검색
-
-
블루 오리진, 15개월 만에 뉴 셰퍼드 로켓 무인 임무 성공
- 미국의 민간 우주기업 블루 오리진의 24번째 미션이 성공했다고 엔가젯과 CNN 등 다수 외신이 20일(현지시간) 보도했다. 우주 관광 사업을 주력으로 하는 블루 오리진(Blue Origin)은 미국의 민간 우주기업으로, 2000년 아마존의 창업자 제프 베이조스가 설립했다. 블루 오리진은 15개월만인 19일(현지시간) 오전 10시 42분 미 텍사스주 밴 혼 발사장에서 뉴 셰퍼드(New Shepard) 로켓을 발사했다. 뉴 셰퍼드는 발사 후 우주의 경계로 여겨지는 약 107km(약 66.5마일) 고도에 도달한 뒤 부스터와 승무원 캡슐은 안전하게 분리되어 지구로 성공적으로 귀환했다. 로켓은 발사 후 7분 30초 만에 수직으로 착륙했고, 승무원 캡슐은 발사 후 10분 만에 낙하산을 펼치고 성공적으로 착륙했다. 이번 뉴 셰퍼드 로켓 발사는 2022년 9월 이후 15개월 만에 이루어졌다. 앞서 무인 캡슐을 장착한 23번째 뉴 셰퍼드는 텍사스에서 발사된 지 1분 만에 약 8㎞ 상공에서 부스터 엔진이 갑자기 불꽃을 내뿜으며 추락했다. 지난 3월 블루오리진은 해당 로켓 엔진 노즐의 '구조적 결함'이 원인이라고 발표했다. 한편, 이번 임무는 승무원 없이 진행되었지만 33개의 과학 탑재체를 저궤도로 운반했다. 그 중 절반 이상이 미국 항공우주국(NASA)에서 가져온 것이었다. 이번 발사를 통해 연구원들은 몇 분 동안 무중력 상태에서 이러한 탑재체(payload·페이로드)에 대한 원격 연구를 수행할 수 있었다. 예를 들어 허니비 로보틱스의 탑재체는 다양한 중력 조건에서 행성 토양의 강도를 연구했다. 또한 '미래를 위한 클럽' 이니셔티브의 학생 엽서 3만 만8000장도 발송 목록에 포함됐다. 이날 뉴 셰퍼드 로켓은 지상 시스템 문제로 원래 발사가 취소될 예정이었으나 결국 발사에 성공했다. 이날 비행과 관련하여 보고된 문제는 없었지만, 카운트다운이 몇 분간 지연됐다. 이번 임무는 사실상 뉴셰퍼드 부스터의 수소 기반 로켓 엔진의 오작동으로 인해 조기에 종료된 2022년 9월 비행을 재실행하는 것이었다. 이 이상 현상으로 인해 미국 연방항공청(FAA)의 조사가 완료될 때까지 블루 오리진 발사가 중단됐다. FAA의 조사는 지난 9월 종료됐다. 이에 블루 오리진은 기관에서 요구한 일련의 시정 조치를 처리한 후 발사를 재개할 수 있게 됐다. 여기에는 부스터 엔진과 노즐의 재설계, 일부 절차적 변경 등이 포함됐다. 이번 성공으로 블루 오리진은 우주 관광사업 재개에 속도를 낼 계획이다. 블루 오리진은 그동안 여러 차례 상업 비행에 성공했으며, 제프 베이조스도 2021년 7월 이 로켓을 타고 우주 관광을 다녀왔다. 블루 오리진은 향후 승무원 탑승 비행에 대한 공식적인 계획을 발표하지 않았지만 최근 발사 타워에 엘리베이터를 설치했다. 발사 해설자 에리카 와그너는 이날 라이브 스트리밍에서 이는 향후 발사에 "장애인과 더 많은 사람들이 더 쉽게 접근할 수 있도록 하기 위한 것"이라고 말했다. 이를 위해 블루 오리진은 승무원 탑승 항공편의 고객 유치를 위한 프로모션을 강화하기 시작했다. 향후 발사에 페이로드 추가를 신청할 수도 있다. 블루 오리진 뉴 셰퍼드 프로그램 수석부사장인 필 조이스는 "내년에 로켓 발사 횟수를 늘릴 것"이라며 "뉴 셰퍼드에 대한 수요가 지속적으로 증가함에 따라 더 자주 비행할 수 있기를 기대하고 있다"고 말했다. 블루 오리진의 수석 이사인 에리카 와그너도 "우리는 곧 다음 승무원들이 탑승하는 모습을 볼수 있기를 기대하고 있다"고 말했다.
-
- 산업
-
블루 오리진, 15개월 만에 뉴 셰퍼드 로켓 무인 임무 성공
-
-
[퓨처 Eyes(15)] 20m 미만 소형 입자 가속기, 의료·반도체 혁신 예고
- 미국 텍사스대학교(UT) 오스틴 캠퍼스 연구원들이 전자 에너지가 높고 공간도 적게 차지하는 소형 입자 가속기를 개발했다. '입자 가속기'는 우주를 구성하는 기본 입자들의 속성과 상호작용을 연구하는 데 필수적인 장치다. 현대 물리학의 중심에 서 있는 이 기술은 반도체 응용 분야, 의료 영상 및 치료, 재료, 에너지 및 의학 연구에 큰 잠재력을 가지고 있다는 평가다. 특히 기존 가속기는 수 킬로미터에 달하는 넓은 공간을 차지해 가격이 비싸고 소수의 국립연구소와 대학에서만 사용할 수 있었다. 미국 과학 기술 매체 사이테크데일리에 따르면, UT 연구팀이 개발한 소형 입자 가속기는 길이 20m 미만으로, 기존 가속기보다 훨씬 콤팩트하다. 또한, 100억 전자볼트(10 GeV)의 에너지를 가진 전자빔을 생성할 수 있어, 기존 가속기와 동일한 수준의 성능을 갖는다. 현재 미국 내에서 이와 같은 높은 전자 에너지 수준에 도달할 수 있는 가속기는 단 두 대에 불과하며, 둘 다 길이가 약 3km에 달한다. 이 연구의 공동 저자인 비요른 마누엘 헤겔리히(Bjorn "Manuel" Hegelich) UT 물리학 부교수는 "우리는 이제 이러한 에너지 수준에 매우 가까운 거리, 약 10cm 내에서 전자 빔에 도달할 수 있다"고 말했다. 이번 연구는 입자 가속기 기술의 발전에 중요한 진전을 의미하며, 향후 다양한 과학적, 의료적 응용에 사용될 수 있다. 헤겔리히 교수는 저널 '극한에서의 물질과 방사선(Matter and Radiation at Extremes)'에서 "우리의 가속기는 우주 장치의 방사선 내성 테스트, 새로운 반도체 칩의 3D 내부 구조 이미지화, 심지어 혁신적인 암 치료법과 고급 의료 영상 기술 개발에 활용될 수 있다"고 말했다. 또한, 이 가속기는 X선 자유 전자 레이저 구동에도 사용될 수 있다. 이 레이저는 원자나 분자 수준에서 일어나는 프로세스를 슬로우 모션으로 촬영하는 데 이용 가능하다. 가속기 기술의 혁신 '소형 입자 가속기' 입자 가속기는 원자와 같은 작은 입자들을 매우 높은 속도로 가속시켜, 이들을 서로 충돌시키거나 특정 표적에 충돌시킴으로써 그 속성을 탐구한다. 이러한 과정을 통해 과학자들은 입자들과 이를 구성하는 힘에 대해 깊이 있게 연구할 수 있다. 입자 가속기는 주로 하전 입자의 속도를 증가시키는 데 사용된다. 양성자, 원자핵, 전자와 같은 양전하나 음전하를 지닌 입자들이 이에 해당한다. 이 입자들은 때때로 빛의 속도에 근접한 속도로 가속된다. 입자가 표적 물질이나 다른 입자와 충돌할 때, 다양한 현상이 발생한다. 충돌로 인해 에너지가 방출되고, 핵 반응이 일어나며, 입자가 산란되고 새로운 입자가 생성된다. 예를 들어, 중성자와 같은 다른 입자들이 이러한 충돌에서 생겨날 수 있다. 이 과정을 통해 과학자들은 원자, 원자핵, 핵자를 결합하는 힘과 '하이그스 보손(Higgs boson)'과 같은 특별한 입자들의 성질을 연구할 수 있다. 하이그스 보손, 우주 기본 입자의 질량 부여하는 '신의 입자' '하이그스 보손'은 기본 입자 물리학의 중요한 개념 중 하나로, 입자들이 질량을 갖게 되는 메커니즘을 설명하는 데 핵심적인 역할을 한다. 이 입자는 1964년 물리학자 피터 하이그스와 다른 몇몇 이론 물리학자들에 의해 처음으로 제안됐다. 2012년 유럽입자물리연구소(CERN)의 대형 강입자 충돌기(LHC)에서 처음 발견됐다. 하이그스 보손은 매우 무거운 입자로, 질량은 약 125GeV이다. 이는 약 125억 전자볼트와 같다. 하이그스 보손은 또한 매우 불안정한 입자로, 평균 수명은 약 1.56x10¯²²초로 추정된다. 이는 하이그스 보손이 생성된 직후 거의 즉시 다른 입자들로 붕괴한다는 것을 의미한다. 하이그스 보손의 발견은 물리학 연구에 새로운 동력을 불어넣었다. 이로 인해 피터 하이그스와 프랑수아 앵글레르는 2013년 노벨 물리학상을 수상했다. 이 발견은 우주의 근본적인 성질에 대한 이해를 크게 향상시켰으며, 여전히 많은 연구가 진행 중이다. 입자 가속기 활용 분야 입자 가속기는 우주의 기원과 구조, 물질의 기본 구성 요소, 자연법칙 등을 연구하는 데 사용된다. 입자 가속기를 이용하여 새로운 입자를 발견하거나, 기존 입자의 성질을 연구할 수 있다. 또한 입자 가속기는 생물학, 의학, 재료과학, 나노기술 등 다양한 분야의 응용과학 연구에 활용된다. 입자 가속기를 이용하여 새로운 약물이나 치료법을 개발하거나, 새로운 재료나 소재를 개발할 수 있다. 예를 들어, 암 치료를 위한 정밀 방사선 요법이나 새로운 재료의 연구에 활용될 수 있다. 종양을 제거하거나 염증을 치료하는 방사선 치료를 수행할 수 있다. 입자 가속기를 사용하여 의료용 동위원소를 생산할 수도 있다. 의료용 동위원소는 암 진단, 치료, 방사선 치료 등 다양한 의학 분야에서 사용된다. 입자 가속기는 반도체 제조, 금속 재료 연구, 환경 오염 측정 등 산업 분야에도 다양한 용도로 활용되고 있다. 입자 가속기를 이용하여 반도체의 미세 회로를 제조할 수 있다. 또 식품이나 의약품을 살균하거나, 디스플레이 등을 제조할 수 있다. 아울러 새로운 물리학 이론을 탐구할 수 있다. 표준 모델 이외의 이론, 예를 들어 초대칭성, 여분의 차원, 양자 중력 이론 등을 실험적으로 탐구하는 것이 다음 세대 가속기의 중요한 목표 중 하나가 될 것이다. 또한 대규모 입자 가속기 프로젝트는 국제적 협력을 필요로 한다. 이러한 협력은 물리학뿐만 아니라 정치적, 경제적, 교육적 측면에서도 광범위한 영향을 미칠 것으로 보인다. 웨이크필드 레이저 가속기 웨이크필드 레이저 가속기는 1979년에 처음으로 개념이 제시된 이후 괄목할 만한 발전을 거듭해왔다. 이 기술은 강력한 레이저를 헬륨 가스에 충돌시켜 플라즈마 상태로 가열하고, 이 과정에서 고에너지 전자 빔이 가스의 전자를 밀어내며 파동을 생성한다. 지난 수십 년간 여러 연구 그룹이 이 기술을 발전시켜 더욱 강력한 버전을 개발했다. 헤겔리히 교수와 그의 연구팀은 나노기술을 이용해 주요 발전을 이루었다. 부가적인 레이저가 가스 셀 내의 금속판과 충돌하면, 금속 나노입자들이 흘러나와 파동에서 전자로 에너지 전달을 증가시키는 역할을 한다. 이 과정은 보트가 호수를 가로질러 나아가며 남기는 항적과 유사하며, 전자는 서퍼가 파도를 타는 것처럼 이 플라즈마 파동을 타고 이동한다. 이러한 혁신적인 접근 방식은 웨이크필드 레이저 가속기 기술의 효율성과 성능을 높이는 데 크게 기여하고 있다. 앞으로도 이 분야의 연구와 개발에 중요한 역할을 할 것으로 예상된다. 헤겔리히 교수는 웨이크필드 가속기의 원리를 비유를 통해 설명했다. 그는 "웨이크 서핑을 하려면 큰 파도에 들어가기 어렵기 때문에 서퍼들은 제트 스키에 끌려들어간다"고 비유했다. 이어서 "우리 가속기에서는 제트 스키와 유사한 역할을 하는 것이 적절한 시간과 위치에서 전자를 방출하는 나노입자이다. 이를 통해 파도 위에 더 많은 전자를 끌어들여 가속하는 것이 우리의 '비밀 소스'"라고 부연했다. 이 실험을 위해 연구팀은 세계에서 가장 강력한 펄스 레이저 중 하나인 '텍사스 페타와트 레이저(Texas Petawatt Laser)'를 사용했다. 이 레이저는 UT에 설치되어 있으며, 매시간 한 번씩 초강력 빛 펄스를 발사한다. 단일 페타와트 레이저 펄스의 전력은 미국 전력의 약 1000배에 달하지만, 지속 시간은 150펨토초에 불과하다. 이는 번개 방전의 10억분의 1도 안 되는 짧은 시간이다. 웨이크필드 레이저 가속기는 강력한 레이저를 헬륨 가스에 충돌시켜 플라즈마 상태로 가열하고, 이 과정에서 고에너지 전자 빔이 가스의 전자를 밀어내며 파동을 생성한다. 전자는 이 플라즈마 파동을 타고 이동하면서 에너지를 얻게 된다. 헤겔리히 교수와 그의 연구팀은 나노기술을 이용해 주요 발전을 이루었다. 부가적인 레이저가 가스 셀 내의 금속판과 충돌하면, 금속 나노입자들이 흘러나와 파동에서 전자로 에너지 전달을 증가시키는 역할을 한다. 소형 입자 가속기 연구의 의미와 전망 UT 연구팀의 이번 연구는 소형 입자 가속기 기술의 발전에 중요한 진전을 이루었다는 점에서 의미가 있다. 소형 입자 가속기는 기존 가속기의 단점인 비용과 공간 제약을 극복할 수 있어 다양한 분야에서 활용될 가능성이 높다. 연구팀은 향후 현재 개발중인 소형 입자 가속기를 테이블 위에 올려 놓고 초당 수천 번 반복적으로 발사할 수 있는 레이저로 시스템을 구동하여 기존 가속기보다 훨씬 더 콤팩트하고 훨씬 더 넓은 환경에서 사용할 수 있는 가속기를 만드는 것을 목표로 하고 있다. 한편 현재 세계 각국은 입자 가속기의 성능을 향상시키기 위한 연구에 박차를 가하고 있다. 유럽입자물리연구소(CERN)는 현재 운영 중인 대형 강입자 충돌기(LHC)의 성능을 개선하기 위한 작업을 진행하고 있다. 또한, 미국, 중국, 일본 등에서도 새로운 입자 가속기의 건설을 추진하고 있다. 이러한 노력을 통해 입자 가속기는 우주와 물질의 기본 법칙을 이해하고 새로운 기술을 개발하는 데 더욱 중요한 역할을 할 것으로 기대된다.
-
- 포커스온
-
[퓨처 Eyes(15)] 20m 미만 소형 입자 가속기, 의료·반도체 혁신 예고
-
-
구글, '앱 수수료' 갑질 반독점 소송 패소
- 세계 최대 인터넷 업체 구글이 자사 앱스토어 플랫폼의 유료 결제 방식을 둘러싸고 미국 게임사 에픽게임즈와 벌인 반독점 소송에서 패소했다. 12일(현지시간) AP통신과 로이터통신 등 외신들에 따르면 미 캘리포니아주 샌프란시스코 연방법원은 에픽게임즈가 구글을 상대로 제기한 반독점 소송에서 만장일치로 에픽게임즈의 손을 들어줬다. 배심원단은 "구글은 결제 서비스를 불법적으로 독점 운영하는 반경쟁적 행위를 해왔다”며 “구글 앱스토어와 결제 서비스의 유착은 불법"이라고 판단했다. 이에 따라 구글과 에픽게임즈는 내년 1월 제임스 도나토 판사를 만나 구제책을 논의해야 한다. 이 소송은 구글 앱스토어 '구글 플레이'에 입점해 있던 에픽게임즈가 수수료 정책에 반발하며 시작됐다. 에픽게임즈는 자사 인기 게임 '포트나이트'의 이용자가 구글 플레이스토어를 통해서만 결제하는 것을 막기 위해 별도의 결제 채널을 구축했다. 구글은 '인앱'으로 불리는 자체 시스템을 통해 결제액의 최대 30%를 수수료로 챙겨왔는데, 에픽게임즈가 반기를 들자 앱스토어에서 퇴출시켰다. 이에 반발한 에픽게임즈는 2020년 구글이 앱스토어 시장에서 개발사에 부당한 수수료를 부과하며 '반경쟁적 행위'를 벌이고 있다는 취지의 소송을 제기했다. 에픽게임즈는 판결이 나온 뒤 "앱스토어 관행을 통해 독점적 지위를 남용한 구글에 전 세계 모든 앱 개발자와 소비자가 승리한 것"이라며 "구글이 막대한 수수료를 챙기며 경쟁을 억압하고 혁신을 저해해왔다는 게 입증됐다"고 환영했다. 이번 판결로 구글과 마찬가지로 자체 결제 채널을 유지해온 애플과 전자상거래업체 아마존 등 다른 테크 공룡 기업들도 법적 도전에 직면하게 될 가능성이 커졌다. 워싱턴포스트는 이날 판결을 두고 "거대 테크 기업이 대형 인터넷 플랫폼에서 가격 책정과 결제 방식을 통제해야 한다는 개념에 큰 타격을 준 결정"이라고 평가했다. 앱스토어 서비스를 무료로 운영할 수는 없다는 논리로 항변해온 구글은 즉각 항소키로 했다. 윌슨 화이트 구글 부사장은 "구글 플레이와 안드로이드는 다른 어떤 모바일 플랫폼보다 많은 선택권과 개방성을 제공한다"며 "우리는 계속해서 지금의 안드로이드 사업 모델을 지켜낼 것"이라고 강조했다. 구글이 항소하면 법원의 최종 판단까지는 최대 18개월이 더 걸릴 전망이다. 에픽게임즈는 애플과도 별도의 소송을 진행 중이다. 애플이 애플스토어를 통해 반독점 시장을 조성했다는 주장인데, 법원은 2021년 1심과 올해 4월 항소심에서 모두 애플의 앱스토어 정책이 반독점 위반 사례가 아니라고 판결했다. 다만 애플에 외부 결제 시스템을 허용하라고 명령했다. 이 사건은 양측 모두 항소해 대법원의 판단을 기다리고 있다. 구글과 애플에 맞선 에픽게임즈의 법정 다툼은 IT산업 전반에 큰 영향을 미치고 있다. 뉴욕타임스는 "구글의 패소로 모바일 앱 생태계에서 구글과 애플의 영향력을 약화하려는 에픽게임즈의 수년간 노력에 힘이 실리게 됐다"며 "기술 권력을 재편할 수 있는 획기적인 반독점 소송"이라고 평가했다.
-
- IT/바이오
-
구글, '앱 수수료' 갑질 반독점 소송 패소
-
-
NASA 프시케, 8주간 성공적 임무 수행
- 미국항공우주국(NASA)의 프시케(Psyche) 탐사선이 순항 중이다. 지난 2023년 10월 13일 지구를 떠난 후 8주 동안 과학 장비의 전원을 켜고 데이터를 지구로 전송하고 전기 추진기로 심우주 기록을 세우는 등 성공적인 작업을 차례로 수행했다. 프시케는 이미 지구에서 2,600만km 떨어져 있으며 2029년에 화성과 목성 사이에 있는 주 소행성대에 있는 소행성 프시케(Psyche)에 도착할 예정이라고 학술지 사이언스 어드밴스(Science Advances)가 보도했다. 이미지 장비, 정상 작동 확인 프시케의 이미지 장비는 물고기자리 별자리의 별장 내에서 총 68개의 이미지를 캡처했다. 이미지 팀은 데이터를 사용해 적절한 명령, 원격 측정 분석 및 이미지 보정을 확인했다. 애리조나 주립대학교의 프시케 이미지 장비 책임자인 짐 벨(Jim Bell) 교수는 "이 초기 이미지는 단지 시작을 알리는 것일 뿐"이라며 "이 정교한 장비를 설계하고 운영하는 팀에게 첫 번째 빛은 스릴이다"라고 밝혔다. 이어 "우리는 이와 같은 별 이미지가 포함된 카메라를 확인하기 시작해 2026년에 탐사선이 비행하는 동안 화성의 테스트 이미지를 촬영할 것"이라며 "마지막으로 2029년에 우리는 목표 소행성 프시케(Psyche)의 가장 흥미로운 이미지를 얻게 될 것이며, 이 모든 영상을 대중과 공유하기를 기대한다"고 말했다. 이미지는 여러 색상 필터를 통해 사진을 찍으며, 이 필터는 모두 초기 관찰에서 테스트됐다. 필터를 통해 팀은 인간의 눈에 보이는 빛과 보이지 않는 빛의 파장의 사진을 사용해 금속이 풍부한 소행성 프시케의 구성을 결정하는 데 도움을 줄 것으로 보인다. 자력계, 소행성 형성 과정 규명에 기여할 듯 프시케는 임무 초기인 10월 말에 자력계의 전원을 켰다. 자력계는 소행성이 어떻게 형성되었는지 결정하는 데 도움이 되는 중요한 데이터를 제공할 것으로 기대된다. 프시케는 태양 폭발을 감지하는 등 예상치 못한 선물도 안겼다. 팀은 탐사선이 소행성으로 이동하는 동안 우주 날씨를 계속 모니터링할 예정이다. 자력계 데이터를 통해 팀은 소행성의 자기장이 매우 작지만 정확하게 감지할 수 있음을 확인했다. 또한 탐사선이 자기적으로 ‘조용함’을 확인했다. 전기 추진기, 심우주 기록 세우다 프시케는 11월 8일 과학 장비를 사용한 모든 작업 중에 4개의 전기 추진기 중 2개를 발사해 깊은 우주에서 홀 효과 추진기를 최초로 사용하는 기록을 세웠다. 또한 일주일도 채 지나지 않은 11월 14일에는 심우주 광학 통신(DSOC)이라는 실험인 탐사선에 내장된 기술 시연을 자체적으로 하는 기록도 세웠다. DSOC는 달 너머 멀리서 광학 데이터를 주고받아 최초의 빛을 얻었다. 이 장비는 거의 1,600만km 떨어진 곳에서 테스트 데이터로 인코딩된 근적외선 레이저를 발사했는데, 이는 광통신의 가장 먼 시연이기도 했다. 중성자 감지센서, 소행성 표면 물질 구성 규명에 기여 프시케 팀은 또한 세 번째 과학 장비인 감마선 및 중성자 분광계의 감마선 감지 구성 요소를 성공적으로 가동했다. 다음으로, 장비의 중성자 감지 센서는 12월 11일 주에 켜질 것으로 예상된다. 이 기능은 팀이 소행성 표면 물질을 구성하는 화학 원소를 결정하는 데 도움이 될 전망이다. 프시케 팀은 "모든 과학 장비가 예상대로 작동하고 있다는 사실에 매우 기쁘다"라며 "이러한 성공은 프시케가 소행성 프시케에 대한 중요한 발견을 할 수 있는 잠재력을 보여준다"고 말했다.
-
- 산업
-
NASA 프시케, 8주간 성공적 임무 수행
-
-
구글 딥마인드 "AI, 전혀 지능적이지 않다"
- 생성형 인공지능(AI)이 전혀 지능적이지 않다는 연구 결과가 나왔다. 구글의 모회사 알파벳 산하 AI 기업 딥마인드의 연구진이 최근 발표한 연구 논문에 따르면, AI 모델은 훈련 데이터 외의 새로운 상황에서는 지능적 능력이 제한적이라는 결과가 도출되었다고 독일매체 베이직 싱킹(BASIC thinking)이 보도했다. 연구 결과에 따르면, AI 모델은 훈련된 데이터에 대해서는 높은 성과를 보일 수 있지만, 훈련 데이터 외의 새로운 상황에서는 적응하기 어려운 한계를 가지고 있다. 이번 조사는 챗GPT 개발사 오픈AI의 GPT-2를 참고했다. 연구진은 그들의 연구 결과가 기본적으로 트랜스포머 모델에 적용된다고 강조했다. 챗GPT의 T는 '트랜스포머(Transformer)'를 의미한다. 이러한 모델은 입력에서 출력을 독립적으로 계산할 수 있다. 이는 과학에서 진정으로 지능적일 수 있는 잠재력을 가진 AI의 한 형태로 간주될 가능성이 가장 높다. 그러나 방대한 데이터 세트에도 불구하고 입증가능한 자율성을 개발한 인공지능은 아직까지는 없다. 딥마인드의 연구원들은 "트랜스포머 모델이 학습한 데이터의 영역을 벗어난 작업이나 기능에 직면했을 때 모델의 성능이 저하되는 모습을 관찰할 수 있다"고 설명했다. 이러한 결과는 현재의 AI가 훈련 데이터에 지나치게 의존하며, 새로운 도전에 대처하기 어렵다는 측면에서 지능적인 한계를 보여주고 있다. 그러나 트랜스포머 모델은 여전히 훈련된 데이터를 뛰어넘을 수 있는 가능성을 가지고 있다는 점에서 기대를 모으고 있다. 앞으로의 연구와 발전을 통해 이러한 모델의 한계를 극복할 가능성이 여전히 열려 있다. 딥마인드의 이번 연구는 AI의 한계를 드러내면서도, 향후 더 나은 지능적 모델의 개발에 대한 기대를 증폭시키고 있다. 인공지능 분야에서의 지속적인 연구와 혁신은 앞으로의 기술 발전에서 중요한 역할을 할 것으로 예측된다.
-
- IT/바이오
-
구글 딥마인드 "AI, 전혀 지능적이지 않다"
-
-
3D 프린팅 드론, 최대 마하7 속도로 우주 궤도 진입 전망
- 최근 3D 프린팅 기술로 제작된 드론이 극도로 빠른 속도로 비행할 수 있어, 우주 궤도에 곧 진입할 수 있을 것이라는 전망이 나왔다. 에너지 관련 전문매체 '인터레스팅 엔지니어링'에 따르면, 발사 서비스 및 우주 시스템 분야의 선두주자인 로켓 랩 유에스에이(Rocket Lab USA, Inc, RKLB)社가 3D 프린팅 드론인 다트 에이이(DART AE) 개발에 착수했다고 보도했다. RKLB의 이 연구는 단순히 별에 도달하는 것을 넘어서, 전례 없는 속도의 발사체 개발에 초점을 맞추고 있다. 이 회사는 마하 7의 속도에 도달할 수 있는 극초음속 차량을 개발하는 HASTE(초음속 가속기 준궤도 테스트) 임무를 위해 미국 국방혁신부(DIU)와 새로운 계약을 체결했다고 발표했다. 이 임무는 하이퍼소닉(Hypersonix)이라는 스크램제트 구동 초음속 차량을 이용한 DART AE를 배치하는 것을 목표로 하며, 올해 로켓 랩이 체결한 7번째 준궤도 발사 계약을 의미한다. DART AE는 최대 마하 7(시속 약 8350km 또는 5320마일)의 놀라운 속도로 비탄도 비행 패턴을 탐색할 수 있다는 것이 특징이다. 로켓 랩의 이번 임무, '극초음속 및 고주율 공중 테스트 역량(HyCat) 프로젝트'로 명명되었으며, 지구 대기 내 상승하는 동안 하이퍼소닉의 페이로드를 배치하는 것을 포함해 HASTE 임무의 '직접 주입' 기능을 시연할 예정이다. 이 회사의 HASTE 준궤도 발사체는 단순히 이전에 성공적이었던 '일렉트론' 로켓의 변형된 버전이 아니라, 극초음속 페이로드 배치 방식에서의 패러다임 변화를 상징하는 새로운 혁신으로 평가된다. 2006년 설립된 로켓 랩은 엔드 투 엔드 우주 서비스를 제공하는 인상적인 실적을 가진 회사로서, 우주 산업 분야에서 높은 명성을 얻고 있다. 캘리포니아주 롱비치에 본사를 두고 있는 이 회사는 일렉트론 소형 궤도 발사체인 '포턴(Photon) 위성 플랫폼'을 설계 및 제조했으며, 현재는 대형 '뉴트론(Neutron)' 발사체를 개발하고 있다. 일렉트론은 전 세계에서 가장 빈번하게 출시되는 상업용 소형 발사체 중 하나로, 그 장점은 비용 효율적인 진정한 상업적 테스트 기능을 제공한다는 점이다. HASTE 준궤도 발사체는 우주 탐사의 새로운 지평을 여는 동시에 우주 탐사를 더 빠르고, 쉽고, 경제적으로 만들겠다는 로켓 랩의 목표와 약속을 잘 보여주는 예이다. 로켓 랩이 전액 출자한 자회사인 로켓 랩 내셔널 시큐어리티(Rocket Lab National Security, RLNS)가 주관하는 HASTE 임무는 미국 국방 및 정보 커뮤니티의 자체 요구 사항을 충족하기 위한 회사의 지속적인 노력을 대변한다. DIU는 하이퍼소닉스와의 협력을 통해 RLNS를 HyCat 프로젝트의 핵심 파트너로 선정했다. 이는 로켓 랩이 극초음속 기술 및 개념 개발을 가속화하는 데 중요한 역할을 하며, 국방 및 정보 부문의 엄격한 요구 사항을 충족하는 능력을 인정받는 것을 의미한다. 2018년 첫 궤도 발사 이후, 로켓 랩의 일렉트론 발사체는 국방뿐만 아니라 연구 및 통신 분야에서도 활약하며 공공 및 민간 부문 조직을 위해 171개의 위성을 궤도에 성공적으로 배치했다. 이러한 성공을 바탕으로, 로켓 랩의 포턴 우주선 플랫폼은 NASA의 달과 화성 탐사 임무에 기여하고, 금성에 대한 최초의 민간 상업 임무에서 중요한 역할을 수행할 것으로 기대된다. 한편, 로켓 랩은 올해 3분기에 6800만 달러(한화 약 883억3200만원)의 수익을 기록했으며, 이 중 4630만 달러(한화 약 601억4370만원)는 우주 시스템 부문의 성과로 이루어진 것으로, 전년 동기 대비 17% 증가한 수치를 보여준다. 우주 시스템 사업부는 스타 트랙커, 리액션 바퀴, 태양 전지판 등의 부품 판매뿐만 아니라 우주선 전체 및 바르다 스페이스, 나사 등의 고객에게 포톤 위성 버스를 포함한 다양한 제품을 제공하고 있다.
-
- 산업
-
3D 프린팅 드론, 최대 마하7 속도로 우주 궤도 진입 전망
-
-
스페이스X 대형우주선 '스타십' 두 번째 발사도 실패⋯머스크 "축하" 트윗
- 일론 머스크가 이끄는 우주 개발 기업 스페이스X는 18일(현지시간) 대형 우주선 '스타십'(Starship)의 두 번째 지구궤도 시험비행이 실패했다고 발표했다. 이날 오전 7시 3분, 미국 텍사스주 보카 치카의 스타베이스 발사시설에서 스타십이 발사됐다. AP 통신과 다른 뉴스 소스에 따르면, 발사 3분 후, 스타십은 수직으로 상승하며 2단 로켓의 아랫부분인 '슈퍼 헤비'가 분리되었다. 이후 스타십은 90km(55마일) 상공으로 치솟아 우주 궤도 진입을 시도했다. 그러나 '슈퍼 헤비' 로켓은 분리 직후 멕시코만 상공에서 폭발했다. 우주선 부스터는 분리 후 우주에 도달하여 궤도 진입을 시도하는 도중, 발사 8분 만에 통신이 두절됐다. 스페이스X의 존 인스프러커 수석 통합 엔지니어는 "두 번째 단계의 데이터를 잃어버렸다"며 부스터와의 통신이 단절된 것으로 보인다고 밝혔다. 이에 따라 스페이스X는 스타십의 자폭 기능(self-destruct)을 활성화시켰다. 이 기능은 스타십이 예정된 경로를 벗어나지 않도록 하기 위한 조치다. 스타십은 원래 240km 상공 지구 궤도에 진입한 후, 약 1시간 반 만에 하와이 인근 태평양에 착륙할 예정이었다. 이번 실패로 스페이스X는 다시 한 번 중대한 도전에 직면하게 되었다. 스페이스X는 최근 스타십의 지구궤도 시험 비행과 관련하여, "슈퍼 헤비 부스터와 우주선이 계획보다 빠르게 분리됐다"고 분석하며, 이러한 상황에도 불구하고 "믿을 수 없을 정도로 성공적인 날이었다"고 평가했다. 이는 기술적인 난관에도 불구하고 이루어낸 진전을 강조하는 발언으로 보인다. 일론 머스크는 발사 현장에서 직접 스타십의 발사를 지켜보며, 발사 후 자신의 SNS 계정을 통해 "스페이스X 팀, 축하합니다"라고 전했다. 이는 팀의 노력과 진전을 인정하는 동시에 그들의 노력을 격려하는 메시지로 해석된다. 이번 시험 비행은 당초 17일에 예정되어 있었으나, 일부 부품 교체로 인해 하루 연기되었다. 이러한 조정은 우주 비행의 복잡성과 미세한 조정의 필요성을 반영한다. 스페이스X는 이번 시험 발사 실패의 원인 분석에 착수할 예정이다. 미국 연방항공청(FAA)은 이 사건에 대한 조사를 감독하며, 이는 항공우주 산업의 안전과 발전을 위한 중요한 단계로 여겨진다. 이번 시험 발사는 지난 4월 20일 첫 발사 실패 이후 두 번째 시도다. 지난 4월 첫 시도보다는 두 배가량 비행했다. 지난 4월 첫 시도에서는 스타십이 이륙 후 하단의 슈퍼헤비 로켓과 분리되지 못하고 약 4분 만에 공중에서 폭발해 실패로 돌아갔다. 빌 넬슨 미국 항공우주국(NASA) 국장은 자신의 SNS 계정을 통해 "우주비행은 '할 수 있다'는 자세와 굉장한 혁신을 요구하는 어려운 모험"임을 언급하며, "오늘의 시험 비행은 배움의 기회"라고 말했다. 그는 또한 "NASA와 스페이스X는 인간을 달, 화성, 그 너머로 데려갈 것"이라며 미래에 대한 기대를 표현했다.
-
- 산업
-
스페이스X 대형우주선 '스타십' 두 번째 발사도 실패⋯머스크 "축하" 트윗
-
-
나사, 최신 우주 망원경으로 4억5천만 개 은하 조사...우주지도 작성 목표
- 미국 항공우주국(NASA)의 새로운 우주 탐사 프로젝트인 SPHEREx 망원경이 우주 지도 작성을 위한 중요 단계에 진입했다고 과학 전문 매체 사이테크데일리가 15일(현지시간) 보도했다. 사이테크데일리에 따르면, SPHEREx는 지금까지 볼 수 없었던 방식으로 우주의 지도를 작성할 계획이며, 현재 지구 궤도에 도착해 전체 하늘의 지도를 그릴 준비를 하고 있다. '우주의 역사, 재이온화 시대 및 빙결체 탐사를 위한 분광-광도계(Spectro-Photometer for the History of the Universe, Epoch of Reionization, and Ices Explorer)'로 알려진 SPHEREx는 약 2.6미터(8.5피트) 높이와 3.2미터(10.5피트) 너비의 독특한 형태를 가진 망원경이다. 이 우주 망원경의 특이한 외형은 원뿔 모양의 광자 차폐막으로 만들어졌으며, 남부 캘리포니아에 위치한 NASA 제트 추진 연구소(Jet Propulsion Laboratory, JPL)의 클린룸에서 조립 중이다. 차폐막의 구조와 기능 나사의 SPHEREx 망원경은 태양과 지구로부터 오는 빛과 열을 차단하기 위해 세 개의 중첩된 원뿔 모양의 차폐막으로 둘러싸여 있다. 이 차폐막들은 각각 다른 크기의 원뿔 안에 위치새 망원경을 효과적으로 보호한다. SPHEREx는 하늘의 모든 영역을 스캔하여 매년 두 장의 상세한 천체 지도를 완성할 예정이다. JPL의 사라 수스카 뷔페이로드 관리자 겸 시스템 엔지니어는 "SPHEREx는 매우 빠른 속도로 하늘을 스캔해야 하기 때문에 높은 기동성이 요구된다"고 밝혔다. 그는 "차폐막은 보기에는 무겁게 보일 수 있지만 실제로는 매우 가볍고 여러 층의 재료로 구성되어 있다. 외부는 알루미늄 시트로, 내부는 알루미늄 벌집 구조로 되어 있어 가볍지만 견고하다"고 설명했다. 세부적인 미션 목표 2025년 4월까지 발사 예정인 SPHEREx는 과학자들이 생명에 필요한 주요 성분, 특히 물의 기원에 대한 더 깊은 이해를 제공할 것으로 기대된다. 이를 위해 SPHEREx 미션은 새로운 별이 탄생하고 행성이 형성되는 곳인 성간 가스와 먼지 구름 속의 물 얼음의 분포를 측정할 예정이다. 또한 우주 은하들이 내뿜는 빛의 양을 분석하여 은하의 역사를 연구할 계획이다. 이러한 관측을 통해 은하들이 언제 형성되기 시작했으며, 시간이 지남에 따라 그 형성 과정이 어떻게 변화했는지를 밝혀낼 수 있을 것이다. 또한, 수백만 은하의 위치를 서로에 대해 매핑함으로써, SPHEREx는 빅뱅 직후의 우주의 급격한 팽창, 또는 인플레이션이 어떻게 일어났는지에 대한 새로운 단서를 찾아 낼수 잇을 것으로 보인다. 냉각과 안정성 확보 SPHEREx는 적외선 광을 감지하여 다양한 임무를 수행할 예정이다. 적외선은 가시광선보다 긴 파장을 가지며 열 복사의 한 형태로도 알려져 있다. 모든 따뜻한 물체는 적외선을 방출하므로, 망원경 자체도 적외선을 생성할 수 있다. 이 적외선이 탐지기와 상호작용하면 문제가 될 수 있기 때문에, 망원경은 극도로 추운 상태인 섭씨 약 -210도(화씨 -350도) 이하로 유지되어야 한다. 망원경을 보호하는 외부 광자 차폐막은 태양과 지구로부터의 빛과 열을 차단하며, 각 뿔 사이의 공간은 열이 망원경 내부로 침투하는 것을 방지한다. 그러나 SPHEREx가 적절한 온도에 도달하도록 보장하기 위해서는 V-그루브 라디에이터라는 특별한 장치가 필요하다. 이 장치는 우산을 거꾸로 뒤집은 것처럼 생긴 세 개의 원뿔형 거울로 구성되어 있으며, 광자 차폐막 아래에 위치한다. 각 거울은 적외선 광을 우주로 튕겨내는 일련의 쐐기 모양으로 되어 있어, 실온의 우주선 버스에 위치한 컴퓨터와 전자 장치에서 발생하는 열을 제거하는 데 도움이 된다. JPL의 콘스탄틴 페나넨 페이로드 매니저 "우리는 SPHEREx가 얼마나 차가운지뿐만 아니라 온도가 일정하게 유지되는지도 중요하게 생각한다"라고 말했다. 그는 "온도가 변하면 감지기의 감도가 달라져 잘못된 신호로 해석될 수 있다"고 설명했다. 하늘을 관측하는 창 SPHEREx의 주요 구성요소인 망원경은 3개의 거울과 6개의 감지기를 통해 멀리 떨어진 광원으로부터 적외선을 수집한다. 이 망원경은 광자 차폐막이 제공하는 보호 범위 내에서 가능한 한 넓은 하늘 영역을 관측할 수 있도록 설계된 기울기 조절 받침대에 장착되어 있다. 콜로라도주 볼더의 볼 에어로스페이스에서 제작된 이 망원경은 지난 5월 캘리포니아주 패서디나의 칼텍(Caltech, 캘리포니아 공과대학교)에 도착해, 검출기 및 V-그루브 라디에이터와 통합됐다. JPL의 엔지니어들은 로켓 발사 시 견뎌야 할 진동 모사 테스트를 위해 진동 테이블에 망원경을 부착했다. 진동 테스트 후, 망원경은 다시 칼텍으로 이송되어 과학자들이 거울의 초점이 여전히 정확하게 맞춰져 있는지 확인할 수 있었다. SPHEREx의 적외선 '탐색 능력' SPHEREx 망원경 내부의 거울은 멀리 떨어진 물체로부터 빛을 모으는 역할을 하지만, 실제로 적외선 파장을 감지하는 것은 '검출기'다. 태양과 같은 별들은 전체 가시광선 범위의 빛을 방출한다. 이 빛은 프리즘을 통해 구성 파장, 즉 무지개 색상으로 분리될 수 있는데, 이를 분광학이라고 한다. SPHEREx는 검출기에 장착된 필터를 이용해 분광학적 분석을 수행한다. 각 필터는 무지개 색상처럼 보이는 여러 개의 세그먼트로 구성되어 있어 특정 적외선 파장을 제외한 모든 파장을 차단한다. SPHEREx가 관측하는 모든 물체는 이 세그먼트별로 이미지화되며, 과학자들은 별이든 은하든 해당 물체가 방출하는 특정 적외선 파장을 확인할 수 있다. 이 망원경은 100개 이상의 다양한 고유 파장을 관측할 수 있다. 이러한 기능을 통해 SPHEREx는 이전에 없던 우주 지도를 작성할 계획이다.
-
- IT/바이오
-
나사, 최신 우주 망원경으로 4억5천만 개 은하 조사...우주지도 작성 목표
-
-
MS, 자체 개발 AI·클라우드 칩 공개…대만 TSMC가 제조
- 기술 대기업 마이크로소프트(MS)가 인공지능(AI) 기술과 클라우드 서비스를 위한 반도체 칩을 자체 개발해 공개했다. MS는 15일(현지시간) 연례 개발자 회의 '이그나이트 콘퍼런스'에서 자체 개발한 AI 그래픽처리장치(GPU) '마이아 100'과 고성능 컴퓨팅 작업용 중앙처리장치(CPU) '코발트 100'을 내놓았다. '마이아 100'은 엔비디아 GPU와 유사한 형태로 생성형 AI의 기본 기술인 대규모 언어모델(LLM)을 훈련하고 실행하는 데이터센터 서버 구동을 위해 설계됐다. MS는 이 칩을 개발하기 위해 챗GPT 개발사 오픈AI와 협력했다고 설명했다. 샘 올트먼 오픈AI 최고경영자(CEO)는 "MS와 협력해 우리의 (AI) 모델로 마이아 칩을 정제하고 테스트했다"며 "이제 마이아를 통해 최적화된 애저의 AI 기반은 더 뛰어난 성능의 모델을 학습하고 고객에게 더 저렴한 가격으로 제공할 수 있다"고 말했다. 다만 MS는 '마이아 100'을 외부에 판매할 계획은 아직 없으며, 자체 AI 기반 소프트웨어 제품과 애저 클라우드 서비스의 성능을 높이는 데 활용할 계획이라고 밝혔다. CNBC 등 미국 매체들은 MS가 개발한 '마이아 100'이 엔비디아의 GPU 제품과 경쟁할 수 있을 것으로 전망했다. 세계 생성형 AI 훈련에 필요한 AI 칩 시장은 엔비디아가 80% 이상을 차지하고 있으며 수요에 비해 공급이 크게 부족한 상황이다. MS가 이날 공개한 다른 제품인 '코발트 100'은 낮은 전력을 사용하도록 설계된 '암(Arm) 아키텍처'를 기반으로 만든 CPU다. 클라우드 서비스에서 더 높은 효율성과 성능을 내도록 설계된 제품이다. 데이터센터 전체에서 '와트(전력단위)당 성능'을 최적화하는 것을 목표로 하며, 이는 소비되는 에너지 단위당 더 많은 컴퓨팅 성능을 얻는 것을 의미한다고 회사 측은 설명했다. 사티아 나델라 MS 최고경영자(CEO)는 "이 128코어의 칩은 모든 클라우드 공급업체를 통틀어 가장 빠르다"며 "이 칩은 이미 MS 서비스의 일부를 구동하고 있으며, 전체에 적용한 뒤 내년에는 고객에게도 판매할 예정"이라고 말했다. 이 제품은 아마존웹서비스(AWS)가 개발한 고성능 컴퓨터 구동용 칩인 '그래비톤' 시리즈나 인텔 프로세서 제품 등과 경쟁할 수 있다고 미 언론은 전망했다. 외신에 따르면 MS가 개발한 두 칩 모두 대만 반도체 회사 TSMC가 제조하는 것으로 알려졌다. MS는 자체 칩 개발을 이어가는 한편 엔비디아와 AMD가 각각 개발한 최신 GPU 제품 H200과 MI300X도 자사의 AI·클라우드 서비스에 내년 중 도입한다는 계획도 밝혔다. 칩을 자체 제작하면 서비스 구동을 위한 하드웨어 성능을 높일 수 있을 뿐만 아니라 비용도 크게 낮출 수 있다.
-
- 산업
-
MS, 자체 개발 AI·클라우드 칩 공개…대만 TSMC가 제조
-
-
NASA, 전기추진 시스템(AEPS) 자격 시험 성공
- 미국 항공우주국(NASA)과 항공우주 회사인 에어로제트 로켓다인(Aerojet Rocketdyne)사가 12킬로와트(kW) 태양 전기추진(SEP) 엔진인 고도의 전기추진 시스템(AEPS)에 대한 자격 시험을 성공적으로 완료했다고 유니버스 투데이(Universe Today)가 최근 보도했다. AEPS는 현재 제조 중인 전기추진(이온 추진이라고도 함) 시스템 중 가장 강력한 것으로, 달과 그 너머에 있는 장기 우주여행에 사용될 예정이다. 12킬로와는 1330개 이상의 LED 전구를 작동시킬 수 있을만큼 강력하며, 이번의 성공적인 자격 시험은 NASA가 지난 7월 자격 시험을 시작한 이후 이루어진 것이다. NASA의 글렌(Glenn) 연구 센터에서 AEPS 프로젝트 매니저를 맡고 있는 클레이튼 카셀은 "AEPS는 진정한 차세대 기술"이라며 "현재의 전기추진 시스템은 약 4.5킬로와트의 전력을 사용하는 반면, AEPS는 단일 추진기에서 전력을 크게 증가시킨다"고 말했다. 이어 "이 기능은 미래 우주 탐사를 위한 무한한 기회를 열어준다. AEPS는 우리를 더 멀리, 더 빠르게 이끌 것"이라고 덧붙였다. AEPS의 자격 시험에서 관찰된 엔진의 푸른 배기 플륨은 이온화된 제논 가스에서 생성된다. 기존의 화학 추진은 액체 추진제를 연료로 사용하여 매우 짧지만 강력한 에너지 폭발을 일으켜 우주선을 원하는 방향으로 추진한다. 반면, 전기 추진은 비활성 가스 추진제를 연료로 사용하여 에너지는 더 적지만 지속 시간이 길어 효율성이 높고 장기 우주 임무에 적합하다. NASA가 계획 중인 게이트웨이 우주 정거장에는 AEPS 기술이 중요한 역할을 할 예정이다. 게이트웨이의 파워 앤드 프로펄전 엘리먼트에 세 개의 AEPS 전기추진체를 장착하여 게이트웨이 주변의 원하는 궤도를 유지하고 지구와의 고속 통신 및 전체 우주 정거장에 대한 전력 공급 등 다양한 기능을 수행할 예정이다. 게이트웨이는 2025년 발사를 목표로 하고 있으며, NASA의 아르테미스 임무의 중요한 부분으로 국제 및 상업적인 파트너와 협력하여 몇 년 안에 달 남극에 도달할 예정이다. AEPS의 리드 엔지니어인 로히트 샤스트리(Rohit Shastry)는 "이 기술이 어떤 종류의 임무를 수행하게 될지 지켜보는 것이 흥미로울 것 같다. 우리는 지금까지 이루어진 것의 한계를 뛰어넘고 성능과 기회를 향상시키기 위해 큰 도약을 하고 있다"라고 말했다. AEPS는 태양 전기 엔진을 기반으로 하는 전기 추진 시스템이지만, 다른 형태의 전기 추진 시스템으로는 핵 반응기를 사용하는 핵 전기 추진(NEP)이 있다. AEPS는 현재 제작 중인 가장 강력한 전기 추진체이며, NASA는 이전에도 전기 추진을 딥스페이스 임무에 사용한 바 있다. 예를 들어 2015년 발사된 NASA의 던(Dawn) 우주선은 이온 추진 시스템을 사용한 최초의 과학 탐사선이었다. 던 우주선은 중량이 1240kg에 달하는 비교적 작은 탐사선으로 7년 반 동안 우주를 날아 소행성 베스트와 세레스를 탐사했다. 최근인 지난 10월 13일에 성공적으로 발사된 NASA의 프시케(Psyche) 탐사선은 태양 전기 추진을 사용한 것으로, 소행성 16 프시케로 가는 36억 킬로미터(22억 마일) 여행을 하고 있다. AEPS의 성공적인 자격 시험은 전기추진 기술의 발전에 있어 중요한 진전이며, 이는 미래 우주 탐사를 위한 새로운 가능성을 열어줄 것으로 기대된다.
-
- 산업
-
NASA, 전기추진 시스템(AEPS) 자격 시험 성공
-
-
유럽우주국(ESA), 유클리드 망원경 촬영 첫 이미지 공개
- 유럽우주국(ESA)이 '암흑 우주 탐정'으로 불리는 유클리드(Euclid) 망원경으로 촬영한 첫 이미지를 공개했다고 미국 IT매체 엔가젯(Engadget)이 최근 보도했다. 이번에 공개된 이미지는 우주 탄생의 비밀을 밝히는 데 중요한 역할을 할 것으로 보인다. 유클리드 우주 망원경은 유럽우주국의 중요한 우주 탐사 프로젝트 중 하나다. 주요 목적은 우주의 가장 큰 미스터리 중 하나인 암흑 물질과 암흑 에너지의 본성을 이해하는 것이다. 유클리드 망원경은 우주의 역사를 100억 년 전까지 거슬러 올라가 아직까지 알려지지 않은 대부분의 하늘을 대상으로 하는 방대한 3D 우주 지도를 제작하고 있다. 이 망원경은 유명한 말뚝 성운부터 은하계와 유사한 숨은 나선 은하에 이르기까지, 알려진 물체뿐만 아니라 이전에 볼 수 없었던 물체들을 선명하게 관찰하는 데 기여하고 있다. 유클리드 우주 망원경은 우주의 '암흑' 부분, 즉 암흑 에너지와 암흑 물질이 우주 진화에 미치는 영향을 조사하고 있다. 이 망원경은 1.22m(4피트) 폭의 주경을 갖추고 있으며, 가시광선 카메라와 근적외선 카메라/분광기를 사용하여 앞으로 6년간 하늘의 약 1/3을 관측할 예정이다. 이 과정에서 수십억 개의 은하가 연구될 것이다. 2023년 7월에 발사된 유클리드는 2024년 초부터 공식적인 과학 임무를 시작할 예정이나, 이미 초기 관측에서 과학자들에게 중요한 발견을 제공하고 있다. ESA에 따르면 유클리드가 관측한 페르세우스 은하단은 2억 4000만 광년 떨어진 곳에 위치해 있으며, 이 관측은 지금까지 가장 상세한 것 중 하나다. 이 은하단 내의 약 1000개 은하뿐만 아니라, 더 멀리 떨어진 약 10만 개의 다른 은하들도 포착하고 있어, 유클리드의 관측 범위와 세밀함을 잘 보여주고 있다. 유클리드, '숨은 은하' 관찰 유클리드 우주 망원경은 우리 은하계 너머에 위치한 IC 342, 일명 '숨은 은하'로도 알려진 나선 은하를 관찰했다. 유럽우주국(ESA)에 따르면, 유클리드는 특정 천체를 단일 장면에서 완벽하게 포착할 수 있는 현존하는 유일한 망원경이다. 예를 들어, NGC 6397과 같은 구형 성단은 수십만 개의 별이 중력적으로 결합된 모습을 보여주는데, 유클리드가 이 성단을 관찰한 결과는 그 세밀함과 정확도 면에서 비교할 수 없을 정도라고 ESA는 밝혔다. 유클리드 우주 망원경은 다른 망원경으로는 관찰하기 어려웠던 희미한 천체들을 선명하게 포착할 수 있다. 예를 들어, 오리온 별자리에 위치한 말머리 성운은 별의 '보육원'으로 유명하다. 유클리드를 통해 이 성운을 자세히 관찰하면, 이전에 발견되지 않았던 어린 별과 행성들을 확인할 수 있다. 지구로부터 약 1375광년 떨어진 이 성운은 말의 머리 모양을 한 독특한 구름과 함께, 탄생한 지 얼마 되지 않은 별들이 적갈색 가스와 먼지 속에서 보랏빛으로 빛나는 모습을 보여준다. 또한 유클리드는 160만 광년 떨어진 왜소은하 NGC 6822도 관찰했다. 이 작고 오래된 은하는 우리 은하와 같은 은하가 어떻게 형성되었는지에 대한 중요한 단서를 제공할 수 있다. 유클리드의 임무는 이제 시작 단계에 불과하지만, 이미 우리 주변 우주의 가까운 곳과 먼 곳에 있는 천체에 대한 풍부한 정보를 제공하며 중요한 역할을 하고 있다. 유럽우주국의 유클리드 프로젝트에서 활동하는 과학자 르네 로레이즈(René Laureijs)는 유클리드가 촬영한 최초의 이미지에 대해 인상 깊은 평가를 했다. 그는 "이전에는 본 적 없는, 이처럼 상세한 내용을 담은 천문학적 이미지"라고 평가하며, "기대했던 것보다 훨씬 더 아름답고 선명하다. 우리 주변 우주의 잘 알려진 지역에서도 이전에는 볼 수 없었던 많은 특징들을 포착하고 있다"고 말했다. 이 발언은 유클리드 프로젝트가 우주 관측 분야에서 새로운 장을 열고 있음을 시사한다. 한국, 제미니 천문대서 천체 첫 관측 최근 한국의 천문학 연구에서도 중요한 진전이 있었다. 한국천문연구원은 미국 하와이의 마우나케아 산에 위치한 제미니 천문대에 설치된 새로운 적외선 분광기 'IGRINS-2'를 사용하여, 먼 우주에 있는 천체를 처음으로 시험 관측하는 데 성공했다. 분광기란 천체 망원경에 들어온 빛을 파장별로 분해하는 장비로, 이를 이용하면 해당 천체가 어떤 성분으로 만들어졌고, 이동 속도는 얼마인지 등을 알 수 있다. 분광기는 천체 망원경을 통해 들어온 빛을 파장별로 분해하는 장치로, 이를 통해 천체의 구성 성분, 이동 속도 등을 파악할 수 있다. 'IGRINS-2'는 기존 장비보다 성능이 월등히 향상되어 있어, 별의 진화 과정 연구와 외계 행성 탐사의 수준을 한층 더 높일 것으로 기대되고 있다. 이러한 발전은 천문학 연구에 있어 큰 도약을 의미하며, 향후 우주에 대한 우리의 이해를 크게 심화시킬 것으로 전망된다.
-
- 산업
-
유럽우주국(ESA), 유클리드 망원경 촬영 첫 이미지 공개
-
-
美 육군, 고출력 마이크로파로 드론 떼 제압 성공
- 최근 전쟁 판도를 바꾼 중요한 무기 중 하나로 '드론'이 꼽히고 있다. 우크라이나와 러시아 전쟁, 이스라엘과 하마스의 전쟁에서도 드론이 얼마나 중요한 역할을 하고 있는지 알 수 있다. 이제는 거꾸로 드론의 공격을 방어할 수 있는 방어체계 구축에 전 세계의 시선이 옮겨지고 있다. 최근 미군은 드론 떼의 공격에 대응할 수 있는 새로운 방어체계를 구축하고 정부의 수용 테스트를 완료한 것으로 알려졌다. 미국의 군사 전문 매체 C4ISRNET은 에피루스(Epirus)가 개발한 고출력 마이크로파 기술을 이용한 드론 방어용 프로토타입이 정부의 승인 테스트를 통과했다고 보도했다. 보도에 따르면, 이 프로토타입 시스템은 미국 육군에 인도되었으며, 드론뿐만 아니라 로켓, 대포, 박격포, 순항 미사일 등 다양한 위협으로부터 보호하는 간접화재 방어능력(IFPC)을 갖추고 있다. 이 IFPC(Indirect Fire Protection Capability) 시스템은 물리적 요격 기능과 레이저, 고출력 마이크로파 기술을 결합한 것이다. 미군은 현재 미국의 항공우주 기업 다이네틱스(Dynetics)로부터 IFPC 발사대의 첫 12개 프로토타입을 받고 있으며, 이 시스템은 2024년에 운영 테스트를 시작할 예정이다. 에피루스 측은 IFPC-HPM(고출력 마이크로파)이 2022년 12월 미군의 신속 능력 및 핵심 기술 사무국과 체결한 계약에 따라 개발된 무인 항공기 시스템-군집 능력을 갖춘 것이라고 밝혔다. 벤처 캐피털의 지원을 받는 에피루스는 미군이 저가의 드론 위협을 고가의 미사일로 대응하는 문제를 해결하기 위해 비용 효율적인 레오니다스(Leonidas) 시스템을 개발했다. 이 시스템은 과열 없이 즉각적으로 반응하며, 한 번 배치되면 재장전이 필요 없다. 레오니다스의 운영자들은 HPM(고출력 마이크로파) 펄스를 정밀하게 조절하여, 단일 무인 항공 시스템(UAS)이나 드론 무리를 효과적으로 타격할 수 있다. 에피루스는 최근 네바다에서 이 레오니다스 기반 IFPC-HPM 시스템에 대한 정부의 승인 테스트를 성공적으로 마쳤다고 밝혔다. 이 시스템은 다양한 상황에서의 스트레스 테스트를 거쳐, 드론 무리(떼)에 대응할 수 있는 능력과 신뢰성을 입증했다. 회사 측에 따르면, 이 시스템은 미군의 지속적인 평가 및 테스트를 거쳐, 작전 사용을 위한 전략, 기술 및 절차 개발에 기여할 것이다. RCCTO(신속 능력 및 핵심 기술 사무국)와의 계약의 일환으로, 추가적인 3대의 프로토타입이 미군에 인도될 예정이며, 이 시스템은 추가적인 개발 테스트를 진행한다. 에피루스는 2018년 창립 이후 2년 만에 8000만 달러(한화 약 1056억원)의 자본을 조달하며 빠르게 성장했다. 노스롭 그루먼(Northrop Grumman), 제너럴 다이내믹스(General Dynamics), 엘3해리스 테크놀로지스(L3Harris Technologies) 등 대형 계약사들도 이 회사의 기술에 투자했다. 한편, 한국전력기술은 국가 중요 시설물의 안전성 강화를 위해 원자력 발전소에 대한 드론 공격 방어 체계를 구축하기로 하고, 테라디펜스와 협약을 체결했다. 이 회사는 능동형 위상 배열 레이더 기술을 기반으로 10km 이상의 범위에서 무인기나 자살 드론을 탐지, 추적, 무력화하는 안티 드론 방호 체계 기술을 보유하고 있다.
-
- 산업
-
美 육군, 고출력 마이크로파로 드론 떼 제압 성공
-
-
한국 스타트업 텔레픽스, 폴란드에 위성 이미지 데이터 첫 수출
- 우리나라 우주항공 스타트업이 자체 위성정보를 해외에 처음으로 수출했다. 한국의 혁신적인 스타트업 텔레픽스(TelePIX)가 폴란드의 위성 개발 스타트업 샛레브(SatRev)와 지구 관측 위성 이미지 데이터를 제공하는 계약을 체결했다고 매체 시전(Cision)이 보도했다. 이는 한국에서 우주항공 분야의 스타트업이 해외에 자체 위성정보를 수출하는 첫 사례로 기록됐다. 이번 사업은 한국항공우주연구원의 중소기업 지원사업을 통해 이뤄진 쾌거로 꼽힌다. 이 계약은 지난 2023년 10월 6일 아제르바이잔 바쿠에서 열린 국제우주대회(IAC)에서 열린 기념식을 통해 공식화됐다. 이 행사에는 한국과 폴란드 양국의 기업 대표자들과 함께 한국 과학기술정보통신부, 한국항공우주연구원, 폴란드 경제개발기술부, 폴란드 우주국의 저명한 인사들이 참석했다. 이 계약의 주요 내용은 텔레픽스가 자체 설계 및 제작한 6U급 초소형 위성인 블루본을 통해 '블루카본' 위성 이미지 데이터를 제공하기로 한 약속이다. 2024년 발사 예정인 이 위성은 3.8m 해상도의 광학 관측 이미지 데이터를 샛레브에 공급할 예정이다. 2019년에 설립된 텔레픽스는 지구 관측을 위한 광학 페이로드와 위성 이미지 데이터 분석 소프트웨어 개발 전문 기업이다. 특히, 텔레픽스는 2024년에 세계 최초로 '블루카본' 관측 서비스를 시작할 계획이다. 이는 해양 생태계 내에서 탄소를 포집하는 중요한 역할을 수행하는 영역에 중점을 둔 혁신적인 서비스로 평가된다. 블루카본 관측은 해양 부유 조류에 초점을 맞추며, 텔레픽스의 첨단 위성 이미지 기반의 초고해상도 정량 탐지 기술을 활용할 전망이다. 권다롱새 텔레픽스의 최고운영책임자는 이 기술이 해양 생태계의 중요한 요소를 모니터링하는 데 중요한 역할을 할 것이라고 언급했다. 그녀는 "텔레픽스는 이산화탄소와 메탄을 포함한 온실가스를 모니터링할 수 있는 차세대 지구 관측 위성 개발에 적극적으로 참여하고 있다"며 "우리의 목표는 2025년까지 이 위성을 완성하는 것이며, 이 위성에서 수집한 다양한 멀티모달 데이터를 융합해 온실가스 관련 기후변화 데이터 분석을 중심으로 한 솔루션의 수출을 논의 중이다"라고 밝혔다. 한국항공우주연구원은 위성 발사 전에 국내 스타트업이 해외에서 수출 계약을 체결한 것이 중요한 성과라고 평가했다.
-
- 산업
-
한국 스타트업 텔레픽스, 폴란드에 위성 이미지 데이터 첫 수출
-
-
LG·삼성전자 사운드바, 미국 소비자 선정 '2023년 최고의 제품'
- LG와 삼성전자의 사운드바가 미국 소비자들에 의해 '올해의 최고 제품'으로 선정됐다. 미국 소비자 매체인 컨슈머리포트가 최근 발표한 '2023년 최고의 사운드바' 목록에서, LG전자의 사운드바(모델명 SC9S)가 '최상위급 사운드바' 카테고리에서 2위를 차지했다. 컨슈머리포트는 LG 사운드바에 대해 "올해 평가한 사운드바 중에서 최고의 것으로 판명되었으며, 3개의 업파이어링 스피커가 TV 화면 가운데에서 나오는 듯한 사운드를 제공한다"고 호평했다. 한편 삼성전자의 사운드바는 동일 부문에서 3위(HW-S801B)와 4위(HW-Q800C)에 올랐다. 3위를 차지한 HW-S801B 모델은 와이파이 연결을 통한 무선 돌비 애트모스 지원 기능이 특히 높은 평가를 받았고, 4위의 HW-Q800C 모델은 서라운드 사운드 기능이 높은 점수를 받았다. '가성비가 뛰어난 사운드바' 카테고리에서는 삼성전자의 HW-Q600C 모델이 3위에, LG전자의 S65Q 모델이 5위에 각각 이름을 올렸다. LG전자의 사운드바 SC9S 모델은 전면에 위치한 3개의 스피커, 저음을 강화하는 서브우퍼 1개, 그리고 천장을 향해 소리를 발사하는 업파이어링 스피커 3개를 포함하여 3.1.3 채널 시스템을 구성하고 있으며, 최대 400와트(W)의 출력을 지원한다. 이 사운드바는 중앙에 배치된 업파이어링 스피커를 통해 사운드바 아래에서 발생하는 오디오를 TV 화면 중앙에서 나오는 것처럼 생동감 있게 전달한다. 이는 TV의 크기가 커져 화면 중앙과 사운드바 사이의 거리가 멀어지는 현대의 대형 TV에서 발생할 수 있는 음향적 이질감을 줄이고, 보다 현실감 있는 청취 경험을 제공한다. 또한, LG 사운드바는 돌비 애트모스와 아이맥스 인핸스드 등 다양한 고급 사운드 솔루션을 탑재하여 사용자가 집에서도 영화관과 같은 깊은 몰입감의 오디오 경험을 즐길 수 있게 해준다. 특히, LG 올레드 에보 C 시리즈와 함께 사용할 때는 전용 거치대가 제공되어 TV와 사운드바 사이에 별도의 설치 작업이나 선 정리 없이도 깔끔한 연결이 가능하다. 업계 관계자는 "세계 홈오디오 시장에서 가장 큰 비중을 차지하는 미국에서, 국내 음향기기 전문 브랜드인 소노스와 같은 유수의 사운드바 브랜드들과 어깨를 나란히 할 수 있었다는 것은 매우 상징적인 성과"라고 말했다. 한편, LG는 지난 10월 말 세계 최초 무선 올레드 TV인 'LG 시그니처 올레드 M(LG SIGNATURE OLED M)'이 미국 시사주간지 타임(Time)이 선정한 '올해 최고 발명품(The 200 Best Inventions of 2023)'에 선정됐다. LG 시그니처 올레드 M은 가전제품(Consumer Electronics) 부문 최고 발명품으로 선정됐다. 타임이 선정한 올해 최고 발명품 200개 가운데 유일한 TV 제품이다. 이 매체는 LG 시그니처 올레드 M에는 다른 TV들과는 달리 전원 외 입출력을 위한 어떠한 연결선도 없다며 TV 후면에 매달려 있을 주변기기와 연결선은 모두 별도의 '제로 커넥트 박스(Zero Connect Box)'로 옮겼다고 설명했다. 타임지는 매년 혁신적인 제품과 서비스를 선정해 발표한다. 올해는 LG 시그니처 올레드 M이 속한 가전제품 부문을 포함해 접근성과 인공지능, 미용, 로봇, 지속가능성 등 총 21개 부문에서 200개 제품을 최고 발명품으로 선정했다.
-
- 산업
-
LG·삼성전자 사운드바, 미국 소비자 선정 '2023년 최고의 제품'
-
-
SK이노, 유가와 정제마진 상승에 3분기 1조원대 영업이익
- SK이노베이션이 올해 3분기 1조원대의 영업이익을 올린 것으로 나타났다. 배터리 사업을 영위하는 SK온은 매출은 50% 가까이 늘렸으며 적자규모를 역대 최소로 줄였다. SK이노베이션은 올 3분기 매출 19조8891억원, 영업이익 1조5631억원을 기록했다고 3일 밝혔다. 전년과 비교했을 때 매출은 12.6% 줄고 영업이익은 122.0% 확대됐다. SK이노베이션이 3분기 실적이 크게 호전된 것은 석유수출국기구(OPEC)와 러시아 등 비OPEC산유국간 협의체인 OPEC플러스(+) 감산 등 영향으로 유가와 정제마진이 동반 상승하며 석유사업 영업이익이 개선된 때문으로 분석된다. 화학사업은 납사 가격 상승에 따른 재고관련이익 증가, 윤활유 사업의 원재료 가격 상승에 따른 재고 효과, 배터리 사업 생산성 증대에 따른 수익성 개선세가 더해졌다. 사업별 실적을 살펴보면 석유사업은 시황 개선에 영업이익 1조1125억원으로 집계됐다. 화학사업은 제품 스프레드(제품가-원가) 하락에도 불구하고 재고관련이익에 힘입어 2370억원의 영업이익을 달성했다. 윤활유 사업은 기유 판매물량이 줄었지만 원재료 가격 상승에 따른 재고효과가 반영되며 2617억원의 영업이익을 거뒀다. 석유개발사업은 변동비 감소 효과로 인해 영업이익 794억원을 시현했다. 배터리 사업은 매출 3조1727억원을 기록하며 성장세를 유지했다. 영업손실은 역대 최소 규모인 861억원이다. 미국 공장 생산 증대 본격화 및 판매 확대를 통한 미국 인플레이션 감축법(IRA) 첨단세액공제(AMPC) 수혜 확대 영향이 컸다는 분석이다. SK온의 올 3분기 AMPC 금액은 2099억원이다. 이밖에 소재 사업은 주요 고객사 판매량 증가에 따른 매출 효과 영향으로 35억원의 영업이익을 기록했다. SK이노베이션 관계자는 "전 사업 부문 이익 성장으로 전사 영업이익률 7.9%를 시현했다"며 "배터리 사업은 해외 신규 공장 생산성 향상 지속 및 AMPC 수혜 증대, 비용 절감을 통해 4분기 흑자전환을 목표로 하고 있다"고 말했다.
-
- 산업
-
SK이노, 유가와 정제마진 상승에 3분기 1조원대 영업이익
-
-
희토류 금속으로 해양 우라늄 저비용 추출 기술 개발
- 희토류 금속으로 더 간단하고 저렴하게 해양 우라늄을 추출하는 기술이 개발됐다고 과학기술 전문매체 IFL사이언스가 최근 보도했다. 바다에는 육지보다 약 1000배 많은 우라늄이 있는 것으로 알려졌다. 우라늄은 1789년 발견된 후 도자기의 착색제로 사용되었지만, 현재는 원자력 산업과 의료 분야에서 널리 사용되고 있다. 우라늄은 금보다 더 풍부하고, 붕괴하면서 방출하는 방사선을 통해 쉽게 찾을 수 있다. 일반적으로 우라늄 공급은 수요를 충족할 수 있지만, 최근에는 이러한 추세가 지속되지 않을 것이라는 우려가 제기됐다. 세계가 화석 연료 대신 원자력과 같은 청정에너지로 전환함에 따라 새로운 우라늄 공급원을 찾아야 하는 시대로 접어든 것. 우라늄은 바다에 많이 존재하지만 추출하기 어렵다는 문제가 있다. 희토류 금속으로 해양 우라늄 추출 연구를 주도한 제시카 벨리섹 캐롤란(Jessica Veliscek Carolan) 박사는 "바다에는 육지보다 천 배 이상 많은 우라늄이 있지만, 희석되어 있어 추출하기가 어렵다"고 말했다. 벨리섹 박사는 "가장 큰 도전 과제는 바닷물, 소금, 철이나 칼슘과 같은 광물에 우라늄보다 훨씬 많은 양의 다른 물질이 존재한다는 것"이라고 지적했다. 연구팀은 우라늄과 금속 추출이 가능한 층상이중수산화물(LDH) 물질을 조사했다. LDH 물질은 특정 물질을 추출하도록 조정할 수 있는 양전하와 음전하 층을 가지고 있다. 연구팀은 바닷물과 같은 조건에서 우라늄을 추출하기 위해 LDH 물질에 네오디뮴을 첨가한 결과, 바다에 풍부한 다른 원소보다 우라늄을 선택적으로 흡수하는 데 특히 효과적임을 발견했다. 이 연구는 '에너지 어드밴시즈(Energy Advances)'에 게재됐다. 이 기술은 새로운 우라늄 수집에 유용할뿐만 아니라 원자력 산업에서 발생하는 방사성 폐수를 정화하는 데에도 사용될 수 있다. 벨리섹 박사는 "이러한 물질은 제조가 쉽고 저렴하다는 장점이 있다"며 "대규모 우라늄 추출을 위한 비용 효율적인 선택이 될 수 있다"고 말했다. 희토류 금속은 첨단 산업에 필수적인 소재로, 중국이 전 세계 생산량의 약 90%를 차지하고 있다. 이에 따라 희토류 금속의 안정적인 공급과 가격 안정이 국제 사회의 주요 관심사 중 하나다. 해양 우라늄은 바닷물에 포함된 우라늄을 추출하는 기술 개발로, 기존의 지층 우라늄 추출 기술에 비해 비용이 저렴하고 환경 친화적이라는 장점이 있다. 이번 연구는 희토류 금속을 활용한 해양 우라늄 추출 기술이 희토류 금속의 안정적인 공급과 가격 안정을 도모할 수 있는 동시에, 해양 우라늄의 경제성 확보에도 기여할 수 있을 것으로 기대된다.
-
- 산업
-
희토류 금속으로 해양 우라늄 저비용 추출 기술 개발
-
-
중국, 1200km 장거리 양자 순간이동 실험 성공
- 중국 과학원이 약 1200km 떨어진 지역 간의 양자 순간이동 실험에 성공해, 보안 체계에 새로운 패러다임을 가져올 전망이다. 미국의 과학기술 전문 매체 '사이테크데일리(SciTechDaily)'는 중국 과학원이 양자 통신 위성 '묵자(墨子·Micius)'를 활용하여 1200km 이상되는 거리에서 양자 정보를 순간이동 시키는 데 성공했다고 최근 보도했다. 중국은 독자 개발한 세계 첫 양자위성 '묵자'호를 지난해 8월16일 오전 1시 40분 간쑤(甘肅)성 주취안(酒泉) 위성 발사 센터에서 창정(長征) 2-D 로켓에 탑재해 발사했다. 이 연구의 교신 저자인 치앙 슈(Qiang Zhou) 교수는 "고속 양자 순간이동을 실험실 밖에서 실현하기 위해서는 많은 어려움이 있다"며 "이번 실험 결과는 미래 양자 인터넷 발전을 위한 중요한 이정표가 될 것"이라고 말했다. 양자 순간이동 시스템에서의 주요 실험적 과제는 벨 상태 측정(BSM)을 실행하는 것이다. 양자 순간이동이 성공적으로 이루어지고 BSM의 효율성이 향상되려면, 광섬유를 통해 장거리로 전송된 후, 찰리가 앨리스와 밥의 광자를 구별하지 못하게 해야 한다. 과학자들은 해킹이나 도청이 불가능한 양자 암호통신인 정보를 한 곳에서 다른 곳으로 빛보다 빨리 옮기는 '원격전송'을 찰리와 앨리스, 밥으로 설명했다. 앨리스의 정보를 밥에게 주면 밥과 친한 찰리가 앨리스처럼 변한다. 결국 앨리스가 찰리를 거쳐 전송된다는 것. 엄격히 말하면 원격전송은 '양자 정보'만 전송하는 것이다. 연구팀은 광자의 경로 길이 차이와 편광의 신속한 안정화를 위한 효과적인 피드백 시스템을 성공적으로 개발했다. 또한 연구팀은 얽힌 광자 쌍을 생성하기 위해 섬유 피그테일 주기적 극화 리튬 니오베이트 도파관의 단일 조각을 사용했다. 이를 바탕으로, 순간이동 시스템에 사용될 500MHz의 반복률을 가진 고품질의 양자 얽힘 광원이 개발됐다. 양자 순간이동은 광자의 양자 얽힘 상태를 활용하여 양자정보를 한 위치에서 사라지게 하고 동시에 다른 위치에서 나타나게 하는 전송 방법이다. 이러한 양자광학 기반의 고속 양자 순간이동을 위해서는 많은 이벤트를 수집할 수 있는 강력한 광자 센서가 필요하다. 리싱 유(Lixing You) 교수가 이끄는 팀은, 포톤 기술회사(Photon Technology Co., LTD)와 협력하여 고성능 초전도 나노와이어 단일 광자 검출기를 실험에 활용했다. 효율이 뛰어나고 노이즈가 거의 없는 이 검출기의 장점을 활용하여 고효율 BSM과 양자 상태 분석을 구현한 것이다. 연구팀은 양자 상태 단층 촬영과 미끼 상태 방법을 함께 사용하여 순간이동 충실도를 계산했는데, 이는 고전적 한계(66.7%)를 훨씬 초과하여 고속 대도시 양자 순간이동이 달성됐음을 확인했다. 이번 'UESTC 제1위의 대도시 양자인터넷' 프로젝트는 앞으로 통합 양자 광원, 양자 중계기, 양자 정보 노드 등을 결합하여 '고속, 고충실도, 다중 사용자, 장거리'를 지원하는 양자 인터넷 인프라를 개발할 계획이다. 연구팀은 이렇게 개발된 인프라가 양자 인터넷의 실질적인 활용을 더욱 가속화하는 데 기여할 것이라고 예상하고 있다. 양자통신은 정보 보안의 새로운 패러다임을 제시하는 차세대 통신 방법으로 주목받고 있다. 전파를 사용하는 대신, 레이저를 통해 암호화된 광자를 전송한다. 광자, 즉 빛의 최소 단위는 조작되면 속성이 변경되어 중간에서 정보의 도청이나 간섭이 발생하면 암호 키가 손상되어 원본 내용을 복원할 수 없게 된다. 이러한 특성으로 인해 양자통신은 정보 보안이 중요한 금융, 군사 통신 등의 핵심 기술로 주목받고 있다. 지상에서의 양자통신은 광섬유를 통해 이루어진다. 우주에서는 광섬유 설치가 어렵기 때문에 과학자들은 양자 순간이동 기술에 주목하고 있다. 중국의 연구팀은 묵자호 위성을 이용하여 양자 순간이동의 최장 거리 기록을 갱신했다. 묵자호는 중국의 칭하이, 우루무치, 운남 성에 위치한 지상국들과 통신했다. 이번 실험에서는 약 1203km 떨어진 칭하이와 운남성 간의 양자통신에 성공했다.
-
- 산업
-
중국, 1200km 장거리 양자 순간이동 실험 성공
-
-
화성 지진, 운석 충돌 아닌 지각 내부 활동 때문
- 우주과학 전문 매체 머커닷더(Merkur.de)는 2022년 5월 4일 화성에서 발생한 규모 4.7의 지진은 미국 항공우주국(NASA)의 인사이트호(InSight)에 의해 포착되었으며, 화성에서 발견된 가장 강력한 지진 중 하나로 기록되었다고 최근 보도했다. 당시 NASA는 이 지진이 운석 충돌로 인해 발생했다는 가능성을 제기했다. 그러나 옥스퍼드대의 벤저민 페르난도 교수가 주도한 국제 연구팀은 다른 가설을 제기했다. 이 연구팀은 화성 표면을 철저히 조사한 결과, 지진을 일으킬 만한 충분한 운석 충돌 흔적을 찾지 못했다고 발표했다. 대신, 화성 지각 내부의 엄청난 압력 변화가 지진의 주 원인이라고 지목다. 연구팀은 전 세계 화성 탐사 프로젝트가 공동으로 화성 표면을 탐색했으나 강진을 유발할만한 운석 충돌 흔적을 찾지 못했다고 밝혔다. 대신 화성 내부에 응축돼 있던 엄청난 지각의 힘이 방출되면서 규모 4.7의 강진을 일으킨 것으로 결론지었다. 연구팀은 화성 지각 내부의 높은 압력이 지각의 얇은 구조와 관련이 있을 것으로 추정했다. 화성의 지각은 지구보다 얇고, 그로 인해 암석층이 더욱 활발하게 움직일 수 있다. 화성의 지각은 지구처럼 판이 움직이지는 않지만, 내부의 암석층은 다른 속도로 냉각과 수축 과정을 겪으면서 지진을 유발하는 압력을 쌓게 된다. 이러한 상황에서 충분한 압력이 축적되면, 암석층이 파괴되면서 지진이 발생하게 된다는 것이 연구팀의 결론이다. 이번에 발생한 화성 지진의 규모는 4.7로, 지구의 지진에 비해 상대적으로 약하지만 화성에서는 매우 강한 편에 속한다. 이 지진은 화성 북극 부근의 거대한 화산인 발행산에서 북서쪽으로 약 280km 떨어진 지점에서 발생했다. 인사이트호는 지진이 발생한 지점에서 대략 1000km 떨어진 곳에 있었으며, 다행히도 지진으로 인해 피해는 발생하지 않았다. 이번 연구는 화성의 지질학적 특성과 활동에 대한 중요한 통찰을 제공할 것으로 예상된다. 화성의 지진 활동 분석은 화성의 내부 구조와 진화 과정을 이해하는 데 도움이 될 것으로 보인다. 특히, 이번 연구는 화성 내부의 암석층이 상당히 활발하게 움직이고 있음을 보여주며, 이로 인해 화성의 지질 활동이 지구보다 활발할 수 있다는 가설을 제시했다. NASA는 이번 연구 결과를 통해 화성의 지질학적 활동에 대한 이해를 넓힐 수 있을 것으로 기대하며, 향후 인사이트호를 통해 화성의 지진 활동을 지속적으로 관측할 계획이다. 한편, 인사이트(InSight)는 NASA의 화성 지질 탐사 착륙선이다. 화성의 탄생과 태양계의 진화와 형성과정, 내부 온도, 지각활동, 화성의 열분포 등의 연구가 목적이다. 2018년 5월 5일 발사되어, 2018년 11월 26일 화성에 도착해 탐사 임무를 수행중이다. 주요 장비로는 HP3과 지진계 등을 장착했으며, SEIS로 화성 지표면 내부의 파동을 들여다 볼 수 있다. 달에도 아폴로 12호, 14, 15, 16호 미션 때 설치한 지각활동을 탐사하는 지진계가 있다. 현재까지 지구 외 다른 천체에서 관측된 가장 강한 지진은 달에서 1977년 관측된 것으로 우리나라 경주 지진과 비슷한 강도 5.5규모였다.
-
- 산업
-
화성 지진, 운석 충돌 아닌 지각 내부 활동 때문
-
-
NASA, 금속성분 풍부한 '프시케' 소행성 탐사
- 미국 항공우주국(NASA)은 화성과 목성 사이의 궤도에 있는 프시케(Psyche)라는 금속성분이 풍부한 소행성 탐사를 시작했다. 미국 매체 더 힐에 따르면 프시케는 철과 니켈 등의 금속으로 풍부하며, 길이가 280km에 달하는 거대한 소행성이다. NASA는 이 소행성이 충돌로 인해 표면의 암석이 제거된 채 남아있는 행성 핵으로 보고 있으며, 이를 통해 지구를 포함한 행성들의 핵이 어떻게 형성되었는지에 대한 단서를 찾을 수 있을 것으로 기대하고 있다. NASA의 제트 추진 연구소(JPL)는 지난 10월 13일 프시케 탐사선을 우주로 쏘아 올렸다. 이 탐사선은 약 6년 동안 40억km를 여행해 2029년 8월에 동일한 이름의 목적지인 프시케 소행성에 도착할 예정이다. 그 전에 탐사선은 2026년 5월 화성 근처를 지나며 화성의 중력을 이용해 속도를 증가시키고 방향을 조절한다. 행성에 도착한 후에는 약 26개월 동안 고도 65~700km 상공에서 프시케를 공전하며 지형과 구성 성분, 자기, 중력 등 다양한 정보를 수집할 계획이다. 이번에 탐사를 진행하는 '프시케' 탐사선은 소행성 이름을 따서 붙여졌다. 다중 스펙트럼 이미저, 감마선과 중성자 분광계, 자력계와 X-밴드 중력 과학 조사를 포함한 여러 도구를 탑재하고 있다. 또한 전파가 아닌 레이저를 사용하여 훨씬 더 빠른 속도로 데이터를 지구로 다시 보내는 심우주 광통신 장치를 테스트한다. 프시케 탐사 임무는 태양계의 탄생과 진화에 대한 많은 정보를 밝혀내어 과학에 도움이 될 것으로 기대한다. 아울러 우주의 천연 자원 채굴에 대한 정보도 수집한다. 일부 전문가들은 프시케 소행성의 광물 가치를 약 10조 달러(약 1경3430조원)로 추정하고 있다. '지구 물리학 연구 저널(Journal of Geophysical Research)'의 한 논문은 대략 11.65조 달러로 추정하기도 했다. 정확한 가치는 아직 확인되지 않았지만 미래에 이 소행성의 풍부한 광물을 채굴하려는 많은 시도가 예상된다. 핵 융합 추진 기술 발전 기대 프시케 혹은 다른 소행성에서의 채굴을 시작하기 위해서는 향후 5~6년 동안 새로운 기술 개발이 필요하다. 지구와 프시케 사이의 거리가 매우 멀기 때문에, 현재의 기술로는 소행성에서 광물을 채굴하고 지구로 귀환시키는 데 엄청난 비용이 들 것으로 예상되기 때문이다. 핵 융합 추진 기술이 개발된다면, 지구와 프시케 사이의 이동 시간이 크게 단축될 것으로 보인다. 이 기술을 활용하면 로봇을 이용해 소행성에서 자원을 채굴하고 정제한 후, 채굴된 자원을 우주 산업 인프라로 운송하는 광산 선박의 활용이 가능해질 것이다. 프시케와 같은 태양계의 천체들은 경제적인 이윤을 창출할 수 있으며, 이는 많은 이점을 가지고 있다. 소행성 채굴은 지구에서의 채굴과 달리 환경에 미치는 부정적인 영향이 없다. 저명한 천체 물리학자 닐 드 그래스 타이슨(Neil deGrasse Tyson)은 소행성과 달의 채굴에 대해 긍정적인 견해를 제시했다. 그는 이러한 채굴 활동이 천연 자원에 대한 충돌과 갈등을 줄일 수 있을 것이라고 말했다. 한국, 다누리 탐사 계획 우리나라도 우주 광물 채굴 분야에 뛰어들기 위한 준비를 하고 있다. 한국항공우주연구원은 2029년부터 2031년까지 '다누리'라는 이름의 소행성 탐사선을 개발 중이다. '다누리'는 지구로부터 약 1.5억km 떨어진 '162173 APL' 소행성을 목표로 하고 있다. 이 소행성은 지름이 약 500m이며, 철, 니켈, 황, 규산염 등의 광물이 풍부하다. '다누리'는 2029년 8월에 발사되어 2031년 12월에 APL 소행성에 도착할 예정이며, 그곳의 지형, 구성 성분, 자기장 등을 조사할 계획이다. '프시케'와 '다누리'의 탐사는 우주 광물 채굴의 실현 가능성을 입증하는 중요한 단계가 될 것이다. 우주 광물 채굴이 현실화되면 지구의 자원 문제를 해결하고, 새로운 경제적 기회를 열어줄 것으로 예상된다.
-
- 산업
-
NASA, 금속성분 풍부한 '프시케' 소행성 탐사
-
-
리튬이온전지보다 저렴하고 안전한 '수계이차전지' 개발
- 리튬이온 배터리는 현재 가장 널리 사용되는 에너지 저장 장치 중 하나이지만, 여러 문제점들이 도출되고 있다. 주요 원료의 비싼 가격과 한정된 매장량, 그리고 화재 위험성 등 다양한 문제점들이 제기되고 있어 대안이 필요하다. 이에, 많은 연구자들이 경제적이면서도 안전한 리튬이온 배터리의 대체품을 개발하기 위해 노력하고 있다. 과학기술·의학전문 매체 사이언스엑스(Science X)에 따르면, 한국과학기술원(KIST)의 오시형 박사팀은 비용과 안전을 충족하는 수계이차전지를 개발했다. 이 연구는 '에너지 스토리지 머티리얼(Journal Energy Storage Materials)' 저널에 게재됐다. 수계이차전지는 리튬이온전지에 비해 원재료 비용이 상당히 저렴하며, 경제적인 이점이 있다. 다만 물이 분해되면서 발생하는 수소 가스와 관련된 내부 압력 상승과 전해질 고갈 문제로 인해 상용화에 어려움을 겪고 있었다. 과학자들은 지금까지 금속 음극과 전해질 사이에서 발생하는 수소를 줄이기 위해 표면 보호층을 개발하여 접촉 면적을 최소화하는 방법을 사용해왔다. 그럼에도 불구하고, 금속 음극의 부식과 그에 따른 부반응으로 인해 전해질의 물이 지속적으로 분해되어 수소 가스가 발생, 이로 인해 장기간 사용랑 경우 폭발 위험이 존재했다. 이 문제를 해결하기 위해 오시형 박사 연구팀은 전지 내에서 발생하는 수소 가스를 자동으로 물로 변환시키는 새로운 방법을 개발했다. 이산화망간과 팔라듐으로 구성된 복합촉매를 이용해 전지의 성능과 안전성을 동시에 향상시킨 것. 이산화망간은 일반적으로 수소 가스와 반응하지 않지만, 팔라듐을 약간 첨가하면 수소 가스가 촉매에 더 쉽게 흡수되어 물로 변환된다. 연구팀은 이번에 개발한 이 새로운 촉매를 사용한 프로토타입 셀에서는, 셀 내부 압력이 0.1기압으로 매우 안정적인 상태를 유지했으며, 전해질의 고갈 현상도 발견되지 않았다고 밝혔다. 이 연구는 수계 이차전지의 주요 안전 문제 중 하나를 효과적으로 해결해, 향후 에너지 저장 장치(ESS)의 상용화에 있어서 중요한 진전을 가져올 것으로 예상된다. 리튬이온전지를 더 경제적이고 안전한 수계이차배터리로 대체한다면, 글로벌 에너지 저장 시스템(ESS) 시장의 빠른 성장을 촉진할 가능성이 있다. KIST의 오시형 박사는 "이 기술은 수계이차전지에 적용될 수 있는 내장형 안전 메커니즘 기반의 맞춤형 안전 전략과 연관되어 있으며, 위험 요소를 자동으로 제어한다"고 말했다. 그는 또한 "이 기술은 수소 가스 누출이 큰 위험 요소인 수소 충전소와 원자력 발전소 등의 다양한 산업 시설에서도 활용될 수 있어 사람들의 안전을 더욱 보장할 수 있을 것"이라고 강조했다. 한편, 수계이차전지는 친환경적이고 안전한 특성을 가지고 있으며, 원재료 비용도 리튬이온전지에 비해 약 10분의 1 수준으로 경제적이라는 장점이 있다. 수계이차전지가 원료물질이 고가이면서 폭발 가능성이 높은 유기용매 전해질을 사용하는 리튬이온전지를 대체한다면 중대형 이차전지의 보급이 대규모로 확대될 수 있다. 이번 연구는 한국 과학기술정보통신부의 지원을 받아, 나노미래소재원천기술개발사업과 중견연구자지원사업을 통해 진행됐다.
-
- 산업
-
리튬이온전지보다 저렴하고 안전한 '수계이차전지' 개발