. 숫자는 많아 보이지만, 사실 이는 지구상에 존재하는 생명체의 극히 일부에 불과하다. 동물 중에서는 표범 폐어(렁피시: 폐를 가진 물고기)의 DNA가 130Gbp로 가장 크다. 식물은 가장 큰 게놈을 가지고 있지만 믿기 어려울 정도로 작은 게놈을 가진 경우도 있다. 육식성 식물 겐리세아 속에서 가장 큰 종인 겐리세아 아우레오(Genlisea aurea)의 게놈은 0.06Gbp에 불과하다. 그러나 게놈의 길고 짧음에 비례해 우위가 나뉘는 것은 아니다. 모든 연구 결과는 거대한 게놈을 갖는 것이 오히려 단점이라는 사실을 보이고 있다. DNA가 많을수록 DNA를 모두 집어넣어야 할 세포의 크기는 커져야 한다. 식물의 경우 세포가 크다는 것은 잎의 구멍이 더 커야 한다는 것을 의미하며, 이는 잎이 천천히 자랄 수 있다는 것을 뜻한다. 또한 DNA의 새로운 복제가 더 까다로워 생식 능력이 제한된다. 이는 가장 거대한 게놈이 환경에 쉽게 적응하지 못하고 경쟁에 효과적으로 맞서 싸울 수 없는, 느리게 자라는 다년생 식물에서 발견된다는 것을 의미한다. 따라서 게놈 크기는 식물이 기후 변화, 토지 이용 변화 및 인간으로 인한 기타 환경 문제에 대응하는 방식에 영향을 미칠 수 있다. 그러나 DNA가 유기체에서 실제로 어떻게 기능하는지 이해하기는 어렵다. 현재까지는 이번에 발견된 양치류처럼 거대한 게놈에서 DNA가 어떤 역할을 하는지 알 수 없다. 일부 학계에서는 이를 '정크 DNA(아무런 유전 정보를 갖고 있지 않은 쓰레기 DNA)'라고 무시하지만, 기능을 갖고 있는데 과학이 찾아내지 못했을 가능성도 크다. 따라서 이번 발견은 새로운 단계로의 출발을 의미한다고 아이오와 주립대 식물학자 조너선 웬델은 지적했다.
-
- IT/바이오
-
누벨칼레도니 고사리, 지구상 가장 큰 게놈으로 기네스 등재
-
-
드림 체이서 우주선, 국제우주정거장 발사 앞두고 플로리다 도착…세계 첫 상업용 우주선
- 지구 저궤도 위성의 상업적 활용을 확대한다는 나사(NASA) 전략의 일환으로, 시에라 스페이스(Sierra Space)의 무인 우주선이 국제우주정거장으로의 발사를 앞두고 플로리다주에 있는 나사 케네디 우주센터에 도착했다. 22일(현지시간) 나사 홈페이지에 따르면 테나시티(Tenacity)라는 이름의 드림 체이서(Dream Chaser) 우주선은 오하이오주 샌더스키에 소재한 나사의 닐 암스트롱 시험시설에서 기후 제어 운송 컨테이너를 타고 18일 케네디 우주센터에 도착했으며, 지난 11일 이미 도착한 슈팅 스타 화물 모듈에 합류했다. 케네디 센터에 도착하기 전 우주선과 화물 모듈은 나사의 실험 시설에서 우주선 발사 및 대기권으로의 재진입 시 일어날 수 있는 진동 테스트를 받았다. 진동 테스트 후 모듈은 나사의 우주 추진 시설로 이동, 낮은 주변 압력과 화씨-150(섭씨 약 -101도)~300도(섭씨 약 149도)의 극한 온도에 노출하는 시험도 시행했다. 케네디에 도착한 드림 체이서 테나시티 우주선은 우주시스템 시설 내 고층으로 이동, 올해 하반기로 예정된 발사에 앞서 최종 테스트와 발사 전처리를 받게 된다. 우주선은 ULA(United Launch Alliance)의 벌칸 로켓을 타고 케이프커내버럴 우주 기지의 스페이스 론치 콤플렉스-41에서 발사돼 7800파운드(약 3538kg)의 화물을 궤도상의 연구소에 전달할 예정이다. 케네디 센에서의 비행 전 잔여 실험은 음향 및 전자기 간섭 및 호환성 테스트, 우주선의 열 보호 시스템 작업 완료 및 최종 페이로드 통합 등이다. 드림 체이서는 길이 30피트(9.144m), 폭 15피트(4.572m)의 승강체 디자인의 우주선이다. 독특한 날개 디자인으로 화물을 지구 저궤도로 수송할 수 있으며, 나사의 우주왕복선처럼 활주로에 착륙하는 능력을 갖고 있다. 15피트짜리 슈팅 스타 모듈은 내부적으로 최대 7000파운드의 화물을 운반할 수 있으며 3개의 비 가압 외부 페이로드 마운트를 갖추고 있다. 부분적으로 재사용 가능한 운송 시스템은 지구 저궤도에서의 상업용 재공급 서비스를 확대하려는 나사 전략의 핵심 중 하나다. 이를 통해 우주정거장까지 최소 7회의 화물수송 임무를 수행할 예정이다. 향후 임무는 최장 75일간 지속되며, 최대 1만 1500파운드( 6804kg)의 화물을 운반할 수 있다. 드림 체이서 우주선은 재사용이 가능하고 최대 3500파운드(약 1587kg)의 화물을 지구로 가져올 수 있다. 다만 슈팅 스타 모듈은 재진입 중에 버려져 소각된다. 각 임무마다 최대 8500파운드(약 3855kg)의 쓰레기를 처리하게 된다. 미래 나사의 재보급 임무를 수행하기 위한 과정의 일환으로, 나사와 시에라·스페이스는 저궤도에 진입한 우주선을 실제로 테스트할 예정이다. 드림 체이서 테나시티는 우주정거장에 접근하면서 자세 제어, 병진 및 중지 기능을 입증하는 일련의 시연을 수행할 예정이다. 기동성 시연을 마치면 우주정거장 우주비행사들은 카나담2(Canadarm2) 로봇 팔을 사용해 우주선을 잡고 지구를 향한 포트에 도킹한다. 우주선은 궤도상의 실험실에 약 45일간 머무른 후 우주정거장에서 지구로 향해 케네디 우주 시설로 다시 돌아온다. 착륙 후 시에라 스페이스는 필요한 검사를 하기 위해 드림 체이서를 처리 시설로 되돌려 나머지 나사 화물을 하역하고 다음 임무를 준비하는 프로세스를 시작한다.
-
- IT/바이오
-
드림 체이서 우주선, 국제우주정거장 발사 앞두고 플로리다 도착…세계 첫 상업용 우주선
-
-
[먹을까? 말까?(16)] 탄산수에서 '영원한 유해 화학물질' 검출
- 미국에서 탄산수(스파클링 워터)에서 '영원한 유해 화학물질(PFAS)'이 검출된 것이 최근 재조명되면서 국민들에게 충격을 주고 있다. PFAS는 과불화합물(페르-플루오로알킬 및 퍼플루오로알킬 물질)의 총칭으로, 매우 강력한 탄소(C)-불소(F)결합이 포함돼 있어 자연에서는 시간이 흘러도 분해되지 않는다. 환경에서 분해되지 않고 오랫동안 지속돼 '영원한 화학물질' 또는 '영구 화학물질'로 불린다. 미국 언론에서는 탄산수에서 영원한 화학물질이 검출된 것이 약 3년 만에 재조명돼 파문이 일고 있다고 아파트먼트 테라피가 더 키친을 인용해 지난 20일(현지시간) 보도했다. 이 연구는 2020년 실시된 것으로, 당시 컨슈머 리포트(Consumer Reports)는 47개의 생수 병(탄산수 12개 포함)을 대상으로 페르-플루오로알킬 물질(PFAS) 함량을 조사했다. 미국 소비자들은 탄산수 대한 연구 결과가 최근 집중적으로 재조명되면서 혼란스러워하고 있다고 이 매체는 전했다. 연구에 따르면 폴란드 스프링과 토포 치코 등 일부 탄산수에서는 PFAS가 1ppt(parts per trillion·1조분율)~10ppt 수준이 검출됐다. 영원한 화학물질(PFAS)이란? 실제로 PFAS는 우리가 만지거나 섭취하는 거의 모든 것에 존재한다. 미국 환경보호청(EPA)에 따르면 PFAS는 물, 토양, 대기, 식품 등에서 검출될 수 있다. PFAS를 미량 함유하는 물질에는 식수, 식품 포장재, 소방용품(화재진압용 거품), 석휴화학 산업, 가정용 세제, 방수 제품과 더러움을 덜 타게하는 방오가공된 복장, 화장품 등 위생용품(샴푸, 치실 포함), 코팅 조리기구, PFAS에 오염된 물이나 가축에 노출된 생선, 유제품 등이 있다. 심지어 숨쉬는 공기에도 PFAS가 포함될 수 있다. 물, 기름, 열에 강한 특성을 지니고 있는 PFAS는 쓰레기 매립지, 하수처리 시설 등을 통해 자연환경으로 유출된다. 그로 인해 탄산수뿐만 아니라 지하수(식수 포함)에서도 PFAS가 검출될 수 있다. PFAS에 대한 우려는 이러한 화학 물질이 장기적인 건강에 미칠 수 있는 영향과 관련이 있다. 일부 연구에서는 PFAS와 암 위험 증가, 소아 발달 장애, 생식 문제, 면역 체계 및 호르몬, 콜레스테롤 수치 변화 등의 연관성을 제시하고 있다. 이러한 이유로 미국 바이든-해리스 정부는 최근 건강 권고 식수 기준치를 4ppt 이하로 규제하는 정책을 발표했다. 최근 PFAS가 특정 암과 질병 위험을 높이는 것으로 밝혀진 뒤 미국 환경보호청(EPA)은 식수에서 PFAS를 규제하기 위한 권고 기준을 발표했다. EPA는 2022년 6월 특정 PFAS에 대한 권고 기준치를 설정했으며 그중 과불화옥탄산(PFOA)과 과불화부탄산(PFOS)의 권고 기준을 극히 낮은 수준으로 제시했다. 이 기준은 건강 보호를 위한 권고 수준이며 법적 규제 수준은 아니다. EPA가 제시한 PFOA(Perflurooctanoic acid) 권고 기준은 0.004ppt, PFOS(Perfluorooctane sulfonate) 권고 기준은 0.02ppt이다. EPA는 PFAS에 대한 국가 음용수 기준(NPDWR)을 설정하는 절차를 진행중이다. 이는 법적 규제 기준으로 모든 공공 수돗물 시스템이 준수해야 한다. 아울러 PFAS의 확산을 모니터링하고 건강에 미치는 영향을 연구하는 프로그램을 운영하고 있다. PFAS에 대한 우려 PFAS와 만성 질환 위험 증가, 면역 체계 및 호르몬 장애와의 연관성을 제시하는 연구가 있지만, 연구는 아직 진행 중이다. 특히 탄산수와 같은 저농도 노출 시 건강에 미치는 영향에 대한 명확한 결론을 내리기에는 자료가 부족하다. 이번 컨슈머 리포트 연구는 환경 작업 그룹(EWG)의 기준을 따르고 있다. EWG는 1ppt 이상의 PFAS 섭취를 위험하다고 판단한다. 반면 미국 농무부(USDA) 기준은 70ppt이며, 70ppt 이하에서는 "건강상 악영향이 발생하지 않을 것"으로 예상했다. 유럽연합(EU)은 PFAS 자용 전면 제한을 추진 중이다. EU는 2024년 이후부터 위해성 평가위(RAC) 및 사회경제성 분석위(SEAC)에서 최종 평가의견을 결정하고, 2025년 유럽연합집행위원회에서 안건을 채택할 계획이다. 이후 이르면 2026년부터 사용 제한 조치를 적용할 예정이다. 탄산수 종류와 섭취시 주의사항 탄산수는 이산화탄소가 용해된 물을 말한다. 자연적으로 광천수에서 발생하거나 인공적으로 물에 이산화탄소를 주입해 만들 수도 있다. 탄산수의 특징으로는 시원하고 상쾌한 맛을 들 수 있다. 이산화탄소가 입안을 자극해 시원하고 상쾌한 느낌을 준다. 또한 위장 점막을 자극해 소화액 분비를 촉진하고 소화를 돕는다. 그밖에 혈관을 확장시켜 혈액 순환을 개선하며, 식욕을 억제하는 효과가 있다. 탄산수의 종류에는 인공적으로 이산화탄소를 주입한 물로 플레인 탄산수, 인공 감미료를 사용해 설탕 함유량을 낮춘 다이어트 탄산수, 퀴닌이라는 쓴맛 성분을 함유한 탄산수로 토닉 워터가 있다. 미네랄이 풍부한 광천수 탄산수는 '셀처 워터(Seltzer water)'라고 부른다. 일부 탄산수는 나트륨 함량이 높을 수 있으므로 고혈압 환자는 나트륨 함량이 낮은 제품을 선택하는 것이 좋다. 또한 일부 탄산수에는 카페인이 함유되어 있으므로 카페인에 민감한 사람은 카페인이 함유되지 않은 제품을 선택하는 것이 좋다.
-
- 생활경제
-
[먹을까? 말까?(16)] 탄산수에서 '영원한 유해 화학물질' 검출
-
-
[신소재 신기술(42)] 플라스틱 폐기물 90% 분해하는 혁신 기술
- 과학자들은 우리 시대 가장 심각한 환경 문제 중 하나인 플라스틱 오염을 해결하기 위한 독창적인 방법을 제시했다. 미국 캘리포니아 대학교 연구팀이 플라스틱을 먹는 매우 강한 포자가 함유된 플라스틱이 매립지에서 스스로 분해되는 기술을 개발했다고 네이처닷컴과 BBC, 뉴아틀라스 등 다수 외신이 집중 조명했다. 이 연구에서는 고온 용융 압출을 사용해 폴리머 분해 박테리아의 포자를 열가소성 폴리우레탄에 통합하는 바이오 복합재 제작을 시연했다. 플라스틱의 한 종류인 폴리우레탄은 강도와 탄성이 뛰어나 휴대폰 케이스부터 운동화까지 모든 제품에 사용되지만 재활용이 까다로워 주로 매립된다. 플라스틱에 첨가되는 박테리아의 종류는 식품 첨가물 및 프로바이오틱스로 널리 사용되는 고초균(枯草菌)으로 영문으로는 바실러스 서브틸리스(Bacillus subtilis)로 불린다. 고초균은 토양과 발효식품 등 다양한 환경에서 발견되는 세균이다. 또한 바실러스 서브틸리스 포자로 채워진 열가소성 폴리우레탄의 전반적인 인장 특성이 크게 개선되어 인성이 매우 향상됐다. 캘리포니아대학교 샌디에이고 라호야 캠퍼스의 김한솔 연구원은 "자연에서 플라스틱 오염을 완화할 수 있다는 희망이 있다"고 말했다. 공동 연구원 존 포코르스키는 "우리의 공정은 소재를 더욱 견고하게 만들어 플라스틱의 수명을 연장한다"고 말했다. 그는 "그리고 이 공정이 완료되면 폐기 방법에 관계없이 환경으로부터 플라스틱을 제거할 수 있다"고 설명했다. 포코르스키 연구원은 "이 플라스틱은 현재 실험실에서 연구 중이지만 제조업체의 도움을 받으면 몇 년 안에 실제 환경에 적용될 수 있을 것"이라고 덧붙였다. 플라스틱은 강하고 다양한 용도로 사용되는 소재지만, 이러한 장점은 폐기 처리를 어렵게 만드는 요인이기도 하다. 플라스틱은 분해되는 데 수십 년 또는 수백 년이 걸리기 때문에 엄청난 양의 플라스틱 쓰레기가 매립지와 바다를 오염시키고 있는 실정이다. 연구팀은 플라스틱에 플라스틱 분해 박테리아 포자를 넣어 매립지에 폐기될 때 활성화되도록 만들었다. 이를 통해 5개월 만에 플라스틱 물질의 90%가 생분해되는 것이 확인됐다. 게다가 '플라스틱 분해 박테리아 포자'를 넣은 플라스틱은 실제로 사용하는 동안 일반 플라스틱보다 더욱 견고하고 강했다. 최근 몇 년 동안 과학자들은 플라스틱을 분해하는 능력을 갖춘 박테리아를 발견하고, 이 과정을 담당하는 효소를 분리하여 효율성을 높였다. 이를 통해 효소와 박테리아로 플라스틱을 처리하는 더 효율적인 재활용 시설이 구축될 수 있다. 하지만 재활용 시설로 옮겨지지 않는 플라스틱은 어떻게 될까. 앞서 지적했듯이 열가소성 폴리우레탄(TPU)은 신발, 스포츠 용품, 휴대폰 케이스, 자동차 부품 등을 만드는데 일반적으로 사용되는 견고한 플라스틱 유형이지만 현재 재활용이 불가능하다. 연구팀은 TPU 폐기 처리를 위해 플라스틱 분해 박테리아 바실러스 서브틸리스의 포자를 플라스틱 자체에 직접 넣는 새로운 방법을 연구했다. 또한 연구팀은 포자를 넣은 플라스틱 제품이 너무 일찍 분해되지 않고, 정상적인 기간 동안 사용한 뒤 매립지나 자연 환경에서 폐기될 때만 생분해가 시작되도록 설계했다. 내열성 미생물로 온도 한계 극복 먼저 극복해야 할 문제는 플라스틱 제조에 사용되는 높은 온도였다. 플라스틱 가공시 사용되는 고온으로 인해 대부분의 박테리아 포자가 죽는다. 연구팀은 이를 극복하기 위해 내열성 미생물을 유전공학적으로 제작했으며, 플라스틱 가공 온도인 135°C(275°F)에서 변형된 박테리아의 96~100%가 생존하는 것을 확인했다. 변형되지 않은 박테리아의 경우 생존율은 겨우 20%에 불과했다. 다음으로 연구팀은 박테리아가 플라스틱을 얼마나 잘 분해하는지 테스트했다. 이 과정은 토양의 영양분과 수분에 의해 시작된다. 플라스틱 무게의 최대 1% 농도에서 박테리아는 퇴비에 묻힌 후 5개월 이내에 플라스틱 물질의 90% 이상을 분해했다. 이 새로운 플라스틱은 사용 중 강도가 약화될 것으로 추정했지만, 실제로는 그 반대 효과가 나타났다. 포자를 넣어 만든 플라스틱은 일반 폴리우레탄(TPU)보다 최대 37% 더 강하고 인장 강도가 최대 30% 더 높은 것으로 나타났다. 연구팀은 포자가 강화 충전재 역할을 하는 것으로 추정했다. 연구팀은 이 기술은 확장 가능성이 높으며, 사용 중 더욱 견고하고 강하면서 재활용이 불가능한 TPU를 폐기 처리하는 새로운 방법을 열 수 있다고 말했다. 이를 다른 몇 가지 방법과 함께 사용한다면 플라스틱 오염 문제 해결에 진전을 이룰 수 있을 것으로 보인다. 플라스틱의 약 80%가 재활용되지 않고 매립지나 자연 환경에 축적되고 있는 실정다. 또한 폴리우레탄(PU)은 세계에서 6번째로 많이 생산되는 플라스틱이지만 재활용을 위한 거버넌스는 없다. PU 폐기물은 수지 식별 코드의 카테고리 7(PETE, HDPE, PVC, LDPE, PP, PS 이외의 기타 플라스틱)에 따라 잠재적으로 수거될 수 있지만, 미국에서는 일반적으로 이 카테고리의 플라스틱 중 0.3%만이 재활용되고 있다. 플라스틱 분해 과정에 박테리아 포자를 결합시킨 것은 산업 공정에서 재생 가능한 폴리머 충전재로서 살아있는 세포를 도입할 수 있는 흥미로운 기회를 제공했다는 평가를 받고 있다. 연구진은 잠재적으로 확장 가능한 이 기술이 재활용할 수 없는 TPU를 폐기하는 새로운 방법을 제시하는 동시에 사용 중에 더 튼튼하고 강하게 만들 수 있다고 말했다. 이 기술을 다른 몇 가지 방법과 결합하면 플라스틱 오염 문제를 해결하는 데 어느 정도 진전을 이룰 수 있을 것으로 기대된다. 이 연구는 '네이처 커뮤니케이션스(Nature Communications)' 저널에 발표됐다.
-
- 포커스온
-
[신소재 신기술(42)] 플라스틱 폐기물 90% 분해하는 혁신 기술
-
-
왜 쓰레기를 화산에 던져서 태워버릴 수 없을까
- 쓰레기를 용암이 끓고 있는 화산에 던져서 태우지 않는 이유는 무엇일까. 화산의 용암이 일부 쓰레기를 태울 정도로 뜨거운 것은 사실이다. 지난 2018년 하와이 빅아일랜드에서 킬라우에아 화산이 폭발했을 때, 용암류는 섭씨 1100도 이상이었다. 이는 금성 표면보다 더 뜨거운 온도다. 암석을 충분히 녹일 정도로 높은 온도였다. 쓰레기를 태우는 폐기물 소각로의 온도가 섭씨 1000~1200도임을 감안하면, 화산의 용암류로도 쓰레기를 태울 수 있을 것이라는 짐작을 하게 된다. 그러나 야후 테크에 실린 정보에 따르면 실제는 그렇지 않다. 모든 화산 용암이 그렇게 높은 온도인 것은 아니다. 하와이에서의 킬라우에아 화산 폭발은 현무암이라고 불리는 일종의 용암을 생성한다. 현무암은 다른 화산에서 분출되는 용암보다 훨씬 뜨겁고 더 유동적이다. 워싱턴주의 세인트 헬렌스 산에서 분출한 화산 등 일반적인 화산의 경우 현무암보다 더 두꺼운 데이사이트 용암(석영안산암 화산암)이다. 세인트 헬렌스 산에서 2004~2008년까지 분출된 화산은 표면 온도가 섭씨 704도 미만의 용암 돔을 생성했다. 다시 말해 쓰레기를 완전히 태울 충분한 고온이 형성되지 않는다는 의미다. 온도 외에도, 화산에서 쓰레기를 태울 수 없는 이유가 몇 가지 더 있다. 첫 번째로, 섭씨 1100도 온도의 용암은 음식물 찌꺼기, 종이, 플라스틱, 유리 및 일부 금속 등을 녹일 수는 있지만, 강철, 니켈 등 특수한 일부 물질들은 녹이지 못한다. 둘째, 지구에는 쓰레기를 버릴 수 있는 용암 호수나 용암으로 가득 찬 그릇 모양의 분화구가 있는 화산이 많지 않다. 지구상에 있는 수천 개의 화산 중, 과학자들이 발견한 활화산 용암 호수는 남극의 킬라우에아, 에레부스 산, 콩고민주공화국의 니라공고 등을 포함해 8개에 불과하다. 대부분의 활화산은 세인트 헬렌스 산과 같이 바위와 냉각된 용암으로 채워진 분화구이거나 오레곤주의 크레이터 호수처럼 물로 채워진 분화구들이다. 세 번째는 활성 용암 호수라 해도 이곳에 쓰레기를 버리는 것은 매우 위험하다는 사실이다. 용암 호수는 냉각된 용암의 지각으로 덮여 있지만, 그 지각 바로 아래는 용암이 녹아 있어 온도가 매우 높다. 암석이나 다른 물질들이 용암 호수의 표면으로 떨어지면 지각이 깨지고, 밑에 있는 용암의 흐름을 방해해 폭발을 일으키게 된다. 2015년 킬라우에아에서 이런 사태가 일어났다. 분화구 가장자리의 암석 덩어리가 용암 호수로 떨어져 큰 폭발을 일으켰고, 암석과 용암이 분화구 위로 분출됐다. 사람이 용암 호수에 쓰레기를 버린다면 불타 오르는 쓰레기와 폭발하는 용암을 피해 도망치는 방법을 고안해야 할 것이다. 화산에 쓰레기 버리면 유독가스 방출 용암 호수에 쓰레기를 안전하게 버릴 수 있다고 가정한다면 어떻게 될까. 플라스틱, 쓰레기, 그리고 금속이 연소되면 많은 유독 가스가 방출된다. 화산은 이미 황, 염소, 그리고 이산화탄소 등 수많은 유독 가스를 배출하고 있다. 유황 가스는 ‘보그(vog)’라고 부르는 산성 안개를 생성한다. 이는 식물을 죽이고 근처에 거주하는 사람들에게 호흡기 질환을 일으킬 수 있다. 이처럼 위험한 화산 가스에 쓰레기를 태울 때 발생하는 다른 가스가 섞이면 화산 근처의 사람과 식물에 더욱 해로울 것이다. 마지막으로, 많은 원주민 공동체는 화산을 신성한 장소로 여긴다. 예를 들어, 킬라우에아에 있는 할레마우마우 분화구는 하와이 원주민이 섬기는 불의 여신 펠레의 고향으로 여겨지고 있으며, 분화구 주변은 하와이 원주민에게는 신성한 지역이다. 화산에 쓰레기를 버리는 것은 그들에게는 큰 모욕이 될 것이다.
-
- IT/바이오
-
왜 쓰레기를 화산에 던져서 태워버릴 수 없을까
-
-
[신소재 신기술(35)] 혁신적인 미사일 기술, 군사 기술·컴퓨터 파괴하지만 인명 피해는 최소화
- 군사 장비나 컴퓨터를 골라서 파괴하지만 사람은 죽이지 않고 인명 피해를 최소화하는 혁신적인 미사일 '챔프(CHAMP)'가 개발됐다. 챔프(CHAMP)는 대전자 고출력 마이크로웨이브 첨단 미사일 프로젝트(Counter-Electronics High Power Microwave Advanced Missile Project)의 약자로 미 공군 연구소에서 개발한 공동 개념 기술 실증 프로그램이다. 다시 말하면 CHAMP는 일종의 고출력 전자레인지인 '고출력 마이크로파 에너지 펄스' 이용해 컴퓨터를 파괴하기 위해 제작된 미사일이다. 미국 국방 전문 매체 포스 넷(Forces net)에 따르면 CHAMP 미사일의 목적은 사망자를 발생시키지 않고 적의 군사 능력을 사실상 쓸모없게 만드는 것이다. 즉, 이 프로젝트는 적의 전자 시스템을 무력화시키는 것이 목표다. CHAMP는 미 공군 연구소(Air Force Research Laboratory)에서 처음 개발한 후 보잉의 국방 및 보안 부문 첨단 프로토타입 제작 부문인 보잉의 팬텀 웍스(Phantom Works)가 제작한 것으로 알려졌다. 이 무기에 대해서는 알려진 바가 거의 없지만 공중 발사 순항 미사일에 장착되어 B-52 폭격기에 의해 전달되는 것으로 전해져 있다. CHAMP 미사일은 적 영공에 진입하면 낮게 유지되며 특정 목표를 겨냥하여 고출력 마이크로파 에너지 펄스를 방출해 중요한 전자 장비를 비활성화한다. 이러한 고출력 마이크로파 폭발로 손상을 입히지 않고 전자 장치를 튀겨버려 순식간에 컴퓨터를 마비시킬 수 있다. 미국이 이 무기를 어디에 배치하고 있는지, 누구와 기술을 공유했는지는 확실하지 않다. 간단히 설명하자면, CHAMP는 고출력 마이크로파 방출기를 장착한 미사일을 개발하는 프로젝트다. 이 미사일은 기존의 폭발물을 사용하지 않고도 적의 전자 시스템을 교란하거나 손상시키기 위해 발사할 수 있다. 또한 무인 시스템으로 설계되어 조종사가 탑승하지 않고도 발사 및 작동할 수 있다. 이란 당국자 두 명은 이 공격이 이스파한주 인근의 군사기지 내 S-300 대공 시스템을 타격했다고 밝혔다. 뉴욕타임스가 분석한 위성 이미지에 따르면, 이스라엘의 무기는 이스파한의 제8 셰카리 공군 기지에 위치한 S-300 대공 시스템의 레이더를 타격했다. 그에 앞서 이스라엘은 지난 13일 이란의 공격에 대응하여 그보다 적은 무기를 사용해 이란의 방어망을 우회하고 무력화시킬 수 있음을 보여줬다. NYT는 이스라엘의 이번 공격에 사용된 정확한 무기 유형이 어떤 것인지 불확실하다고 밝혔다. 다만 서방 당국자 세 명과 이란 당국자 두 명은 이스라엘이 여러 드론과 적어도 하나의 공대지 미사일을 사용했다고 전했다. 이에 반해, 이란 당국자들은 이번 공격이 소형 드론에 의한 것이었다고 주장했다.
-
- 포커스온
-
[신소재 신기술(35)] 혁신적인 미사일 기술, 군사 기술·컴퓨터 파괴하지만 인명 피해는 최소화
-
-
미세 플라스틱, 뇌에서도 발견
- 미세 플라스틱이 인간의 장기와 생쥐의 뇌에서도 검출됐다. 최근 실시된 두 개의 새로운 연구에서 미세 플라스틱이 인간의 장기와 심지어 생쥐의 뇌에까지 도달할 수 있다는 사실이 밝혀졌다고 폭스뉴스가 17일(현지시간) 보도했다. 지난 4월 10일 '환경 건강 관점(Environmental Health Perspectives)'에 발표된 연구 중 하나는 건강한 쥐에게 4~8주 동안 폴리스티렌 마이크로스피어(polystyrene microspheres)를 먹이는 실험이었다. 이후 과학자들은 쥐의 다양한 장기가 미세플라스틱에 오염된 것을 발견했다. 연구 결과 마이크로스피어를 섭취한 쥐의 경우 뇌, 간, 신장 등 멀리 떨어진 조직에서 폴리스티렌 마이크로스피어가 검출됐다. 논문에는 아울러 "또한 대장, 간, 뇌에서 발생한 대사적 차이에 대해 보고했는데, 이는 마이크로스피어 노출의 농도와 유형에 따라 다른 반응을 보였다"고 적었다. 미세 플라스틱 먹은 쥐, 담석 형성 가속화 지난 4월 5일 '위험 물질(Hazardous Materials)' 저널에 발표된 또 다른 연구에서는 인간과 쥐를 대상으로 실험했다. 연구팀은 50세 미만 환자의 담석(담낭에 있는 담즙이 굳어져 생긴 돌)에서 독성 물질이 훨씬 더 많이 검출된다는 사실을 발견했다. 미세 플라스틱을 먹인 후 실험에 참여한 쥐는 담석이 더 빠른 속도로 형성됐다. 논문은 "우리 연구는 인간 담석에 미세 플라스틱이 존재한다는 사실을 밝혀냈으며, 미세 플라스틱이 큰 콜레스테롤-미세 플라스틱 이종 응집체를 형성하고 장내 미생물을 변화시켜 담석증을 악화시킬 수 있다는 가능성을 보여주었다"라고 설명했다. 미세 플라스틱이 인간에게 미치는 영향은 현재 조사 중이며, 특히 대부분의 미국인이 평생 동안 미세 플라스틱에 노출되어 왔기 때문에 광범위한 우려를 불러일으키고 있다는 것. 자넷 네셰이왓 박사는 폭스 뉴스 디지털과의 인터뷰에서 미세 플라스틱은 "어디에나 존재한다"고 말했다. 네셰이왓 박사는 "우리는 무의식적으로 전례 없는 수준으로 미세 플라스틱을 섭취하고 흡입하고 있다"며 "특히 높은 수준의 미세 플라스틱은 신체에 염증을 일으킨다"라고 설명했다. 그녀는 "미세 플라스틱과 같은 이물질은 체내에 축적되어 정상적인 세포 기능을 방해하고 장기 손상을 증가시킬 수 있는 자극과 염증을 유발할 수 있다"고 덧붙였다. 네셰이왓은 미세 플라스틱이 어느 장기에 도달하느냐에 따라 유해한 영향이 뚜렷하게 나타난다고 말했다. 그러면서 미세 플라스틱 섭취를 줄이려면 플라스틱 제품 대신 유리 제품을 사용하고 미세 플라스틱 오염이 적은 식품을 선택할 것을 권장했다. 그녀는 "미세 플라스틱은 스트레스와 염증을 유발하고 간 기능을 손상시켜 간에 영향을 미칠 수 있다"면서 "뇌에서는 신경 염증을 일으키고 뇌 신호를 방해한다"라고 말했다. "비만·운동 부족이 건강에 더 해로워" 반면, 의학 기고가인 마크 시겔 박사는 폭스 뉴스에 미세 플라스틱이 인간에게 미치는 영향은 아직 알려지지 않았다고 말했다. 시겔 박사는 "이를 추적할 필요가 있지만, 세포 내 미세 플라스틱이 건강에 좋지 않은 결과를 초래한다는 직접적인 증거는 아직 없다"라면서 "더 많이 축적되면 잘못된 것으로 판명될 수 있으며, 화학물질 유출이나 오염된 물 또는 폐기물이 제대로 보관되지 않은 지역에서 발생하는 암 위험은 분명히 우려하고 있다"고 덧붙였다. 그는 "동시에 가장 큰 건강 위험은 좌식 생활, 비만, 치료되지 않은 고혈압, 수면 부족, 운동 부족에서 비롯된다"고 강조했다. 워싱턴 포스트는 다른 연구 결과를 인용해 미세 플라스틱이 암과 알츠하이머병 위험을 증가시키고 출산 문제를 유발할 수 있다고 보도했다. 또한 이러한 영향은 나이가 들면서 더욱 악화될 수도 있다는 전언이다. 또 다른 연구에 따르면 미세 플라스틱은 심장마비와 뇌졸중 발병에도 연관되어 있다고 한다. 미세 플라스틱과 더 작은 나노 플라스틱은 플라스틱으로 만든 물병이나 식품 용기 등이 시간이 지남에 따라 분해될 때 생성된다. 일반적인 미세 플라스틱 크기는 평균 177 x 117 ㎛(마이크로미터)이다. 1마이크로미터는 0.001밀리미터이다. 세계보건기구(WHO)에 따르면, 미세 플라스틱은 일반적으로 크기가 5mm 이하인 불용성 고체 고분자 입자를 말한다. 1㎛(마이크로미터) 이하의 입자는 일반적으로 미세 플라스틱이 아닌 '나노 플라스틱'으로 불린다. 매년 강과 바다로 800만톤의 플라스틱 폐기물이 유입되고 있다고 폭스 뉴스는 전했다. 미세 플라스틱의 양을 줄이는 가장 좋은 방법은 플라스틱 소비를 줄이는 것이다. 예를 들어 영국과 프랑스에서는 대부분의 패스트푸드와 테이크아웃 음식점에서 플라스틱 식기류의 사용을 금지했다. 인도는 2022년에 일회용 플라스틱 사용을 금지했다. 또한 일회용 수저나 플라스틱 빨대 등을 거절하면 쓰레기를 줄일 수 있다. 재활용품은 제대로 분류해서 버리고 업사이클링 제품을 사용하는 것도 플라스틱 오염을 줄일 수 있는 방법이다.
-
- IT/바이오
-
미세 플라스틱, 뇌에서도 발견
-
-
미 플로리다 주 주택에 우주 쓰레기 추정 물질 추락
- 미국 플로리다 주에 거주하는 알레한드로 오테로(Alejandro Otero)의 집에 의문의 물체가 떨어졌다. 이 물체는 지난달 플로리다 주 네이플스에 있는 알레한드로 오테로의 집 지붕과 이층 바닥을 뚫고 떨어져 그의 아들을 놀라게 했다고 과학 뉴스 전문 매체 라이브사이언스가 전했다. 이 정체불명의 물체는 국제우주정거장(ISS: the International Space Station)에서 나온 잔해일 가능성이 높은 것으로 점쳐지고 있다. 미 우주사령부도 우주 정거장에서 잔해 조각이 대기권에 진입했음을 기록했는데, 당시 이 물체는 멕시코만을 지나 플로리다 남서쪽을 향하고 있었다. 떨어진 물체는 원통형 튜브 형태로, 길이가 수 인치에 달하고 무게는 거의 2파운드(0.9kg)에 달했다. 이 물체의 출처는 아직 밝혀지지 않았지만, 오테로는 이 물체가 ISS에서 폐기한 방전된 배터리 9개 중 하나일 가능성이 있다고 생각하고 있다. 우주사령부가 포착한 것과 같은 시각, 배터리를 실은 일본 우주국 JAXA 소속의 대형 화물 팔레트가 멕시코 만 상공에서 플로리다 대기권으로 다시 진입했던 것이다. 지난 2021년 우주정거장에서 버려진 잔해는 대기권에서 소각될 것으로 예상됐지만, 그 잔해 중 하나가 재진입하여 떨어졌을 수도 있다. 오테로는 집을 파괴한 잔해를 나사(NASA) 관계자에게 인도했다. 나사 대변인 조슈아 핀치(Joshua Finch)는 라이브사이언스와의 인터뷰에서 "나사는 주택 소유자 오테로와 협력해 물체를 수거했으며, 가능한 한 빨리 플로리다에 있는 나사의 케네디 우주 센터에서 물체를 분석하여 그 출처를 확인할 것"이라고 말했다. 엔지니어가 물체의 출처를 확인하면 오테로는 미 정부를 상대로 집 수리 비용을 청구할 계획이다. 하지만 해당 물체가 JAXA에서 나온 것으로 간주되는 경우 이 프로세스는 복잡할 수 있다. 이 우주 쓰레기는 지구로 돌아올 예정이었던 화물 팔레트에 부착된 ISS의 고갈된 배터리로 구성됐다. 그러나 일련의 사정으로 인해 이 화물 팔레트가 지구로 돌아갈 수 없게 되자 나사는 무유도 재진입을 위해 2021년에 우주정거장에서 배터리를 버렸다. 미시시피 대학 항공우주법 센터의 전무이사인 마이클 핸런에 따르면 물체가 나사 소유인 경우 오테로 또는 그가 가입한 보험 회사는 연방 불법 행위 청구법에 따라 연방 정부를 상대로 청구를 제기할 수 있다. 그러나 문제 발생 소지는 있다. 배터리는 나사 소유였지만 일본 우주국이 발사한 팔레트 구조에 부착됐다. 오테로의 집에 피해를 입힌 폐기물이 다른 나라에서 발사된 것이라면 미국은 면책되고, 발사한 나라가 피해에 대해 전적으로 책임을 져야 하는 상황이 된다는 것이다. 떨어지는 우주 쓰레기로 피해를 입은 곳은 플로리다만은 아니다. 지난 2020년에서 2022년 사이에 중국의 창정 5B 부스터중 4대가 지구에 떨어져 코트디부아르, 보르네오, 인도양으로 잔해가 쏟아졌다. 2021년과 2022년에는 스페이스X 로켓에서 떨어져 나온 잔해가 워싱턴 주의 한 농장을 덮쳤고 호주의 양 농장에도 떨어졌다. 전 세계 우주국에서는 3만 개가 넘는 쓰레기 조각들을 감시하고 있지만, 모니터링할 수 없을 정도의 수많은 작은 파편 조각이 훨씬 더 많아 골치를 앓고 있다. 과학자들은 그물에 쓰레기를 모으는 것과 같이 지구의 하늘을 정리하는 여러 가지 방법을 제안했다. 발톱 로봇으로 수집하거나, 또는 다른 우주선에서 0.8km 길이의 밧줄을 발사하여 수거하는 방법 등이 있다.
-
- IT/바이오
-
미 플로리다 주 주택에 우주 쓰레기 추정 물질 추락
-
-
매립지 메탄가스, 지구 온난화의 원인
- 매립지에 쌓이는 쓰레기는 단지 눈에 거슬리는 존재를 넘어선다. 지구를 온난화시키는 엄청난 양의 메탄가스를 배출하는 기후의 악몽이기도 하다. 미국 전역 수백 곳의 매립지에서 메탄 오염을 측정한 새로운 연구에 따르면, 문제가 이전에 생각했던 것보다 훨씬 더 심각하다고 사이언스 온라인판이 전했다. 이 소식은 CNN 등 주요 매체에도 비중 있게 보도됐다. 과학자들은 2018~2022년까지 18개 주에 걸쳐 200개 이상의 매립지를 항공 조사했다. 이는 미국 매립지에 대한 측정 조사 중 최대 규모이다. 사이언스 저널에 발표된 연구에 따르면, 조사 결과 평균 메탄 배출량이 공식적으로 보고된 것보다 훨씬 높은 것으로 나타났다. 눈에 보이지 않고 냄새가 없는 가스인 메탄은 이산화탄소에 비해 대기중에 머무는 시간이 짧지만 80배 이상의 온난화 효과를 지니며, 다양한 부문에서 생산된다. 그 중 가장 큰 부문은 석유, 가스, 농업이다. 매립지는 잘 알려지지 않은 메탄 발생원인이지만, 전 세계 메탄 배출량의 약 20%를 차지해 큰 영향을 미친다. 매립지는 음식물 쓰레기, 종이, 목재 등의 유기 폐기물을 산소 없이 분해하면서 메탄을 생성하는 박테리아가 살기에 완벽한 환경을 조성한다. 미국의 대부분의 매립지는 연방 정부에서 휴대용 센서를 사용한 보행 조사를 통해 1년에 4회 메탄 배출량을 측정하도록 규정하고 있다. 연구에 따르면 보행자들은 가파른 경사면이나 쓰레기가 자주 버려지는 곳 등 안전하지 않은 지역을 피하는 경향이 있기 때문에 조사의 정확성을 기하기 어렵고 결과도 다르다. 연구를 담당한 비영리 기관 카본매퍼(Carbon Mapper)의 과학자인 다니엘 커스워스(Daniel Cusworth)는 "보행에 의한 측정은 정확하지 않고 단지 메탄 발생의 핫스팟을 감지하는 것일 뿐”이라고 지적한다. 따라서 매립지 메탄 배출량 추정은 직접 측정보다는 모델을 기반으로 하는 경향이 있으며 이는 데이터에 격차가 있음을 의미한다. 보고서는 항공기, 드론, 위성 등의 원격 감지를 사용하는 고급 모니터링 시스템이 보다 정확하고 포괄적인 상황을 제공할 수 있다고 주장한다. 과학자들은 공중 영상 분광계를 사용하여 측정한 매립지의 52%에서 대량의 메탄 방생을 발견했다. 보고서는 이는 석유 및 가스 부문에 대해 수행된 항공 연구의 메탄 검출 비율을 훨씬 초과한다고 지적한다. 분석 결과는 환경보호국의 온실가스 보고 프로그램(GHGRP)과 같은 현재의 보고 시스템에 메탄 발생원이 대거 누락되어 있음을 보여준다고 연구팀은 지적했다. 보고서는 매립지의 평균 메탄 배출량은 GHGRP에 보고된 것보다 1.4배 더 높았다고 밝혔다. 또한 매립지 메탄 배출이 일반적으로 석유 및 가스 생산으로 인한 배출보다 훨씬 지속적이며 60%가 수개월, 심지어 수년 동안 지속된다는 사실도 발견했다. 스탠포드대학의 환경과학 교수 롭 잭슨(Rob Jackson)은 CNN과의 인터뷰에서 매립지가 ‘슈퍼 메탄 방출자’라며 "항공 데이터는 우리가 수십 년 동안 지적해 왔던 사실을 입증한다"고 말했다. 매립 문제가 조만간 사라질 것 같지는 않다. 커스워스는 “화석연료에 의존하지 않는 미래에도 인간이 버리는 폐기물은 계속 발생할 가능성이 높다. 더 깨끗한 연료로 전환하더라도 우리는 여전히 폐기물 관리 문제를 다룰 것”이라고 말했다. 과학자들은 메탄의 급격한 감소가 기후 변화를 늦추는 가장 효과적인 방법 중 하나라고 말한다. 그러나 미국의 대부분의 메탄 정책은 석유 및 가스 산업을 대상으로 한다. 커스워스는 "기후 목표를 달성하려면 석유와 가스만으로는 메탄 배출량을 줄일 수 없으며, 매립지는 석유나 가스와 마찬가지로 주목을 받아야 한다"라고 주장했다.
-
- IT/바이오
-
매립지 메탄가스, 지구 온난화의 원인
-
-
[신소재 신기술(13)] 암치료용 새로운 AI 개발
- 미국 메이요 클리닉의 연구원들이 암 치료를 위해 새로운 인공지능(AI) 알고리즘을 개발했다. 메디컬 익스프레스는 지난 12일(현지시간) 메이요 클리닉 연구원들은 메이요 클리닉 연구원들이 기존 AI 모델이 주로 사용하는 데이터 학습 방식을 넘어서는 '가설 기반 AI'라는 독창적인 인공지능 알고리즘을 개발했다고 보도했다. 이번 연구는 학술지 캔서(Cancers)에 게재됐다. 이 혁신적인 AI는 암과 같은 복잡한 질병의 원인을 파악하고 치료 전략을 개선하는 데 사용될 수 있는 새로운 접근 방식을 제공한다. 메이요 클리닉의 시스템 생물학 및 분자 약리학, 실험 치료학 부서에서 AI 연구를 담당하는 수석 저자이자 공동 개발자인 후 리(Hu Li) 박사는 이 AI가 과학적 질문에 답하고, 질병을 더 깊이 이해하며, 개인화된 의학을 지원하기 위해 설계된 표적 정보 기반 알고리즘이라고 밝혔다. 리 박사는 이 기술이 기존 AI에서 간과되었던 중요한 통찰을 발견할 가능성이 있다고 강조했다. 기존 AI는 주로 얼굴 인식, 임상 진단 이미지 분류와 같은 분류 및 인식 작업에 활용되어 왔으며, 사람처럼 텍스트를 생성하는 등의 생성 작업에도 점점 더 많이 쓰이고 있다. 하지만, 연구팀은 기존 학습 알고리즘이 과학적 지식이나 가설을 충분히 통합하지 못한다고 지적했다. 이는 AI가 편향되지 않은 대규모 데이터 세트에 과도하게 의존하게 만들고, 그런 데이터 세트를 구하는 것이 어려울 수도 있기 때문이다. 특히, 리 박사는 이러한 제약이 의학과 같이 새로운 지식을 발견해야 하는 분야에서 AI의 활용도와 유연성을 크게 제한한다고 밝혔다. 이는 AI 기술의 발전 방향에 대해 중요한 고려사항을 제시한다. AI는 암 연구와 같이 방대하고 복잡한 데이터 세트에서 패턴을 찾아내는 데 매우 유용한 도구다. 이러한 경우에서 기존 AI 사용의 주요 목표는 해당 데이터 세트의 정보를 최대한 활용하는 것이다. 리 박사는 기존 지식과 가설을 통합하지 못하는 것이 문제가 될 수 있다고 지적했다. 그는 "AI 모델이 연구자와 임상의의 신중한 설계 없이 결과를 도출할 수 있으며, 이런 접근 방식을 '쓰레기 속의 쓰레기' 문제라고 부른다"고 밝혔다. 그러므로, 그는 과학적 질문에 대한 안내 없이는 AI가 덜 효과적인 분석을 제공하고, 테스트 가능한 가설을 형성하며, 의학 발전에 기여할 수 있는 중요한 통찰을 놓칠 수 있다고 설명했다. 이러한 관점은 AI의 효율성과 유용성을 극대화하기 위한 설계와 개발 과정에서 고려해야 할 핵심 요소다. ‘가설 기반 AI’를 통해 연구자들은 알려진 병원성 유전자 변종과 암의 특정 유전자 간의 상호작용을 학습 알고리즘 설계에 통합하는 등 질병에 대한 이해를 통합하는 방법을 모색할 수 있다. 이를 통해 연구자와 임상의는 어떤 구성 요소가 모델 성능에 기여하는지 파악하여 해석 가능성을 높일 수 있다. 또한, 이 전략은 데이터 세트 문제를 해결하고 열린 과학적 질문에 대한 집중을 촉진할 수 있다. 메이요 클리닉의 면역학과 교수인 다니엘 빌라도(Daniel Billadeau) 박사는 "이 새로운 종류의 AI는 암과 면역 체계 간의 상호작용을 더 잘 이해할 수 있는 새로운 길을 열었으며, 의학적 가설을 테스트할 뿐만 아니라 환자가 면역 요법에 어떻게 반응할지 예측하고 설명하는 데 큰 가능성을 제시한다"고 말했다. 빌라도 박사는 이 연구의 공동 저자이자 공동 발명가이며 암 면역학에 오랫동안 관심을 가지고 연구해 왔다. 연구팀은 가설 기반 AI가 종양 분류, 환자 계층화, 암 유전자 발견, 약물 반응 예측, 종양 공간 조직 등 모든 종류의 암 연구 애플리케이션에 활용될 수 있다고 말했다. 기계 기반 추론은 과학자들이 가설 및 생물학적, 의학적 지식을 학습 알고리즘 설계에 통합함으로써 가설을 시험하고 검증하는 데 중요한 역할을 한다. 리 박사는 이러한 유형의 알고리즘 개발이 전문성과 깊은 지식을 요구하기 때문에 접근성이 제한될 수 있다는 단점을 지적했다. 그는 또한 편향의 가능성에 대해 경고하며, 연구자들이 다양한 정보를 적용할 때 이를 신중히 고려해야 한다고 조언했다. 이 방법은 일반적으로 범위가 제한적이며 모든 가능한 시나리오를 포괄하지 못할 수 있기 때문에, 예상치 못한 중요한 관계를 간과할 위험이 있다. 리 박사는 "그럼에도 불구하고 가설 기반 AI는 인간 전문가와 AI 간의 활발한 상호 작용을 촉진하여 AI가 일부 전문직 일자리를 대체할 것이라는 우려를 완화해준다"고 말했다. 이러한 상호작용은 AI의 발전과 활용에 있어 인간의 역할이 여전히 중요함을 강조한다. 가설 기반 AI는 아직 초기 단계이기 때문에 편향을 최소화하고 해석을 향상시키기 위해 어떻게 지식과 생물학적 정보를 최적으로 통합할 수 있는지와 같은 중요한 질문들이 남아 있다. 리 박사는 이러한 과제에도 불구하고 가설 기반 AI는 한 걸음 더 나아간 것이라고 평가했다. 리 박사는 이런 도전에도 불구하고, 가설 기반 AI가 의미 있는 진전을 이루었다고 평가했다. 그는 이 기술이 더 깊은 이해와 개선된 치료 방법을 가능하게 하여 의학 연구를 크게 앞당길 수 있으며, 결국 환자들에게 보다 나은 치료 옵션을 제공하는 새로운 방향을 제시할 수 있다고 말했다.
-
- 포커스온
-
[신소재 신기술(13)] 암치료용 새로운 AI 개발
-
-
'바이오플라스틱' 환경 문제의 해답인가, 새로운 문제의 시작인가?
- 생분해성 혹은 식물 기반의 바이오 플라스틱은 급성장하고 있지만 여전히 기후 및 화학 물질에 대한 우려가 제기됐다. 환경건강뉴스(EHN)은 지난 11일(현지시간) 바이오 플라스틱은 미국 멕시칸 푸드 프랜차이즈 치폴레의 퇴비화 가능한 부리또 그릇부터 코카콜라의 식물성 병, 슈퍼마켓의 불투명한 농산물 봉투에 이르기까지, 식품 산업 전반에 걸쳐 확산되고 있다며 이같이 보도했다. 바이오 플라스틱은 그 외에도 자동차 쿠션, 전자제품, 의류, 건축 자재 등에도 사용되고 있다. EHN에서 소개한 바이오 플라스틱의 정의와 장점과 단점을 다음과 같이 정리했다. 전 세계 바이오 플라스틱 산업은 2023년 87억 달러(약 11조 4031억원)에서 2030년 310억 달러(약 40조 6317억 원)로 급성장세를 보이고 있다. 이는 전통적인 플라스틱 산업보다 빠른 성장률이다. 바이오 플라스틱은 전체 플라스틱 시장의 1%에 불과하지만, 일각에서는 바이오 플라스틱이 플라스틱의 지속 가능한 미래라고 선전하고 있다. 오는 4월, 플라스틱 오염 문제에 대한 해결책을 모색하기 위해 개최되는 국제 조약 회담을 앞두고 있는 대표단 중 일부는 바이오 플라스틱을 조약의 대안 및 대체품으로 포함시키려는 움직임을 보이고 있다. 유럽 바이오플라스틱 협회는 웹사이트에서 "바이오플라스틱이 플라스틱의 진화를 주도하고 있다"고 주장하며 바이오플라스틱의 장점으로 기존 플라스틱에 비해 '탄소 중립성'과 특정 조건에서의 생분해성을 꼽았다. 그러나 바이오 플라스틱이 분해 속도가 빠르고, 더 안전한 소재일 뿐만 아니라 탄소 발자국이 적다는 주장은 과장된 면이 있다. 전문가들은 바이오 플라스틱이 다양한 해결책 중 하나가 될 잠재력을 가지고 있음을 인정하면서도, 제품의 수명 종료 시 관리 및 화학적 안전성을 설계에 포함시키고, 기업의 그린워싱을 방지할 수 있는 더 강력한 표준과 규제의 필요성을 강조했다. 그린워싱(Greenwashing)은 기업이나 조직이 자신들의 제품, 서비스, 정책이 환경에 미치는 영향이 실제보다 훨씬 친환경적이거나 지속 가능하다는 인상을 주기 위해 마케팅 전략이나 홍보 활동을 하는 행위를 말한다. 이러한 행위는 대중에게 오해를 불러일으키거나 잘못된 정보를 제공하여, 실제로는 환경에 해를 끼칠 수 있는 제품이나 서비스를 친환경적인 것처럼 포장하는 것을 포함할 수 있다. 바이오 플라스틱 폐기물 규제 없어 노르웨이 과학기술연구소의 마틴 와그너 생물학 부교수는 바이오 기반 플라스틱을 안전한 방법으로 제조할 수 있다면, 물론 이는 매우 큰 전제이지만, 우려되는 화학 물질을 배제하고, 나노 및 미세 플라스틱의 생성을 최소화하는 방식으로 생산될 경우, 바이오 기반 플라스틱이 해결책의 한 부분이 될 수 있다고 말했다. 와그너의 연구에 따르면, 환경에 우호적인 것으로 여겨지는 퇴비화 가능한 그릇과 식물 기반 음료수 병이 전통적 플라스틱 제품에서 발견되는 것과 같은 수준의 건강에 해로운 화학 물질을 방출할 수 있다는 사실이 밝혀졌다. 또한, 생분해성 바이오 플라스틱이 플라스틱 쓰레기 문제를 근본적으로 해결하지 못한다는 지적도 있다. 바이오 플라스틱은 사용 후 적절한 관리가 필요함에도 불구하고, 바이오 플라스틱 폐기물을 산업적으로 퇴비화하거나 안전하게 관리할 수 있는 인프라나 규정이 아직 충분히 마련되지 않았다. 그로 인해 과학자들과 플라스틱을 지지하는 이들은 플라스틱 사용을 줄이는 것이 플라스틱 위기에 대응하는 가장 핵심적인 해법이라고 강조했다. 특히, 일회용 바이오플라스틱의 사용이 문제를 야기한다고 우려를 표명했다. 플라스틱 재사용을 지지하는 단체인 업스트림(Upstream)의 전무이사 크리스탈 드리스바흐 전무이사는 "지구에서 자원을 수십억 번 채취하고 제조해 단 한 번 사용한 뒤 버리는 행위 자체가 문제의 본질이다"라고 말함으로써, 지속 가능성에 대한 근본적인 접근 필요성을 강조했다. 바이오 플라스틱의 오해 바이오 플라스틱은 생분해성 또는 바이오 기반과 같은 용어가 명확하지 않아 많은 오해를 불러일으킨다는 지적이 있다. 해양 생물학 교수이자 플리머스 대학교 해양 연구소의 리처드 톰슨 소장은 "냉소적인 시각으로 보면 바이오플라스틱은 혼란을 일으키기 위해 의도적으로 만들어진 용어라고 생각한다"고 꼬집었다. 많은 사람들이 모든 바이오 플라스틱이 환경에서 생분해되거나 분해된다고 잘못 알고 있다는 지적이다. 또한 많은 사람들이 바이오 플라스틱이 식물 기반이라고 생각하지만, 폴리부틸렌 아디페이트 테레프탈레이트(PBAT)와 같이 화석 연료로만 만들어진 제품도 있다. 업계에서는 PBAT와 같은 물질을 바이오 플라스틱이라고 부르는데, 이는 화학 결합의 유형과 환경 조건에 따라 식물 기반 바이오 플라스틱과 마찬가지로 분해되도록 설계됐기 때문이다. 또한 업계에서는 바이오 플라스틱을 주로 생분해성 플라스틱과 비생분해성 플라스틱으로 나누며, 이들 각각의 범주 안에서 식물 기반 플라스틱과 화석 연료 기반 플라스틱을 동일한 그룹으로 분류하는 경향이 있다. 전 세계적으로 생산되는 플라스틱은 대체로 이 두 범주로 구분된다. 퇴비화 가능한 바이오 플라스틱은 업계 표준에 따라 산업 퇴비화 시설에서 12주 이내에 완전히 분해될 수 있는 생분해성 바이오플라스틱의 특정 부류에 속한다. 다른 한편으로, 비생분해성 바이오 플라스틱에는 사탕수수, 사탕무, 당밀, 또는 옥수수 등에서 추출된 바이오 기반의 폴리에틸렌(바이오-PE), 바이오 기반 폴리에틸렌 테레프탈레이트(바이오-PET), 폴리아미드(나일론) 등이 포함된다. 이 바이오 플라스틱들은 사탕수수 등 천연 자원에서 추출되었음에도 불구하고, 기존의 화석 연료 기반 플라스틱과 유사한 기능성을 제공하도록 설계됐다. 가장 흔히 사용되는 생분해성 바이오플라스틱 중 하나는 폴리락트산(PLA)으로, 옥수수와 같은 전분 기반의 폴리에스테르로 제조된다. 또한, 셀룰로오스 기반의 바이오 플라스틱 섬유도 이 범주에 포함되며, 농업 부산물, 해조류, 효모, 박테리아에서 추출한 폴리하이드록시알카노에이트(PHA)와 폴리부틸렌숙신산염(PBS)으로 제작된 바이오플라스틱도 동일한 범주 안에 속한다. '3세대' 바이오플라스틱은 농업 폐기물, 음식물 쓰레기, 다시마, 스위치그래스, 폐유, 박테리아, 목재 폐기물 등 다양한 원료를 활용하여 제작되며, 식량 작물을 사용하지 않기 때문에 보다 지속 가능한 대안으로 간주된다. 이러한 3세대 바이오플라스틱 제품들은 이미 시장에 출시되어 있지만, PLA나 바이오 폴리아미드를 사용한 제품들의 규모에는 아직 미치지 못하고 있다. 바이오 플라스틱 사용 용도는? 플라스틱 산업 협회의 지속 가능성 담당 매니저 헤더 노츠는 일회용 바이오 플라스틱 음료 용기, 퇴비화 가능한 식품 서비스 용기, 소매 포장, 그리고 기타 식품 산업 관련 제품이 바이오 플라스틱 사용의 약 43%를 차지한다고 말했다. 그중에서도 PLA와 바이오 PET의 사용이 가장 많다. 노츠에 따르면, 생분해성 멀치 필름 및 기타 농업용 제품이 주로 PLA와 PHA로 제조되어 전체 바이오 플라스틱 사용량의 약 21%를 차지한다. 또한, 안경, 섬유, 컵, 아이폰 케이스, 커피 포드 등의 소비재들은 전체 사용량의 13%를 차지하며, 이들 제품은 생분해성 및 비생분해성 다양한 바이오 플라스틱으로 제작된다. 자동차 산업도 바이오 플라스틱의 또 다른 중요한 소비자 군이다. 자동차 쿠션, 대시보드, 범퍼, 배터리 커버 및 기타 부품들이 점점 더 바이오 기반의 폴리아미드 및 바이오 PP로 제작되고 있다. 바이오 플라스틱의 사용은 또한 건축 및 건설, 전자, 코팅 산업에서도 확장되고 있지만, 상대적으로 더 적은 비율을 차지한다. 대규모 바이오 플라스틱 제조업체들은 대부분 화석 연료 기반 플라스틱을 생산하는 대형 석유화학 회사의 내부 사업부이거나, 이러한 대기업에서 독립한 분사 회사들이다. 그럼에도 불구하고, 어떤 회사가 시장에서 선도적인 위치를 차지하고 있는지에 대해서는 재무 분석가들 사이에 의견이 분분하다. 예를 들어, 인사이더 몽키는 바이오 플라스틱 부문이 전체 시가총액에서 차지하는 비중이 비록 작지만, 전체 시가총액 기준으로 BASF SE, 다우, 라이온델바젤 인더스트리, LG화학, 셀라니즈를 상위 5대 제조업체로 지목했다. 반면, 다른 분석가들은 석유화학 기업에 인수되었거나, 석유화학 기업과의 합작 투자를 통해 성장한 기업들을 시장의 선두 주자로 보는 경향이 있다. 이러한 기업으로는 네덜란드 암스테르담에 본사를 둔 다국적 식품 및 바이오케미컬 기업 코비온(Corbion), 영국 옥스퍼드에 본사를 둔 바이오플라스틱 생산 및 개발회사 바이옴 바이오플라스틱(Biome Bioplastics), 텐마크 코펜하겐의 플랜틱(Plantic), 미국 미시건 주의 네이처웍스(NatureWorks), 태국 방콕에 본사를 둔 바이오플라스틱 및 바이오케미컬 회사 PTT MCC바이오케미(PTT MCC Biochem) 등이 포함된다. 환경과 건강에 미치는 영향 바이오플라스틱은 전통적인 플라스틱과 유사한 제조 공정을 거쳐 생산된다. 이 폴리머는 최소한 부분적으로 식물 재료에서 추출한 화학 물질을 기반으로 하며, 때로는 화석 연료에서 완전히 추출한 화학 물질로 구성된다. 제품의 유연성, 내구성, 색상 및 기타 특성을 조정하기 위해 다양한 화학적 충전재, 첨가제 및 염료가 첨가된다. 세계자연기금(WWF)의 플라스틱 폐기물 및 사업 책임자인 에린 사이먼 부사장은 바이오 플라스틱이 여전히 독성 화학 물질을 포함할 수 있다고 말했다. 사이먼은 “PET를 제조할 때, 오래된 탄소 또는 새로운 탄소를 사용하더라도, 궁극적으로 같은 제품을 만들기 때문에 많은 가공 화학 물질이 여전히 필요하다”며, 바이오 플라스틱 생산 과정에서도 화학 물질의 사용이 불가피함을 지적했다. 와그너의 2020년 연구에 따르면 PLA, PBAT, PHA, PBS, 바이오 PE 및 바이오 PET로 만든 43개의 일상적인 바이오 플라스틱 제품이 기존 제품과 마찬가지로 독성이 있는 것으로 나타났다. 이 중 3분의 2가 환경 내 다양한 생명체에 유해할 가능성이 있는 것으로 나타났으며, 42%는 DNA 손상을 유발할 수 있는 자유 라디칼을 생성하는 화학물질의 존재로 인해 산화 스트레스를 일으키는 것으로 조사됐다. 또한, 4분의 1의 샘플에서는 호르몬 교란 특성이 관찰됐다. 분석된 개별 바이오 플라스틱 샘플에는 평균적으로 1000개에서 최대 2만965개에 이르는 다양한 화학적 특성이 포함되어 있었다. 연구를 주도한 와그너는 "이런 종류의 연구를 진행하면서 가장 충격적인 발견은 개별적인 플라스틱 제품에 엄청나게 많은 화학 물질이 존재한다는 사실이었다"고 말했다. 이 연구 과정에서 발견된 다수의 화학 물질들 중 상당수는 특정되지 않았지만, 와그너는 프탈레이트 같은 '자주 지목되는 화학물질들'은 검출되지 않았다고 말했다. 그는 "바이오플라스틱을 기능적으로 제조하는 데 쓰이는 화학물질들에 대한 우리의 이해가 상당히 제한적임을 발견했다. 폴리머의 화학 구조가 다르기 때문에, 사용되는 첨가제 역시 다를 가능성이 있다"고 밝혔다. 바이오 플라스틱과 기후 변화 바이오플라스틱을 옹호하는 주요 주장 중 하나는 이들이 이론상으로 재생 가능한 자원에서 탄소를 추출할 때 순 이산화탄소 배출량이 증가하지 않으므로, 전체 수명주기 동안 전통적 플라스틱에 비해 훨씬 적은 온실가스를 배출한다는 것이다. 예컨대, 유럽 바이오플라스틱 협회는 전 세계적으로 화석 연료 기반의 폴리에틸렌 수요를 바이오 PE로 대체할 경우, 연간 약 8000만 톤의 이산화탄소 배출을 절감하여 마치 매년 2000만 번의 항공 여행을 줄인 것과 동등한 효과를 가져올 수 있다고 주장한다. 2017년 진행된 연구에서는 미국 내 기존 플라스틱을 옥수수 기반의 PLA로 대체할 경우, 미국 플라스틱 산업에서 발생하는 온실가스 배출량을 25% 감소시킬 수 있을 것으로 추정했다. 이 연구는 또한 화학 산업이 재생 가능 에너지 및 스위치그래스와 같은 더 지속 가능한 원료로 전환함으로써 더 큰 탄소 배출 감소 효과를 달성할 수 있다고 제시했다. 앞서 설명했듯이 바이오 플라스틱 샘플에는 평균적으로 1,000개에서 최대 2만965개에 이르는 다양한 화학적 특성이 포함되어 있음이 밝혀졌다. 드레이스바흐는 세라믹, 스테인리스 스틸, 유리로 만든 재사용 가능한 용기는 수명 기간 동안 일회용 바이오 플라스틱보다 이산화탄소 배출량이 3~10배 적다고 말했다. 하지만 바이오플라스틱이 가져올 수 있는 이산화탄소 절감의 잠재적 이점은, 비료와 살충제의 사용 증가, 그리고 옥수수나 사탕수수 같은 원료의 생산을 위한 토지 개간과 산림 태우기로 인해 일부 상쇄될 수 있다. 또한, 생분해성 플라스틱이 매립지에 매립될 경우, 분해 과정에서 메탄 같은 강력한 온실가스가 배출되어 환경에 또 다른 부담을 줄 수 있다. 바이오 플라스틱 폐기물 규정은? 생분해성 바이오플라스틱의 폐기물 관리는 생분해성을 정의하는 명확한 규정이 부재하기 때문에 복잡한 과제로 남아있다. 업계 자발적 기준에 따르면, 생분해성 제품은 대부분 6개월 이내에 자연적으로 분해되어야 하지만, 생분해성이라고 표시된 일부 제품은 완전히 분해되기까지 수년이 걸릴 수 있다. 예를 들어, 한 연구에 따르면 토양에 묻힌 생분해성 비닐봉지가 3년 후에도 여전히 분해되지 않은 채 발견됐다. 이러한 물질이 퇴비 시설에 매립되면 오염 물질이 되어 걸러내야 한다. 톰슨에 따르면, 재활용 시설에서도 이런 종류의 폐기물은 전체 재활용 플라스틱의 품질을 저하시킬 수 있어 기피 대상이다. 게다가 많은 지역에서는 산업 퇴비화 시설이나 도로변 수거 시설이 부족해, 퇴비화 가능한 포장재와 운반 용기가 결국 매립지나 소각장으로 향하는 경우가 많다. 퇴비화되지 않는 플라스틱이 퇴비화 가능한 플라스틱으로 잘못 인식되는 경우가 빈번하여, 라벨링이 명확하지 않을 때 혼란이 가중된다. 미국 퇴비화 위원회의 린다 노리스-월트 부국장은 이러한 문제를 “그린워싱, 모조품, 짝퉁”이라고 지칭했다. 다수의 퇴비화 업체들이 이러한 재료로 인해 퇴비화 가능한 식품 포장을 기피하며, 이는 업체의 수익성에 부정적인 영향을 미친다. 노리스-월트는 이 문제를 두 가지 주요 요인으로 설명했다. 첫 번째는 처리 과정에서 발생하는 노동력 문제이며, 두 번째는 최종 퇴비 제품의 품질 저하로 인해 농장, 조경업체, 골프장 등의 시장에 미치는 영향이다. 따라서, 바이오플라스틱은 퇴비를 오염시키는 원인이 될 수 있다. 생분해성 인스티튜트(BPI)와 유럽의 대응 기관인 OK컴포스트(OK Compost)는 퇴비화 업체들의 우려에 대응하기 위하여 퇴비화 가능한 포장을 위한 자발적 인증 표준을 마련했다. 이 인증을 획득하기 위해서는 바이오플라스틱 제조업체가 제품의 분해 속도를 증명하는 ASTM 기준을 만족시켜야 하며, PFAS(영구적 화학 물질)를 포함하지 않고, 일반적인 토양 생태독성 테스트를 통과해야 한다. 그러나 노리스-월트는 이러한 인증 프로그램이 퇴비 중 미세 플라스틱 문제를 충분히 고려하지 않는다고 지적했다. 이에도 불구하고, 미국 퇴비화 위원회의 최근 조사 결과, 조사 대상 173개 퇴비업체 중 오직 46개 업체만이 퇴비화 가능한 식품 포장의 사용을 허용하는 것으로 나타났다. 혁신을 위한 기회 전문가들은 바이오플라스틱이 여러 어려움에도 불구하고, 화학적 안전성과 수명이 제품 설계에 주요 고려사항으로 포함될 경우, 농업용 멀치 필름과 같은 특정한 용도에 대해 적합한 대안이 될 수 있다고 지적했다. 린 프로덕션 액션의 마크 로시 전무이사는 플라스틱 사용이 필수적인 상황에서는 바이오플라스틱의 활용을 고려해야 한다고 말했다. 그는 "모든 재료에는 잠재적 문제가 존재한다. 우리는 이러한 재료를 인간의 건강과 안전을 고려하여 어떻게 최적화할 수 있을까?"라고 의문을 제기했다. 플라스틱 산업 내에서 바이오플라스틱은 특정 시장에서의 성장 가능성을 가지고 있지만, 광범위한 대체재로는 여겨지지 않는다. 로시는 바이오플라스틱이 대규모로 기존 플라스틱을 대체할 수 있는 해법이 아니라고 명확히 했다. 다시마나 농업 폐기물로 제작된 차세대 바이오플라스틱은 식량 작물을 원료로 사용함으로써 발생하는 환경적 문제를 어느 정도 해결했으나, 여전히 독성 문제에 대한 해결책을 마련해야 한다는 지적이 있다. 클린 프로덕션 액션은 제조업체들이 자사 제품에서 수천 가지의 유해 화학물질을 식별하고 제거할 수 있도록 돕기 위해, 일회용 식품 포장과 재사용 가능한 용기에 적용할 수 있는 독립적인 표준인 그린스크린(GreenScreen)을 개발했다. 주요 PLA 제조업체 중 하나인 네이처웍스(NatureWorks)는 그린스크린 평가를 통해 자사의 원료가 유해 화학물질을 포함하지 않음을 공식적으로 인증받았다. 그러나 업계 전반에 걸친 변화를 이끌기 위해서는 더 많은 제조업체들이 이러한 제품 인증 과정을 통과해 한다. 노리스-발트는 캘리포니아나 콜로라도에서 시행된 것과 같은 엄격한 라벨링 기준과 법률의 존재가 퇴비화 가능한 바이오플라스틱이 실제로 산업 퇴비화 시설로 올바르게 전달되기 위해 필수적이라고 강조했다. 그녀는 "실수든 의도적이든 시리얼을 퇴비화할 수 있다고 잘못 표시하는 비양심적 기업들에 대해 소송을 제기하는 것만으로도 이러한 오해를 빠르게 중단시킬 수 있다. 여기서 중요한 것은 법의 집행이다"라고 말했다. 전 세계적으로 전문가들은 바이오플라스틱이 현재 직면한 플라스틱 오염 문제에 대응하기 위한 국제적 합의에서 중요한 역할을 하고 있음에 동의하며, 이러한 재료는 기존 플라스틱과는 다르게 관리되어야 한다는 점에 대해 합의했다. 톰슨은 단순히 대안이나 대체재를 찾는 것 이상이 필요하다고 말했다. 그는 "우리가 직면한 문제를 해결할 뿐만 아니라 더 우수한 성능을 제공할 수 있음이 입증된 대안과 대체재가 필요하다"고 강조했다. 톰슨과 와그너가 활동하는 국제적 단체인 '효과적인 글로벌 플라스틱 조약을 위한 과학자 연합'은 플라스틱이 화학물질을 적게 포함하도록 재설계되고, 재료 회수를 간소화할 인센티브를 조약에 포함시키길 바란다. 와그너는 "업계가 1만가지의 화학 물질을 포함하지 않는 제품을 설계하길 바란다"고 말해, 제품 설계 시 화학물질 사용을 대폭 줄이는 것을 목표로 하고 있음을 밝혔다.
-
- 생활경제
-
'바이오플라스틱' 환경 문제의 해답인가, 새로운 문제의 시작인가?
-
-
국제우주정거장 폐기 배터리, 지구 대기권 재돌입…위험성 논란
- 약 3톤에 달하는 폐배터리가 지구 대기권에 재진입하며 역대 가장 무거운 국제우주정거장(ISS) 쓰레기 귀환을 기록했다. 과학 기술 전문매체 기즈모도는 12일 국제 우주 정거장에서 사용했던 폐기 배터리 묶음(팔레트)이 지난 3월 8일 멕시코 만 상공에서 지구 대기권에 재돌입했다고 12일 보도했다. 이 폐기물 배터리 묶음은 무게가 약 2.9톤에 이르며, 9개의 배터리로 구성되어 있다. 2021년 3월 로봇 팔 캐나다암2(Canadarm2)에 의해 우주로 던져진 이후 무연소 재돌입 상태로 지구 궤도를 맴돌고 있다. ISS 쓰레기를 추적해온 아마추어 천체 물리학자 조나단 맥도웰에 따르면, 이 폐기물은 지난 3월 8일 오후 3시 29분경 칸쿤과 쿠바 상공 어딘가에서 마침내 지구 대기권에 재돌입했다. 재돌입 시 전체 폐기물이 소멸되었는지 또는 일부 파편이 남아 있는지는 아직 명확하지 않다. 유럽우주국(ESA)은 재돌입 과정을 모니터링했으며 일부 파편이 지상에 떨어질 가능성이 있지만 사람을 맞을 확률은 매우 낮다고 추정했다. 현재까지 이 물체의 지구 귀환으로 인한 인명 피해나 재산 피해 보고는 없었다. ESA에 따르면 재진입은 남위 -51.6도에서 북위 51.6도 사이에서 발생한다. 주로 대기 항력 수준의 변동으로 인한 큼 불확실성으로 인해 더 정확ㅇ한 예측은 불가능하다는 설명이다. 이 팔레트는 국제우주정거장에서 폐기된 가장 큰 물체다. 2020년 5월 일본 우주화물선에 의해 우주정거장으로 룬반됐으며 우주 비행사들이 기존 니켈-수소 배터리를 새로운 리튬-이온 배터리로 교체하도록 돕기 위한 것이었다. 이 배터리는 우주 정거장의 태양 전지 패널에서 수집된 에너지를 저장했다. 원래 계획은 폐기된 배터리를 일본 HTV 화물선 내부에 넣어 안전하게 처리하는 것이었다. 하지만 국제우주정거장에서 이러한 장비 폐기 처리가 지연됨에 따라 NASA는 우주 정거장의 로봇 팔을 사용하여 단순히 화물 팔레트 안에 배터리를 던져 지구 대기권에 무연소 재돌입하도록 했다. 폐기물 팔레트와 같은 거대한 물체의 무연소 재돌입은 비교적 드문 일이며 지구 대기권을 통해 소멸하는 대부분의 물체는 보통 흔적도 남지 않고 땅에 닿기 전에 불타서 소실된다. 대부분의 우주선, 발사체, 운영 하드웨어는 재진입과 관련된 위험을 제한하도록 설계됐다. 유럽 우주국에 따르면 우주 기관들은 단일 무연소 재돌입 사고에 대한 사상자 발생 위험 기준치를 1만분의 1로 설정하고 있다. 우주 산업이 계속 성장함에 따라 규칙을 준수하는 사람들을 모니터링 하는 것이 더 어려워질 수 있으며, 이는 결국 새로운 규제로 이어질 수 있다.
-
- 산업
-
국제우주정거장 폐기 배터리, 지구 대기권 재돌입…위험성 논란
-
-
[신소재 신기술(10)] 쓰레기 아닌 자원! 세탁 세제로 플라스틱 용기 재활용 시대 열리다
- 영국에서 액체 세탁 세제로 플라스틱을 재활용하는 기술이 개발됐다. 과학 기술 전문매체 더쿨다운(TCD)은 10일(현지시간) 영국 킹스 칼리지 런던의 과학자들이 세탁 세제를 사용해 플라스틱을 분해하여 재활용할 수 있는 새로운 방법을 개발했다고 보도했다. 이 연구는 일회용 플라스틱의 일반적인 유형인 폴리락틱산(PLA)에 초점을 맞췄다. 킹스 칼리지 런던의 연구원들은 극한의 열을 사용하지 않고도 PLA를 분해할 방법을 찾던 중 대부분의 세탁 세제에서 흔히 발견되는 칸디다 안타르크티카 리파제 B(Candida antarctica lipase B·CALB)라는 효소를 발견하고 이를 변형해서 이온성 액체에 용해시켰다. 연구팀은 CALB 용액에 플라스틱 컵을 담근 후 24시간이 지나면 플라스틱이 완전히 녹는 것을 확인했다. 이 연구 결과는 과학 저널 셀 물리 과학 보고서(Cell Reports Physical Science)에 게재됐다. 폴리락틱산(Polylactic Acid, PLA)은 옥수수 전분과 사탕수수와 같은 식물성 자원에서 추출한 락틱산을 중합하여 만들어지는 가장 일반적인 상업용 생분해성 플라스틱이다. 그러나 일단 플라스틱으로 바뀌면 생분해되지 않고 매립지를 막거나 바다에 버려지게 된다. PLA는 석유 기반 플라스틱과 달리 식물로부터 얻어지므로 재생 가능한 자원을 사용하며, 사용 후에는 자연 조건 하에서 미생물에 의해 분해되어 이산화탄소와 물로 환원되는 특성을 갖는다. 이로 인해 환경 친화적인 대안으로 주목받으며, 일회용품, 포장재, 섬유, 의료 분야 등 다양한 용도로 사용돼 왔다. 하지만, PLA의 분해 속도는 환경 조건(온도, 습도, 미생물의 존재)에 따라 크게 달라질 수 있다. PLA는 산업적 규모의 퇴비화 시설에서는 빠르게 분해되지만, 자연 상태에서는 분해되는 데 수년이 걸릴 수 있다. 또한, PLA의 생산 과정에서 사용되는 식물 자원이 식량으로 사용될 수 있는 농작물을 사용한다는 점에서 지속 가능성에 대한 논쟁이 뜨거웠다. 연구팀은 "환경에 플라스틱 쓰레기가 쌓이는 것은 생태학적 재앙이며, 이를 해결하기 위해 다양한 접근 방식이 필요하다"고 설명했다. 인류세(Anthropocene)에 따르면 연구팀 중 한 명인 알렉스 브로건 화학과 교수는 "폴리락틱산은 제대로 재활용할 방법이 없기 때문에 선택했다"고 말했다. 브로건 교수는 "우리의 (기술) 개발로 90°C에서 40시간 이내에 플라스틱을 구성 요소로 전환할 수 있게 되었다"고 설명했다. 다음 연구 단계는 CALB 용액에 용해된 플라스틱을 재활용하기 위해 용도를 변경하는 방법을 알아내는 것이다. 브로건 교수는 "현재 엔지니어들과 협력하여 파쇄와 같은 보다 정밀한 전처리를 통해 이 공정을 개선하여 더 큰 규모로 작업할 수 있는 방법을 모색하고 있다"고 말했다. 그는 이어 "우리가 보여줘야 할 주요 개선 사항은 분해된 플라스틱으로 실제로 플라스틱을 다시 만들 수 있다는 점이며, 이를 통해 순환 고리를 끊는 것"이라고 강조했다.
-
- 포커스온
-
[신소재 신기술(10)] 쓰레기 아닌 자원! 세탁 세제로 플라스틱 용기 재활용 시대 열리다
-
-
[신소재 신기술(9)] 땅콩 껍질로 리튬 이온 배터리 생산 기술 개발
- 중국 과학자들이 땅콩 껍질을 활용하여 리튬 이온 배터리를 생산하는 새로운 기술을 개발했다. 이 연구는 폐기물 활용과 리튬 이온 배터리 성능 개선이라는 두 가지 문제를 동시에 해결했다. 과학기술 전문 매체 더 쿨다운은 지난 5일(현지시간) 중국 과학기술대학교 연구팀이 땅콩 껍질에서 추출한 산화철을 이용하여 리튬 이온 배터리 음극을 제조하는 새로운 방법을 개발했다고 전했다. 연구 결과 땅콩 껍질 기반 음극은 높은 전기 용량과 우수한 사이클 안정성을 보였다. 게다가 떵콩 껍질 기반은 기존 흑연 기반 음극보다 저렴하고 친환경적이다. 이 연구 결과는 지난해 11월 14일 에너지 저장 기술과 시스템에 관한 연구를 다루는 국제 학술지 '저널 오브 에너지 스토리지(Journal of Energy Storage)'에 게재됐다. 리튬 이온 배터리는 양극과 음극(각각 양전극과 음전극) 사이에서 리튬 이온을 이동시켜 작동한다. 현재 대부분의 리튬 이온 배터리 음극은 흑연, 규소, 또는 이 둘의 복합체와 같은 탄소 기반 물질로 제조된다. 그러나 리튬 이온 배터리 연구에 종사하는 과학자들은 이러한 기존 소재보다 더 우수한 물질을 개발할 수 있다고 기대해 왔다. 땅콩 껍질 기반 음극, 높은 전기 용량 지녀 또 다른 학술지 '응용 표면 과학 언드밴스(Applied Surface Science Advances)' 저널에 게재된 「리튬 이온 전지용 음극 재료: 리뷰」라는 제목의 연구 논문에서 연구팀은 "흑연 음극은 용량이 적고 안전상의 문제가 있다는 것이 잘 알려져 있다"고 지적했다. 연구팀은 이러한 문제를 해결하기 위해 "다음 세대 리튬 이온 전지용 새로운 음극 재료로서 많은 고성능 음극 재료들이 연구되고 있다"고 덧붙였다. 이같은 상황에서 최근 개발된 음극 재료 중 하나가 바로 땅콩 껍질을 활용한 것이다. 연구팀은 땅콩 껍질이 저렴하다는 점에서 재료로 매력적이라고 설명했다. 연구 논문에서 저자들은 "싸고 반복 성능을 개선하는 데 적합한 열분해 공정을 위한 탄소 원천으로 저렴한 원료를 찾기 위해 노력했다"고 밝혔다. 폐기되는 유기물질인 땅콩 껍질을 활용하여 리튬 이온 배터리를 제조하는 것은 두 가지 문제를 동시에 해결하는 훌륭한 방법이다. 이는 배터리의 효율, 안전성 및 비용을 개선하는 데 도움이 될 뿐만 아니라 식품 폐기물 문제 해결에도 기여한다. 땅콩 껍질을 이용해 배터리를 만들면 쓰레기 매립지에 폐기되어 지구 온난화 가스를 배출하는 대신 유용한 자원으로 활용될 수 있다. 연구팀은 또한 대나무, 흰목이버섯의 일종인 트레멜라(tremella), 뽕잎, 목재, 녹차 등에서 추출한 탄소 함유 물질 등을 사용해 동일한 실험을 진행했다. 감귤 껍질로 리튬 배터리 재활용 비슷한 맥락에서 또 다른 연구팀은 최근 감귤류 껍질을 이용해 리튬 배터리를 재활용하는 방법을 개발했다. 싱가포르 난양 기술 대학교(Nanyang Technological University·NTU) 과학자들은 감귤 껍질을 활용해 리튬 배터리를 재활용하는 기술을 개발했다. 새로운 방법은 과일 껍질을 이용해 사용한 배터리에서 귀금속을 추출한 다음 새 배터리에 재사용할 수 있었다. 이는 리튬 배터리를 재활용하는 가장 환경 친화적인 방법일 수도 있다. 이 연구팀의 일원인 마다비 스리니바산(Madhavi Srinivasan) 교수는 "현재 산업적으로 전자 폐기물을 재활용하는 과정은 에너지 집약적이며, 유해한 오염 물질과 액체 폐기물을 배출하므로 전자 폐기물의 양이 증가함에 따라 친환경적인 재활용 방법이 시급히 필요하다. 우리 팀은 생분해성 물질로 재활용하는 것이 가능하다는 것을 입증했다"며 "이러한 발견은 우리의 기존 작업을 기반으로 한다"고 설명했다. NTU 팀은 극한의 온도를 요구하지 않고 오렌지 껍질과 감귤류에서 발견되는 약한 유기산인 구연산만을 사용하여 산업 재활용 공정과 동일한 결과를 얻을 수 있었다.
-
- 포커스온
-
[신소재 신기술(9)] 땅콩 껍질로 리튬 이온 배터리 생산 기술 개발