검색
-
-
[우주의 속삭임(26)] 제임스 웹 우주 망원경, 우주에서 보석 반지 발견
- 중력 렌즈라는 우주 현상을 통해 생성된 반짝이는 보석 반지가 제임스 웹 우주 망원경으로 촬영됐다. 중력 렌즈는 멀리 떨어진 천체에서 나온 빛이 중간에 있는 거대 천체에 의해 휘어져 보이는 현상을 말한다. 촬영된 이미지는 지구에서 약 60억 광년 떨어진 곳에 위치한 ‘RX J1131-1231’이라는 먼 퀘이사를 포착했다. 이미지의 전면에 위치한 근처 타원 은하의 강력한 중력장은 밝게 빛나는 활동 은하핵(AGN)인 퀘이사의 빛을 굴절시켜 밝은 원을 만들고, 물체를 복제해 궁극적으로는 반지에 보석을 박은 듯한 비주얼을 만들어 낸다. 퀘이사는 은하의 초거대 블랙홀로 떨어지는 다량의 가스와 먼지에 의해 동력을 받아 이를 빛 에너지로 바꾸어 매우 밝게 빛난다. 유럽우주국(ESA)에 따르면, 천문학자들은 은하와 같은 거대한 천체가 그보다 더 먼 곳에서 오는 빛을 굴절시킬 때 발생하는 중력 렌즈 효과를 통해 퀘이사의 블랙홀 인근을 연구할 수 있다. ESA는 퀘이사에서 나오는 X선 방출량을 측정하면 중앙 블랙홀이 얼마나 빨리 회전하는지 알 수 있으며, 이는 시간이 지남에 따라 블랙홀이 어떻게 성장하는지에 대한 중요한 단서를 제공한다고 말했다. 제임스 웹 망원경이 포착한 이미지에서 중력 렌즈를 만들어 내는 타원 은하, 즉 보석 반지는 고리 중앙에 작은 파란색 점으로 나타났다. 이는 매우 멀리 떨어져 있는 퀘이사의 빛을 확대하는 망원경 역할을 한다. ESA는 블랙홀이 주로 은하 간의 충돌과 합병으로 성장한다면 안정된 원반에 물질이 축적되어야 하며, 원반에 새로운 물질이 꾸준히 공급되면 빠르게 회전하는 블랙홀이 될 것이라고 밝혔다. 또 특정 퀘이사의 블랙홀은 빛에 버금가는 대단히 빠른 속도로 회전하고 있으며, 이는 블랙홀이 서로 다른 방향에서 물질을 끌어당기는 것이 아니라 합병을 통해 성장했음을 시사한다고 설명했다.
-
- IT/바이오
-
[우주의 속삭임(26)] 제임스 웹 우주 망원경, 우주에서 보석 반지 발견
-
-
[우주의 속삭임(19)] 우주의 새벽에 최초로 병합되는 은하핵 '퀘이사 쌍' 발견
- 은하계는 광대하지만, 여전히 충돌하고 합쳐지며 겹쳐진다. 그런 가운데 일본 에히메 대학의 마쓰오카 요시키 교수를 필두로 한 국제 천문학자 팀이 지금까지 발견된 것 중 가장 먼 우주 가장자리에서 한 쌍의 퀘이사(Quasar)를 발견했다고 퍼퓰러사이언스가 전했다. 연구팀은 하와이에 있는 지상 제미니 노스(Gemini North) 및 스바루 망원경으로 이를 관측하고 데이터를 분석했다. 발견된 두 개의 은하핵 퀘이사는 먼지와 가스가 중앙의 초거대 블랙홀로 떨어지는 가운데 서로 합쳐(병합)지고 있다. 그 과정에서 이 퀘이사 쌍은 엄청난 양의 빛을 방출했다. 연구팀은 이 빛을 찾아냈고, 이것이 두 개의 퀘이사 쌍임을 밝혔다. 연구팀은 발견된 퀘이사 쌍이 우주의 새벽(Cosmic Dawn: 빅뱅 이후 약 5000만~10억 년), 즉 초창기 우주 여명기에 해당하는 은하핵이라고 말했다. 특히 우주의 새벽 중에서도 우주 암흑기를 끝내고 별과 은하와 같은 요즘과 같은 천체가 구성되기 시작하고 어두운 우주가 처음으로 빛으로 가득 찰 무렵인 ‘재이온화 시기’에 해당하는 천체다. 퀘이사란? 우주는 빅뱅 이후 거의 140억 년 동안 팽창해 왔다. 초기 우주는 지금보다 매우 작았으며 은하계 서로 상호 작용하고 병합될 가능성이 컸다. 퀘이사는 거대 블랙홀이 주변 물질을 집어삼키는 에너지에 의해 형성되는 발광체를 말한다. 블랙홀은 퀘이사의 중심에 있으며, 주위에는 원반이 둘러싸고 있고, 원반 물질은 소용돌이 모양으로 회전하며 블랙홀로 빨려 들어간다. 은하 병합은 가스와 먼지가 초거대 질량의 블랙홀로 떨어지면서 퀘이사를 밝게 빛나게 하는 에너지다. 블랙홀로 떨어지는 원반 물질의 중력 에너지는 빛 에너지로 바뀌고, 여기에서 거대한 빛이 방출된다. 즉, 퀘이사는 지구에서 멀리 떨어진 우주 가장자리에서 발견되는 광원으로서, 멀리 떨어져 있기 때문에 우주 탄생 초창기인 우주의 새벽 시기의 천체다. 재이온화 시대의 의미 천문학자들은 우주의 재이온화 시대를 빅뱅 이후 대략 4억 년으로 잡는다. 우주 탄생 직후 우주 온도가 높았을 때는 수소의 양성자와 전자가 분리돼 이온화된 상태였다. 시간이 지나면서 우주의 온도는 낮아졌고, 양성자와 전자는 중성수소 원자로 결합됐다. 이를 우주 재결합시대라고 한다. 그 후 일어난 우주 재이온화는 중성수소 원자가 양성자와 전자로 다시 이온화되던 시기를 말한다. 천문학자들에 따르면 재이온화 시대 당시의 수소 이온화는 우주 역사에서 매우 중요한 시대였다. 이 시기는 우주의 암흑시대의 종말이며, 오늘날 지구상에서 볼 수 있는 별이 빛나는 은하구조의 시작이었다. 이번에 발견된 방합 중인 퀘이사는 우주 암흑기를 지나 최초의 별과 은하가 나타났던 우주의 새벽 기간, 그 중에서도 우주 재이온화 시대에서 나타난 것이다. 빨간색 광원 퀘이사 쌍의 합병 천문학자들은 우주의 재이온화 시대에 퀘이사가 수행한 정확한 역할을 이해하기 위해 우주의 초기 및 먼 시대에서 퀘이사를 찾고 있다. 마쓰오카 교수는 "재이온화 시대 퀘이사의 통계적 특성은 재이온화의 진행과 기원, 우주의 새벽 동안 초거대 블랙홀의 형성, 퀘이사 은하의 최초 진화 등 많은 것을 말해준다"고 말했다. 재이온화 시대에 약 300개의 퀘이사가 발견됐지만, 쌍을 이루는 퀘이사가 관측된 것은 이번이 처음이다. 연구팀의 퀘이사 발견은 우연이었다. 망원경으로 촬영한 이미지를 검토하다가 희미한 빨간색 광원을 발견했던 것. 팀은 그러나 나타난 붉은 색 광원 두 개가 퀘이사 쌍이었는지를 확신할 수 없었다. 팀은 스바루 망원경과 제미니 노스의 분광기를 사용해 빛을 분석했고, 결국 두 개의 블랙홀을 품은 퀘이사 쌍임을 확인했다 또한 둘 사이에 가스로 이어진 다리 구조도 찾아냈다. 연구팀은 감지된 빛의 일부가 실제로 퀘이사 자체에서 나오는 것이 아니라고 추정했다. 팀은 또한 중앙에 있는 두 개의 블랙홀이 태양 질량의 약 1억 배에 달하는 크기임을 밝혔다. 발견된 현상을 종합해 보면 두 퀘이사는 대규모의 합병을 진행하고 있음을 시사했다. 재이온화 시대의 병합 퀘이사 존재는 오랫동안 예상돼 왔지만, 이번에 처음으로 확인된 순간이었다.
-
- IT/바이오
-
[우주의 속삭임(19)] 우주의 새벽에 최초로 병합되는 은하핵 '퀘이사 쌍' 발견
-
-
호주 국립대, 태양보다 5백조 배 더 밝은 퀘이사 발견
- 호주 과학자들이 지금까지 발견된 블랙홀 중 가장 빠르게 성장하는 퀘이사를 발견했다. 20일(현지시간) 영국 매체 가디언에 따르면 호주 국립대학교(ANU) 연구원들이 발견한 'J0529-4351' 퀘이사는 태양보다 500조 배 더 밝고 질량은 태양계 태양의 약 170억 배에 달한다. 이 퀘이사는 하루에 태양 1개에 해당하는 양을 먹어치운다. 이는 퀘이사가 엄청난 양의 물질을 흡수하고 있으며, 얼마나 빠르게 성장하고 있는지를 보여 준다. '퀘이사'는 일반적으로 '중성자 별에서의 금속 원자 빛발산 현상'을 가리키는 용어다. 중성자 별은 대량의 중성자를 가진 매우 밀도가 높은 별로, 핵심 부분에 남은 것이고, 별의 질량은 태양의 수십배에서 수백배에 이은다. 퀘이사는 중성자 별의 자기장이 매우 강력해주변 공간에 있는 원자들의 전자를 빠져나가게 되고, 이러한 과정에서 원자의 핵심인 금속 원자가 감속되면서 빛을 방출하는 현상을 말한다. 이 빛발산은 주로 X선이나 감마선과 같은 고에너지 전자기파로 나타난다. 즉, 퀘이사는 우주에서 가장 강력한 에너지원 중 하나로, 고에너지 천체물리학 및 천문학에서 중요한 연구 대상이다. 특히 중성자 별의 내부 구조와 속성을 연구하는 데에 있어서 퀘이사는 중요한 정보를 제공한다. ANU 연구팀이 이번에 발견한 퀘이사는 120억 광년 떨어진 곳에 위치하며 강착원반의 크기는 무려 7광년에 달한다. '강착원반'은 블랙홀 주변에서 회전하는 가스와 먼지로 이루어진 원반이다. 연구팀에 따르면 이 퀘이사의 강착원반은 온도가 섭씨 1만도에 달하고 곳곳에 번개가 치고 바람이 매우 빨리 불어 지구를 1초 만에 돌릴 정도로 거대한 자기 폭풍 세포처럼 보인고 한다. 이 퀘이사는 너무 밝아서 처음에는 지구에서 그리 멀지 않은 별로 분류됐다. 하지만 연구팀이 유럽 남부 천문대(ESO)의 초 거대 망원경을 사용하여 관찰한 결과, 이 퀘이사는 실제로는 엄청나게 먼 곳에 위치하고 있음이 밝혀졌다. 연구원들은 이 퀘이사를 '폭풍의 눈에 블랙홀이 있는 거대한 허리케인' 또는 '주 어디에서나 발견한 지옥으로 가는 가장 큰 문'에 비유했다. 이 퀘이사는 대부분의 큰 은하계 중심에 있는 거대한 블랙홀을 연구하는 데 중요하며, 퀘이사 팽창에 대한 이해를 더욱 높일 수 있다. 이번 연구를 주도한 호주 국립대학교의 크리스찬 울프(Christian Wolf) 교수는 "이 지옥같은 장소를 상상하는 것은 충격과 경외의 순간이다. 자연은 우리가 이전에 생각했던 것보다 훨씬 더 극단적인 것을 만들어낸다"고 말했다. 이 퀘이사의 이름은 'J0529-4351'이며, 지난 수십 년 동안 '눈에 잘 띄지 않는 곳에 숨어 있다'가 발견됐다. 연구팀은 이 퀘이사를 발견했을 때 놀랍고 경외심을 느꼈으며, 극한 환경에서 물질이 어떻게 행동하는지 연구하는 데 중요하다고 말했다. 또한 우주의 초기 역사를 연구하는 데 도움이 될 수 있다고 한다. 이번 퀘이사의 발견은 우주에는 아직 모르는 것이 너무나 많다는 사실을 보여준다. 앞으로 과학자들이 더 많은 연구를 통해 퀘이사와 블랙홀에 대한 이해를 더욱 높일 수 있을 것으로 보인다.
-
- 산업
-
호주 국립대, 태양보다 5백조 배 더 밝은 퀘이사 발견
-
-
인도 슈퍼컴퓨터로 '일란성 쌍둥이' 우주 생성 실험 성공
- 과학자들이 우주의 탄생 비밀을 밝혀내기 위해 머리를 맞대고 있는 가운데, 인도에서 슈퍼컴퓨터를 이용해 우주 생성에 대한 시뮬레이션을 수행해 주목받고 있다. 인도의 위온(WION) 뉴스에 따르면, 최근 천문학자들은 슈퍼컴퓨터를 통해 우주의 탄생인 빅뱅부터 현재까지 이어지는 우주의 역사를 시뮬레이션하는 데 성공하여 기념비적인 성과를 이루었다고 보도했다. 천문학자들은 고성능 망원경으로 수집한 새로운 데이터를 활용하여 이 가상 우주를 실제 우주와 비교하는 것을 목표로 하고 있다. 이러한 비교는 때때로 관측 데이터가 기존의 우주론 표준 모델과 다를 때 중요한 통찰력을 제공한다고 위온은 설명했다. '플라밍고 프로젝트(Flamingo Project)'라는 이름의 이 연구는 물리학의 기본 법칙을 바탕으로 일반 물질, 암흑 물질, 암흑 에너지를 포함한 우주의 모든 구성 요소의 진화를 모델링하는 복잡한 계산을 포함하고 있다. 이 같은 시뮬레이션을 통해 세밀하게 구성된 가상의 은하계와 은하단이 생성됐다. 은하, 퀘이사, 별을 연구하는 유클리드 우주 망원경과 NASA의 제임스 웹 우주 망원경과 같은 첨단 장비로 수집한 데이터는 이 연구에 매우 중요한 역할을 하고 있다. 영국 더럼대학교의 플라밍고 프로젝트 공동 연구자인 카를로스 프렌크 교수는 우주론이 중요한 전환점에 있다고 언급했다. 그는 "강력한 망원경으로부터 얻은 새롭고 놀라운 데이터 중 일부가 우리의 이론적 예측과 일치하지 않는 것을 볼 수 있다"고 말했다. 이어서 "우주론의 표준 모델에 오류가 있거나 관측 데이터에 미묘한 선입견이 존재할 수 있지만, 우리의 초정밀 우주 시뮬레이션을 통해 이에 대한 답을 찾을 수 있을 것"이라고 덧붙였다. 중성미자와 우주 일반 물질 주목 과거의 우주 시뮬레이션은 주로 우주 구조의 핵심 요소인 차가운 암흑 물질에 초점을 맞추었다. 그러나 최근 천문학자들은 중성미자와 같이 드물게 상호 작용하는 작은 입자와 우주의 모든 물질 중 일반 물질이 차지하는 16%의 중요성을 강조하고 있다. 이 일반 물질은 지구상의 모든 물질을 포함한다. 우주의 진화를 전체적으로 이해하기 위해서는 이러한 요소들을 모두 고려해야 한다. 플라밍고 프로젝트는 우주 슈퍼컴퓨터 시뮬레이션을 전담하는 국제 천체물리학 연구팀인 버고 컨소시엄(Virgo Consortium)의 일환이다. 차세대 관측 자료 해석을 위한 전천후 대규모 구조 시뮬레이션의 약자로, 전천후 매핑(all-sky mapping)이 포함된 풀 하이드로 대규모 구조 시뮬레이션(full-hydro large-scale structure simulations)의 줄임말이다. 한국, '예미랩'서 우무 비밀 탐색 한편, 한국 강원도 정선군의 예미산 지하 1000미터에 위치한 세계적 수준의 고심도 지하실험시설 '예미랩'에서 우주의 비밀을 밝혀낼 가능성이 있다. 이곳에서는 '암흑물질'과 '중성미자' 연구 등이 진행되고 있다. 암흑물질은 우주의 주요 구성 요소로 여겨지며, 우주 에너지의 약 26%를 차지한다고 추정된다. 중성미자는 우주를 구성하는 기본입자다. 암흑물질의 존재와 중성미자의 특성을 규명하는 연구는 세계 물리학계에서 우선적으로 풀어야 할 과제로 꼽고 있다. 암흑물질과 중성미자로부터 나오는 신호를 포착하는 것은 극히 어려운 일이므로, 배경 잡음을 최소화할 수 있는 연구 환경이 필수적이다. 이러한 이유로 전 세계 연구그룹들은 지하 깊은 곳에 실험시설을 구축해 경쟁적으로 연구를 진행하고 있다. 예미랩은 이러한 연구를 위한 1000미터 지하의 실험시설을 갖추고 있다. 예미랩을 구축한 기초과학연구원(IBS) 지하실험 연구단은 양양실험실에서 사용한 실험장비를 이전해, 예미랩에서 중성미자 미방출 이중베타붕괴(AMoRE-II) 연구와 암흑물질 탐색(COSINE-200) 프로젝트를 진행할 계획이다. AMoRE-II 실험은 중성미자의 물리적 특성을 규명하기 위해 몰리브덴을 사용하는 연구이다. 이 실험은 양양에서 수행된 AMoRE-I에 이어서 진행되며, 예미랩에서는 몰리브덴 결정의 크기를 기존 6kg에서 200kg까지 확대하여 연구를 계속할 예정이다. COSINE-200은 현재까지 직접적으로 관측되지 않은 암흑물질을 탐색하는 프로젝트이다. 이 연구는 우주의 약 26%를 차지하는 암흑물질을 찾기 위해, 지구에 도달하는 암흑물질 입자와 COSINE 실험의 검출기 내 결정과의 충돌 과정을 통해 암흑물질의 존재 흔적을 찾는다.
-
- IT/바이오
-
인도 슈퍼컴퓨터로 '일란성 쌍둥이' 우주 생성 실험 성공