검색
-
-
미 플로리다 주 주택에 우주 쓰레기 추정 물질 추락
- 미국 플로리다 주에 거주하는 알레한드로 오테로(Alejandro Otero)의 집에 의문의 물체가 떨어졌다. 이 물체는 지난달 플로리다 주 네이플스에 있는 알레한드로 오테로의 집 지붕과 이층 바닥을 뚫고 떨어져 그의 아들을 놀라게 했다고 과학 뉴스 전문 매체 라이브사이언스가 전했다. 이 정체불명의 물체는 국제우주정거장(ISS: the International Space Station)에서 나온 잔해일 가능성이 높은 것으로 점쳐지고 있다. 미 우주사령부도 우주 정거장에서 잔해 조각이 대기권에 진입했음을 기록했는데, 당시 이 물체는 멕시코만을 지나 플로리다 남서쪽을 향하고 있었다. 떨어진 물체는 원통형 튜브 형태로, 길이가 수 인치에 달하고 무게는 거의 2파운드(0.9kg)에 달했다. 이 물체의 출처는 아직 밝혀지지 않았지만, 오테로는 이 물체가 ISS에서 폐기한 방전된 배터리 9개 중 하나일 가능성이 있다고 생각하고 있다. 우주사령부가 포착한 것과 같은 시각, 배터리를 실은 일본 우주국 JAXA 소속의 대형 화물 팔레트가 멕시코 만 상공에서 플로리다 대기권으로 다시 진입했던 것이다. 지난 2021년 우주정거장에서 버려진 잔해는 대기권에서 소각될 것으로 예상됐지만, 그 잔해 중 하나가 재진입하여 떨어졌을 수도 있다. 오테로는 집을 파괴한 잔해를 나사(NASA) 관계자에게 인도했다. 나사 대변인 조슈아 핀치(Joshua Finch)는 라이브사이언스와의 인터뷰에서 "나사는 주택 소유자 오테로와 협력해 물체를 수거했으며, 가능한 한 빨리 플로리다에 있는 나사의 케네디 우주 센터에서 물체를 분석하여 그 출처를 확인할 것"이라고 말했다. 엔지니어가 물체의 출처를 확인하면 오테로는 미 정부를 상대로 집 수리 비용을 청구할 계획이다. 하지만 해당 물체가 JAXA에서 나온 것으로 간주되는 경우 이 프로세스는 복잡할 수 있다. 이 우주 쓰레기는 지구로 돌아올 예정이었던 화물 팔레트에 부착된 ISS의 고갈된 배터리로 구성됐다. 그러나 일련의 사정으로 인해 이 화물 팔레트가 지구로 돌아갈 수 없게 되자 나사는 무유도 재진입을 위해 2021년에 우주정거장에서 배터리를 버렸다. 미시시피 대학 항공우주법 센터의 전무이사인 마이클 핸런에 따르면 물체가 나사 소유인 경우 오테로 또는 그가 가입한 보험 회사는 연방 불법 행위 청구법에 따라 연방 정부를 상대로 청구를 제기할 수 있다. 그러나 문제 발생 소지는 있다. 배터리는 나사 소유였지만 일본 우주국이 발사한 팔레트 구조에 부착됐다. 오테로의 집에 피해를 입힌 폐기물이 다른 나라에서 발사된 것이라면 미국은 면책되고, 발사한 나라가 피해에 대해 전적으로 책임을 져야 하는 상황이 된다는 것이다. 떨어지는 우주 쓰레기로 피해를 입은 곳은 플로리다만은 아니다. 지난 2020년에서 2022년 사이에 중국의 창정 5B 부스터중 4대가 지구에 떨어져 코트디부아르, 보르네오, 인도양으로 잔해가 쏟아졌다. 2021년과 2022년에는 스페이스X 로켓에서 떨어져 나온 잔해가 워싱턴 주의 한 농장을 덮쳤고 호주의 양 농장에도 떨어졌다. 전 세계 우주국에서는 3만 개가 넘는 쓰레기 조각들을 감시하고 있지만, 모니터링할 수 없을 정도의 수많은 작은 파편 조각이 훨씬 더 많아 골치를 앓고 있다. 과학자들은 그물에 쓰레기를 모으는 것과 같이 지구의 하늘을 정리하는 여러 가지 방법을 제안했다. 발톱 로봇으로 수집하거나, 또는 다른 우주선에서 0.8km 길이의 밧줄을 발사하여 수거하는 방법 등이 있다.
-
- IT/바이오
-
미 플로리다 주 주택에 우주 쓰레기 추정 물질 추락
-
-
매립지 메탄가스, 지구 온난화의 원인
- 매립지에 쌓이는 쓰레기는 단지 눈에 거슬리는 존재를 넘어선다. 지구를 온난화시키는 엄청난 양의 메탄가스를 배출하는 기후의 악몽이기도 하다. 미국 전역 수백 곳의 매립지에서 메탄 오염을 측정한 새로운 연구에 따르면, 문제가 이전에 생각했던 것보다 훨씬 더 심각하다고 사이언스 온라인판이 전했다. 이 소식은 CNN 등 주요 매체에도 비중 있게 보도됐다. 과학자들은 2018~2022년까지 18개 주에 걸쳐 200개 이상의 매립지를 항공 조사했다. 이는 미국 매립지에 대한 측정 조사 중 최대 규모이다. 사이언스 저널에 발표된 연구에 따르면, 조사 결과 평균 메탄 배출량이 공식적으로 보고된 것보다 훨씬 높은 것으로 나타났다. 눈에 보이지 않고 냄새가 없는 가스인 메탄은 이산화탄소에 비해 대기중에 머무는 시간이 짧지만 80배 이상의 온난화 효과를 지니며, 다양한 부문에서 생산된다. 그 중 가장 큰 부문은 석유, 가스, 농업이다. 매립지는 잘 알려지지 않은 메탄 발생원인이지만, 전 세계 메탄 배출량의 약 20%를 차지해 큰 영향을 미친다. 매립지는 음식물 쓰레기, 종이, 목재 등의 유기 폐기물을 산소 없이 분해하면서 메탄을 생성하는 박테리아가 살기에 완벽한 환경을 조성한다. 미국의 대부분의 매립지는 연방 정부에서 휴대용 센서를 사용한 보행 조사를 통해 1년에 4회 메탄 배출량을 측정하도록 규정하고 있다. 연구에 따르면 보행자들은 가파른 경사면이나 쓰레기가 자주 버려지는 곳 등 안전하지 않은 지역을 피하는 경향이 있기 때문에 조사의 정확성을 기하기 어렵고 결과도 다르다. 연구를 담당한 비영리 기관 카본매퍼(Carbon Mapper)의 과학자인 다니엘 커스워스(Daniel Cusworth)는 "보행에 의한 측정은 정확하지 않고 단지 메탄 발생의 핫스팟을 감지하는 것일 뿐”이라고 지적한다. 따라서 매립지 메탄 배출량 추정은 직접 측정보다는 모델을 기반으로 하는 경향이 있으며 이는 데이터에 격차가 있음을 의미한다. 보고서는 항공기, 드론, 위성 등의 원격 감지를 사용하는 고급 모니터링 시스템이 보다 정확하고 포괄적인 상황을 제공할 수 있다고 주장한다. 과학자들은 공중 영상 분광계를 사용하여 측정한 매립지의 52%에서 대량의 메탄 방생을 발견했다. 보고서는 이는 석유 및 가스 부문에 대해 수행된 항공 연구의 메탄 검출 비율을 훨씬 초과한다고 지적한다. 분석 결과는 환경보호국의 온실가스 보고 프로그램(GHGRP)과 같은 현재의 보고 시스템에 메탄 발생원이 대거 누락되어 있음을 보여준다고 연구팀은 지적했다. 보고서는 매립지의 평균 메탄 배출량은 GHGRP에 보고된 것보다 1.4배 더 높았다고 밝혔다. 또한 매립지 메탄 배출이 일반적으로 석유 및 가스 생산으로 인한 배출보다 훨씬 지속적이며 60%가 수개월, 심지어 수년 동안 지속된다는 사실도 발견했다. 스탠포드대학의 환경과학 교수 롭 잭슨(Rob Jackson)은 CNN과의 인터뷰에서 매립지가 ‘슈퍼 메탄 방출자’라며 "항공 데이터는 우리가 수십 년 동안 지적해 왔던 사실을 입증한다"고 말했다. 매립 문제가 조만간 사라질 것 같지는 않다. 커스워스는 “화석연료에 의존하지 않는 미래에도 인간이 버리는 폐기물은 계속 발생할 가능성이 높다. 더 깨끗한 연료로 전환하더라도 우리는 여전히 폐기물 관리 문제를 다룰 것”이라고 말했다. 과학자들은 메탄의 급격한 감소가 기후 변화를 늦추는 가장 효과적인 방법 중 하나라고 말한다. 그러나 미국의 대부분의 메탄 정책은 석유 및 가스 산업을 대상으로 한다. 커스워스는 "기후 목표를 달성하려면 석유와 가스만으로는 메탄 배출량을 줄일 수 없으며, 매립지는 석유나 가스와 마찬가지로 주목을 받아야 한다"라고 주장했다.
-
- IT/바이오
-
매립지 메탄가스, 지구 온난화의 원인
-
-
[신소재 신기술(13)] 암치료용 새로운 AI 개발
- 미국 메이요 클리닉의 연구원들이 암 치료를 위해 새로운 인공지능(AI) 알고리즘을 개발했다. 메디컬 익스프레스는 지난 12일(현지시간) 메이요 클리닉 연구원들은 메이요 클리닉 연구원들이 기존 AI 모델이 주로 사용하는 데이터 학습 방식을 넘어서는 '가설 기반 AI'라는 독창적인 인공지능 알고리즘을 개발했다고 보도했다. 이번 연구는 학술지 캔서(Cancers)에 게재됐다. 이 혁신적인 AI는 암과 같은 복잡한 질병의 원인을 파악하고 치료 전략을 개선하는 데 사용될 수 있는 새로운 접근 방식을 제공한다. 메이요 클리닉의 시스템 생물학 및 분자 약리학, 실험 치료학 부서에서 AI 연구를 담당하는 수석 저자이자 공동 개발자인 후 리(Hu Li) 박사는 이 AI가 과학적 질문에 답하고, 질병을 더 깊이 이해하며, 개인화된 의학을 지원하기 위해 설계된 표적 정보 기반 알고리즘이라고 밝혔다. 리 박사는 이 기술이 기존 AI에서 간과되었던 중요한 통찰을 발견할 가능성이 있다고 강조했다. 기존 AI는 주로 얼굴 인식, 임상 진단 이미지 분류와 같은 분류 및 인식 작업에 활용되어 왔으며, 사람처럼 텍스트를 생성하는 등의 생성 작업에도 점점 더 많이 쓰이고 있다. 하지만, 연구팀은 기존 학습 알고리즘이 과학적 지식이나 가설을 충분히 통합하지 못한다고 지적했다. 이는 AI가 편향되지 않은 대규모 데이터 세트에 과도하게 의존하게 만들고, 그런 데이터 세트를 구하는 것이 어려울 수도 있기 때문이다. 특히, 리 박사는 이러한 제약이 의학과 같이 새로운 지식을 발견해야 하는 분야에서 AI의 활용도와 유연성을 크게 제한한다고 밝혔다. 이는 AI 기술의 발전 방향에 대해 중요한 고려사항을 제시한다. AI는 암 연구와 같이 방대하고 복잡한 데이터 세트에서 패턴을 찾아내는 데 매우 유용한 도구다. 이러한 경우에서 기존 AI 사용의 주요 목표는 해당 데이터 세트의 정보를 최대한 활용하는 것이다. 리 박사는 기존 지식과 가설을 통합하지 못하는 것이 문제가 될 수 있다고 지적했다. 그는 "AI 모델이 연구자와 임상의의 신중한 설계 없이 결과를 도출할 수 있으며, 이런 접근 방식을 '쓰레기 속의 쓰레기' 문제라고 부른다"고 밝혔다. 그러므로, 그는 과학적 질문에 대한 안내 없이는 AI가 덜 효과적인 분석을 제공하고, 테스트 가능한 가설을 형성하며, 의학 발전에 기여할 수 있는 중요한 통찰을 놓칠 수 있다고 설명했다. 이러한 관점은 AI의 효율성과 유용성을 극대화하기 위한 설계와 개발 과정에서 고려해야 할 핵심 요소다. ‘가설 기반 AI’를 통해 연구자들은 알려진 병원성 유전자 변종과 암의 특정 유전자 간의 상호작용을 학습 알고리즘 설계에 통합하는 등 질병에 대한 이해를 통합하는 방법을 모색할 수 있다. 이를 통해 연구자와 임상의는 어떤 구성 요소가 모델 성능에 기여하는지 파악하여 해석 가능성을 높일 수 있다. 또한, 이 전략은 데이터 세트 문제를 해결하고 열린 과학적 질문에 대한 집중을 촉진할 수 있다. 메이요 클리닉의 면역학과 교수인 다니엘 빌라도(Daniel Billadeau) 박사는 "이 새로운 종류의 AI는 암과 면역 체계 간의 상호작용을 더 잘 이해할 수 있는 새로운 길을 열었으며, 의학적 가설을 테스트할 뿐만 아니라 환자가 면역 요법에 어떻게 반응할지 예측하고 설명하는 데 큰 가능성을 제시한다"고 말했다. 빌라도 박사는 이 연구의 공동 저자이자 공동 발명가이며 암 면역학에 오랫동안 관심을 가지고 연구해 왔다. 연구팀은 가설 기반 AI가 종양 분류, 환자 계층화, 암 유전자 발견, 약물 반응 예측, 종양 공간 조직 등 모든 종류의 암 연구 애플리케이션에 활용될 수 있다고 말했다. 기계 기반 추론은 과학자들이 가설 및 생물학적, 의학적 지식을 학습 알고리즘 설계에 통합함으로써 가설을 시험하고 검증하는 데 중요한 역할을 한다. 리 박사는 이러한 유형의 알고리즘 개발이 전문성과 깊은 지식을 요구하기 때문에 접근성이 제한될 수 있다는 단점을 지적했다. 그는 또한 편향의 가능성에 대해 경고하며, 연구자들이 다양한 정보를 적용할 때 이를 신중히 고려해야 한다고 조언했다. 이 방법은 일반적으로 범위가 제한적이며 모든 가능한 시나리오를 포괄하지 못할 수 있기 때문에, 예상치 못한 중요한 관계를 간과할 위험이 있다. 리 박사는 "그럼에도 불구하고 가설 기반 AI는 인간 전문가와 AI 간의 활발한 상호 작용을 촉진하여 AI가 일부 전문직 일자리를 대체할 것이라는 우려를 완화해준다"고 말했다. 이러한 상호작용은 AI의 발전과 활용에 있어 인간의 역할이 여전히 중요함을 강조한다. 가설 기반 AI는 아직 초기 단계이기 때문에 편향을 최소화하고 해석을 향상시키기 위해 어떻게 지식과 생물학적 정보를 최적으로 통합할 수 있는지와 같은 중요한 질문들이 남아 있다. 리 박사는 이러한 과제에도 불구하고 가설 기반 AI는 한 걸음 더 나아간 것이라고 평가했다. 리 박사는 이런 도전에도 불구하고, 가설 기반 AI가 의미 있는 진전을 이루었다고 평가했다. 그는 이 기술이 더 깊은 이해와 개선된 치료 방법을 가능하게 하여 의학 연구를 크게 앞당길 수 있으며, 결국 환자들에게 보다 나은 치료 옵션을 제공하는 새로운 방향을 제시할 수 있다고 말했다.
-
- 포커스온
-
[신소재 신기술(13)] 암치료용 새로운 AI 개발
-
-
'바이오플라스틱' 환경 문제의 해답인가, 새로운 문제의 시작인가?
- 생분해성 혹은 식물 기반의 바이오 플라스틱은 급성장하고 있지만 여전히 기후 및 화학 물질에 대한 우려가 제기됐다. 환경건강뉴스(EHN)은 지난 11일(현지시간) 바이오 플라스틱은 미국 멕시칸 푸드 프랜차이즈 치폴레의 퇴비화 가능한 부리또 그릇부터 코카콜라의 식물성 병, 슈퍼마켓의 불투명한 농산물 봉투에 이르기까지, 식품 산업 전반에 걸쳐 확산되고 있다며 이같이 보도했다. 바이오 플라스틱은 그 외에도 자동차 쿠션, 전자제품, 의류, 건축 자재 등에도 사용되고 있다. EHN에서 소개한 바이오 플라스틱의 정의와 장점과 단점을 다음과 같이 정리했다. 전 세계 바이오 플라스틱 산업은 2023년 87억 달러(약 11조 4031억원)에서 2030년 310억 달러(약 40조 6317억 원)로 급성장세를 보이고 있다. 이는 전통적인 플라스틱 산업보다 빠른 성장률이다. 바이오 플라스틱은 전체 플라스틱 시장의 1%에 불과하지만, 일각에서는 바이오 플라스틱이 플라스틱의 지속 가능한 미래라고 선전하고 있다. 오는 4월, 플라스틱 오염 문제에 대한 해결책을 모색하기 위해 개최되는 국제 조약 회담을 앞두고 있는 대표단 중 일부는 바이오 플라스틱을 조약의 대안 및 대체품으로 포함시키려는 움직임을 보이고 있다. 유럽 바이오플라스틱 협회는 웹사이트에서 "바이오플라스틱이 플라스틱의 진화를 주도하고 있다"고 주장하며 바이오플라스틱의 장점으로 기존 플라스틱에 비해 '탄소 중립성'과 특정 조건에서의 생분해성을 꼽았다. 그러나 바이오 플라스틱이 분해 속도가 빠르고, 더 안전한 소재일 뿐만 아니라 탄소 발자국이 적다는 주장은 과장된 면이 있다. 전문가들은 바이오 플라스틱이 다양한 해결책 중 하나가 될 잠재력을 가지고 있음을 인정하면서도, 제품의 수명 종료 시 관리 및 화학적 안전성을 설계에 포함시키고, 기업의 그린워싱을 방지할 수 있는 더 강력한 표준과 규제의 필요성을 강조했다. 그린워싱(Greenwashing)은 기업이나 조직이 자신들의 제품, 서비스, 정책이 환경에 미치는 영향이 실제보다 훨씬 친환경적이거나 지속 가능하다는 인상을 주기 위해 마케팅 전략이나 홍보 활동을 하는 행위를 말한다. 이러한 행위는 대중에게 오해를 불러일으키거나 잘못된 정보를 제공하여, 실제로는 환경에 해를 끼칠 수 있는 제품이나 서비스를 친환경적인 것처럼 포장하는 것을 포함할 수 있다. 바이오 플라스틱 폐기물 규제 없어 노르웨이 과학기술연구소의 마틴 와그너 생물학 부교수는 바이오 기반 플라스틱을 안전한 방법으로 제조할 수 있다면, 물론 이는 매우 큰 전제이지만, 우려되는 화학 물질을 배제하고, 나노 및 미세 플라스틱의 생성을 최소화하는 방식으로 생산될 경우, 바이오 기반 플라스틱이 해결책의 한 부분이 될 수 있다고 말했다. 와그너의 연구에 따르면, 환경에 우호적인 것으로 여겨지는 퇴비화 가능한 그릇과 식물 기반 음료수 병이 전통적 플라스틱 제품에서 발견되는 것과 같은 수준의 건강에 해로운 화학 물질을 방출할 수 있다는 사실이 밝혀졌다. 또한, 생분해성 바이오 플라스틱이 플라스틱 쓰레기 문제를 근본적으로 해결하지 못한다는 지적도 있다. 바이오 플라스틱은 사용 후 적절한 관리가 필요함에도 불구하고, 바이오 플라스틱 폐기물을 산업적으로 퇴비화하거나 안전하게 관리할 수 있는 인프라나 규정이 아직 충분히 마련되지 않았다. 그로 인해 과학자들과 플라스틱을 지지하는 이들은 플라스틱 사용을 줄이는 것이 플라스틱 위기에 대응하는 가장 핵심적인 해법이라고 강조했다. 특히, 일회용 바이오플라스틱의 사용이 문제를 야기한다고 우려를 표명했다. 플라스틱 재사용을 지지하는 단체인 업스트림(Upstream)의 전무이사 크리스탈 드리스바흐 전무이사는 "지구에서 자원을 수십억 번 채취하고 제조해 단 한 번 사용한 뒤 버리는 행위 자체가 문제의 본질이다"라고 말함으로써, 지속 가능성에 대한 근본적인 접근 필요성을 강조했다. 바이오 플라스틱의 오해 바이오 플라스틱은 생분해성 또는 바이오 기반과 같은 용어가 명확하지 않아 많은 오해를 불러일으킨다는 지적이 있다. 해양 생물학 교수이자 플리머스 대학교 해양 연구소의 리처드 톰슨 소장은 "냉소적인 시각으로 보면 바이오플라스틱은 혼란을 일으키기 위해 의도적으로 만들어진 용어라고 생각한다"고 꼬집었다. 많은 사람들이 모든 바이오 플라스틱이 환경에서 생분해되거나 분해된다고 잘못 알고 있다는 지적이다. 또한 많은 사람들이 바이오 플라스틱이 식물 기반이라고 생각하지만, 폴리부틸렌 아디페이트 테레프탈레이트(PBAT)와 같이 화석 연료로만 만들어진 제품도 있다. 업계에서는 PBAT와 같은 물질을 바이오 플라스틱이라고 부르는데, 이는 화학 결합의 유형과 환경 조건에 따라 식물 기반 바이오 플라스틱과 마찬가지로 분해되도록 설계됐기 때문이다. 또한 업계에서는 바이오 플라스틱을 주로 생분해성 플라스틱과 비생분해성 플라스틱으로 나누며, 이들 각각의 범주 안에서 식물 기반 플라스틱과 화석 연료 기반 플라스틱을 동일한 그룹으로 분류하는 경향이 있다. 전 세계적으로 생산되는 플라스틱은 대체로 이 두 범주로 구분된다. 퇴비화 가능한 바이오 플라스틱은 업계 표준에 따라 산업 퇴비화 시설에서 12주 이내에 완전히 분해될 수 있는 생분해성 바이오플라스틱의 특정 부류에 속한다. 다른 한편으로, 비생분해성 바이오 플라스틱에는 사탕수수, 사탕무, 당밀, 또는 옥수수 등에서 추출된 바이오 기반의 폴리에틸렌(바이오-PE), 바이오 기반 폴리에틸렌 테레프탈레이트(바이오-PET), 폴리아미드(나일론) 등이 포함된다. 이 바이오 플라스틱들은 사탕수수 등 천연 자원에서 추출되었음에도 불구하고, 기존의 화석 연료 기반 플라스틱과 유사한 기능성을 제공하도록 설계됐다. 가장 흔히 사용되는 생분해성 바이오플라스틱 중 하나는 폴리락트산(PLA)으로, 옥수수와 같은 전분 기반의 폴리에스테르로 제조된다. 또한, 셀룰로오스 기반의 바이오 플라스틱 섬유도 이 범주에 포함되며, 농업 부산물, 해조류, 효모, 박테리아에서 추출한 폴리하이드록시알카노에이트(PHA)와 폴리부틸렌숙신산염(PBS)으로 제작된 바이오플라스틱도 동일한 범주 안에 속한다. '3세대' 바이오플라스틱은 농업 폐기물, 음식물 쓰레기, 다시마, 스위치그래스, 폐유, 박테리아, 목재 폐기물 등 다양한 원료를 활용하여 제작되며, 식량 작물을 사용하지 않기 때문에 보다 지속 가능한 대안으로 간주된다. 이러한 3세대 바이오플라스틱 제품들은 이미 시장에 출시되어 있지만, PLA나 바이오 폴리아미드를 사용한 제품들의 규모에는 아직 미치지 못하고 있다. 바이오 플라스틱 사용 용도는? 플라스틱 산업 협회의 지속 가능성 담당 매니저 헤더 노츠는 일회용 바이오 플라스틱 음료 용기, 퇴비화 가능한 식품 서비스 용기, 소매 포장, 그리고 기타 식품 산업 관련 제품이 바이오 플라스틱 사용의 약 43%를 차지한다고 말했다. 그중에서도 PLA와 바이오 PET의 사용이 가장 많다. 노츠에 따르면, 생분해성 멀치 필름 및 기타 농업용 제품이 주로 PLA와 PHA로 제조되어 전체 바이오 플라스틱 사용량의 약 21%를 차지한다. 또한, 안경, 섬유, 컵, 아이폰 케이스, 커피 포드 등의 소비재들은 전체 사용량의 13%를 차지하며, 이들 제품은 생분해성 및 비생분해성 다양한 바이오 플라스틱으로 제작된다. 자동차 산업도 바이오 플라스틱의 또 다른 중요한 소비자 군이다. 자동차 쿠션, 대시보드, 범퍼, 배터리 커버 및 기타 부품들이 점점 더 바이오 기반의 폴리아미드 및 바이오 PP로 제작되고 있다. 바이오 플라스틱의 사용은 또한 건축 및 건설, 전자, 코팅 산업에서도 확장되고 있지만, 상대적으로 더 적은 비율을 차지한다. 대규모 바이오 플라스틱 제조업체들은 대부분 화석 연료 기반 플라스틱을 생산하는 대형 석유화학 회사의 내부 사업부이거나, 이러한 대기업에서 독립한 분사 회사들이다. 그럼에도 불구하고, 어떤 회사가 시장에서 선도적인 위치를 차지하고 있는지에 대해서는 재무 분석가들 사이에 의견이 분분하다. 예를 들어, 인사이더 몽키는 바이오 플라스틱 부문이 전체 시가총액에서 차지하는 비중이 비록 작지만, 전체 시가총액 기준으로 BASF SE, 다우, 라이온델바젤 인더스트리, LG화학, 셀라니즈를 상위 5대 제조업체로 지목했다. 반면, 다른 분석가들은 석유화학 기업에 인수되었거나, 석유화학 기업과의 합작 투자를 통해 성장한 기업들을 시장의 선두 주자로 보는 경향이 있다. 이러한 기업으로는 네덜란드 암스테르담에 본사를 둔 다국적 식품 및 바이오케미컬 기업 코비온(Corbion), 영국 옥스퍼드에 본사를 둔 바이오플라스틱 생산 및 개발회사 바이옴 바이오플라스틱(Biome Bioplastics), 텐마크 코펜하겐의 플랜틱(Plantic), 미국 미시건 주의 네이처웍스(NatureWorks), 태국 방콕에 본사를 둔 바이오플라스틱 및 바이오케미컬 회사 PTT MCC바이오케미(PTT MCC Biochem) 등이 포함된다. 환경과 건강에 미치는 영향 바이오플라스틱은 전통적인 플라스틱과 유사한 제조 공정을 거쳐 생산된다. 이 폴리머는 최소한 부분적으로 식물 재료에서 추출한 화학 물질을 기반으로 하며, 때로는 화석 연료에서 완전히 추출한 화학 물질로 구성된다. 제품의 유연성, 내구성, 색상 및 기타 특성을 조정하기 위해 다양한 화학적 충전재, 첨가제 및 염료가 첨가된다. 세계자연기금(WWF)의 플라스틱 폐기물 및 사업 책임자인 에린 사이먼 부사장은 바이오 플라스틱이 여전히 독성 화학 물질을 포함할 수 있다고 말했다. 사이먼은 “PET를 제조할 때, 오래된 탄소 또는 새로운 탄소를 사용하더라도, 궁극적으로 같은 제품을 만들기 때문에 많은 가공 화학 물질이 여전히 필요하다”며, 바이오 플라스틱 생산 과정에서도 화학 물질의 사용이 불가피함을 지적했다. 와그너의 2020년 연구에 따르면 PLA, PBAT, PHA, PBS, 바이오 PE 및 바이오 PET로 만든 43개의 일상적인 바이오 플라스틱 제품이 기존 제품과 마찬가지로 독성이 있는 것으로 나타났다. 이 중 3분의 2가 환경 내 다양한 생명체에 유해할 가능성이 있는 것으로 나타났으며, 42%는 DNA 손상을 유발할 수 있는 자유 라디칼을 생성하는 화학물질의 존재로 인해 산화 스트레스를 일으키는 것으로 조사됐다. 또한, 4분의 1의 샘플에서는 호르몬 교란 특성이 관찰됐다. 분석된 개별 바이오 플라스틱 샘플에는 평균적으로 1000개에서 최대 2만965개에 이르는 다양한 화학적 특성이 포함되어 있었다. 연구를 주도한 와그너는 "이런 종류의 연구를 진행하면서 가장 충격적인 발견은 개별적인 플라스틱 제품에 엄청나게 많은 화학 물질이 존재한다는 사실이었다"고 말했다. 이 연구 과정에서 발견된 다수의 화학 물질들 중 상당수는 특정되지 않았지만, 와그너는 프탈레이트 같은 '자주 지목되는 화학물질들'은 검출되지 않았다고 말했다. 그는 "바이오플라스틱을 기능적으로 제조하는 데 쓰이는 화학물질들에 대한 우리의 이해가 상당히 제한적임을 발견했다. 폴리머의 화학 구조가 다르기 때문에, 사용되는 첨가제 역시 다를 가능성이 있다"고 밝혔다. 바이오 플라스틱과 기후 변화 바이오플라스틱을 옹호하는 주요 주장 중 하나는 이들이 이론상으로 재생 가능한 자원에서 탄소를 추출할 때 순 이산화탄소 배출량이 증가하지 않으므로, 전체 수명주기 동안 전통적 플라스틱에 비해 훨씬 적은 온실가스를 배출한다는 것이다. 예컨대, 유럽 바이오플라스틱 협회는 전 세계적으로 화석 연료 기반의 폴리에틸렌 수요를 바이오 PE로 대체할 경우, 연간 약 8000만 톤의 이산화탄소 배출을 절감하여 마치 매년 2000만 번의 항공 여행을 줄인 것과 동등한 효과를 가져올 수 있다고 주장한다. 2017년 진행된 연구에서는 미국 내 기존 플라스틱을 옥수수 기반의 PLA로 대체할 경우, 미국 플라스틱 산업에서 발생하는 온실가스 배출량을 25% 감소시킬 수 있을 것으로 추정했다. 이 연구는 또한 화학 산업이 재생 가능 에너지 및 스위치그래스와 같은 더 지속 가능한 원료로 전환함으로써 더 큰 탄소 배출 감소 효과를 달성할 수 있다고 제시했다. 앞서 설명했듯이 바이오 플라스틱 샘플에는 평균적으로 1,000개에서 최대 2만965개에 이르는 다양한 화학적 특성이 포함되어 있음이 밝혀졌다. 드레이스바흐는 세라믹, 스테인리스 스틸, 유리로 만든 재사용 가능한 용기는 수명 기간 동안 일회용 바이오 플라스틱보다 이산화탄소 배출량이 3~10배 적다고 말했다. 하지만 바이오플라스틱이 가져올 수 있는 이산화탄소 절감의 잠재적 이점은, 비료와 살충제의 사용 증가, 그리고 옥수수나 사탕수수 같은 원료의 생산을 위한 토지 개간과 산림 태우기로 인해 일부 상쇄될 수 있다. 또한, 생분해성 플라스틱이 매립지에 매립될 경우, 분해 과정에서 메탄 같은 강력한 온실가스가 배출되어 환경에 또 다른 부담을 줄 수 있다. 바이오 플라스틱 폐기물 규정은? 생분해성 바이오플라스틱의 폐기물 관리는 생분해성을 정의하는 명확한 규정이 부재하기 때문에 복잡한 과제로 남아있다. 업계 자발적 기준에 따르면, 생분해성 제품은 대부분 6개월 이내에 자연적으로 분해되어야 하지만, 생분해성이라고 표시된 일부 제품은 완전히 분해되기까지 수년이 걸릴 수 있다. 예를 들어, 한 연구에 따르면 토양에 묻힌 생분해성 비닐봉지가 3년 후에도 여전히 분해되지 않은 채 발견됐다. 이러한 물질이 퇴비 시설에 매립되면 오염 물질이 되어 걸러내야 한다. 톰슨에 따르면, 재활용 시설에서도 이런 종류의 폐기물은 전체 재활용 플라스틱의 품질을 저하시킬 수 있어 기피 대상이다. 게다가 많은 지역에서는 산업 퇴비화 시설이나 도로변 수거 시설이 부족해, 퇴비화 가능한 포장재와 운반 용기가 결국 매립지나 소각장으로 향하는 경우가 많다. 퇴비화되지 않는 플라스틱이 퇴비화 가능한 플라스틱으로 잘못 인식되는 경우가 빈번하여, 라벨링이 명확하지 않을 때 혼란이 가중된다. 미국 퇴비화 위원회의 린다 노리스-월트 부국장은 이러한 문제를 “그린워싱, 모조품, 짝퉁”이라고 지칭했다. 다수의 퇴비화 업체들이 이러한 재료로 인해 퇴비화 가능한 식품 포장을 기피하며, 이는 업체의 수익성에 부정적인 영향을 미친다. 노리스-월트는 이 문제를 두 가지 주요 요인으로 설명했다. 첫 번째는 처리 과정에서 발생하는 노동력 문제이며, 두 번째는 최종 퇴비 제품의 품질 저하로 인해 농장, 조경업체, 골프장 등의 시장에 미치는 영향이다. 따라서, 바이오플라스틱은 퇴비를 오염시키는 원인이 될 수 있다. 생분해성 인스티튜트(BPI)와 유럽의 대응 기관인 OK컴포스트(OK Compost)는 퇴비화 업체들의 우려에 대응하기 위하여 퇴비화 가능한 포장을 위한 자발적 인증 표준을 마련했다. 이 인증을 획득하기 위해서는 바이오플라스틱 제조업체가 제품의 분해 속도를 증명하는 ASTM 기준을 만족시켜야 하며, PFAS(영구적 화학 물질)를 포함하지 않고, 일반적인 토양 생태독성 테스트를 통과해야 한다. 그러나 노리스-월트는 이러한 인증 프로그램이 퇴비 중 미세 플라스틱 문제를 충분히 고려하지 않는다고 지적했다. 이에도 불구하고, 미국 퇴비화 위원회의 최근 조사 결과, 조사 대상 173개 퇴비업체 중 오직 46개 업체만이 퇴비화 가능한 식품 포장의 사용을 허용하는 것으로 나타났다. 혁신을 위한 기회 전문가들은 바이오플라스틱이 여러 어려움에도 불구하고, 화학적 안전성과 수명이 제품 설계에 주요 고려사항으로 포함될 경우, 농업용 멀치 필름과 같은 특정한 용도에 대해 적합한 대안이 될 수 있다고 지적했다. 린 프로덕션 액션의 마크 로시 전무이사는 플라스틱 사용이 필수적인 상황에서는 바이오플라스틱의 활용을 고려해야 한다고 말했다. 그는 "모든 재료에는 잠재적 문제가 존재한다. 우리는 이러한 재료를 인간의 건강과 안전을 고려하여 어떻게 최적화할 수 있을까?"라고 의문을 제기했다. 플라스틱 산업 내에서 바이오플라스틱은 특정 시장에서의 성장 가능성을 가지고 있지만, 광범위한 대체재로는 여겨지지 않는다. 로시는 바이오플라스틱이 대규모로 기존 플라스틱을 대체할 수 있는 해법이 아니라고 명확히 했다. 다시마나 농업 폐기물로 제작된 차세대 바이오플라스틱은 식량 작물을 원료로 사용함으로써 발생하는 환경적 문제를 어느 정도 해결했으나, 여전히 독성 문제에 대한 해결책을 마련해야 한다는 지적이 있다. 클린 프로덕션 액션은 제조업체들이 자사 제품에서 수천 가지의 유해 화학물질을 식별하고 제거할 수 있도록 돕기 위해, 일회용 식품 포장과 재사용 가능한 용기에 적용할 수 있는 독립적인 표준인 그린스크린(GreenScreen)을 개발했다. 주요 PLA 제조업체 중 하나인 네이처웍스(NatureWorks)는 그린스크린 평가를 통해 자사의 원료가 유해 화학물질을 포함하지 않음을 공식적으로 인증받았다. 그러나 업계 전반에 걸친 변화를 이끌기 위해서는 더 많은 제조업체들이 이러한 제품 인증 과정을 통과해 한다. 노리스-발트는 캘리포니아나 콜로라도에서 시행된 것과 같은 엄격한 라벨링 기준과 법률의 존재가 퇴비화 가능한 바이오플라스틱이 실제로 산업 퇴비화 시설로 올바르게 전달되기 위해 필수적이라고 강조했다. 그녀는 "실수든 의도적이든 시리얼을 퇴비화할 수 있다고 잘못 표시하는 비양심적 기업들에 대해 소송을 제기하는 것만으로도 이러한 오해를 빠르게 중단시킬 수 있다. 여기서 중요한 것은 법의 집행이다"라고 말했다. 전 세계적으로 전문가들은 바이오플라스틱이 현재 직면한 플라스틱 오염 문제에 대응하기 위한 국제적 합의에서 중요한 역할을 하고 있음에 동의하며, 이러한 재료는 기존 플라스틱과는 다르게 관리되어야 한다는 점에 대해 합의했다. 톰슨은 단순히 대안이나 대체재를 찾는 것 이상이 필요하다고 말했다. 그는 "우리가 직면한 문제를 해결할 뿐만 아니라 더 우수한 성능을 제공할 수 있음이 입증된 대안과 대체재가 필요하다"고 강조했다. 톰슨과 와그너가 활동하는 국제적 단체인 '효과적인 글로벌 플라스틱 조약을 위한 과학자 연합'은 플라스틱이 화학물질을 적게 포함하도록 재설계되고, 재료 회수를 간소화할 인센티브를 조약에 포함시키길 바란다. 와그너는 "업계가 1만가지의 화학 물질을 포함하지 않는 제품을 설계하길 바란다"고 말해, 제품 설계 시 화학물질 사용을 대폭 줄이는 것을 목표로 하고 있음을 밝혔다.
-
- 생활경제
-
'바이오플라스틱' 환경 문제의 해답인가, 새로운 문제의 시작인가?
-
-
국제우주정거장 폐기 배터리, 지구 대기권 재돌입…위험성 논란
- 약 3톤에 달하는 폐배터리가 지구 대기권에 재진입하며 역대 가장 무거운 국제우주정거장(ISS) 쓰레기 귀환을 기록했다. 과학 기술 전문매체 기즈모도는 12일 국제 우주 정거장에서 사용했던 폐기 배터리 묶음(팔레트)이 지난 3월 8일 멕시코 만 상공에서 지구 대기권에 재돌입했다고 12일 보도했다. 이 폐기물 배터리 묶음은 무게가 약 2.9톤에 이르며, 9개의 배터리로 구성되어 있다. 2021년 3월 로봇 팔 캐나다암2(Canadarm2)에 의해 우주로 던져진 이후 무연소 재돌입 상태로 지구 궤도를 맴돌고 있다. ISS 쓰레기를 추적해온 아마추어 천체 물리학자 조나단 맥도웰에 따르면, 이 폐기물은 지난 3월 8일 오후 3시 29분경 칸쿤과 쿠바 상공 어딘가에서 마침내 지구 대기권에 재돌입했다. 재돌입 시 전체 폐기물이 소멸되었는지 또는 일부 파편이 남아 있는지는 아직 명확하지 않다. 유럽우주국(ESA)은 재돌입 과정을 모니터링했으며 일부 파편이 지상에 떨어질 가능성이 있지만 사람을 맞을 확률은 매우 낮다고 추정했다. 현재까지 이 물체의 지구 귀환으로 인한 인명 피해나 재산 피해 보고는 없었다. ESA에 따르면 재진입은 남위 -51.6도에서 북위 51.6도 사이에서 발생한다. 주로 대기 항력 수준의 변동으로 인한 큼 불확실성으로 인해 더 정확ㅇ한 예측은 불가능하다는 설명이다. 이 팔레트는 국제우주정거장에서 폐기된 가장 큰 물체다. 2020년 5월 일본 우주화물선에 의해 우주정거장으로 룬반됐으며 우주 비행사들이 기존 니켈-수소 배터리를 새로운 리튬-이온 배터리로 교체하도록 돕기 위한 것이었다. 이 배터리는 우주 정거장의 태양 전지 패널에서 수집된 에너지를 저장했다. 원래 계획은 폐기된 배터리를 일본 HTV 화물선 내부에 넣어 안전하게 처리하는 것이었다. 하지만 국제우주정거장에서 이러한 장비 폐기 처리가 지연됨에 따라 NASA는 우주 정거장의 로봇 팔을 사용하여 단순히 화물 팔레트 안에 배터리를 던져 지구 대기권에 무연소 재돌입하도록 했다. 폐기물 팔레트와 같은 거대한 물체의 무연소 재돌입은 비교적 드문 일이며 지구 대기권을 통해 소멸하는 대부분의 물체는 보통 흔적도 남지 않고 땅에 닿기 전에 불타서 소실된다. 대부분의 우주선, 발사체, 운영 하드웨어는 재진입과 관련된 위험을 제한하도록 설계됐다. 유럽 우주국에 따르면 우주 기관들은 단일 무연소 재돌입 사고에 대한 사상자 발생 위험 기준치를 1만분의 1로 설정하고 있다. 우주 산업이 계속 성장함에 따라 규칙을 준수하는 사람들을 모니터링 하는 것이 더 어려워질 수 있으며, 이는 결국 새로운 규제로 이어질 수 있다.
-
- 산업
-
국제우주정거장 폐기 배터리, 지구 대기권 재돌입…위험성 논란
-
-
[신소재 신기술(10)] 쓰레기 아닌 자원! 세탁 세제로 플라스틱 용기 재활용 시대 열리다
- 영국에서 액체 세탁 세제로 플라스틱을 재활용하는 기술이 개발됐다. 과학 기술 전문매체 더쿨다운(TCD)은 10일(현지시간) 영국 킹스 칼리지 런던의 과학자들이 세탁 세제를 사용해 플라스틱을 분해하여 재활용할 수 있는 새로운 방법을 개발했다고 보도했다. 이 연구는 일회용 플라스틱의 일반적인 유형인 폴리락틱산(PLA)에 초점을 맞췄다. 킹스 칼리지 런던의 연구원들은 극한의 열을 사용하지 않고도 PLA를 분해할 방법을 찾던 중 대부분의 세탁 세제에서 흔히 발견되는 칸디다 안타르크티카 리파제 B(Candida antarctica lipase B·CALB)라는 효소를 발견하고 이를 변형해서 이온성 액체에 용해시켰다. 연구팀은 CALB 용액에 플라스틱 컵을 담근 후 24시간이 지나면 플라스틱이 완전히 녹는 것을 확인했다. 이 연구 결과는 과학 저널 셀 물리 과학 보고서(Cell Reports Physical Science)에 게재됐다. 폴리락틱산(Polylactic Acid, PLA)은 옥수수 전분과 사탕수수와 같은 식물성 자원에서 추출한 락틱산을 중합하여 만들어지는 가장 일반적인 상업용 생분해성 플라스틱이다. 그러나 일단 플라스틱으로 바뀌면 생분해되지 않고 매립지를 막거나 바다에 버려지게 된다. PLA는 석유 기반 플라스틱과 달리 식물로부터 얻어지므로 재생 가능한 자원을 사용하며, 사용 후에는 자연 조건 하에서 미생물에 의해 분해되어 이산화탄소와 물로 환원되는 특성을 갖는다. 이로 인해 환경 친화적인 대안으로 주목받으며, 일회용품, 포장재, 섬유, 의료 분야 등 다양한 용도로 사용돼 왔다. 하지만, PLA의 분해 속도는 환경 조건(온도, 습도, 미생물의 존재)에 따라 크게 달라질 수 있다. PLA는 산업적 규모의 퇴비화 시설에서는 빠르게 분해되지만, 자연 상태에서는 분해되는 데 수년이 걸릴 수 있다. 또한, PLA의 생산 과정에서 사용되는 식물 자원이 식량으로 사용될 수 있는 농작물을 사용한다는 점에서 지속 가능성에 대한 논쟁이 뜨거웠다. 연구팀은 "환경에 플라스틱 쓰레기가 쌓이는 것은 생태학적 재앙이며, 이를 해결하기 위해 다양한 접근 방식이 필요하다"고 설명했다. 인류세(Anthropocene)에 따르면 연구팀 중 한 명인 알렉스 브로건 화학과 교수는 "폴리락틱산은 제대로 재활용할 방법이 없기 때문에 선택했다"고 말했다. 브로건 교수는 "우리의 (기술) 개발로 90°C에서 40시간 이내에 플라스틱을 구성 요소로 전환할 수 있게 되었다"고 설명했다. 다음 연구 단계는 CALB 용액에 용해된 플라스틱을 재활용하기 위해 용도를 변경하는 방법을 알아내는 것이다. 브로건 교수는 "현재 엔지니어들과 협력하여 파쇄와 같은 보다 정밀한 전처리를 통해 이 공정을 개선하여 더 큰 규모로 작업할 수 있는 방법을 모색하고 있다"고 말했다. 그는 이어 "우리가 보여줘야 할 주요 개선 사항은 분해된 플라스틱으로 실제로 플라스틱을 다시 만들 수 있다는 점이며, 이를 통해 순환 고리를 끊는 것"이라고 강조했다.
-
- 포커스온
-
[신소재 신기술(10)] 쓰레기 아닌 자원! 세탁 세제로 플라스틱 용기 재활용 시대 열리다
-
-
[신소재 신기술(9)] 땅콩 껍질로 리튬 이온 배터리 생산 기술 개발
- 중국 과학자들이 땅콩 껍질을 활용하여 리튬 이온 배터리를 생산하는 새로운 기술을 개발했다. 이 연구는 폐기물 활용과 리튬 이온 배터리 성능 개선이라는 두 가지 문제를 동시에 해결했다. 과학기술 전문 매체 더 쿨다운은 지난 5일(현지시간) 중국 과학기술대학교 연구팀이 땅콩 껍질에서 추출한 산화철을 이용하여 리튬 이온 배터리 음극을 제조하는 새로운 방법을 개발했다고 전했다. 연구 결과 땅콩 껍질 기반 음극은 높은 전기 용량과 우수한 사이클 안정성을 보였다. 게다가 떵콩 껍질 기반은 기존 흑연 기반 음극보다 저렴하고 친환경적이다. 이 연구 결과는 지난해 11월 14일 에너지 저장 기술과 시스템에 관한 연구를 다루는 국제 학술지 '저널 오브 에너지 스토리지(Journal of Energy Storage)'에 게재됐다. 리튬 이온 배터리는 양극과 음극(각각 양전극과 음전극) 사이에서 리튬 이온을 이동시켜 작동한다. 현재 대부분의 리튬 이온 배터리 음극은 흑연, 규소, 또는 이 둘의 복합체와 같은 탄소 기반 물질로 제조된다. 그러나 리튬 이온 배터리 연구에 종사하는 과학자들은 이러한 기존 소재보다 더 우수한 물질을 개발할 수 있다고 기대해 왔다. 땅콩 껍질 기반 음극, 높은 전기 용량 지녀 또 다른 학술지 '응용 표면 과학 언드밴스(Applied Surface Science Advances)' 저널에 게재된 「리튬 이온 전지용 음극 재료: 리뷰」라는 제목의 연구 논문에서 연구팀은 "흑연 음극은 용량이 적고 안전상의 문제가 있다는 것이 잘 알려져 있다"고 지적했다. 연구팀은 이러한 문제를 해결하기 위해 "다음 세대 리튬 이온 전지용 새로운 음극 재료로서 많은 고성능 음극 재료들이 연구되고 있다"고 덧붙였다. 이같은 상황에서 최근 개발된 음극 재료 중 하나가 바로 땅콩 껍질을 활용한 것이다. 연구팀은 땅콩 껍질이 저렴하다는 점에서 재료로 매력적이라고 설명했다. 연구 논문에서 저자들은 "싸고 반복 성능을 개선하는 데 적합한 열분해 공정을 위한 탄소 원천으로 저렴한 원료를 찾기 위해 노력했다"고 밝혔다. 폐기되는 유기물질인 땅콩 껍질을 활용하여 리튬 이온 배터리를 제조하는 것은 두 가지 문제를 동시에 해결하는 훌륭한 방법이다. 이는 배터리의 효율, 안전성 및 비용을 개선하는 데 도움이 될 뿐만 아니라 식품 폐기물 문제 해결에도 기여한다. 땅콩 껍질을 이용해 배터리를 만들면 쓰레기 매립지에 폐기되어 지구 온난화 가스를 배출하는 대신 유용한 자원으로 활용될 수 있다. 연구팀은 또한 대나무, 흰목이버섯의 일종인 트레멜라(tremella), 뽕잎, 목재, 녹차 등에서 추출한 탄소 함유 물질 등을 사용해 동일한 실험을 진행했다. 감귤 껍질로 리튬 배터리 재활용 비슷한 맥락에서 또 다른 연구팀은 최근 감귤류 껍질을 이용해 리튬 배터리를 재활용하는 방법을 개발했다. 싱가포르 난양 기술 대학교(Nanyang Technological University·NTU) 과학자들은 감귤 껍질을 활용해 리튬 배터리를 재활용하는 기술을 개발했다. 새로운 방법은 과일 껍질을 이용해 사용한 배터리에서 귀금속을 추출한 다음 새 배터리에 재사용할 수 있었다. 이는 리튬 배터리를 재활용하는 가장 환경 친화적인 방법일 수도 있다. 이 연구팀의 일원인 마다비 스리니바산(Madhavi Srinivasan) 교수는 "현재 산업적으로 전자 폐기물을 재활용하는 과정은 에너지 집약적이며, 유해한 오염 물질과 액체 폐기물을 배출하므로 전자 폐기물의 양이 증가함에 따라 친환경적인 재활용 방법이 시급히 필요하다. 우리 팀은 생분해성 물질로 재활용하는 것이 가능하다는 것을 입증했다"며 "이러한 발견은 우리의 기존 작업을 기반으로 한다"고 설명했다. NTU 팀은 극한의 온도를 요구하지 않고 오렌지 껍질과 감귤류에서 발견되는 약한 유기산인 구연산만을 사용하여 산업 재활용 공정과 동일한 결과를 얻을 수 있었다.
-
- 포커스온
-
[신소재 신기술(9)] 땅콩 껍질로 리튬 이온 배터리 생산 기술 개발
-
-
[신소재 신기술(8)]치즈 부산물로 폐전자제품에서 금 캐내기…획기적인 친환경 기술 개발
- 스위스 연방공과대학(ETH Zurich) 연구팀은 치즈 제조공정 부산물로 폐전자제품에서 금을 추출하는 획기적인 친환경 기술을 개발했다. 지난 4일(현지시간) 과학 기술 전문매체 퓨처리즘에 따르면 스위스 연구팀은 식품 산업 부산물을 기반으로 하는 지속 가능한 방법으로 전자 쓰레기에서 귀금속을 추출하는 새로운 방법을 고안했다. 이 방법은 경제적으로도 매우 효과적이다. 연구팀은 단 1달러의 투자로 50달러 가치의 금을 생산할 수 있다고 추산했다. 특히 주목할 만한 점은 이 과정이 매우 친환경적이라는 것이다. 연구팀은 치즈 제조 과정에서 생성되는 단백질이 풍부한 부산물로 만들어진 단백질 섬유 스폰지가 폐전자제품에서 금을 추출하는 데 유용하게 사용될 수 있다는 사실을 발견했다. 공동 저자이자 ETH 취리히의 라파엘레 메진가(Raffaele Mezzenga) 교수는 성명에서 "제가 가장 좋아하는 사실은 식품 산업 부산물을 사용해서 전자 쓰레기에서 금을 얻었다는 것"이라면서 "이보다 더 지속 가능한 것은 없다"고 말했다. 연구팀은 저널 '어드밴스트 머티리얼스(Advanced Materials)'에 발표된 새로운 논문에서 20개의 오래된 컴퓨터 마더보드(motherboard, CPU와 주기억장치 및 주변 장치 접속을 위한 소켓을 탑재한 기판으로 메인보드라고도 함)에서 450mg(밀리그램)의 22캐럿(91.67%의 순금) 금 덩어리를 회수할 수 있었다고 밝혔다. 이를 위해 연구팀은 산성 조건과 고온에서 유청 단백질을 변성시켜 단백질 나노섬유 슬러리(slurry)를 만들었다. 그런 다음 이 젤을 건조시켜 스폰지를 제작했다. 20개의 마더보드의 금속 부품을 용해하고 용액에서 이온화한 후 스폰지를 용액에 넣어 금 이온을 끌어당겼다. 연구팀은 스펀지를 가열하여 수집된 이온을 조각낸 다음 작은 금덩어리로 녹여냈다. 이 450밀리그램 덩어리는 91% 금과 9% 구리로 구성됐다. 이 금은 현재 온스당 가격으로는 약 33달러에 해당한다. 연구팀에 따르면, 이 기술의 에너지 비용이 회수 가능한 금의 가치에 비해 매우 낮은, 50분의 1에 불과하다고 한다. 공정을 대규모로 확장할 경우 상당한 경제적 이익을 가져올 수 있다. 현재 연구진은 변형 가능한 스펀지를 제작하기 위해 다른 단백질이 풍부한 부산물도 탐색중이다. 세계보건기구(WHO)에 따르면, 전자 폐기물은 전 세계에서 가장 빠르게 증가하는 고형 폐기물 중 하나로, 매년 수백만 대의 전자 기기가 폐기되고 있다. 이러한 폐기물은 적절히 처리되지 않을 경우 환경은 물론 인간 건강에도 해로울 수 있다. ETH 취리히 대학 연구팀의 활용 사례처럼 전자 폐기물 재활용을 촉진하는 것은 환경 보호와 자원 회수 측면에서 긍정적인 영향을 미칠 수 있다.
-
- 포커스온
-
[신소재 신기술(8)]치즈 부산물로 폐전자제품에서 금 캐내기…획기적인 친환경 기술 개발
-
-
[퓨처 Eyes(25)] 지구 저궤도에 야구 공 크기 물체 3만 개 떠다닌다⋯우주 쓰레기, 인류 미래 위협
- 지구 상공에 위성을 포함해 약 3만 개의 물체가 돌고 있는 것으로 나타났다. 천문학자들은 스푸트니크 발사 이후 약 70년이 지난 현재 수많은 기계가 우주를 날아다니면서, 이들 공해 물질로 인해 지상 망원경으로 다른 은하계를 연구하는 것이 불가능해질까 우려하고 있다. CNN은 지난 21일 더 큰 문제는 우주 쓰레기라며 야구공 크기 이상의 약 3만 개의 물체가 지구 상공 수백 마일에 걸쳐 총알의 10배 속도로 날아다니고 있다고 전했다. 1957년 10월 4일, 러시아 스푸트니크(Sputnik) 1호 인공위성이 로켓에 실려 우주를 향해 날아갔다. 무게 약 83㎏의 금속구 형태의 스푸트니크 1호는 타원형의 지구 제궤도로 발사한 세계 최초의 인공위성이었다. 당시 미소 냉전 시대에 쏘아 올린 이 위성은 이후 인류의 우주시대와 우주경쟁의 방아쇠를 당겼다. 미 국립해양대기국(NOAA)은 최근 최초로 고공 항공기로 성층권 시료를 채취해 새로운 과학적 사실을 발견했다. 이에 따르면 영리적인 우주 경쟁은 측정 가능한 방식으로 하늘을 변화시키고 있으며 오존층과 지구 기후에 잠재적으로 해로운 결과를 초래할 수 있다. NOAA 화학 과학 연구소의 연구 물리학자인 토리 손베리(Troy Thornberry)는 지구 저궤도를 돌고 있는 우주 쓰레기를 포함한 물체에 대해 "우리는 인간 우주 교통의 지문을 성층권 에어로졸에서 볼 수 있다"고 말했다. 그는 "우리는 이전에는 없었던 많은 물질을 성층권에 추가하는 것을 고려하고 있으며, 우리가 우주에 넣는 물질의 순수 질량도 고려하고 있다"고 덧붙였다. 연구에 따르면 현재 상층 대기의 입자 중 10%는 궤도를 벗어나고 불타는 로켓이나 위성에서 나온 금속 조각을 포함하고 있다. 보고서는 인류가 위성에서 내려오는 정보에 점점 더 의존하게 되면서 향후 수십 년 동안 인공 쓰레기가 성층권 에어로졸의 50%를 차지하게 될 것이라고 예측했다. 우주 탐사선, 새로운 화석 연료 배출물 추가 이러한 변화가 오존층에 어떤 영향을 미칠지는 불확실하지만 이미 위기에 처한 기후 시스템에 대한 영향은 복잡하다. 미 항공우주국(NASA·나사)의 스페이스 셔틀에서 사용된 고체 로켓 부스터에서 스페이스X 로켓의 연료를 케로신으로 전환한 것은 모든 로켓 발사 시 엄청난 양의 새로운 화석 연료 배출물을 추가했다. 오래된 위성들이 궤도 이탈 과정에서 연료로 인한 쓰레기 구름을 만들고 있다. NASA 관계자들은 지구를 둘러싼 우주 쓰레기를 나타내는 점들은 크기가 정확하지 않지만 "매년 혼잡 상태는 악화되고 있다"고 말했다. 과학자들은 결국 지구는 지구 고유의 가시적인 고리를 갖게 될 것이라고 이론화했다. 다른 몇몇 행성처럼 얼음과 우주 암석 조각 대신 이 고리는 우주 쓰레기로 만들어질 것이라는 경고다. 손베리는 CNN에서 "우리는 수천 개의 위성으로 구성된 별자리를 말한다. 각각 1톤 정도 무겁고 지구로 떨어질 때 운석처럼 작용한다"고 말했다. 현재 궤도 상공에 8300개 이상의 위성이 있으며 앞으로 얼마나 많은 위성이 추가될지에 대한 예측은 크게 달라진다. 300개 이상의 상업 및 정부 기관은 2030년까지 47만8000개의 위성을 발사할 계획이라고 발표했지만 이 수치는 과대추정이라는 지적이 이어지고 있다. 미국 정부 책임부는 향후 6년 동안 5만8000개의 위성이 발사될 것이라고 예측했다. 다른 분석가들은 궤도에 진입할 가능성이 있는 수치는 2만 개 보다 훨씬 적다고 추정했다. 케슬러 증후군 스푸트니크 발사 이후 미국과 구소련은 우주 탐사 경쟁을 벌였다. 미국 우주 비행사 닐 암스트롱은 1969년 7월 인류 최초로 달에 발을 디디기에 이르렀다. 1979년 NASA 과학자 도널드 케슬리(Donald Kessler)가 "인공 위성의 충돌 빈도: 쓰레기 벨트의 생성"이라는 제목의 논문을 발표하기 전까지는 거기 도달하기 위해 만들어진 궤도 쓰레기는 거의 고려되지 않았다. 궤도 쓰레기 교통 체증은 '케슬러 증후군'에 대한 두려움을 다시 불러일으켰다. 영화 '그래비티'(2013년)에서 묘사된 케슬러 증후군은 지구 궤도가 너무 혼잡해져서 결국 더 많은 쓰레기가 발생해 더 많은 충돌을 초래하고, 발사가 불가능해지는 악순환이 만들어질 것이라는 우려를 간결하게 표현한 용어다. 궤도 쓰레기 무려 1억 개 전체적으로 연필심 크기의 인공 쓰레기가 1억 개 이상 궤도를 돌고 있으며 이는 우주 사업에서 발생하는 주요 위험이다. NASA에 따르면, 최소 야구공 크기의 물체 약 2만5000개와 훨씬 더 작은 물체를 포함하면 1억 개 이상이 지구를 돌고 있다. 하늘에는 최대 총알 속도의 10배까지 이동할 수 있는 9000톤의 쓰레기가 떠다니고 있어, 로켓 및 장비 발사는 재앙적인 결과를 초래할 수 있다고 관계자들은 경고했다. 전문가들은 저궤도에서는 심지어 작은 쓰레기 조각이 시속 3만7000km 이상의 속도로 우주를 통과하여 국제 우주 정거장(ISS)의 창문을 깨뜨릴 수도 있다고 지적했다. 스페이스X는 최근 3만개의 스타링크 위성을 추가로 투입하기 위해 신청했으며, 현재 이미 5000개 이상의 대형 물체가 소유한 위성이다. 2023년 가디언 보고서에 따르면, 통제되지 않는 우주 쓰레기가 지속적으로 늘면서 천문학자들은 빛 공해로 인해 망원경으로 밤하늘을 관측하는 데 방해를 받고 새로운 발견을 하는 능력이 저하될 수 있다고 우려하고 있다. 또한, 더 많은 위성이 민감한 천문 관측 장비와 라디오 방해를 일으킬 수 있다는 우려도 있다. 론 로페즈는 CNN에 "10년 전에는 우리 창립자가 우주 쓰레기 이야기를 하다니 미쳤다고 생각했다"고 말했다. 로페즈는 '궤도 쓰레기 제거'라는 새로운 사업분야에서 시장 점유율을 경쟁하는 일본 기업 아스트로스케일(Astroscale)의 미국 지사 사장이다. 그는 "하지만 지금은 우주 지속 가능성과 쓰레기 문제에 대한 패널이나 일련의 강연 없이는 우주 컨퍼런스에 참석할 수 없다"고 전했다. 로페즈는 자신의 회사가 쓰레기 트럭, 궤도 재활용 센터 및 '우주 순환 경제'를 구축하는 데는 아직 거리가 멀다고 인정하지만, 아스트로스케일은 2022년 강력한 자석을 장착한 위성을 사용해 동일한 3년 임무에서 발사된 이동 목표물을 포착했다. 그는 "이것은 도킹 및 다른 위성과의 랑데뷰를 수행하는 데 필요한 많은 기술을 시연한 최초의 상업적으로 자금이 조달된 우주선이었다. 우리는 이들을 이동시키고, 결국에는 연료를 보급하거나, 어떤 경우에는 쓰레기 문제를 해결하기 위해 궤도를 이탈시킬 수도 있다"고 말했다. 지난 2월 18일 항공우주 회사 로켓 랩(Rocket Lab)이 뉴질랜드에서 발사한 두 번째 아스트로스케일 임무는 우주 쓰레기를 자세히 조사할 예정이다. 일본 정부와 민간 기업이 공동으로 추진하는 우주쓰레기 제거 기술 개발 프로젝트 ADRAS-J는 2009년 저궤도에 남겨진 로켓 단계의 움직임을 관찰할 계획이다. 2023년 11월 22일 발사된 ADRAS-J 위성은 2024년 2월 22일 목표 쓰레기와 성공적인 랑데뷰를 마쳤다. 아스트로스케일의 임무는 카메라와 센서를 사용하여 로켓 쓰레기를 연구하고 궤도에서 제거하는 방법을 파악하는 것이다. 일본 목조 위성 제작 한편, 올 여름 일본과 NASA 과학자들이 대부분 목재로 만든 세계 최초의 생분해 위성을 발사할 때 예정이다. 이는 스푸트니크 이후 참으로 작은 한 걸음이다. 일본의 과학자들이 우주 오염 문제에 대응하기 위해 세계에서 가장 독특한 우주선 중 하나를 개발했다. 이는 목재로 제작된 소형 위성 리그노샛(LignoSat)으로, 목련 나무를 사용해서 제작됐다. 지난 18일 야후에 따르면, 커피 머그잔 크기의 소형 리그노샛 위성은 국제 우주 정거장에서 실시된 실험에서 안정성과 균열 저항성이 뛰어난 것으로 확인됐다. 교토 대학과 스미토모 임업(Sumitomo Forestry)의 연구팀은 생분해성 재료인 목재를 사용하여 현재 금속으로 제작되는 위성에 대한 환경친화적인 대안을 모색하기 위해 이 위성을 제작했다. 교토 대학의 일본 우주 비행사이자 항공 우주 공학자인 타카오 도이(Takao Doi) 교수는 지구 대기권으로 재진입하는 위성이 연소되면서 작은 알루미나 입자를 생성하고, 이 입자들이 대기 상층부에 오랜 기간 동안 머물면서 결국 지구 환경에 영향을 미친다고 설명했다. 올해 여름, 이 목재 위성은 미국의 로켓에 실려 우주로 발사될 예정이다. 매년 약 2000개 이상의 우주선이 발사될 것으로 예상되는 가운데, 재진입 시 연소되면서 대기 상층부에 침착될 수 있는 알루미늄 사용은 곧 심각한 환경 문제를 초래할 수 있다. 캐나다 브리티시 컬럼비아 대학의 과학자들이 실시한 최근 연구에 따르면, 인공위성이 재진입할 때 알루미늄이 오존층에 심각한 피해를 입힐 수 있으며, 지면으로 도달하는 햇빛의 양에도 영향을 미칠 수 있다는 우려가 제기됐다. 하지만, 리그노샛과 같은 목재로 만들어진 위성의 경우, 이러한 문제가 발생하지 않는다. 임무를 마친 후 대기권으로 재진입하며 연소될 때, 오직 생분해성 재료의 미세한 입자만을 생성한다. 한국, 포획 위성 개발 착수 한국 정부는 임무를 완수한 후 우주에서 떠도는 국내 위성들을 회수하여 지구 대기권으로 다시 진입시켜 소멸시키는 '위성 포획' 프로젝트에 착수한다. 과학기술정보통신부는 지난 27일 '우주 물체의 능동적 제어를 위한 선행 기술 개발 사업'의 온라인 설명회에서, 이 기술을 적용한 소형 위성을 개발하고 이를 2027년에 발사 예정인 누리호를 통해 실제 우주에서 테스트할 계획이라고 발표했다. 우주 물체의 능동적 제어 기술은 위성이나 소행성과 같은 우주물체에 접근해 로봇 팔이나 그물을 사용해 이들의 위치나 궤도를 조정하는 기술이다. 이 기술은 우주에서 임무를 마친 채 우주 쓰레기로 전락한 위성들을 포획하여 지구 대기권으로 안내해 소각 처리하는 데 활용될 수 있으며, 최근에는 위성에 연료를 추가로 공급하거나 수리를 진행하고, 궤도를 변경하여 임무 기간을 연장하는 등의 다양한 용도로 관심을 받고 있다. 과기정통부가 공개한 과제 제안요구서(RFP)에 따르면 이번 프로젝트의 목표는 능동적 제어 기술, 특히 위성 포획 및 지구로의 재진입 기능을 갖춘 500kg 미만의 소형 위성을 개발하여 2027년 누리호의 6차 발사 때 이를 실증하는 것이다. 이 기술은 2027년 기준으로 지구 상공 500km에 위치한 우리별 1, 2, 3호, 과학기술 위성 1호, 국내 대학들의 큐브위성 등의 우주 잔해물을 포획하여 지구 대기권으로 안내해 소멸시키는 능력을 우주에서 직접 검증하는 것을 목적으로 한다. 이 프로젝트에는 2028년까지 총 447억 원의 예산이 할당되어 있으며, 프로젝트 첫 해인 올해에는 25억 원이 투입될 예정이다. 지구, 바다, 그리고 이제는 우주에서도 오염 위기가 분명하게 드러나고 있으며, 우주 쓰레기 문제를 해결하기 위한 국제 협력이 필요한 시기다.
-
- 포커스온
-
[퓨처 Eyes(25)] 지구 저궤도에 야구 공 크기 물체 3만 개 떠다닌다⋯우주 쓰레기, 인류 미래 위협
-
-
애리조나 배린저 운석 구덩이, 빠르게 회전하는 소행성이 만들어낸 신비로운 지형
- 미국 애리조나의 배린저(Barringer Crater) 운석 구덩이는 빠르게 회전하는 소행성이 만들어 낸 결과물이라는 분석이 나왔다. 지구는 달이나 화성과 같이 충돌 흔적이 드물다. 이는 지구를 중간권에서 보호하는 대형 운석체로 인한 것이다. 그렇지만 완전히 충돌이 불가능한 것은 아니다. 최근의 충돌 사례 중 하나는 애리조나 북부 사막지역 플래그스태프 동쪽으로부터 약 37마일 떨어진 곳에 위치한 배린저 충돌지다. 이 충돌지는 약 5만년 전에 형성되었지만, 건조한 환경 덕분에 충돌 현장이 놀랍도록 잘 보존되어 있다. 산업 관련 매체 파퓰러 메카닉스(popularmechanics)는 지난 26일(현지시간)에 브라질 캠피나스 대학교의 과학자들이 컴퓨터 시뮬레이션을 통해 미국 애리조나 북부 사막 지역의 배린저 운석 구덩이를 분석한 결과에 대해 보도했다. 배린저 운석 구덩이는 미국 애리조나 주 윈슬로 시의 서쪽에 있는 거대한 운석 구덩이로, 직경은 약 1.2km이며, 깊이는 200m, 낙하한 운석의 직경은 약 100m로 추정된다. 연구팀은 논문에서 "다양한 결합 응력, 초기 회전 속도, 초기 높이에서 회전하는 입자 발사체가 응집력 없는 입자와 충돌하는 이산 요소 방법 계산을 수행했다"며 "우리의 연구 결과는 발사체 물질의 분산과 지구 및 다른 행성 환경에서 발견되는 다양한 충돌구 모양을 밝혀준다"고 말했다. 충돌구는 모두 동일한 형태를 띠지 않는다. 일부는 깊고 좁으며(충돌구 내부에는 다양한 지형이 존재함), 다른 일부는 배린저 운석 구덩이처럼 넓고 얕다. 일반적으로 우리가 충돌 현장으로 알고 있는 모습이다. 연구팀은 이러한 다양한 구멍 형성 과정을 이해하기 위해 2000개의 작은 구체로 이루어진 가상 발사체를 사용해 시뮬레이션을 만들었다. 이 디지털 우주 쓰레기는 그 다음 지구 표면을 대신하는 입자층에 떨어뜨렸다. 이 과정을 통해 연그팀은 빠르게 회전하는 소행성이 배린저 운석 구덩이와 유사하게 넓고 얕은 지형을 형성한다는 것을 발견했다. 야구 용어를 빌려 설명하자면, 캐년 디아블로라는 별명을 가진 운석은 스핀이 없는 빠른 공(fastball)보다는 악한 커브볼(curveball)에 더 가깝다고 할 수 있다. 캐년 디아블로는 애리조나 북부의 투 건스 근처에 있는 협곡이다. 그러나 캐년 디아블로를 형성한 구성 암석은 느슨하게 결합되어 있었으며, 운석이 지표에 충돌할 때 일부 충돌 에너지가 암석 간 결합을 깨트리는 데 사용됐다. 암석 조각들은 흩어졌지만, 충돌 에너지는 적었고 깊이까지 파고들지는 않았다. 빠르게 회전하는 소행성은 보다 깊은 충돌구를 형성할 수 있지만, 배린저 운석 구덩이와 달리 구성물은 단단하게 결합되어 있어야 한다. 배린저 운석 구덩이는 세계적으로, 심지어 미국 내에서도 유일한 커브볼 충돌 지형이 아니다. 공룡이 지구를 걷던 1억 년 전에 형성된 테네시 주 게인즈버로의 플린 크리크 충돌구도 비슷한 커브볼 유형의 운석에 의해 생성되었을 가능성이 높다. 태양계 전체에는 다양한 '투구' 특성을 지닌 충돌 지형이 너무 많아서 우주는 최소한 명예 투수상(Cy Young Award, 사이영 상) 후보라고 할 수 있다. 운석의 충돌 과정은 운석의 속도, 회전 속도, 구성 물질의 결합 강도 등에 따라 충돌구 형태가 달라진다. 빠르게 회전하는 소행성은 주로 넓고 얕은 충돌구를 만들 가능성이 높으며, 구성물이 단단하게 결합된 경우 더 깊은 충돌구가 형성될 수 있다.
-
- 생활경제
-
애리조나 배린저 운석 구덩이, 빠르게 회전하는 소행성이 만들어낸 신비로운 지형
-
-
[퓨처 Eyes(24)] 숨겨진 위험, 태반에서 미세 플라스틱 발견…우리 몸은 얼마나 오염되었을까?
- 인체 태반 조직에서 미세 플라스틱이 발견됨에 따라 현재와 미래 세대의 건강에 대한 깊은 염려가 일고 있다. 크기가 5mm 미만인 미세 플라스틱은 주변 환경뿐만 아니라, 현재까지 검사된 인체의 거의 모든 부위에서 발견되어 충격을 주고 있다. 20일(현지시간) 어스닷컴(EARTH.com)에 따르면, 뉴멕시코 대학교 보건과학 대학의 리전트 교수인 매튜 캄펜(Matthew Campen) 박사 연구팀은 62명의 개인의 태반 샘플을 면밀하게 분석한 결과, 모든 샘플에서 미세 플라스틱이 검출되었다고 발표했다. 태반 샘플 조사 결과, 놀랍게도 모든 시료에서 미세 플라스틱이 발견됐다. 검출량은 g당 6.5~790마이크로그램에 달하며, 상당한 차이를 보였다. 캠펜 박사는 "초반에는 수치가 미미해 보일 수 있지만, 환경 내 미세 플라스틱 양의 지속적인 증가는 인체 건강에 상당한 영향을 미칠 수 있다"고 강조했다. 연구팀은 최첨단 분석 방법을 활용하여 인체 조직 내 미세 플라스틱을 정확하게 정량화했다. 검출된 플라스틱 중 가장 높은 비율을 차지한 것은 폴리에틸렌(54%)이었으며, 폴리염화비닐(PVC)과 나일론 등이 각각 10% 가량 차지했다. 연구팀은 1950년대 이후 급증한 플라스틱 사용으로 인해 엄청난 양의 플라스틱 쓰레기가 발생했으며, 이것이 미세 플라스틱으로 분해되어 생태계를 오염시키고 있다고 지적했다. 특히, 태반은 단 8개월만에 형성 및 발달하는 기관임에도 불구하고 미세 플라스틱이 검출된 것은 플라스틱 오염 문제의 심각성을 여실히 보여주는 증거이다. 연구팀은 향후 미세 플라스틱의 인체 건강 영향에 대한 연구를 지속할 계획이지만, 즉각적인 조치가 시급하다고 강조했다. 플라스틱 생산량은 10~15년마다 두 배로 증가할 전망이어서 상황은 더욱 악화될 것으로 예상된다. 인체 태반에서 미세 플라스틱이 검출된 것은 플라스틱 오염의 심각성을 여실히 보여주는 사건이며, 인체 건강에 미칠 수 있는 영향에 대한 경고로 작용한다. 이 중요한 연구 결과는 미세 플라스틱이 우리 몸에 미치는 영향을 부각시키고, 플라스틱 쓰레기를 줄이고 지속 가능한 대안을 모색하기 위한 집단적 노력의 필요성을 강조했다. 전체 연구는 톡시로지컬 사이언스(Toxicological Sciences) 저널에 게재됐다. 건강과 경제에 미치는 플라스틱의 숨겨진 비용 플라스틱에 포함된 유해 화학 물질이 경제 및 건강에 심각한 영향을 미치면서 미국에서는 연간 약 2500억 달러의 비용이 지출되고 있다고 EHN이 보도했다. 연구의 주도는 소아과 의사이자 뉴욕대학교 전염병 및 환경 건강 과학부 교수인 레오나르도 트라산데(Leonardo Trasande) 박사가 맡았다. 간단히 말해서, 이 연구는 PFAS, 프탈레이트, BPA와 같은 화학 물질의 위험성을 강조하며, 이러한 화학 물질이 호르몬 파괴 및 질병 위험 증가를 포함한 다양한 건강 문제와 연결되어 있음을 지적한다. 연구자들은 이러한 건강 위험을 완화하기 위해 플라스틱 사용을 줄이고 재활용 방법을 개선해야 할 긴급한 필요성을 강조한다. 경제적 피해에는 직접적인 의료 비용과 건강 문제로 인한 생산성 감소뿐만 아니라 환경 오염 정화 비용, 의료 시스템 부담 증가 등 광범위한 사회적 영향이 파급된다. 레오나르도 트라산데, 소아과 의사이자 NYU 환경 위험 조사 센터 소장은 "우리 모두는 우리 몸 속에 태평양 쓰레기 지대를 조금씩 가지고 있습니다. 그것은 우리에게 해를 끼치고 호르몬을 교란시키며 질병과 장애를 유발합니다"고 말했다. 나노플라스틱, 바다에서 처음 발견 TCD는 과학자들이 미세 플라스틱보다 더 작은 플라스틱 입자인 나노플라스틱을 바다에서 처음으로 직접 관찰했다고 발표했다. 새로운 연구에서는 새로운 첨단 탐지 기술을 사용하여 바닷물에서 나노플라스틱(길이가 1마이크로미터 미만인 플라스틱 입자)의 존재를 증명했다. 퓨처리티는 연구팀이 중국, 한국, 미국, 멕시코만 연안의 바닷물에서 이 작은 나노 입자의 선명한 이미지를 확보했다고 자세히 설명했다. 퓨처리티에 따르면 연구팀은 나일론, 폴리스티렌, 폴리에틸렌 테레프탈레이트(PET)로 만든 나노플라스틱을 발견했다. 이러한 폴리머는 식품 포장, 물병, 의류, 어망에 사용되는 소재다. 이 연구는 나노플라스틱이 이미 우리 식생활에 깊숙이 스며들었다는 사실을 보여주는 중요한 증거다. 최근 연구에 따르면 생수에는 리터당 수십만 개의 나노플라스틱이 포함되어 있는 것으로 나타났다. 또 다른 과학자 팀은 해산물, 돼지고기, 닭고기, 소고기, 두부를 포함한 단백질의 90%에서 나노플라스틱과 더 큰 미세 플라스틱 입자를 발견했다. 나노플라스틱의 위협: 인체와 생태계에 미치는 심각한 영향 블룸버그는 나노 입자가 인체 세포를 뚫고 혈류에 들어갈 수 있을 만큼 작기 때문에 내부 장기에 영향을 미칠 가능성이 있다고 보도했다. 또한 이 작은 입자는 태반을 통과하여 태아의 몸속으로 들어갈 수 있다. 하지만 나노플라스틱의 위험에 처한 대상은 인간뿐만이 아니다. 국제자연보호연맹에 따르면 매년 최소 1400만 톤의 플라스틱 쓰레기가 바다로 유입되고 있다. 플라스틱이 분해되면서 미세 플라스틱과 나노 플라스틱으로 변해 해양 동물과 생태계를 위협할 수 있다. 퓨처리티의 연구원 중 한 명인 텅페이 루오(Tengfei Luo)는 "나노 플라스틱은 더 큰 플라스틱 입자보다 잠재적으로 더 독성이 강합니다"라고 말했다. 루오는 "크기가 작기 때문에 살아있는 유기체의 조직에 더 잘 침투할 수 있다"고 설명했다. 예를 들어, 국제원자력기구에서 2020년 요약한 연구에 따르면 미세 플라스틱과 나노 플라스틱이 물고기의 행동 및 신경 기능, 신진대사, 장내 미생물 다양성, 장 투과성 등 생물학적 기능에 영향을 미치는 것으로 나타났다. 나노플라스틱 문제 해결을 위한 노력: 개인과 과학의 협력 세계자연보호연맹(IUCN)에 따르면 매년 4억 톤 이상의 플라스틱이 생산되고 있다. 에펠탑의 무게는 약 1만 톤이다. 플라스틱 4억 톤은 에펠탑 4만개가 만들어지는 것과 같은 양이다. 생산된 플라스틱 중 상당량이 바다로 유입된다. 이러한 플라스틱은 분해되어 미세 플라스틱과 나노 플라스틱으로 변해 인체와 생태계에 심각한 위협을 가한다. 페트병은 다른 플라스틱 용기로 대여섯 번 재활용 할 수 있지만 재활용 폴리에스터로 만든 티셔츠나 스커트는 두 번 다시 재활용 할 수 없다. 나노 플라스틱 문제를 해결하기 위해서는 개인과 과학의 협력이 필요하다. 개인은 플라스틱 소비를 줄이는 노력을 실천해야 한다. 가루 비누와 세제로 바꾸기, 빈 제품 용기의 재활용, 일회용 플라스틱 물병과 비닐 식료품 봉투 사용하지 않기 등의 작은 노력들이 모여 큰 변화를 만들 수 있다. 과학자들은 플라스틱 문제를 해결할 수 있는 창의적인 기술을 개발하고 있다. 예를 들어, 최근 연구자들은 일회용 플라스틱 병을 만드는 데 흔히 사용되는 폴리에틸렌 테레프탈레이트를 분해하는 인공 슈퍼 단백질을 개발했다. 이러한 기술 개발은 나노플라스틱 오염 문제 해결에 중요한 역할을 할 것으로 기대된다.
-
- 포커스온
-
[퓨처 Eyes(24)] 숨겨진 위험, 태반에서 미세 플라스틱 발견…우리 몸은 얼마나 오염되었을까?
-
-
[퓨처 Eyes(23)] 콘크리트보다 강하고 환경친화적인 차세대 건축자재 '페록'
- 기존 콘크리트보다 5배 강하고 이산화탄소(CO₂)를 흡수하는 환경친화적인 건축 자재 페록이 개발됐다. 콘크리트가 건축 자재로 사용되기 시작한 시기는 고대 로마 시대로 거슬러 올라간다. 로마인들은 기원전 3세기경부터 콘크리트를 사용하기 시작했으며, 이를 활용해 수많은 건축물, 교량, 도로 등을 건설했다. 로마 콘크리트는 화산재와 석회석을 혼합한 것으로, 현대 콘크리트의 전신이라 할 수 있다. 그 당시에 건설된 많은 구조물들이 오늘날까지도 남아 있어 그 내구성을 입증하고 있다. 미국 애리조나 대학에서 개발된 '페록(Ferrock)'이라는 새로운 건축 자재가 과학 저널을 통해 최근 또 다시 주목받고 있다. '페록(Ferrock)'은 '철'과 '돌'이 결합된 용어다. 시멘트 대용품으로 사용되는 친환경 건축 자재인 페록은 주로 폐철강 분진과 유리 분쇄물에서 나온 실리카 등 재활용 재료로 생산된다. 철강 분진은 이산화탄소와 반응해 탄산철을 생성하고, 이것이 응고되면 페록이 된다. 미국 매체 쿨다운(TCD)에 따르면 페록은 기존 콘크리트보다 강하면서 환경친화적이라는 특징을 지니고 있어 건물이나 인프라 구조물 설계에 혁신을 가져올 수 있다는 평가를 받고 있다. 강철 분진과 실리카의 혼합물을 철암 및 물과 혼합하고 고농도의 이산화탄소에 노출시키면 페록 경화 과정이 진행된다. 페록의 강도는 일반 포틀랜드 시멘트로 만든 콘크리트의 5배에 달한다. 또한 기존 콘크리트에 비해 더 유연하다. 균열 없이 움직임과 압력을 견디는 페록은 콘크리트에 비해 지진에 의한 압축 하중을 더 많이 견딘다. 일반적으로 페록 강도는 34.5 Mpa(메가파스칼)에서 48 Mpa 사이이며 일부 페록 테스트에서는 69 Mpa에 도달했다. 갓 만들어진 페록은 빠르게 굳으며 최대 강도에 도달하는 데 약 1주일이 걸린다. 페록의 개발은 10여 년 전, 데이비드 스톤 박사 연구원이 시멘트 대체재 개발 대회에서 폐철강 분진을 사용해 우승하면서 시작됐다. 2013년 특허를 획득한 스톤 박사는 '아이언쉘(Iron Shell)' 회사를 설립해 페록 상용화에 나섰다. 스톤 박사는 "실험실에서의 우연한 발견에서 시작됐다"라고 말했다. 보다 지속 가능한 건축 산업 혁신은 짚을 포함한 모든 종류의 재료를 사용하는 전 세계 연구자들의 관심사다. 폐 철강도 바로 여기에 속한다. 건설업계 전문지 사이언스다이렉트(ScienceDirect)에 따르면 페록은 기존 콘크리트보다 압축 강도 13.5%, 인장 강도 20%, 휨 강도 18%가 강하다. 또한 주재료인 철강 분진과 유리 분말을 포함해 페록 제조 과정에 사용되는 재료의 95%는 재활용 재료로 이루어져 비용 효율이 높은 것으로 알려졌다. 아울러 경화 과정에서 특별한 화학 반응을 통해 대기 중 이산화탄소를 흡수해 오염을 줄이는 효과도 있다. 전 세계 시멘트 연간 생산량은 40억 톤이며, 제조 과정에서 지구 대기 오염의 8%를 차지한다고 로이터통신은 전했다. 현재 공개된 페록 사진은 벽돌 모양의 슬라브와 굳어서 벽을 형성하는 슬러리 형태를 보여준다. 보고서는 폐철강 확보 등 과제가 아직 남아있지만 소규모 프로젝트부터 적용 가능하다고 전했다. 페록 외에도 콘크리트보다 더 강한 신소재에 대한 연구는 다양한 분야에서 활발히 이루어지고 있다. 그래핀이나 탄소 나노튜브, 고성능 폴리머,금속 매트릭스 복합 재료 등의 신소재들은 건축, 항공, 자동차 등 여러 산업에서의 응용 가능성을 탐색하고 있다. 먼저 그래핀은 탄소 원자가 2차원 평면상에서 벌집 모양의 격자를 이루는 형태로, 강철보다 약 100배 강하면서도 매우 가벼운 물질이다. 그래핀은 높은 전도성, 유연성, 투명성을 가지며, 이러한 특성으로 인해 전자기기, 에너지 저장 장치, 심지어 건축재료에 이르기까지 광범위한 응용이 기대되고 있다. 탄소 나노튜브(Carbon Nanotubes, CNTs)는 그래핀을 원통형으로 말아 만든 나노스케일의 튜브 형태로, 뛰어난 인장 강도와 탄성 모듈러스를 가지고 있다. 이러한 속성으로 탄소 나노튜브는 항공우주, 군사, 스포츠 용품 등의 고성능 재료에 유용하게 활용될 수 있다. 고성능 폴리머 등 여러 고분자 재료들은 새로운 제조 기술과 결합해 콘크리트보다 훨씬 강하면서도 가벼운 신소재를 만드는 데 사용된다. 이들은 높은 내구성, 우수한 열 저항성 및 화학 저항성을 제공한다. 금속 매트릭스 복합재료(Metal Matrix Composites, MMCs)는 금속을 기반으로 해 다른 금속이나 비금속 재료를 강화재로 추가하여 제작된다. 이러한 복합재료는 원래 금속의 좋은 성질에 강화재의 특성을 더해, 더 높은 강도와 경도, 개선된 내구성을 제공한다. 그밖에 세라믹 매트릭스 복합재료(Ceramic Matrix Composites, CMCs)는 세라믹을 기반으로 하며, 강화재로 탄소 나노튜브나 그래핀 같은 나노물질을 사용할 수 있다. 이들은 높은 온도에서의 안정성, 낮은 밀도, 뛰어난 내마모성 등을 제공한다. 이러한 신소재들은 각각의 독특한 특성으로 인해 콘크리트와 같은 전통적인 건축 재료를 대체하거나, 그 성능을 크게 향상시킬 수 있는 잠재력을 가지고 있다. 연구와 개발이 계속됨에 따라, 페록과 그래핀 등 신소재들의 생산 비용이 절감되고, 더 넓은 적용 범위와 함께 실용화될 것으로 기대된다.
-
- 포커스온
-
[퓨처 Eyes(23)] 콘크리트보다 강하고 환경친화적인 차세대 건축자재 '페록'
-
-
커피 찌꺼기, 모기 퇴치·친환경 활용 꿀팁
- 커피 찌꺼기는 모기 퇴치뿐만 아니라 주방 세제 등 다양한 용도로 사용할 수 있다. 갓 내린 커피의 향은 많은 사람들에게 안락함과 에너지를 전하는 신호로 여겨진다. 뿐만 아니라 사용한 커피 찌꺼기를 냉장고나 신발장에 넣으면 냄새와 습도를 흡수해 준다. 더불어 은은한 커피 향이 퍼져서 쾌적한 분위기를 조성할 수 있다. 미국 온라인 매체 하우스다이제스트(housedigest)는 커피 찌꺼기를 차고에서 활용하는 것이 놀라울 정도로 유용한 방법이 될 수 있다고 소개했다. 이 매체는 커피 찌꺼기가 악취 제거에 도움을 주는 것 뿐만 아니라 차고에 모기가 모이는 것을 방지하는 데도 효과적이라고 설명했다. 차고는 배기 가스, 잔류 페인트, 자동차 냄새 등으로 인해 퀴퀴하거나 불쾌한 냄새가 나는 공간일 수 있다. 이때 커피 찌꺼기는 자연의 방향제 역할을 하여 악취를 흡수하고 중화시킨다. 찌꺼기의 다공성 구조는 스펀지처럼 작용하여 원치 않는 냄새를 흡수하고 중화시킨다는 것. 또한 카페인에서 나오는 질소는 불쾌한 냄새를 흡수하는 데 도움이 된다. 더 나은 향기 분배를 위해서는 통풍구 아래에 커피 찌꺼기를 놓으면 좋다. 모기 퇴치 효과 커피 찌꺼기가 모기 퇴치에 효과적일 수 있다는 의견이 있다. 강한 향이 있는 커피 찌꺼기는 모기들이 싫어하는 냄새로 알려져 있다. 커피 찌꺼기 특유의 톡 쏘는 향이 모기를 막아줄 수 있다는 증거가 있다. 카페인, 산, 그리고 다른 화합물들의 조합은 모기가 싫어하는 냄새를 형성해 커피 찌꺼기가 있는 장소로 모기가 못 오게 만들거나, 모기가 해당 장소에 알을 낳을 가능성을 줄일 수 있다. 이러한 특성은 또한 차고에서 민달팽이, 말벌, 벼룩, 그리고 개미를 퇴치하는 데 도움을 줄 수 있다. 커피 찌꺼기가 모기 퇴치에 효과적인 또 다른 방법은 사람의 냄새를 가리는 특성이 있다. 모기는 인간이 내뿜는 특정 냄새에 끌리며, 커피 찌꺼기는 이러한 냄새를 가리는 데 도움이 되어 모기가 사람을 찾는 것을 더 어렵게 만들 수 있다. 중요한 점은 '신선도' 차고에서 커피 찌꺼기를 사용할 때 염두에 두어야 할 몇 가지 사항이 있다. 그 중에서도 가장 중요한 것은 신선함이다. 최대의 효과를 얻기 위해서는 최근에 양조한 찌꺼기를 선택해 건조해야 한다. 오래된 것이나 축축한 커피 찌꺼기는 효능을 잃고 냄새 흡수나 해충 억제력이 거의 없다. 최악의 경우 곰팡이 포자가 자라도록 조장할 수 있다. 갓 양조하고 말린 커피 찌꺼기를 사용하거나 모기를 멀리하기 위해 찌꺼기를 태우는 것이 더 좋다. 더 큰 효과를 얻기 위해 팬에 넣고 가볍게 구워 더 많은 향을 내고, 그 다음에 입구와 안뜰 주변에 커피 찌꺼기 그릇을 놓아두면 곤충이 들어오는 것을 막을 수 있다. 커피 찌꺼기 스프레이를 만들 수도 있다. 사용한 커피 찌꺼기를 물에 넣고 끓여서 혼합물을 식힌 다음 액체를 스프레이 병에 걸러낸다. 일시적인 보호를 위해 피부나 옷에 뿌릴 수 있다. 커피 찌꺼기 스프레이를 만들 수도 있다. 사용한 커피 찌꺼기를 물에 넣고 끓여서 혼합물을 식힌 다음 액체만 걸러 스프레이 병에 넣는다. 이를 피부나 옷에 뿌리면 일시적으로 보호 효과를 낸다. 사용한 찌꺼기는 퇴비통이나 일반 쓰레기통에 버리는 것이 좋다. 배수구에 버리면 배수관을 막을 수 있어서 주의해야 한다. 이외에도 커피 찌꺼기는 훌륭한 천연 비료로 활용될 수 있다. 커피 찌꺼기에는 식물 성장에 필요한 질소, 칼륨, 인 등의 영양분이 풍부하며, 토양에 섞어주면 토양의 질을 개선하고 식물의 성장을 돕는 데 기여할 수 있다. 또한 세안 시에 사용하면 스크럽 효과를 주어 피부의 노폐물을 제거하고 혈액 순환을 촉진하는 데 도움이 된다. 특히 주방에서 설거지를 위한 세제로 사용할 때 거친 질감이 기름과 음식물 찌꺼기를 효과적으로 제거해 준다.
-
- 생활경제
-
커피 찌꺼기, 모기 퇴치·친환경 활용 꿀팁
-
-
인간이 만들어 낸 인공 암석, 플라스티스톤
- 플라스틱으로 만들어진 새로운 형태의 인공 돌, '플라티스스톤(Plastiglomerate)'이 발견되었다는 소식이 전해졌다. 특히, 태평양 거대 쓰레기 섬(Great Pacific Garbage Patch)의 모습이 담긴 사진들은 플라스틱 폐기물과 해양 쓰레기 문제의 심각성을 여실히 보여준다. 플라스틱은 단순히 버려진 쇼핑백이나 맥도날드 빨대의 형태를 넘어서, 우리의 일상생활 속 깊숙이 침투해 있을 수 있다는 점에서 주목받고 있다. 산업 관련 매체 파퓰러메커닉스(popularmechanics)는 최근 중국 칭화대학교의 부교수 데이 호유(Deyi Hou) 부교수와 동료 리우웨이 왕(Liuwei Wang) 교수가 발표한, 플라스틱 암석 융합에 대한 연구 논문을 소개했다. 플라스틱이 지구의 지질학적 구조에 영향을 미치고 있으며, 전문가들은 이를 퇴적암의 새로운 유형인 '플라스티스톤'으로 공식 인정해야 한다고 주장하고 있다. 최근 발표된 논문에 따르면, 퇴적암은 지구 표면에서 흔히 발견되며 인간 활동에 의해 쉽게 영향을 받는 암석 유형이다. 연구진은 이 새로운 형태의 플라스틱이 퇴적암의 조건을 충족한다고 보고, 이를 포괄적으로 설명하기 위해 '플라스티스톤'이라는 용어를 채택할 것을 제안했다. 플라스티스톤은 인간의 활동에 의해 생성된 새로운 형태의 암석으로, 자연적인 암석과 플라스틱 쓰레기가 혼합되어 형성된다. 이 용어는 2014년경에 처음으로 사용되었으며, 주로 해변에서 발견되는 플라스틱과 다른 재료들이 열에 의해 융합되어 형성된 암석을 가리킨다. 플라스티스톤은 지질학적 기록에 인간 활동의 영향을 나타내는 중요한 증거로 간주된다. 2023년 3월, 지질학자 페르난다 아벨라 산토스(Fernanda Avelar Santos)는 브라질의 트린다데(Trindade) 섬에서 주목할 만한 발견을 보고했다. 이 외딴 섬에서 그녀는 플라스틱 쓰레기가 돌과 융합되어 새로운 유형의 암석을 형성한 것을 발견했다. 이러한 발견은 인간의 영향을 거의 받지 않은 것으로 여겨지던 지역에서 이루어져 더욱 충격적이었다. 인간이 지구의 지질학적 기록에 명확한 흔적을 남겼다는 사실은 부정할 수 없다. 호유와 왕 교수는 이러한 새로운 암석이 주로 육상 플라스틱(병 및 용기 등)이 캠프파이어나 폐기물 처리 과정에서 연소될 때 형성된다고 지적했다. 이 녹은 플라스틱 조각들은 '속생'이라는 과정을 통해 미네랄 매트릭스 내에 고정되어 남는다. 이런 플라스티스톤은 해양 생태계에 심각한 피해를 줄 수 있다. 예를 들어, 논문에서는 대서양 마데이라 섬의 복족류 텍타리우스 스트라이투스(Tectarius striatus)가 플라스틱과 자연적인 먹이를 구별하는 데 겪는 어려움을 지적했다. 트리니다드 섬에서 플라스티스톤을 발견한 산토스는 당시 "인간의 개입이 너무 널리 퍼져 있어서 무엇이 진정 자연적인 것인지 의문을 제기해야 한다"고 당시 혼란한 상황을 설명했다. 인간, 복족류, 암석 등 모두 변화하고 있는 것은 분명하다. 플라스티스톤의 연구는 인간 활동이 자연 환경에 미치는 영향을 더 잘 이해하고, 이러한 영향을 최소화하기 위한 방안을 모색하는 데 기여할 수 있다.
-
- 생활경제
-
인간이 만들어 낸 인공 암석, 플라스티스톤
-
-
[퓨처 Eyes(18)] 지구 온난화, 폭주 온실 효과로 '금성化' 위기⋯시뮬레이션 결과 '지옥 방불'
- 기후 변화로 인한 폭주 온실 효과로 지구가 금성화 위기에 처했다는 연구 결과가 나왔다. 제네바대학교(UNIGE)의 천문학자 연구팀은 파리와 보르도의 프랑스 국립과학연구소(CNRS)의 지원을 받아 온실효과 폭주의 모든 단계를 시뮬레이션 한 최초의 연구 결과를 발표했다고 과학 매체 '사이언스얼랏'이 최근 보도했다. 연구원들은 처음으로 온실 효과의 모든 단계를 시뮬레이션하여 앞으로 몇 세기 안에 우리의 녹색 행성을 사람이 살 수 없는 '지옥'으로 만들 수 있다는 사실을 발견했다. 미국 우주항공국(NASA)에 따르면 지구는 폭주 온난화를 촉진하기 위해 수십도만 가열하면 평균 표면 온도가 섭씨 464도(화씨 867도)인 금성만큼 살기 어려운 행성이 될 것이라고 한다. 온실 효과는 지구 대기의 특정 가스가 태양의 열을 가두는 과정을 말한다. 폭주 온실 효과란? 일부 온실 가스는 수증기처럼 자연적으로 발생한다. 이산화탄소와 같은 다른 온실가스는 인간이 석탄, 석유, 가스 등 오염 물질인 화석 연료를 태울 때 생성될 수도 있다. UNIGE-CNRS 연구에서 조사된 폭주 온실 효과는 태양 조사가 증가하여 지구의 온도가 눈덩이처럼 급격하게 상승할 때 발생한다. 천문학자들은 성명에서 "이 과정의 초기 단계부터 대기 구조와 구름의 범위가 크게 변화하여 거의 멈출 수 없고 되돌리기 매우 복잡한 폭주 온실 효과를 초래한다"라고 말했다. 돌이킬 수 없는 기후 변화 이 연구는 부분적으로 다른 행성, 특히 소위 외계 행성의 기후를 연구하는 도구를 제공하기 위해 설계됐다. 또한 앞으로 수 세기 동안 지구 기후에 미칠 위험에 대한 통찰력도 제공한다. 연구진은 바다와 생명체로 뒤덮인 멋진 파란색과 녹색 점인 지구와 태양계에서 가장 뜨거운 무균 상태의 유황 행성인 금성의 차이점을 강조했다. 그러나 천문학 및 천체물리학 리뷰에 게재된 이 연구에 따르면 "지구 온도를 수십도만 상승시키는 아주 작은 태양 복사량 증가만으로도 지구에서 돌이킬 수 없는 폭주 과정을 촉발하고 지구를 금성처럼 살기 힘든 곳으로 만들 수 있다"는 사실이 밝혀졌다. 온실 효과의 폭주라는 개념은 새로운 것이 아니다. 이 개념은 지구와 같은 온대 상태에서 표면 온도가 섭씨 1000℃(화씨 1832℃)가 넘는 행성으로 진화하는 것을 상상한다. 연구진은 온실 효과가 없다면 지구의 평균 기온은 영하로 떨어지고 지구는 생명체에 적대적인 얼음으로 덮인 공이 될 것이라고 지적하면서 어느 정도의 온실 효과는 유용하다고 말했다. 그러나 이 효과가 너무 크면 해양의 증발이 증가하여 대기 중 천연 온실가스인 수증기의 양이 증가하여 구조 담요처럼 열에 갇히게 된다. 임계값 전 UNIGE 박사후 연구원이며 이 연구의 수석 저자인 기욤 샤베로(Guillaume Chaverot)는 "이 정도의 수증기에는 지구가 더 이상 식을 수 없는 임계점이 있다"라고 말했다. 샤베로는 "거기서부터 바다가 완전히 증발하고 온도가 수백도에 도달할 때까지 모든 것이 사라진다"라고 설명했다. 이전의 시뮬레이션은 폭주 효과가 시작되기 전의 온화한 상태나 폭주 후의 사람이 살 수 없는 상태에만 초점을 맞췄지만, 연구진은 전체 과정을 시뮬레이션 한 것은 이번이 처음이라고 말했다. 전체 과정을 보여줌으로써 처음부터 높은 대기에서 폭주 효과를 증가시키고 그 과정을 되돌릴 수 없게 만드는 매우 특이하고 밀도가 높은 구름 패턴이 어떻게 나타나는지 설명할 수 있었다. 차베로는 "대기의 구조가 크게 바뀌었다"고 했다. 그는 현재 인간이 배출하는 온실 가스가 태양 광도의 약간의 증가와 동일한 폭주 과정을 유발할 수 있는지 여부를 조사하고 있다고 성명을 통해 밝혔다. 기후 과학자들은 지구의 평균 기온이 산업화 이전 수준보다 1.5°C 이상 상승하면 통제할 수 없는 기후 변화를 촉발할 위험이 있다고 경고했다. 이는 온실 폭주 과정과는 다르지만, 연구자들은 지구가 '종말 시나리오'에서 멀지 않았다고 경고했다. 한편, 3일 기상청 기상자료개방포털 자료에 따르면 지난해 한국의 전국 평균기온은 13.7℃를 기록, 전국에 기상관측망이 대폭 확충돼 각종 기상기록의 기준으로 삼는 시점인 1973년 이후 가장 높았다. 지난해 제주도의 평균기온은 역대 두 번째로 높았던 것으로 나타났다. 제주도의 연평균 최고기온은 20.4℃로, 2021년(20.6℃)에 이어 두 번째로 높았다. 게다가 지난 12월 공개된 해양기후예측센터의 자료에 따르면 지난 8월 동아시아 해역의 해면 수온은 평년보다 0.9℃높아 역대 2위를 기록했으며, 전 지구 해역의 해면 수온은 평년보다 0.6℃높아 역대 최고치였다. 올해 전 지구 표면온도가 사상 최고치를 기록할 것이라는 전망은 이젠 '기정사실'로 받아들여지고 있다. 엘니뇨는 적도 부근 동태평양 해수면 온도가 비정상적으로 상승하는 현상으로, 지구의 평균 온도를 높이며 폭풍우, 가뭄 등의 기상 이변을 유발한다. 엘리뇨는 2월께 최고조에 이르며 6개월은 더 갈 것이라는 예측이다.
-
- 포커스온
-
[퓨처 Eyes(18)] 지구 온난화, 폭주 온실 효과로 '금성化' 위기⋯시뮬레이션 결과 '지옥 방불'
-
-
NASA 재활용 우주선 '드림 체이서' 첫 비행
- 미국 항공우주국(NASA)와 시에라 스페이스(Sierra Space)가 협력해 드림 체이서(Dream Chaser) 우주선을 국제 우주정거장(ISS)으로의 첫 비행을 위한 준비를 진행 중이다. NASA에 따르면 이 무인 화물 우주선을 상업적 재공급 서비스 프로그램의 일환으로 활용할 계획이며, 2024년에 국제 우주정거장으로의 시범 임무를 시작할 예정이다. 콜로라도 주 루이빌에 위치한 시에라 스페이스에서 제작한 드림 체이서 화물 시스템은 드림 체이서 우주선과 '슈팅 스타(Shooting Star)' 화물 모듈, 이 두 가지 주요 구성 요소로 이루어져 있다. 이 양력체 형태의 우주선인 드림 체이서는 최대 15회까지 재사용 가능하도록 설계되었으며, 버지니아주 햄프턴에 위치한 NASA의 랭글리 연구 센터에서 개발된 HL-20 우주선을 바탕으로 개조했다. 드림 체이서(Dream Chaser) 우주선의 파트너인 '슈팅 스타(Shooting Star)' 화물 모듈은 국제 우주정거장(ISS)에서 가압 및 비가압 화물의 운송과 처리를 지원하기 위해 특별히 설계됐다. 이 화물 모듈은 일회용으로 사용되며, 재진입을 위해 분리되기 전에 우주에서 폐기된다. 드림 체이서 시스템은 플로리다주 케이프커네버럴에 위치한 우주군 기지의 우주발사단지 41에서, ULA(United Launch Alliance)의 발칸 센타우르(Vulcan Centaur) 로켓을 이용해 발사된다. 발사 시, 드림 체이서는 5m 페어링 내부에 날개를 접은 상태로 위치한다. 발사 중 페어링 패널은 우주선을 보호하는 역할을 하지만, 궤도 진입 후에는 폐기된다. 드림 체이서의 화물 모듈과 날개에 장착된 태양 전지 어레이는 우주정거장과의 자율적인 접근 과정 중에 전개된다. 만약 발사 연기(스크럽)가 발생할 경우, 드림 체이서는 24시간 이내에 다시 발사 준비를 완료할 수 있도록 설계됐다. 첫 비행 중에, 시에라 스페이스는 드림 체이서 우주선의 향후 임무를 위한 인증 과정의 일환으로 궤도 내에서 여러 시연을 진행할 계획이다. 이 비행은 플로리다에 위치한 NASA의 케네디 우주 센터, 휴스턴의 NASA 존슨 우주 센터, 그리고 콜로라도 루이빌에 있는 드림 체이서 미션 컨트롤 센터에 있는 팀들에 의해 모니터링될 예정이다. 시에라 스페이스의 비행 관제사들은 우주선이 착륙하기 전까지 발사대에서 드림 체이서를 제어하며, 착륙 후에는 NASA 케네디의 시에라 스페이스 지상 작전 팀에 우주선을 이양한다. 원거리 시연은 우주선이 국제 우주정거장(ISS) 근처의 '접근 타원체'라 불리는 2.5 x 1.25 x 1.25 마일(약 4 x 2 x 2km) 크기의 가상 경계 안으로 진입하기 전에 수행된다. 이 타원체 밖에서 수행되는 이러한 시연은 드림 체이서가 휴스턴의 미션 컨트롤 센터와 NASA 팀과의 합동 작업을 시작하기 전에 필요하다. 이 과정에는 자세 제어, 병진 기동 및 중단 기능의 시연이 포함된다. 국제 우주정거장(ISS)에 더 가까이에서 수행되는 근거리 시연은 다양한 작업을 포함한다. 이에는 LIDAR(빛 감지 및 거리 측정) 센서의 활성화 및 사용, 우주정거장에서 보낸 명령에 대한 응답, 명령에 따른 정거장으로부터의 후퇴, 그리고 접근 지점의 유지 등이 포함된다. 이 시연 과정에서 드림 체이서는 우주정거장과의 거리를 점차 줄여간다. 처음에는 역에서 330미터(약 1083피트), 그 다음은 250미터(약 820피트), 마지막으로 30미터(약 98피트) 거리를 유지하게 된다. 이러한 시연을 성공적으로 마친 후, 드림 체이서는 국제 우주정거장으로 이동하게 된다. 드림 체이서가 우주정거장의 실험실 모듈에 접근하면, 우주선은 역에서 약 11.5미터(약 38피트) 떨어진 위치에서 최종 정지한다. 이때, 정거장의 승무원은 '캐나다 암 2(Canadarm2)' 로봇 팔을 사용하여 지상 팀보다 먼저 우주선의 화물 모듈을 잡는다. 이후 화물 모듈은 유니티(Unity) 또는 하모니(Harmony) 모듈의 지구 쪽 포트에 설치한다. 캐나다 암 2는 캐나다 우주국(CSA)이 개발한 우주 정거장 조작용 로봇 팔이다. 국제 우주정거장(ISS)으로의 첫 비행에서, 드림 체이서 우주선은 약 3.5톤(7800파운드) 이상의 화물을 운반할 계획이다. 향후 임무에서는 최대 75일 동안 우주정거장에 부착되어 있으면서 최대 약 5.2톤(약 1만1500파운드)의 화물을 운반할 수 있도록 설계됐다. 드림 체이서는 지구로 돌아오는 길에 약 1.5톤(3500파운드) 이상의 화물과 실험 샘플을 반환할 수 있으며, 또한 화물 모듈을 사용해 재진입 과정에서 약 3.9톤(8700파운드) 이상의 쓰레기를 처리할 수 있다. 또한 드림 체이서는 캐나다 암 2를 사용하여 우주정거장에서 제거되기 전까지 약 45일간 우주정거장에 머무를 예정이다. 우주선은 출발 후 11~15시간 이내에 빠르게 착륙할 수 있으며, 기상 조건이 허용하는 한 매일 착륙할 수 있는 기회가 있다. 드림 체이서의 착륙 기상 기준은 일반적으로 시속 17.2마일(15노트) 이하의 측풍, 23마일(20노트) 이하의 역풍, 11.5마일(10노트) 이하의 배풍을 요구한다. 또한, 활주로 반경 20마일 이내 또는 접근 경로를 따라 10마일 이내에서 발생하는 뇌우, 번개, 비는 착륙에 적합하지 않은 조건으로 간주된다. 드림 체이서의 26개 반응 제어 시스템 추진기는 우주선이 궤도를 이탈하도록 발사된다. 이 우주선은 지구 대기권으로 재진입한 후 NASA의 우주 왕복선과 유사한 방식으로 케네디 우주 센터의 활주로에 착륙할 예정이며, 2011년 마지막 우주 왕복선 비행 이후 이 시설에 착륙하는 최초의 우주선이 될 것이다. 착륙 후 전원이 꺼지면, 시에라 스페이스의 지상 운영팀이 드림 체이서를 우주 시스템 처리 시설로 이송하여 필요한 검사를 수행하고, 나머지 NASA 화물을 내리며, 다음 임무를 위한 준비 작업을 시작된다. 시에라 스페이스(이전 Sierra Nevada Corporation)는 2016년 국제 우주정거장(ISS)에 서비스를 제공할 NASA의 세 번째 상업용 화물 재공급 우주선으로 선정됐다.
-
- 산업
-
NASA 재활용 우주선 '드림 체이서' 첫 비행
-
-
플라스틱 폐기물, 새우 등 해양 소형생물 번식에 악영향
- 플라스틱 폐기물이 해양으로 유입되면서 해양 생물의 번식에 악영향을 미치고 있는 것으로 나타났다. 가벼운 쓰레기의 경우 조류를 따라 전 세계 해안에 도착하면서 또 다른 해양 환경오염까지 유발하는 등 악순환이 이어지고 있는 상황이다. 해외 매체 인콰이어러(inquirer)는 최근 영국 포츠머스 대학의 연구팀이 플라스틱 폐기물이 새우 등 작은 해양생물의 번식을 방해한다는 사실을 발견했다고 보도했다. 생태 독성학자인 알렉스 포드(Alex Ford)와 그의 동료들은 특정 종에 대해 몇 가지 화학 첨가물을 테스트했는데, 플라스틱 폐기물에 포함된 화학 첨가물이 갑각류의 행동을 변화시켜 교미 성공률을 감소시키고 있다는 것을 발견했다. 인콰이어러는 인정하지 않을 수도 있지만 인류의 부주의가 환경 오염과 자연의 경로 왜곡을 야기하고 있다고 지적했다. 이 매체는 적극적인 조치가 취해지지 않으면, 우리 생태계의 상당 부분이 심각한 위험에 처할 수 있다고 경고했다. 플라스틱 폐기물, 갑각류 정자수 감소시켜 플라스틱 폐기물이 해양 생태계에 미치는 영향에 대한 연구에서, 작은 갑각류의 정자 수 감소가 관찰됐다. 대부분은 상어와 같은 대형 동물이 해양 생태계에 가장 큰 영향을 미친다고 생각하는데, 새우 등 소형 갑각류는 해양 먹이사슬에서 중요한 역할을 하며, 그들의 손상은 전체 먹이사슬에 영향을 미칠 수 있다. 알렉스 포드는 “이 생물들은 유럽 해안에서 흔히 발견되며, 물고기와 새 등의 먹이의 상당 부분을 차지한다”며 “예를 들어, 고래는 보통 크릴을 주식으로 하는데 만약 이들이 손상되면 전체 먹이사슬에 영향을 미칠 것”이라고 강조했다. 바로 이 점이 환경 독성학자인 비데미 그린-오조(Bidemi Green-Ojo)와 그의 동료들이 '에치노가마루스마리누스(Echinogammarus marinus)라고 불리는 작은 갑각류 종을 플라스틱에서 발견되는 4가지 화학 첨가물에 노출시킨 이유다. 그린 오조는 “이 네 가지 첨가제가 인체 건강에 미치는 위험에 대해 잘 알고 있기 때문에 이를 선택했다”며 "우리가 조사한 두 가지 화학물질(DBP와 DEHP)은 규제를 받고 있으며 유럽에서는 제품에 사용이 허용되지 않는다“고 말했다. 이어 "다른 두 화학물질은 현재 제한이 없으며 많은 가정용품에서 발견된다"며 "우리는 이러한 화학물질이 수중 짝짓기 행동에 미치는 영향을 테스트하고 싶었다"고 연구 배경을 설명했다. 테스트된 화학물질 중 3개는 영국의 지표수와 지하수에서 검출된 상위 30개 화학물질에 포함되어 있다. 이 물질들은 바다 생물의 행동에 영향을 미치며, 특히 짝짓기 성공률 감소에 기여할 수 있는 것으로 밝혀졌다. 샘플 화학 물질 중 두 가지인 디부틸 프탈레이트(DBP)와 트리페닐 인산염(TPHP)은 갑각류의 정자 수를 감소시켰다. 알렉스 포드는 연구팀이 실험한 동물들이 환경에서 일반적으로 발견되는 것보다 높은 농도의 화학물질에 노출되었다고 말했다. 그는 이러한 화학물질들이 정자 수에 영향을 미칠 수 있음을 지적했다. 오랜 기간 동안 또는 생활사의 중요한 단계에서 노출된 새우에 대한 추가 실험을 통해 이러한 영향이 더 명확해질 수 있음을 나타냈다. 독도 괭이갈매기 미세플라스틱 오염 한편, 한국의 독도 괭이갈매기 깃털도 미세플라스틱에 오염된 것으로 밝혀져 충격을 안겨줬다. 국제학술지 해양오염학회지 11월호에 실린 '한국 괭이갈매기 깃털에서 미세플라스틱 검출 첫 보고' 논문에 따르면 5㎜ 미만의 미세플라스틱 170g, 73개가 검출됐다. 경희대 한국조류연구소 연구진은 작년 6월 독도와 울릉도에서 괭이갈매기 17마리를 포획한 후 가슴깃을 떼어내 과산화수소수로 처리한 뒤 적외선분광기로 검사했다. 포획한 괭이갈매기의 몸무게는 평균 490g으로, 몸무게의 2%를 미세플라스틱이 차지하고 있었다. 종류별로는 폴리에틸렌(PE)과 폴리프로필렌(PP)이 각각 26개와 21개로 가장 많이 나왔다. 폴리스타이렌(PS)도 10개, 폴리에틸렌테레프탈레이트(PET) 등도 16개 발견됐다. 체내에 축적된 미세플라스틱이 소화기관에 악영향을 주며, 깃털에 붙은 미세플라스틱은 유기오염물질이나 독성화학물질과 흡착해 건강을 해칠 수 있다. 미세플라스틱이 깃털을 둘러싼 기름막을 흡수하면 방수성과 보온성을 저해해 생존력을 떨어트릴 수 있다.
-
- 생활경제
-
플라스틱 폐기물, 새우 등 해양 소형생물 번식에 악영향
-
-
美 노스웨스턴대 "바다 쓰레기 주범 나일론, 촉매로 순식간에 '분해'"
- 바닷속 쓰레기로 전 세계가 몸살을 앓고 있다. 특히, 어망 등이 고래나 바다거북, 물개 등 해양생물을 칭칭 감싸고 있는 모습은 충격을 던져줬다. 나일론 어망 등은 뛰어난 내구성 때문에 자연 분해가 불가능해 해양동물과 산호초, 새, 바다 등을 위험에 빠뜨리고 있다. 해양 환경에 유입된 이들 물질은 분해되지 않고 수천 년 동안 머무를 수 있어 더욱 큰 폐해가 예상되고 있다. 그러나 최근 미국 노스웨스턴대학교 연구팀이 나일론을 분해하는 새로운 촉매를 개발해 이 같은 해양오염을 크게 줄일 수 있을 것으로 기대된다. 이 촉매는 몇 분 만에 내구성 높은 플라스틱 오염을 완전히 분해하는 것으로 알려졌다. 과학기술 전문 매체 '사이테크데일리(SciTechDaily)'는 미국 노스웨스턴 대학 연구팀이 개발한 새로운 나일론 분해 촉매에 대해 최근 보도했다. 연구팀은 유해한 부산물을 생성하지 않고 몇 분 만에 나일론-6을 빠르고 깨끗하며 완전히 분해하는 새로운 촉매를 개발했다. 더 좋은 점은 이 공정에는 독성 용매, 고가의 재료 또는 극한 조건이 필요하지 않아 일상적인 응용 분야에 실용적이라는 점이다. 연구팀은 이 촉매를 활용해 해양 플라스틱 오염을 줄이는 것은 물론, 폐기물 재활용과 순환경제 활성화에도 기여할 수 있을 것으로 기대하고 있다. 이번 연구 결과는 국제 학술지 '켐(chem)'에 게재됐다. 이번 연구의 수석 저자인 노스웨스턴 대학의 토빈 마크스(Tobin Marks) 교수는 "전 세계가 플라스틱 문제의 심각성을 인식하고 있다"며 "우리는 플라스틱을 재활용하기 위해 폴리머를 분해하여 원래 형태로 되돌려 재사용할 수 있는 촉매를 개발하고 있다"고 말했다. 어망, 태평양 쓰레기 46% 차지 나일론-6은 의류, 카펫, 안전벨트 등 매일 사용되는 다양한 제품에 사용되는 소재다. 하지만 사용 후에는 매립되거나 해양을 포함한 환경에 방치되는 경우가 많다. 세계야생생물연맹(World Wildlife Federation) 보고에 따르면 매년 약 45만3592kg(약 100만 파운드)의 낚시 장비가 해양에 버려지며, 이 중 나일론-6로 만들어진 어망이 태평양의 거대한 쓰레기 더미에서 차지하는 비율이 최소 46%에 이른다. 현재 나일론-6 처리 방법은 주로 매립에 의존하고 있다. 나일론-6가 연소될 때는 질소산화물 같은 독성 오염물질을 배출해 조기 사망과 온실가스인 이산화탄소 배출 등의 문제를 야기한다. 마크스 교수는 플라스틱을 분해하는 과정에서 발생하는 오염물질 문제를 지적하며, 친환경 용매의 사용이 중요하다고 강조했다. 그는 "플라스틱을 분해하면 오염된 물이 남게 되며, 친환경 용매의 사용은 필수적"이라며 "어떤 종류의 용매가 환경에 더 적합한지 연구해야 한다"고 말했다. 업사이클링을 위한 나일론 복구 마크스 교수와 연구팀은 실험실에서 새로운 촉매를 개발했다. 이 촉매는 이트륨(지구상에 풍부한 경제적인 금속)과 란탄족 이온을 활용한다. 나일론-6를 녹는 온도까지 가열한 뒤 촉매를 추가하자, 용매 없이도 플라스틱이 분해되어 부산물 없이 원래의 빌딩 블록으로 복구됐다. 마크스 교수는 이 과정을 목걸이와 진주에 비유하며 설명했다. 그는 "폴리머는 목걸이와 같으며, 각 진주는 하나의 단위체, 즉 단량체다. 우리는 이 목걸이를 해체하여 진주, 즉 빌딩 블록을 회수하는 방법을 찾은 것"이라고 말했다. 실험을 통해 연구팀은 플라스틱의 원래 모노머를 99% 회수할 수 있었다. 원칙적으로 이러한 모노머는 현재 강도와 내구성에 대한 수요가 높은 고부가가치 제품으로 재활용될 수 있다. 이 실험을 통해 연구팀은 나일론의 원래 모노머를 99% 회수하는 데 성공했다. 이러한 모노머는 내구성과 강도가 높은 고부가가치 제품으로 재활용될 수 있다. 마크스 교수는 재활용된 나일론이 일반 나일론보다 경제적 가치가 더 높다고 강조했다. 나일론-6를 효율적으로 타깃팅 새롭게 개발된 촉매는 높은 수율의 단량체 회수뿐만 아니라, 선택성도 뛰어나 나일론-6 중합체에만 작용한다. 이는 폐기물 중에서도 나일론-6를 효과적으로 분리해낼 수 있다는 것을 의미하며, 업계에 대량의 분류되지 않은 폐기물에도 적용 가능함을 보여준다. 마크스 교수는 이 과정의 경제성과 효율성을 강조했다. 그는 "나일론 폐기물을 사람이 일일이 분류하는 것은 비용이 많이 들고 비효율적이다. 하지만 이 촉매가 나일론만을 대상으로 하고 다른 물질은 그대로 두기 때문에 효율적이다"라고 설명했다. 이 기술을 통해 회수된 모노머를 재활용하면 신규 플라스틱 생산의 필요성도 줄어들 수 있다. 마크스 교수와 연구팀은 이 새로운 공정에 대한 특허를 출원했으며, 이미 여러 산업 파트너로부터 관심을 받고 있다. 이들은 자신들의 촉매가 대규모로 활용되어 글로벌 플라스틱 문제 해결에 기여하기를 기대한다. 현재 이 연구는 폴리머 재활용 및 지속 가능한 재료 관리 분야에서 중요한 진전을 보이고 있다. 이러한 접근 방식은 현재 재활용 기술의 중요한 격차를 해결하고 나일론 폐기물 문제에 대한 실용적이고 효율적인 솔루션을 제공한다. 이는 플라스틱의 환경 발자국을 줄이고 순환경제에 기여하는 데 영향을 미칠 것으로 기대된다.
-
- 생활경제
-
美 노스웨스턴대 "바다 쓰레기 주범 나일론, 촉매로 순식간에 '분해'"
-
-
커피 찌꺼기, 숯보다 뛰어난 탈취력으로 환경 지킨다
- 커피를 추출하고 남은 찌꺼기는 환경보호에 유용하게 사용될 수 있다. 일본의 웨더뉴스 보도에 따르면 커피 찌꺼기는 숯보다 우수한 탈취 효과를 가지고 있다. 웨더뉴스의 2022년 설문조사 결과, 커피 찌꺼기를 버리는 사람이 61%에 달했다. 이는 커피 찌꺼기의 높은 탈취력을 잘 모르고 있는 데 따른 것으로 보인다. 커피 찌꺼기는 활성탄의 5배에 달하는 탈취 효과가 있어 환경을 지키는 데 활용할 수 있다. 커피 찌꺼기는 다공성 구조를 가지고 있어 암모니아를 효과적으로 흡수한다. 또한 추출된 커피 찌꺼기의 분자는 암모니아를 화학적으로 흡착 및 중화하여 불쾌한 냄새를 제거하고 탈취 효과를 발휘한다. UCC 커피 아카데미의 연구에 따르면, 커피 찌꺼기는 활성탄에 비해 암모니아 흡수율이 높다. 수분 함량이 7%인 활성탄은 암모니아 흡수율이 17.3%인 반면, 수분 함량이 4%인 커피 찌꺼기는 41.0%, 수분 함량이 21%인 커피 찌꺼기는 90.5%의 흡수율을 보여, 활성탄보다 최대 5.23배 높은 효과를 나타냈다. 커피 찌꺼기의 탈취 효과를 살린 재사용 방법은 다음과 같다. 화장실이나 냉장고 탈취제 집에서 커피를 추출한 후 남은 찌꺼기는 화장실이나 냉장고의 탈취제로 유용하게 사용될 수 있다. 커피 찌꺼기를 평평한 용기에 담아 화장실에 두면 탈취 효과를 볼 수 있으며, 1~2일마다 교체하는 것이 좋다. 고온에서는 곰팡이가 생길 수 있으니 주의해야 한다. 커피 찌꺼기를 말려 신발이나 신발장, 냉장고 등에 넣어 탈취제로 사용할 수 있다. 커피 찌꺼기를 충분히 말린 후 부직포 봉지에 넣으면 신발장이나 냉장고용 탈취제로 사용할 수 있다. 건조한 찌꺼기를 티팩과 같은 봉지에 넣어 사용하면 흩날림을 방지할 수 있다. 잡초 방제와 비료 효과 커피 찌꺼기는 정원 가꾸기에도 유용하다. 일본 UCC와 긴다이 대학 농학부의 공동 연구에 따르면, 커피 찌꺼기를 토양에 혼합하면 겨울에는 해바라기, 여름에는 호밀 등 식물의 성장에 긍정적인 효과가 있는 것으로 나타났다. 커피 찌꺼기는 토양에 혼합하면 첫해에는 식물의 성장을 억제할 수 있다. 이는 커피 찌꺼기에 포함된 카페인과 폴리페놀 등의 물질이 작용하기 때문으로 추정된다. 하지만 토양과 혼합한 후 12개월이 지나면 식물의 성장 억제 효과가 감소하고, 두 번째 해에는 토양 내 비료로 사용되는 탄소와 질소의 함량이 증가하는 등 토양의 질 개선 효과가 나타난다. 커피 찌꺼기는 식물의 성장을 촉진하고 병충해에 대한 저항력을 강화하는 효과가 있다. 또한, 퇴비로 쉽게 전환될 수 있어 토양 개량에도 매우 효과적이다. 이렇게 다양한 활용 방안이 있는 커피 찌꺼기는 단순한 쓰레기가 아닌 친환경적인 자원이다. 커피를 마신 후에는 커피 찌꺼기를 버리지 않고, 정원 가꾸기나 탈취제 등 다양한 방법으로 재활용함으로써 환경 보호에 기여할 수 있다.
-
- 생활경제
-
커피 찌꺼기, 숯보다 뛰어난 탈취력으로 환경 지킨다
-
-
韓·인니, 니켈 등 핵심광물 공급망 강화 협력 강화
- 한국과 인도네시아가 핵심광물 공급망 강화를 위한 협력을 강화하기로 합의했다. 산업통상자원부(장관 방문규)와 인도네시아 에너지광물자원부(장관 아리핀 타스리프)는 28일(화) 인도네시아 자카르타에서 '제14차 한-인니 에너지포럼'을 개최하고, 핵심광물 공급망 강화를 위한 양국 간 협력을 강화하기로 했다고 밝혔다. 한국과 인도네시아는 지난 1979년 에너지 분야 정책 교류와 협력사업 발굴을 위해 자원협력위원회를 설치했고, 이 위원회를 2007년 한·인니 에너지포럼으로 개편하면서 연례화했다. 이번 포럼은 양국 간 에너지 협력을 강화하고 한국 기업들의 인도네시아 비즈니스 기회를 창출하는 데 기여할 것으로 기대된다. 올해 포럼은 주제별로 석유·가스·광물 협력(1세션), 전력·신재생에너지 협력(2세션), 상호협력 구축(3세션) 등 3개 세션으로 나눠 진행됐다. 이날 포럼에서 양국은 한국지질자원연구원(원장 이평구)과 인도네시아 반둥공과대학 간의 '한-인니 핵심광물 공동연구 센터'를 공식 출범시켰다. 이 센터는 이차전지용 고순도 니켈 제조 공정 및 폐배터리 재활용 기술 등을 공동으로 연구할 계획이다. 이번 협력은 인도네시아의 풍부한 니켈, 주석 등 광물 매장량을 바탕으로 한국이 보다 안정적인 자원 확보를 기대할 수 있는 발판을 마련할 것으로 보인다. 인도네시아는 2021년 기준 니켈(세계 1위), 주석(2위), 금(5위), 보크사이트(6위), 석탄(7위) 등 방대한 광물자원 매장량을 보유하고 있다. 특히 매장량 면에서 니켈은 2100만톤(22.3%), 주석은 800만톤(18.6%)으로 각각 세계 1, 2위를 차지했다. 포럼에서는 또한 석유·가스, 이산화탄소 포집·저장(CCS), 수소, 소형원전(SMR) 등 에너지 전 분야에 걸쳐 양국 간 협력 강화 방안도 논의됐다. 양국은 기후위기 대응을 위해 수소 생산 신설, CCS 실증사업, SMR 개발 등 다양한 분야에서 협력을 강화하기로 했다. 이를 통해 음식물 쓰레기 등 폐기물을 활용한 수소 생산·활용 인프라 구축, 인도네시아 유·가스전의 이산화탄소 저장소 전환 등의 사업이 진행될 예정이다. 이는 향후 한국 기업들의 수소차 및 관련 설비 수출에 좋은 기회가 될 것으로 전망된다. 오는 29일, 한국지질자원연구원과 인도네시아 반둥공과대학이 참여하는 '한-인니 핵심광물 공동연구센터'가 정식으로 문을 열 예정이다. 산업통상자원부의 한 관계자는 이와 관련하여 "한-인니 공동연구센터를 통해 이차전지용 고순도 니켈 제조 공정 및 폐배터리 재활용 기술에 대한 연구가 활발하게 진행될 것으로 기대한다"고 전했다.
-
- 산업
-
韓·인니, 니켈 등 핵심광물 공급망 강화 협력 강화