검색
-
-
MZ세대 대장암 급증 이유는?…"식단이 문제, 확 바꿔야"
- MZ 세대를 중심으로 한 젊은 층의 대장암 진단이 급증, 의사들을 당혹스럽게 하고 있다. 분석 결과, 지난 30년 동안 25~49세의 젊은 층의 치명적인 대장암 발병이 52%나 급증한 것으로 나타났다. 이에 따라 세계 최고의 대장암 전문가 3명이 이 같은 추세에 대한 흥미로운 설명을 내놓아 주목된다고 영국 데일리메일이 전했다. 예일대 의대 위장병 전문의인 미셸 휴즈 박사는 현실적으로 가장 걱정되는 대장암 원인으로 미세 화학 물질을 언급했다. 젊은 층의 대장암 증가는 식품 용기에서 과일과 채소에 이르기까지 일상 용품에 들어 있는 미세한 화학 물질 사용이 증가한데 따른 것일 가능성이 크다는 것이다. 장내 박테리아의 건강한 균형을 방해하는 화학 오염 물질과 공기 중 미립자 등 미세 화학 물질은 의학적으로 내분비 교란 요소로 알려져 있는데, 이로 인해 염증과 스트레스가 발생해 암으로 이어질 수 있다는 설명이다. 휴즈 박사는 "1950년 이후 태어난 사람들은 평생 더 많은 환경 변화와 오염 물질에 노출되었기 때문에 더 위험할 수 있다"고 부연했다. 전문가들이 더 우려하는 내분비 교란 화학 물질의 한 예는 살충제이다. 살충제는 과일과 채소 재배 과정에서 피해를 줄이거나 수확량을 늘리기 위해 사용되는 독성 화학 물질이다. 암과 사회의 프론티어(Frontiers in Cancer and Society) 저널에 발표된 한 연구에 따르면 농업에 사용되는 살충제에 노출되면 특정 암 위험을 증가시킬 위험이 담배 연기만큼 높을 수 있다고 지적했다. 잡초와 해충을 없애는 데 사용되는 제초제나 살충제는 과일과 채소에 잔류할 수 있기 때문에 사람은 소량씩 장기적으로 이를 섭취할 수 있다. 살충제와 암 발병 연관성 시사 콜로라도의 로키 비스타 대학교 연구진은 영국에서 사용되는 농업용 제초제 다이클로로아세트산과 글리포세이트를 포함해 69가지 살충제를 조사하고 다양한 화학 물질에 노출되었을 때의 해로움에 대해 경고했다. 연구진은 농업 비중이 크고 살충제에 많이 노출된 지역에서 대장암 발병률이 증가한다는 것을 발견했다. 결과에 따르면 제초제와 살충제 노출은 비호지킨 림프종, 백혈병 및 방광암, 대장암, 폐암 및 췌장암의 발병과 관련이 있는 것으로 나타났다. 다만 살충제와 암 사이의 연관성만을 지적할 뿐 살충제가 암을 유발한다는 확실한 증거는 제시하지 않았다. 그러나 살충제는 신경계 장애, 호르몬 장애, DNA 손상 및 염증을 유발하고, 결국 암 위험도 증가시킬 수 있다. 초가공식품 섭취도 암 발병 위험 높여 전문가들은 또한 암 발병률 증가가 열악한 식단 때문이라고 말한다. 설탕이 들어간 음료, 감자칩, 과자와 같은 초가공 식품(UPF)을 대량으로 섭취하면 여러 유형의 암 발병 위험이 높아진다. UPF가 가득한 식단은 체중 증가를 촉진하여 암 위험을 증가시킨다. 건강한 소화 시스템에 필수적인 섬유질은 매우 부족하다. 그래서 인기 다이어트 앱 조(Zoe)를 만든 영양학자이자 교수인 팀 스펙터는 뉴스위크지와의 인터뷰에서 과일, 채소, 통곡물, 견과류와 같은 섬유질이 풍부한 음식을 섭취하는 것이 중요하다고 말했다. 그는 대장암으로부터 자신을 보호하기 위해서는 나쁜 것을 피해야 할 뿐 아니라 신체에 도움이 되는' 음식을 섭취하는 것도 중요하다고 설명했다. 스펙터 교수는 섬유질이 배변을 조절하고 유해 물질이 대장과 접촉하는 것을 줄이는 데 도움이 된다고 강조했다. 진단 기술 개발로 대장암 진단 늘어 비 생물학적 요인도 대장암 증가에 영향을 미칠 수 있다. 대장암에 대한 인식이 높아지고 진단 기술이 개선돼 MZ 세대가 대장암 진단을 받는 숫자가 늘어나게 된 것도 한 요인이다. 논리적으로, 젊은 사람들의 대장암 지식이 깊어질수록 검진을 받을 확률도 높아진다. 그러나 대장암에 기인한 배변 습관의 변화, 대변 혈액, 피로, 복통 등의 증상을 여전히 과민성대장증후군(IBS) 등 여타 질환으로 오인하는 경우가 많다는 경고도 있다. 따라서 모든 연령대가 대장암의 경고 신호를 인식하고 의료 지원을 받아야 할 것이라는 지적이다.
-
- 생활경제
-
MZ세대 대장암 급증 이유는?…"식단이 문제, 확 바꿔야"
-
-
[우주의 속삭임(80)] 블랙홀 둘러싸고 있는 코로나 모양 첫 공개
- 블랙홀을 둘러싸고 있는 코로나 모양이 처음으로 공개됐다. 지구상에서 개기일식을 관찰하면, 태양을 가린 달 주위를 밝은 빛의 후광이 둘러싸고 있는 현상을 보게 된다. 이는 코로나라고 불리는 것으로, 태양의 확산된 외기권을 말한다. 이 외기권은 너무 얇아서 지구에서 보면 진공으로 생각되지만, 코로나 온도가 섭씨 수백만 도에 달하는 강한 에너지이기 때문에 개기일식 때 볼 수 있다. 우주의 블랙홀 역학에 따르면 블랙홀에도 코로나가 있다. 또한 태양의 코로나와 마찬가지로 블랙홀 코로나도 관찰하기 어렵다. 그런데 최근 천체물리학저널(The Astrophysical Journal)에 실린 연구에서 블랙홀 코로나 영역에 대한 관찰이 이루어졌다고 사이언스얼라트가 전했다. 활성 블랙홀의 경우, 일반적으로는 블랙홀을 둘러싸고 있는 도넛 모양의 가스와 먼지 토러스가 있다. 또 블랙홀의 회전면을 따라 정렬된 가열된 물질의 강착원반(디스크)이 있는 것으로 추정된다. 블랙홀의 극지방에서 흘러나오는 것은 거의 빛의 속도로 빠르게 멀어지는 이온화된 가스 제트이다. 우리가 관측하는 다양한 유형의 활성 은하핵(AGN)은 이 모델로 설명할 수 있다. 이유는 지구를 향하는 블랙홀의 방향에 따라 AGN의 모양이 변화하기 때문이다. 모델에 따르면, 강착원반의 가장 안쪽은 밀도가 진공에 가까운 과열 영역이며, 이는 블랙홀로 흘러 들어간다. 블랙홀 코로나는 태양의 코로나와 비슷하지만, 온도는 태양의 수백만 도에 비해 훨씬 높은 수십억 도에 달한다. 그러나 넓게 확산되어 있기 때문에, 그 빛은 강착원반의 빛에 압도된다. 연구팀은 블랙홀의 코로나를 연구하기 위해 개기일식 중 태양의 코로나를 관찰하는 것과 유사한 기법을 사용했다. 블랙홀이 지구를 기준으로 하는 방향은 일부 블랙홀의 경우 가스와 먼지의 토러스가 강착원반 영역에 대한 우리의 시야를 가리는 반면, 다른 블랙홀의 경우 원반을 직접 볼 수 있다. 이를 가려진 블랙홀과 가려지지 않은 블랙홀이라고 한다. 가려진 블랙홀은 강착원반의 빛이 시야에서 가려지기 때문에 개기일식으로 가려진 태양과 유사하다. 블랙홀의 코로나도 마찬가지이다. 그러나 블랙홀 코로나는 너무 뜨거워서 극도로 높은 에너지의 X선을 방출한다. 이 X선은 토러스의 물질을 산란시키고 우리의 시야로 반사될 수 있다. 연구진은 나사(NASA)의 이미징X선편광측정탐사선(IPXE)에서 얻은 데이터를 사용, 우리 은하의 백조자리 X-1과 X-3, 대마젤란 성운의 LMG X-1과 X-3 등 12개의 가려진 블랙홀 데이터를 수집했다. 연구진은 이들 블랙홀의 코로나에서 산란된 X선을 관찰할 수 있었으며, 블랙홀 사이의 패턴도 감지할 수 있었다. 데이터에 따르면 코로나는 태양의 코로나와 비슷한 구체로 블랙홀을 둘러싼 것이 아니라 강착원반과 비슷한 원반으로 블랙홀을 둘러싸고 있다. 이번 연구는 천문학계에서 블랙홀 모델을 다듬는 데 도움이 될 것으로 기대된다. 또한 블랙홀이 어떻게 물질을 소비하고, 먼 은하에서 관측하는 AGN에 동력을 공급하는지를 이해하는 데 기여할 것으로 보인다.
-
- IT/바이오
-
[우주의 속삭임(80)] 블랙홀 둘러싸고 있는 코로나 모양 첫 공개
-
-
[신소재 신기술(134)] UC 버클리, '뜨거운 이산화탄소 가스 포집' 획기적 기술 개발
- 산업 공정에서 발생하는 뜨거운 이산화탄소를 포집할 수 있는 혁신적인 기술이 개발됐다. 시멘트나 강철을 생산하는 산업 플랜트는 강력한 온실가스인 이산화탄소를 대량으로 배출하지만, 배기가스가 너무 뜨거워 최첨단 탄소 제거 기술을 사용할 수 없다. 배기가스를 냉각하려면 많은 에너지와 물이 필요하며, 이는 일부 가장 오염이 심한 산업에서 이산화탄소 포집 기술을 도입하는 장벽으로 작용한다. 그런데 UC 버클리의 화학자 연구진이 스펀지처럼 작용해 산업 배기가스와 비슷한 높은 온도에서 이산화탄소를 포집할 수 있는 소재를 발했다. UC 버클리 공식 홈페이지에 따르면, 발견된 소재는 금속-유기 프레임워크(MOF)의 일종으로, 사이언스 저널에 게재됐다. 발전 또는 산업 플랜트 배기가스에서 탄소를 포집하는 주요 방법은 액체 아민을 사용하여 이산화탄소를 흡수하는 것이다. 그러나 이 방법은 섭씨 40~60도 사이에서만 효율적으로 작동한다. 시멘트 제조 및 제강 공장은 200도를 넘는 배기가스를 생성하고 일부 산업 배기가스는 500도에 달한다. 아민이 추가된 MOF 하위 분류를 포함해 현재 시범 운영 중인 새로운 소재는 150도 이상의 온도에서는 분해되거나 덜 효율적이다. 이렇게 뜨거운 이산화탄소를 가져와 기존의 탄소 포집 기술을 적용하려면 적절한 온도로 냉각해야 하고, 비싼 인프라가 필요하다. 이번 연구를 진행한 UC 버클리 커티스 카쉬 박사는 "우리 기술이 탄소 포집 방식을 근본적으로 바꿀 수 있을 것"이라며 "개발된 MOF가 전례 없이 높은 온도에서 이산화탄소를 포집할 수 있다는 것이 입증됐다. 과거의 다공성 소재로는 불가능했던 것"이라고 설명했다. 아민 기반 탄소 포집에 대한 일반 연구에서 벗어나 고온에서도 작동하는 MOF의 새로운 매커니즘을 수립했다는 것이다. 개발된 소재는 다공성 결정질 금속 이온 및 유기 링커 배열을 특징으로 하며, 내부 면적은 스푼당 약 6개의 축구장 크기에 달해 이산화탄소를 흡착하기에 충분히 넓은 면적이다. 연구진은 시뮬레이션에서 새로운 MOF가 평균 20%~30%의 이산화탄소 농도를 보이는 시멘트 및 철강 제조 플랜트의 배출가스와 약 4% 농도의 이산화탄소를 포함한 천연가스 발전소의 배출가스에서 뜨거운 이산화탄소를 포집할 수 있음을 보여주었다. 포집된 이산화탄소를 지하에 저장하거나 연료 또는 기타 부가가치 화학 물질을 만드는 데 사용하는 것은 온실가스를 줄이는 핵심 전략이다. 지구 온난화와 기후 변화에 대응하는 유력한 솔루션으로 각광받고 있다. 재생 에너지 발전과 달리 화석연료를 주로 사용하는 산업 플랜트는 지속 가능성을 확보하는 것이 더욱 어렵기 때문에 이산화탄소 포집이 매우 중요하다. 아민 기반 흡착제는 수십 년 동안 탄소 포집 연구의 초점이었다. MOF는 원래 독일 아우크스부르크 대학교의 연구진이 발견했다. MOF가 이산화탄소로 채워지면 이산화탄소의 분압을 낮추어 제거하거나 탈착할 수 있다. MOF는 재사용한다. 연구진은 MOF를 변형해 다른 가스를 흡착할 수 있는지 추가 확인 작업에 나서고 있다. 이 소재가 더 많은 이산화탄소를 흡착할 수 있도록 기능 개선도 진행하고 있다.
-
- 경제
-
[신소재 신기술(134)] UC 버클리, '뜨거운 이산화탄소 가스 포집' 획기적 기술 개발
-
-
[신소재 신기술(133)] 물에 녹는 바이오플라스틱 'MECHS' 개발
- 플라스틱 오염 문제가 점점 더 심각해지는 가운데, 물에 녹는 새로운 바이오플라스틱이 개발되어 주목받고 있다. 미국 노스이스턴 대학교의 아비나쉬 만줄라-바사반나(Avinash Manjula-Basavanna) 연구원과 닐 조쉬(Neel S. Joshi) 교수 연구팀은 물과 퇴비에서 빠르게 분해되는 바이오플라스틱 'MECHS'를 개발했다고 어스닷컴이 보도했다. 이번 연구 결과는 학술지 네이처 커뮤니케이션스(Nature Communications) 저널에 발표됐다. 새로운 바이오플라스틱 'MECHS'의 특징 MECHS는 '퇴비화, 치유, 확장가능성을 갖춘 기계적으로 조작된 살아있는 물질(Mechanical Engineered Living Materials with Compostability, Healability, and Scalability)'의 약자이다. 이 소재는 유전자 조작된 대장균 박테리아와 섬유 매트릭스를 결합하여 종이 또는 필름 형태로 제작된다. 기존 바이오플라스틱과 달리 MECHS는 빛과 같은 외부 자극에 반응하고 자가 재생 및 조절 능력을 갖추고 있다. 또한 물과 퇴비에 빠르게 분해되어 환경 오염을 줄이는데 기여할 수 있다. 연구팀은 "MECHS는 변기에 버려도 생분해될 정도로 친환경적"이라고 설명했다. 대량 생산 가능-플라스틱 포장재 대체 기대 MECHS는 종이와 유사한 방식으로 대량 생산이 가능하며, 플라스틱 포장재를 대체할 수 있을 것으로 기대된다. 앞서 설명했듯이 기본적으로 이 제품은 유전자 조작된 대장균 박테리아가 섬유 매트릭스와 얽힌 종이 또는 필름과 같은 형태로 만들어진다. 섬유질 구조로 인해 이 바이오플라스틱은 비밀 랩처럼 늘어날 수 있고, 다양한 강성을 위해 유전적으로 조작할 수 있으며 자가 치유 능력까지 갖추었다. 만줄라-바사반나 연구원은 "플라스틱 포장재는 수명이 며칠에서 2년 정도로 짧지만, 현재 사용되는 석유화학 플라스틱은 생분해되는 데 수백 년이 걸린다"며 "MECHS는 생분해성, 수세성(침투액의 물에 의한 세척의 정도를 비교하기 위해 사용되는 척도), 기계적 조정 가능성을 갖춘 지속 가능한 대안"이라고 강조했다. 플라스틱 포장재는 현재 플라스틱 시장의 3분의 1을 차지한다. 상용화 위해 유전자 안정성 확보해야 MECHS는 혁신적인 소재지만 상용화를 위해서는 몇 가지 과제를 해결해야 한다. 먼저, 유전자 조작된 대장균 박테리아(E.coli 박테리아)의 유전적 안정성을 확보해야 한다. 또한 기존 플라스틱 산업의 전환에 따른 경제적, 물류적 문제와 대중의 인식, 규제 문제 등을 해결해야 한다. 연구팀은 MECHS를 시작으로 다양한 생분해성 소재를 개발하고 환경 보존, 의료 등 다양한 분야에 적용할 수 있을 것으로 전망했다. 이들의 연구는 생물학, 화학, 공학 분야의 협력을 통해 지속 가능한 해결책을 제시하는 모범 사례로 평가받고 있다.
-
- IT/바이오
-
[신소재 신기술(133)] 물에 녹는 바이오플라스틱 'MECHS' 개발
-
-
CJ제일제당, 신사업 진출 위해 '글로벌 1위' 그린바이오 매각
- CJ제일제당이 그린바이오 분야 세계 1위인 바이오사업부 매각에 나섰다. 예상 몸값은 5조~6조원대에 달할 전망이다. 18일 투자은행(IB) 업계에 따르면 CJ제일제당은 바이오사업부를 매각하기 위해 복수 글로벌 사모투자펀드(PEF)와 물밑 접촉을 추진하고 있다. 매각 주관 업무는 글로벌 IB인 모건스탠리가 맡고 있으며 이르면 다음달 중 본입찰을 진행할 것으로 전망된다. CJ제일제당이 매각을 추진하는 바이오 부문은 미생물을 원료로 식품 조미 소재와 사료용 아미노산 등을 생산하는 그린바이오 사업이 주력이다. 라이신, 트립토판 등 사료용 아미노산 부문 시장 점유율이 세계 1위에 올라 있다. 관련 업계에서는 CJ제일제당이 신사업에 투자하기 위한 실탄을 마련하는 차원에서 바이오사업부 매각을 검토하는 것으로 보고 있다. 인수·합병(M&A) 업계 관계자는 "CJ그룹은 바이오 부문을 매각해 확보하게 될 거액의 자금을 활용해 식품 본업의 경쟁력을 확대하거나 다른 업종의 기업을 인수해 신사업에 뛰어들 가능성도 있다"고 말했다. CJ제일제당의 바이오 부문은 '캐시카우'로 꾸준히 수익을 창출해왔다. 지난해 상각전영업이익(EBITDA)은 5259억원에 달한다. 올 들어 3분기까지 EBITDA는 4875억원으로 집계됐다. 일반적으로 식품 기업의 기업가치가 EBITDA의 7~8배 수준인 점을 감안하면, CJ제일제당 바이오사업부 기업가치는 5조~6조원대로 평가된다. CJ제일제당의 사업은 크게 설탕·밀가루·식용유 등을 생산하는 식품과 바이오, 물류 부문으로 구성돼 있다. 지난해 바이오 부문 매출은 4조1343억원으로 CJ제일제당 전체 매출에서 약 23%를 차지했으며 라이신, 트립토판 등 사료용 아미노산 품목 등을 생산하는 기업 간 거래(B2B) 사업이 주력이다. 매출 90% 이상이 해외에서 창출되는 글로벌 기업이다. 라이신은 면역 증강 역할을 하는 물질로 알려져 있으며 양돈 사료에 첨가해 사료 영양분의 균형을 맞춰주는 기능을 한다. 트립토판은 체내에서 단백질의 구성 요소인 아미노산 균형을 유지하고 항체 생성을 증진해 면역력을 높여준다. CJ제일제당의 바이오 사업은 '햇반' '비비고' 등 식품 사업에 비해 대중적 인지도가 낮지만 설탕과 함께 회사를 글로벌 식음료 기업으로 키운 부문이다. 일본 감미료사인 아지노모토에서 기술 이전을 받아 1963년 '미풍'으로 출시했던 MSG(글루탐산나트륨) 사업이 시초다. 1988년 인도네시아에 첫 현지 법인을 설립하며 사료용 아미노산 라이신 시장에 진출한 것이 도약의 계기가 됐다. 그린바이오 사업은 현재 미국, 중국, 인도네시아, 말레이시아, 브라질 등 해외 주요 국가에 11개 대형 생산설비를 갖추고 있다. 글로벌 1위 사료용 아미노산 브랜드인 라이신과 트립토판, 발린을 포함해 8종의 대표 브랜드를 보유하고 있다. CJ제일제당 그린바이오 사업은 코로나19 사태를 전후로 실적이 가파르게 개선됐다. 경쟁사가 물류난으로 배송에 어려움을 겪는 사이에 CJ제일제당이 글로벌 네트워크를 활용해 세계 시장에서 점유율을 빠르게 확대했기 때문이다. 2020년 2조9817억원 수준이던 바이오 사업 매출은 2021년 3조7312억원, 2022년 4조8540억원으로 가파르게 상승했다. 다만 지난해부터 다소 상황이 바뀌었다. 글로벌 경기 침체로 인해 축산 수요가 줄면서 그린바이오 수요도 감소하고 있기 때문이다. 그린바이오 사업은 현재 글로벌 1위지만 업황에 따라 부침이 크다. 이 때문에 시장에선 이재현 CJ그룹 회장이 바이오사업부를 매각해 마련할 실탄으로 신사업을 모색할 것으로 내다보고 있다. 실제로 CJ그룹은 2018년 CJ헬로비전을 LG그룹, 제약사업(CJ헬스케어)을 한국콜마에 각각 매각했다. 매각대금으로 CJ제일제당은 미국 냉동 식품 2위 업체인 슈완스컴퍼니를 인수했고 슈완스컴퍼니 실적이 개선된 바 있다. 그 결과 2018년 3649억원 수준이었던 CJ제일제당의 미국 식품 매출은 4조356억원으로 급증했다. 시장에서는 CJ제일제당이 그린바이오 사업 매각대금으로 '제2의 슈완스' 등 초대형 M&A에 나설 것으로 전망하고 있다.
-
- 산업
-
CJ제일제당, 신사업 진출 위해 '글로벌 1위' 그린바이오 매각
-
-
[신소재 신기술(132)] 플라스틱 폐기물, 고부가가치 화학물질과 수소 에너지로 재활용하는 기술 개발
- 플라스틱 폐기물을 분해해 벤조산과 청정에너지인 수소로 재활용하는 기술이 개발됐다. 독일 연구팀이 가장 흔한 플라스틱 폐기물인 폴리스티렌 폐기물을 효율적으로 재활용하는 전기화학적 방법을 개발했다. 이 기술은 저렴한 철 촉매를 사용하여 폴리스티렌을 분해해 벤조산과 그 부산물로 수소를 생성하며, 태양 에너지를 사용하여 작동할 수 있는 장점이 있다고 사이테크 데일리가 보도했다. 플라스틱은 우리 생활에 필수적인 요소가 되었지만, 매립지와 자연 환경에 축적되는 막대한 양의 플라스틱 폐기물은 심각한 문제를 야기한다. 전 세계적으로 생산되는 플라스틱은 재활용율이 겨우 10% 미만에 불과하다. 2025년에는 플라스틱 폐기물이 400억톤에 이를 것으로 예상된다. 특히 포장재와 건축 자재에 널리 사용되는 폴리스티렌(PS)은 매립지에 버려지는 폐기물의 약 33%를 차지하지만, 재활용율은 1%에 불과하다. 2022년 폴리스티렌의 전 세계 생산량은 1540만톤에 달했다. 그 중에서 재활용된 폴리스티렌은 겨우 15만4000톤에 불과했다. PHYS는 캘리포니아 대학교 버클리와 캘리포니아 대학교 산타바바라의 연구자들이 수행한 '2050년까지 전 세계 플라스틱 폐기물 관리 불량과 온실 가스 배출을 줄이기 위한 경로'라는 연구를 인용해 지금처럼 경제 활동을 게속한다면 세계는 2011년부터 2050년까지 엠파이어 스테이트 빌딩 높이의 10배에 달하는 플라스틱 더미로 맨해튼을 덮을 만큼의 쓰레기를 배출할 것이라고 지적했다. 이러한 문제를 해결하기 위해 독일 괴팅겐의 프리드리히 뵐러(Friedrich Wöhler) 지속가능 화학 연구소의 루츠 아커만 교수가 이끄는 연구팀은 폴리스티렌을 효율적으로 분해하는 전기화학적 방법을 개발했다. 이 방법은 폴리스티렌을 분해하여 화학 공정의 원료로 사용할 수 있는 단량체 벤조일 생성물과 짧은 고분자 사슬을 생성하고 그 부산물로 수소를 만들어냈다. 이 기술의 핵심은 헤모글로빈과 유사한 철 포르피린 복합체인 철 기반 촉매이다. 철은 다른 촉매 활성 금속에 비해 독성이 없고 저렴하며 쉽게 구할 수 있다는 장점이 있다. 전기 촉매 반응 과정에서 철 화합물은 Ⅳ, Ⅲ, Ⅱ의 다른 산화 단계를 순환하며, 일련의 반응 단계와 중간 생성물을 거쳐 폴리스티렌의 탄소-탄소 결합을 분해한다. 주요 생성물은 벤조산과 벤즈알데히드이며, 벤조산은 향료 및 방부제 생산 등 다양한 화학 합성의 원료로 사용된다. 연구팀은 실제 플라스틱 기물을 그램 단위로 효율적으로 분해함으로써 이 새로운 전기 촉매 기술의 견고성을 입증했다. 이번 연구 결과는 독일 저명 학술지 '앙게반테 케미(Angewandte Chemie, 응용화학)'에 개재됐다.
-
- IT/바이오
-
[신소재 신기술(132)] 플라스틱 폐기물, 고부가가치 화학물질과 수소 에너지로 재활용하는 기술 개발
-
-
삼성전자, 기흥에 차세대 반도체 연구단지 'NRD-K' 구축⋯"100년 미래 향한 도약"
- 삼성전자가 반도체 사업의 발원지인 기흥캠퍼스에 차세대 연구개발(R&D) 단지 'NRD-K(New Research & Development - K)'를 조성, 미래 반도체 기술 패권 장악을 위한 힘찬 도약을 선언했다. 18일 경기도 용인 기흥캠퍼스에서 개최된 NRD-K 설비 반입식에는 전영현 삼성전자 디바이스솔루션(DS) 부문 부회장을 비롯한 경영진과 협력사 대표, 연구소 임직원 등 100여 명이 참석, 반도체 기술 혁신의 새로운 장을 열겠다는 의지를 다졌다. NRD-K는 삼성전자가 미래 반도체 기술 선점을 위해 2030년까지 총 20조원을 투자하는 10만9000㎡(약 3만3000평) 규모의 최첨단 복합 연구개발 단지다. 메모리, 시스템, 파운드리(반도체 위탁) 등 반도체 전 분야의 핵심 연구기지로서, 근원적 기술 연구부터 제품 개발까지 일원화된 프로세스를 구축하여 개발 속도를 획기적으로 향상시킬 것으로 기대된다. 특히, 고해상도 극자외선(EUV) 노광 설비, 신물질 증착 설비 등 최첨단 생산 설비와 웨이퍼 본딩 인프라를 도입하여 차세대 메모리 반도체 개발에 박차를 가할 계획이다. KRD-K는 최첨단 R&D 설비를 갖추고 있으며 동시에 첨단 기술 개발의 결과가 제품 양산으로 빠르게 이전더ㅣㄹ 수 있는 장점이 있다. 삼성전자는 기흥캠퍼스를 혁신의 요람으로 삼아 1992년 세계 최초 64Mb D램 개발, 1993년 메모리 반도체 시장 1위 달성 등 눈부신 성과를 이룩해 왔다. 이번 NRD-K 구축을 통해 기술력과 조직 간 시너지를 극대화하고, 첨단 반도체 산업 생태계를 강화하여 '초격차' 전략을 더욱 공고히 한다는 방침이다. 전영현 부회장은 기념사에서 "NRD-K를 통해 차세대 반도체 기술의 근원적 연구부터 제품 양산에 이르는 선순환 체계를 확립하고, 개발 속도를 획기적으로 개선해 나갈 것"이라며 "삼성전자 반도체 50년 역사의 시발점인 기흥에서 재도약의 발판을 마련, 새로운 100년의 미래를 향해 나아가겠다"는 포부를 밝혔다. 이재용 삼성전자 회장 역시 2022년 8월 NRD-K 기공식에 참석하고, 작년 10월에는 단지 건설 현장을 직접 점검하는 등 미래 반도체 기술 경쟁력 강화에 대한 강력한 의지를 표명한 바 있다. 한편, 삼성전자는 NRD-K 조성을 통해 기흥을 첨단 반도체 산업 생태계의 중심지로 육성하고, 협력회사와의 R&D 협력을 더욱 확대해 나갈 계획이다. 삼성전자 자사주 10조원 매입으로 주가 반등 삼성전자는 지난주 주주가치 제고 등을 위해 10조원의 자사주 매입을 결정한 뒤 주가가 오름세를 나타내고 있다. 삼성전자는 지난 15일 이사회를 열어 향후 1년간 총 10조원 규모의 자사주를 분할 매입하기로 의결했다. 이중 3조원어치는 18일부터 내년 2월 17일까지 3개월 이내에 장내 매수해 소각할 계획이다. 이는 지난 2017년 9조3000억 규모의 자사주 매입이후 7년 만이다. 이종욱 삼성증권 연구원 이번 결정에 대해 "주가 안정을 위해 자사주를 매입했던 2014년의 사례와 유사하다"고 분석했다. 이 연구원은 "당시 3개월 주가가 15.5% 하락하며 52주 신저가를 기록하고 있었으나 자사주 매입 발표 이후 3개월간 주가가 14.5% 상승했다"며 "무엇보다 자사주 매입 결정으로 액면 분할전 주가 기준 110만원(현 주가 2만2000원 수준)에서는 기업의 주주가치 제고 정책이 나타날 수 있다는 믿음으로 주가의 하방 지지선이 형성됐다"고 말했다. 그러나 주가 상승 전망에 대한 신중한 반응과 함께 자사주 매입 규모가 너무 작고 시기도 늦었다는 비판도 나왔다. 한국기업거버넌스포럼은 최근 발표한 논평에서 "최근 주가 급락과 시장 가치를 고려했을 때, 삼성전자의 자금력과 수익 창출력에 비해 자사주 매입 규모가 지나치게 작다"며 삼성전자가 올해 안으로 10조원 규모의 자사주를 매입하여 소각할 것을 권고했다. 포럼은 "애플처럼 매년 배당 외에 기업 가치의 3~4%에 해당하는 자사주를 매입하고 없애는 등 지속적인 주주환원 계획을 발표해야 한다"면서 "3조원은 최근 몇 년간 주주들이 입은 막대한 투자 손실을 고려하면 턱없이 부족하다"고 지적했다. 삼성전자 주가는 18일 오후 3시 8분 현재재 전거래일 대비 4.86% 급등해 5만6100원에 거래되고 있다.
-
- IT/바이오
-
삼성전자, 기흥에 차세대 반도체 연구단지 'NRD-K' 구축⋯"100년 미래 향한 도약"
-
-
[퓨처 Eyes(58)] 인듐 셀레나이드, 초저에너지 시대 연다
- 스마트폰 배터리를 하루 종일 써도 용량이 남는 시대가 올까? 꿈만 같은 이야기가 현실로 다가오고 있다. 인도과학연구소(IISc), 미국 펜실베이니아대학교 공과대학, 매사추세츠공과대학(MIT)의 공동 연구팀이 쏘아 올린 '인듐 셀레나이드(In2Se3)'라는 혁신의 씨앗 덕분이다. 이 소재는 마법처럼 전기적 충격만으로도 기존 메모리보다 10억배나 작은 에너지로 데이터를 저장한다. 미래 메모리 저장 장치의 판도를 뒤흔들 게임 체인저가 등장한 것이다. 기존 메모리, 에너지 소비량 높아⋯인듐 셀레나이드는 '깃털'처럼 가볍다 지금까지 메모리 저장 장치의 주역은 위상변화 메모리(PCM)였다. CD, DVD, 블루레이 등에 널리 쓰이는 이 기술은 특정 물질을 800℃ 이상의 고온으로 녹였다가 급속 냉각하는 방식으로 데이터를 저장했다. 이 과정에서 막대한 전력을 소비하는 게 단점이다. "PCM이 널리 쓰이지 못하는 가장 큰 이유 중 하나는 높은 에너지 소비 때문이다" 펜실베이니아 공과대학의 재료 과학 및 공학(MSE) 분야의 스리니바사 라마누잔 석좌교수 리테시 아가왈의 말처럼 에너지 효율은 메모리 기술의 아킬레스 건이었다. 하지만 인듐 셀레나이드는 이러한 문제에 명쾌한 해답을 제시한다. 전기 충격만으로, 아주 작은 에너지로 데이터를 저장하는 혁신적인 기술이라 메모리 시장의 패러다임을 바꿀 잠재력이 있다. 전류 한 방에 '유리 상태'로 변신!⋯2D 층상 구조가 빚어낸 마법 연구팀은 인듐 셀레나이드 나노선에 전류를 흘려보내는 실험을 진행했다. 그런데 놀랍게도, 전류를 통과시키자 결정 구조가 순식간에 유리 상태로 변했다고 한다. 논문 제1저자인 펜실베이니아 공과대학의 전 박사과정 학생인 가우라브 모디는 "처음에는 소재가 손상된 줄 알았다"며 당시의 놀라움을 감추지 못했다. 일반적으로 아몰화(결정 구조가 무질서한 비결정질 상태로 변하는 현상)를 유도하려면 강력한 전기 펄스를 가해야 한다. 하지만 인듐 셀레나이드는 연속적인 전류만으로 유리 상태로 변한다. 신기하지 않은가? 이 현상의 비밀은 인듐 셀레나이드의 독특한 구조에 숨겨져 있다. 2D 층상 구조, 강유전체성, 압전성, 이 세 가지 요소가 절묘한 조화를 이루며 혁신을 가능하게 했다. 2D 층상 구조 덕분에 전류가 층 사이를 통과하면, 층들이 서로 미끄러지며 특정 쌍극자 모멘트를 가진 도메인을 형성한다. 이 도메인 사이의 결함이 충돌하면서 결정 구조가 붕괴되고, 마침내 유리 상태로 변한다. 아가왈 석좌교수는 IISc의 나노 과학 및 공학 센터(CeNSE)의 파반 누칼라(Pavan NuKALA) 조교수와 박사과정 학생인 숩함 파라테(Shubham Parate)와 협력해 전자 현미경으로 이 과정을 원자 단위에서 마이크로미터 길이까지 면밀히 추적했다. '도메인 경계 충돌'로 에너지 절감⋯스마트 기기 배터리 혁명 이끈다 연구팀은 연속 전류가 재료의 2D 층과 평행하게 흐르면 층이 서로 다른 방향으로 미끄러진다는 것을 발견했다. 파반 누칼라 교수는 이 과정을 도메인 경계가 전기장에 의해 움직이며 서로 충돌하는 현상으로 설명했다. 이는 연쇄 반응을 일으켜 결국 전체 물질을 유리 상태로 바꿔 놓는다. 놀랍게도 이 과정에서 소비되는 에너지는 극히 적다. 연구팀의 파라테 박사과정 학생은 "전자 현미경으로 다양한 길이 척도에서 이 모든 요소들이 함께 살아나 작용하는 놀라운 현상을 관찰했다"고 말했다. 이 기술은 스마트폰, 컴퓨터 등 다양한 전자 기기에 적용되어 에너지 효율을 극대화할 수 있다. 저전력 메모리 기술은 기기 사용 시간을 획기적으로 늘리고 전력 소모를 줄여, 배터리 걱정 없는 세상을 열어줄 것으로 기대된다. 인듐 셀레나이드, 미래를 향한 '퀀텀 점프'⋯에너지 절감, 그 이상의 가치를 향해 인듐 셀레나이드의 저에너지 아몰화 기술은 에너지 절감에 크게 기여할 것으로 기대된다. 데이터 저장 효율을 극대화하여 스마트 기기 사용 경험을 혁신적으로 개선할 것이다. 인듐 셀레나이드가 이끌어갈 미래는 더욱 빠르고, 가볍고, 오래가는 스마트 기기로 가득할 것으로 기대된다. 하지만 상용화까지는 몇 가지 과제가 남아 있다. 예를 들어 아몰화된 인듐 셀레나이드의 안정성을 높이고, 데이터 저장 용량을 늘리는 연구가 필요하다. 또한 기존의 메모리 생산 공정에 적용할 수 있는 기술 개발도 중요하다. 연구팀은 이러한 과제들을 해결하기 위해 후속 연구를 진행하고 있으며, 인듐 셀레나이드 기반 메모리 기술이 가까운 미래에 상용화될 수 있을 것으로 전망했다. 이 혁신의 물결은 이제 막 시작됐다. 이번 논문은 지난 11월 6일 학술지 네이처에 게재됐다.
-
- 포커스온
-
[퓨처 Eyes(58)] 인듐 셀레나이드, 초저에너지 시대 연다
-
-
[기후의 역습(86)] 셸, 네덜란드 기후 소송 항소심 승소
- 네덜란드 항소 법원은 “글로벌 에너지 그룹 셸(Shell)이 2030년까지 지구 온난화를 일으키는 오염을 급격하게 줄일 의무는 없다”고 판결했다. 이는 에너지 회사들이 화석 연료에서 벗어나도록 하려는 환경 운동가들의 노력에 찬물을 끼얹었다고 CNN 등 외신이 전했다. 아제르바이잔 수도 바쿠에서 COP29 연례 기후 회담이 진행되는 가운데 내려진 이 판결은 영국의 석유 및 가스 거대 기업 셸에 대한 급격한 탄소 배출 감축을 명령한 이전 판결을 뒤집은 것이다. 셸의 CEO 와엘 사완은 "법원의 결정을 환영한다. 이는 글로벌 에너지 전환은 물론 네덜란드와 회사를 위한 올바른 결정“이라고 말했다. 셸은 2030년까지 탄소 배출량을 2019년 수준에서 45% 줄이도록 명령한 2021년의 판결에 불복해 항소했다. 여기에는 자체 운영 및 판매하는 에너지 제품에서 발생하는 배출이 모두 포함됐다. 헤이그 항소법원은 셸이 위험한 기후 변화로부터 지구를 보호하기 위해 탄소 배출을 제한해야 할 의무는 있다고 판결하면서도, 셸과 같은 개별 회사가 준수해야 할 구체적인 감축 비율에 대한 합의는 충분하지 않다고 밝히고 이전 판결을 기각했다. 판결에서 법원은 셸이 이미 자체 운영에서 발생하는 배출량을 줄이기 위해 노력하고 있으며, 여기에 더해 자사 제품 사용으로 인한 훨씬 더 많은 배출을 줄이라고 강요하는 것은 효과적이지 않다고 언급했다. 셸을 상대로 소송을 제기한 글로벌 환경운동단체 '지구의 벗(Friends of the Earth)' 네덜란드는 판결에 큰 실망감을 표했다. 도날드 폴스 이사는 "결과는 아프다"면서도 "그래도 판결에서 몇 가지 긍정적인 점은 있었다"고 평가했다. 대표적인 것은 법원이 기업에 대해 기후 변화로 인한 인권 침해에 대해 책임이 있다고 확언했다는 점이다. 판결은 또 800개가 넘는 화석 연료 프로젝트(셸의 파이프라인)가 인권 원칙에 따라 행동해야 할 책임과 모순된다고도 밝혔다. 이는 모두 미래의 법정 사건에서 활용될 수 있는 중요한 법적 판결이다. 폴스는 내용을 점검한 후 판결에 불복해 네덜란드 대법원에 항소할지의 여부를 결정할 것이라고 말했다. 셸에게 탄소 배출을 줄이라는 초기 판결에도 불구하고, 셸은 재정적 수익을 늘리기 위해 실제로 기후 목표 중 일부를 축소했다. 올해 초, 셸은 2016년 대비 2030년까지 에너지 제품의 순 탄소 집약도를 15~20% 줄이는 것을 목표로 한다고 밝혔다. 과거에는 20% 감축을 목표로 했었다. 또한 2035년까지 순 탄소 강도를 절반으로 줄이겠다는 목표도 철회했다. 동시에 셸은 2030년까지 자체 운영에서 배출량을 절반으로 줄이고 2050년까지 순 제로 배출 에너지 사업이 되겠다고 약속했다. 셸은 청정에너지보다 화석 연료에 훨씬 더 많은 투자를 계속하고 있다. 지난해에는 저탄소 에너지에 56억 달러를 투자했는데, 이는 총자본 지출의 23%에 해당한다. 이에 비해 석유 및 가스 사업에 160억 달러 이상을 투자했다. 지구의 벗 네덜란드에 따르면, 셸은 전 세계 온실 가스 배출량의 3%를 차지하는데, 이는 대부분의 국가가 개별적으로 배출하는 배출량보다 많다. 폴스는 이번 판결이 COP29에 미치는 영향에 대해 "국제 기후 협약이 대규모 오염 기업을 제외한다면 기후 변화에 대처하는 데 효과가 없을 것"이라고 우려했다. 그는 파리 협정이 체결된 2015년 이후 약 50개 기업이 전 세계 탄소 오염의 80%를 차지했다고 지적했다. 주주총회를 통해 에너지 대기업의 탄소 배출을 줄이고자 하는 단체인 '팔로우 디스(Follow This)'는 이번 판결로 투자자들의 석유 대기업 개혁에 대한 책임이 더욱 무거워졌다면서 "법원의 결정은 기후 위기에 맞서는 싸움에서 크게 후퇴한 것"이라고 비판했다.
-
- 포커스온
-
[기후의 역습(86)] 셸, 네덜란드 기후 소송 항소심 승소
-
-
[우주의 속삭임(78)] 목성에 단단한 땅이나 바위가 없는 이유는?
- 목성에는 지구에서 밟는 풀이나 흙과 같이 사람이 걷거나 우주선이 착륙할 수 있는 단단한 표면이 없다. 그 이유는 뭘까. 온갖 특이한 현상을 연구하는 물리학계에서도 '표면이 없는 세계'라는 개념은 이해하기 어렵다고 한다. 나사(NASA)의 로봇 탐사선 주노(Juno)가 이상한 행성인 목성 궤도를 9년째 공전하고 있는 지금도 목성의 많은 부분은 여전히 미스터리로 남아 있다. 태양에서 다섯 번째 행성인 목성은 화성과 토성 사이에 있다. 태양계에서 가장 큰 행성으로, 1000개 이상의 지구가 들어갈 만큼 크고 여유 공간도 있다. 태양계의 수성, 금성, 지구, 화성 등 네 개의 내행성은 모두 단단한 암석 물질로 이루어져 있지만, 목성은 태양과 유사한 구성을 가진 가스 행성이다. 소용돌이치고, 폭풍우가 몰아치며, 격렬하게 난기류를 일으키는 가스 덩어리의 거대 구체다. 목성의 일부 지역에서는 바람이 시속 약 640km 이상으로 불고 있다. 이는 지구의 5등급 허리케인보다 약 3배 빠른 속도다. 지구 대기권 꼭대기에서 시작해 약 100km 아래로 내려가면 기압이 지속적으로 증가한다. 궁극적으로는 땅이든 물이든 지구 표면에 부딪힌다. 목성의 경우, 대부분이 수소와 헬륨으로 이루어진 대기권의 꼭대기에서 내려가기 시작하면 지구와 마찬가지로 더 깊이 들어갈수록 압력이 증가한다. 목성의 압력은 엄청나다. 위의 가스층이 점점 더 아래로 밀려 내려감에 따라, 그것은 마치 바다 밑바닥에 있는 것과 같다. 지구의 물 대신 목성은 가스로 둘러싸여 있다. 압력이 너무 강해져서 인체가 붕괴될 것이다. 압력에 눌려 사망하게 되는 것이다. 1600km 아래로 내려가면 뜨겁고 밀도가 높은 가스가 이상하게 작동하기 시작한다. 가스는 액체 수소 형태로 바뀌어 물이 없는 바다를 만들어낸다. 물이 없다는 점은 다르지만, 태양계에서 가장 큰 바다라고 할 수 있다. 약 3만 2000km를 내려가면 수소는 흐르는 액체 금속에 더욱 가까워진다. 이 물질은 너무 이질적이다. 과학자들도 그 때문에 큰 어려움을 겪었으며, 최근에야 실험실에서 이 물질을 재현했다. 이 액체 금속 수소의 원자는 매우 단단히 압축돼 전자가 자유롭게 돌아다닐 수 있다. 이러한 층 전환은 갑작스러운 것이 아니라 점진적으로 이루어진다. 수소 가스에서 액체 수소로, 그리고 금속 수소로의 전환은 천천히 부드럽게 이루어진다. 어떤 지점에도 날카로운 경계나 고체 물질 또는 표면은 없다. 이렇게 내려가면 궁극적으로 목성의 핵에 도달하게 된다. 이것은 목성 내부의 중심 영역이며 표면과 혼동해서는 안 된다. 학자들은 여전히 목성 핵 물질의 정확한 성질에 대해 논쟁하고 있다. 그중에서 가장 호응을 받는 모델은 암석과 같은 고체가 아니라, 액체와 고체의 뜨겁고 밀도가 높은 금속성 혼합물과 비슷하다는 것이다. 목성 핵의 압력은 엄청나서 마치 지구 대기 1억 개가 누르는 것과 같다. 또는 신체의 각 제곱인치 위에 엠파이어 스테이트 빌딩 두 개가 얹히는 것과 같다. 압력만이 유일한 문제는 아니다. 목성의 핵에 도달하려는 우주선은 섭씨 2만 도의 극심한 열에 녹을 것이다. 이는 태양 표면보다 3배 더 뜨거운 온도다. 목성은 이상하고도 무서운 곳이다. 그러나 목성이 없었다면 인간이 존재하지 않았을 수도 있다. 그 이유는 목성이 지구를 포함한 태양계 내행성을 보호하는 방패 역할을 하기 때문이다. 목성은 엄청난 중력으로 수십억 년 동안 소행성과 혜성의 궤도를 바꾸어 놓았다. 목성의 개입이 없었다면 우주 잔해 중 일부가 지구에 충돌했을 수도 있다. 만약 하나의 충돌이 대격변 수준이었다면 지구는 멸종 수준의 사건을 일으켰을 것이다. 공룡의 대멸종을 연상하면 납득할 수 있다. 목성은 지구 생명체의 존재에 도움을 주었을지 모르지만, 목성 자체는 생명체가 살기에 매우 부적합한 곳이다. 그러나 목성의 위성인 유로파는 다르다. 태양계의 다른 곳에서 생명체를 찾을 수 있는 가장 좋은 기회가 될 수 있다. 나사의 유로파 클리퍼(Europa Clipper)는 지난 10월에 발사된 로봇 탐사선으로, 유로파를 약 50회 비행하며, 이를 통해 위성의 거대한 지하 바다를 연구할 계획이다. 탐사선은 2030년 4월에 도착할 예정이다.
-
- IT/바이오
-
[우주의 속삭임(78)] 목성에 단단한 땅이나 바위가 없는 이유는?
-
-
"로봇 개, 트럼프 보호 위해 마러라고 별장 순찰 중"…미국 비밀경호국 확인
- 미국 비밀경호국이 로봇 개가 마러라고(Mar-a-Lago)에 있는 도널드 트럼프 대통령 당선자의 집을 순찰하고 있다는 사실을 공식 확인했다고 더힐이 전했다. 비밀경호국이 '하이테크 사냥개(high-tech hound)'라고 부르는 이 로봇 개가 경호 요원과 함께 팜비치 저택과 부지 주변을 걷는 모습이 촬영됐다. 비밀경호국의 최고 커뮤니케이션 책임자인 앤서니 구글리엘미는 넥스타와의 인터뷰에서 이 로봇이 언제부터 마러라고에 투입되었는지는 밝히지 않았지만, "이 로봇이 비밀경호국 서비스와 보안 목표에 충분히 도움이 되는 기술과 성능을 자랑한다"고 말했다. 구글리엘미는 "트럼프 대통령 당선인을 보호하는 것이 최우선 과제다. 로봇의 구체적인 기능에 대해서는 설명할 수 없지만, 로봇 개에는 감시 기술과 경호국의 보호 작업을 지원하는 일련의 고급 센서가 장착되어 있다"고 부연했다. 비밀경호국은 또한 지난 7월 워싱턴 D.C.에서 열린 나토(NATO) 정상회의에서 공유된 영상에서 로봇의 경호 능력을 강조했다. 경호국 관계자는 이 로봇이 '자율 시스템 및 기술 로봇 운영'을 의미하는 'ASTRO' 프로그램의 일부라고 설명했다. 이 관계자는 로봇 개에는 폭탄과 화학물질의 위협을 탐지하는 기술을 장착할 수 있으며, 열화상 기술과 고해상도 줌 기능을 갖춘 카메라가 장착되어 있다고 말했다. 그는 "ASTRO 프로그램이 앞으로 여떤 결과를 낼 것인지에 대한 기대가 크다. 기술과 성능이 지속적으로 발전하고 있다"면서 "로봇 개는 빠른 다운로드만으로 소프트웨어 업데이트할 때마다 계속 개선되고 있다"고 밝혔다. 로봇 개는 선거일 이후 마러라고에서 관찰된 보안 조치의 하나다. 그 외에도 소총을 장착한 해안 경비대 보트도 부지 바로 바깥의 레이크 워스 라군(Lake Worth Lagoon))에서 촬영됐다. 마러라고의 보안은 트럼프가 대선에서 승리한 가운데 이루어진 것이다. 대선 기간 동안 트럼프는 두 번의 암살 시도의 표적이 되었다. FBI는 지난주 말 트럼프가 이란의 살인 음모의 표적이었다고 밝혔다. 이와 관련, 3명이 기소되었다.
-
- IT/바이오
-
"로봇 개, 트럼프 보호 위해 마러라고 별장 순찰 중"…미국 비밀경호국 확인
-
-
[기후의 역습(84)] 기후 변화로 바다 독성 점점 더 강해져
- 지구 온난화로 바다의 독성이 점점 더 강해지고 있는 것으로 나타났다. 바다는 따뜻해지고 산성화되면서 산소를 잃고 있다. 이는 기후 변화의 잘 알려진 결과물이다. 이러한 변화가 해양 환경의 오염 물질에 영향을 미쳐 바다 독성을 더욱 강화시키고 있다는 연구 결과가 나와 주목된다고 사이테크데일 리가 전했다. 새로운 연구는 바다의 미량 오염 물질과 기후 변화의 상호작용을 조사한 것이다. 그 결과는 네이처의 지구와 환경 저널(Communications Earth & Environment)에 게재됐다. 기후 변화를 이끄는 많은 오염 물질이 바다로 방출되고 있다. 연구를 주도한 지오마르 헬름홀츠 해양연구센터(GEOMAR Helmholtz Centre for Ocean Research Kiel)의 해양 화학자 레베카 지톤 박사는 "바다의 미량 원소가 기후 변화의 영향을 어떻게 받는가를 이해하고 싶었다. 지금까지 이에 대한 연구는 거의 이뤄지지 않았다. 연구진은 인간이 유발한 원인과 자연적인 원인 두가지를 모두 조사했다"고 설명했다. 납, 수은, 카드뮴과 같은 금속은 산업이나 화석연료 연소와 같은 인간 활동을 통해서만 바다에 유입되는 것이 아니다. 기후 변화로 인해 자연적인 공급원도 변화하고 있다. 해수면 상승, 강 범람 또는 고갈, 해빙과 빙하 용융 등 모든 과정이 오염 물질 흐름을 촉진시키고 있다. 이 연구는 해양 환경 보호의 과학적 측면에 대한 유엔 공동 전문가 그룹(GESAMP)의 실무 그룹 분석 결과를 요약한 것으로, 해양의 금속 오염 물질에 초점을 맞추고 있다. 이 실무 그룹은 모나코 국제원자력기구(IAEA)의 해양 환경 연구실 전 책임자이자 GEOMAR의 해양 광물 자원 교수 실비아 샌더 박사가 시작했다. 알프레드 베게너 연구소, 헬름홀츠 극지 및 해양 연구 센터(AWI)의 크리스토프 뵐커도 참여했다. 샌더 박사는 "실무 그룹은 기후 변화와 온실가스가 해양 오염 물질에 미치는 영향에 초점을 맞췄다"며 북극 해역의 수은 농도 상승을 예로 들었다. 빙하가 녹고 영구 동토층이 해빙되고 해안이 침식하는 등 자연 공급에 의한 수은 방출 때문에 일어난 현상이다. 전통적인 어업에 의존하는 지역 사회에 특히 위협이 되는데, 수은이 먹이 사슬에 축적되어 오염된 생선을 섭취하기 때문이다. 샌더 교수는 "인간 활동으로 인해 납과 같은 독성 금속의 전 세계 유입량은 산업화 이전 수준에 비해 10배, 수은은 3~7배 증가했다"라고 말하며 "은과 같은 독성 원소는 석탄 연소와 항균 제품에서 은 나노입자의 사용이 증가함에 따라 해안 해역에서 점점 더 많이 검출되고 있다"고 우려했다. 또 해양 운송과 플라스틱 사용도 중금속 확산에 기여한다. 플라스틱은 물에서 구리, 아연, 납과 같은 금속과 결합할 수 있다. 결합된 오염 물질은 또한 먹이 사슬로 유입될 수 있다. 미래에는 해양 개발이 증가함에 따라 인간의 중금속 오염이 더욱 증가할 수 있다. 해수 온도 상승, 해양 산성화, 산소 고갈과 같은 기후 변화는 다양한 방식으로 미량 원소에 영향을 미친다. 수온이 높아질수록 수은과 같은 미량 원소의 해양 생물에 의한 생체 이용과 흡수가 증가한다. 이는 높은 온도가 신진대사를 촉진하고, 산소 용해도를 감소시키며, 아가미 환기를 증가시켜 더 많은 금속이 생체에 들어가 체내에 축적되기 때문이다. 바다는 인간이 방출하는 이산화탄소의 대부분을 흡수한다. 이 때문에 더 산성화되어 pH 수준이 떨어진다. 이는 구리, 아연 또는 철과 같은 금속의 용해도와 생체 이용률을 증가시킨다. 이 효과는 특히 구리에서 두드러지는데, 구리는 고농도에서 많은 해양 생물에 강한 독성을 일으킨다. 특히 해안 지역과 해저에서 산소가 고갈되면서 미량 원소의 독성 효과가 커진다. 이는 홍합, 게 및 기타 갑각류와 같이 해저에 서식하는 생물체에 스트레스를 준다. 인간 활동은 두 가지 방식으로 해안 지역의 오염 물질의 양에 영향을 미친다. 직접적으로는 오염 물질을 곧바로 방출하는 것이고, 간접적으로는 인간이 유발한 기후 변화가 자연에 미치는 영향을 통해서다. 연구는 그러나 기후 변화가 해양의 오염 물질에 어떤 영향을 미치는지에 대한 데이터가 여전히 부족하다는 사실도 보여준다. 실무 그룹은 오염 물질에 대한 연구를 확대해야 한다고 강조한다. 또한 더 나은 모델과 규제법을 통해 바다에 영향을 미치는 오염 물질에 대한 통제를 강화해야 한다고 권고한다.
-
- 포커스온
-
[기후의 역습(84)] 기후 변화로 바다 독성 점점 더 강해져
-
-
미세 플라스틱, 구름 형성 촉진…극한 날씨와 기후변화 가속 우려
- 미세 플라스틱이 대기 중 구름 형성을 촉진시켜 극한 날씨와 기후 변화를 가속화시킨다는 연구 결과가 최근 발표됐다. 구름은 대기 중의 보이지 않는 기체인 수증기가 먼지와 같은 작은 부유 입자와 결합해 물방울이나 얼음 결정으로 변할 때 형성된다. 최근 발표된 연구에서 미세 플라스틱 입자도 동일한 효과를 낼 수 있는 것으로 밝혀졌다. 또 미세 플라스틱이 없는 물방울보다 섭씨 5~10도 더 따뜻한 온도에서 얼음 결정이 생성될 수 있음도 보여주었다고 더컨버세이션이 전했다. 연구 결과는 공기 중에 미세 플라스틱이 없었다면 구름이 형성되지 않았을 좀 더 따뜻한 조건에서 미세 플라스틱이 구름을 생성함으로써 날씨와 기후에 적지 않은 영향을 미칠 수 있음을 시사한다. 대기 화학자 중심으로 구성된 연구진은 다양한 유형의 입자가 액체 물과 접촉할 때 어떻게 구름 속에서 얼음이 형성되는지를 분석했다. 대기에서 지속적으로 발생하는 이 과정은 '핵 형성'이라고 부른다. 대기 중의 구름은 액체 물방울, 얼음 입자 또는 두 가지의 혼합물로 구성된다. 기온이 섭씨 0도에서 영하 38도 수준인 중상층 대기의 구름에서 얼음 결정은 일반적으로 건조한 토양의 미네랄 먼지 입자나 꽃가루 또는 박테리아와 같은 생물 입자 주위에 형성된다. 미세 플라스틱도 그런 입자 중 하나다. 미세 플라스틱은 너비 5mm 미만으로 연필 끝에 달린 지우개 정도의 크기다. 일부는 이보다 더 작고 미세하다. 미세 플라스틱은 매우 작기 때문에 공기 중으로 쉽게 이동할 수 있다. 구름 속의 얼음은 날씨와 기후에 중요한 영향을 미친다. 대부분의 강수는 얼음 입자로 시작되기 때문이다. 전 세계 대부분 지역의 구름은 대기 중으로 높이 확장되고 차가운 공기가 구름 꼭대기 수분을 얼린다. 얼음이 형성되면 주변의 액체에서 수증기를 끌어당기고, 얼음 결정은 떨어질 만큼 무거워진다. 얼음이 형성되지 않으면 구름은 비나 눈으로 내리기보다는 증발하는 경향이 있다. 구름은 또한 여러 가지 방식으로 날씨와 기후에 영향을 미친다. 지구 표면에서 들어오는 햇빛을 반사하여 냉각 효과를 내기도 하고 지구 표면에서 방출되는 일부 복사선을 흡수해 온난화 효과를 증폭시킨다. 반사되는 햇빛의 양은 구름에 포함된 액체 상태의 물과 얼음의 양에 따라 달라진다. 미세 플라스틱이 구름에서 얼음 입자를 증가시키면, 이 비율의 변화는 구름이 지구의 에너지 균형에 미치는 영향을 바꿀 수 있다. 물이 섭씨 0도에서 언다고 하지만, 항상 그런 것은 아니다. 먼지 입자와 같이 핵을 형성할 물질이 없다면 물은 섭씨 영하 38도까지 얼지 않고 과냉각될 수 있다. 더 따뜻한 온도에서 동결하려면 물에 녹지 않는 물질이 물방울에 존재해야 한다. 이 입자는 첫 번째 얼음 결정이 형성될 수 있는 표면을 제공한다. 미세 플라스틱이 존재하면 얼음 결정이 형성돼 비나 눈이 더 많이 내릴 수 있다. 연구진은 미세 플라스틱 조각이 물방울의 핵 역할을 할 수 있는지를 확인하기 위해 대기 중에서 가장 널리 퍼진 네 가지 플라스틱, 즉 저밀도 폴리에틸렌, 폴리프로필렌, 폴리염화비닐, 폴리에틸렌 테레프탈레이트를 이용했다. 각각은 깨끗한 상태와 자외선, 오존 및 산에 노출된 상태 두 가지로 테스트되었다. 이 모든 것이 대기 중에 존재하며 미세 플라스틱의 구성에 영향을 미칠 수 있다. 연구진은 미세 플라스틱을 작은 물방울에 현탁시키고, 물방울을 천천히 냉각시켜 어는 시점을 관찰했다. 또한 플라스틱 조각의 표면을 분석해 분자 구조를 파악했다. 얼음 핵 형성은 미세 플라스틱의 표면 화학 성질에 따라 달라질 수 있기 때문이었다. 테스트한 대부분의 플라스틱에서 물방울의 50%는 섭씨 영하 22도로 냉각될 때까지 얼었다. 일부 미세 플라스틱은 미세 플라스틱이 없는 물방울보다 더 따뜻한 온도에서 얼음 핵을 형성했다. 자외선, 오존 및 산에 노출되면 입자의 얼음 핵 형성 활동이 감소하는 경향이 있었다. 이는 얼음 핵 형성이 미세 플라스틱 입자 표면의 작은 화학적 변화에 민감하다는 것을 시사한다. 그러나 이 플라스틱들은 여전히 얼음 핵을 형성하므로 구름 속 얼음의 양에 영향을 미칠 수 있다. 미세 플라스틱이 날씨와 기후에 어떤 영향을 미치는지 이해하려면 구름이 형성되는 고도에서의 농도를 알아야 한다. 또 미네랄 먼지 및 생물학적 입자 등 얼음 핵 형성이 가능한 다른 입자와 비교해 미세 플라스틱의 농도를 확인해야 한다. 이러한 측정을 통해 미세 플라스틱이 구름 형성에 미치는 영향을 모델링할 수 있다. 플라스틱 조각은 크기와 구성이 다양하다. 향후 연구에서는 가소제와 착색제 등 첨가제가 포함된 플라스틱과 미세 플라스틱 입자를 이용해 분석을 진행할 계획이다.
-
- 포커스온
-
미세 플라스틱, 구름 형성 촉진…극한 날씨와 기후변화 가속 우려
-
-
[신소재 신기술(129] 암흑물질 실험서 중성미자 '구름' 첫 포착
- 이탈리아와 중국 과학자들이 최근 진행한 암흑물질 실험에서 중성미자 구름을 처음으로 포착해 학계의 이목을 집중시키고 있다. 우주에서 가장 풍부한 입자인 중성미자는 전하가 없고 질량이 거의 없는 아원자 입자로, 물질과 거의 상호 작용하지 않는 특징을 지닌다. 또한 감지 되지 않고 모든 물체를 통과하는 기이한 특성 때문에 '유령 입자'로 불리기도 한다. 참고로 원자를 구성하는 입자 중에서 가장 가벼운 전자조차도 중성미자보다 600만배 더 무겁다. 양성자는 전자보다 약 1836배 더 무겁고, 중성자는 전자보다 약 1839배 더 무겁다. 최근 이탈리아와 중국에서 각각 독립적으로 운영되는 암흑물질 검출 실험인 제논(XENON)과 판다X(PandaX) 연구팀이 암흑물질 주변에서 중성미자 구름을 처음으로 포착했다고 발표했다고 인터레스팅엔지니어링이 전했다. 제논 실험에 참가한 페이 가이오는 "이것은 암흑 물질 실험을 통해 천체물리적 중성미자를 측정한 최초의 사례"라고 말했다. 중성미자-핵 탄성 산란 통해 검출 중성미자는 일반적으로 중성미자-핵 탄성 산란(CEvNS) 과정을 통해 검출된다. 이는 중성미자가 양성자나 전자와 상호 작용하는 것이 아니라 원자핵 전체와 상호 작용하는 과정이다. 연구를 진행하는 동안 연구진은 2년 동안의 실험 데이터를 검토했다. XENON과 PandaX 연구팀은 액체 제논 검출기를 사용하여 암흑물질 입자 또는 중성미자가 제논 원자와 상호 작용하는 방식을 연구하는 과정에서 태양 핵에서 발생하는 붕소-8의 방사성 베타 붕괴에서 나오는 CEvNS 신호를 확인했다. XENON 연구팀은 11개의 CEvNS 신호를, PandaX 연구팀은 75개의 신호를 보고했으며, 두 실험 모두 통계적 신뢰도는 2.64 시그마(PandaX)와 2.73 시그마(XENON)로 유사했다. 듀크 대학교의 물리학 교수인 케이트 숄버그는 "저를 포함한 대부분의 사람들이 이 공동연구가 중성미자 안개를 측정했다고 확신한다"고 말했다. 이번 연구 결과는 암흑물질 주변에 밀집된 중성미자 구름의 존재를 시사하며, 이는 암흑물질 탐색에 새로운 과제를 제기한다. 중성미자는 검출이 어렵기 때문에 우주에 풍부하게 존재하는 중성미자는 암흑물질 검출 시 배경 잡음을 생성하여 암흑물질 신호를 구별하기 어렵게 만들 수 있다. 전문가 "중성미자 구름 위협 과장되었을 가능성…추가 연구 필요" 그러나 멜버른 대학교의 암흑물질 입자 물리학 전문가인 엘리사베타 바르베리오는 "중성미자 구름으로 인한 '존재적 위협'은 과장되었을 가능성이 있다"며 "이러한 배경 잡음이 암흑물질 연구의 진전을 막기 전에 해야 할 일이 많다"고 밝혔다. 그는 이번 실험에는 참가하지 않았다. 이번 연구 결과는 암흑물질과 중성미자 사이의 상호 작용을 이해하는 데 중요한 단서를 제공하며, 향후 암흑물질 탐색 연구에 영향을 미칠 것으로 예상된다. 이 연구는 미국 물리학회에서 발행하는 학술지 피지컬 리뷰 레터스(Physical Review Letters)에 게재됐다.
-
- IT/바이오
-
[신소재 신기술(129] 암흑물질 실험서 중성미자 '구름' 첫 포착
-
-
[먹을까? 말까?(76)] 수돗물 속 '영원한 화학물질', 젊은층 질병 급증의 원인?
- 최근 미국에서 수돗물, 식품 포장재, 샴푸 등 일상생활에 널리 사용되는 제품에 함유된 과불화화합물(PFAS)이 젊은층의 질병 급증과 관련이 있다는 연구 결과가 잇따라 발표되면서 사회적 불안감이 고조되고 있다. 자연적으로 잘 분해되지 않아 이른바 '영원한 화학물질'로 불리는 PFAS는 체내 및 환경에서 분해되지 않고 축적되는 특성을 지니고 있으며, 1940년대부터 제품의 방수, 방유, 방오 기능을 위해 널리 사용되어 왔다. 그러나 최근 연구를 통해 면역체계 약화, 임신 합병증, 신장암, 고환암 등 다양한 건강 문제와의 연관성이 속속 드러나면서 PFAS의 심각성이 부각되고 있다고 영국 매체 데일리 메일이 온라인 판에서 전했다. 미국 환경보호국(EPA)에 따르면 PFAS에 장기간 노출되면 전립선암, 신장암, 고환암 위험이 증가하고, 어린이의 발달 지연, 여성의 생식력 감소, 신체 호르몬 균형이 깨질 수 있다. 장내 미생물 균형 파괴, 염증 유발 특히 PFAS는 장내 미생물의 섬세한 균형을 파괴해 염증을 유발하고, 이는 대장암과 같은 질병 발생 위험을 높이는 것으로 밝혀졌다. 미국 남부캘리포니아 대학교(USC) 연구팀이 20세 전후의 건강한 성인 78명을 대상으로 진행안 연구 결과, PFAS가 높은 사람들은 장내 염증을 억제하는 박테리아인 '라크노스피라(Lachnospiraceae)' 수치가 현저하게 낮게 나타났다. 이는 PFAS가 장내 미생물 구성을 변화시켜 염증성 장 질환, 대장암 등의 발병 위험을 높일 수 있음을 시사한다. 신장 기능 저하, 면역력 약화 PFAS는 신장 기능에도 심각한 영향을 미치는 것으로 드러났다. USC 연구팀의 4년간 추적 관찰 결과, PFAS 노출은 신장 기능을 최대 50%까지 감소시키는 것으로 나타났다. 신장 기능 감소는 노폐물 여과 기능 저하로 이어져 체내 독성 물질 축적, 주요 장기 기능 손상 등을 유발할 수 있다. 또한 노스이스턴 대학교 연구팀은 PFAS가 면역 체계를 약화시켜 감염에 대한 저항성을 떨어뜨린다는 사실을 밝혀냈다. 이는 면역력 저하로 인한 각종 감염성 질환, 만성 염증성 질환 발병 위험 증가로 이어질 수 있다. 미국, PFAS 규제 강화…식수 오염 심각성 인지 미국에서는 PFAS 오염 문제의 심각성을 인지하고 규제 강화에 나서고 있다. 2024년 연구 결과에 따르면, 7000만 명 이상의 미국인이 PFAS로 오염된 식수에 노출된 것으로 추정된다. 이에 따라 미국 환경보호청(EPA)은 2025년까지 모든 공공 상수도 시스템에 PFAS 검사 및 제한 조치를 의무화하는 법안을 마련했다. 유럽연합(EU)는 2025년부터 PFAS 1만종 이상의 사용을 제한하는 규제를 시행할 예정이다. PFAS 노출 경로 다양⋯생활속 경각심 필요 미국 질병통제예방센터(CDC)에 따르면 PFAS는 수돗물뿐만 아니라 PFAS 공장 인근에서 생산된 식품, 오염된 물에서 잡힌 생선, 토양 및 먼지 등 다양한 경로를 통해 인체에 흡수될 수 있다. 특히 소방관들은 화재 진압용 거품에 포함된 PFAS에 직접적으로 노출되어 대장암 발병 위험이 높은 것으로 알려져 있다. 이번 연구 결과는 과학 저널인 '종합환경과학'에 게재됐다. SUC의 제스 굿리치 교수는 가디언과의 인터뷰에서 "이러한 대사성 질환과 함께 당뇨병이나 만성 신장 질환의 위험이 높아지며, 이는 미국에서 가장 빠르게 증가하는 사망 원인 중 하나이므로 정말 중요한 문제"라고 지적했다. 국내 상황 및 대책 마련 시급 한국은 현재 PFAS에 대한 구체적인 법적 규제가 마련되지 않고, 다만 먹는 물 수질 기준으로 PFOA(퍼플루오르옥탄산)와 PFOS(과불화옥탄술폰산)에 대한 기준(0.07㎍/L)만 설정되어 있다. 국내에서도 PFAS에 대한 우려가 커지고 있는만큼, 국민 건강을 보호하기 위한 적극적인 대책 마련에 나서야 할 것이다. PFAS 노출 경로를 파악하고, 오염원 관리, 규제 강화, 대체 물질 개발 등 다각적인 노력을 통해 국민 건강을 지켜야 할 것이다.
-
- 생활경제
-
[먹을까? 말까?(76)] 수돗물 속 '영원한 화학물질', 젊은층 질병 급증의 원인?
-
-
[퓨처 Eyes(57)] 세포도 웨어러블 입는 시대⋯"생체 전자장치의 혁명"
- 웨어러블 기술이 스마트워치나 피트니스 트래커를 넘어 세포 단위까지 진화하고 있다. MIT 연구진은 최근 개별 세포의 전기적, 대사 활동을 측정하고 조절할 수 있는 혁신적인 세포용 웨어러블 장치를 개발했다고 밝혔다. 빛에 반응하는 부드러운 고분자 '아조벤젠'으로 만들어진 이 장치는 빛의 세기와 방향에 따라 세포를 감싸거나 펼쳐지며 세포 활동을 제어한다. 마치 세포에 옷을 입히고, 빛으로 그 옷을 조종하여 세포의 활동을 제어하는 것과 같다. 세포용 웨어러블의 구조와 기술적 혁신 MIT 연구진이 개발한 세포용 웨어러블 장치는 부드러운 고분자인 '아조벤젠'으로 만들어져 있다. 아조벤젠은 빛을 받으면 말리는 성질을 가지고 있어, 이를 통해 세포의 다양한 부위를 감싸는 방식으로 작동한다. 연구팀은 빛의 세기와 방향을 조절함으로써 장치의 말림과 세포와의 접촉 방식을 정밀하게 제어할 수 있다. 이를 통해 이 장치는 세포를 손상시키지 않으면서도 꼭 맞게 감싸는 기술을 구현할 수 있었다. 또한, 최근의 합성 생물학적 연구와 세포 외부 반응 시스템(cell-free synthetic biology)을 기반으로 한 기술들은 웨어러블 장치의 가능성을 크게 확장하고 있다. 합성 생물학은 생체 시스템을 제어할 수 있는 전례 없는 가능성을 열어주었고, 다양한 생물학적 회로와 센서를 설계할 수 있는 기반을 마련했다. 특히, 세포 외부 반응 시스템은 세포를 직접 사용하지 않으면서도 유전자 회로를 활용해 원하는 반응을 이끌어낼 수 있다는 점에서 기존의 생체 웨어러블 기술의 한계를 극복할 수 있는 잠재력을 가지고 있다. 무선 작동과 생체 적합성 이 장치는 배터리가 필요 없으며, 몸 안에서 자유롭게 부유하는 형태로 존재한다. 외부에서 빛을 조사하여 비침습적으로 장치를 작동시킬 수 있어, 신체 내부 환경에 미치는 영향을 최소화할 수 있다. MIT 연구진은 수많은 실험을 통해 이 장치가 신경세포와 상호작용하면서도 세포에 손상을 주지 않고 생체 적합성을 유지할 수 있음을 입증했다. 또한, 이러한 웨어러블 시스템에는 유전자 회로를 포함한 다양한 센서를 사용해 세포 내부와 외부의 다양한 분자들을 탐지하고 반응할 수 있도록 설계할 수 있다. 이러한 점에서 이 기술은 매우 혁신적이다. 신경 질환 치료의 잠재성 세포용 웨어러블 장치는 특히 신경계 질환, 예를 들어 다발성 경화증(MS)과 같은 질환의 치료에서 그 가능성을 높이 평가받고 있다. 다발성 경화증 환자는 신경을 보호하는 '미엘린'이라는 층이 손상되는데, MIT 연구진의 장치는 이 손상된 축삭을 감싸 합성 미엘린의 역할을 수행할 수 있다. 연구팀의 주저자인 데블리나 사카르는 "이 기술은 세포 수준에서 작동하는 합성 미엘린을 통해 다발성 경화증 환자들의 신경 기능을 회복시키는 데 도움을 줄 수 있다"고 말했다. 이 장치가 단순한 실험적 기술을 넘어, 신경계 질환을 치료할 수 있는 실질적 도구가 될 가능성을 가지고 있는 것이다. 생체 전자장치의 미래와 윤리적 과제 MIT 연구팀은 세포용 웨어러블 장치가 합성 미엘린 역할뿐만 아니라 다양한 광전기 물질과 결합해 세포를 자극하는 데 사용할 수 있음을 보여주었다. 예를 들어, 장치 위에 원자 수준의 얇은 재료를 덮어 패턴화하면, 여전히 말려서 미세 튜브 형태를 만들 수 있다. 이는 장치가 다양한 신호(전기적, 광학적, 열적 신호 등)를 세포에 전달할 수 있는 플랫폼으로서 사용될 가능성을 열어주고 있다. 이러한 기술은 신경과학 연구뿐만 아니라 인공지능 기술과의 결합을 통해 인간의 뇌 연구와 질병 치료의 새로운 가능성을 제시할 수 있다. 그러나 이러한 기술이 인체에 도입되는 만큼 윤리적 고민 역시 동반된다. 비록 비침습적 방식이라 할지라도 인체 내부에 장치를 설치하는 것에 대한 프라이버시 문제와 인체에 미칠 장기적 영향에 대한 우려가 존재한다. 펜실베이니아 대학교의 플라비아 비탈레 교수는 "이 기술은 세포 수준에서 신경세포와 상호작용하는 전례 없는 해상도를 보여준다. 하지만 그 사용에는 윤리적 고려가 필요하다"고 말했다. 기술의 발전과 함께 그에 따른 책임과 윤리적 기준을 마련하는 것이 중요하다. 미래의 신경과학과 의학의 패러다임 변화 세포 자체가 장치를 착용하는 시대가 도래하고 있다. 이러한 세포용 웨어러블 장치는 신경계 질환 치료의 새로운 장을 열어줄 뿐만 아니라, 생체 전자장치가 인체와 어떻게 상호작용하고 우리의 건강을 관리할 수 있을지를 새롭게 정의할 것이다. 이 혁신적인 기술은 단순한 상상이 아니라, 이제 곧 우리의 현실로 다가오고 있다. 우리는 이 혁신이 인체와 어떻게 공존할 수 있을지를 탐구하고, 그에 따른 윤리적 과제를 함께 고민해야 할 것이다. 데블리나 사카르 교수는 "우리가 보여준 이 기술의 가능성은 앞으로의 연구와 응용에 있어 엄청난 잠재력을 가지고 있다"고 말했다. 지금 우리는 미래 과학의 첫걸음을 내딛고 있는 것이다.
-
- 포커스온
-
[퓨처 Eyes(57)] 세포도 웨어러블 입는 시대⋯"생체 전자장치의 혁명"
-
-
생성형 AI, 폭발적인 성장 이면에 '전자 폐기물 문제' 심각
- 생성형 인공지능(AI)이 폭발적인 성장세를 기록하고 있지만 엄청난 전자 폐기물을 배출하는 것으로 밝혀졌다. 생성형 AI는 인공지능의 한 종류로, 주어진 데이터를 학습해 새로운 콘텐츠를 만들어내는 능력을 가졌다. 마치 사람처럼 창의적인 결과물을 만들어 낼 수 있다는 점에서 기존 AI와 차별화된다. IEEE 스펙트럼은 4일(현지시간) 지난주 네이처 컴퓨테이셔널 사이언스(Nature Computational Science) 저널에 발표된 연구를 인용해 대규모 언어 모델(LLM)의 공격적인 채택만으로도 2030년까지 연간 250만톤(t)의 전자 폐기물이 발생할 것으로 추산된다고 전했다. 딜로이트에 따르면 생성형 AI에 대한 민간 투자는 2022년 약 30억 달러(약 4조1307억원)에서 2023년 250억달러(약 34조4225억원)로 급증했으며, 민간 기업의 약 80%가 향후 3년 안에 AI 비즈니스를 주도할 것으로 예상하고 있다. 이러한 급속한 성장은 최신 GPU, CPU 및 기타 전자 장비를 데이터 센터에 끊임없이 업그레이드해야 함을 의미하며, 이는 전자 폐기물의 폭발적인 증가로 이어질 수 있다. 이번 연구의 공동 저자인 이스라엘 라이히만 대학의 지속 가능성 및 기후 연구원 아사프 차초르(Asaf Tzachor)는 "AI는 진공 상태에서 존재하지 않는다. AI는 유형의 환경 발자국을 가진 상당한 하드웨어 리소스에 의존한다"며 "AI 발전의 이점을 누리면서 부정적인 환경 영향을 완화하는 전략을 개발하기 위해 전자 폐기물 문제에 대한 인식이 중요하다"고 말했다. 지금까지 AI 지속 가능성에 대한 대부분의 연구는 AI 모델의 에너지 및 물 사용량과 그에 따르는 탄소 배출량에 중점을 두었다. 차초르는 중국 과학 아카데미의 평 왕(Peng Wang) 교수, 웨이창 천(Wei-Qiang Chen) 교수와 함께 생성형 AI와 관련된 전자 폐기물의 잠재적 중량을 계산했다. 이 연구는 문제의 잠재적 규모를 추정하고 기업이 보다 지속 가능한 관행을 채택하도록 촉구하기 위한 것이다. 전자 폐기물 문제의 심각성 전자 폐기물에는 독성 금속 및 기타 화학 물질이 포함되어 있어 환경으로 유출되어 건강 문제를 일으킬 수 있다. 유엔 글로벌 전자 폐기물 모니터에 따르면 2022년 전 세계적으로 총 6200만톤의 전자 폐기물이 발생했으며, 이는 재활용 프로그램보다 5배 빠르게 증가하고 있다. 승용차 1대의 무게를 1.5톤으로 가정하면 전자 폐기물 6200만톤은 약 4133만대의 승용차 무게와 맞먹는다. 또다른 예시로 파리 에펠탑의 무게는 약 1만톤이다. 6200개의 에펠탑이 프랑스 파리에 빽빽히 들어찼다고 가정한다면 2022년 한 해 동안 배출된 전자 폐기물의 양이 얼마나 엄청난지 짐작할 수 있을 것이다. AI 성장세에 힘입어 향후 몇 년 동안 AI는 폐기물 문제에 상당한 영향을 미칠 수 있다. 차초르는 생성형 AI와 관련된 전자 폐기물에는 폐기된 GPU, CPU, 데이터 센터의 백업 전원용 배터리, 메모리 모듈 및 인쇄 회로 기판이 포함된다고 말했다. 이 연구는 제한적인 확장부터 공격적인 확장형까지 생성형 AI 채택에 대한 네 가지 잠재적인 시나리오를 자세히 설명하고 2023년을 기준으로 연간 2600톤의 전자 폐기물이 발생할 것으로 예측한다. 만약 AI 사용이 제한적으로 확장될 경우, 2023년부터 2030년까지 총 120만톤의 전자 폐기물이 발생하는 반면, 공격적으로 확될 경우 같은 기간 동안 총 500만톤의 전자 폐기물이 발생할 것으로 예상된다. 차초르는 현재 추세를 고려할 때 공격적인 시나리오가 가장 가능성이 높다고 말했다. 이 연구는 다른 형태의 생성형 AI가 아닌 대규모 언어 모델만 고려한다는 한계가 있다. 차초르는 LLM이 계산 집약도가 가장 높은 모델 중 하나이기 때문에 연구팀이 LLM에 중점을 두었다고 밝혔다. 그는 "다른 형태의 AI를 포함하면 예상되는 전자 폐기물의 수치가 더 늘어날 것"이라고 덧붙였다. AI 전자 폐기물 감소를 위한 해결 방안 이론적으로 더 발전된 칩을 채택하면 서버 팜에서 더 적은 자원으로 더 많은 작업을 수행하고 폐기물을 줄이는 데 도움이 될 수 있다. 그러나 각 업그레이드는 폐기물 발생량의 순 증가로 이어진다. 또한 현재 반도체에 대한 무역 제한으로 인해 업그레이드가 항상 가능한 것은 아니다. 최첨단 칩에 접근할 수 없는 국가에서는 그 결과 더 많은 폐기물이 발생할 수 있다. 이 연구에 따르면 최신 칩으로 업그레이드하는 데 1년 지연되면 전자 폐기물이 14% 증가한다. 이러한 AI 폐기물 발생량을 줄이는 가장 좋은 방법 중 하나는 전자 장비를 재사용하는 것이다. 차초르를 이를 "다운사이클링"이라고 했다. 최첨단 기술이 더 이상 적용되지 않는 서버는 웹사이트 호스팅이나 더 기본적인 데이터 처리 작업에 재활용하거나 교육 기관에 기증하는 방법 등이 있다. 아마존, 구글, 메타를 포함한 대부분의 기술 기업은 탄소 발자국 및 친환경 에너지 사용에 중점을 둔 지속 가능성 목표를 발표했다. 마이크로소프트(MS)는 테이터 센터의 전자 폐기물 발생량을 제한하기로 약속했다. 2023년 기준 전 세계의 데이터 센터 시장 규모는 2192억3000만 달러(약 301조 9016억원)으로 추정된다. 한국의 경우 2022년 기준 민간 데이터 센터 매출 규모는 약 3조9000억원이다. 차초르는 AI 전자 폐기물과 관련된 모범 사례를 준수하도록 하려면 규제가 필요할 수도 있다고 말했다. 그는 "기업이 이런 전략을 채택할 수 있도록 인센티브를 제공해야 한다"고 강조했다.
-
- IT/바이오
-
생성형 AI, 폭발적인 성장 이면에 '전자 폐기물 문제' 심각
-
-
[우주의 속삭임(76)] 블랙홀, 우주 팽창의 비밀 쥐고 있나⋯암흑 에너지 연관성 연구 결과 발표
- 우주의 팽창을 가속화시키는 미지의 힘, 암흑 에너지의 정체를 밝힐 단서가 블랙홀에 있을 가능성이 제기됐다. 미국 애리조나주립대학교 케빈 크로커(Kevin Croker) 교수 연구팀은 블랙홀이 암흑 에너지와 연관되어 우주 팽창에 영향을 미칠 수 있다는 연구 결과를 발표했다고 사이언스얼라트가 전했다. 현재 이론에 따르면 우주의 초기 성장 시기는 인플레이션 시기였다. 빅뱅 직후 우주는 무(無)에서 상당히 큰 무언가로 순식간에 변했다. 이후 한동안 상대적으로 느리게 성장하다가 약 50억년 전 암흑 에너지에 의해 팽창이 지배되기 시작했다. 연구팀은 암흑 에너지 분광기(DESI)를 이용하여 거대 질량 별의 붕괴로 생성되는 블랙홀의 성장 속도를 분석하고, 이를 우주 팽창 속도와 비교했다. 그 결과 블랙홀의 형성과 우주 팽창 사이에 뚜렷한 상관관계가 있음을 확인했다. 즉, 블랙홀이 생성될수록 우주 팽창 속도가 빨라지는 경향을 보인 것이다. 이러한 현상은 '우주론적 결합(cosmological coupling)' 이론으로 설명될 수 있다. 이 이론에 따르면, 블랙홀은 일반 물질을 암흑 에너지로 변환시키는 역할을 하며, 이 과정에서 우주 팽창이 가속화된다. 연구팀은 블랙홀의 암흑 에너지 변환율을 계산한 결과, 현재 우주에서 관측되는 팽창 속도와 일치하는 것을 확인했다. 또한, 이 연구는 블랙홀이 암흑 에너지의 근원일 가능성을 제시하며, 우주 팽창의 미스터리를 풀 수 있는 중요한 단서를 제공한다는 점에서 학계의 주목을 받고 있다. 연구팀은 향후 추가적인 연구를 통해 블랙홀과 암흑 에너지의 연관성을 더욱 명확히 규명할 계획이다. 이 연구 결과는 우주론 및 천체입자물리학 저널(Journal of Cosmology and Astroparticle Physics)에 게재됐다.
-
- IT/바이오
-
[우주의 속삭임(76)] 블랙홀, 우주 팽창의 비밀 쥐고 있나⋯암흑 에너지 연관성 연구 결과 발표
-
-
나노 기술로 건물 안전 진단⋯한국기계연구원, 색상 변화 감지하는 센서 개발
- 한국기계연구원(이하 기계연)이 나노 기술을 이용하여 건축물의 노후화를 육안으로도 진단할 수 있는 혁신적인 센서를 개발했다. 4일 기계연에 따르면 나노융합연구본부 윤재성 책임연구원 연구팀은 건축물에 부착하는 나노 필름 형태의 센서를 통해 색상 변화를 감지하고, 이를 통해 건축물의 변형 정도를 정밀하게 측정하는 기술을 선보였다. 이 센서는 자연에서 관찰되는 '구조색'의 원리를 응용했다. 구조색은 색소가 아닌 물체의 미세 구조에 의해 빛이 반사되면서 나타나는 색상으로, 공작새 깃털이나 나비 날개에서 볼 수 있는 아름다운 색깔이 대표적인 예이다. 연구팀은 이러한 구조색의 원리를 이용하여 나노 패턴을 설계, 센서에 가해지는 기계적 변형량에 따라 색상이 변화하도록 했다. 육안으로 확인하는 건축물 안전 특히, 이번에 개발된 나노 패턴은 기존 기술의 한계였던 관찰 각도에 따른 색상 변화 문제를 해결하여, 어느 각도에서든 일정한 색상을 유지하도록 설계했다. 또한, 색상 변화 이미지를 인공지능 기술과 접목하여 위험 여부를 판단하는 모니터링 솔루션도 구축했다. 이 센서는 색소나 염료, 별도의 전원 없이 작동 가능하며, 패치 형태로 건축물에 부착하여 육안으로도 안전성을 쉽게 확인할 수 있다는 장점이 있다. 연구팀은 이 기술과 관련하여 10건 이상의 국내 특허와 1건의 국제 특허를 출원했으며, 관련 기업과 기술이전을 추진 중이다. 윤재성 책임연구원은 "이번에 개발된 나노 필름 센서는 건축물의 변형 여부와 안전성을 간편하게 진단할 수 있는 획기적인 기술"이라며, "건축물 안전 관리 분야에 널리 활용될 수 있을 것으로 기대한다"고 밝혔다. 이번 연구 결과는 재료과학 분야의 권위 있는 국제 학술지 'ACS 어플라이드 나노 머티리얼즈' 9월 13일 자 표지논문으로 게재되어 그 우수성을 인정받았다. 한편, 나노 기술은 10억분의 1미터, 즉 나노미터 크기의 물질을 다루는 기술이다. 쉽게 말하면 머리카락 굵기의 10만분의 1정도에 해당하는 아주 작은 크기다. 이렇게 작은 크기에서는 물질의 성질이 완전히 달라지는 데, 나노 기술은 바로 이러한 특성을 이용해 새로운 물질이나 소재를 만들어 내는 가술이다. 이러한 나노 기술은 약물 전달이나 전자 기기, 섬유 제작,자어ㅣ선 차단제 등에 활용된다. 나노 기술로 제작된 섬유는 오염 물질이 묻지 않고 주름도 잘 생기지 않는 특징이 있다.
-
- 산업
-
나노 기술로 건물 안전 진단⋯한국기계연구원, 색상 변화 감지하는 센서 개발
-
-
[신소재 신기술(125)] 양자 '슈뢰딩거의 고양이' 23분간 유지 성공⋯양자역학 새 지평 열어
- 과학자들이 양자 고양이 상태를 무려 23분(1400초) 이상 유지해 기존 기록을 경신했다. 중국 과학기술대학교 연구진이 '슈뢰딩거의 고양이' 상태를 1400초(약 23분 33초) 동안 유지하는 데 성공했다는 연구 결과를 발표했다고 IFL사이언스가 전했다. 이는 양자 중첩 상태를 장시간 유지한 세계 최장 기록으로, 고정밀 특정 및 양자 컴퓨터 정보 처리 분야에 새로운 가능성을 제시할 것으로 기대된다. 슈뢰딩거의 고양이는 양자역학의 원리를 설명하는 데 자주 사용되는 비유로 오스트리아의 물리학자 에르빈 슈뢰딩거가 1935년에 고안한 사고 실험이다. 이 실험은 양자 역학의 불완전함을 보여주기 위해서 고안됐다. 실험 원리는 다음과 같다. 상상속의 밀폐된 상자 안에 고양이 한 마리가 들어있다. 또 상자 안에는 방사성 물질과 연결된 독가스 장치가 있다. 방사성 물질은 1시간 안에 50%의 확률로 붕괴한다. 만약 붕괴하면 독가스가 방출되어 고양이가 죽고, 붕괴하지 않으면 고양이가 살아 있다. 여기서 중요한 점은 상자를 열어보기 전까지는 고양이가 죽었는지 살았는지 확인할 수 없다는 것이다. 양자역학에 따르면, 상자를 열어 확인하기 전까지 고양이는 죽어 있는 상태와 살아 있는 상태가 중첩되어 존재한다. 즉, 고양이는 살아 있으면서 죽어 있는 상태다. 슈뢰딩거는 이 실험을 통해 양자역학의 '중첩' 해석에 의문을 제기했다. 거시세계에서는 고양이가 죽었거나 살았거나 둘 중 하나이며 중첩된 두 가지 상태가 동시에 존재할 수 없기 때문이다. 즉, '슈뢰딩거의 고양이'는 양자역학의 불확실성을 설명하는 사고 실험으로, 상자 속 고양이가 살이 있는 상태와 죽어 있는 상태가 중첩되어 존재한다는 개념이다. 연구팀은 1만개의 이터븀 원자를 절대영도보다 몇 천분의 1도 높은 온도로 냉각시키고 빛을 이용하여 포획하는 실험을 진행했다. 각 원자는 정밀하게 제어되어 두 가지 스핀 상태의 중첩 상태, 즉 '양자 고양이' 상태를 형성했다. 이번 연구에서 주목할 점은 양자 고양이 상태의 유지 기간이다. 자연 상태에서는 중첩 상태가 순식간에 붕괴되지만, 이번 실험에서는 1400초 동안 유지됐다. 연구진은 진공 개념을 개선하면 유지 시간을 더욱 늘릴 수 있을 것으로 예상했다. 인도 캘거리 대학교의 배리 센더스 교수는 "이터븀 원자를 이용해 안정적인 양자 고양이 상태를 구현한 것은 놀라운 성과"라며 "이를 통해 미세한 외부 영향을 감지하고 상호 작용을 연구하는 데 활용할 수 있다"고 평가했다. 센더스 교수는 이 연구에 참여하지는 않았다. 이번 연구는 이터븀 원자를 이용한 장치가 자기장 측정에 매우 민감하게 반응한다는 사실을 밝혀냈으며, 다양한 분야의 응용 가능성을 제시했다. 양자역학 분야에서는 지난해에 16 마이크로그램의 결정을 중첩 상태로 만드는 실험이 성공하는 등 끊임없는 혁신이 이루어지고 있다. 이번 연구 결과는 아직 동료 평가를 받지 않았으며, 관련 논문은 아카이브(arXiv)에서 확인할 수 있다.
-
- IT/바이오
-
[신소재 신기술(125)] 양자 '슈뢰딩거의 고양이' 23분간 유지 성공⋯양자역학 새 지평 열어



