검색
-
-
[기후의 역습(87)] 영장류 권위자 제인 구달 "여섯 번째 대멸종이 목전에 있다" 경고
- 제인 구달(Jane Goodall). 그녀는 세계적으로 유명한 저명 영장류학자이자 환경보호론자다. 현재 90세인 구달 박사는 여전히 탐사를 위한 여행을 하고 있다. BBC와의 이 인터뷰도 여행 중에 진행한 것이다. 그 뒤 베를린, 다음에는 제네바로 간다고 한다. BBC와의 인터뷰에서 구달 박사는 이번 여행은 환경에 대한 위험과 몇 가지 치유법에 대해 이야기하기 위함이라고 말했다. 인터뷰에서 구달 박사는 그녀의 이름을 딴 재단이자 비영리 기술 회사인 에코시아(Ecosia)가 우간다에서 수행하고 있는 나무 심기 및 서식지 복원 임무를 소개했다. 지난 5년 동안 지역 사회와 소규모 농부의 도움으로 이 조직은 거의 200만 그루의 나무를 심었다. 구달 박사는 이 자리에서 "우리는 여섯 번째 대멸종의 한가운데에 있다"고 경고했다. 그러면서 "자연을 복원하고 기존 숲을 보호하기 위해 할 수 있는 일이 급선무"라고 강조했다. 이 프로젝트의 주목적은 우간다에서 5000마리 침팬지의 생존을 위협받는 서식지를 복원하는 것이다. 그녀는 수십 년 동안 영장류를 보호하기 위해 연구하고 캠페인을 벌였다. 동시에 산림 벌채가 우리 기후에 미치는 위협을 강조한다. 나무는 지구 기후를 위협하는 이산화탄소를 흡수하는 소중한 존재다. 아제르바이잔 바쿠에서 개최된 COP29(유엔 기후변화협약 당사국총회)와 맞물려 구달 박사는 "지구 온난화를 늦추기 위한 조치를 취하는 것이 그 어느 때보다 시급하다"고 지적했다. "기후 변화와 생물 다양성 손실을 늦출 시간은 끝나가고 있다"는 것이다. 그녀는 침팬지를 연구하기 시작한 탄자니아의 숲에서 60년 전에는 우기와 건기에 따라 일정을 정할 수 있었지만 지금은 건기에 비가 내리고 우기에는 오히려 건조하다고 말했다. 나무가 잘못된 시기에 열매를 맺는다는 의미이다. 이는 침팬지와 곤충, 새의 생태계를 위협한다. 수십 년 동안 그녀는 야생 침팬지의 주요 서식지인 아프리카 전역에서 숲이 파괴되는 것을 보았다. 그리고 침팬지 수가 감소하는 것도 목격했다. 그녀는 "환경에 엄격한 규제를 부과하지 않고 화석 연료에서 빠르게 벗어나지 않는다면, 산업 농업을 중단하지 않는다면, 결국 환경을 파괴하고 토양을 죽이고 생물 다양성에 파괴적인 영향을 미칠 것이며 궁극적으로 미래는 파멸할 것"이라고 경고했다. 구달 박사는 탄자니아에서 침팬지를 관찰하고 연구하기 시작한 선구자였다. 그녀는 침팬지가 도구를 만들고 사용하는 것을 목격하고 기록한 최초의 전문가였다. 영장류는 흰개미를 낚기 위해 막대기를 사용했다. 그녀가 관찰하기 전까지 이는 인간에게만 있는 특성으로 여겨졌다. 또한 그녀는 동물들이 강한 가족적 유대감을 형성하고 심지어 영토를 놓고 전쟁을 벌인다는 것도 밝혔다. 구달 박사는 거의 전 생애를 침팬지를 비롯한 영장류 연구에 바쳤다. 올해 90세가 된 지금도 그 속도를 늦추지 않고 있다. 그녀는 이를 우리의 다음 세대 미래를 위한 것이라고 해명한다. 그러면서 단호하게 환경 법률에 대해 더욱 강경해야 한다고 강조한다. 구달 박사는 "우리에게는 환경을 되돌릴 시간이 남아있지 않다. 환경을 파괴하는 너무 많은 잘못을 저질렀다"면서, 여섯 번째 대멸종의 위기를 재삼 경고했다.
-
- 포커스온
-
[기후의 역습(87)] 영장류 권위자 제인 구달 "여섯 번째 대멸종이 목전에 있다" 경고
-
-
[우주의 속삭임(80)] 블랙홀 둘러싸고 있는 코로나 모양 첫 공개
- 블랙홀을 둘러싸고 있는 코로나 모양이 처음으로 공개됐다. 지구상에서 개기일식을 관찰하면, 태양을 가린 달 주위를 밝은 빛의 후광이 둘러싸고 있는 현상을 보게 된다. 이는 코로나라고 불리는 것으로, 태양의 확산된 외기권을 말한다. 이 외기권은 너무 얇아서 지구에서 보면 진공으로 생각되지만, 코로나 온도가 섭씨 수백만 도에 달하는 강한 에너지이기 때문에 개기일식 때 볼 수 있다. 우주의 블랙홀 역학에 따르면 블랙홀에도 코로나가 있다. 또한 태양의 코로나와 마찬가지로 블랙홀 코로나도 관찰하기 어렵다. 그런데 최근 천체물리학저널(The Astrophysical Journal)에 실린 연구에서 블랙홀 코로나 영역에 대한 관찰이 이루어졌다고 사이언스얼라트가 전했다. 활성 블랙홀의 경우, 일반적으로는 블랙홀을 둘러싸고 있는 도넛 모양의 가스와 먼지 토러스가 있다. 또 블랙홀의 회전면을 따라 정렬된 가열된 물질의 강착원반(디스크)이 있는 것으로 추정된다. 블랙홀의 극지방에서 흘러나오는 것은 거의 빛의 속도로 빠르게 멀어지는 이온화된 가스 제트이다. 우리가 관측하는 다양한 유형의 활성 은하핵(AGN)은 이 모델로 설명할 수 있다. 이유는 지구를 향하는 블랙홀의 방향에 따라 AGN의 모양이 변화하기 때문이다. 모델에 따르면, 강착원반의 가장 안쪽은 밀도가 진공에 가까운 과열 영역이며, 이는 블랙홀로 흘러 들어간다. 블랙홀 코로나는 태양의 코로나와 비슷하지만, 온도는 태양의 수백만 도에 비해 훨씬 높은 수십억 도에 달한다. 그러나 넓게 확산되어 있기 때문에, 그 빛은 강착원반의 빛에 압도된다. 연구팀은 블랙홀의 코로나를 연구하기 위해 개기일식 중 태양의 코로나를 관찰하는 것과 유사한 기법을 사용했다. 블랙홀이 지구를 기준으로 하는 방향은 일부 블랙홀의 경우 가스와 먼지의 토러스가 강착원반 영역에 대한 우리의 시야를 가리는 반면, 다른 블랙홀의 경우 원반을 직접 볼 수 있다. 이를 가려진 블랙홀과 가려지지 않은 블랙홀이라고 한다. 가려진 블랙홀은 강착원반의 빛이 시야에서 가려지기 때문에 개기일식으로 가려진 태양과 유사하다. 블랙홀의 코로나도 마찬가지이다. 그러나 블랙홀 코로나는 너무 뜨거워서 극도로 높은 에너지의 X선을 방출한다. 이 X선은 토러스의 물질을 산란시키고 우리의 시야로 반사될 수 있다. 연구진은 나사(NASA)의 이미징X선편광측정탐사선(IPXE)에서 얻은 데이터를 사용, 우리 은하의 백조자리 X-1과 X-3, 대마젤란 성운의 LMG X-1과 X-3 등 12개의 가려진 블랙홀 데이터를 수집했다. 연구진은 이들 블랙홀의 코로나에서 산란된 X선을 관찰할 수 있었으며, 블랙홀 사이의 패턴도 감지할 수 있었다. 데이터에 따르면 코로나는 태양의 코로나와 비슷한 구체로 블랙홀을 둘러싼 것이 아니라 강착원반과 비슷한 원반으로 블랙홀을 둘러싸고 있다. 이번 연구는 천문학계에서 블랙홀 모델을 다듬는 데 도움이 될 것으로 기대된다. 또한 블랙홀이 어떻게 물질을 소비하고, 먼 은하에서 관측하는 AGN에 동력을 공급하는지를 이해하는 데 기여할 것으로 보인다.
-
- IT/바이오
-
[우주의 속삭임(80)] 블랙홀 둘러싸고 있는 코로나 모양 첫 공개
-
-
휴머노이드 로봇, 2028년 중국 달 탐사선 창어 8호 투입 예정
- 달의 남극에서 자원 탐사 기술을 시험하려는 중국의 달 임무가 구체화되고 있으며, 이 임무에는 휴머노이드 로봇이 참여할 가능성이 높은 것으로 보인다고 스페이스닷컴이 전했다. 휴머노이드 로봇이 참여하는 달 미션은 2028년으로 예정된 창어 8호 달 탐사선이 대상이다. 창어 8호 우주선을 설계하고 있는 왕치옹 수석 연구원은 최근 SNS 게시물을 통해 중국 정부가 추진하고 있는 달 탐사 프로젝트의 업데이트 버전을 발표했다. 2028년 발사될 창어 8호는 달의 남극 인근에 착륙한다. 이 프로젝트를 위한 탐사선 설계는 중국 국가항천국(CNSA)이 주도하고 있으며 왕치옹이 설계 책임을 맡고 있다. 달 남극에 착륙하면 현장에서의 자원 활용 기술을 시험할 예정이며, 가능한 상황이라면 3D 프린팅 기술을 사용해 달의 표토로 벽돌을 만든다는 계획도 수립했다. 나아가 지상 생태계 실험도 실시할 방침이다. SNS에 발표된 게시물에는 달 임무를 수행할 창어 8호 우주선을 자세히 설명하는 슬라이드도 포함돼 있다. 종전의 창어 우주선과 같은 네 발 착륙선에는 카메라, 망원경, 지진계를 포함한 다양한 과학 장비가 탑재되어 있다. 또한 달 표면에 탑재물과 우주선을 운반할 크레인도 갖추고 있다. 이 착륙선은 6륜의 탐사 로버를 실어 나르게 되는데, 이 로버에는 파노라마 카메라, 달 투과 레이더, 적외선 분광계, 샘플 분석 및 저장 페이로드 등이 장착될 예정이다. 네 개의 바퀴와 휴머노이드 로봇이 같이하고 있는 다른 우주선도 게시물에 언급됐다. 우주선의 미션이 무엇인지에 대해서는 자세한 설명이 없다. 다만 휴머노이드 로봇이 인간 우주인과 함께 탐사에 나서는 것 아니냐는 추정이 나온다. 창어 8호는 2026년으로 예정된 창어 7호 임무와 함께 중국이 계획한 국제 달 연구 기지 건설의 전초 프로젝트이며, 연구 기지는 러시아 및 다른 파트너의 참여를 통해 2030년대에 건설할 계획이다.
-
- IT/바이오
-
휴머노이드 로봇, 2028년 중국 달 탐사선 창어 8호 투입 예정
-
-
[우주의 속삭임(79)] "달 뒷면, 한때 화산 폭발"
- 미국과 중국 연구원들이 달 뒷면에서 한때 화산이 폭발했다는 증거를 발견했다. 중국 연구팀이 달 탐사선 창어 6호가 수집한 샘플을 분석한 결과 신비한 달 뒷면에서 42억년 이상된 현무암(화산 폭발 후 형성된 현무암) 조각이 발견됐다고 BBC가 전했다. 이번 연구 결과는 지난 11월 15일 학술지 네이처와 사이언스에 게재됐다. 과학자들은 지구에서 볼 수 있는 달의 앞면에서 화산 활동이 있었다는 사실은 이미 알고 있었다. 그러나 달 뒷면은 앞면과 지질학적으로 매우 다르며, 대부분의 지역이 여전히 인간의 손이 닿지 못한 미탐사 지역으로 남아 있다. 중국 달 탐사선 창어 6호는 지난 6월부터 약 2개월간의 임무 끝에 달 뒷면에서 처음으로 토양 샘플을 회수하는 데 성공했다. 중국 과학아카데미의 전문가가 이끄는 연구진은 방사성 연대 측정법을 사용해 화산암의 연대를 확인했다. 분석 결과 약 28억3000만년 전에 '놀랍도록 젊은 분화'가 일어났다는 것을 밝혀냈다. 이는 달 앞면에서는 발견되지 않은 것이다. 지질학 및 지구물리학 연구소의 치우리 리교수는 상세한 동료 검토에서 "이것은 매우 흥미로운 연구"라고 적었다. 그는 "창어 6호 샘플에서 나온 최초의 지구 연대 연구이며, 달과 행성 과학계에 매우 중요한 연구 결과가 될 것"이라고 덧붙였다. 달의 뒷면은 '어두운 부분'으로 알려져 있지만, 지구에 있는 우리가 못 볼뿐 실제로는 햇빛을 많이 받는다. 이는 달이 지구와 수평으로 고정되어 있고, 지구 공전 시간이 약 27일로 항상 달의 같은 면이 지구를 향하고 있기 때문이다. 달 뒷면은 지구에서 볼 수 없기 때문에 오랫동안 미지의 영역이었다. 하지만 1959년 러시아(구 소련)의 루나 3호가 처음으로 달의 뒷면을 찍어 지구로 전송하면서 그 비밀이 밝혀지기 시작했다. 이후 중국의 달 탐사선 창어 4호가 2019년 1월 3일 인류 최초로 달 뒷면에 착륙해 탐사를 진행했다. 착륙 지점은 달 남극 에이트켄 분지 내에 있는 본 카르만 크레이터다. 달 뒷면의 샘플 회수 임무를 띤 창어 6호는 2024년 5월 3일 지구를 떠나 2024년 6월 1일 달 뒷면에 무사히 착륙했다. 참고로 달 앞면에는 미국, 소련, 중국, 인도, 일본 등이 착륙에 성공했다. 또한 달 남극에는 물이 있는 것으로 알려져 있다. 인도 달 탐사선 찬드라얀 3호는 2023년 7월 14일 발사돼 8월 23일 인류 최초로 달 남극에 착륙하는 데 성공했다. 이로써 인도는 미국, 러시아, 중국에 이어 네 번째로 달 착륙에 성공한 국가로 이름을 올렸다. 중국은 달에서 물을 찾고 영구 기지 건설 등을 조사하기 위해 2030년까지 세 번의 무인 임무를 더 계획하고 있다. 아울러 2030년까지 유인 우주선을 달에 보내는 것을 목표로 하고 있다. 미국도 아르테미스 3호 임무를 통해 2026년까지 우주비행사를 다시 달에 보낼 계획이다. 달 뒷면에는 헬륨-3이라는 희귀한 자원이 풍부하게 매장되어 있다고 알려져 있어 미래에는 달 뒷면에 기지를 건설하고 자원을 채굴할 수도 있을 것으로 전망돼 우주과학 선진국 간의 치열한 경쟁이 예상된다.
-
- IT/바이오
-
[우주의 속삭임(79)] "달 뒷면, 한때 화산 폭발"
-
-
[우주의 속삭임(78)] 목성에는 단단한 땅이나 바위가 없다…그 이유는?
- 목성에는 지구에서 밟는 풀이나 흙과 같이 사람이 걷거나 우주선이 착륙할 수 있는 단단한 표면이 없다. 그 이유는 뭘까. 온갖 특이한 현상을 연구하는 물리학계에서도 '표면이 없는 세계'라는 개념은 이해하기 어렵다고 한다. 나사(NASA)의 로봇 탐사선 주노(Juno)가 이상한 행성인 목성 궤도를 9년째 공전하고 있는 지금도 목성의 많은 부분은 여전히 미스터리로 남아 있다. 태양에서 다섯 번째 행성인 목성은 화성과 토성 사이에 있다. 태양계에서 가장 큰 행성으로, 1000개 이상의 지구가 들어갈 만큼 크고 여유 공간도 있다. 태양계의 수성, 금성, 지구, 화성 등 네 개의 내행성은 모두 단단한 암석 물질로 이루어져 있지만, 목성은 태양과 유사한 구성을 가진 가스 행성이다. 소용돌이치고, 폭풍우가 몰아치며, 격렬하게 난기류를 일으키는 가스 덩어리의 거대 구체다. 목성의 일부 지역에서는 바람이 시속 약 640km 이상으로 불고 있다. 이는 지구의 5등급 허리케인보다 약 3배 빠른 속도다. 지구 대기권 꼭대기에서 시작해 약 100km 아래로 내려가면 기압이 지속적으로 증가한다. 궁극적으로는 땅이든 물이든 지구 표면에 부딪힌다. 목성의 경우, 대부분이 수소와 헬륨으로 이루어진 대기권의 꼭대기에서 내려가기 시작하면 지구와 마찬가지로 더 깊이 들어갈수록 압력이 증가한다. 목성의 압력은 엄청나다. 위의 가스층이 점점 더 아래로 밀려 내려감에 따라, 그것은 마치 바다 밑바닥에 있는 것과 같다. 지구의 물 대신 목성은 가스로 둘러싸여 있다. 압력이 너무 강해져서 인체가 붕괴될 것이다. 압력에 눌려 사망하게 되는 것이다. 1600km 아래로 내려가면 뜨겁고 밀도가 높은 가스가 이상하게 작동하기 시작한다. 가스는 액체 수소 형태로 바뀌어 물이 없는 바다를 만들어낸다. 물이 없다는 점은 다르지만, 태양계에서 가장 큰 바다라고 할 수 있다. 약 3만 2000km를 내려가면 수소는 흐르는 액체 금속에 더욱 가까워진다. 이 물질은 너무 이질적이다. 과학자들도 그 때문에 큰 어려움을 겪었으며, 최근에야 실험실에서 이 물질을 재현했다. 이 액체 금속 수소의 원자는 매우 단단히 압축돼 전자가 자유롭게 돌아다닐 수 있다. 이러한 층 전환은 갑작스러운 것이 아니라 점진적으로 이루어진다. 수소 가스에서 액체 수소로, 그리고 금속 수소로의 전환은 천천히 부드럽게 이루어진다. 어떤 지점에도 날카로운 경계나 고체 물질 또는 표면은 없다. 이렇게 내려가면 궁극적으로 목성의 핵에 도달하게 된다. 이것은 목성 내부의 중심 영역이며 표면과 혼동해서는 안 된다. 학자들은 여전히 목성 핵 물질의 정확한 성질에 대해 논쟁하고 있다. 그중에서 가장 호응을 받는 모델은 암석과 같은 고체가 아니라, 액체와 고체의 뜨겁고 밀도가 높은 금속성 혼합물과 비슷하다는 것이다. 목성 핵의 압력은 엄청나서 마치 지구 대기 1억 개가 누르는 것과 같다. 또는 신체의 각 제곱인치 위에 엠파이어 스테이트 빌딩 두 개가 얹히는 것과 같다. 압력만이 유일한 문제는 아니다. 목성의 핵에 도달하려는 우주선은 섭씨 2만 도의 극심한 열에 녹을 것이다. 이는 태양 표면보다 3배 더 뜨거운 온도다. 목성은 이상하고도 무서운 곳이다. 그러나 목성이 없었다면 인간이 존재하지 않았을 수도 있다. 그 이유는 목성이 지구를 포함한 태양계 내행성을 보호하는 방패 역할을 하기 때문이다. 목성은 엄청난 중력으로 수십억 년 동안 소행성과 혜성의 궤도를 바꾸어 놓았다. 목성의 개입이 없었다면 우주 잔해 중 일부가 지구에 충돌했을 수도 있다. 만약 하나의 충돌이 대격변 수준이었다면 지구는 멸종 수준의 사건을 일으켰을 것이다. 공룡의 대멸종을 연상하면 납득할 수 있다. 목성은 지구 생명체의 존재에 도움을 주었을지 모르지만, 목성 자체는 생명체가 살기에 매우 부적합한 곳이다. 그러나 목성의 위성인 유로파는 다르다. 태양계의 다른 곳에서 생명체를 찾을 수 있는 가장 좋은 기회가 될 수 있다. 나사의 유로파 클리퍼(Europa Clipper)는 지난 10월에 발사된 로봇 탐사선으로, 유로파를 약 50회 비행하며, 이를 통해 위성의 거대한 지하 바다를 연구할 계획이다. 탐사선은 2030년 4월에 도착할 예정이다.
-
- IT/바이오
-
[우주의 속삭임(78)] 목성에는 단단한 땅이나 바위가 없다…그 이유는?
-
-
[우주의 속삭임(77)] 중국 탐사선, 화성 고대 바다 존재 증거 발견…과학계 논쟁 가열
- 중국의 화성 탐사 로버 '주롱(Zhurong)'이 고대 화성에 광활한 바다가 존재했음을 뒷받침하는 새로운 증거를 발견했다는 연구 결과가 발표되어 과학계의 이목이 집중되고 있다. 8일 네이처(Nature)지에 게재된 연구 논문에 따르면, 주롱은 2021년 화성 북반구 유토피아 평원에 착륙한 이후 고대 바다의 흔적으로 추정되는 다양한 지형적 특징을 포착했다고 야후 뉴스가 이날 보도했다. 연구를 이끈 홍콩 폴리텍 대학교의 우보(Wu Bo) 교수는 주롱의 착륙 지점 주변에서 "움푹 패인 원뿔형 구조, 다각형 홈, 침식된 흔적" 등 과거 바다의 존재를 시사하는 여러 특징을 발견했다고 밝혔다. 특히, 연구팀은 주롱이 수집한 정보와 위성 데이터 분석을 통해 이 지역 근처에 과거 해안선이 존재했을 가능성을 제기했다. 이들은 약 37억 년 전 홍수로 인해 바다가 형성되었고, 이후 바닷물이 얼어붙으면서 해안선이 만들어졌으며, 34억 년 전쯤 사라졌을 것으로 추정했다. 그러나 이러한 연구 결과에 대한 반론도 제기되고 있다. 펜실베이니아 주립 대학교의 벤자민 카르데나스 교수는 화성의 강한 바람이 수십억 년 동안 퇴적물을 이동시키고 암석을 침식시켰을 가능성을 간과했다며 연구 결과에 회의적인 입장을 보였다. 그는 과거 모델링 연구 결과를 인용하며 "느린 화성 침식 속도로도 오랜 시간에 걸쳐 해안선의 흔적이 사라질 수 있다"고 주장했다. 이에 대해 우보 교수는 바람에 의한 침식 가능성을 인정하면서도, 운석 충돌로 인해 지하 암석과 퇴적물이 지표면으로 노출될 수 있다는 점을 강조했다. 화성 바다 존재 여부에 대한 논쟁은 여전히 진행 중이지만, 이번 연구 결과는 화성 생명체 존재 가능성에 대한 탐구에 중요한 단서를 제공할 것으로 기대된다. 카르데니아 교수는 "대부분의 과학자들은 지구 생명체가 해저 열수 분출구 주변이나 바닷물과 공기가 만나는 조간대에서 발생했다고 생각한다"며 "바다 존재 증거는 화성 생명체 서식 가능성을 높이는 요인"이라고 설명했다. 이번 연구는 화성의 과거 환경을 이해하고 생명체 존재 가능성을 탐색하는데 중요한 발검음이 될 것으로 평가되며, 향후 화성 암석 샘플을 지구로 가져와 분석하는 임무를 통해 더욱 명확한 결론을 얻을 수 있을 것으로 예상된다.
-
- IT/바이오
-
[우주의 속삭임(77)] 중국 탐사선, 화성 고대 바다 존재 증거 발견…과학계 논쟁 가열
-
-
로봇, 후쿠시마 원전 사고 현장서 방사선 샘플 첫 회수
- 로봇이 지난 2011년 쓰나미로 파괴된 후쿠시마 다이이치 원자력 발전소에서 처음으로 방사성 연료 샘플을 성공적으로 회수했다고 인디펜던트가 전했다. 텔레스코(Telesco)라는 이름의 이 원격 조종 로봇은 낚싯대와 유사한 팔을 이용해 원자로 2호기의 주요 격납용기 바닥에 있는 용융 연료(핵연료) 파편(데브리) 더미에서 최대 5mm 크기의 샘플을 분리해 냈다. 이는 아주 작은 그래놀라 조각 정도의 크기였다. 로봇은 용융 연료 조각을 장착된 앞쪽 집게에 넣고 이를 안전하게 보관하기 위해 밀폐된 용기로 운반했다. 원자력 발전소 운영사인 도쿄전력 홀딩스(TEPCO)는 방호복을 입은 작업자들이 격납 용기에서 채취한 샘플을 제거했다고 밝혔다. 원자로에서 로봇에 의해 용융 연료 샘플이 회수된 것은 처음이며, 이는 수십 년에 걸친 해체 과정에서 중요한 단계로 발전했음을 의미한다. 그러나 로봇의 샘플 회수는 샘플의 방사능이 지정된 한계치(임계치) 이하이며 용기에 안전하게 보관되어 있다는 것이 확인된 후에야 완료된다. 방사능이 한계치를 초과하면 로봇은 다른 샘플을 회수하기 위해 원자로에 다시 들어가야 한다. TEPCO 관계자들은 현재 샘플이 요구 사항(한계치 이하)을 충족할 만큼 작을 것으로 예상했다. 원자로에는 약 880톤의 치명적인 방사능 용융 연료가 남아 있는 것으로 추정된다. TEPCO는 발전소를 어떻게 관리할 것인가에 대한 방법을 결정하기 위해 여러 차례 로봇에 의한 탐사를 수행했다. 2011년 3월 11일, 규모 9.0의 지진과 쓰나미가 일본 북부 해안의 일부 지역을 강타하면서 약 2만 명이 사망했다. 쓰나미가 덮쳤을 때 후쿠시마 원자력 발전소의 6개 원자로 중 3개가 가동 중 녹아내렸고 방사능이 유출됐다. 한편, TEPCO는 텔레스코가 13년 전 붕괴 당시 대량의 용융 연료가 떨어진 원자로 2호기 코어 아래에서 3g 미만 무게의 샘플 조각을 가지고 돌아왔다고 확인했다. 발전소장 아키라 오노는 텔레스코가 용융 연료 해체 전략을 계획하고, 사고가 어떻게 발생했는지 소급해 이해하는 데 도움이 되는 핵심 데이터를 제공할 수 있을 것이라고 말했다. 정부와 TEPCO는 오염 정화에 30~40년이 걸릴 것이라는 목표를 설정했지만, 전문가들은 이것이 지나치게 낙관적인 것이며 재평가가 필요하다고 지적했다.
-
- IT/바이오
-
로봇, 후쿠시마 원전 사고 현장서 방사선 샘플 첫 회수
-
-
[우주의 속삭임(74)]토성 위성 타이탄, 10km 두께 메탄 얼음층 존재…행성 과학 새 지평 열어
- 토성의 위성 중 하나인 타이탄의 메탄 층에 대한 미스터리가 한겹 풀렸다. 타이탄은 토성의 위성 중 가장 큰 천체로, 태양계 내에서는 목성의 위성 가니메데에 이어 두 번째로 크다. 미국 하와이대학교 마노아 캠퍼스의 행성 과학자들은 새로운 연구를 통해 타이탄의 얼음 속에 메탄 가스가 갇혀 최대 10km 두께의 독특한 지각을 형성하고 있음을 밝혀냈다고 사이테크데일리가 보도했다. 이 지각은 그 아래 얼음층을 따뜻하게 하고 타이탄의 메탄 대기를 설명하는 데 도움이 될 것으로 예상된다. 타이탄의 메탄 미스터리 풀다 토성의 가장 큰 위성인 타이탄은 태양계에서 지구 외에 대기와 액체 상태의 바다, 강, 호수를 가진 유일한 천체다. 극도로 추운 기온 때문에 이 액체들은 메탄과 에탄 같은 탄화수소로 이루어져 있으며, 표면은 단단한 고체 물 얼음으로 구성되어 있다. 하와이 지구물리학 및 행성학 연구소(HIGP)의 로렌 슈어마이어 연구원이 이끄는 연구팀은 타이탄의 충돌 크레이터가 예상보다 수백 미터 얕다는 사실을 발견했다. 나사(NASA) 데이터에 따르면 타이탄에서 확인된 크레이터는 90개에 불과하며, 이는 타이탄의 표면과 지질학적 역사에 대한 흥미로운 질문을 제공한다. 크레이터 분석을 통한 통찰 슈어마이어 연구원은 "다른 위성들을 기반으로 했을 때 타이탄 표면에 더 많은 충돌 크레이터가 있고, 그 크레이터들은 우리가 관찰한 것보다 훨씬 더 깊을 것으로 예상했기 때문에 분화구가 실제로는 얕다는 사실이 매우 놀라웠다"고 말했다. 그는 "우리는 타이탄 특유의 무언가가 크레이터를 얕게 만들고 비교적 빠르게 분화구를 사라지게 한다는 것을 깨달았다"고 덧붙였다. 연구팀은 이 미스터리를 조사하기 위해 컴퓨터 모델을 사용해 타이탄의 얼음층이 메탄 클래스레이트 얼음층으로 덮여 있을 경우, 충돌 후 지형이 어떻게 변화흐는 지 시뮬레이션했다. 메탄 클래스레이트 얼음은 결정 구조 내에 메탄가스가 갇힌 일종의 고체 물 얼음이다. 타이탄 크레이터의 초기 형태는 알려져 있지 않기 때문에 연구팀은 비슷한 크기의 목성의 가니메데의 크레이터를 기반으로 두 가지 초기 깊이를 모델링하여 비교했다. 슈어마이어 연구원은 "이 모델링 접근 방식을 사용하여 메탄 클래스레이트 지각의 두께를 5~10km로 제한할 수 있었다. 이 두께를 사용한 시뮬레이션에서 관측된 크레이터와 가장 일치하는 크레이터 깊이가 생성되었기 때문이다"라고 설명했다. 그는 "메탄 클래스레이트 지각은 타이탄의 내부를 따뜻하게 하고 놀라울 정도로 빠른 지형 이완을 유발하며, 이는 지구의 빠르게 움직이는 따뜻한 빙하와 비슷한 속도로 크레이터를 얕게 만든다"라고 부연했다. 타이탄 대기에 미치는 메탄의 영향 메탄 얼음층의 두께를 추정하는 것은 타이탄의 메탄 대기 기원을 설명하고 연구자들이 타이탄의 탄소 순환, 액체 메탄 기반 '수문 순환(물이 끊임 없이 이동하는 현상)' 및 기후 변화를 이해하는 데 도움이 되기 때문에 중요하다. 슈어마이어 연구원은 "타이탄은 온실가스 메탄이 대기를 어떻게 따뜻하게 하고 순환하는지 연구할 수 있는 천연 실험실"이라고 말했다. 그는 "시베리아 영구 동토층과 북극 해저 아래에서 발견되는 지구의 메탄 클래스레이트 수화물은 현재 불안정해지고 메탄을 방출하고 있다. 따라서 타이탄에서 얻은 교훈은 지구에서 일어나는 과정에 중요한 통찰력을 제공할 수 있다"고 덧붙였다. 타이탄의 생명체 존재 가능성 이러한 새로운 발견에 비추어 볼 때 타이탄에서 볼 수 있는 지형은 따뜻할 수도 있다. 메탄 클래스레이트 얼음 지각의 두께를 제한함으로써 타이탄의 내부가 이전에 생각했던 것처럼 차갑고 딱딱하며 비활성 상태가 아니라 따뜻할 가능성이 있음을 알 수 있다는 것. 슈어마이어 연구원은 "메탄 클래스레이트는 일반적인 물 얼음보다 강하고 단열성이 뛰어나다"면서 "클래스레이트 지각은 타이탄의 내부를 단열하고 물 얼음층을 매우 따뜻하고 연성으로 만들며 타이탄의 얼음층이 천천히 대류하고 있거나 대류했음을 의미한다"고 설명했다. 향후 탐사 임무 슈어마이어 연구원은 "두꺼운 얼음층 아래 타이탄의 바다에 생명체가 존재한다면, 생명체의 흔적(바이오마커)은 우리가 미래 임무를 통해 더 쉽게 접근하거나 볼 수 있는 곳까지 타이탄의 얼음층 위로 운반되어야 할 것"이라면서 "이는 타이탄의 얼음층이 따뜻하고 대류하는 경우 발생할 가능성이 더 크다"고 말했다. 연구팀은 2028년 7월 발사되어 2034년 타이탄에 도착할 예정인 NASA 드래곤플라이 미션을 통해 이 위성을 가까이에서 관찰하고, 셀크라는 크레이터를 포함한 얼음 표면을 추가로 조사할 수 있는 기회를 갖게 될 것이다. ◇ 참고: Schurmeier, L. R., Brouwer, G. E., Kay, J. P., Fagents, S. A., Marusiak, A. G., & Vance, S. D. (2024). Rapid Impact Crater Relaxation Caused by an Insulating Methane Clathrate Crust on Titan. The Planetary Science Journal, DOI: 10.3847/PSJ/ad7018
-
- IT/바이오
-
[우주의 속삭임(74)]토성 위성 타이탄, 10km 두께 메탄 얼음층 존재…행성 과학 새 지평 열어
-
-
[퓨처 Eyes(55)] 우주 쓰레기, 인류의 우주 꿈을 위협한다: 4300톤의 그림자, 지구 덮치나?
- 인류의 우주 탐사 역사는 아직 60년 남짓에 불과하지만, 그 짧은 시간 동안 지구 궤도에는 엄청난 양의 우주 쓰레기가 축적되었다. 유럽우주국(ESA)에 따르면 지구 궤도를 도는 위성 파편 등 우주 쓰레기의 무게는 무려 1만3000톤에 달한다. 그중 작은 파편에 해당하는 우주 쓰레기는 4300톤으로, 자유의 여신상(약 204톤) 약 21개에 달하는 무게의 우주 쓰레기가 지구 주위를 맴돌며 인류의 우주 꿈을 위협한다. 1960년대 본격적인 우주 탐사 시대가 열린 이후, 수많은 국가들이 앞다투어 우주로 진출했다. 1969년 아폴로 11호의 달 착륙은 인류에게 새로운 가능성을 제시했고, 이후 미국, 러시아, 중국, 일본, 인도, 유럽연합 등 우주 강국들은 탐사선 개발에 박차를 가하며 우주 경쟁을 펼쳐왔다. 최근에는 한국과 아랍에미리트까지 가세하며 우주를 향한 열망은 더욱 뜨거워지고 있다. 통제 불능의 우주 쓰레기 증가 그러나 우주 탐사의 이면에는 어두운 그림자가 드리워져 있다. 바로 우주 쓰레기 문제다. 나사(NASA)에 따르면 2015년 기준 지구 상공에 위성을 포함해 약 3만 개의 물체가 돌고 있는 것으로 나타났다. 특히 고장난 인공위성, 탐사선의 파편, 로켓 발사 후 남은 잔해물 등이 지구 궤도를 떠돌며 심각한 위협으로 부상하고 있다. 이러한 우주 쓰레기는 운용 중인 인공위성이나 탐사선과 충돌하여 통신 장애, GPS 기능 중단 등의 문제를 일으킬 수 있다. 최근 몇 달 사이, 궤도상에서 폐기된 위성과 로켓 잔해가 잇따라 파손되면서 우주 쓰레기 문제가 더욱 심각해지고 있다. 우주 쓰레기가 급증하면서 '케슬러 증후군'이 현실화 될 것이라는 우려가 제기되고 있다. 1978년 NASA의 과학자 도널드 J. 케슬러가 제시한 케슬러 증후군은 우주 쓰레기가 서로 충돌하면서 기하급수적으로 늘어나, 결국 지구 궤도 전체를 뒤덮어 인공위성이나 우주선의 운용을 불가능하게 하는 현상을 말한다. 케슬러 증후군은 아직까지는 가설 단계지만 늘어난 우주 쓰레기들이 서로 충돌하면서 더욱 많은 파편들이 기하급수적으로 늘어나면서 현실적인 위협으로 인식되고 있다. 실제로 지난 6월에는 러시아의 RESURS-P1 위성이 지구 저궤도에서 파괴되어 100개 이상의 추적 가능한 파편을 생성했으며, 7월에는 미국의 DMSP 5D-2 F8 위성이 분해되었다. 8월에는 중국의 장정 6A 로켓 상단 부분이 파편화되면서 최소 283개의 추적 가능한 파편과 수십만 개의 미세 파편을 발생시켰다. 이처럼 폐기된 우주 물체의 파손은 크고 작은 파편들을 양산하며 우주 쓰레기 문제를 심화시키고 있다. 특히 미세 파편의 경우 추적이 어려워 더 큰 위험 요소로 작용한다. 이러한 파편들은 현재 운용 중인 위성이나 우주선과 충돌하여 심각한 피해를 초래할 수 있다. 최근 발생한 인텔샛 33e 위성(Intelsat 33e·대형 통신 위성) 파손 사고는 이러한 우려를 더욱 증폭시키고 있다. 인텔샛은 2024년 10월 19일, 인도양 상공 약 3만 5000km 궤도에서 인텔샛 33e 위성이 갑작스러운 전력 손실로 파괴됐다고 밝혔다. 최소 20개의 조각으로 분해된 이 위성은 유럽, 아프리카, 중동, 아시아 지역의 위성 통신 서비스에 큰 차질을 빚었다. 무게 6600kg에 리무진 크기의 인텔샛 33e 위성은 보잉에서 설계와 제작을 맡았고 2016년 궤도에 진입해 8년 동안 임무를 수행으나 갑자기 붕괴됐다. 위성이 갑자기 분해된 정확한 이유는 아직까지 불분명하다. 위성 파괴는 연쇄적인 충돌을 야기하여 피해 규모를 더욱 키울 수 있다는 점에서 우주 쓰레기 문제는 '시한폭탄'과 같다. 우주 쓰레기 추적과 관리의 어려움 유럽우주국(ESA)에 따르면, 현재 지구 궤도에는 10cm 이상의 우주 쓰레기가 4만 개 이상, 1cm 미만의 미세 파편은 무려 1억 3000만 개 이상 존재한다. 이를 무게로 환산하면 약 1만3000톤에 달하며, 그 중 4300톤이 작은 파편으로 추정된다. 나사(NASA)에 따르면 사과 크기의 우주 쓰레기가 약 2만1000개, 구슬 크기의 쓰레기가 50만개, 추적이 어려울 정도의 작은 쓰레기가 최고 1억개에 이른다고 추정한다. 특히 지구 저궤도(LEO)에 집중된 우주 쓰레기는 추적과 관리가 매우 어렵다. 정지궤도(GEO)에서 발생하는 파편들은 위치 추적이 더욱 까다로워 효과적인 관리 시스템 마련이 시급하다. 다행히 우주 쓰레기 문제 해결을 위한 노력도 활발히 진행되고 있다. JAXA(일본 우주항공연구개발기구)의 지원을 받는 스타트업 스타 시그널 솔루션스(Star Signal Solutions)는 '사테나비 S-CAN'이라는 혁신적인 충돌 회피 네비게이션 시스템을 개발했다. 이 시스템은 위성 운용자들이 우주 쓰레기의 궤도를 실시간으로 모니터링하고 충돌 위험을 사전에 예측하여 회피할 수 있도록 지원한다. 스타 시그널 솔루션스의 이와키 요타이 대표는 "위성 운용에는 전문 지식과 24시간 대응 체계가 요구되며, 막대한 운영 비용이 발생한다"고 지적하며, "사테나비 S-CAN은 최적의 회피 경로를 제시하여 운영 부담을 줄이고 연료 소비를 최소화하여 비용 절감 효과를 가져온다"고 강조했다. 하지만 기술 개발만으로는 우주 쓰레기 문제를 완전히 해결할 수 없다. 우주 쓰레기 문제는 본질적으로 전 지구적 차원의 문제이기 때문에 국제적인 협력이 필수다. 1972년 제정된 '우주물체에 의한 손해에 대한 국제책임협약'은 우주 물체 발사 국가의 손해 배상 책임을 명시하고 있지만, 실제 적용 사례는 매우 드물다. 우주 공간의 특수성으로 인해 책임 소재 규명이 어렵기 때문이다. 전문가들은 우주 쓰레기 문제 해결을 위해서는 각국의 협력을 통한 국제적 감시 시스템 구축 및 규제 강화가 시급하다고 강조한다. 우주 물체의 안전한 폐기, 추적 기술 개선, 파편 발생 최소화 등 다각적인 노력이 필요하며, 지속 가능한 우주 탐사를 위한 국제 사회의 공동 책임 의식이 무엇보다 중요하다. 국제우주정거장, 지구 재진입후 폐기 예정 참고로 국제우주정거장(ISS)은 2030년 운영 종료 후 2031년 1월에 폐기될 예정이다. NASA는 2031년 1월에 ISS를 지구 대기권으로 재진입시켜 태우는 방식으로 폐기할 계획이다. 잔해는 '우주선의 무덤'으로 불리는 남태평양의 포인트 니모(Point Nemo)에 수장된다. ISS는 1998년부터 운영되어 왔으며, NASA, 캐나다우주국(CSA), 유럽우주국(ESA), 일본우주항공연구개발기구(JAXA), 러시아 연방우주공사(Roscosmos) 등이 협력해 운영해 왔다. 하지만 ISS는 노후화로 인해 유지 보수 비용이 증가하고 있으며, 새로운 우주 탐사 계획을 위해 폐기가 결정됐다. ISS 폐기 후에는 민간 우주 정거장이 그 역할을 대신할 것으로 예상된다. 인류의 우주 탐사는 앞으로도 계속될 것이다. 하지만 우주 쓰레기 문제를 해결하지 못한다면 인류의 우주 꿈은 쓰레기 더미에 묻혀버릴지도 모른다. 지금부터라도 국제 사회가 힘을 모아 책임 있는 자세로 우주 쓰레기 문제 해결에 적극적으로 나서야 할 때다.
-
- 포커스온
-
[퓨처 Eyes(55)] 우주 쓰레기, 인류의 우주 꿈을 위협한다: 4300톤의 그림자, 지구 덮치나?
-
-
[우주의 속삭임(73)] 지구에 떨어지는 운석, 대부분 '같은 곳'에서 왔다?
- 밤하늘을 가로지며 떨어지는 유성은 늘 보는 사람들을 매료시킨다. 그렇다면 지구에 도달해 밤하늘을 환하게 밝히는 유성은 과연 어디에서 왔을까? 우리 말에 유성과 별똥별이 있다. 일반적으로 비슷한 의미로 혼동하기 쉽지만 유성과 별똥별은 엄밀히 말하면 다른 뜻이다. 우주 공간을 돌아다니는 아주 작은 먼지나 돌멩이를 유성체라고 한다. 유성체가 지구 대기권으로 진입하면서 공기와의 마찰로 인해 빛을 내는 현상을 유성이라고 한다. 유성체가 대기 중에서 완전히 타지 않고 지표면까지 떨어진 것을 운석, 우리말로는 별똥별이라고 부른다. 매년 약 1만7000개의 유성이 지구 대기권에 진입하며, 그중 일부는 지표면에까지 도달한다. 과학자들은 이러한 운석을 통해 우주의 비밀을 탐구한다. 운석의 기원은 달이나 화성 등 다양하지만 대부분은 소행성에서 유래한다고 PHYS가 전했다. 최근 네이처(Nature)지에 발표된 두 연구는 이러한 운석의 기원을 더욱 명확히 밝혀냈다. 체코 카렐 대학교의 미로슬라프 브로즈(Miroslav Brož)와 유럽 남방 천문대의 미카엘 마셋(Michaël Marsset)이 이끄는 연구팀은 대부분의 운석이 소수의 소행성, 심지어는 특정 소행성에서 비롯되었다고 밝혔다. 이는 지구와 태양계 역사를 형성한 사건들에 대한 이해를 넓히는 데 기여한다. 이번 연구 결과는 학술지 네이처(Nature)에 게재됐다. 운석이란 무엇인가? 앞서 설명했듯이 유성이 지구 표면에 도달하면 '운석(meteorite)'이라고 부른다. 운석은 크게 석질운석, 철질운석, 석철질 운석 세 가지로 나뉜다. 석질운석 중 가장 흔한 종류는 '콘드라이트(chondrites)'로, 용융된 액체 방울 형태의 구형 입자를 포함하며 전체 운석의 85%를 차지한다. 대부분은 '일반 콘드라이트'로 철 함량과 광물 성분에 따라 H, L, LL의 세 가지 유형으로 나뉜다. '탄소질 콘드라이트(Carbonaceous chondrites)'는 점토 광물에 다량의 물과 아미노산 같은 유기물을 함유하고 있으며, 용융되지 않는 태양계 초기의 먼지 샘플이다. 반면 '아콘드라이트(achondrites)'는 콘드라이트와 달리 구형 입자가 없으며, 행성체에서 용융 과정을 거쳤다. 운석의 주요 공급원 '소행성대' 태양 주위를 공전하는 작은 천체인 소행성은 운석의 주요 공급원이다. 행성처럼 태양 주위를 돌지만, 행성보다 훨씬 작고 모양도 불규칙적인 경우가 많다. 대부분의 소행성은 화성과 목성 궤도 사이에 있는 '소행성대(Asteriod belt)'에 모여있으며, 목성의 중력에 의해 궤도를 돌고 있다. 목성과의 상호작용은 소행성 궤도를 교란시켜 충돌을 유발하고, 그 결과 발생한 파편들이 모여 '돌무더기 소행성'을 형성한다. 최근 하야부사와 오시리스-렉스 탐사선은 이러한 소행성에서 샘플을 채취해 지구로 가져왔다. 과학자들은 이룰 통해 특정 소행성 유형과 지구에 떨어지는 운석 사이의 연관성을 확인했다. 석질운석과 S형 소행성은 소행성대 안쪽에, 탄소질 콘드라이트와 유사한 C형 소행성은 바깥쪽에 분포한다. 소행성 '코로니스'와 '마살리아' 이번의 새로운 두 연구는 일반 콘드라이트 유형의 기원을 특정 소행성군, 특히 '코로니스'와 '마살리아' 소행성군으로 추적했다. 이는 운석 궤적 분석, 개별 소행성 관측, 모체 궤도 진화 모델링 등의 복잡한 과정을 통해 이루어졌다. 브로즈가 주도한 연구에 따르면 일반 콘드라이트는 3000만년 전에 발생한 지름 30km 이상의 소행성 충돌에서 비롯된 것으로 밝혀졌다. 상세한 컴퓨터 모델링에 따르면 코로니스와 마살리아 소행성군은 적절한 크기의 천체를 가지고 있으며 지구에 운석을 공급할 수 있는 위치에 있다. 특히 코로니스 소행성군의 '코로니스'와 '카린'은 H 콘드라이트의 주요 공급원일 가능성이 높으며 마살리아(L)와 플로라(LL) 계열은 L- 및 LL- 콘드라이트의 주요 공급원이다. 마셋이 주도한 연구는 마살리아에서 발견된 L 콘드라이트 운석의 기원에 대해 자세히 설명한다. 연구팀은 화성과 목성 사이의 소행성대에서 분자의 지문이 될 수 있는 특징적인 빛의 세기인 분광 데이터를 수집했다. 그 결과 지구에 있는 L 콘드라이트 운석의 구성이 마살리아 소행성 계열의 운석과 매우 유사하다는 사실이 밝혀졌다. 그런 다음 과학자들은 컴퓨터 모델링을 사용하여 약 4억 7000만 년 전에 발생한 소행성 충돌이 마살리아 소행성군을 형성했음을 보여주었다. 우연히도 이 충돌로 인해 스웨덴의 오르도비스기 석회암에서 풍부한 화석 운석이 발견되기도 했다. 이러한 연구 결과는 지구에 떨어지는 운석의 기원을 밝히고 태양계 형성 과정에 대한 이해를 높이는 중요한 역할을 한다. 또한 향후 운석의 기원 소행성을 탐사하는 임무의 기초 자료로 활용될 수 있을 것으로 기대된다.
-
- IT/바이오
-
[우주의 속삭임(73)] 지구에 떨어지는 운석, 대부분 '같은 곳'에서 왔다?
-
-
[우주의 속삭임(72)] 화성, 얼음 아래 생명체 존재 가능성⋯NASA 연구 결과 발표
- 화성에 과연 생명체가 존재할 수 있을까? 화성은 태양계에서 지구와 가장 닮은 행성으로, 붉은색 표면과 극지방의 만년설, 과거 물이 흘렀던 흔적 등 다양한 특징을 가지고 있다. 화성은 표면에 산화철이 풍부해 붉게 보인다. 이 때문에 '붉은 행성'이라는 별명을 가지고 있다. 과거에 물이 존재했던 흔적이 발견되면서 생명체가 존재했거나, 존재할 가능성이 제기되고 있다. 미국 항공우주국(나사·NASA)은 최근 홈페이지를 통해 화성 표면의 얼음 아래에 미생물이 서식할 수 있는 환경이 조성될 수 있다는 가능성을 제시했다고 밝혔다. NASA 연구진은 컴퓨터 모델링을 통해 화성의 얼음을 투과하는 햇빛의 양이 얼음 아래 얕은 물웅덩이에서 광합성을 일으키기에 충분하다는 것을 보여주었다. 지구에서도 얼음 내부에 형성된 유사한 물웅덩이에서 조류, 균류, 미세한 시아노박테리아(남조류) 등 광합성을 통해 에너지를 얻는 다양한 생명체가 발견됐다. 이 연구의 주요 저자인 NASA 제트추진연구소의 아디티아 쿨러는 "우주 어딘가에서 생명체를 찾고 있다면, 화성의 얼음층은 가장 근접하기 쉬운 장소 중 하나일 것"이라고 말했다. 화성 먼지 쌓인 얼음층 주목 연구진은 화성의 먼지가 섞인 얼음층에 주목했다. 나사에 따르면 화성에는 얼어붙은 물과 얼어붙은 이산화탄소라는 두 가지 얼음이 존재한다. 쿨러와 그의 동료 연구진은 네이처 커뮤니케이션즈 지구와 환경(Nature cummunications Earth & Environment)에 게재된 논문에서 과거 수백만년 동안 화성의 빙하기에 눈과 먼지가 섞여 표면에 떨어져 형성된 얼음층을 조사했다. 먼지 입자는 깊은 곳까지 햇빛이 도달하는 것을 막을 수 있지만, 표면 근처에서는 햇빛을 흡수해 얼음을 녹이고 얕은 웅덩이를 만들 수 있다. 지구에서도 먼지가 섞인 얼음에서 '크라이오코나이트(Cryconite) 구멍' 이라는 작은 공간이 형성되는 현상이 흔히 관찰된다. 바람에 날린 먼지 입자가 얼음에 쌓이고 햇빛을 흡수하면서 얼음이 녹아 물 웅덩이가 만들어지는 것이다. 어두운 먼지는 주변 얼음보다 더 많은 햇빛을 흡수해 얼음이 따뜻해지고 표면 아래 몇 피트까지 녹을 가능성이 있다. 이러한 물웅덩이는 조류 등 단순한 생명체에게 생존에 필요한 환경을 제공한다. 연구진은 이러한 현상이 화성에서도 일어날 수 있으며, 먼지가 섞인 얼음층 아래 3m 깊이까지 광합성이 가능할 정도의 햇빛이 도달할 수 있다고 분석했다. 또한, 얼음층은 얕은 물웅덩이의 증발을 막고 유해한 방사선으로부터 생명체를 보호하는 역할도 할 수 있다. 연구진은 화성의 북반구와 남반구의 위도 30도에서 60도 사이 지역에서 이러한 얼음층이 존재할 가능성이 높다고 예측했다. 쿨러는 앞으로 실험실에서 화성의 먼지가 섞인 얼음을 재현해 추가 연구를 진행하고, 화성에서 얕은 물웅덩이가 존재할 가능성이 높은 지역을 지도로 만들어 미래의 탐사 목표를 설정할 계획이다.
-
- IT/바이오
-
[우주의 속삭임(72)] 화성, 얼음 아래 생명체 존재 가능성⋯NASA 연구 결과 발표
-
-
"우주인은 프라다를 입는다"…아르테미스 달 탐사복 제작
- 이탈리아의 고급 패션 브랜드 프라다(Prada)가 액시엄 스페이스(Axiom Space)와 손잡고 나사(NASA)의 아르테미스 III(Artemis III) 미션을 위한 차세대 우주복을 제작했다고 와이어드 등 전문 매체들이 전했다. 1972년 이후 최초의 달 착륙이라는 역사를 쓸 아르테미스 III은 우주인을 달 표면으로 다시 보내면서 장인 정신과 최첨단 우주 공학을 결합한 혁신적인 첨단 우주복을 선보일 예정이다. 프라다의 우주복 디자인 분야 진출은 프라다는 물론 항공 산업으로서도 중요한 이정표다. 프라다 브랜드는 오뜨 꾸뛰르(소수 고객층을 위한 맞춤 패션)의 대명사이지만, 이 파트너십은 완전히 새로운 기술적 도전에 적응할 수 있음을 보여준다. 프라다의 엔지니어들은 액시엄 스페이스와 협력해 내구성, 기능성 및 편안함을 향상시키는 새로운 우주복의 소재와 디자인을 개발할 계획이다. 아르테미스 III 미션에 대한 이들의 참여는 항공 우주 이외의 산업이 우주 탐사에 참여할 새로운 길과 가능성을 열어준 것이다. 프라다는 명품 산업에서 오랫동안 갈고 닦은 고성능 직물 제조의 전문 지식을 우주복에 적용하는 데 중점을 둔다는 목표다. 프라다 그룹 마케팅 이사인 로렌조 베르텔리는 우주복 제작의 의미를 "인류를 위한 프라다의 미래지향적인 정신이 모험에 대한 열망과 새로운 지평인 우주에 대한 도전으로 확대된 결과"라고 정의했다. 베르텔리는 "90년대 루나 로사가 아메리카스 컵에 도전하면서 시작된 수십 년간의 실험, 최첨단 기술 및 디자인 노하우가 이제 아르테미스 시대의 우주복 디자인에 적용될 것“이라고 설명했다. 프라다는 달의 혹독한 환경을 염두에 두고 온도 변화와 미세 운석 충돌을 포함한 극한의 달 환경을 견딜 수 있는 새로운 소재를 통합해 우주인의 이동성을 최적화한다는 구상이다. 이 우주복은 달 탐사 임무를 지원하도록 맞춤화된 차세대 우주복 계획인 액시엄 스페이스의 AxEMU(Axiom Extravehicular Mobility Unit) 프로그램의 일부다. 액시엄 스페이스의 CEO인 마이클 서프레디니는 "프라다의 원자재, 제조 기술, 혁신적인 디자인에 대한 기술적 전문성은 달 표면에서 우주인의 편안함뿐만 아니라 기존 우주복에는 없는 필수 인적 요소를 고려하는 첨단 기술을 제공할 것이다"라고 밝혔다. 우주복은 극한의 기온과 달의 거친 먼지를 포함한 달의 적대적인 환경을 견뎌야 한다. 이 요구 사항을 충족하기 위해 두 회사는 우주복이 극한 조건에서도 내구성을 유지하는 동시에 우주인이 작업을 보다 효율적으로 수행할 수 있도록 혁신적인 원단 기술을 개발하고 있다. 이 협업은 패션과 기술 양자의 관계에 새로운 장을 열 것으로 보인다. 프라다의 소재 혁신 및 디자인 전문성과 액시엄 스페이스의 우주 비행 기능에 대한 집중력이 결합돼 미래 우주복 디자인의 새로운 벤치마크를 만들 것이라는 기대다. 인간이 달로 눈을 돌리고, 화성과 같은 훨씬 더 먼 목적지를 목표로 삼으면서 이전에는 우주 탐사와 관련이 없었던 산업 간의 협업이 더 보편화될 수 있을 것이다. 프라다라는 럭셔리 브랜드의 영향력은 이제 지구를 넘어 확장되고 있다. 우주 탐사가 광범위하게 진행됨에 따라 두 회사의 하이테크 협업은 우주 여행의 미래에 예상치 못한 파트너가 참여할 수 있음을 보여 주었다.
-
- IT/바이오
-
"우주인은 프라다를 입는다"…아르테미스 달 탐사복 제작
-
-
[우주의 속삭임(71)] 나사, 태양 11년 주기의 극대기 도달
- 나사(NASA)와 국립해양대기청(NOAA), 국제 태양주기예측패널은 태양이 태양 극대기에 도달했으며, 이는 내년에도 지속될 수 있다고 발표했다. 발표의 자세한 내용이 나사 홈페이지에 게재됐다. 태양 주기는 태양이 낮은 자기 활동과 높은 자기 활동을 반복하면서 거치는 자연스러운 주기다. 대략 11년마다 태양 주기가 최고조에 달할 때 태양의 자기극이 뒤집힌다. 지구에서는 북극과 남극이 10년마다 자리를 바꾸는 것과 같으며, 태양은 고요한 상태에서 활동적이고 폭풍우가 몰아치는 상태로 전환된다. 나사와 NOAA는 태양 흑점을 추적해 태양 주기의 진행 상황을 파악하고 궁극적으로 태양 활동을 예측한다. 태양 흑점은 자기장 선이 집중돼 발생하는 태양의 차가운 영역이다. 태양 흑점은 태양의 활동 영역, 즉 태양의 강렬하고 복잡한 자기장 영역의 가시적 구성 요소로, 태양 폭발의 원천이다. 워싱턴 소재 나사 본부의 우주 날씨 프로그램 책임자인 제이미 파보스는 "태양 활동 극대기에는 흑점 수가 증가하고, 이에 따라 태양 활동량도 증가한다"면서 "활동의 증가는 가장 가까운 별에 대해 새로운 지식을 쌓을 수 있는 기회를 제공하는 동시에 지구와 태양계 전체에 실제적인 영향을 미친다"고 말했다. 태양 활동은 우주 날씨라고 알려진 우주의 조건에 큰 영향을 미친다. 이는 우주의 위성과 우주인, 라디오와 GPS 등 통신 및 항법 시스템, 지구의 전력망에 영향을 미칠 수 있다. 태양이 가장 활발할 때 우주 기상 현상이 더 빈번해진다. 태양 활동으로 인해 최근 몇 달 동안 오로라 현상이 증가했음은 물론 위성과 인프라에 영향을 미쳤다. 2024년 5월, 대규모 태양 플레어와 코로나 질량 방출(CME)이 일어나면서 하전 입자와 자기장 구름이 지구를 향해 발사돼 20년 만에 지구에서 가장 강력한 지자기 폭풍을 일으켰으며, 지난 500년 동안 기록된 가장 강력한 오로라가 하늘을 수놓았다. NOAA의 우주 기상 운영 책임자인 엘세이드 탈라트는 "지금이 이번 태양 주기에서 볼 수 있는 태양 활동의 정점이라는 것을 의미하지는 않는다"라고 말했다. 그는 "태양이 극대기에 도달했지만, 태양 활동이 정점에 도달하는 달은 몇 달 또는 몇 년 동안 확인되지 않을 것"이라고 언급했다. 태양 극대기의 정확한 정점을 여러 달 동안 결정할 수 없을 것이라는 의미다. 정점 이후 태양 활동이 지속적으로 감소한 것을 추적한 후에야 식별할 수 있게 된다. 다만 전문가들은 최근 2년이 태양 주기의 활동적인 단계의 일부였음을 확인했는데, 이는 이 기간 동안 태양 흑점이 지속적으로 많았기 때문이다. 학자들은 태양이 감소 단계에 들어가 태양 최소기로 돌아가기 전까지 최대 단계가 1년 정도 더 지속될 것으로 예상했다. 1989년부터 나사와 NOAA가 후원하는 전문가로 구성된 국제 패널인 태양 주기 예측 패널은 태양 주기에 대해 예측하기 위해 협력해 왔다. 천문학자들은 갈릴레오가 1600년대에 처음으로 흑점을 관찰한 이래 태양 주기를 추적해 왔다. 각 태양 주기는 다르다. 때로는 더 크고 짧은 시간 동안 최고조에 도달하고, 다른 경우에는 최고조가 더 작고 더 오래 지속되기도 한다. 지금까지 태양 주기에서 가장 강력한 플레어는 지난 10월 3일 발생한 X9.0이었다. X 등급 숫자는 강렬한 플레어의 단계를 나타낸다. NOAA는 이번 태양 극대기 동안 추가적인 태양 및 지자기 폭풍이 있을 것이며, 향후 몇 달 동안 오로라를 볼 수 있는 기회와 함께 기술 인프라에 대한 영향이 있을 것으로 예상했다. 나사와 NOAA는 우주 날씨 연구 및 예측의 미래를 준비하고 있다. 오는 12월, 나사의 파커 태양 탐사선 임무는 태양에 역사상 가장 가까이 접근해 관측을 수행하게 되는데, 이를 통해 우주 날씨를 더 깊이 이해할 수 있을 것으로 기대된다. 우주 날씨 예측은 나사의 아르테미스 미션에 참여하는 우주선과 우주인을 지원하는 데 필수적이다. 우주 환경을 탐사하는 것은 우주인이 우주 방사선에 노출되는 것을 막는 데 중요하다.
-
- IT/바이오
-
[우주의 속삭임(71)] 나사, 태양 11년 주기의 극대기 도달
-
-
스페이스X, 스타십 5차 발사 성공…화성 탐사 새 역사 쓰나
- 일론 머스크가 이끄는 우주기업 스페이스X의 달·화성 탐사용 대형 우주선 '스타십(Starship)'이 13일(현지시간) 5번째 지구궤도 시험 비행에 성공했다. 특히 이번 시험비행에서는 '젓가락 팔' 기술을 이용해 로켓을 회수하는 데 성공, '스타십' 개발에 새로운 이정표를 세웠다. 해당 내용에 대해서는 스페이스닷컴. 아르스 테크니카 등 다수 외신이 자세하게 다루었다. 이날 오전 7시 25분(미 중부시간) 텍사스주 남부 보카치카 해변의 우주발사시설 '스타베이스'에서 발사된 '스타십'은 약 3분 만에 1단 로켓 추진체인 '슈퍼 헤비'와 분리됐다. 이후 약 7분 만에 '슈퍼 헤비'는 우주에서 지구로 돌아와 수직 착륙하는 데 성공했다. 이로써 스페이스X는 그동안 목표로 내걸었던 '슈퍼헤비 로켓 재활용'이 실현 가능해졌다. 스페이스X는 이 모든 과정을 온라인으로 생중계했다. '젓가락 팔' 기술 첫 시도⋯로켓 회수 성공 이번 시험비행에서 가장 주목할 만한 점은 발사탑의 '젓가락 팔'을 이용해 '슈퍼 헤비' 로켓을 회수하는 기술을 처음으로 시도했다는 것이다. '슈퍼 헤비'는 지상의 발사탑 쪽으로 근접하면서 엔진 역추진을 통해 속도를 줄였고, '젓가락 팔'은 마치 거대한 로봇팔처럼 '슈퍼 헤비'를 붙잡아 발사대에 안착시켰다. 스페이스X는 이 기술을 통해 로켓 재활용 및 비용 절감 효과를 기대하고 있다. 젓가락 팔로 로켓을 잡는 것만이 이번 비행의 유일한 목표는 아니었다. 스페이스X는 또한 높이 50m(165피트)의 우주선 2단부, 또는 간단히 우주선이라고 부라는 스타십의 상부 스테이지를 우주로 보내 인도양에 추락시켜 지구로 돌아오는 것을 목표로 삼았다. 2단부 우주선, 75분 비행후 지구 귀환 성공 슈퍼 헤비가 분리돼 젓가락 팔에 착지되는 동안 두 번째 목표였던 스타십의 2단부인 우주선도 약 75분동안 계획된 비행에 성공했다. 스타십 우주선은 시속 2만6225㎞ 안팎으로 고도 210㎞에 도달해 예정된 지구 궤도 항로를 비행한 뒤 발사 40여분간 지난 시점부터 고도를 낮추며 대기권에 재진입해 인도양 해역 목표 입수 지역에 착수(스플래시 다운), 폭발 없이 비행을 마쳤다. 앞서 스페이스X는 지난 6월 4차 시험 비행에서 스타십 상단 재진입에 이미 성공한 적이 있지만, 당시에는 기체가 많이 파괴됐었다. 이번 5번째 스타십 비행은 우주비행사가 탑승하거나 화물이 적재되지 않은 무인 비행이었다. 스페이스X는 지난해 4월과 11월, 올해 3월과 6월 등 네 차례에 걸쳐 스타십의 지구궤도 시험 비행을 시도했지만 모두 성공한 것은 아니었다. 지난해 두 차례 시험비행에서는 우주선이 발사 후 각각 4분, 10분 만에 폭발했다. 3번째 비행에서는 스타십이 약 48분 동안 비항하며 예정된 궤도에 도달했지만 목표 지점에 낙하하는 데 실패한 채 실종됐다. 지난 6월에 실시된 4차 비행에서는 스타십이 예정된 비행에는 성공했지만, 대기권에 재진입하는 과정에 기체가 심하게 손상됐다. 한편, 슈퍼헤비 로켓은 정상적으로 작동할 경우 추진력이 1700만 파운드에 달해 역대 가장 강력한 로켓으로 평가된다. 미국 항공우주국(나사·NASA)이 보유한 발사체 중 가장 힘이 센 '우주 발사 시스템(SLS·추진력 880만 파운드)'보다 2배 더 강력하다. 스페이스X는 앞으로 2단 우주선까지 완벽하게 회수해 재활용하는 것을 목표로 하고 있다. 머스크 CEO는 비행이 끝난 후 엑스(X·옛 트위터)에 "스타십이 목표 지점에 정확히 착륙했다"며 "두 가지 목표 중 하나가 달성됐다"고 밝혔다. 또한 "오늘 인류가 여러 행성에서 살수 있도록 하는데 중요한 진전을 이루었다"고 평가했다. 스페이스X는 인류가 달과 화성에 정착하게 하기 위해 스타십을 개발하고 있다. 나사는 이 우주선을 달에 인류를 보내려고 하는 '아르테미스' 프로젝트 3단계 임무에도 사용할 계획이다.
-
- IT/바이오
-
스페이스X, 스타십 5차 발사 성공…화성 탐사 새 역사 쓰나
-
-
[퓨처 Eyes(53)] 세계 최초, 나노 크기 물방울 생성 실시간 포착
- 수소와 산소를 결합하는 과정을 통해 나노크기의 물방울 생성 장면이 처음으로 포착됐다. 미국 노스웨스턴 대학교 연구팀이 은백색 금속인 팔라듐(Pd)을 이용해 수소와 산소를 결합, 나노 크기의 물방울을 실시간으로 생성하는 과정을 세계 최초로 관찰하고 촬영하는 데 성공했다. 이 연구는 심우주 탐사에서 물을 생산하는 혁신적인 기술로 활용될 가능성을 제시하며 주목받고 있다. PHYS.org, IFL사이언스, 사이언스 얼러트 등 다수 외신이 이 같은 내용을 중점적으로 다루었다. 팔라듐 반응으로 나노 물방울 생성 물(H₂O)의 성분은 간단하다. 수소 원자 2개와 산소 원자 1개를 섞으면 지구 생명체 유지에 가장 중한 물 분자가 만들어진다. 연구팀은 팔라듐 반응을 직접 관찰하기 위해 20나노미터(1나노미터는 10억분의 1미터) 너비의 팔라듐 조각 표면에 수소와 산소 원자를 추가하고 멤브레인을 사용해 이어지는 상호작용을 포착했다. 팔라듐은 수소를 흡수하고 저장하는 능력이 뛰어난 금속으로, 수소가 팔라듐 구조 내부로 들어가 산소와 빠르게 결합하면서 물을 생성한다. 이번 연구에서는 벌집 모양의 나노 반응기와 초박막 유리 멤브레인을 사용해, 팔라듐 표면에서 수소와 산소가 결합해 물방울을 형성하는 과정을 실시간으로 시각화했다. 연구팀은 고진공 투과 전자 현미경을 이용해 이 극미세 반응을 관찰했다. 벌집 모양의 나노 반응기는 기체 분자를 가두어 서로 반응하게 한 후, 그 과정을 초박막 멤브레인을 통해 실시간으로 관찰할 수 있는 기술을 구현했다. 이를 통해 연구팀은 팔라듐이 수소와 산소를 빠르게 물로 변환하는 나노 단위의 과정을 확인했다. 전자 에너지 분광법을 통한 분석 연구팀은 팔라듐 표면에서 생성된 나노 크기의 물방울을 전자 에너지 분광법(EELS)을 사용해 분석했다. 이 방법은 전자를 시료에 쏘아 전자의 에너지 손실을 측정함으로써 시료의 화학적 결합 상태를 파악하는 기술이다. 이를 통해 연구팀은 팔라듐 표면에서 발생하는 물 분자의 결합 상태와 생성 과정을 정밀하게 관찰할 수 있었다. 이는 또한 인도의 달 탐사선 찬드라얀 1호가 달에서 물의 존재를 확인하는데 사용된 것과 동일한 기술이기도 하다. 2008년 발사된 찬드라얀 1호는 얼름, 헬륨-3을 포함한 달의 자원을 조사했다. 물은 인류 생존에 중요한 요소로 과학자들은 달의 남극에서 상당한 양의 물을 발견했으며, 미래의 우주 임무에서 달의 물을 활용하는 점에 주목하고 있다. 게다가 지난 2023년 8월 23일 찬드라얀 3호가 달에서 물이 풍부한 지역으로 알려진 남극 지역에 세계 최초로 착륙해 달 탐사의 새로운 이정표를 세웠다. 우주에서 물 생성 응용 가능성 이번 연구는 심우주 탐사에서 물을 현지에서 생산할 수 있는 가능성을 열었다. 팔라듐을 이용해 수소를 미리 우주선에 저장해두면, 우주 비행사들은 산소만 추가해 식수를 생산할 수 있는 방법을 제시한 것이다. 이는 달, 화성,목성 탐사와 같은 장기 우주 미션에서 중요한 자원 확보 방식으로 활용될 수 있다. 연구의 시니어 저자인 노스웨스턴 대학교 비나약 드라비드 교수는 "나노 규모의 물방울을 직접 시각화함으로써, 극한의 반응 조건 없이도 가스와 금속 촉매를 사용해 빠르게 물을 생성할 수 있는 최적의 조건을 파악할 수 있었다"고 밝혔다. 그는 "이 기술은 우주 환경뿐만 아니라, 수소 연료 전지와 같은 에너지 생산 기술에도 중요한 영향을 미칠 것"이라고 덧붙였다. 팔라듐의 촉매 역할과 수소 에너지 팔라듐은 연성과 전성이 뛰어나 가공하기 쉽고, 내부식성이 강하며 고온에서도 안정적이다. 특히 촉매 활성이 뛰어나 다양한 화학 반응에 활용되며, 수소를 흡수하는 능력 덕분에 최근 수소 에너지와 연료 전지 분야에서 그 중요성이 더욱 커지고 있다. 이번 연구는 팔라듐이 수소와 산소를 결합해 물을 생성하는 속도가 수소와 산소의 주입 순서에 따라 크게 달라진다는 사실을 밝혀냈다. 이는 우주 공간과 같은 특수 환경에서 물을 효율적으로 생산하는 기술 개발에 기여할 것으로 기대된다. 영화 '마션'의 현실화 연구팀은 영화 '마션'에서 주인공 마크 와트니(맷 데이먼 분)가 화성에서 로켓 연료를 태워 수소를 추출하고 산소와 결합해 물을 만든 장면을 언급하며, "우리 기술도 극한 환경 없이 팔라듐과 기체만으로 물을 생성할 수 있다"고 설명했다. 이는 우주 탐사에서 더 간단하고 효율적인 물 생산 방법을 제시한 것이다. 이 연구 결과는 미국 국립과학원회보(PNAS)에 게재되었으며, 향후 우주 탐사 및 수소 에너지 분야에서 중요한 응용 가능성을 제시하고 있다.
-
- 포커스온
-
[퓨처 Eyes(53)] 세계 최초, 나노 크기 물방울 생성 실시간 포착
-
-
[우주의 속삭임(69)] 화성, 왜 생명체가 살 수 없게 됐나?
- 현재 화성의 게일 분화구를 탐사하고 있는 나사(NASA)의 탐사선 큐리오시티가 초기 화성의 기후가 생명체가 살기에 적합했던 상황(표면에 광범위한 물이 있다는 증거)에서 어떻게 생명체가 살기에 부적합한 곳으로 바뀌었는지에 대한 새로운 세부 정보를 제공하고 있다고 나사가 홈페이지를 통해 밝혔다. 화성 표면은 매우 차갑고 오늘날 생명체가 살기에는 부적합하지만, 전문가들은 나사의 화성 탐사선은 먼 과거에 화성에 생명체가 살았을 수 있는지에 대한 단서를 찾고 있다. 그런 가운데 연구진이 큐리오시티에 탑재된 장비를 이용해 게일 분화구에서 발견된 탄소가 풍부한 광물(탄산염)의 동위원소 구성을 측정했고, 화성의 고대 기후가 어떻게 변화했는지에 대한 새로운 정보를 찾아냈다. 메릴랜드주에 소재한 나사 고다드 우주비행센터의 데이비드 버트 박사는 최근 미국 국립과학원회보에 발표된 연구 논문에서 "이 탄산염의 동위원소 값은 극심한 양의 증발이 있었음을 알려주며, 탄산염은 일시적인 액체 상태의 물만을 지탱할 수 있는 기후에서 형성되었을 가능성이 높다“라고 말했다. 그는 "채취한 탄산염 샘플은 화성 표면에서 생명체가 살았던 고대 환경(생물권)과 일치하지는 않지만, 탄산염이 형성되기 전 생물권이 있었을 가능성을 배제하지는 않는다"고 덧붙였다. 즉, 화성은 탄산염이 생성되기 전 물이 풍부했을 때에는 생물권이 있었을 가능성이 있지만, 갑작스러운 액체 상태 물의 대규모 증발로 인해 물이 마르고 그 과정에서 탄소가 풍부한 탄산염이 만들어졌을 가능성이 있다는 것이다. 동위원소는 원자 번호는 같지만, 질량이 다른 원자를 말한다. 물이 급속도로 증발함에 따라 가벼운 탄소와 산소는 대기 중으로 빠져나가고, 무거운 탄소 원자는 남아 더 많은 양이 축적되어 결국 탄산염 암석과 결합됐다. 과학자들이 탄산염에 관심을 갖는 이유는 기후에 대한 기록, 즉 증거로 작용할 수 있기 때문이다. 이러한 광물은 물의 온도와 산성도, 물과 대기의 구성을 포함, 광물이 형성된 당시 환경의 특징을 그대로 보존한다. 이 논문은 게일 분화구에서 발견된 탄산염에 대한 두 가지 형성 가능성을 제안하고 있다. 첫 번째는 탄산염이 게일 분화구 내에서 일련의 습윤-건조 순환을 통해 만들어졌다는 것이다. 두 번째는 탄산염이 게일 분화구에서 극저온 조건 아래 매우 염분이 많은 물에서 형성됐을 것이라는 가능성이다. 공동 연구자인 나사의 제니퍼 스턴 박사는 "이러한 형성 메커니즘은 서로 다른 생명체 거주 가능성 시나리오를 제시하는 두 가지 다른 기후 체제를 보인다"며 "첫 번째 시나리오인 습윤-건조 순환은 더 살기 좋은 환경과 덜 좋은 환경 사이의 교차를 나타낸다. 반면, 두 번째 시나리오에서 화성 중위도의 극저온 기온은 대부분의 물이 얼어 있고 염분이 많아 거주 가능성이 낮은 환경을 보인다"고 말했다. 첫 번째 시나리오에서 생명체의 거주 가능성이 높음을 시사한다. 고대 화성에 대한 이 같은 기후 시나리오는 특정 광물의 존재, 대규모의 모델링 및 암석층 형성의 식별을 기반으로 제안됐다. 이 결과는 시나리오를 뒷받침하는 암석 샘플의 동위원소 증거를 추가한 최초의 결과다. 화성 탄산염의 중금속 동위원소 값은 지구의 탄산염 광물보다 매우 높으며, 화성 광물에서 기록된 가장 무거운 탄소 및 산소 동위원소 값이다. 연구진에 따르면 습윤-건조 또는 차갑고 염분이 많은 두 가지 기후 시나리오는 모두 중금속 탄소와 산소가 풍부한 탄산염을 형성하는 데 필요하다. 이 발견은 큐리오시티 탐사선에 실린 화성 샘플분석(SAM) 및 레이저분광기(TLS) 장비를 사용해 이루어졌다. SAM은 샘플을 섭씨 900도까지 가열한 다음 TLS를 사용해 가열 단계에서 생성되는 가스를 분석한다. 한편, 이 작업에 대한 자금 지원은 나사의 화성 탐사 프로그램을 통해 지원됐다.
-
- IT/바이오
-
[우주의 속삭임(69)] 화성, 왜 생명체가 살 수 없게 됐나?
-
-
[신소재 신기술(118)] 충격파를 눈으로 볼 수 있는 획기적인 고분자 기술
- 초음속 항공기에서 나는 소닉 붐과 유사한 충격파를 눈으로 볼 수 있는 획기적인 기술이 미국에서 개발됐다. 사진=픽사베이 파동의 한 종류인 충격파를 눈으로 볼 수 있는 획기적인 기술이 개발됐다. 미국 국립표준기술연구소(NIST), 서던 미시시피 대학교, 애리조나 주립대학교, 렌슬러 폴리테크닉 연구소, 그리고 미국 육군 공병대의 연구진들이 고속 충격 시 발생하는 충격파를 시각화할 수 있는 혁신적인 고분자(폴리머·Polymer) 소재를 개발했다고 NIST가 7일(현지시간) 발표했다. 이 획기적인 기술은 뇌 손상 연구, 첨단 제조, 우주 탐사 등 다양한 분야에서 소재가 에너지를 흡수하고 극한 환경에 반응하는 방식에 대한 이해를 혁신적으로 증진시킬 것으로 기대된다. 학술지 네이처 커뮤니케이션즈(Nature Communications)에 게재된 이 연구는 기계적 힘을 받으면 빛을 내는 분자 메카노포어(mechanophore)를 포함하는 고분자가 고속 발사체 충돌에 대한 반응을 시각적으로 기록하는 방법을 보여준다. 특히 이 메카노포어는 이전에는 접근이 불가능했던 소재 내부의 변형을 포착하는 데 성공했다. 연구진은 분자 수준의 반응과 첨단 이미징 기술을 결합해 초음속 항공기의 소닉붐과 유사하게 재료 내에서 음속보다 빠르게 이동하는 음향파인 마하 콘(Mach cone)의 형성을 시각화할 수 있었다. NIST 재료 과학 및 공학 부서의 연구원인 폴레트 센텔라스(Polette Centellas)는 "이 고분자는 충격중에 에너지가 재료를 통해 어떻게 이동하는지 '볼 수 있게' 해준다"며 "이는 우주선 차폐에서부터 첨단 보호 장비에 이르기까지 극한 조건을 더 잘 견딜 수 있는 재료를 설계할 수 있는 새로운 가능성을 열어준다"고 말했다. 이 연구는 고분자에서 이전에 충분히 탐구되지 않았던 에너지 소산 메커니즘인 충격파 감쇠를 밝혀냈다. 전통적으로 재료의 에너지 흡수는 주로 재료가 구부러지거나 파손되는 소성 변형을 통해 발생한다고 여겨졌다. 그러나 이 연구는 고속 충격에서 충격파가 에너지 소산에 중요한 역할을 한다는 것을 보여준다. 이번 발견은 고속 충격 관리가 중요한 국방에서 의료에 이르기까지 다양한 산업 분야에서 내수성이 더욱 뛰어나고 강한 소재를 개발하는 데 혁신을 가져올 것으로 기대된다.
-
- IT/바이오
-
[신소재 신기술(118)] 충격파를 눈으로 볼 수 있는 획기적인 고분자 기술
-
-
[우주의 속삭임(68)] 샤플리 초은하단 발견으로 우리가 속한 우주 경계 확장
- 하와이 대학교의 연구진이 라니아케아(Laniākea) 초은하단의 일부인 우리 은하가 실제로는 더 거대한 샤플리 중심 구역(Shapley concentration)을 중심으로 하는 훨씬 더 큰 초은하단 안에 존재할 수 있다고 밝혔다. 사이테크데일리에 따르면, 5만 6000개의 은하에 대한 연구를 통해 규명된 하와이 대학교 천문학연구소가 이끈 국제 연구진의 발견은 우리가 속해 있는 우주의 이웃이 종래 추정됐던 것보다 10배 더 샤플리 초은하단으로 확장될 수 있음을 시사하며, 우주 구조에 대한 기존의 모델 이론에도 이의를 제기하는 것이다. 10년 전, 천문학계는 우리 은하계가 5억 광년에 걸쳐 펼쳐진 라니아케아라는 거대한 초은하단의 분지에 위치하고 있다고 결론지었다. 그러나 새로운 데이터는 이 결론이 피상적일 수 있다는 의문을 제기했다. 연구진 분석에 따르면, 우리가 샤플리 집중 지역을 중심으로 하는, 10배 더 큰 부피를 가진 훨씬 더 거대한 구조의 일부일 가능성이 60%에 달한다. 이 영역은 엄청난 양의 질량과 중력으로 가득 차 있다. 이 발견은 최근 네이처 천문학(Nature Astronomy)에 게재됐다. 연구진의 브렌트 툴리 박사는 "우주는 거대한 거미줄과 같으며, 중력에 의해 서로 끌어당기는 노드에 모여 있다"면서 "물이 유역 내에서 흐르는 것처럼 은하도 우주의 인력 분지 안에서 흐른다. 이러한 더 큰 분지의 발견은 우주 구조에 대한 우리의 이해를 근본적으로 바꿀 수 있다"고 설명했다. 우주의 기원은 130억 년 전으로 거슬러 올라간다. 그때 밀도의 미세한 차이가 우주를 형성하기 시작했으며, 중력의 영향으로 오늘날 우리가 보는 거대한 구조로 성장했다. 그러나 우리 은하가 하와이어로 광대한 천국을 의미하는 라니아케아보다 훨씬 더 큰 인력 분지(Basin of Attention)의 일부라면, 이는 우주 구조의 초기는 현재의 모델을 훨씬 넘어서 성장했음을 시사한다. 천문학연구소의 에산 쿠르키는 "이 발견은 도전해야 할 과제를 제시한다. 우리의 우주 탐사는 아직 이 거대한 분지의 전체를 그리기에 충분하지 않을 수 있다"고 말했다. 거대한 시각으로 관찰하고 있지만, 이 시각조차도 우리 우주의 전체를 포착하기에 충분히 크지 않을 수 있다는 것이다. 연구진은 이러한 대규모 구조가 은하의 운동에 미치는 영향을 조사하고 평가한다. 이러한 두 구조 사이에 있는 은하계는 주변의 거대한 구조로부터 나오는 중력의 균형이 은하계의 운동을 결정하는 중력의 줄다리기에 휘말리게 된다. 연구진은 우리의 우주 전체에 걸쳐 은하계의 속도를 매핑함으로써, 각 초은하단이 지배하는 우주 영역을 정의할 수 있다고 밝혔다. 연구진은 우주가 우리가 상상했던 것보다 훨씬 더 광대하고 상호 연결된 시스템의 일부일 가능성에 무게를 두고 우주의 가장 큰 구조를 매핑하는 조사를 이어나갈 계획이다.
-
- IT/바이오
-
[우주의 속삭임(68)] 샤플리 초은하단 발견으로 우리가 속한 우주 경계 확장
-
-
[우주의 속삭임(67)] NASA, 명왕성의 최대 위성 카론에서 이산화탄소 감지
- 태양에서 57억km 떨어진 태양계의 외곽에는 왜소행성인 명왕성이 있다. 호주보다 작은 명왕성은 평균 기온이 섭씨 영하 232도로, 산과 빙하, 분화구로 이루어진 얼음 세계이다. 왜소행성 또는 왜행성은 태양을 공전하는 태양계 내 천체의 일종으로 행성 조건은 충족하지 못하지만 소행성보다는 행성에 가까운 중간적 천체이다. 명왕성 주위에는 스틱스, 닉스, 케르베로스, 히드라, 카론 등 다섯 개의 위성이 돌고 있으며, 이중 카론이 가장 크다. 다른 대부분의 행성계와 달리 카론은 모체인 명왕성와 함께 '쌍성계'로 존재한다. 이는 두 행성이 모두 둘 사이의 공간 한 지점을 공전하는 것을 의미한다. 명왕성과 위성을 둘러싼 수수께끼는 여전히 많다. 그런 가운데 미국 사우스웨스트 연구소의 천문학자 실비아 프로토파파가 이끄는 연구팀이 카론 표면에서 이산화탄소와 과산화수소를 발견했다고 더컨버세이션이 전했다. 연구 결과는 네이처 커뮤니케이션즈에 발표됐다. 나사(NASA)의 제임스 웹 우주 망원경이 포착한 데이터에 기반한 이 발견은 비행성 또는 행성계가 어떻게 형성되었는지에 대한 중요한 단서를 제공한다. ◆ 명왕성 최대 위성 카론 과학자들은 1978년 명왕성의 궤도를 연구하던 중 처음으로 카론을 발견했다. 카론은 명왕성의 작은 쌍둥이와 비슷하다. 명왕성의 약 절반 크기로, 폭이 1200km가 조금 넘는다. 따라서 태양계에서 모체(명왕성)와 비교해 (상대적으로) 가장 큰 것으로 알려진 위성이다. 명왕성 자체는 지구의 달보다 작다. 명왕성의 크기는 달의 약 3분의 2이고 질량은 6분의 1이다. 카론의 질량은 명왕성의 약 8분의 1이다. 카론과 명왕성은 특이한 궤도를 가지고 있다. 카론이 명왕성 주위를 도는(공전) 동안 명왕성도 중심점을 공전한다. 즉 한 지점을 중심으로 카론과 명왕성이 같이 도는 것이다. 그들은 거의 이중 왜성처럼 움직인다. 이는 달과 지구와는 관계와는 다르다. 달은 지구를 중심으로 돌고, 지구는 위치를 바꾸지 않고 태양을 중심으로만 공전한다. 이것이 명왕성이 행성으로 인정받지 않고 왜소행성으로 분류되는 이유 중 하나다. ◆ 카론의 구성 2015년, 나사의 뉴 호라이즌스는 발사된 지 9년이 지난 후 명왕성과 그 위성을 근접 탐사했다. 탐사 결과는 최대 위성 카론이 다양한 화학 물질로 구성되어 있음을 보여주었다. 카론은 얼음이 풍부한 매우 차가운 위성이다. 여기에는 암모니아와 다양한 탄소 기반 화합물도 포함되어 있다. 카론에는 지구의 화산처럼 마그마를 쏟아내는 대신 얼음이 분출되는 극저온 빙화산(cryovolcano)이 있는 것으로 여겨진다. 명왕성의 구성과는 다르다. 카론에서 이산화탄소와 과산화수소를 새로 발견한 것은 인접 해왕성 너머 천체에서 다양한 프로세스가 어떻게 상호 작용하는지에 대한 다양한 정보와 지식을 얻고 미래 가능성도 예상할 수 있다. 그중 이산화탄소는 우리가 이해해야 할 핵심 분자다. 천체의 역사에 대해 많은 것을 알려주기 때문이다. 카론의 경우 이산화탄소는 얼음 표면 아래에서 발생하며, 소행성 및 기타 물체가 카론과 충돌해 분화구를 만들면서 새로운 지하 표면을 노출시키는 것으로 알려져 있다. ◆ 제임스 웹 우주 망원경을 이용한 큰 발견 천문학자들은 제임스 웹 우주 망원경을 이용한 관측을 통해 카론에서 이산화탄소를 감지했다. 2021년에 작동을 시작한 이 우주 망원경은 폭 6.5m의 대형 거울을 장착해 매우 강력하고 민감하다. 제임스 웹은 사람의 눈이나 지구상에 설치된 대부분의 망원경이 감지할 수 없는 빛의 색상인 적외선을 볼 수 있다. 적외선은 행성에서 별, 은하계 등 다른 천체에 존재하는 다양한 분자를 찾는 데 중요한 빛이다. 이런 화합물을 찾기 위해 망원경은 분광법이라는 기술을 사용한다. 빛은 프리즘을 통과할 경우 무지개같이 나뉘는 것처럼, 빛의 파장에 따라 여러 색상으로 분해된다. 합물의 각 원소나 분자 역시 고유한 색상 특징을 가지고 있다. 분광법을 통해 그 색상을 찾아내고 원소의 종류를 판별한다. 분광법을 이용한 새로운 관찰을 통해 카론에서 지금까지 알려진 것과 달리 물, 얼음과 함께 이산화탄소와 과산화수소의 특징이 나타난 것이다. ◆ 고대 수수께끼에 대한 중요한 단서 카론의 형성은 과학계에서는 미스터리다. 가장 유력한 이론 중 하나는 달과 비슷한 방식으로 형성되었다는 것이다. 이 이론에 따르면 약 45억 년 전, 명왕성과 카론이 위치한 카이퍼 벨트에서 큰 물체가 명왕성과 충돌했고, 명왕성의 일부가 떨어져 나가 카론이 형성되었다. 또 명왕성과 충돌한 물체가 카론이었으며, 이들이 서로를 공전하는 궤도에 묶였을 가능성도 있다. 카론의 화학적 구성을 이해하면 카론이 어떻게 형성되었는지에 대한 이해를 높일 수 있다. 그런 의미에서 카론에서 이산화탄소와 과산화수소의 발견은 중요한 진전이다. 카론뿐만 아니라 명왕성 근처의 다른 천체에 대한 단서를 제공할 수도 있다. 카론에 대한 더욱 풍부한 정보들이 태양계의 먼 부분에 대한 이해를 높이는 데 도움이 될 것이라는 기대다.
-
- IT/바이오
-
[우주의 속삭임(67)] NASA, 명왕성의 최대 위성 카론에서 이산화탄소 감지
-
-
[우주의 속삭임(66)] 달, 지구가 '낚아챈' 외계 천체?…새로운 기원설 등장
- 달은 약 45억 년 전 지구와 테이아(Theia)라는 작은 행성의 충돌로 형성된 것으로 널리 알려져 있다. 그런데 최근 연구에서 달의 기원에 대한 새로운 이론이 제안돼 관심을 끌고 있다고 어스닷컴이 전했다. 연구에 따르면 초기의 젊은 지구가 쌍성계에 가까이 접근해 달을 낚아챘을 가능성이 있다고 한다. 지금까지의 통설과는 큰 차이가 나는 이론 제안이다. 지난 1969~1972년 사이, 여섯 차례의 달 탐사 임무를 통해 아폴로 우주비행사들은 800파운드(약 363kg)가 넘는 달의 암석과 토양을 수집했다. 이 샘플에 대한 화학 및 동위원소 분석 결과, 그것들이 지구의 암석 및 토양과 유사하다는 사실이 밝혀졌다. 칼슘이 풍부하고 현무암질이었으며 태양계가 형성된 후 약 6000만 년이 지난 것으로 나타났다. 아폴로 샘플 데이터를 바탕으로 1984년 하와이에서 열린 코나 회의에 모인 행성 과학자들은 달이 지구와의 대규모 충돌 후 파편으로 형성되었다 합의에 도달했다. 달의 기원에 대한 이 이론은 수십 년 동안 정론으로 받아들여져 왔다. 그런데 펜실베이니아 주립대학의 연구진은 최근 연구에서 오랫동안 유지되어 온 이 이론에 이의를 제기했다. 다렌 윌리엄스, 마이클 저거 교수가 주관한 연구팀이 달은 지구와 한 쌍의 암석체가 근접 조우했을 때 만들어졌다는 새로운 관점을 제시한 것이다. 윌리엄스는 "코나 회의를 통해 40년 동안 달 형성 이론이 확립됐지만 몇 가지 미해결 의문이 남아 있었다"고 지적했다. 그중 하나는 달의 궤도에 관한 것이다. 달이 지구 충돌의 잔해에서 만들어져 지구 궤도에 정착했다면, 지구의 적도 바로 위를 공전해야 한다. 그러나 달의 궤도는 지구 적도와 정렬되지 않고 태양과 더 일치한다. 이에 따라 연구팀은 달의 형성을 이진 교환 포획 이론(binary-exchange capture theory)으로 해석했다. 지구의 중력은 이진법에 따라 두 천체를 분리했고, 그중 달을 붙잡고 다른 천체는 떨어져 나갔다는 것이다. 지구 중력으로 붙잡힌 달은 오늘날의 궤도에 안착했다. 연구팀은 이를 태양계의 다른 사례와 비교하면서 "전례가 있었다"고 설명했다. 해왕성의 가장 큰 위성인 트리톤을 비슷한 사례로 제시했다. 트리톤은 카이퍼 벨트((Kuiper Belt)에서 궤도로 끌려온 것으로 여겨지고 있다. 카이퍼 벨트에서는 약 10%의 천체가 쌍성계로 이루어진 것으로 추정된다. 트리톤의 역행 궤도(해왕성의 자전과 반대)가 행성 적도에서 67도 기울어진 것이 이를 반증한다. 연구팀은 지구가 달보다 더 큰 위성, 즉 수성이나 화성 크기의 천체를 붙잡을 수 있다고 계산했다. 그러나 그들은 궤도를 유지할 만큼 안정적이지 않았을 수 있다는 지적이다. 연구원들은 달의 궤도가 처음에는 원이 아닌 타원으로 시작했다고 설명한다. 시간이 지남에 따라 지구의 조수가 궤도에 영향을 미쳐 궤도가 바뀌었다. "지구의 만조는 궤도를 가속한다. 궤도에 추진력을 줌으로써 시간이 지남에 따라 달이 조금씩 멀어진다"는 것이다. 이 같은 작용으로 초기 달의 타원형 궤도는 수천 년에 걸쳐 수축되어 점차 원형이 되었을 것으로 추정했다. 결국 달의 자전은 지구를 도는 달의 궤도에 고정되었고, 이 상태는 오늘날에도 지속되고 있다. 한편 연구팀은 달이 매년 지구에서 약 3cm씩 더 멀어진다고 설명했다. 현재 달은 23만 9000마일(약 38만km) 떨어져 있으며, 태양과 지구 모두로부터 중력의 영향을 받는다. 태양과 지구 모두가 달을 끌어당기고 있다는 얘기다. 윌리엄스와 저거는 "달이 어떻게 형성되었는지는 아무도 모른다. 지난 40년 동안 달의 형성에 대한 하나의 가능성이 제시됐는데, 이번 연구로 이제는 두 가지가 되었다. 새로운 추가 연구가 필요하다”고 밝혔다. 이 연구는 행성과학 저널(The Planetary Science Journal)에 게재됐다.
-
- IT/바이오
-
[우주의 속삭임(66)] 달, 지구가 '낚아챈' 외계 천체?…새로운 기원설 등장