검색
-
-
[신소재 신기술(138)] 세포가 쓴 일기, 이젠 읽을 수 있다!
- 과학자들이 세포가 스스로 역사를 기록할 수있도록 돕는 혁신적인 기술인 'DNA 타자기'를 개발했다고 뉴욕타임스가 지난 25일(현지시간) 보도했다. 이 기술은 세포가 자신의 DNA에 정보를 기록하는 방식으로, 세포 분열과 환경 변화 등 다양한 생물학적 사건을 추적할 수 있는 방법을 제시한다. 스위스 바젤 대학교의 알렉스 시어 박사는 "이 기술은 발달생물학자들이 오랫동안 꿈꿔온 도구"라며, "세포 분열뿐만 아니라 환경 변화나 단백질 생성 등 중요한 생물학적 이벤트까지 기록할 수 있다"고 밝혔다. DNA 타자기란? DNA 타자기는 세포가 자신의 DNA에 일종의 '기록'을 남길 수 있도록 고안된 기술이다. 이는 DNA 편집 기술인 CRISPER(크리스퍼)를 기반으로 개발됐다. CRISPER은 DNA의 특정 부위를 절단하거나 삽입할 수 있는 유전자 가위 기술로, 이를 활용해 세포가 다양한 생물학적 정보를 스스로 추가하며 자신의 '역사'를 저장할 수 있도록 만든 것이다. 다시 말해 이 기술은 세포 내부의 DNA를 메모장처럼 사용한다고 보면 된다. 세포는 자신의 생애 동안 경험한 일을 이 메모장에 적어두고, 후손 세포에도 이를 전달한다. 마치 세포가 스스로 일기를 쓰는 것과 비슷한다. 현재 연구팀은 실험 단계로, 쥐의 세포에 DNA 타자 기술을 적용 중인 것으로 알려졌다. 이 기술이 성공하면, 모든 세포가 수정란 단계에서부터 분열과 경험의 기록을 보유하는 '기록 쥐'가 탄생할 전망이다. 연구를 주도한 미국 워싱턴대학교의 제이 쉔듀어 박사는 이를 "생물학을 시간의 관점에서 이해하는 새로운 패러다임"이라고 설명하며, "이 기록으로 질병의 초기 징후를 발견하거나 환경적 요인을 분석할 수 있다"고 기대했다. [미니해설] 세포를 스스로의 역사가로 만드는 기술 'DNA 타자기' 수정란이 두 개로, 네 개로 분열하며 형성된 인체의 36조 개 세포는 각각의 독특한 궤적을 지닌다. 하지만 과학자들은 그 과정을 전체적으로 추적하는 데 어려움을 겪어왔다. 스냅샷처럼 특정 시점의 세포만을 관찰하는 것이 한계였기 때문이다. 이러한 문제를 해결하기 위해 등장한 것이 'DNA 타자기'다. 이 기술은 세포가 DNA에 유전적 흔적을 남겨 스스로의 역사를 기록하도록 설계됐다. 쉔듀어 박사는 이를 "완전히 새로운 생물학 측정 방식"이라며 "세포 분열뿐만 아니라 특정 단백질 생성이나 바이러스 감염 같은 사건도 기록할 수 있다"고 설명했다. 기술 개발의 배경 DNA 타자기는 DNA 편집 기술인 CRISPER에서 출발했다. CRISPER은 세포 유전체의 특정 지점을 찾아 DNA를 잘라내거나 삽입할 수 있는 기술이다. 쉔듀어 박사는 이를 활용해 제브라피쉬 세포를 변형, 유전체의 여러 지점을 편집할 수 있게 했다. 이 과정에서 세포는 무작위로 특정 부위를 수정하며 이를 후대 세포로 전달했다. 연구팀이 DNA를 분석한 결과, 비슷한 바코드를 지닌 세포들은 동일한 계보임을 나타냈다. 예를 들어 물고기의 혈액세포는 단 5개의 전구체 세포에서 유래한 것으로 밝혀졌다. 시어 박사는 "이 기술을 통해 심장을 만드는 방법처럼 발달의 규칙성을 밝혀낼 수 있기를 바란다"고 말했다. 응용 가능성과 미래 이 기술은 실험실 밖에서도 응용 가능성을 보이고 있다. 미래에는 '감시자 세포'를 인체에 주입해 질병의 초기 징후는 추적하거나 환경 독소의 영향을 분석할 수 있을 것으로 기대된다. 시어 박사는 "지금 몸 상태가 이상하다면 3개월 전에 감염이 있었는지, 7개월 전에 중독이 있었는지를 알 수 있다"고 말했다. 현재 캘리포니아 공과대학교 연구팀은 세포가 유전적 정보를 빛으로 표시하도록 설계해 세포를 파괴하지 않고도 기록을 확인할 수 있는 방법을 개발 중이다. 또한 쉔듀어 박사 연구팀은 세포가 DNA 흔적을 추가적으로 남길 수 있는 'DNA 타자기'를 이용해 쥐의 모든 세포가 분열과 경험의 기록을 보유한 '기록 쥐'를 개발하고 있다. 이 기술이 상용화되면 인체 발달 과정의 규칙성뿐만 아니라 암이나 퇴행성 질환 같은 병리학적 변화를 초기에 발견할 수 있을 것으로 기대된다. "저는 이 기술에 모든 것을 걸었다." 쉔두어 박사의 이 한마디는 DNA 타자기 기술이 생물학의 새로운 지평을 열 것이라는 확신을 담고 있다.
-
- IT/바이오
-
[신소재 신기술(138)] 세포가 쓴 일기, 이젠 읽을 수 있다!
-
-
[퓨처 Eyes(39)] 유전자 편집 기술 eePASSIGE, 인간 세포 치료 효율 극대화
- 혁신적인 유전자 편집 기술이 최근 개발돼 낭포성 섬유증 등 수백, 수천 개의 돌연변이 유형으로 발생하는 난치성 유전 질환 치료에 새로운 가능성을 제시했다. 기존 유전자 편집 기술은 제한적인 범위 내에서만 변화를 줄 수 있었지만, 이번에 개발된 신기술은 건강한 유전자 복사본을 원래 위치에 직접 삽입해 치료 효과를 극대화할 수 있다. 미국 매사추세츠 공과대학(MIT)과 하버드 브로드 연구소 연구팀은 인간 세포에서 전체 유전자를 삽입하거나 대체할 수 있는 획기적인 유전자 편집 시스템인 'eePASSIGE'를 개발했다. 해당 내용은 네이처와 PHYS등 다수 외신이 지난 10일(현지시간) 집중 조명했다. 이번 연구는 브로드 연구소의 데이비드 리우(David Liu) 박사가 이끌었으며, 단일 유전자 치료법 개발에 중요한 발판을 마련할 것으로 전망된다. 'eePASSIGE'로 명명된 이 프라임 편집 시스템은 기존 유사 방식보다 몇 배 더 효율적인 유전자 전체 치료를 가능하게 하여, 유전 질환 치료의 새 지평을 열 것으로 기대된다. 이 신기술은 최대 100~200개 염기쌍까지 다양한 변화를 유도하는 프라임 편집과 함께 개발된 재조합 효소를 활용한다. 이 재조합 효소는 수천 염기쌍에 달하는 큰 DNA 조각을 유전자(게놈)의 특정 위치에 효율적으로 삽입할 수 있다. 다시 말하면, eePASSIGE는 기존의 유전자 편집 기술보다 훨씬 더 효율적이고 정확하게 유전자를 조작할 수 있다는 장점을 가지고 있다. 특히 기존 기술에서는 어려웠던 대규모 유전자 편집이 가능해, 수천 염기쌍 길이의 대규모 유전자 삽입도 가능하다. 따라서 이 기술은 낭포성 섬유증처럼 수백 또는 수천 개의 돌연변이 유형 중 하나에 의해 발생하는 질병 치료에 혁신적인 변화를 가져올 수 있다. eePASSIGE는 또 다른 유전자 편집 기술에 비해 오류율이 낮아 정확하게 원하는 유전자 변형을 일으킬 수 있다. 게다가 손상된 유전자를 교체하거나 정상적인 유전자를 삽입하는 방식으로 다양한 유전자 질횐을 치료할 수 있는 잠재력이 있다. 이번 연구 결과는 유전자 편집 기술이 단순히 유전자 일부를 수정하는 것을 넘어 전체 유전자를 효과적으로 치료하는 단계로 진입했음을 보여준다. 이는 난치성 유전 질환 치료에 새로운 희망을 제시하며, 향후 유전자 치료 분야의 발전을 가속화할 것으로 보인다. 연구 결과는 저명한 학술지 '네이처 바이오메디컬 엔지니어링(Nature Biomedical Engineering)'에 게재되어 학계의 주목을 받고 있다. 유전자 편집 기술 유전자 편집은 살아있는 유기체의 DNA를 직접 수정하여 질병을 치료하거나 원하는 특성을 부여하는 기술로, 유전자 보강과 유전자 치료라는 두 가지 방식으로 구현된다. 1970년대 시작된 유전자 조작 기술은 '유전자 가위' 크리스퍼(CRISPER)의 등장과 함께 혁명적인 발전을 이루었다. 특히 3세대 유전자 가위인 크리스퍼-Cas9는 DNA를 정교하게 자르고 붙이는 기술로, 생명과학 분야의 '게임 체인저'로 평가받는다. CRISPER-Cas9는 Cas9 단백질과 CRISPR RNA를 이용해 특정 DNA 부위를 정확하게 절단하고, 원하는 유전자를 삽입하거나 삭제할 수 있다. 이 기술은 유전 질환 치료, 농작물 개량 등 다양한 분야에 혁신을 가져올 것으로 기대된다. 크리스퍼-Cas9 이전에도 다양한 유전자 편집 기술이 개발되었다. 2009년에서 2010년 사이에 개발된 '탈렌(TALENs)'은 염기 서열을 인식하는 단백질을 사용하여 DNA를 절단하고 변형하는 기술이다. 또한, '징크 핑거(ZFN)' 기술은 인간 게놈 유전자의 3%에서 발견되는 아연 집게 단백질을 이용하여 DNA를 인식하고 절단한다. 최근에는 CRISPR-Cas9 기술을 변형하여 DNA 염기 서열을 직접 변형하는 '베이스 편집' 기술도 등장했다. 유전자 가위 크리스퍼(CRISPER) 지난 10년 동안 크리스퍼(CRISPER)는 DNA를 쉽고 정확하게 편집할 수 있는 능력으로 생물의학계와 생명과학계에 큰 반향을 일으켰다. 크리스퍼는 인체의 DNA 조각이나 그 화학(소위 후생 유전학)을 정확하게 수정할 수 있으므로 생명의학 과학에서 임상 용도로 사용할 수 있는 잠재적인 도구가 된다. 스탠포드 대학교 생명공학부 부교수이자 사라판 ChEM-H연구소의 스탠리 치 교수는 "크리스퍼는 단순한 도구가 아니다. 기초 과학, 의학, 환경 분야의 오랜 난제를 해결할 수 있는 학문이자 원동력이 되고 있다"고 설명했다. 치 교수는 "최근 미국 식품의약국(FDA)이 겸상 적혈구 빈혈과 베타 지중해빈혈을 치료하는 최초의 크리스퍼 약물인 캐스게비(Casgevy)를 승인한 것은 다른 질병에 대한 안전성과 잠재력을 말해준다"고 부연했다. 캐스게비는 2021년 10월 FDA로부터 승인된 암 치료제로 특정 유형의 혈액암 치료에 사용되고 있다. '겸상 적혈구 빈혈'은 적혈구에 있는 돌연변이가 있는 질병이다. 일반적으로 잦은 수혈이나 일치하는 기증자의 골수 이식 외에는 치료법이 없다. 이는 비용이 많이 들고 환자의 전반적인 건강에 해를 끼친다. 크리스퍼를 사용하면 일회성 치료를 수행해 돌연변이를 영구적으로 교정하는 것이 가능하다. 크리스퍼를 사용해 잠재적으로 치료를 고려할 수 있는 유전병은 8000가지가 넘는다. 현재 크리스퍼는 설정하는 데 몇 주 밖에 걸리지 않으며, 설정 비용은 수 백달러가 조금 넘는다. 연구진은 유전자 편집 기술의 효율성을 높이기 위해 끊임없이 노력하고 있다. 기존 프라임 편집 기술은 수십 염기쌍까지 변화를 유발하는 데 효과적이었지만, 수천 염기쌍에 이르는 전체 유전자를 원래 위치에 삽입하는 데에는 한계가 있었다. 이러한 한계를 극복하기 위한 연구가 활발히 진행되고 있으며, 머지않아 유전자 편집 기술은 더욱 정교하고 효율적인 도구로 발전할 것으로 전망된다. eePASSIGE 유전자 편집 기술 이번 연구는 유전자 질환 치료에 있어 돌연변이 유형에 상관없이 치료 가능성을 높이고, 주변 DNA 서열을 보존하여 유전자 발현 조절을 정확하게 유도할 수 있다. 앞서 2021년 리우 박사 연구팀은 이러한 목표 달성을 위한 중요한 단계를 발표했다. 연구팀은 '트위핀(twinPE)'이라는 프라임 접근 방식을 개발해 게놈에 재조합 효소 '착륙 지점'을 설치하고, 천연 재조합 효소인 Bxb1을 사용하여 새로운 DNA를 프라임 편집된 표적 위치에 삽입하는 방법을 제시했다. 하지만 PASSIGE(prime-editing-assisted site-specific integrase gene editing)라고 불리는 이 기술은 일부 유전자 질환 치료에만 효과적이며 대부분의 질환 치료에는 적용하기 어려운 한계가 있었다. 따라서 이번 연구에서는 PASSIGE의 편집 효율을 높이는 데 초점을 맞췄다. 연구 결과, 재조합 효소 Bxb1이 PASSIGE의 효율성을 제한하는 요인임을 확인했다. 연구팀은 실험실에서 더 효율적인 Bxb1 변형체를 빠르게 진화시키기 위해 이전에 개발한 PACE(phage-assisted continuous evolution) 도구를 사용했다. 개발된 새로운 변형체(eeBxb1)는 'PASSIGE' 시스템을 개선해 실험 쥐 및 인간 세포에서 평균 30%의 유전자 크기 통합할 수 있게 했다. eePASSIGE 기술을 적용한 이 수치는 기존 기술의 4배, 최근 발표된 PASTE라는 다른 방법보다 약 16배 더 효율적이다. 연구팀은 "eePASSIGE와 개조된 바이러스 유사 입자(eVLPs)와 같은 전달 시스템을 결합해 유전자 편집제의 치료 전달을 제한하는 기존 장애물을 극복하기 위한 연구를 진행하고 있다"고 말했다. 이러한 노력은 유전자 질환 치료에 있어 새로운 가능성을 열 수 있다. 향후 임상 연구를 통해 안전성과 효능을 검증해야 하는 것이 과제다. 이번 연구는 유전자 편집 기술의 발전을 보여주는 중요한 성과다. eePASSIGE 시스템은 다양한 유전자 질환 치료에 효과적인 새로운 치료법 개발에 기여할 수 있으며, 향후 지속적인 연구를 통해 더욱 안전하고 효과적인 유전자 치료법 개발이 기대된다. 하지만 동시에 유전자 편집 기술의 윤리적 문제 또한 해결해야 할 중요한 과제다. 유전자 편집 기술은 인간 유전자를 영구적으로 변화시킬 수 있는 강력한 도구다. 따라서 이 기술을 사용하기 전에 신중한 윤리적 논의와 규제가 필요하다. 또한 유전자 편집 기술의 오남용 가능성도 고려해야 한다. 지속적인 연구와 사회적 논의를 통해 유전자 편집 기술을 안전하고 책임감 있는 방식으로 활용해 인류 건강 증진에 기여해야 할 것이다.
-
- 포커스온
-
[퓨처 Eyes(39)] 유전자 편집 기술 eePASSIGE, 인간 세포 치료 효율 극대화
-
-
챗GPT 등 생성형 AI 기술 이용, 유전자 가위 '크리스퍼' 제작 길 넓힌다
- 이제 생성형 인공지능(AI) 기술을 이용해 컴퓨터 키 하나만 누르면 유전자 편집 도구를 만들 수 있는 길이 열리게 됐다고 네이처가 보도했다. 지금까지는 유전자 가위라고 알려진 크리스퍼(CRISPR) 유전자 편집 시스템을 발견하기 위해 온천, 이탄 습지, 분변, 심지어는 요구르트에 이르기까지 모든 미생물을 탐색해야 했다. 생명공학 스타트업 프로플루언트(Profluent)는 수백만 개의 단백질 서열을 훈련한 생성형 AI 기술(단백질 언어 모델)을 적용해 크리스퍼 유전자 편집 단백질을 설계하는 방법을 발표했다. 캘리포니아 버클리에 소재한 프로플루언트의 알리 마다니 최고경영자(CEO)는 “챗GPT와 같은 생성형 AI 기술을 사용해 크리스퍼와 같은 복잡한 시스템을 설계하는 것이 가능하다는 것을 보여주었다”고 밝혔다. 이 연구 결과는 생뮬학 온라인 프리프린트 서버 'bioRxiv' 사이트에 실렸다. 게시글에서는 "온전한 기계 학습으로 설계된 단백질에 의한 인간 게놈의 최초의 성공적인 편집"이라고 적고 있다. 크리스퍼 설계를 위한 생성형 AI는 단백질이나 게놈 서열 형태의 방대한 생물학적 데이터를 훈련받는다. 이 '사전 훈련' 단계를 통해 AI 모델은 ‘어떤 아미노산이 함께 결합되는지’ 등 유전자 서열에 대한 지식을 쌓게 된다. 이 정보는 완전히 새로운 단백질 서열 생성과 같은 작업에 적용될 수 있다. 프로플루언트 연구팀은 종전에 자사가 개발한 '프로젠(ProGen)'이라는 단백질 언어 모델을 사용해 새로운 항균 단백질을 개발했다. 그 후 박테리아와 고세균 등 단세포 미생물이 바이러스를 방어하기 위해 사용하는 수백만 개의 다양한 크리스퍼 시스템을 학습시켜 프로젠 차기 버전을 만들었다. 진보한 크리스퍼 시스템을 개발하기 위함이었다. 크리스퍼 유전자 편집 시스템은 단백질뿐만 아니라 표적을 지정하는 RNA 분자로도 구성돼 있기 때문에, 연구팀은 이러한 '가이드 RNA'를 설계하기 위한 또 다른 AI 모델도 개발했다. 연이어 신경망을 사용해 자연에서 발견되는 수십 개의 서로 다른 단백질 계열에 속하는 수백만 개의 새로운 크리스퍼 단백질 서열을 설계했다. AI가 설계한 크리스퍼가 올바른 유전자 편집자라는 사실도 확인됐다. '가이드 RNA'를 인간 세포에 삽입했을 때 의도한 표적을 정확하게 절단했다는 것. 확인 결과 실험실에서 널리 사용되는 크리스퍼-카스9(CRISPR-Cas9)에 속하는 단백질만큼 표적 DNA 서열을 절단하는 데 효율적이었다. 오히려 잘못된 위치에서 절단하는 횟수가 훨씬 적었다. 한편 캘리포니아 스탠포드 대학의 컴퓨터 생물학자 브라이언 히 교수와 캘리포니아 팔로알토에 소재한 Arc연구소가 이끄는 연구팀도 단백질과 RNA 서열을 모두 생성할 수 있는 AI 모델을 개발했다. EVO라고 불리는 이 모델은 박테리아와 고세균의 8만 개 게놈과 기타 미생물 서열(3000억 개의 DNA)에 대해 훈련받았다. EVO가 설계한 일부 크리스퍼-카스9 시스템의 예상 구조는 천연 단백질의 구조와 유사했다. 이 연구 역시 bioRxiv 사이트에 게시됐다. 마다니는 AI가 설계한 유전자 편집 도구가 기존 크리스퍼보다 의료 부문 응용에 더 적합할 수 있다고 기대했다. 프로플루언트는 AI 생성 크리스퍼를 테스트하기 위해 유전자 편집 치료법을 개발하는 회사와의 파트너십도 추진하고 있다. 편집 기술의 정밀도를 높이고 맞춤형 디자인으로 발전시킨다는 계획이다.
-
- IT/바이오
-
챗GPT 등 생성형 AI 기술 이용, 유전자 가위 '크리스퍼' 제작 길 넓힌다
-
-
박테리아 게놈서 희귀 CRISPR 시스템 188종 발견
- 최근의 한 연구에서 과학자들은 박테리아 게놈에서 188종의 새롭고 희귀한 CRISPR(크리스퍼, 유전자 가위) 시스템을 발견했다. 새로 발견된 이 시스템들은 인간 세포의 DNA를 편집할 수 있는 잠재력을 가지고 있으며, RNA를 표적으로 하는 것은 물론 다양한 기능을 가진 여러 세포를 편집할 수 있다고 알려져 있다. 사이테크데일리에 따르면 188종의 CRISPR에는 수십억 개의 단백질 서열 중에서 발견된 새로운 7형 CRISPR-Cas 시스템이 포함된다. 이 접근법의 발견은 CRISPR 시스템을 활용하고 방대한 미생물 단백질의 다양성을 탐구할 수 있는 새로운 가능성을 제시한다. 미국의 IT전문 매체 인터레스팅 엔지니어링(INTERESTING ENGINEERING)은 CRISPR는 유전자 가위와 같은 역할을 하는 유전자 편집 도구로, 과학자들이 원하는 위치의 DNA의 원하는 위치를 원하는 방식으로 변경할 수 있게 해준다고 보도했다. 이 기술에는 원하는 표적 유전자와 일치하는 가이드 RNA와 이중 가닥 DNA 절단을 유발하는 엔도뉴클레아제인 Cas9(크리스퍼 관련 단백질 9)의 두 가지 필수 구성 요소가 포함되어 있다. 하나는 원하는 표적 유전자와 일치하는 가이드 RNA이고, 다른 하나는 이중 가닥 DNA 절단을 유발하는 엔도뉴클레아제인 Cas9이다. CRISPR의 두 가지 구성 요소 중 가이드 RNA는 DNA 분자에서 표적 유전자를 인식한다. Cas9는 가이드 RNA를 따라 표적 유전자에 결합한 다음, DNA를 절단한다. 이 절단은 유전자의 활성이나 발현을 변화시킬 수 있다. CRISPR 시스템은 유전자 가위처럼 작용하여 DNA를 정밀하게 편집할 수 있는 혁신적인 유전자 편집 도구이다. CRISPR는 유전적 질병의 치료에 큰 잠재력을 가지고 있으며, 유전적 질병을 유발하는 유전자를 제거하거나 교체하는 데 사용될 수 있다. 예를 들어, 혈우병이나 암과 같은 질병의 치료에 크리스퍼 기술을 활용할 수 있다. 그러나 크리스퍼의 사용은 윤리적인 문제를 야기하고 있다. 크리스퍼를 통해 인간의 유전자와 배아를 수정할 수 있다는 점은 유전적 우월주의를 조장하거나 개인의 신체적 자율성에 대한 침해 가능성을 제기한다. 이러한 윤리적 고려사항은 CRISPR 기술의 발전과 적용에 있어 중요한 고려사항으로 남아 있다. 새로운 알고리즘 '플래시클러스터' 이 연구는 MIT와 하버드 대학교의 브로드 연구소, MIT 맥거번 뇌 연구소, 그리고 미국 국립보건원(NIH) 산하 국립 생명공학 정보 센터(NCBI)의 과학자들이 참여했다. 연구팀은 새로운 알고리즘인 '플래시클러스터(FLSHclust)'를 사용하여 이번 발견을 주도했다. 플래시클러스터는 대규모 게놈 데이터베이스를 신속하게 검색할 수 있는 기술로, 지역성 민감성 해시 기반으로 작동하여 유사한 개체를 클러스터링하는 방식으로 구성되어 있다. 이 기술을 활용함으로써 연구팀은 수십억 개의 단백질 및 DNA 염기서열을 훨씬 더 짧은 시간 안에 분석할 수 있게 됐다. 새로운 기능 발견 연구팀은 이 시스템 중 두 가지가 인간 세포의 DNA에 작은 변화를 일으킬 수 있다는 것을 확인했다. 또한 이러한 Type I 시스템은 CRISPR-Cas9과 크기가 유사하기 때문에 현재 CRISPR에 사용되는 것과 동일한 유전자 전달 방법을 사용하여 동물이나 인간의 세포에 전달될 수 있다. 또한, 또 다른 Type I 시스템은 셜록(SHERLOCK)과 같은 신속한 질병 진단에 사용되는 방법과 유사하게 표적화 후 광범위한 핵산 분해를 일으켰다. 이 연구는 또한 RNA 편집 및 유전자 발현 또는 세포 활동 감지에 유용한 Type IV 및 Type VII CRISPR 시스템의 새로운 기능을 발견했다. CRISPER의 잠재적 응용 이 연구는 CRISPR 시스템의 다양성과 게놈 편집, 진단 및 세포 활동 이해와 같은 다양한 분야에서의 잠재적 응용 분야를 탐구하는 것을 목표로 했다. 연구팀은 이 새로운 알고리즘을 통해 과학자들이 결과를 복구하고 생물학적 가설을 세울 수 있을 만큼 충분히 짧은 시간 프레임에 데이터를 분석할 수 있다고 설명했다. 연구소에 따르면 알고리즘은 분석 시간을 몇 달에서 몇 주로 단축했다. 이 연구는 박테리아 게놈에 존재하는 다양한 CRISPR 시스템의 잠재적 응용 분야를 탐구하는 데 중요한 단계이다. 새로운 알고리즘은 과학자들이 이러한 시스템을 더 빠르고 효율적으로 연구할 수 있도록 하여 새로운 치료법과 기술 개발에 도움이 될 수 있으로 기대된다.
-
- IT/바이오
-
박테리아 게놈서 희귀 CRISPR 시스템 188종 발견