검색
-
-
[신소재 신기술(132)] 플라스틱 폐기물, 고부가가치 화학물질과 수소 에너지로 재활용하는 기술 개발
- 플라스틱 폐기물을 분해해 벤조산과 청정에너지인 수소로 재활용하는 기술이 개발됐다. 독일 연구팀이 가장 흔한 플라스틱 페기물인 폴리스티렌 폐기물을 효율적으로 재활용하는 전기화학적 방법을 개발했다. 이 기술은 저렴한 철 촉매를 사용하여 폴리스티렌을 분해해 벤조산과 그 부산물로 수소를 생성하며, 태양 에너지를 사용하여 작동할 수 있는 장점이 있다고 사이테크 데일리가 보도했다. 플라스틱은 우리 생활에 필수적인 요소가 되었지만, 매립지와 자연 환경에 축적되는 막대한 양의 플라스틱 폐기물은 심각한 문제를 야기한다. 전 세계적으로 생산되는 플라스틱은 재활용율이 겨우 10% 미만에 불과하다. 2025년에는 플라스틱 폐기물이 400억톤에 이를 것으로 예상된다. 특히 포장재와 건축 자재에 널리 사용되는 폴리스티렌(PS)은 매립지에 버려지는 폐기물의 약 33%를 차지하지만, 재활용율은 1%에 불과하다. 2022년 폴리스티렌의 전 세계 생산량은 1540만톤에 달했다. 그 중에서 재활용된 폴리스티렌은 겨우 15만4000톤에 불과했다. PHYS는 캘리포니아 대학교 버클리와 캘리포니아 대학교 산타바바라의 연구자들이 수행한 '2050년까지 전 세계 플라스틱 폐기물 관리 불량과 온실 가스 배출을 줄이기 위한 경로'라는 연구를 인용해 지금처럼 경제 활동을 게속한다면 세계는 2011년부터 2050년까지 엠파이어 스테이트 빌딩 높이의 10배에 달하는 플라스틱 더미로 맨해튼을 덮을 만큼의 쓰레기를 배출할 것이라고 지적했다. 이러한 문제를 해결하기 위해 독일 괴팅겐의 프리드리히 뵐러(Friedrich Wöhler) 지속가능 화학 연구소의 루츠 아커만 교수가 이끄는 연구팀은 폴리스티렌을 효율적으로 분해하는 전기화학적 방법을 개발했다. 이 방법은 폴리스티렌을 분해하여 화학 공정의 원료로 사용할 수 있는 단량체 벤조일 생성물과 짧은 고분자 사슬을 생성하고 그 부산물로 수소를 만들어냈다. 이 기술의 핵심은 헤모글로빈과 유사한 철 포르피린 복합체인 철 기반 촉매이다. 철은 다른 촉매 활성 금속에 비해 독성이 없고 저렴하며 쉽게 구할 수 있다는 장점이 있다. 전기 촉매 반응 과정에서 철 화합물은 Ⅳ, Ⅲ, Ⅱ의 다른 산화 단계를 순환하며, 일련의 반응 단계와 중간 생성물을 거쳐 폴리스티렌의 탄소-탄소 결합을 분해한다. 주요 생성물은 벤조산과 벤즈알데히드이며, 벤조산은 향료 및 방부제 생산 등 다양한 화학 합성의 원료로 사용된다. 연구팀은 실제 플라스틱 기물을 그램 단위로 효율적으로 분해함으로써 이 새로운 전기 촉매 기술의 견고성을 입증했다. 이번 연구 결과는 독일 저명 학술지 '앙게반테 케미(Angewandte Chemie, 응용화학)'에 개재됐다.
-
- IT/바이오
-
[신소재 신기술(132)] 플라스틱 폐기물, 고부가가치 화학물질과 수소 에너지로 재활용하는 기술 개발
-
-
일본, 세계 최초 나무 인공위성 발사 성공…우주쓰레기 문제 해결 기대
- 일본이 세계 최초로 목조 인공위성을 우주로 보냈다고 CNN을 비롯한 외신들이 비중있게 전했다. 발사에 성공한 나무 인공위성은 라틴어로 나무를 뜻하는 단어를 포함한 링고샛(LignoSat)이라는 이름으로, 교토 대학과 스미토모 포레스트리(Sumitomo Forestry)가 공동으로 개발했다. 이 위성은 국제우주정거장(ISS)으로 가는 스페이스X(SpaceX) 임무에 포함되었으며, 곧 지구 위 궤도로 발사될 예정이다. 목재 위성을 발사한 데는 두 가지 주요 이유가 있다고 한다. 첫째, 우주의 혹독한 환경에서 나무의 내구성을 시험하기 위한 것이다. 이번 시험에 성공하면 더 많은 나무 위성을 만들어 우주로 쏘아 올린다는 계획이다. 또 하나는 우주에서의 목재의 유용성이다. 교토 대학 교수이자 우주인인 도이 다카오는 "직접 생산할 수 있는 소재인 목재를 사용하면 우주에서 영구적으로 집을 짓고 살고 일할 수 있게 될 것"이라고 말했다. 이는 나무를 심고 달과 화성에 실제 목조 주택을 짓는 50년 계획의 첫 번째 단계다. 교토 대학의 마라타 고지 산림과학 교수는 "1900년대 초의 비행기는 나무로 만들어졌다. 나무로 만든 위성도 당연히 실현 가능하다"고 말했다. 목재 구조물의 이점은 그 외에도 여럿이다. 목재 소재는 실제로 지구보다 우주에서 더 내구성이 있어야 하는데, 그 이유는 끝없이 공허한 공간에는 물이나 산소가 없기 때문이다. 산소가 없으면 썩을 것이 없으며 불이 붙기도 매우 어렵다. 심지어 방사선으로부터 매우 적절한 보호 기능도 제공한다. 목재는 지구 궤도에 있는 다른 모든 위성과도 관련이 있다. 지구 궤도에는 현재 3000개가 넘는 위성(저궤도 통신위성을 포함하면 훨씬 많아진다)이 돌고 있으며, 그 외 다양한 종류의 우주 잔해물도 같이 엉켜 있다. 앞으로 나무 위성은 지구로 다시 떨어지고 재돌입하면서 타 없어질 것이다. 금속 위성은 (대부분) 귀환하는 동안 타버리지만, 그 과정에서 유해한 산화알루미늄 입자를 생성한다. 현재는 지구를 덮고 있는, 끊임없이 늘어나는 우주 쓰레기에 대한 대책이 전무하기 때문에 목재 위성이 도움이 될 수 있다. 도이 교수는 "미래에는 금속 위성 발사가 금지될 수도 있다"는 시나리오를 예상하고 있다. 어떤 경우든, 달에 통나무집을 짓는 것은 즐거운 이벤트가 될 수 있다는 설명이다.
-
- IT/바이오
-
일본, 세계 최초 나무 인공위성 발사 성공…우주쓰레기 문제 해결 기대
-
-
글로벌 기업, 플라스틱 규제 위한 국제 협약 체결 촉구
- 세계 유수 기업의 최고경영자(CEO) 20여 명이 플라스틱 오염 문제 해결을 위한 구속력 있는 국제 규칙 마련을 촉구하고 나섰다. 미국 다국적 식품 및 음료 회사 펩시코, 10년 넘게 지속가능성 최우수 기업으로 꼽힌 다국적 기업 유니레버, 마스 등 글로벌 기업의 CEO들은 '글로벌 플라스틱 협약을 위한 기업 연합'이 주도하는 공개 서한에 서명하며, 다음 달 부산에서 열리는 유엔 플라스틱 협약 협상에서 의미 있는 결론이 도출되기를 기대한다는 뜻을 밝혔다고 포브스가 27일(현지시간) 보도했다. 플라스틱 오염 종식 국제협약 성안을 위한 제5차 정부간 협상위원회(INC-5)는 오는 11월 25일부터 부산 벡스코에서 개최된다. 27일 환경부에 따르면 170여개국 정부 대표단을 비롯해 무려 4000여명이 협상하거나, 영향을 미치기 위해해 부산을 찾을 예정이다. 플라스틱 오염의 가장 심각한 폐해는 자연 분해에 수백 년이 소요된다는 점이다. 또한 플라스틱을 제조하는데 쓰이거나 플라스틱에서 검출되는 화학물질은 1만6000여종에 달한다. 플라스틱은 완전히 사라지지 않고 미세 플라스틱이라는 미세한 입자로 쪼개지는데, 이는 더욱 작은 나노 플라스틱으로 변형된다. 최대 5mm 크기의 이러한 미세 플라스틱은 토양과 해양을 오염시키고, 먹이사슬을 거쳐 동물의 체내에 쌓인다. 결국, 이는 우리 식탁까지 위협하여 인체 건강에 악영향을 초래할 수 있다. 플라스틱, 특히 폴리에티렌 테레프탈레이트(PET)는 자연 분해가 어려워 환경 오염의 주범으로 꼽힌다. PET는 음료수, 생수 등을 담는 용기로 가장 널리 사용된다. PET는 전세계 플라스틱 사용량의 12%를 차지하며, 하수구에 존재하는 미세 플라스틱의 최대 50%가 여기에 포함된다. "자발적 조치 만으로는 플라스틱 문제 해결에 수십년 걸릴 것" 기업 연합은 서한을 통해 자발적인 조치에만 의존하는 협약은 실질적인 해결책 마련을 수십년 지연시킬 수 있다고 경고했다. 이들은 구속력있는 국제 규칙을 포함하는 야심찬 협약이야말로 정책 조화, 국가별 법률 강화, 기업의 효과적인 솔루션 확대를 위한 기회라고 강조했다. 서한은 또한 협상 과정에서 유해 화학물질의 제한 및 단계적 폐지를 위한 국제적인 기준과 목록 설정, 순환 제품 디자인에 대한 명호가안 기준 마련, 확장된 생산자 책임(EPR) 체게에 대한 공통된 정의 및 핵심 원칙 수립 등 구체적인 논의가 이루어져야 한다고 촉구했다. 협약의 효력을 강화하기 위한 강력한 거버넌스 체계 구축 또한 중요한 과제로 제시됐다. "국제규칙, 기업과 정부 모두에게 이익" 기업 연합의 공동 의장인 존 던컴은 "국제적인 규칙을 포함하는 협약은 지구 환경뿐만 아니라 기업과 정부 모두에게 도움이 된다"고 강조했다. 던컴은 국제 규칙이 기업의 운영을 단순화하고 규모의 경제를 실현하여 장기적으로 비용 절감 효과를 가져올 뿐만 아니라, 재사용을 통한 새로운 사업 기회 창출, 폐기물 관리 산업 성장에도 기여할 것이라고 설명했다. 던컴은 또한 기업들이 플라스틱 문제 해결에 대한 재정적 책임을 인지하고 있으며. 정부는 공정한 경쟁 환경을 조성하고 모든 기업이 EPR 체계를 이행하도록 노력해야 한다고 덧붙였다. 펩시코의 라몬 라구아르타 회장은 효과적이고 잘 설계된 EPR 체계의 중요성을 강조하며, 명확한 국제 원칙 마련을 통해 전세계적으로 EPR이 확대될 수 있다는 기대감을 표명했다. "글로벌 규칙 마련으로 공정한 경쟁 환경 조성해야" 폐기물 관리 시스템 공급 업체인 TOMRA의 토베 안데르센 CEO는 이번 협상이 플라스틱 오염에 대한 국제적 합의를 도출할 수 있는 "일생일대의 기회"라며, 글로벌 기업들이 이 문제 해결에 적극적으로 기요하고자 하며, 글로벌 규칙 마련을 통해 공정한 경쟁 환경이 조성되기를 바란다고 강조했다. 한편, 국제 플라스틱 협약은 전 세계 국가의 정책 결정자들이 모여 플라스틱 오염에서 벗어나기 위해 플라스틱의 생산부터 폐기까지 전 생애주기에 걸친 규칙을 만드는 회의다. 2022년 11월 우루과이에서 첫 회의를 시작했고, 마지막 5차 회의는 2024년 11월 부산에서 개최된다. 한국 플라스틱 생산량, 세계 4위 한국석유화학협회 석유화학편람을 보면 한국 합성수지(플라스틱) 생산량은 지난해 1451만3000톤(t)으로 중국(9794만t), 미국(3857만t), 사우디아라비아(1463만5천t)에 이어 주요 10개국 중 4번째로 많았다. 1인당 합성수지 소비량은 116.2㎏으로 10개국 중 압도적인 1위다. OECD 최근 보고서에 의하면, 2020년 4억3500만 톤에 달했던 전 세계 플라스틱 생산량은 2040년에는 7억3600만 톤으로 급증해 무려 69%나 증가할 것으로 예측된다. 약 15년 후에는 해상 운송에 사용되는 40피트 표준 컨테이너 277만 7000여 개를 동원해야 한 해 생산되는 플라스틱을 모두 실을 수 있을 것으로 예측된다. 플라스틱 재활용율 6% 불과해 플라스틱 폐기물량 또한 2040년에는 6억1700만 톤에 이르러 2020년 3억 6000만 톤에서 크게 늘어날 것으로 전망된다. 하지만, 재활용률은 6% 수준에 머무르고, 부적절하게 처리되는 플라스틱 폐기물은 2040년 1억1900만 톤으로 2020년 8100만 톤보다 오히려 증가할 것으로 예상된다. 자연으로 유출되는 플라스틱의 양도 2040년에는 3000만톤으로 2020년 2000만톤에 비해 1000만톤이나 늘어날 것으로 추정된다. 플라스틱 생산부터 폐기까지 전 과정에서 발생하는 온실가스 배출량 역시 2040년 2.8기가 톤으로 2020년 1.8기가 톤보다 1기가 톤 증가할 전망이다. 이처럼 플라스틱 생산량과 폐기물량은 증가하는 반면, 재활용률은 저조하고 환경오염 문제는 심화될 것으로 예상되어 플라스틱 문제 해결을 위한 적극적인 노력이 시급하다.
-
- 생활경제
-
글로벌 기업, 플라스틱 규제 위한 국제 협약 체결 촉구
-
-
[퓨처 Eyes(55)] 우주 쓰레기, 인류의 우주 꿈을 위협한다: 4300톤의 그림자, 지구 덮치나?
- 인류의 우주 탐사 역사는 아직 60년 남짓에 불과하지만, 그 짧은 시간 동안 지구 궤도에는 엄청난 양의 우주 쓰레기가 축적되었다. 유럽우주국(ESA)에 따르면 지구 궤도를 도는 위성 파편 등 우주 쓰레기의 무게는 무려 1만3000톤에 달한다. 그중 작은 파편에 해당하는 우주 쓰레기는 4300톤으로, 자유의 여신상(약 204톤) 약 21개에 달하는 무게의 우주 쓰레기가 지구 주위를 맴돌며 인류의 우주 꿈을 위협한다. 1960년대 본격적인 우주 탐사 시대가 열린 이후, 수많은 국가들이 앞다투어 우주로 진출했다. 1969년 아폴로 11호의 달 착륙은 인류에게 새로운 가능성을 제시했고, 이후 미국, 러시아, 중국, 일본, 인도, 유럽연합 등 우주 강국들은 탐사선 개발에 박차를 가하며 우주 경쟁을 펼쳐왔다. 최근에는 한국과 아랍에미리트까지 가세하며 우주를 향한 열망은 더욱 뜨거워지고 있다. 통제 불능의 우주 쓰레기 증가 그러나 우주 탐사의 이면에는 어두운 그림자가 드리워져 있다. 바로 우주 쓰레기 문제다. 나사(NASA)에 따르면 2015년 기준 지구 상공에 위성을 포함해 약 3만 개의 물체가 돌고 있는 것으로 나타났다. 특히 고장난 인공위성, 탐사선의 파편, 로켓 발사 후 남은 잔해물 등이 지구 궤도를 떠돌며 심각한 위협으로 부상하고 있다. 이러한 우주 쓰레기는 운용 중인 인공위성이나 탐사선과 충돌하여 통신 장애, GPS 기능 중단 등의 문제를 일으킬 수 있다. 최근 몇 달 사이, 궤도상에서 폐기된 위성과 로켓 잔해가 잇따라 파손되면서 우주 쓰레기 문제가 더욱 심각해지고 있다. 우주 쓰레기가 급증하면서 '케슬러 증후군'이 현실화 될 것이라는 우려가 제기되고 있다. 1978년 NASA의 과학자 도널드 J. 케슬러가 제시한 케슬러 증후군은 우주 쓰레기가 서로 충돌하면서 기하급수적으로 늘어나, 결국 지구 궤도 전체를 뒤덮어 인공위성이나 우주선의 운용을 불가능하게 하는 현상을 말한다. 케슬러 증후군은 아직까지는 가설 단계지만 늘어난 우주 쓰레기들이 서로 충돌하면서 더욱 많은 파편들이 기하급수적으로 늘어나면서 현실적인 위협으로 인식되고 있다. 실제로 지난 6월에는 러시아의 RESURS-P1 위성이 지구 저궤도에서 파괴되어 100개 이상의 추적 가능한 파편을 생성했으며, 7월에는 미국의 DMSP 5D-2 F8 위성이 분해되었다. 8월에는 중국의 장정 6A 로켓 상단 부분이 파편화되면서 최소 283개의 추적 가능한 파편과 수십만 개의 미세 파편을 발생시켰다. 이처럼 폐기된 우주 물체의 파손은 크고 작은 파편들을 양산하며 우주 쓰레기 문제를 심화시키고 있다. 특히 미세 파편의 경우 추적이 어려워 더 큰 위험 요소로 작용한다. 이러한 파편들은 현재 운용 중인 위성이나 우주선과 충돌하여 심각한 피해를 초래할 수 있다. 최근 발생한 인텔샛 33e 위성(Intelsat 33e·대형 통신 위성) 파손 사고는 이러한 우려를 더욱 증폭시키고 있다. 인텔샛은 2024년 10월 19일, 인도양 상공 약 3만 5000km 궤도에서 인텔샛 33e 위성이 갑작스러운 전력 손실로 파괴됐다고 밝혔다. 최소 20개의 조각으로 분해된 이 위성은 유럽, 아프리카, 중동, 아시아 지역의 위성 통신 서비스에 큰 차질을 빚었다. 무게 6600kg에 리무진 크기의 인텔샛 33e 위성은 보잉에서 설계와 제작을 맡았고 2016년 궤도에 진입해 8년 동안 임무를 수행으나 갑자기 붕괴됐다. 위성이 갑자기 분해된 정확한 이유는 아직까지 불분명하다. 위성 파괴는 연쇄적인 충돌을 야기하여 피해 규모를 더욱 키울 수 있다는 점에서 우주 쓰레기 문제는 '시한폭탄'과 같다. 우주 쓰레기 추적과 관리의 어려움 유럽우주국(ESA)에 따르면, 현재 지구 궤도에는 10cm 이상의 우주 쓰레기가 4만 개 이상, 1cm 미만의 미세 파편은 무려 1억 3000만 개 이상 존재한다. 이를 무게로 환산하면 약 1만3000톤에 달하며, 그 중 4300톤이 작은 파편으로 추정된다. 나사(NASA)에 따르면 사과 크기의 우주 쓰레기가 약 2만1000개, 구슬 크기의 쓰레기가 50만개, 추적이 어려울 정도의 작은 쓰레기가 최고 1억개에 이른다고 추정한다. 특히 지구 저궤도(LEO)에 집중된 우주 쓰레기는 추적과 관리가 매우 어렵다. 정지궤도(GEO)에서 발생하는 파편들은 위치 추적이 더욱 까다로워 효과적인 관리 시스템 마련이 시급하다. 다행히 우주 쓰레기 문제 해결을 위한 노력도 활발히 진행되고 있다. JAXA(일본 우주항공연구개발기구)의 지원을 받는 스타트업 스타 시그널 솔루션스(Star Signal Solutions)는 '사테나비 S-CAN'이라는 혁신적인 충돌 회피 네비게이션 시스템을 개발했다. 이 시스템은 위성 운용자들이 우주 쓰레기의 궤도를 실시간으로 모니터링하고 충돌 위험을 사전에 예측하여 회피할 수 있도록 지원한다. 스타 시그널 솔루션스의 이와키 요타이 대표는 "위성 운용에는 전문 지식과 24시간 대응 체계가 요구되며, 막대한 운영 비용이 발생한다"고 지적하며, "사테나비 S-CAN은 최적의 회피 경로를 제시하여 운영 부담을 줄이고 연료 소비를 최소화하여 비용 절감 효과를 가져온다"고 강조했다. 하지만 기술 개발만으로는 우주 쓰레기 문제를 완전히 해결할 수 없다. 우주 쓰레기 문제는 본질적으로 전 지구적 차원의 문제이기 때문에 국제적인 협력이 필수다. 1972년 제정된 '우주물체에 의한 손해에 대한 국제책임협약'은 우주 물체 발사 국가의 손해 배상 책임을 명시하고 있지만, 실제 적용 사례는 매우 드물다. 우주 공간의 특수성으로 인해 책임 소재 규명이 어렵기 때문이다. 전문가들은 우주 쓰레기 문제 해결을 위해서는 각국의 협력을 통한 국제적 감시 시스템 구축 및 규제 강화가 시급하다고 강조한다. 우주 물체의 안전한 폐기, 추적 기술 개선, 파편 발생 최소화 등 다각적인 노력이 필요하며, 지속 가능한 우주 탐사를 위한 국제 사회의 공동 책임 의식이 무엇보다 중요하다. 국제우주정거장, 지구 재진입후 폐기 예정 참고로 국제우주정거장(ISS)은 2030년 운영 종료 후 2031년 1월에 폐기될 예정이다. NASA는 2031년 1월에 ISS를 지구 대기권으로 재진입시켜 태우는 방식으로 폐기할 계획이다. 잔해는 '우주선의 무덤'으로 불리는 남태평양의 포인트 니모(Point Nemo)에 수장된다. ISS는 1998년부터 운영되어 왔으며, NASA, 캐나다우주국(CSA), 유럽우주국(ESA), 일본우주항공연구개발기구(JAXA), 러시아 연방우주공사(Roscosmos) 등이 협력해 운영해 왔다. 하지만 ISS는 노후화로 인해 유지 보수 비용이 증가하고 있으며, 새로운 우주 탐사 계획을 위해 폐기가 결정됐다. ISS 폐기 후에는 민간 우주 정거장이 그 역할을 대신할 것으로 예상된다. 인류의 우주 탐사는 앞으로도 계속될 것이다. 하지만 우주 쓰레기 문제를 해결하지 못한다면 인류의 우주 꿈은 쓰레기 더미에 묻혀버릴지도 모른다. 지금부터라도 국제 사회가 힘을 모아 책임 있는 자세로 우주 쓰레기 문제 해결에 적극적으로 나서야 할 때다.
-
- 포커스온
-
[퓨처 Eyes(55)] 우주 쓰레기, 인류의 우주 꿈을 위협한다: 4300톤의 그림자, 지구 덮치나?
-
-
북해 해안에서 미세플라스틱 핫스팟 발견⋯"플라스틱 오염 심각"
- 영국 북해 해안에서 미세 플라스틱 오염 핫스팟이 발견되어 해양 오염의 심각성을 드러냈다. 영국 환경·어업·양식 과학센터(CEFAS) 연구팀은 2022년 북해 해역에서 특수 제작된 '뉴스턴 미세 플라스틱 카타마란(기계식 유량계와 플라스틱 포집망이 달린 부유식 뗏목)'을 이용하여 미세 플라스틱 농도를 측정했다. 그 결과, 북해 남부 해안에서 미세 플라스틱 농도가 최대 2만5000개/㎢ 이상으로 나타났으며, 평균 농도는 약 8700개/㎢ 이상으로 나타났으며, 평균 농도는 약 8700/㎢ 에 달했다. 이는 인근 스코틀랜드 해역(평균 4500개/㎢)이나 북동 대서양(평균 3200개/㎢)보다 훨씬 높은 수치이다. 최대 5mm에 달하는 미세 플라스틱의 주요 성분은 폴리에틸렌(67%), 폴리프로필렌(16%), 폴리스티렌(8%) 등으로, 일상생활에서 흔히 사용되는 비닐봉투, 플라스틱 용기, 장난감 등에서 발생하는 것으로 추정된다. 중플라스틱(5~25mm)과 거대플라스틱(25mm) 이상은 각각 2000개/㎢과 1000개/㎢의 농도로 존재했으며 주로 큰 플라스틱이 분해되어 파생된 파편과 필라멘트로 구성되어 있지만 마이크로비즈와 필름도 발견됐다. 연구팀은 이러한 미세 플라스틱 핫스팟이 해류를 통해 다른 나라에서 유입된 플라스틱 쓰레기의 영향을 받았을 것으로 분석했다. 영국에서는 2018년부터 화장품과 퍼스널 케어 제품에 마이크로비즈 사용이 금지되었지만, 북해 해안에서 발견된 플라스틱은 해류를 타고 다른 나라에서 이 지역으로 유입된 것으로 추정된다. 모든 해양 쓰레기에서 11가지 색상의 플라스틱이 확인되었으며, 대부분 흰색으로 비닐봉지에서 비롯된 것으로 나타났다. 연구팀은 북해의 미세 플라스틱 오염 농도는 스페인 북부 해안(2017년, 약 25만4000개/㎢), 포르투갈 서부 해안(2019년, 약 4만개/㎢), 카나리아 제도(2024년, 약 100만개/㎢) 등 다른 지역보다는 낮지만, 해양 생태계에 심각한 위협이 될 수 있다는 점을 강조했다. 연구팀은 플라스틱 오염 문제를 위해 영국 해양 전략, 북동 대서양 환경 전략, 유엔 환경 계획 등 다양한 국가 및 국제적 노력이 필요하다고 강조했다. 이번 연구 결과는 프론티어스 인 마린 사이언스(Frontiers in Marine Science)에 게재됐다. 플라스틱 수요는 매년 4억톤을 초과하는 등 꾸준히 증가하고 있다. 한국의 잠실에 있는 롯데타워는 무게가 약 75만톤이다. 플라스틱 4억톤은 롯데타워 약533개를 합친 것과 같은 엄청난 양이다. 참고로 롯데타워는 높이 553m로 2024년 10월 2일 기준 세계에서 여섯 번째로 높은 빌딩이다. 최근 연구에 따르면 미세 플라스틱은 호흡만으로도 우리 몸에 침투할 수 있다. 지난 9월 16일 JAMA 네트워크 오픈 저널에 발표된 연구에 따르면 미세 플라스틱이 처음으로 인간의 후각 중추에서 발견됐다. 입자의 크기는 5.5 마이크론에서 26.4 마이크론까지 다양했다. 그동안의 연구에서는 뇌 장벽이 미세 플라스틱과 같은 독성 입자가 뇌에 들어가지 못하도록 막는 것으로 여겨졌다. 해당 연구는 뇌에서 처음으로 미세 플라스틱이 발견된 것으로 연구진은 치매와 같은 신경계 질환을 일으킬 수 있다고 우려했다. 이전 연구에서는 인간의 폐, 태반, 내장, 간, 혈액, 고환, 심지어 정액에서도 미세 플라스틱이 발견됐다. 인체 곳곳에서 미세 플라스틱이 검출되고 있는 현실은 매우 우려스럽다. 마래 세대를 위해 바다, 육지, 그리고 우리가 숨쉬는 공기까지 플라스틱 오염을 줄이기 위한 전 세계적인 노력이 시급하다.
-
- 생활경제
-
북해 해안에서 미세플라스틱 핫스팟 발견⋯"플라스틱 오염 심각"
-
-
인간 뇌조직에서 미세 플라스틱 첫 검출⋯잠재적 위험성 제기
- 인간 뇌조직에서 미세 플라스틱이 처음으로 검출되어 잠재적인 건강 위험에 대한 우려가 높아지고 있다. 국제 연구팀이 15명의 사망자 뇌 조직 중 8명의 후각 신경구(코에서 냄새 정보를 받아 들이는 뇌조직 덩어리)에서 미세 플라스틱을 발견했다고 사이언스얼라트와 CNN 등 다수 외신이 보도했다. 이는 뇌 혈전에서 미세 플라스틱이 발견된 이후 뇌조직 자체에서 미세 플라스틱을 보고한 첫 번째 연구다. 베르린 자유 대학의 박사후 미세 플라스틱 연구원이자 이번 연구의 주저자인 루이스 페르난도 아마토-로렌소는 CNN에 "이 구조에 존재하면 뇌의 다른 영역으로 전이될 수 있다"고 밝혔다. 아마토-로렌소는 입자의 크기와 모양이 섬유보다 작기 때문에 뇌와 척수를 여러 유해 물질로부터 보호하는 막인 혈액뇌장벽의 미세아교세포를 우회할 가능성이 더 높다고 덧붙였다. 이전 연구에서 미세 플라스틱과 나노 플라스틱은 우리 몸의 폐 조직과 모유와 태반, 고환 등 생식기에서도 발견됐다. 아울러 플라스틱 페트 병에 든 생수 등 마시는 물에서도 미세 플라스틱이 검출돼 경종을 울렸다. 연구팀은 출판된 논문에서 나일론의 현미경 사진을 게재했으며 "미세 플라스틱은 다양한 인체 조직에서 발견됐지만 인간의 뇌에서 존재한다는 사실은 기록되지 않았으며, 이는 잠재적인 신경 독성 효과와 미세 플라스틱이 뇌 조직에 도달하는 메커니즘에 대한 중요한 의문을 제기한다"고 기술했다. 이번 연구는 지난 16일 미국의학협회 저널 '자마 네트워크 오픈(JAMA Network Open)'에 발표됐다. 검출된 미세 플라스틱은 주로 입자 및 섬유 형태였으며, 폴리프로필렌이 가장 많이 발견됐다. 입자 크기는 5.5마이크로미터(㎛)에서 26.4마이크로미터 사이로, 평균적인 인간 머리카락 너비(약 8만 나노미터)의 1/4도 되지 않았다. 이보다 작은 것은 나노 플라스틱으로 10억분의 1미터 단위로 측정해야 한다. 폴리프로필렌은 포장재부터 자동차 부품, 의료 기기에 이르기까지 가장 널리 사용되는 플라스틱 중 하나이다. 이전 연구에서는 대기 오염 입자가 후각 경로를 따라 올라가는 것을 발견했지만, 이번 연구에서는 미세 플라스틱이 후각구 바로 아래 쪽의 작은 구멍을 통해 뇌까지 동일한 경로를 이용할 수 있음을 시사한다. 연구팀은 "코와 후각구에서 미세 플라스틱이 확인된 것은 취약한 해부학적 구조와 함께 후각 경로가 외인성 입자가 뇌로 들어가는 중요한 진입 지점이라는 개념을 강화한다"고 설명했다. 미세 플라스틱의 건강 영향은 아직 명확하지 않지만. 뇌 내 합성 물질 농도 증가는 긍정적인 신호가 아니다. 최근 연구에 따르면 미세 플라스틱은 신경 손상 및 신경 질환 위험 증가와 연관 있을 수도 있다. 또한 대기 오염과 인지 문제 사이의 연관성은 이미 잘 알려져 있다. 만약 미세 플라스틱이 비강으로 유입된다면 문제를 악화시킬 가능성이 있다. 연구팀은 "파킨슨병과 같은 일부 신경 퇴행성 질환은 초기 증상으로 비강 이상과 관련이 있는 것으로 보인다"고 말했다. 생분해성이 더 높은 플라스틱을 생산하려는 지속적인 노력에도 불구하고, 플라스틱 생산량은 지난 20년 동안 두 배로 늘었다. 지난 9월 4일 '네이처' 저널에 게재된 또다른 연구에 따르면 전 세계는 매년 5700만톤의 플라스틱 오염을 발생시키고 있다. 영국 리즈대학교 연구팀은 매년 발생하는 오염 물질은 약 5200만톤으로, 뉴욕시 센트럴 파크를 엠파이어스테이트 빌딩 높이만큼 플라스틱 쓰레기로 채울 수 있는 수준이라고 밝혔다. 5200만톤의 플라스틱 쓰레기를 서울의 여의도에 쌓으면 높이는 약 1만5600km에 이른다. 이는 지구 반지름(약 6371km)의 두 배가 넘는 엄청난 높이다. 참고로 지구에서 가장 높은 에베레스트 산의 해발 고도는 약 8846미터이다. 이번 연구는 플라스틱 오염의 심각성을 다시 한 번 강조하며, 미세 플라스틱의 건강 영향에 대한 추가 연구의 필요성을 제기한다.
-
- IT/바이오
-
인간 뇌조직에서 미세 플라스틱 첫 검출⋯잠재적 위험성 제기
-
-
[신소재 신기술(98)] 지속가능한 플라스틱? 친환경 대체 소재 개발
- 영국에서 친환경 플라스틱 소재가 개발돼 플라스틱 오염 문제 해결에 한 걸음 더 가까이 다가서고 있다. 워릭 대학교 연구진은 플라스틱과 유사하지만 환경 파괴를 일으키지 않아 보다 지속 가능한 소재인 유기 공융체를 테스트했다고 테크 타임스가 20일(현지시간) 보도했다. 이 신소재는 플라스틱을 대체하고 전 세계의 플라스틱 의존도를 낮출 잠재력을 가지고 있다고 연구팀은 밝혔다. 수년 동안 플라스틱 폐기물은 기하급수적으로 증가했다. 특히 오랜 시간 분해되지 않고 매립지에 축적되거나 바다로 흘러들어가 환경 문제를 야기해왔다. 플라스틱 해양 투기는 미세 플라스틱(5mm미만인 플라스틱)으로 쪼개져 심해 오염으로 이어져 해양 식량 사슬을 오염시키고, 조개류나 해산물 등을 통해 인체에 재침투되는 결과를 낳고 있다. 특히 인체에 침투한 미세 플라스틱은 심장마비나 뇌졸중 발병 위험을 높이고, 사망률을 높이는 요인이 되고 있다. 전 세계적으로 플라스틱 제품 사용 감축을 위한 노력이 이어져왔지만 가볍고 내구성이 뛰어난 강점을 지닌 플라스틱은 여전히 다양한 산업에서 중요한 소재로 사용되고 있다. 유럽 플라스틱 산업 협회인 플라스틱스유럽(Plastics Europe)에 따르면, 2020년 세계 플라스틱 생산량은 2018년보다 800만 톤 증가한 3억 6700만 톤에 달했다. 프랑스 파리 에펠탑의 무게는 약 1만톤에 달한다. 2020년 전 세계 플라스틱 생산량은 에펠탑이 3만6700개가 만들어진 것과 맞먹는 양이다. 전 세계 플라스틱 생산량은 2040년까지 두 배, 2060년까지 세 배로 증가할 것으로 예상되며, 그 증가분의 대부분은 일회용 플라스틱에서 발생한다. 워릭 대학교 연구팀은 혼합하면 새로운 "유기 및 점성 액체"를 형성하는 특정 유기 분자를 발견했으며, 이를 '(지속가능한 플라스틱) 유망 후보'라고 불렀다. 또한 시차 주사 열량계(DSC) 및 UV-Vis 분광법과 같은 첨단 기술을 사용해 새로운 소수성 물질을 정확하게 측정했다. 연구팀은 결정 성분을 혼합해 '유기 공융체'라고 불리는 새로운 물질을 개발했다. 팀은 이 물질리 폴리머를 대체할 잠재력을 가진 '소수성 공융 분자 액체'를 개발하는 데 성공했다고 여긴다. 매우 짧은 수명 한계 그러나 이 소재는 수명이 매우 짧다는 한계를 가지고 있다. 연구팀은 테스트 결과 최대 14개월 동안만 지속될 수 있음을 확인했다. 그럼에도 불구하고 연구팀은 제조 과정에서 안정성과 가공성을 보장할 수 있었다. 플라스틱은 한때 다양한 산업, 특히 제품과 소비재에 널리 사용되면서 혁신적인 소재로 여겨졌다. 그러나 유기 물질과 달리 분해가 되지 않아 폐기와 재활용 등에서 심각한 환경 오염 문제를 일으키고 있다. 일회용 플라스틱 및 기타 형태의 플라스틱 사용을 줄이기 위한 노력이 있지만 문제는 여전히 남아 있다. 재활용 외에도 과학을 이용해 플라스틱을 제거하는 방법을 개발하는 연구가 진행중이다. 한 연구에서는 플라스틱을 분해할 수 있는 유전자 조작 박테리아를 개발해 해양에 적용할 계획을 가지고 있다. 일회용 플라스틱을 줄이기 위해서는 다회용품을 사용하고, 텀블러나 개인 컵을 들고 다니거나 플라스틱 빨대 사용을 줄이는 등 일상 속의 작은 노력이 필요할 때다.
-
- 포커스온
-
[신소재 신기술(98)] 지속가능한 플라스틱? 친환경 대체 소재 개발
-
-
해변 담배꽁초 청소하는 로봇 개 첫선…네 발에 진공청소기 노즐 부착
- 이탈리아기술원(IIT: Italian Institute of Technology) 연구팀이 발목에 노즐을 묶고 등에 진공청소기 본체를 달아 쓰레기를 청소하는 4족 로봇개를 개발했다고 뉴아틀라스가 전했다. 이 로봇개는 중국 로봇 개발 회사인 유니트리(Unitree)의 에일리언고(AlienGo) 로봇개를 모델로 해 제작됐다. 베로(VERO: Vacuum-cleaner Equipped RObot)라고 명명된 이 진공청소 로봇개는 해변에서 가장 흔한 쓰레기인 담배꽁초를 주로 제거한다. 베로는 정해진 청소 구역에서 자율적으로 이동하면서 한 쌍의 카메라와 신경망을 이용해 담배꽁초를 찾고, 진공청소기를 켜 이를 빨아들인다. 계획된 경로를 따라 움직이면서 담배꽁초 및 유사한 모양의 쓰레기도 함께 청소한다. 개발된 4족 진공청소 로봇개는 연구 등급의 로봇으로서 현 수준에서는 상대적으로 비싸다고 한다. 대략 5만 달러 정도로 1600달러 수준인 에일리언고에 비해 비싸다. 또한 에일리언고만큼 민첩하거나 빠르게 움직이지 못한다. 다만, 걷거나 뛰는 등 이동의 용도로만 사용되던 로봇의 발을 다른 작업으로 전환할 수 있는 단초를 마련했다는 점에서 의미가 크다. 담배꽁초를 찾아내도 발끝에 부착된 노즐을 꽁초 쪽으로 가져가 빨아들이는 것은 어려운 작업이다. 네 발에 부착한 네 개의 노즐이 두 개 또는 한 개보다 생산적인 청소 작업을 수행할 수 있는 지도 검증되지 않았다. 나아가 해변에서 담배꽁초를 제거할 때 엄청난 양의 모래를 같이 빨아들일 수도 있다. 따라서 개발된 진공청소 로봇개는 현시점에서는 실용적이지 않다는 지적이다. 다만 로보틱스 산업에서 아이디어 측면에서는 크게 발전된 모습이라는 평가다. 다른 분야로의 확대 응용도 기대된다. 즉, 다리 끝에 진공 노즐만 고집할 필요가 없다는 것이다. 정원 가꾸기나 농장 잡초 제거, 건설 현장에서 못질하기 등의 용도로도 활용할 수 있다고 연구팀은 밝혔다. 진공청소 로봇개 개발 소식은 '필드 로보틱스 저널(Journal of Field Robotics)'에 발표됐다.
-
- IT/바이오
-
해변 담배꽁초 청소하는 로봇 개 첫선…네 발에 진공청소기 노즐 부착
-
-
[신소재 신기술(79)] 레이저와 2D 물질로 플라스틱 쓰레기 분해
- 레이저를 활용해 플라스틱 오염을 해결할 수 있는 방법이 개발됐다. 미국 텍사스 대학교 연구진이 주도하는 국제 연구팀은 레이저를 이용해 플라스틱 분자를 기본 요소로 분해해 재활용하는 기술을 개발했다고 사이테크데일리가 전했다. 매년 수백만톤의 플라스틱 폐기물이 매립지와 바다에 쌓이는 등 플라스틱 오염은 전세계적인 환경 문제로 떠올랐다. 기존의 플라스틱 분해 방법은 에너지 집약적이고 환경적으로 유해해 비효율적인 경우가 많았다. 연구팀은 분해하려는 물질을 전이 금속 디칼코게나이드(TMD)라는 2차원 물질 위에 놓고 빛을 비추는 방식을 활용했다. 이는 기존 기술로는 분해가 어려운 플라스틱 폐기물 해결에 기여할 것으로 기대된다. 연구팀은 이 기술을 통해 플라스틱의 화학 결합을 끊고 새로운 화학 결합을 형성해 발광 탄소점(carbon dot)을 생성했다. 탄소 기반 나노 물질은 다양한 분야에서 활용 가능성이 높다. 특히 이 발광 탄소점은 차세대 컴퓨터 메모리 소자로 활용될 가능성도 있다. 텍사스 오스틴 캠퍼스(UT Austin)의 18개 단과대학 중 하나인 콕렐 공과대학 워커 기계공학부 교수이자 프로젝트 리더 중 한 명인 유빙 정은 "이러한 독특한 반응을 활용하면 환경 오염 물질을 가치있고 재사용 가능한 화학물질로 전환하는 새로운 경로를 탐색해 보다 지속 가능한 순환 경제 발전에 기여할 수 있다"고 말했다. 그는 "이 새로운 발견은 환경 문제를 해결하고 친환경 화학 분야를 발전시키는 데 중요한 의미가 있다"고 덧붙였다. 또한 이번 연구는 탄소-수소 결합 활성화(C-H activation)라는 특정 반응을 이용했다. 이 반응은 유기 분자 내 탄소-수소 결합을 선택적으로 분해해 새로운 화학 결합을 형성하는 과정이다. 연구팀은 TMD를 촉매로 사용해 수소 분자를 가스 형태로 변환시키고, 탄소 분자들이 서로 결합해 정보 저장 점을 형성하도록 유도해 플라스틱 분해를 높였다. 이번 연구는 플라스틱 폐기물 문제 해결을 위한 지속 가능한 방안 모색에 중요한 발걸음을 내디뎠다는 평가를 받고 있다. 하지만 산업적 응용을 위해서는 빛 기반 C-H 활성화 공정의 최적화 및 확장에 대한 추가 연구 개발이 필요하다. 빛 기반 C-H 활성화 공정은 플라스틱 외에도 폴리에틸렌, 계면활성제 등 다양한 고분자 유기화합물에도 적용될 수 있을 것으로 기대된다. 연구 결과는 최근 학술지 '네이처 커뮤니케이션즈(Nature Communications)'에 게재됐다. 연구에는 텍사스대학교를 포함해 버클리 캘리포니아 대학교, 일본 도호쿠 대학교, 로렌스 버클리 국립 연구소, 베일리 대학교, 펜실베니아 주립대학교의 연구진이 참여했다.
-
- 포커스온
-
[신소재 신기술(79)] 레이저와 2D 물질로 플라스틱 쓰레기 분해
-
-
[신소재 신기술(71)] 음식물 쓰레기 활용해 기존 소재보다 4배 강한 '식용 콘크리트' 개발
- 해초, 양배추와 오렌지 껍질 등 식물성 재료를 활용해 기존 콘크리트보다 3배 이상 강한 '식용 콘크리트' 건축 자재가 개발되어 주목받고 있다. 일본 도쿄대학 연구팀이 배추와 바나나,양파 껍질 등 식물성 유기물로 기존 콘크리트보다 4배 강한 콘크리트를 개발했다고 더쿨다운이 5일(현지시간) 전했다. 프린스턴 대학교에 따르면, 콘크리트는 물 다음으로 지구상에서 가장 많이 소비되는 제품이지만, 매년 44억 톤의 이산화탄소를 배출하며, 전 세계 오염의 8%를 차지한다. 이에 따라 기존 콘크리트 생산 과정의 대안을 모색하고, 건물의 내구성을 높여 콘크리트 사용량을 줄이는 노력이 중요해졌다. 이러한 맥락에서 도쿄 대학 연구팀이 개발한 '식용 콘크리트'는 기존 콘크리트보다 4배 강할 뿐 아니라 음식물 쓰레기 문제 해결에도 기여할 수 있어 더욱 주목받고 있다. 연구팀은 커피 찌꺼기, 바나나 껍질, 양배추, 오렌지 껍질, 양파 껍질, 호박 등 유기물을 건조 및 압축하고 물, 조미료와 혼합하여 고온 틀에서 압축하는 방식으로 친환경 콘크리트를 제작했다. 연구 수석 저자인 유야 사카이는 "저희의 목표는 해초와 일반 음식물 쓰레기를 사용하여 최소한 콘크리트만큼 튼튼한 재료를 만드는 것이었다"면서 "하지만 먹을 수 있는 음식물 쓰레기를 사용했기 때문에 재활용 과정이 원래 재료의 맛에 영향을 미치는지 확인하는 데도 관심이 있었다"라고 설명했다. 실험 결과, 이 식용 콘크리트는 굽힘 강도가 기존 콘크리트보다 훨씬 뛰어났으며, 소금이나 설탕을 첨가하여 맛을 개선해도 강도에는 영향을 미치지 않았다. 선임 연구원인 코다 마치타는 "호박에서 추출한 표본을 제외하고 모든 재료가 굽힘 강도 목표를 초과했다"며 "콘크리트보다 3배 이상 강한 재료를 생산한 배추 잎을 약한 호박 기반 재료와 섞어 효과적인 보강재를 제공할 수 있다는 것을 발견했다"고 말했다. 이 콘크리트는 또 부패, 곰팡이, 곤충에 강하며 4개월 동안 공기 중에 노출되어도 맛이나 강도가 변하지 않는 것으로 확인됐다. 이 연구는 더욱 견고한 건물을 위한 강력한 콘크리트를 개발하는 동시에, 지구 오염의 또 다른 원인인 음식물 쓰레기를 활용할 수 있는 방법을 제시했다. 미국 농무부에 따르면, 식량 손실 및 폐기물은 인간 소비를 위해 생산된 모든 식량의 3분의 1을 차지하며, 2021년 환경보호국 보고서에서는 식량 손실로 인한 1억 8700만 톤 이상의 이산화탄소 배출량이 석탄 화력 발전소 42개의 연간 오염량과 비슷하다고 밝혔다. 이 기술이 미래 건축물에 적용될지는 아직 미지수지만, 과학자들은 다양한 분야에 활용될 수 있다는 점에서 긍정적인 반응을 보이고 있다. 이는 기존의 틀을 벗어난 사고가 이산화탄소 배출과 환경오염 두 가지 문제를 동시에 해결할 수 있는 가능성을 보여주는 좋은 사례라는 평가다.
-
- 포커스온
-
[신소재 신기술(71)] 음식물 쓰레기 활용해 기존 소재보다 4배 강한 '식용 콘크리트' 개발
-
-
[기후의 역습(12)] 이산화탄소 수치, 역대 최고치 기록…극한 기후 지속돼 가파르게 상승
- 이산화탄소가 그 어느 때보다 빠르게 대기에 축적되고 있다. 역대 최고 수준으로 가파른 상승세를 보이고 있다고 NOAA(미 국립해양대기청)와 캘리포니아 주립대 샌디에이고 캠퍼스 스크립스해양학연구소(Scripps Institution of Oceanography offsite link)의 연구진이 발표했다. NOAA에 따르면 NOAA의 글로벌모니터링연구소(Global Monitoring Laboratory)가 마우나 로아 대기 관측소(Mauna Loa Atmospheric Baseline Observatory)에서 측정한 이산화탄소 수준은 지난 5월 427ppm으로 급상승하며 동월 기준 최고치를 기록했다. 매년 5월은 이산화탄소가 북반구에서 가장 높은 수준에 도달하는 달이다. 이번 측정 수치는 2023년 5월에 비해 2.9ppm 증가한 것이며 NOAA의 50년 기록 중 5번째로 큰 폭의 증가이기도 하다. 2023년의 3.0ppm 증가와 맞물리면, NOAA가 측정을 시작한 이래 2022~2024년까지 2년 동안의 상승폭으로도 최고 기록이다. 불길한 신호를 보내는 이산화탄소 측정 마우나 로아에서 1958년부터 이산화탄소 관측을 시작해 독립적으로 데이터를 축적해 분석해 온 스크립스연구소는 지난 5월 월 평균 이산화탄소 농도를 426.7ppm으로 측정했다. 이는 1년 전인 2023년 5월 측정치 423.78ppm보다 2.92ppm 증가한 수치다. 스크립스연구소에서 이산화탄소 수준이 2년 연속 가파르게 뛰어오른 것은 2020년에 세운 종전 기록에 이은 두 번째다. NOAA와 스크립스 연구진은 1~4월까지 이산화탄소 농도가 다른 해의 동기간 보다 더 빠르게 증가했다고 밝혔다. 최근 몇 년간 기후 변화에 대응하기 위해 화석연료 사용을 억제했고 이에 따른 탄소 배출이 정체 상태에 있다는 보고가 있었지만 실제 대기에서 이산화탄소 농도는 더 짙어진 것이다. NOAA의 릭 스핀래드 박사는 "지난 1년 동안 우리는 기록상 가장 더운 한 해, 기록상 가장 뜨거운 해수 온도, 끝없는 폭염, 가뭄, 홍수, 산불 및 폭풍을 경험했다"라며 "이번에 대기 중 이산화탄소 수준이 그 어느 때보다 빠르게 증가하고 있음이 드러났다. 우리는 이것이 이산화탄소 오염이 기후 시스템에 끼치는 피해를 보여주는 분명한 신호임을 인식하고 가능한 한 신속히 화석연료 사용을 줄이기 위한 조치를 취해야 한다”고 강조했다. 스크립스연구소의 탄소 프로그램 책임자 랄프 킬링 박사는 “이산화탄소의 현재 농도는 수백만 년 만에 최고 수준일 뿐만 아니라 어느 때보다 빨리 증가하고 있다. 화석연료 연소로 인해 매년 최고치를 달성하고 있는 것이다. 화석연료 오염은 마치 매립지의 쓰레기처럼 계속 쌓이고 있다"고 경고했다. 거대한 열을 가두는 담요 다른 온실 가스와 마찬가지로 이산화탄소는 대기에서 담요와 같은 작용을 한다. 지구 표면에서 방출되는 열이 우주로 빠져나가는 것을 막는 것이다. 온난화된 대기는 폭염, 가뭄, 산불은 물론 폭우와 홍수 등 극심한 기상 현상을 촉발한다. 인간이 공기 중으로 방출하는 이산화탄소의 약 절반이 대기 중에 남아 있다. 나머지 절반은 지구 표면에 흡수되어 육지와 바다에 나뉘어 축적된다. 2022~2024년까지 관찰된 2년간의 기록적인 이산화탄소 수준 급증은 2년 째 이어지는 화석연료 연소에 따른 대량의 방출과 엘니뇨 현상의 결합에 따른 것이라는 해석이 많다. NOAA의 글로벌 탄소순환 연구원인 존 밀러 박사는 이를 두고 지구의 자정 능력과 한계를 벗어났다고 진단했다. 이산화탄소의 과다 노출로 인해 해양의 화학적 성질이 변하고 있으며, 이는 해양 산성화와 함께 용존 산소량 감소로 이어져 일부 해양 생물의 생존까지 위협하고 있다. 해양 생태계 전반이 위기에 처하고 있는 것이다.
-
- 포커스온
-
[기후의 역습(12)] 이산화탄소 수치, 역대 최고치 기록…극한 기후 지속돼 가파르게 상승
-
-
해양 폐플라스틱 폴리에틸렌 분해 곰팡이 발견
- 바다에 서식하는 곰팡이 파렝지오돈티움 앨범(Parengyodontium album)이 햇빛에 의한 UV(자외선)에 일정 시간 노출된 플라스틱 폴리에틸렌(PE)을 분해할 수 있는 것으로 나타났다고 PHYS가 전했다. 네덜란드 왕립해양연구소(NIOZ)의 해양 미생물학 연구팀은 이 같은 사실을 밝힌 연구 결과를 '종합환경과학(Science of the Total Environment)' 저널에 발표했다. 연구팀은 더 많은 플라스틱 분해 곰팡이가 깊은 바다에 살고 있을 것으로 예상하고 있다. 이 곰팡이는 바다의 플라스틱 쓰레기 위에 얇은 층을 이루며 다른 해양 미생물과 함께 공존하고 있다. NIOZ의 해양 미생물학자들은 이 곰팡이가 바다에 유입된 모든 플라스틱 중에서도 가장 많은 PE 입자를 분해할 수 있다는 사실을 규명했다. 연구는 NIOZ 연구팀이 위트레흐트 대학, 해양정화재단(Ocean Cleanup Foundation) 및 파리, 코펜하겐, 스위스 세인트 갈렌 등에 소재한 연구기관의 과학자들과 협력해 수행했다. 이번 발견으로 이 곰팡이는 플라스틱을 분해하는 소수의 해양 곰팡이 목록에 합류하게 됐다. 현재까지 발견된 곰팡이는 4종뿐이지만, 더 많은 수의 박테리아가 플라스틱을 분해할 수 있는 것으로 알려져 있다. 플라스틱 분해과정 정확하게 추적 연구팀은 북태평양의 플라스틱 오염 집중지역에서 플라스틱 분해 미생물을 추적했다. 수집된 플라스틱 폐기물에서 탄소가 포함된 특수 플라스틱을 실험실에서 배양해 해양 곰팡이를 분리했다. 연구팀원인 백스마(Vaksma)는 "13C 동위원소는 먹이 사슬에서 추적 가능한 상태로 유지되며 이는 탄소가 어디로 가는지 파악할 수 있게 해주는 태그와 같은 것이고, 연구를 통해 이를 추적했다"고 밝혔다. 이 연구가 과학적으로 뛰어난 이유는 분해 과정을 정량화할 수 있다는 점이라고 백스마는 강조했다. 실험실에서 연구팀은 이 곰팡이에 의한 PE 분해가 하루 약 0.05%의 비율로 발생한다는 것을 관찰했다. 연구팀의 측정에 따르면 곰팡이는 PE를 분해할 때 PE에서 발생하는 탄소를 많이 내보내지는 않았다. 곰팡이가 분해하는 PE의 대부분은 이산화탄소로 변환되어 다시 배출된다. 배출되는 이산화탄소가 강력한 온실가스이지만 환경 등에 새로운 문제를 일으키지는 않는다. 곰팡이가 방출하는 양은 인간이 호흡할 때 방출하는 것처럼 소량에 지나지 않기 때문이다. 자외선의 영향을 받는 경우에만 작용 연구팀은 곰팡이가 PE를 에너지원으로 사용하려면 햇빛의 존재가 필수적이라고 지적했다. 실험실에서 이 곰팡이는 일정한 시간 동안 자외선에 노출된 PE만 분해한다는 것이다. 이는 바다에서 곰팡이가 처음에 해수면 근처에 떠 있던 플라스틱만 분해할 수 있다는 것을 의미한다는 설명이다. 자외선이 플라스틱 자체를 기계적으로 분해한다는 것은 이미 알려져 있지만, 이번 연구 결과는 해양 곰팡이에 의한 생물학적 플라스틱 분해도 활발해질 수 있음을 보여준다. 그 밖의 다른 곰팡이들 많은 양의 다양한 플라스틱이 햇빛에 노출되기 전에 더 깊은 층으로 가라앉기 때문에 곰팡이가 이를 모두 분해할 수는 없다. 연구팀은 바다의 더 깊은 부분에도 플라스틱을 분해하는 아직 알려지지 않은 다른 곰팡이가 있을 것으로 예상했다. 연구진은 해양균류는 탄소로 이루어진 복잡한 물질을 분해할 수 있으며, 해양균류의 양이 많기 때문에 지금까지 확인된 4종 외에 다른 종들도 플라스틱을 분해할 가능성이 높다고 보고 있다. 더 깊은 층에서 플라스틱 분해가 어떻게 일어나는지에 대한 역학에 대해서는 많이 알려지지 않았다. 해저, 폐 플라스틱 집하지 플라스틱을 분해하는 유기체를 찾는 것이 시급하다. 매년 인간은 4000억kg 이상의 플라스틱을 생산하며, 2060년에는 이 양이 적어도 3배 이상 늘어날 것으로 예상된다. 플라스틱 폐기물의 대부분은 바다로 흘러간다. 극지방에서 열대지방에 이르기까지 플라스틱 폐기물은 표층수를 떠돌다가 바다의 더 깊은 곳까지 도달한 후 결국 해저에 묻힌다. 대량의 플라스틱은 결국 바닷물이 거의 정지해 있는 고리 모양 해류인 아열대 환류에 이르게 되는데, 플라스틱이 일단 그곳으로 운반되면 그대로 갇히게 된다. 그 양은 약 8000만kg에 달한다는 추정이다. 떠다니는 거대한 플라스틱의 양은 이미 태평양의 북태평양 아열대 환류에 축적되어 있는데, 이는 전 세계 6대 환류 중 하나일 뿐이다. 그 만큼 해저에 쌓이는 플라스틱의 양이 막대하다는 뜻이다. 해저 플라스틱 분해 박테리아는 플라스틱 오염 문제 해결에 큰 잠재력을 가지고 있다. 그러나 현재 발견된 박테리아는 분해 속도가 느려 플라스틱 오염 해결에 효과적이지 못하다는 문제점이 있다. 지속적인 연구와 투자를 통해 해저 플라스틱 분해 박테리아 기술이 발전한다면 우리는 더욱 깨끗하고 건강한 바다 환경을 유지할 수 잇을 것으로 보인다.
-
- IT/바이오
-
해양 폐플라스틱 폴리에틸렌 분해 곰팡이 발견
-
-
[신소재 신기술(55)] 재활용 플라스틱으로 지속가능한 '냉각 페인트' 개발
- 싱가포르의 과학자들이 재활용 플라스틱을 활용해 새로운 '냉각 페인트(cool paint)'를 개발했다. 난양이공대학교(NTU) 연구팀은 재활용 플라스틱(아크릴, 폐 PVC 파이프, 폴리스티렌 폼)과 황산바륨(BaSO4)을 이용해 새로운 유형의 '냉각 페인트'를 제조하는 방법을 개발했다고 PHYS가 5일(현지시간) 보도했다. 이 페인트는 신규 플라스틱 사용을 대체하는 지속 가능하고 효율적인 방법을 제공한다. 난양이공대학교는 싱가포르 난양에 위치한 연구집약형 공립 종합대학으로 이공계 분야 세계적인 명문대학이다. NTU 연구팀은 '솔-겔(sol-gel)'과 '상 분리(phase inversion)' 등 두 가지 방법을 사용해 냉각 페인트를 개발했다. 먼저 솔-겔 방법으로, 연구팀은 재활용 플라스틱과 황산바륨을 혼합해서 페인트를 제조했다. 싱가포르 건물 옥상에서 실시된 24시간 테스트 결과, 이 페인트는 직사광선에 노출되었을 때 주변 기온보다 최대 1.2°C 낮은 온도를 유지했다. 야간에는 주변 온도보다 최대 3°C 낮은 온도를 유지했다. 이 페인트는 태양열 반사율이 약 97.7%이며 적외선 영역에서 열 방출율이 95%에 달하는 것으로 나타났다. 두 번째인 상 분리 방법 역시 재활용 플라스틱과 황산바륨을 사용하지만, 제조 과정에서 공기가 들어갈 수 있는 미세 기공을 형성시켜 재활용 플라스틱을 다공성으로 만드는 데 중점을 두었다. 이러한 기공은 햇빛을 스펙트럼 전체에 걸쳐 산란시키는 데 도움을 준다. 테스트 결과, 이 페인트로 코팅된 표면은 정오에는 거의 주변 기온과 동일한 온도를 유지했으며 야간에는 주변 온도보다 최대 2.5°C 낮았다. 두 방법 모두를 사용해 개발된 냉각 페인트는, 일반적으로 표면 온도를 주변 온도 이하로 낮추지 못하는 시판용 냉각 페인트보다 성능이 뛰어났다. 또한 분류되지 않은 플라스틱 폐기물(아크릴, PVC 파이프, 폴리스티렌 폼 혼합물)을 사용한 추가 연구에서도 단일 종류의 플라스틱 폐기물만 사용해서 개발된 냉각 페인트와 비슷한 결과를 얻었다. 이는 NTU 연구팀의 접근 방식이 다양한 종류의 플라스틱 분류 필요성을 줄여준다는 것을 시사한다. NTU 방식은 열대 환경의 온도를 낮추는 데 도움이 될 뿐만 아니라 효과적인 플라스틱 폐기물 관리에도 기여할 수 있다. 한편, 모든 플라스틱이 재활용 되는 것은 아니다. 플라스틱 액션 플랫폼인 리퍼포스 글로벌(rePurpose Global)에 따르면 실제로 재활용된 플라스틱은 10% 미만이다. 약 12%는 소각되었으며, 나머지는 매립되거나 바다로 버려졌다. 씨넷에 따르면 플라스틱의 약 91%는 재활용되지 않았다. 실제로 재활용할 수 없는 유형의 플라스틱이 많이 있지만 소비자의 부주의로 인해 재사용에 적합하지 않은 플라스틱도 있다. 예를 들어 플라스틱 용기에 잔여물이나 쓰레기, 또는 기타 물질이 들어 있으면 재활용을 할 수 없다. 따라서 재활용하려는 픍라스틱 용기를 깨끗하게 청소해서 분리수거 통에 버리는 것이 재활용 율을 높일 수 있는 가장 기본적이면서도 제일 중요한 방법이다.
-
- 포커스온
-
[신소재 신기술(55)] 재활용 플라스틱으로 지속가능한 '냉각 페인트' 개발
-
-
누벨칼레도니 고사리, 지구상 가장 큰 게놈으로 기네스 등재
- 태평양의 외딴 섬에서만 자라는 작은 양치류가 지구상 존재하는 유기체 가운데 가장 큰 게놈을 보유, 기네스 세계 기록에 선정됐다고 사이언스얼라트가 전했다. 남태평양의 누벨칼레도니(영어명 뉴칼레도니아)에 서식하는 양치류(Tmesipteris oblanceolata)의 일종인 고사리가 그 주인공으로, 이 양치류는 세포액에 인간보다 무려 50배 이상 많은 DNA를 가지고 있는 것으로 나타났다. 연구팀의 분석에 따르면 폭이 1mm에 불과한 고사리 세포 중 하나의 DNA를 실처럼 풀면 길이가 106m까지 늘어난다. 이 DNA를 똑바로 세우면 런던의 명물 빅벤 타워(높이 96m)보다 더 높이 올라간다. 양치류의 게놈 무게는 무려 160기가염기쌍(Gbp)에 달했는데, 염기쌍(bp)은 DNA 길이를 측정하는 수치다. 즉 염기쌍은 수소 결합에 의해 서로 결합되는 2개의 핵염기로 이루어진 두 가닥 핵산의 기본 단위다. 종전까지 최장 기록 보유자는 일본의 혼슈가 원산지이며, 영국의 정원 등에서도 발견되는 화초인 파리 자포니카(Paris japonica)였다. 이번에 발견된 고사리 게놈은 이보다 7% 더 길다고 한다. 인간 게놈은 상대적으로 작은 3.1Gbps이다. 인간 DNA를 풀어낸다면 길이는 약 2m 정도 된다. 연구를 주도한 영국 왕립식물원 큐(Royal Botanic Gardens Kew) 연구원인 일리아 리치는 "이 분야에서는 이미 생물학적인 한계에 도달했다고 생각했지만, 발견된 고사리의 DNA가 파리 자포니카보다 더 큰 것을 확인하고 한계를 확장할 수 있었다"고 말했다. 키가 5~10cm까지 자라는 이 양치류는 프랑스령 태평양 지역인 뉴칼레도니아에서만 발견된다. 연구팀은 2023년 본섬인 그랑테르(Grand Terre)를 여행하고 현지 과학자들과 협력해 연구를 진행하고 '아이사이언스(iScience)' 저널에 결과를 게재했다. 인간의 몸에는 30조 개 이상의 세포가 있는 것으로 추정된다. 각 세포 안에는 DNA를 포함하는 핵이 존재한다. 이는 유기체가 어떻게 생존하는지 알려주는 지침서라고 할 수 있다. 유기체의 모든 DNA를 게놈이라고 한다. 지금까지 과학자들은 약 2만 종의 유기체의 게놈 크기를 추정했다. 숫자는 많아 보이지만, 사실 이는 지구상에 존재하는 생명체의 극히 일부에 불과하다. 동물 중에서는 표범 폐어(렁피시: 폐를 가진 물고기)의 DNA가 130Gbp로 가장 크다. 식물은 가장 큰 게놈을 가지고 있지만 믿기 어려울 정도로 작은 게놈을 가진 경우도 있다. 육식성 식물 겐리세아 속에서 가장 큰 종인 겐리세아 아우레오(Genlisea aurea)의 게놈은 0.06Gbp에 불과하다. 그러나 게놈의 길고 짧음에 비례해 우위가 나뉘는 것은 아니다. 모든 연구 결과는 거대한 게놈을 갖는 것이 오히려 단점이라는 사실을 보이고 있다. DNA가 많을수록 DNA를 모두 집어넣어야 할 세포의 크기는 커져야 한다. 식물의 경우 세포가 크다는 것은 잎의 구멍이 더 커야 한다는 것을 의미하며, 이는 잎이 천천히 자랄 수 있다는 것을 뜻한다. 또한 DNA의 새로운 복제가 더 까다로워 생식 능력이 제한된다. 이는 가장 거대한 게놈이 환경에 쉽게 적응하지 못하고 경쟁에 효과적으로 맞서 싸울 수 없는, 느리게 자라는 다년생 식물에서 발견된다는 것을 의미한다. 따라서 게놈 크기는 식물이 기후 변화, 토지 이용 변화 및 인간으로 인한 기타 환경 문제에 대응하는 방식에 영향을 미칠 수 있다. 그러나 DNA가 유기체에서 실제로 어떻게 기능하는지 이해하기는 어렵다. 현재까지는 이번에 발견된 양치류처럼 거대한 게놈에서 DNA가 어떤 역할을 하는지 알 수 없다. 일부 학계에서는 이를 '정크 DNA(아무런 유전 정보를 갖고 있지 않은 쓰레기 DNA)'라고 무시하지만, 기능을 갖고 있는데 과학이 찾아내지 못했을 가능성도 크다. 따라서 이번 발견은 새로운 단계로의 출발을 의미한다고 아이오와 주립대 식물학자 조너선 웬델은 지적했다.
-
- IT/바이오
-
누벨칼레도니 고사리, 지구상 가장 큰 게놈으로 기네스 등재
-
-
드림 체이서 우주선, 국제우주정거장 발사 앞두고 플로리다 도착…세계 첫 상업용 우주선
- 지구 저궤도 위성의 상업적 활용을 확대한다는 나사(NASA) 전략의 일환으로, 시에라 스페이스(Sierra Space)의 무인 우주선이 국제우주정거장으로의 발사를 앞두고 플로리다주에 있는 나사 케네디 우주센터에 도착했다. 22일(현지시간) 나사 홈페이지에 따르면 테나시티(Tenacity)라는 이름의 드림 체이서(Dream Chaser) 우주선은 오하이오주 샌더스키에 소재한 나사의 닐 암스트롱 시험시설에서 기후 제어 운송 컨테이너를 타고 18일 케네디 우주센터에 도착했으며, 지난 11일 이미 도착한 슈팅 스타 화물 모듈에 합류했다. 케네디 센터에 도착하기 전 우주선과 화물 모듈은 나사의 실험 시설에서 우주선 발사 및 대기권으로의 재진입 시 일어날 수 있는 진동 테스트를 받았다. 진동 테스트 후 모듈은 나사의 우주 추진 시설로 이동, 낮은 주변 압력과 화씨-150(섭씨 약 -101도)~300도(섭씨 약 149도)의 극한 온도에 노출하는 시험도 시행했다. 케네디에 도착한 드림 체이서 테나시티 우주선은 우주시스템 시설 내 고층으로 이동, 올해 하반기로 예정된 발사에 앞서 최종 테스트와 발사 전처리를 받게 된다. 우주선은 ULA(United Launch Alliance)의 벌칸 로켓을 타고 케이프커내버럴 우주 기지의 스페이스 론치 콤플렉스-41에서 발사돼 7800파운드(약 3538kg)의 화물을 궤도상의 연구소에 전달할 예정이다. 케네디 센에서의 비행 전 잔여 실험은 음향 및 전자기 간섭 및 호환성 테스트, 우주선의 열 보호 시스템 작업 완료 및 최종 페이로드 통합 등이다. 드림 체이서는 길이 30피트(9.144m), 폭 15피트(4.572m)의 승강체 디자인의 우주선이다. 독특한 날개 디자인으로 화물을 지구 저궤도로 수송할 수 있으며, 나사의 우주왕복선처럼 활주로에 착륙하는 능력을 갖고 있다. 15피트짜리 슈팅 스타 모듈은 내부적으로 최대 7000파운드의 화물을 운반할 수 있으며 3개의 비 가압 외부 페이로드 마운트를 갖추고 있다. 부분적으로 재사용 가능한 운송 시스템은 지구 저궤도에서의 상업용 재공급 서비스를 확대하려는 나사 전략의 핵심 중 하나다. 이를 통해 우주정거장까지 최소 7회의 화물수송 임무를 수행할 예정이다. 향후 임무는 최장 75일간 지속되며, 최대 1만 1500파운드( 6804kg)의 화물을 운반할 수 있다. 드림 체이서 우주선은 재사용이 가능하고 최대 3500파운드(약 1587kg)의 화물을 지구로 가져올 수 있다. 다만 슈팅 스타 모듈은 재진입 중에 버려져 소각된다. 각 임무마다 최대 8500파운드(약 3855kg)의 쓰레기를 처리하게 된다. 미래 나사의 재보급 임무를 수행하기 위한 과정의 일환으로, 나사와 시에라·스페이스는 저궤도에 진입한 우주선을 실제로 테스트할 예정이다. 드림 체이서 테나시티는 우주정거장에 접근하면서 자세 제어, 병진 및 중지 기능을 입증하는 일련의 시연을 수행할 예정이다. 기동성 시연을 마치면 우주정거장 우주비행사들은 카나담2(Canadarm2) 로봇 팔을 사용해 우주선을 잡고 지구를 향한 포트에 도킹한다. 우주선은 궤도상의 실험실에 약 45일간 머무른 후 우주정거장에서 지구로 향해 케네디 우주 시설로 다시 돌아온다. 착륙 후 시에라 스페이스는 필요한 검사를 하기 위해 드림 체이서를 처리 시설로 되돌려 나머지 나사 화물을 하역하고 다음 임무를 준비하는 프로세스를 시작한다.
-
- IT/바이오
-
드림 체이서 우주선, 국제우주정거장 발사 앞두고 플로리다 도착…세계 첫 상업용 우주선
-
-
[먹을까? 말까?(16)] 탄산수에서 '영원한 유해 화학물질' 검출
- 미국에서 탄산수(스파클링 워터)에서 '영원한 유해 화학물질(PFAS)'이 검출된 것이 최근 재조명되면서 국민들에게 충격을 주고 있다. PFAS는 과불화합물(페르-플루오로알킬 및 퍼플루오로알킬 물질)의 총칭으로, 매우 강력한 탄소(C)-불소(F)결합이 포함돼 있어 자연에서는 시간이 흘러도 분해되지 않는다. 환경에서 분해되지 않고 오랫동안 지속돼 '영원한 화학물질' 또는 '영구 화학물질'로 불린다. 미국 언론에서는 탄산수에서 영원한 화학물질이 검출된 것이 약 3년 만에 재조명돼 파문이 일고 있다고 아파트먼트 테라피가 더 키친을 인용해 지난 20일(현지시간) 보도했다. 이 연구는 2020년 실시된 것으로, 당시 컨슈머 리포트(Consumer Reports)는 47개의 생수 병(탄산수 12개 포함)을 대상으로 페르-플루오로알킬 물질(PFAS) 함량을 조사했다. 미국 소비자들은 탄산수 대한 연구 결과가 최근 집중적으로 재조명되면서 혼란스러워하고 있다고 이 매체는 전했다. 연구에 따르면 폴란드 스프링과 토포 치코 등 일부 탄산수에서는 PFAS가 1ppt(parts per trillion·1조분율)~10ppt 수준이 검출됐다. 영원한 화학물질(PFAS)이란? 실제로 PFAS는 우리가 만지거나 섭취하는 거의 모든 것에 존재한다. 미국 환경보호청(EPA)에 따르면 PFAS는 물, 토양, 대기, 식품 등에서 검출될 수 있다. PFAS를 미량 함유하는 물질에는 식수, 식품 포장재, 소방용품(화재진압용 거품), 석휴화학 산업, 가정용 세제, 방수 제품과 더러움을 덜 타게하는 방오가공된 복장, 화장품 등 위생용품(샴푸, 치실 포함), 코팅 조리기구, PFAS에 오염된 물이나 가축에 노출된 생선, 유제품 등이 있다. 심지어 숨쉬는 공기에도 PFAS가 포함될 수 있다. 물, 기름, 열에 강한 특성을 지니고 있는 PFAS는 쓰레기 매립지, 하수처리 시설 등을 통해 자연환경으로 유출된다. 그로 인해 탄산수뿐만 아니라 지하수(식수 포함)에서도 PFAS가 검출될 수 있다. PFAS에 대한 우려는 이러한 화학 물질이 장기적인 건강에 미칠 수 있는 영향과 관련이 있다. 일부 연구에서는 PFAS와 암 위험 증가, 소아 발달 장애, 생식 문제, 면역 체계 및 호르몬, 콜레스테롤 수치 변화 등의 연관성을 제시하고 있다. 이러한 이유로 미국 바이든-해리스 정부는 최근 건강 권고 식수 기준치를 4ppt 이하로 규제하는 정책을 발표했다. 최근 PFAS가 특정 암과 질병 위험을 높이는 것으로 밝혀진 뒤 미국 환경보호청(EPA)은 식수에서 PFAS를 규제하기 위한 권고 기준을 발표했다. EPA는 2022년 6월 특정 PFAS에 대한 권고 기준치를 설정했으며 그중 과불화옥탄산(PFOA)과 과불화부탄산(PFOS)의 권고 기준을 극히 낮은 수준으로 제시했다. 이 기준은 건강 보호를 위한 권고 수준이며 법적 규제 수준은 아니다. EPA가 제시한 PFOA(Perflurooctanoic acid) 권고 기준은 0.004ppt, PFOS(Perfluorooctane sulfonate) 권고 기준은 0.02ppt이다. EPA는 PFAS에 대한 국가 음용수 기준(NPDWR)을 설정하는 절차를 진행중이다. 이는 법적 규제 기준으로 모든 공공 수돗물 시스템이 준수해야 한다. 아울러 PFAS의 확산을 모니터링하고 건강에 미치는 영향을 연구하는 프로그램을 운영하고 있다. PFAS에 대한 우려 PFAS와 만성 질환 위험 증가, 면역 체계 및 호르몬 장애와의 연관성을 제시하는 연구가 있지만, 연구는 아직 진행 중이다. 특히 탄산수와 같은 저농도 노출 시 건강에 미치는 영향에 대한 명확한 결론을 내리기에는 자료가 부족하다. 이번 컨슈머 리포트 연구는 환경 작업 그룹(EWG)의 기준을 따르고 있다. EWG는 1ppt 이상의 PFAS 섭취를 위험하다고 판단한다. 반면 미국 농무부(USDA) 기준은 70ppt이며, 70ppt 이하에서는 "건강상 악영향이 발생하지 않을 것"으로 예상했다. 유럽연합(EU)은 PFAS 자용 전면 제한을 추진 중이다. EU는 2024년 이후부터 위해성 평가위(RAC) 및 사회경제성 분석위(SEAC)에서 최종 평가의견을 결정하고, 2025년 유럽연합집행위원회에서 안건을 채택할 계획이다. 이후 이르면 2026년부터 사용 제한 조치를 적용할 예정이다. 탄산수 종류와 섭취시 주의사항 탄산수는 이산화탄소가 용해된 물을 말한다. 자연적으로 광천수에서 발생하거나 인공적으로 물에 이산화탄소를 주입해 만들 수도 있다. 탄산수의 특징으로는 시원하고 상쾌한 맛을 들 수 있다. 이산화탄소가 입안을 자극해 시원하고 상쾌한 느낌을 준다. 또한 위장 점막을 자극해 소화액 분비를 촉진하고 소화를 돕는다. 그밖에 혈관을 확장시켜 혈액 순환을 개선하며, 식욕을 억제하는 효과가 있다. 탄산수의 종류에는 인공적으로 이산화탄소를 주입한 물로 플레인 탄산수, 인공 감미료를 사용해 설탕 함유량을 낮춘 다이어트 탄산수, 퀴닌이라는 쓴맛 성분을 함유한 탄산수로 토닉 워터가 있다. 미네랄이 풍부한 광천수 탄산수는 '셀처 워터(Seltzer water)'라고 부른다. 일부 탄산수는 나트륨 함량이 높을 수 있으므로 고혈압 환자는 나트륨 함량이 낮은 제품을 선택하는 것이 좋다. 또한 일부 탄산수에는 카페인이 함유되어 있으므로 카페인에 민감한 사람은 카페인이 함유되지 않은 제품을 선택하는 것이 좋다.
-
- 생활경제
-
[먹을까? 말까?(16)] 탄산수에서 '영원한 유해 화학물질' 검출
-
-
[신소재 신기술(42)] 플라스틱 폐기물 90% 분해하는 혁신 기술
- 과학자들은 우리 시대 가장 심각한 환경 문제 중 하나인 플라스틱 오염을 해결하기 위한 독창적인 방법을 제시했다. 미국 캘리포니아 대학교 연구팀이 플라스틱을 먹는 매우 강한 포자가 함유된 플라스틱이 매립지에서 스스로 분해되는 기술을 개발했다고 네이처닷컴과 BBC, 뉴아틀라스 등 다수 외신이 집중 조명했다. 이 연구에서는 고온 용융 압출을 사용해 폴리머 분해 박테리아의 포자를 열가소성 폴리우레탄에 통합하는 바이오 복합재 제작을 시연했다. 플라스틱의 한 종류인 폴리우레탄은 강도와 탄성이 뛰어나 휴대폰 케이스부터 운동화까지 모든 제품에 사용되지만 재활용이 까다로워 주로 매립된다. 플라스틱에 첨가되는 박테리아의 종류는 식품 첨가물 및 프로바이오틱스로 널리 사용되는 고초균(枯草菌)으로 영문으로는 바실러스 서브틸리스(Bacillus subtilis)로 불린다. 고초균은 토양과 발효식품 등 다양한 환경에서 발견되는 세균이다. 또한 바실러스 서브틸리스 포자로 채워진 열가소성 폴리우레탄의 전반적인 인장 특성이 크게 개선되어 인성이 매우 향상됐다. 캘리포니아대학교 샌디에이고 라호야 캠퍼스의 김한솔 연구원은 "자연에서 플라스틱 오염을 완화할 수 있다는 희망이 있다"고 말했다. 공동 연구원 존 포코르스키는 "우리의 공정은 소재를 더욱 견고하게 만들어 플라스틱의 수명을 연장한다"고 말했다. 그는 "그리고 이 공정이 완료되면 폐기 방법에 관계없이 환경으로부터 플라스틱을 제거할 수 있다"고 설명했다. 포코르스키 연구원은 "이 플라스틱은 현재 실험실에서 연구 중이지만 제조업체의 도움을 받으면 몇 년 안에 실제 환경에 적용될 수 있을 것"이라고 덧붙였다. 플라스틱은 강하고 다양한 용도로 사용되는 소재지만, 이러한 장점은 폐기 처리를 어렵게 만드는 요인이기도 하다. 플라스틱은 분해되는 데 수십 년 또는 수백 년이 걸리기 때문에 엄청난 양의 플라스틱 쓰레기가 매립지와 바다를 오염시키고 있는 실정이다. 연구팀은 플라스틱에 플라스틱 분해 박테리아 포자를 넣어 매립지에 폐기될 때 활성화되도록 만들었다. 이를 통해 5개월 만에 플라스틱 물질의 90%가 생분해되는 것이 확인됐다. 게다가 '플라스틱 분해 박테리아 포자'를 넣은 플라스틱은 실제로 사용하는 동안 일반 플라스틱보다 더욱 견고하고 강했다. 최근 몇 년 동안 과학자들은 플라스틱을 분해하는 능력을 갖춘 박테리아를 발견하고, 이 과정을 담당하는 효소를 분리하여 효율성을 높였다. 이를 통해 효소와 박테리아로 플라스틱을 처리하는 더 효율적인 재활용 시설이 구축될 수 있다. 하지만 재활용 시설로 옮겨지지 않는 플라스틱은 어떻게 될까. 앞서 지적했듯이 열가소성 폴리우레탄(TPU)은 신발, 스포츠 용품, 휴대폰 케이스, 자동차 부품 등을 만드는데 일반적으로 사용되는 견고한 플라스틱 유형이지만 현재 재활용이 불가능하다. 연구팀은 TPU 폐기 처리를 위해 플라스틱 분해 박테리아 바실러스 서브틸리스의 포자를 플라스틱 자체에 직접 넣는 새로운 방법을 연구했다. 또한 연구팀은 포자를 넣은 플라스틱 제품이 너무 일찍 분해되지 않고, 정상적인 기간 동안 사용한 뒤 매립지나 자연 환경에서 폐기될 때만 생분해가 시작되도록 설계했다. 내열성 미생물로 온도 한계 극복 먼저 극복해야 할 문제는 플라스틱 제조에 사용되는 높은 온도였다. 플라스틱 가공시 사용되는 고온으로 인해 대부분의 박테리아 포자가 죽는다. 연구팀은 이를 극복하기 위해 내열성 미생물을 유전공학적으로 제작했으며, 플라스틱 가공 온도인 135°C(275°F)에서 변형된 박테리아의 96~100%가 생존하는 것을 확인했다. 변형되지 않은 박테리아의 경우 생존율은 겨우 20%에 불과했다. 다음으로 연구팀은 박테리아가 플라스틱을 얼마나 잘 분해하는지 테스트했다. 이 과정은 토양의 영양분과 수분에 의해 시작된다. 플라스틱 무게의 최대 1% 농도에서 박테리아는 퇴비에 묻힌 후 5개월 이내에 플라스틱 물질의 90% 이상을 분해했다. 이 새로운 플라스틱은 사용 중 강도가 약화될 것으로 추정했지만, 실제로는 그 반대 효과가 나타났다. 포자를 넣어 만든 플라스틱은 일반 폴리우레탄(TPU)보다 최대 37% 더 강하고 인장 강도가 최대 30% 더 높은 것으로 나타났다. 연구팀은 포자가 강화 충전재 역할을 하는 것으로 추정했다. 연구팀은 이 기술은 확장 가능성이 높으며, 사용 중 더욱 견고하고 강하면서 재활용이 불가능한 TPU를 폐기 처리하는 새로운 방법을 열 수 있다고 말했다. 이를 다른 몇 가지 방법과 함께 사용한다면 플라스틱 오염 문제 해결에 진전을 이룰 수 있을 것으로 보인다. 플라스틱의 약 80%가 재활용되지 않고 매립지나 자연 환경에 축적되고 있는 실정다. 또한 폴리우레탄(PU)은 세계에서 6번째로 많이 생산되는 플라스틱이지만 재활용을 위한 거버넌스는 없다. PU 폐기물은 수지 식별 코드의 카테고리 7(PETE, HDPE, PVC, LDPE, PP, PS 이외의 기타 플라스틱)에 따라 잠재적으로 수거될 수 있지만, 미국에서는 일반적으로 이 카테고리의 플라스틱 중 0.3%만이 재활용되고 있다. 플라스틱 분해 과정에 박테리아 포자를 결합시킨 것은 산업 공정에서 재생 가능한 폴리머 충전재로서 살아있는 세포를 도입할 수 있는 흥미로운 기회를 제공했다는 평가를 받고 있다. 연구진은 잠재적으로 확장 가능한 이 기술이 재활용할 수 없는 TPU를 폐기하는 새로운 방법을 제시하는 동시에 사용 중에 더 튼튼하고 강하게 만들 수 있다고 말했다. 이 기술을 다른 몇 가지 방법과 결합하면 플라스틱 오염 문제를 해결하는 데 어느 정도 진전을 이룰 수 있을 것으로 기대된다. 이 연구는 '네이처 커뮤니케이션스(Nature Communications)' 저널에 발표됐다.
-
- 포커스온
-
[신소재 신기술(42)] 플라스틱 폐기물 90% 분해하는 혁신 기술
-
-
왜 쓰레기를 화산에 던져서 태워버릴 수 없을까
- 쓰레기를 용암이 끓고 있는 화산에 던져서 태우지 않는 이유는 무엇일까. 화산의 용암이 일부 쓰레기를 태울 정도로 뜨거운 것은 사실이다. 지난 2018년 하와이 빅아일랜드에서 킬라우에아 화산이 폭발했을 때, 용암류는 섭씨 1100도 이상이었다. 이는 금성 표면보다 더 뜨거운 온도다. 암석을 충분히 녹일 정도로 높은 온도였다. 쓰레기를 태우는 폐기물 소각로의 온도가 섭씨 1000~1200도임을 감안하면, 화산의 용암류로도 쓰레기를 태울 수 있을 것이라는 짐작을 하게 된다. 그러나 야후 테크에 실린 정보에 따르면 실제는 그렇지 않다. 모든 화산 용암이 그렇게 높은 온도인 것은 아니다. 하와이에서의 킬라우에아 화산 폭발은 현무암이라고 불리는 일종의 용암을 생성한다. 현무암은 다른 화산에서 분출되는 용암보다 훨씬 뜨겁고 더 유동적이다. 워싱턴주의 세인트 헬렌스 산에서 분출한 화산 등 일반적인 화산의 경우 현무암보다 더 두꺼운 데이사이트 용암(석영안산암 화산암)이다. 세인트 헬렌스 산에서 2004~2008년까지 분출된 화산은 표면 온도가 섭씨 704도 미만의 용암 돔을 생성했다. 다시 말해 쓰레기를 완전히 태울 충분한 고온이 형성되지 않는다는 의미다. 온도 외에도, 화산에서 쓰레기를 태울 수 없는 이유가 몇 가지 더 있다. 첫 번째로, 섭씨 1100도 온도의 용암은 음식물 찌꺼기, 종이, 플라스틱, 유리 및 일부 금속 등을 녹일 수는 있지만, 강철, 니켈 등 특수한 일부 물질들은 녹이지 못한다. 둘째, 지구에는 쓰레기를 버릴 수 있는 용암 호수나 용암으로 가득 찬 그릇 모양의 분화구가 있는 화산이 많지 않다. 지구상에 있는 수천 개의 화산 중, 과학자들이 발견한 활화산 용암 호수는 남극의 킬라우에아, 에레부스 산, 콩고민주공화국의 니라공고 등을 포함해 8개에 불과하다. 대부분의 활화산은 세인트 헬렌스 산과 같이 바위와 냉각된 용암으로 채워진 분화구이거나 오레곤주의 크레이터 호수처럼 물로 채워진 분화구들이다. 세 번째는 활성 용암 호수라 해도 이곳에 쓰레기를 버리는 것은 매우 위험하다는 사실이다. 용암 호수는 냉각된 용암의 지각으로 덮여 있지만, 그 지각 바로 아래는 용암이 녹아 있어 온도가 매우 높다. 암석이나 다른 물질들이 용암 호수의 표면으로 떨어지면 지각이 깨지고, 밑에 있는 용암의 흐름을 방해해 폭발을 일으키게 된다. 2015년 킬라우에아에서 이런 사태가 일어났다. 분화구 가장자리의 암석 덩어리가 용암 호수로 떨어져 큰 폭발을 일으켰고, 암석과 용암이 분화구 위로 분출됐다. 사람이 용암 호수에 쓰레기를 버린다면 불타 오르는 쓰레기와 폭발하는 용암을 피해 도망치는 방법을 고안해야 할 것이다. 화산에 쓰레기 버리면 유독가스 방출 용암 호수에 쓰레기를 안전하게 버릴 수 있다고 가정한다면 어떻게 될까. 플라스틱, 쓰레기, 그리고 금속이 연소되면 많은 유독 가스가 방출된다. 화산은 이미 황, 염소, 그리고 이산화탄소 등 수많은 유독 가스를 배출하고 있다. 유황 가스는 ‘보그(vog)’라고 부르는 산성 안개를 생성한다. 이는 식물을 죽이고 근처에 거주하는 사람들에게 호흡기 질환을 일으킬 수 있다. 이처럼 위험한 화산 가스에 쓰레기를 태울 때 발생하는 다른 가스가 섞이면 화산 근처의 사람과 식물에 더욱 해로울 것이다. 마지막으로, 많은 원주민 공동체는 화산을 신성한 장소로 여긴다. 예를 들어, 킬라우에아에 있는 할레마우마우 분화구는 하와이 원주민이 섬기는 불의 여신 펠레의 고향으로 여겨지고 있으며, 분화구 주변은 하와이 원주민에게는 신성한 지역이다. 화산에 쓰레기를 버리는 것은 그들에게는 큰 모욕이 될 것이다.
-
- IT/바이오
-
왜 쓰레기를 화산에 던져서 태워버릴 수 없을까
-
-
[신소재 신기술(35)] 혁신적인 미사일 기술, 군사 기술·컴퓨터 파괴하지만 인명 피해는 최소화
- 군사 장비나 컴퓨터를 골라서 파괴하지만 사람은 죽이지 않고 인명 피해를 최소화하는 혁신적인 미사일 '챔프(CHAMP)'가 개발됐다. 챔프(CHAMP)는 대전자 고출력 마이크로웨이브 첨단 미사일 프로젝트(Counter-Electronics High Power Microwave Advanced Missile Project)의 약자로 미 공군 연구소에서 개발한 공동 개념 기술 실증 프로그램이다. 다시 말하면 CHAMP는 일종의 고출력 전자레인지인 '고출력 마이크로파 에너지 펄스' 이용해 컴퓨터를 파괴하기 위해 제작된 미사일이다. 미국 국방 전문 매체 포스 넷(Forces net)에 따르면 CHAMP 미사일의 목적은 사망자를 발생시키지 않고 적의 군사 능력을 사실상 쓸모없게 만드는 것이다. 즉, 이 프로젝트는 적의 전자 시스템을 무력화시키는 것이 목표다. CHAMP는 미 공군 연구소(Air Force Research Laboratory)에서 처음 개발한 후 보잉의 국방 및 보안 부문 첨단 프로토타입 제작 부문인 보잉의 팬텀 웍스(Phantom Works)가 제작한 것으로 알려졌다. 이 무기에 대해서는 알려진 바가 거의 없지만 공중 발사 순항 미사일에 장착되어 B-52 폭격기에 의해 전달되는 것으로 전해져 있다. CHAMP 미사일은 적 영공에 진입하면 낮게 유지되며 특정 목표를 겨냥하여 고출력 마이크로파 에너지 펄스를 방출해 중요한 전자 장비를 비활성화한다. 이러한 고출력 마이크로파 폭발로 손상을 입히지 않고 전자 장치를 튀겨버려 순식간에 컴퓨터를 마비시킬 수 있다. 미국이 이 무기를 어디에 배치하고 있는지, 누구와 기술을 공유했는지는 확실하지 않다. 간단히 설명하자면, CHAMP는 고출력 마이크로파 방출기를 장착한 미사일을 개발하는 프로젝트다. 이 미사일은 기존의 폭발물을 사용하지 않고도 적의 전자 시스템을 교란하거나 손상시키기 위해 발사할 수 있다. 또한 무인 시스템으로 설계되어 조종사가 탑승하지 않고도 발사 및 작동할 수 있다. 이란 당국자 두 명은 이 공격이 이스파한주 인근의 군사기지 내 S-300 대공 시스템을 타격했다고 밝혔다. 뉴욕타임스가 분석한 위성 이미지에 따르면, 이스라엘의 무기는 이스파한의 제8 셰카리 공군 기지에 위치한 S-300 대공 시스템의 레이더를 타격했다. 그에 앞서 이스라엘은 지난 13일 이란의 공격에 대응하여 그보다 적은 무기를 사용해 이란의 방어망을 우회하고 무력화시킬 수 있음을 보여줬다. NYT는 이스라엘의 이번 공격에 사용된 정확한 무기 유형이 어떤 것인지 불확실하다고 밝혔다. 다만 서방 당국자 세 명과 이란 당국자 두 명은 이스라엘이 여러 드론과 적어도 하나의 공대지 미사일을 사용했다고 전했다. 이에 반해, 이란 당국자들은 이번 공격이 소형 드론에 의한 것이었다고 주장했다.
-
- 포커스온
-
[신소재 신기술(35)] 혁신적인 미사일 기술, 군사 기술·컴퓨터 파괴하지만 인명 피해는 최소화
-
-
미세 플라스틱, 뇌에서도 발견
- 미세 플라스틱이 인간의 장기와 생쥐의 뇌에서도 검출됐다. 최근 실시된 두 개의 새로운 연구에서 미세 플라스틱이 인간의 장기와 심지어 생쥐의 뇌에까지 도달할 수 있다는 사실이 밝혀졌다고 폭스뉴스가 17일(현지시간) 보도했다. 지난 4월 10일 '환경 건강 관점(Environmental Health Perspectives)'에 발표된 연구 중 하나는 건강한 쥐에게 4~8주 동안 폴리스티렌 마이크로스피어(polystyrene microspheres)를 먹이는 실험이었다. 이후 과학자들은 쥐의 다양한 장기가 미세플라스틱에 오염된 것을 발견했다. 연구 결과 마이크로스피어를 섭취한 쥐의 경우 뇌, 간, 신장 등 멀리 떨어진 조직에서 폴리스티렌 마이크로스피어가 검출됐다. 논문에는 아울러 "또한 대장, 간, 뇌에서 발생한 대사적 차이에 대해 보고했는데, 이는 마이크로스피어 노출의 농도와 유형에 따라 다른 반응을 보였다"고 적었다. 미세 플라스틱 먹은 쥐, 담석 형성 가속화 지난 4월 5일 '위험 물질(Hazardous Materials)' 저널에 발표된 또 다른 연구에서는 인간과 쥐를 대상으로 실험했다. 연구팀은 50세 미만 환자의 담석(담낭에 있는 담즙이 굳어져 생긴 돌)에서 독성 물질이 훨씬 더 많이 검출된다는 사실을 발견했다. 미세 플라스틱을 먹인 후 실험에 참여한 쥐는 담석이 더 빠른 속도로 형성됐다. 논문은 "우리 연구는 인간 담석에 미세 플라스틱이 존재한다는 사실을 밝혀냈으며, 미세 플라스틱이 큰 콜레스테롤-미세 플라스틱 이종 응집체를 형성하고 장내 미생물을 변화시켜 담석증을 악화시킬 수 있다는 가능성을 보여주었다"라고 설명했다. 미세 플라스틱이 인간에게 미치는 영향은 현재 조사 중이며, 특히 대부분의 미국인이 평생 동안 미세 플라스틱에 노출되어 왔기 때문에 광범위한 우려를 불러일으키고 있다는 것. 자넷 네셰이왓 박사는 폭스 뉴스 디지털과의 인터뷰에서 미세 플라스틱은 "어디에나 존재한다"고 말했다. 네셰이왓 박사는 "우리는 무의식적으로 전례 없는 수준으로 미세 플라스틱을 섭취하고 흡입하고 있다"며 "특히 높은 수준의 미세 플라스틱은 신체에 염증을 일으킨다"라고 설명했다. 그녀는 "미세 플라스틱과 같은 이물질은 체내에 축적되어 정상적인 세포 기능을 방해하고 장기 손상을 증가시킬 수 있는 자극과 염증을 유발할 수 있다"고 덧붙였다. 네셰이왓은 미세 플라스틱이 어느 장기에 도달하느냐에 따라 유해한 영향이 뚜렷하게 나타난다고 말했다. 그러면서 미세 플라스틱 섭취를 줄이려면 플라스틱 제품 대신 유리 제품을 사용하고 미세 플라스틱 오염이 적은 식품을 선택할 것을 권장했다. 그녀는 "미세 플라스틱은 스트레스와 염증을 유발하고 간 기능을 손상시켜 간에 영향을 미칠 수 있다"면서 "뇌에서는 신경 염증을 일으키고 뇌 신호를 방해한다"라고 말했다. "비만·운동 부족이 건강에 더 해로워" 반면, 의학 기고가인 마크 시겔 박사는 폭스 뉴스에 미세 플라스틱이 인간에게 미치는 영향은 아직 알려지지 않았다고 말했다. 시겔 박사는 "이를 추적할 필요가 있지만, 세포 내 미세 플라스틱이 건강에 좋지 않은 결과를 초래한다는 직접적인 증거는 아직 없다"라면서 "더 많이 축적되면 잘못된 것으로 판명될 수 있으며, 화학물질 유출이나 오염된 물 또는 폐기물이 제대로 보관되지 않은 지역에서 발생하는 암 위험은 분명히 우려하고 있다"고 덧붙였다. 그는 "동시에 가장 큰 건강 위험은 좌식 생활, 비만, 치료되지 않은 고혈압, 수면 부족, 운동 부족에서 비롯된다"고 강조했다. 워싱턴 포스트는 다른 연구 결과를 인용해 미세 플라스틱이 암과 알츠하이머병 위험을 증가시키고 출산 문제를 유발할 수 있다고 보도했다. 또한 이러한 영향은 나이가 들면서 더욱 악화될 수도 있다는 전언이다. 또 다른 연구에 따르면 미세 플라스틱은 심장마비와 뇌졸중 발병에도 연관되어 있다고 한다. 미세 플라스틱과 더 작은 나노 플라스틱은 플라스틱으로 만든 물병이나 식품 용기 등이 시간이 지남에 따라 분해될 때 생성된다. 일반적인 미세 플라스틱 크기는 평균 177 x 117 ㎛(마이크로미터)이다. 1마이크로미터는 0.001밀리미터이다. 세계보건기구(WHO)에 따르면, 미세 플라스틱은 일반적으로 크기가 5mm 이하인 불용성 고체 고분자 입자를 말한다. 1㎛(마이크로미터) 이하의 입자는 일반적으로 미세 플라스틱이 아닌 '나노 플라스틱'으로 불린다. 매년 강과 바다로 800만톤의 플라스틱 폐기물이 유입되고 있다고 폭스 뉴스는 전했다. 미세 플라스틱의 양을 줄이는 가장 좋은 방법은 플라스틱 소비를 줄이는 것이다. 예를 들어 영국과 프랑스에서는 대부분의 패스트푸드와 테이크아웃 음식점에서 플라스틱 식기류의 사용을 금지했다. 인도는 2022년에 일회용 플라스틱 사용을 금지했다. 또한 일회용 수저나 플라스틱 빨대 등을 거절하면 쓰레기를 줄일 수 있다. 재활용품은 제대로 분류해서 버리고 업사이클링 제품을 사용하는 것도 플라스틱 오염을 줄일 수 있는 방법이다.
-
- IT/바이오
-
미세 플라스틱, 뇌에서도 발견