검색
-
-
[먹을까? 말까? (79)] 감자 vs 고구마, 건강에 더 좋은 것은?
- 감자와 고구마 중 어떤 것이 우리 몸에 더 좋을까. 감자와 고구마는 땅속에서 자라는 뿌리 채소라는 공통점을 지니지만 서로 다른 식물군에 속하며 서로 다른 독특한 맛과 풍미를 자랑한다. 둘 다 탄수화물이 풍부하고 병충해에 강해 구황 작물(흉년 등으로 기근이 심할 때 주식물 대신 먹을 수 있는 농작물)로 여겨졌으며, 현재에도 건강 식품으로 사랑받고 있다. 감자는 가지과에 속하며 페루, 칠레 등 안데스 산맥 원산으로 온대 지방에서 주로 재배한다. 주로 흰색과 연한 주황색(자주감자)의 과육이 있다. 반면 고구마는 메꽃과에 속한다. 남아메리카가 원산지로 알려졌으며 과육이 주로 연한 주황색과 선명한 주황색을 띄며, 달콤한 맛이 특징이다. 감자와 고구마 모두 복합 탄수화물의 공급원이며 섬유질, 항산화제, 비타민, 무기질을 제공하지만 고구마는 비타민 A 함량이 더 높다. 감자의 영양학적 이점 감자와 각종 비타민과 무기;질이 풍부하다. 껍질이 황갈색인 러셋 감자(약 114g)에는 일일 권장량의 11%에 해당하는 비타민 C가 들어 있다. 비타민 C는 면역 기능, 콜라겐 생성, 철분 흡수를 돕는 항산화제다. 감자는 일일 권장량의 25%에 달하는 비타민 B6를 함유하고 있다. 비타민 B6는 적혈구 생성, 음식의 에너지 전환, 기분과 수면을 조절하는 신경전달물질 생성에 필수적이다. 또한 소화를 돕고 포만감을 높이는 섬유질과 혈압 조절, 신경 및 근육 기능을 지원하는 칼륨을 함유하고 있다. 감자는 저항성 전분이라는 탄수화물을 함유하고 있다. 파스타나 흰 쌀밥의 단순 탄수화물과 달리 저항성 전분은 소장에서 분해되지 않고 대장으로 이동하여 유익한 박테리아에 의해 발효되어 단쇄 지방산(SCFA)을 생성한다. 단쇄 지방산은 체중 관리, 혈당 조절, 장 건강 개선 등의 잠재적 건강 효능과 관련이 있다. 구운 감자는 삶은 감자보다 저항성 전분이 더 많고, 차가워진 구운 감자는 뜨거운 감자나 재가열한 감자보다 저항성 전분이 더 많아. 또한 감자를 껍질 째 섭취하는 것이 섬유질 함량과 영양학적 이점을 극대화하는 가장 좋은 방법이다. 고구마의 영양학적 이점 고구마는 섬유질, 비타민, 무기질, 항산화제가 풍부한 식품이다. 특히 고구마 껍질의 섬유질은 프리바이오틱스 효과를 지니고 있어 유익한 박테리아의 성장을 촉진하고 장 건강을 증진하는 것으로 알려져 있다. 과육이 주황색인 고구마는 항산화제이자 프로비타민 A인 베타카로틴이 풍부하게 함유되어 있다. 베타카로틴은 장에서 비타민 A로 전환된다. 중간 크기의 고구마(114g) 하나는 일일 권장량의 122%에 달하는 비타민 A를 제공하며, 이는 세포 성장 및 발달, 면역 체계 기능, 생식, 눈 건강에 중요한 역할을 한다. 고구마에는 염증 감소, 콜레스테롤 수치 개선, 혈당 조절과 관련된 항산화제인 폴리페놀이 풍부하다. 특히 자색 고구마에 함유된 안토시아닌은 염증을 줄이고 신진대사를 돕는 효과가 있다. 고구마는 비타민 A 외에도 비타민 C, 비타민 B6, 저항성 전분의 좋은 공급원이다. 저항성 전분은 장 건강, 혈당 관리, 포만감 증진에 도움을 줄 수 있다. 감자와 고구마의 영양 성분 비교 흔히 고구마가 감자보다 건강에 더 좋다고 여겨지지만, 두 가지 모두 균형 잡힌 식단에 건강하게 추가될 수 있다. 감자와 고구마는 칼로리, 단백질, 지방, 탄수화물 함량이 유사하다. 비타민 B6와 칼륨 함량 또한 비슷한 수준이다. 가장 큰 영양학적 차이점은 고구마가 감자보다 비타민 A 함량이 훨씬 높다는 것이다. 또한 고구마는 섬유질, 비타민 C, 망간, 구리, 판토텐산 함량이 감자보다 약간 더 높다. 고구마는 흰 감자보다 혈당 지수(GI)가 약간 낮은데, 이는 고구마의 높은 섬유질 함량 때문일 가능성이 높다. 삶은 흰 감자의 평균 GI는 71인 반면, 삶은 고구마는 63으로 약간 낮다. 혈당 지수는 식품이 혈당을 얼마나 빨리 높이는지 측정하는 지표이며, 점수가 낮을수록 혈당이 더 느리고 점진적으로 상승함을 의미한다. 감자와 고구마 모두 항산화 화합물을 함유하고 있다. 감자는 페놀산(주로 클로로겐산)이 풍부한 반면, 고구마는 강력한 항산화 작용을 하는 카로티노이드인 베타카로틴이 풍부하다. 어떤 것이 건강에 더 좋을까? 감자와 고구마는 모두 건강에 좋은 식품이며 복합 탄수화물, 섬유질, 비타민, 무기질, 항산화제를 제공한다. 고구마는 시력과 면역 기능에 중요한 비타민 A 함량이 높다는 점에서 감자보다 약간의 우위를 점하고 있다. 균형 잡힌 식단의 일환으로 감자와 고구마를 모두 섭취하면 건강에 필요한 영양소를 얻는 데 도움이 된다. 단백질, 채소, 건강한 지방과 함께 다양한 식단을 구성하는 것이 건강 유지에 좋다.
-
- 생활경제
-
[먹을까? 말까? (79)] 감자 vs 고구마, 건강에 더 좋은 것은?
-
-
[우주의 속삭임(80)] 블랙홀 둘러싸고 있는 코로나 모양 첫 공개
- 블랙홀을 둘러싸고 있는 코로나 모양이 처음으로 공개됐다. 지구상에서 개기일식을 관찰하면, 태양을 가린 달 주위를 밝은 빛의 후광이 둘러싸고 있는 현상을 보게 된다. 이는 코로나라고 불리는 것으로, 태양의 확산된 외기권을 말한다. 이 외기권은 너무 얇아서 지구에서 보면 진공으로 생각되지만, 코로나 온도가 섭씨 수백만 도에 달하는 강한 에너지이기 때문에 개기일식 때 볼 수 있다. 우주의 블랙홀 역학에 따르면 블랙홀에도 코로나가 있다. 또한 태양의 코로나와 마찬가지로 블랙홀 코로나도 관찰하기 어렵다. 그런데 최근 천체물리학저널(The Astrophysical Journal)에 실린 연구에서 블랙홀 코로나 영역에 대한 관찰이 이루어졌다고 사이언스얼라트가 전했다. 활성 블랙홀의 경우, 일반적으로는 블랙홀을 둘러싸고 있는 도넛 모양의 가스와 먼지 토러스가 있다. 또 블랙홀의 회전면을 따라 정렬된 가열된 물질의 강착원반(디스크)이 있는 것으로 추정된다. 블랙홀의 극지방에서 흘러나오는 것은 거의 빛의 속도로 빠르게 멀어지는 이온화된 가스 제트이다. 우리가 관측하는 다양한 유형의 활성 은하핵(AGN)은 이 모델로 설명할 수 있다. 이유는 지구를 향하는 블랙홀의 방향에 따라 AGN의 모양이 변화하기 때문이다. 모델에 따르면, 강착원반의 가장 안쪽은 밀도가 진공에 가까운 과열 영역이며, 이는 블랙홀로 흘러 들어간다. 블랙홀 코로나는 태양의 코로나와 비슷하지만, 온도는 태양의 수백만 도에 비해 훨씬 높은 수십억 도에 달한다. 그러나 넓게 확산되어 있기 때문에, 그 빛은 강착원반의 빛에 압도된다. 연구팀은 블랙홀의 코로나를 연구하기 위해 개기일식 중 태양의 코로나를 관찰하는 것과 유사한 기법을 사용했다. 블랙홀이 지구를 기준으로 하는 방향은 일부 블랙홀의 경우 가스와 먼지의 토러스가 강착원반 영역에 대한 우리의 시야를 가리는 반면, 다른 블랙홀의 경우 원반을 직접 볼 수 있다. 이를 가려진 블랙홀과 가려지지 않은 블랙홀이라고 한다. 가려진 블랙홀은 강착원반의 빛이 시야에서 가려지기 때문에 개기일식으로 가려진 태양과 유사하다. 블랙홀의 코로나도 마찬가지이다. 그러나 블랙홀 코로나는 너무 뜨거워서 극도로 높은 에너지의 X선을 방출한다. 이 X선은 토러스의 물질을 산란시키고 우리의 시야로 반사될 수 있다. 연구진은 나사(NASA)의 이미징X선편광측정탐사선(IPXE)에서 얻은 데이터를 사용, 우리 은하의 백조자리 X-1과 X-3, 대마젤란 성운의 LMG X-1과 X-3 등 12개의 가려진 블랙홀 데이터를 수집했다. 연구진은 이들 블랙홀의 코로나에서 산란된 X선을 관찰할 수 있었으며, 블랙홀 사이의 패턴도 감지할 수 있었다. 데이터에 따르면 코로나는 태양의 코로나와 비슷한 구체로 블랙홀을 둘러싼 것이 아니라 강착원반과 비슷한 원반으로 블랙홀을 둘러싸고 있다. 이번 연구는 천문학계에서 블랙홀 모델을 다듬는 데 도움이 될 것으로 기대된다. 또한 블랙홀이 어떻게 물질을 소비하고, 먼 은하에서 관측하는 AGN에 동력을 공급하는지를 이해하는 데 기여할 것으로 보인다.
-
- IT/바이오
-
[우주의 속삭임(80)] 블랙홀 둘러싸고 있는 코로나 모양 첫 공개
-
-
[기후의 역습(86)] 175년 만에 두 번째로 따뜻했던 10월, 지구 온난화 심각성 더해져
- 지난 10월은 NOAA(미국 국립해양대기청)이 175년 동안 기록한 지구 기후 데이터 기준, 두 번째로 따뜻한 10월로 기록됐다. 비정상적으로 따뜻한 달을 경험했다고 NOAA가 공식 홈페이지를 통해 밝혔다. NOAA의 국가 환경정보센터(National Centers for Environmental Information)에 따르면, 지난 10월이 기록적으로 온화한 달로 추가되면서 2024년은 거의 확실하게 기후 기록이 시작된 이래 지구 역사상 가장 따뜻한 해가 될 것으로 예상된다. 10월의 평균 지구 온도는 지난 20세기 평균인 섭씨 14.0도보다 1.32도나 더 높은 15.32도로 측정돼 세계 기록상 역대 두 번째로 따뜻한 10월을 나타냈다. 역대 가장 더웠던 10월은 지난해 기록됐는데, 올해와의 차이는 불과 섭씨 0.05도밖에 나지 않았다. 지역별로 북미는 역대 가장 뜨거운 10월을 기록했고, 남미와 오세아니아는 각각 두 번째 따뜻한 10월을 기록했다. 연초부터 10월 말까지 연간 기준 지구 표면 온도는 20세기 평균보다 섭씨 1.28도 높아 역대 최고로 뜨거운 기간이었던 것으로 관측됐다. 아프리카, 유럽, 북미, 오세아니아, 남미가 모두 연간 평균 가장 온도가 높았던 것으로 기록됐다. NCEI(국립 환경정보센터)의 글로벌 연간 기온 전망(Global Annual Temperature Outlook)에서도 2024년 기온이 기록상 가장 따뜻한 해가 될 확률이 99%를 넘는다고 밝혔다. 최고 기온 기록과 함께 관련된 기후 관련 사건도 주목받았다. 지난 10월은 역대 동월 기준 가장 작은 해빙(바다 위 얼음) 면적 기록을 세웠다. 10월의 전 세계 해빙 면적은 46년 만에 가장 작았다. 1991~2020년 평균보다 125만 퍙빙마일이나 적었다. 북극 해빙 면적은 평균 이하(60만 평방마일)로 기록상 4번째로 낮았고, 남극 해빙 면적도 평균 이하(65만 평방마일)로 기록상 2번째로 낮았다. 전 세계적으로 11개의 열대성 저기압이 발생했다. 대서양 유역에서는 10월에 5개의 열대성 저기압을 발생했는데, 그중 허리케인 밀턴은 최고 레벨인 5등급 폭풍으로 정점을 찍고 탬파베이 바로 남쪽에 상륙해 큰 피해를 남겼다. 올들어 10월 말까지 전 세계적으로 70개의 폭풍이 발생했는데, 이는 장기간에 걸친 평균보다는 6개 적은 수치였다.
-
- 포커스온
-
[기후의 역습(86)] 175년 만에 두 번째로 따뜻했던 10월, 지구 온난화 심각성 더해져
-
-
[우주의 속삭임(79)] "달 뒷면, 한때 화산 폭발"
- 미국과 중국 연구원들이 달 뒷면에서 한때 화산이 폭발했다는 증거를 발견했다. 중국 연구팀이 달 탐사선 창어 6호가 수집한 샘플을 분석한 결과 신비한 달 뒷면에서 42억년 이상된 현무암(화산 폭발 후 형성된 현무암) 조각이 발견됐다고 BBC가 전했다. 이번 연구 결과는 지난 11월 15일 학술지 네이처와 사이언스에 게재됐다. 과학자들은 지구에서 볼 수 있는 달의 앞면에서 화산 활동이 있었다는 사실은 이미 알고 있었다. 그러나 달 뒷면은 앞면과 지질학적으로 매우 다르며, 대부분의 지역이 여전히 인간의 손이 닿지 못한 미탐사 지역으로 남아 있다. 중국 달 탐사선 창어 6호는 지난 6월부터 약 2개월간의 임무 끝에 달 뒷면에서 처음으로 토양 샘플을 회수하는 데 성공했다. 중국 과학아카데미의 전문가가 이끄는 연구진은 방사성 연대 측정법을 사용해 화산암의 연대를 확인했다. 분석 결과 약 28억3000만년 전에 '놀랍도록 젊은 분화'가 일어났다는 것을 밝혀냈다. 이는 달 앞면에서는 발견되지 않은 것이다. 지질학 및 지구물리학 연구소의 치우리 리교수는 상세한 동료 검토에서 "이것은 매우 흥미로운 연구"라고 적었다. 그는 "창어 6호 샘플에서 나온 최초의 지구 연대 연구이며, 달과 행성 과학계에 매우 중요한 연구 결과가 될 것"이라고 덧붙였다. 달의 뒷면은 '어두운 부분'으로 알려져 있지만, 지구에 있는 우리가 못 볼뿐 실제로는 햇빛을 많이 받는다. 이는 달이 지구와 수평으로 고정되어 있고, 지구 공전 시간이 약 27일로 항상 달의 같은 면이 지구를 향하고 있기 때문이다. 달 뒷면은 지구에서 볼 수 없기 때문에 오랫동안 미지의 영역이었다. 하지만 1959년 러시아(구 소련)의 루나 3호가 처음으로 달의 뒷면을 찍어 지구로 전송하면서 그 비밀이 밝혀지기 시작했다. 이후 중국의 달 탐사선 창어 4호가 2019년 1월 3일 인류 최초로 달 뒷면에 착륙해 탐사를 진행했다. 착륙 지점은 달 남극 에이트켄 분지 내에 있는 본 카르만 크레이터다. 달 뒷면의 샘플 회수 임무를 띤 창어 6호는 2024년 5월 3일 지구를 떠나 2024년 6월 1일 달 뒷면에 무사히 착륙했다. 참고로 달 앞면에는 미국, 소련, 중국, 인도, 일본 등이 착륙에 성공했다. 또한 달 남극에는 물이 있는 것으로 알려져 있다. 인도 달 탐사선 찬드라얀 3호는 2023년 7월 14일 발사돼 8월 23일 인류 최초로 달 남극에 착륙하는 데 성공했다. 이로써 인도는 미국, 러시아, 중국에 이어 네 번째로 달 착륙에 성공한 국가로 이름을 올렸다. 중국은 달에서 물을 찾고 영구 기지 건설 등을 조사하기 위해 2030년까지 세 번의 무인 임무를 더 계획하고 있다. 아울러 2030년까지 유인 우주선을 달에 보내는 것을 목표로 하고 있다. 미국도 아르테미스 3호 임무를 통해 2026년까지 우주비행사를 다시 달에 보낼 계획이다. 달 뒷면에는 헬륨-3이라는 희귀한 자원이 풍부하게 매장되어 있다고 알려져 있어 미래에는 달 뒷면에 기지를 건설하고 자원을 채굴할 수도 있을 것으로 전망돼 우주과학 선진국 간의 치열한 경쟁이 예상된다.
-
- IT/바이오
-
[우주의 속삭임(79)] "달 뒷면, 한때 화산 폭발"
-
-
미세 플라스틱, 구름 형성 촉진…극한 날씨와 기후변화 가속 우려
- 미세 플라스틱이 대기 중 구름 형성을 촉진시켜 극한 날씨와 기후 변화를 가속화시킨다는 연구 결과가 최근 발표됐다. 구름은 대기 중의 보이지 않는 기체인 수증기가 먼지와 같은 작은 부유 입자와 결합해 물방울이나 얼음 결정으로 변할 때 형성된다. 최근 발표된 연구에서 미세 플라스틱 입자도 동일한 효과를 낼 수 있는 것으로 밝혀졌다. 또 미세 플라스틱이 없는 물방울보다 섭씨 5~10도 더 따뜻한 온도에서 얼음 결정이 생성될 수 있음도 보여주었다고 더컨버세이션이 전했다. 연구 결과는 공기 중에 미세 플라스틱이 없었다면 구름이 형성되지 않았을 좀 더 따뜻한 조건에서 미세 플라스틱이 구름을 생성함으로써 날씨와 기후에 적지 않은 영향을 미칠 수 있음을 시사한다. 대기 화학자 중심으로 구성된 연구진은 다양한 유형의 입자가 액체 물과 접촉할 때 어떻게 구름 속에서 얼음이 형성되는지를 분석했다. 대기에서 지속적으로 발생하는 이 과정은 '핵 형성'이라고 부른다. 대기 중의 구름은 액체 물방울, 얼음 입자 또는 두 가지의 혼합물로 구성된다. 기온이 섭씨 0도에서 영하 38도 수준인 중상층 대기의 구름에서 얼음 결정은 일반적으로 건조한 토양의 미네랄 먼지 입자나 꽃가루 또는 박테리아와 같은 생물 입자 주위에 형성된다. 미세 플라스틱도 그런 입자 중 하나다. 미세 플라스틱은 너비 5mm 미만으로 연필 끝에 달린 지우개 정도의 크기다. 일부는 이보다 더 작고 미세하다. 미세 플라스틱은 매우 작기 때문에 공기 중으로 쉽게 이동할 수 있다. 구름 속의 얼음은 날씨와 기후에 중요한 영향을 미친다. 대부분의 강수는 얼음 입자로 시작되기 때문이다. 전 세계 대부분 지역의 구름은 대기 중으로 높이 확장되고 차가운 공기가 구름 꼭대기 수분을 얼린다. 얼음이 형성되면 주변의 액체에서 수증기를 끌어당기고, 얼음 결정은 떨어질 만큼 무거워진다. 얼음이 형성되지 않으면 구름은 비나 눈으로 내리기보다는 증발하는 경향이 있다. 구름은 또한 여러 가지 방식으로 날씨와 기후에 영향을 미친다. 지구 표면에서 들어오는 햇빛을 반사하여 냉각 효과를 내기도 하고 지구 표면에서 방출되는 일부 복사선을 흡수해 온난화 효과를 증폭시킨다. 반사되는 햇빛의 양은 구름에 포함된 액체 상태의 물과 얼음의 양에 따라 달라진다. 미세 플라스틱이 구름에서 얼음 입자를 증가시키면, 이 비율의 변화는 구름이 지구의 에너지 균형에 미치는 영향을 바꿀 수 있다. 물이 섭씨 0도에서 언다고 하지만, 항상 그런 것은 아니다. 먼지 입자와 같이 핵을 형성할 물질이 없다면 물은 섭씨 영하 38도까지 얼지 않고 과냉각될 수 있다. 더 따뜻한 온도에서 동결하려면 물에 녹지 않는 물질이 물방울에 존재해야 한다. 이 입자는 첫 번째 얼음 결정이 형성될 수 있는 표면을 제공한다. 미세 플라스틱이 존재하면 얼음 결정이 형성돼 비나 눈이 더 많이 내릴 수 있다. 연구진은 미세 플라스틱 조각이 물방울의 핵 역할을 할 수 있는지를 확인하기 위해 대기 중에서 가장 널리 퍼진 네 가지 플라스틱, 즉 저밀도 폴리에틸렌, 폴리프로필렌, 폴리염화비닐, 폴리에틸렌 테레프탈레이트를 이용했다. 각각은 깨끗한 상태와 자외선, 오존 및 산에 노출된 상태 두 가지로 테스트되었다. 이 모든 것이 대기 중에 존재하며 미세 플라스틱의 구성에 영향을 미칠 수 있다. 연구진은 미세 플라스틱을 작은 물방울에 현탁시키고, 물방울을 천천히 냉각시켜 어는 시점을 관찰했다. 또한 플라스틱 조각의 표면을 분석해 분자 구조를 파악했다. 얼음 핵 형성은 미세 플라스틱의 표면 화학 성질에 따라 달라질 수 있기 때문이었다. 테스트한 대부분의 플라스틱에서 물방울의 50%는 섭씨 영하 22도로 냉각될 때까지 얼었다. 일부 미세 플라스틱은 미세 플라스틱이 없는 물방울보다 더 따뜻한 온도에서 얼음 핵을 형성했다. 자외선, 오존 및 산에 노출되면 입자의 얼음 핵 형성 활동이 감소하는 경향이 있었다. 이는 얼음 핵 형성이 미세 플라스틱 입자 표면의 작은 화학적 변화에 민감하다는 것을 시사한다. 그러나 이 플라스틱들은 여전히 얼음 핵을 형성하므로 구름 속 얼음의 양에 영향을 미칠 수 있다. 미세 플라스틱이 날씨와 기후에 어떤 영향을 미치는지 이해하려면 구름이 형성되는 고도에서의 농도를 알아야 한다. 또 미네랄 먼지 및 생물학적 입자 등 얼음 핵 형성이 가능한 다른 입자와 비교해 미세 플라스틱의 농도를 확인해야 한다. 이러한 측정을 통해 미세 플라스틱이 구름 형성에 미치는 영향을 모델링할 수 있다. 플라스틱 조각은 크기와 구성이 다양하다. 향후 연구에서는 가소제와 착색제 등 첨가제가 포함된 플라스틱과 미세 플라스틱 입자를 이용해 분석을 진행할 계획이다.
-
- 포커스온
-
미세 플라스틱, 구름 형성 촉진…극한 날씨와 기후변화 가속 우려
-
-
[신소재 신기술(129] 암흑물질 실험서 중성미자 '구름' 첫 포착
- 이탈리아와 중국 과학자들이 최근 진행한 암흑물질 실험에서 중성미자 구름을 처음으로 포착해 학계의 이목을 집중시키고 있다. 우주에서 가장 풍부한 입자인 중성미자는 전하가 없고 질량이 거의 없는 아원자 입자로, 물질과 거의 상호 작용하지 않는 특징을 지닌다. 또한 감지 되지 않고 모든 물체를 통과하는 기이한 특성 때문에 '유령 입자'로 불리기도 한다. 참고로 원자를 구성하는 입자 중에서 가장 가벼운 전자조차도 중성미자보다 600만배 더 무겁다. 양성자는 전자보다 약 1836배 더 무겁고, 중성자는 전자보다 약 1839배 더 무겁다. 최근 이탈리아와 중국에서 각각 독립적으로 운영되는 암흑물질 검출 실험인 제논(XENON)과 판다X(PandaX) 연구팀이 암흑물질 주변에서 중성미자 구름을 처음으로 포착했다고 발표했다고 인터레스팅엔지니어링이 전했다. 제논 실험에 참가한 페이 가이오는 "이것은 암흑 물질 실험을 통해 천체물리적 중성미자를 측정한 최초의 사례"라고 말했다. 중성미자-핵 탄성 산란 통해 검출 중성미자는 일반적으로 중성미자-핵 탄성 산란(CEvNS) 과정을 통해 검출된다. 이는 중성미자가 양성자나 전자와 상호 작용하는 것이 아니라 원자핵 전체와 상호 작용하는 과정이다. 연구를 진행하는 동안 연구진은 2년 동안의 실험 데이터를 검토했다. XENON과 PandaX 연구팀은 액체 제논 검출기를 사용하여 암흑물질 입자 또는 중성미자가 제논 원자와 상호 작용하는 방식을 연구하는 과정에서 태양 핵에서 발생하는 붕소-8의 방사성 베타 붕괴에서 나오는 CEvNS 신호를 확인했다. XENON 연구팀은 11개의 CEvNS 신호를, PandaX 연구팀은 75개의 신호를 보고했으며, 두 실험 모두 통계적 신뢰도는 2.64 시그마(PandaX)와 2.73 시그마(XENON)로 유사했다. 듀크 대학교의 물리학 교수인 케이트 숄버그는 "저를 포함한 대부분의 사람들이 이 공동연구가 중성미자 안개를 측정했다고 확신한다"고 말했다. 이번 연구 결과는 암흑물질 주변에 밀집된 중성미자 구름의 존재를 시사하며, 이는 암흑물질 탐색에 새로운 과제를 제기한다. 중성미자는 검출이 어렵기 때문에 우주에 풍부하게 존재하는 중성미자는 암흑물질 검출 시 배경 잡음을 생성하여 암흑물질 신호를 구별하기 어렵게 만들 수 있다. 전문가 "중성미자 구름 위협 과장되었을 가능성…추가 연구 필요" 그러나 멜버른 대학교의 암흑물질 입자 물리학 전문가인 엘리사베타 바르베리오는 "중성미자 구름으로 인한 '존재적 위협'은 과장되었을 가능성이 있다"며 "이러한 배경 잡음이 암흑물질 연구의 진전을 막기 전에 해야 할 일이 많다"고 밝혔다. 그는 이번 실험에는 참가하지 않았다. 이번 연구 결과는 암흑물질과 중성미자 사이의 상호 작용을 이해하는 데 중요한 단서를 제공하며, 향후 암흑물질 탐색 연구에 영향을 미칠 것으로 예상된다. 이 연구는 미국 물리학회에서 발행하는 학술지 피지컬 리뷰 레터스(Physical Review Letters)에 게재됐다.
-
- IT/바이오
-
[신소재 신기술(129] 암흑물질 실험서 중성미자 '구름' 첫 포착
-
-
[퓨처 Eyes(57)] 세포도 웨어러블 입는 시대…"생체 전자장치의 혁명"
- 웨어러블 기술이 스마트워치나 피트니스 트래커를 넘어 세포 단위까지 진화하고 있다. MIT 연구진은 최근 개별 세포의 전기적, 대사 활동을 측정하고 조절할 수 있는 혁신적인 세포용 웨어러블 장치를 개발했다고 밝혔다. 빛에 반응하는 부드러운 고분자 '아조벤젠'으로 만들어진 이 장치는 빛의 세기와 방향에 따라 세포를 감싸거나 펼쳐지며 세포 활동을 제어한다. 마치 세포에 옷을 입히고, 빛으로 그 옷을 조종하여 세포의 활동을 제어하는 것과 같다. 세포용 웨어러블의 구조와 기술적 혁신 MIT 연구진이 개발한 세포용 웨어러블 장치는 부드러운 고분자인 '아조벤젠'으로 만들어져 있다. 아조벤젠은 빛을 받으면 말리는 성질을 가지고 있어, 이를 통해 세포의 다양한 부위를 감싸는 방식으로 작동한다. 연구팀은 빛의 세기와 방향을 조절함으로써 장치의 말림과 세포와의 접촉 방식을 정밀하게 제어할 수 있다. 이를 통해 이 장치는 세포를 손상시키지 않으면서도 꼭 맞게 감싸는 기술을 구현할 수 있었다. 또한, 최근의 합성 생물학적 연구와 세포 외부 반응 시스템(cell-free synthetic biology)을 기반으로 한 기술들은 웨어러블 장치의 가능성을 크게 확장하고 있다. 합성 생물학은 생체 시스템을 제어할 수 있는 전례 없는 가능성을 열어주었고, 다양한 생물학적 회로와 센서를 설계할 수 있는 기반을 마련했다. 특히, 세포 외부 반응 시스템은 세포를 직접 사용하지 않으면서도 유전자 회로를 활용해 원하는 반응을 이끌어낼 수 있다는 점에서 기존의 생체 웨어러블 기술의 한계를 극복할 수 있는 잠재력을 가지고 있다. 무선 작동과 생체 적합성 이 장치는 배터리가 필요 없으며, 몸 안에서 자유롭게 부유하는 형태로 존재한다. 외부에서 빛을 조사하여 비침습적으로 장치를 작동시킬 수 있어, 신체 내부 환경에 미치는 영향을 최소화할 수 있다. MIT 연구진은 수많은 실험을 통해 이 장치가 신경세포와 상호작용하면서도 세포에 손상을 주지 않고 생체 적합성을 유지할 수 있음을 입증했다. 또한, 이러한 웨어러블 시스템에는 유전자 회로를 포함한 다양한 센서를 사용해 세포 내부와 외부의 다양한 분자들을 탐지하고 반응할 수 있도록 설계할 수 있다. 이러한 점에서 이 기술은 매우 혁신적이다. 신경 질환 치료의 잠재성 세포용 웨어러블 장치는 특히 신경계 질환, 예를 들어 다발성 경화증(MS)과 같은 질환의 치료에서 그 가능성을 높이 평가받고 있다. 다발성 경화증 환자는 신경을 보호하는 '미엘린'이라는 층이 손상되는데, MIT 연구진의 장치는 이 손상된 축삭을 감싸 합성 미엘린의 역할을 수행할 수 있다. 연구팀의 주저자인 데블리나 사카르는 "이 기술은 세포 수준에서 작동하는 합성 미엘린을 통해 다발성 경화증 환자들의 신경 기능을 회복시키는 데 도움을 줄 수 있다"고 말했다. 이 장치가 단순한 실험적 기술을 넘어, 신경계 질환을 치료할 수 있는 실질적 도구가 될 가능성을 가지고 있는 것이다. 생체 전자장치의 미래와 윤리적 과제 MIT 연구팀은 세포용 웨어러블 장치가 합성 미엘린 역할뿐만 아니라 다양한 광전기 물질과 결합해 세포를 자극하는 데 사용할 수 있음을 보여주었다. 예를 들어, 장치 위에 원자 수준의 얇은 재료를 덮어 패턴화하면, 여전히 말려서 미세 튜브 형태를 만들 수 있다. 이는 장치가 다양한 신호(전기적, 광학적, 열적 신호 등)를 세포에 전달할 수 있는 플랫폼으로서 사용될 가능성을 열어주고 있다. 이러한 기술은 신경과학 연구뿐만 아니라 인공지능 기술과의 결합을 통해 인간의 뇌 연구와 질병 치료의 새로운 가능성을 제시할 수 있다. 그러나 이러한 기술이 인체에 도입되는 만큼 윤리적 고민 역시 동반된다. 비록 비침습적 방식이라 할지라도 인체 내부에 장치를 설치하는 것에 대한 프라이버시 문제와 인체에 미칠 장기적 영향에 대한 우려가 존재한다. 펜실베이니아 대학교의 플라비아 비탈레 교수는 "이 기술은 세포 수준에서 신경세포와 상호작용하는 전례 없는 해상도를 보여준다. 하지만 그 사용에는 윤리적 고려가 필요하다"고 말했다. 기술의 발전과 함께 그에 따른 책임과 윤리적 기준을 마련하는 것이 중요하다. 미래의 신경과학과 의학의 패러다임 변화 세포 자체가 장치를 착용하는 시대가 도래하고 있다. 이러한 세포용 웨어러블 장치는 신경계 질환 치료의 새로운 장을 열어줄 뿐만 아니라, 생체 전자장치가 인체와 어떻게 상호작용하고 우리의 건강을 관리할 수 있을지를 새롭게 정의할 것이다. 이 혁신적인 기술은 단순한 상상이 아니라, 이제 곧 우리의 현실로 다가오고 있다. 우리는 이 혁신이 인체와 어떻게 공존할 수 있을지를 탐구하고, 그에 따른 윤리적 과제를 함께 고민해야 할 것이다. 데블리나 사카르 교수는 "우리가 보여준 이 기술의 가능성은 앞으로의 연구와 응용에 있어 엄청난 잠재력을 가지고 있다"고 말했다. 지금 우리는 미래 과학의 첫걸음을 내딛고 있는 것이다.
-
- 포커스온
-
[퓨처 Eyes(57)] 세포도 웨어러블 입는 시대…"생체 전자장치의 혁명"
-
-
나노 기술로 건물 안전 진단⋯한국기계연구원, 색상 변화 감지하는 센서 개발
- 한국기계연구원(이하 기계연)이 나노 기술을 이용하여 건축물의 노후화를 육안으로도 진단할 수 있는 혁신적인 센서를 개발했다. 4일 기계연에 따르면 나노융합연구본부 윤재성 책임연구원 연구팀은 건축물에 부착하는 나노 필름 형태의 센서를 통해 색상 변화를 감지하고, 이를 통해 건축물의 변형 정도를 정밀하게 측정하는 기술을 선보였다. 이 센서는 자연에서 관찰되는 '구조색'의 원리를 응용했다. 구조색은 색소가 아닌 물체의 미세 구조에 의해 빛이 반사되면서 나타나는 색상으로, 공작새 깃털이나 나비 날개에서 볼 수 있는 아름다운 색깔이 대표적인 예이다. 연구팀은 이러한 구조색의 원리를 이용하여 나노 패턴을 설계, 센서에 가해지는 기계적 변형량에 따라 색상이 변화하도록 했다. 육안으로 확인하는 건축물 안전 특히, 이번에 개발된 나노 패턴은 기존 기술의 한계였던 관찰 각도에 따른 색상 변화 문제를 해결하여, 어느 각도에서든 일정한 색상을 유지하도록 설계했다. 또한, 색상 변화 이미지를 인공지능 기술과 접목하여 위험 여부를 판단하는 모니터링 솔루션도 구축했다. 이 센서는 색소나 염료, 별도의 전원 없이 작동 가능하며, 패치 형태로 건축물에 부착하여 육안으로도 안전성을 쉽게 확인할 수 있다는 장점이 있다. 연구팀은 이 기술과 관련하여 10건 이상의 국내 특허와 1건의 국제 특허를 출원했으며, 관련 기업과 기술이전을 추진 중이다. 윤재성 책임연구원은 "이번에 개발된 나노 필름 센서는 건축물의 변형 여부와 안전성을 간편하게 진단할 수 있는 획기적인 기술"이라며, "건축물 안전 관리 분야에 널리 활용될 수 있을 것으로 기대한다"고 밝혔다. 이번 연구 결과는 재료과학 분야의 권위 있는 국제 학술지 'ACS 어플라이드 나노 머티리얼즈' 9월 13일 자 표지논문으로 게재되어 그 우수성을 인정받았다. 한편, 나노 기술은 10억분의 1미터, 즉 나노미터 크기의 물질을 다루는 기술이다. 쉽게 말하면 머리카락 굵기의 10만분의 1정도에 해당하는 아주 작은 크기다. 이렇게 작은 크기에서는 물질의 성질이 완전히 달라지는 데, 나노 기술은 바로 이러한 특성을 이용해 새로운 물질이나 소재를 만들어 내는 가술이다. 이러한 나노 기술은 약물 전달이나 전자 기기, 섬유 제작,자어ㅣ선 차단제 등에 활용된다. 나노 기술로 제작된 섬유는 오염 물질이 묻지 않고 주름도 잘 생기지 않는 특징이 있다.
-
- 산업
-
나노 기술로 건물 안전 진단⋯한국기계연구원, 색상 변화 감지하는 센서 개발
-
-
[신소재 신기술(125)] 양자 '슈뢰딩거의 고양이' 23분간 유지 성공…양자역학 새 지평 열어
- 과학자들이 양자 고양이 상태를 무려 23분(1400초) 이상 유지해 기존 기록을 경신했다. 중국 과학기술대학교 연구진이 '슈뢰딩거의 고양이' 상태를 1400초(약 23분 33초) 동안 유지하는 데 성공했다는 연구 결과를 발표했다고 IFL사이언스가 전했다. 이는 양자 중첩 상태를 장시간 유지한 세계 최장 기록으로, 고정밀 특정 및 양자 컴퓨터 정보 처리 분야에 새로운 가능성을 제시할 것으로 기대된다. 슈뢰딩거의 고양이는 양자역학의 원리를 설명하는 데 자주 사용되는 비유로 오스트리아의 물리학자 에르빈 슈뢰딩거가 1935년에 고안한 사고 실험이다. 이 실험은 양자 역학의 불완전함을 보여주기 위해서 고안됐다. 실험 원리는 다음과 같다. 상상속의 밀폐된 상자 안에 고양이 한 마리가 들어있다. 또 상자 안에는 방사성 물질과 연결된 독가스 장치가 있다. 방사성 물질은 1시간 안에 50%의 확률로 붕괴한다. 만약 붕괴하면 독가스가 방출되어 고양이가 죽고, 붕괴하지 않으면 고양이가 살아 있다. 여기서 중요한 점은 상자를 열어보기 전까지는 고양이가 죽었는지 살았는지 확인할 수 없다는 것이다. 양자역학에 따르면, 상자를 열어 확인하기 전까지 고양이는 죽어 있는 상태와 살아 있는 상태가 중첩되어 존재한다. 즉, 고양이는 살아 있으면서 죽어 있는 상태다. 슈뢰딩거는 이 실험을 통해 양자역학의 '중첩' 해석에 의문을 제기했다. 거시세계에서는 고양이가 죽었거나 살았거나 둘 중 하나이며 중첩된 두 가지 상태가 동시에 존재할 수 없기 때문이다. 즉, '슈뢰딩거의 고양이'는 양자역학의 불확실성을 설명하는 사고 실험으로, 상자 속 고양이가 살이 있는 상태와 죽어 있는 상태가 중첩되어 존재한다는 개념이다. 연구팀은 1만개의 이터븀 원자를 절대영도보다 몇 천분의 1도 높은 온도로 냉각시키고 빛을 이용하여 포획하는 실험을 진행했다. 각 원자는 정밀하게 제어되어 두 가지 스핀 상태의 중첩 상태, 즉 '양자 고양이' 상태를 형성했다. 이번 연구에서 주목할 점은 양자 고양이 상태의 유지 기간이다. 자연 상태에서는 중첩 상태가 순식간에 붕괴되지만, 이번 실험에서는 1400초 동안 유지됐다. 연구진은 진공 개념을 개선하면 유지 시간을 더욱 늘릴 수 있을 것으로 예상했다. 인도 캘거리 대학교의 배리 센더스 교수는 "이터븀 원자를 이용해 안정적인 양자 고양이 상태를 구현한 것은 놀라운 성과"라며 "이를 통해 미세한 외부 영향을 감지하고 상호 작용을 연구하는 데 활용할 수 있다"고 평가했다. 센더스 교수는 이 연구에 참여하지는 않았다. 이번 연구는 이터븀 원자를 이용한 장치가 자기장 측정에 매우 민감하게 반응한다는 사실을 밝혀냈으며, 다양한 분야의 응용 가능성을 제시했다. 양자역학 분야에서는 지난해에 16 마이크로그램의 결정을 중첩 상태로 만드는 실험이 성공하는 등 끊임없는 혁신이 이루어지고 있다. 이번 연구 결과는 아직 동료 평가를 받지 않았으며, 관련 논문은 아카이브(arXiv)에서 확인할 수 있다.
-
- IT/바이오
-
[신소재 신기술(125)] 양자 '슈뢰딩거의 고양이' 23분간 유지 성공…양자역학 새 지평 열어
-
-
[우주의 속삭임(75)] 태양계 밖 황소자리에서 처음으로 복합 탄소 발견
- 지구에서 430광년 떨어진 황소자리 분자 구름 내에 위치한 심우주에서 거대 복합 탄소가 발견됐다고 스페이스닷컴이 전했다. 이는 천체화학의 오랜 미스터리, 즉 '생명의 핵심 구성 요소인 탄소가 어디에서 왔는가'를 해결하는 데 도움이 될 수 있는 추가 단서를 제공할 것으로 기대된다. 피렌(pyrene)이라고 불리는 이 분자는 탄소의 4개의 융합된 평면 탄소 고리로 구성되어 있다. 따라서 다환 방향족 탄화수소(PAH)로 분류되며, 이는 가시 우주에서 가장 풍부한 복합 분자 중 하나다. PAH는 1960년대에 탄소질 콘드라이트로 알려진 운석에서 처음 발견되었는데, 이는 우리 태양계를 형성한 원시 성운의 잔해이다. 매사추세츠 공과대학(MIT) 화학과 브렛 맥과이어 교수는 "별과 행성 형성의 큰 의문 중 하나는 초기 분자 구름에서 추출한 화학 물질 중 얼마나 많은 부분이 유전되어 태양계의 기본 구성 요소를 형성하는가 하는 것이다"라고 말했다. PAH는 우주에서 발견되는 탄소의 약 20%를 차지하는 것으로 추정되며, 별의 형성에서 사멸까지의 별의 일생 여러 단계에서 존재한다. PAH는 자외선(UV) 방사선에 대한 안정성과 복원력으로 인해 심우주의 혹독한 환경에서도 생존할 수 있다. 연구진은 지구 근처에서 발견된 소행성 류구(Ryugu)로부터 수집한 샘플에서 피렌이 높은 수준으로 발견된 후, 황소자리 구름에서도 다른 PAH를 찾기 시작했고 이번에 복합 탄소 분자를 발견하게 된 것이다. 태양계의 발상지에서 이런 분자를 발견한 것은 천문학자들이 오랫동안 찾아왔던 직접적인 연결 고리를 제공한다. 맥과이어는 "이는 초기 분자 구름에서 나온 이 물질이 우리 태양계를 구성하는 얼음, 먼지 및 암석체로 들어간다는 매우 강력한 증거"라고 설명했다. 이 발견은 전파 천문학을 이용한 것으로, 전파 천문학은 별, 행성, 은하, 먼지 구름과 같은 천체를 전파의 파장으로 관찰하는 천문학의 주요 분야다. 천문학자들은 다양한 천체에서 발생하는 전파를 연구함으로써 특정 대상의 구성, 구조 및 운동을 파악한다. 우주에서 분자를 식별하는 데 사용되는 다른 장비와 비교해, 전파 망원경은 일반 분자 그룹이 아닌 개별 분자를 관찰할 수 있는 기능을 제공한다. 전파 망원경은 분자가 특정 주파수에서 방출하거나 흡수하는 전자기파의 고유한 ‘지문(특성)’을 감지하고 출력한다. 각 분자는 고유한 회전 및 진동 에너지 레벨을 갖는다. 특성 전파는 분자가 이러한 레벨 사이를 전환할 때 생성된다. 전파 망원경은 이를 탐지해 연구에 제공하는 것이다. 이번 탄소 분자에 대해 UBC 화학과의 일사 쿡 교수는 "이는 2021년 처음 발견한 이후 우주에서 확인된 일곱 번째 개별 PAH"라고 말했다. 그는 "PAH는 생명의 구성 요소와 유사한 화학 구조를 갖고 있다. 이 분자가 어떻게 형성되고 우주로 운반되는지에 대해 더 많이 알게 되면 우리 태양계와 그 안의 생명에 대해 더 많이 알게 될 것이다"라고 부연했다. 태양계의 기원지에서 피렌을 발견한 것 외에도, 연구팀에게 더욱 흥미로웠던 것은 구름의 온도가 단지 10켈빈(섭씨 영하 263도)으로 측정되었다는 사실이다. 지구에서 PAH는 화석연료의 연소와 같은 고온 과정을 통해 형성된다. 따라서 이 추운 환경에서 PAH를 발견한 것은 놀라운 일이었다. 쿡 교수는 "향후 연구는 PAH가 극도로 추운 곳에서 형성될 수 있는지, 아니면 우주의 다른 곳에서 오래된 별의 죽음을 통해 형성돼 이동할 수 있는지 여부를 탐구하는 것이 목표"라고 말했다.
-
- IT/바이오
-
[우주의 속삭임(75)] 태양계 밖 황소자리에서 처음으로 복합 탄소 발견
-
-
[신소재 신기술(123)] NASA, 중력파 관측소용 프로토타입 망원경 공개
- 나사(NASA)가 블랙홀과 다른 우주적 근원이 합쳐지면서 발생하는 시공간 파장인 중력파를 우주에서 감지할 수 있는 6개의 실물 크기 프로토타입 우주 망원경을 홈페이지를 통해 공개했다. 우주 망원경은 향후 10년 동안 진행될 나사의 우주 미션 리사(LISA: Laser Interferometer Space Antenna) 임무에 사용될 계획이다. 망원경은 2개가 한 쌍을 이루어 우주선에 탑재된다. 중력파를 관측하는 차세대 리사 임무는 유럽우주국(ESA)과 나사가 협력해 진행하는 미션으로, 레이저를 사용해 태양보다 더 광대하게 분산된 3대의 우주선 사이의 정확한 거리를 측정해 중력파를 감지하는 것이다. 거리 측정은 피코미터 또는 1조 분의 1미터 수준의 정밀도로 이루어진다. 삼각형 배열의 각 면은 약 250만km를 측정한다. 미국 메릴랜드주의 나사 고다드 우주비행센터의 라이언 드로사 박사는 "각 우주선에 탑재된 쌍둥이 망원경은 적외선 레이저 빔을 송수신해 동료 우주선을 추적하며, 리사 임무에 쓰이는 6대의 망원경은 나사가 모두 공급한다. 엔지니어링 개발 망원경 유닛(Engineering Development Unit Telescope)이라는 이름의 이 프로토타입은 우주를 비행할 우주선 하드웨어를 제작하는 작업을 지원하게 된다. 뉴욕주 로체스터에 소재한 L3해리스테크놀로지(L3Harris Technologies)에서 제조 및 조립한 프로토타입 망원경은 지난 5월 고다드 센터에 도착했다. 망원경의 주 거울은 적외선 레이저를 매우 잘 반사하고, 차가운 공간에 노출된 상태에서 열 손실을 줄이기 위해 금으로 코팅됐다. 망원경은 실내 온도에 가까울 때 가장 잘 작동한다. 프로토타입 망원경은 모두 독일 마인츠에 소재한 쇼트(Schott)에서 제조한 호박색 유리 세라믹(Zerodur)으로 만들어졌다. 이 소재는 폭넓은 온도 범위에서 모양이 거의 변하지 않기 때문에 망원경 거울과 고정밀이 필요한 응용 분야에 널리 사용된다. 리사 임무는 2030년대 중반에 시작될 예정이다.
-
- IT/바이오
-
[신소재 신기술(123)] NASA, 중력파 관측소용 프로토타입 망원경 공개
-
-
[기후의 역습(75)] 2024년 북극 해빙, 사상 최저치 기록…지구 위기 심화
- 북극과 남극은 2024년 대규모의 빙하를 잃었으며, 북극 해빙(바다위 빙하)은 기록상 7번째로 낮은 수준에 도달했다고 사이테크데일 리가 전했다. 극지방 얼음의 지속적인 감소는 얼음 반사에 의해 일어나는 광범위한 생태계 변화와 지구 온난화를 심화시킨다. 북극 해빙은 지난 여름 북반구에서 거의 역사적으로 가장 낮은 수준으로 후퇴, 지난 9월 11일 올들어 최소 수준으로 녹았다. 이는 나사(NASA) 및 국립 눈과 얼음 데이터 센터(NSIDC: National Snow and Ice Data Center)에서 밝혀낸 것으로, 수십 년 동안 지속되어 온 북극해의 얼음 감소 추세를 극명하게 드러내고 있다. 북극 해빙은 연중 계절 변화에 따라 확장과 수축을 반복한다. 전문가들은 이러한 변화를 관측해 북극이 기온과 해수 온도 상승, 계절에 따른 얼음의 변화를 추적한다. 지난 46년 동안 위성에서 수집한 데이터 관측은 일관된 패턴을 보여준다. 여름철에는 당연히 더 많이 녹고 겨울철에는 얼음 형성이 과거에 비해 크게 줄어들었다는 사실이다. ◇ 북극 해빙 감소의 영향 해빙 변화를 실시간 추적한 결과, 극지 야생동물 서식지의 손실과 변화부터 북극 지역사회와 국제무역로에 미치는 영향에 이르기까지 광범위한 영향이 드러났다. 올해 북극 해빙은 최소 428만 평방킬로미터까지 줄었다. 이는 1981~2010년 여름이 끝날 무렵의 평균인 622만 제곱킬로미터보다 약 194만 제곱킬로미터 정도 줄어든 수치다. 이는 알래스카주보다 더 넓은 면적이다. 해빙 면적은 얼음 비중이 최소 15% 이상인 바다의 총면적을 말한다. 참고로 알래스카 주는 미국에서 가장 큰 주이며 서울 면적의 약 770배, 한반도 전체 면적의 약 7.7배에 달하는 엄청난 크기이다. ◇ 해빙의 추세와 측정 위성 기록에서 7번째로 낮았던 올해의 최소치는 2012년 9월에 기록된 역대 최저치인 339만 제곱킬로미터보다 높은 수준이었다. 해빙 면적은 해마다 변동이 있을 수 있지만, 1970년대 후반 위성의 기록이 시작된 이후 감소 추세를 보였다. NSIDC에 따르면, 그 이후로 해빙 손실은 연간 약 7만 7800제곱킬로미터에 달했다. 과학자들은 현재 미국 국방기상위성 프로그램의 위성에 탑재된 수동 마이크로파 센서 데이터와 나사 및 국립해양대기청(NOAA)이 공동으로 운영하는 님버스-7 위성의 과거 데이터를 사용해 해빙 범위를 측정한다. 나사 고다드 우주비행센터의 빙하권 과혁연구실 소장인 네이선 커츠는 해빙이 줄어들 뿐만 아니라 점점 젊어지고 있다고 지적한다. 커츠는 "현재 북극해의 얼음 대부분은 얇으며 1년차 얼음으로, 더운 계절을 견뎌내기 어렵다. 3년 이상 된 얼음은 훨씬 적다"고 말했다. 위성의 우주 고도계로 수집한 얼음 두께 측정 결과, 가장 오래되고 두꺼운 얼음의 대부분이 이미 사라졌다. 나사의 제트추진연구소에서 실시한 새로운 연구에 따르면 해안에서 멀리 떨어진 북극 중앙의 가을 해빙은 현재 두께가 약 1.3m로, 1980년의 최고치인 2.7m에 비해 크게 얇아졌다. ◇ 남반구의 얼음 상태도 위험 남극 지역의 해빙도 2024년에 낮아졌다. 과학자들은 남반구의 가장 어둡고 추운 계절, 얼음이 광범위하게 늘었어야 할 시기에 해빙이 기록적으로 낮았음을 발견했다. 남극 대륙 주변의 얼음은 지난 9월 19일 올해 최대 면적에 도달했을 가능성이 높다. 그 때를 기준한 얼음의 증가는 1716만 제곱킬로미터에서 멈췄다. 올해의 최대 얼음 면적은 위성 기록 기존으로 두 번째로 낮았으며 지난해 9월에 기록된 겨울철 최저 기록인 1696만 제곱킬로미터보다 높았다. 1981~2010년 사이의 평균 최대 면적은 1871만 제곱킬로미터였다. 2024년의 미미한 증가는 최근의 하락 추세를 연장하고 있다. 2014년 이전까지만 해도 남극의 해빙은 10년마다 약 1%씩 증가하고 있었다. 2014년 이후 얼음 성장은 급격히 감소했다. 과학자들은 이런 역전의 원인을 파악하는데 주력하고 있다. 이어지는 얼음 손실은 남극해의 상황이 장기적으로 변하고 있음을 암시하며, 이는 전 지구적 기후 변화로 인한 것으로 보인다. 남극해에 지구 온난화가 본격화되고 있는 것이다. 북극과 남극 모두에서 얼음 손실이 상황을 악화시키고 있다. 해빙은 태양 에너지의 대부분을 우주로 반사하는데, 얼음이 녹은 바닷물은 태양빛의 90%를 흡수하기 때문이다. 햇빛에 노출된 바다가 많아질수록 수온이 상승하고 해빙 성장은 더욱 지연된다. 해빙 손실은 북극의 열을 올리고 있으며, 북극의 기온은 전 세계 평균의 약 4배 상승했다.
-
- 포커스온
-
[기후의 역습(75)] 2024년 북극 해빙, 사상 최저치 기록…지구 위기 심화
-
-
[기후의 역습(72)] "지구 온난화 맞긴 맞는데"…통계가 드러낸 '불편한 진실'
- 최근 몇 년 동안 전 세계적으로 기록적인 폭염이 발생한 것을 감안하면 지구 온난화가 극심한 현실인 것으로 보인다. 통계학자를 포함한 국제 연구진이 이를 검증하는 연구를 진행했다고 전문 사이트 PHYS가 전했다. 연구진은 지난 반세기 동안 지구 온난화가 통계적으로 감지할 수 있는 속도로 증가했는지, 또는 급증했는지를 조사했다. 영국 랭커스터 대학교 통계학자와 미국 UC 산타크루즈 캠퍼스의 연구진이 주도한 국제 연구진에 따르면 지구가 점점 뜨거워지고 있는 것은 맞지만, 통계적으로 볼 때 안정적인 속도로 진행되고 있다는 결론이다. 통계적으로 '급속도'라고 정의할 수 있는 가속화된 속도는 아니라는 것이다. 이 연구 결과는 최근 커뮤니케이션스 지구와 환경(Communications Earth & Environment) 저널에 게재됐다. 최근 몇 년 동안 전 세계적으로 기록적인 기온과 폭염이 발생했다. 데이터에 따르면 2023년은 1850년 측정과 기록이 시작된 이래 가장 더운 해였다. 역사상 가장 더웠던 10년이 모두 최근 10년 동안 발생했다. 이러한 기록적인 온도는 지구 온난화 속도가 급증했는지에 대한 논쟁을 불러일으켰다. 일부 전문가는 최근 15년 동안 가속화되었다고 주장했다. 그러나 이번 연구진의 연구 결과는 '급증' 또는 '가속'이라고 정의할 수 있는 통계적 증거가 부족하다는 사실을 보여준다. 연구진을 이끈 UC 산타크루즈의 해양 과학부문 클로디 불뢰외 교수는 "최근 기록적인 온도가 발생한 것은 엄연한 사실이고 지구 온난화가 가속화되고 있을 가능성은 여전히 있다. 그러나 우리는 가속도의 규모가 통계적으로 너무 작거나 아직 강력하게 감지할 수 있는 충분한 데이터가 없다는 것을 발견했다"고 밝혔다. 연구진은 나사(NASA)와 미국해양대기청(NOAA) 등 지구 표면의 평균 온도를 추적하는 4대 주요 기관의 지구 표면 온도 평균을 엄밀하게 분석했다. 온도 추적은 1850년부터 시작됐다. NOAA에 따르면 1850년 이후 지구 온도는 10년마다 화씨 0.11도(0.0556℃)씩 상승했다. 연구는 기후 변화를 모니터링하기 위해 널리 사용하는 '지구 평균 표면 온도(GMST)'를 분석했다. GMST는 시간이 지남에 따라 상승하는 경향이 있는데, 주요 화산 폭발 및 엘니뇨 현상 등 지구 온도에 영향을 미치는 자연 현상으로 인해 장기적인 추세를 중심으로 변동하는 문제점도 보인다. 따라서 온난화 속도의 자연적 변동성과 진정한 근본적 변화를 구별하는 것은 통계학적 과제다. 연구진은 일시적인 변동이 상당 기간에 걸쳐 유지하면 온난화 급증을 통계적으로 감지할 수 있다고 간주했다. 온도 그래프의 기울기가 급격히 상승하고 상당 기간 유지되면 뚜렷하게 관측된다. 연구진은 단기 평균 온도 변동을 고려하고 다양한 통계적 방법을 사용, 조사 대상 연도의 온난화 증가 수준을 파악해 임계값을 결정했다. 임계치를 넘어서면 온난화가 '급속히' 진행되었음을 나타낸다. 연구진은 1970년대 이후 최근까지의 온도 기록 분석에 이 임계값을 적용, 온도 변화 추세가 임계치를 넘었는지 확인했다. 그 결과 임계값을 넘었던 해는 없었던 것으로 드러났다. 랭커스터 대학교의 레베카 킬릭 통계학 교수는 "일반적으로 사용되는 통계적 접근 방식을 적용해 보았을 때 온난화가 가속화되고 있다는 엄격한 통계적 증거는 없다"고 지적했다. 연구진은 분석 결과가 지구 온난화 급증의 한가운데에 있다는 통계적 증거를 보여주지는 않지만, 기후 변화의 현실까지 반박하는 것은 아니라고 강조했다. 보고서는 "지구는 인간 활동으로 인해 현재 가장 뜨겁다. 우리의 분석도 지구가 분명히 지속적으로 온난화되고 있음을 보여준다"고 지적했다.
-
- 포커스온
-
[기후의 역습(72)] "지구 온난화 맞긴 맞는데"…통계가 드러낸 '불편한 진실'
-
-
[신소재 신기술(121)] 중국 연구진, 맥박 측정 로봇 손가락 개발
- 로봇 손은 산업계에 다양한 용도로 쓰이지만, 로봇 손의 촉각은 인간의 그것에 비하면 다소 떨어진다. 그런데 중국의 연구진이 인간의 맥박을 측정할 수 있는 로봇 손을 설계해 주목된다고 더레지스터가 전했다. 중국 과학기술대학의 연구진은 센서를 사용하여 로봇이 압력의 정확한 변화를 감지하고, 인간 손가락에 필적하는 민첩성으로 움직일 수 있는 생체 영감 소프트 핑거(BSF)를 개발했다. 이는 셀(Cell)에 게재됐다. 발표된 논문에서 연구진은 로봇이 새롭게 적용된 감각을 사용해 사람의 맥박을 측정하고, 혹을 확인하거나, 환자가 의사를 상대할 때 당황하지 않도록 다른 인체 검사를 수행할 수 있을 것이라고 밝혔다. 연구진의 일원인 감지 기술 과학자인 왕홍보는 "이처럼 손재주가 있는 로봇 손가락은 미래의 병원에서 의사처럼 '로보닥터' 역할을 수행할 수 있다고 믿는다"라고 설명했다. 그는 "기계학습과 결합하면 자동 로봇 검사 및 진단이 가능하며, 특히 의료 전문가가 턱없이 부족한 외딴 미개발 지역에서 유용할 것으로 기대한다"고 부연했다. 129mm 길이의 손가락 로봇은 부드럽고 유연한 광중합(포토폴리머) 수지 프레임워크에 내장된 공기 제어 액추에이터를 사용하며, 두 개의 전도성 섬유 코일이 내장되어 있다. 첫 번째 코일은 손가락의 움직임을 제어하고 두 번째 코일은 손가락 끝부분에 설치돼 매우 민감한 고감도 압력 센서와 연결된다. 실험에서 로봇 손가락은 실리콘 시트에 내장된 인공 덩어리를 식별할 수 있었으며, 실험 대상자의 동맥을 찾아 심박수를 정확하게 판독해 인간의 맥박을 측정했다. 논문에서는 "BSF는 인간의 손가락과 마찬가지로 작동 및 굽힘 감지 모두 50ms의 실시간 응답시간으로 손가락 끝의 힘을 감지할 수 있었으며, 굽힘 각도에 대해서는 0.02, 힘에 대해서는 0.4mN의 높은 감지 해상도를 제공한다"라고 설명했다. 또한 "제안된 BSF의 굽힘 및 힘 감지는 자체 분리되어 있으며 반복성이 높다. 가장 중요한 점은 BSF의 감지 및 작동이 모두 안정되며, 실용적인 응용 분야에서 기계적으로 내구성이 있다는 것"이라고 덧붙였다. 로봇 손가락의 장점은 특히 인간 의사, 특히 이성 의사가 검진하는 것을 불편해하는 환자가 편하게 사용할 수 있다는 것이다. 또한 의사를 전혀 만나지 않고도 집에서 예방적 검진을 위해 사용할 수 있다. 연구진은 또 키 입력에 필요한 힘을 스스로 판단해 손가락이 올바르게 타이핑하는 능력도 보여주었다. 제어를 위해 기계학습을 사용함으로써 민감성과 유용성 면에서 인간과 맞먹는 로봇 손을 만들 수도 있다. 연구진은 "정확한 감지 데이터를 널리 활용하고 BSF 기반 생물에서 영감을 손에서 기계학습 기반 감지 데이터 제어를 적용함으로써 인간과 같은 '촉감, 느낌, 시도, 학습, 조작' 및 정교한 인간-로봇 상호 작용을 실현할 수 있다"고 밝혔다.
-
- IT/바이오
-
[신소재 신기술(121)] 중국 연구진, 맥박 측정 로봇 손가락 개발
-
-
[우주의 속삭임(70)] 달 내부에 녹은 암석층 존재 가능성…중력 측정 분석 결과 뒷받침
- 달의 지각 아래 내부 구조는 무엇으로 이루어져 있을까. 지구 내부에는 녹은 암석층이 존재하며, 이는 지표면의 지각판 운동을 일으키는 원인으로 알려져 있다. 과학자들은 그동안 달에도 지구처럼 핵과 고체 외층 사이에 녹음 암석층이 존재하는 지에 대한 연구를 진행해왔다. 미 항공우주국(나사·NASA) 고다드 우주 비행 센터와 애리조나 대학의 연구팀은 최근 지구와 태양의 중력에 대한 달의 반응을 분석한 결과, 달 내부의 깊은 곳에 녹은 암석층이 존재할 가능성을 뒷받침하는 새로운 증거를 제시했다. 해당 내용에 대해서는 사이언스얼라트와 스페이스닷컴 등이 보도했다. 이번 연구를 통해 지구의 바닷물이 달과 태양의 중력에 의해 주기적으로 상승하고 하강하는 것처럼, 달도 조석력의 영향을 받는다는 것이 밝혀졌다. 다만, 지구처럼 바다가 없기 때문에 달의 조석 현상은 미묘하지만 모양과 중력의 변화를 통해 확인할 수 있다. 연구 결과 달의 맨틀은 조수처럼 오르락내리락하는 두껍고 끈적끈적한 영역을 갖고 있는 것으로 드러났다. 달의 조석력에 반응하는 방식은 내부 구조와 밀접한 관련이 있다. 연구팀은 지구와 태양에 대한 달의 조석 반응으로 분석하면 표면 아래에 무엇이 있는 지 단서를 얻을 수 있다는 점에 주목했다. 기존 연구에서는 한 달 동안 달의 조석 변화를 측정했지만, 이번 연구에서는 나사의 위성 기반 GRAIL(Gravity Recovery and Interior Laboratory) 미션과 달 정찰 궤도선(Lunar Reconnaissance Orbiter)을 통해 1년 동안의 데이터를 수집했다. 연구팀은 달의 월별 및 연간 형태 변화, 중력장 변화, 평균 밀도 등의 정보를 종합해 내부 구조를 시뮬레이션했다. 그 결과 달의 맨틀 하부에 부드러운 층을 포함했을 때 관측된 중력 측정값을 더 정확하게 재현할 수 있었다. 이는 달 내부 깊은 곳에 점성을 가진 물질 층이 존재할 가능성이 높음을 시사한다. 연구팀은 달 내부의 이러한 녹은 층이 티타늄이 풍부한 광물인 일메나이트(ilmenite)로 구성되었을 것으로 추측하고 있다. 하지만 이 층의 열원이 무엇인지, 정확한 구성 성분은 무엇인지 등이 여전히 풀어야 할 과제로 남아 있다. 해당 연구는 AGU 어드밴시스(AGU Advances)에 게재됐다. 한편, 일메나이트는 티타늄과 철의 산화 광물로 화학식은 FeTiO3이다. 일메나이트는 티타늄의 주요 광석이며, 이산화 티타늄(TiO2) 생산의 주원료다. 이산화 티타늄은 페인트, 잉크, 플라스틱, 종이, 선크림, 식품, 화장품 등 다양한 분야에서 사용된다. 일메나이트는 러시아의 일멘 산맥에서 처음 발견되어, 이름이 붙여졌다. 아폴로 우주선이 가져온 달에서 채취한 암석에서 상당량의 일메나이트가 발견됐다.
-
- IT/바이오
-
[우주의 속삭임(70)] 달 내부에 녹은 암석층 존재 가능성…중력 측정 분석 결과 뒷받침
-
-
[퓨처 Eyes(53)] 세계 최초, 나노 크기 물방울 생성 실시간 포착
- 수소와 산소를 결합하는 과정을 통해 나노크기의 물방울 생성 장면이 처음으로 포착됐다. 미국 노스웨스턴 대학교 연구팀이 은백색 금속인 팔라듐(Pd)을 이용해 수소와 산소를 결합, 나노 크기의 물방울을 실시간으로 생성하는 과정을 세계 최초로 관찰하고 촬영하는 데 성공했다. 이 연구는 심우주 탐사에서 물을 생산하는 혁신적인 기술로 활용될 가능성을 제시하며 주목받고 있다. PHYS.org, IFL사이언스, 사이언스 얼러트 등 다수 외신이 이 같은 내용을 중점적으로 다루었다. 팔라듐 반응으로 나노 물방울 생성 물(H₂O)의 성분은 간단하다. 수소 원자 2개와 산소 원자 1개를 섞으면 지구 생명체 유지에 가장 중한 물 분자가 만들어진다. 연구팀은 팔라듐 반응을 직접 관찰하기 위해 20나노미터(1나노미터는 10억분의 1미터) 너비의 팔라듐 조각 표면에 수소와 산소 원자를 추가하고 멤브레인을 사용해 이어지는 상호작용을 포착했다. 팔라듐은 수소를 흡수하고 저장하는 능력이 뛰어난 금속으로, 수소가 팔라듐 구조 내부로 들어가 산소와 빠르게 결합하면서 물을 생성한다. 이번 연구에서는 벌집 모양의 나노 반응기와 초박막 유리 멤브레인을 사용해, 팔라듐 표면에서 수소와 산소가 결합해 물방울을 형성하는 과정을 실시간으로 시각화했다. 연구팀은 고진공 투과 전자 현미경을 이용해 이 극미세 반응을 관찰했다. 벌집 모양의 나노 반응기는 기체 분자를 가두어 서로 반응하게 한 후, 그 과정을 초박막 멤브레인을 통해 실시간으로 관찰할 수 있는 기술을 구현했다. 이를 통해 연구팀은 팔라듐이 수소와 산소를 빠르게 물로 변환하는 나노 단위의 과정을 확인했다. 전자 에너지 분광법을 통한 분석 연구팀은 팔라듐 표면에서 생성된 나노 크기의 물방울을 전자 에너지 분광법(EELS)을 사용해 분석했다. 이 방법은 전자를 시료에 쏘아 전자의 에너지 손실을 측정함으로써 시료의 화학적 결합 상태를 파악하는 기술이다. 이를 통해 연구팀은 팔라듐 표면에서 발생하는 물 분자의 결합 상태와 생성 과정을 정밀하게 관찰할 수 있었다. 이는 또한 인도의 달 탐사선 찬드라얀 1호가 달에서 물의 존재를 확인하는데 사용된 것과 동일한 기술이기도 하다. 2008년 발사된 찬드라얀 1호는 얼름, 헬륨-3을 포함한 달의 자원을 조사했다. 물은 인류 생존에 중요한 요소로 과학자들은 달의 남극에서 상당한 양의 물을 발견했으며, 미래의 우주 임무에서 달의 물을 활용하는 점에 주목하고 있다. 게다가 지난 2023년 8월 23일 찬드라얀 3호가 달에서 물이 풍부한 지역으로 알려진 남극 지역에 세계 최초로 착륙해 달 탐사의 새로운 이정표를 세웠다. 우주에서 물 생성 응용 가능성 이번 연구는 심우주 탐사에서 물을 현지에서 생산할 수 있는 가능성을 열었다. 팔라듐을 이용해 수소를 미리 우주선에 저장해두면, 우주 비행사들은 산소만 추가해 식수를 생산할 수 있는 방법을 제시한 것이다. 이는 달, 화성,목성 탐사와 같은 장기 우주 미션에서 중요한 자원 확보 방식으로 활용될 수 있다. 연구의 시니어 저자인 노스웨스턴 대학교 비나약 드라비드 교수는 "나노 규모의 물방울을 직접 시각화함으로써, 극한의 반응 조건 없이도 가스와 금속 촉매를 사용해 빠르게 물을 생성할 수 있는 최적의 조건을 파악할 수 있었다"고 밝혔다. 그는 "이 기술은 우주 환경뿐만 아니라, 수소 연료 전지와 같은 에너지 생산 기술에도 중요한 영향을 미칠 것"이라고 덧붙였다. 팔라듐의 촉매 역할과 수소 에너지 팔라듐은 연성과 전성이 뛰어나 가공하기 쉽고, 내부식성이 강하며 고온에서도 안정적이다. 특히 촉매 활성이 뛰어나 다양한 화학 반응에 활용되며, 수소를 흡수하는 능력 덕분에 최근 수소 에너지와 연료 전지 분야에서 그 중요성이 더욱 커지고 있다. 이번 연구는 팔라듐이 수소와 산소를 결합해 물을 생성하는 속도가 수소와 산소의 주입 순서에 따라 크게 달라진다는 사실을 밝혀냈다. 이는 우주 공간과 같은 특수 환경에서 물을 효율적으로 생산하는 기술 개발에 기여할 것으로 기대된다. 영화 '마션'의 현실화 연구팀은 영화 '마션'에서 주인공 마크 와트니(맷 데이먼 분)가 화성에서 로켓 연료를 태워 수소를 추출하고 산소와 결합해 물을 만든 장면을 언급하며, "우리 기술도 극한 환경 없이 팔라듐과 기체만으로 물을 생성할 수 있다"고 설명했다. 이는 우주 탐사에서 더 간단하고 효율적인 물 생산 방법을 제시한 것이다. 이 연구 결과는 미국 국립과학원회보(PNAS)에 게재되었으며, 향후 우주 탐사 및 수소 에너지 분야에서 중요한 응용 가능성을 제시하고 있다.
-
- 포커스온
-
[퓨처 Eyes(53)] 세계 최초, 나노 크기 물방울 생성 실시간 포착
-
-
강력한 태양 폭풍으로 오로라 남하…캘리포니아·앨라배마서도 관측 기회
- 미국 국립기상청 우주 기상 예측 센터에 따르면, 강력한 태양 폭풍으로 인해 오로라가 10일(현지시간) 저녁에 평소에 나타나던 지역보다 훨씬 남쪽인 앨라배마와 북부 캘리포니아 등지에서도 나타날 것으로 보인다고 CNN 등 외신이 전했다. 허리케인과 유사하게 태양 폭풍은 레벨 1~5 단계로 분류되는데, 이번 폭풍은 레벨 4로 분류돼 대단히 강력한 것으로 예측됐으며 이로 인해 통신, 전력망 및 위성 운영을 방해할 수도 있다. 태양 폭풍은 현지시간 10일 오전 지구에 도달하며, 이는 11일까지 지속될 가능성이 높다고 센터는 밝혔다. 시속 400만km 이상의 속도로 지구를 향하는 폭풍의 강도와 전체 특성은 지구에서 160만km떨어진 궤도를 도는 심우주 기후관측소(Deep Space Climate Observatory)와 'Advanced Composition Explorer' 위성 관측을 통해 밝혀진다. 우주 기상 예측 센터는 이 위성이 폭풍의 속도와 자기 강도를 측정할 것이며, 폭풍은 우주 관측소에 도착한 후 15~30분 지나 지구에 도착할 것으로 예상했다. X급 플레어로 알려진 가장 강렬한 태양 플레어(태양 표면에서 일어나는 폭발)가 이번 주 태양에서 방출되었으며, 이 플레어는 8일의 코로나 질량 방출과 일치했다. 코로나 질량 분출은 태양의 외기권인 코로나에서 방출되는 플라스마와 자기장이라고 하는 이온화된 가스의 큰 구름이다. 강력한 폭발이 지구로 향하면 지자기 폭풍 또는 지구 자기장의 교란을 일으킬 수 있다. 이번 폭발은 대단히 강력한 것으로 측정됐다. 우주 기상 예측 센터에 따르면 지자기 폭풍은 지구 근처 궤도와 통신망 등 지구 표면의 인프라에 영향을 미칠 수 있다. 이에 따라 센터는 연방 비상관리청, 북미 전력망 및 위성 운영자들에게 교란 및 일시적 중단에 대비할 것을 통보했다. 역사적으로 레벨 4단계의 태양 폭풍은 흔하게 발생하지만, 지난 5월 10일 발생한 레벨 5단계 또는 극심한 지자기 폭풍은 매우 드물다. 센터는 이번 태양 폭풍이 5단계가 될 확률이 25%라고 말했다. ◆ 태양 활동의 증가 태양이 올해 예상되는 11년 주기의 정점인 태양 극대기에 가까워짐에 따라, 태양 활동은 더욱 활발해지고 있다. 전문가들은 불타는 태양에서 점점 더 강렬한 태양 플레어가 분출되는 것을 관찰했다. 태양 활동이 증가하면 지구의 극지방에서는 춤추는 오로라가 발생한다. 북극의 경우 이를 북극광 또는 오로라 보레알리스라고 하며, 남극은 남극광 또는 오로라 오스트랄리스라고 한다. 코로나 질량 분출로 인해 활성화된 입자가 지구 자기장에 도달하면 대기 중의 가스와 상호 작용해 하늘에 다양한 색상의 빛을 생성한다. 이 오로라는 최고의 관광 상품이기도 하다. 예측 센터 관계자는 눈에 보이는 오로라가 동부 및 중부 주와 중서부 남부에서 나타날 가능성이 높다고 판단하고 있다. 그러나 태양 폭풍이 지난 5월처럼 전 세계적인 오로라 현상을 일으킬지는 아직 알 수 없다고 밝혔다. 이번 태양 폭풍이 5단계로 올라가면 미국의 남부 주와 전 세계의 다른 지역에서도 오로라를 볼 수 있다. 미국 해양대기청(NOAA)은 센터의 오로라 대시보드를 이용해 내가 거주하는 지역에서 오로라를 볼 수 있을 것인지 확인할 것을 권했다. 대시보드는 지속적으로 업데이트되며 정보가 제공된 후 몇 분 이내에 오로라가 나타날 수 있는 위치를 보여준다. ◆ 교란 가능성 NOAA는 이번 태양 폭풍이 5월의 폭풍 수준을 능가할 것으로는 생각하지 않는다고 말했다. 지난해 이전에 지구를 강타했던 마지막 5단계 폭풍은 2003년으로, 스웨덴에서 정전이 발생했고 남아프리카에서는 변압기가 손상됐다. 지난 5월의 지자기 폭풍에서는 농기구 회사인 존 디어(John Deere)가 정밀 농업에 GPS를 사용하는 일부 고객이 교란을 겪었다고 보고했다. 그러나 대부분의 전력망과 위성은 적절한 관리로 문제를 일으키지 않았다. 전문가들은 태양 활동의 급증에 따라 신중한 모니터링을 이어가고 있다. 이번주 태양의 코로나 질량 분출 속도는 지금까지 이 태양 주기에서 측정된 가장 빠른 속도였다고 한다. 물론 이것이 '태양 활동의 최고점이 지금 발생하고 있다'는 의미는 아니다. 이전 태양 주기에서는 가장 큰 폭풍 중 일부가 최고점 이후에 발생할 수 있다는 것을 보여주고 있다. 센터는 "우리는 지금 태양 극대기의 중심에 있다. 정점에 도달했는지 아직 모른다. 올해 어느 시점이 될 수도 있고 내년 초가 될 수도 있다. 심지어 2026년 초까지 태양 주기 활동이 계속될 것이다"라며 지속적인 관심과 추적이 있어야 할 것이라고 지적했다.
-
- 포커스온
-
강력한 태양 폭풍으로 오로라 남하…캘리포니아·앨라배마서도 관측 기회
-
-
[우주의 속삭임(69)] 화성, 왜 생명체가 살 수 없게 됐나?
- 현재 화성의 게일 분화구를 탐사하고 있는 나사(NASA)의 탐사선 큐리오시티가 초기 화성의 기후가 생명체가 살기에 적합했던 상황(표면에 광범위한 물이 있다는 증거)에서 어떻게 생명체가 살기에 부적합한 곳으로 바뀌었는지에 대한 새로운 세부 정보를 제공하고 있다고 나사가 홈페이지를 통해 밝혔다. 화성 표면은 매우 차갑고 오늘날 생명체가 살기에는 부적합하지만, 전문가들은 나사의 화성 탐사선은 먼 과거에 화성에 생명체가 살았을 수 있는지에 대한 단서를 찾고 있다. 그런 가운데 연구진이 큐리오시티에 탑재된 장비를 이용해 게일 분화구에서 발견된 탄소가 풍부한 광물(탄산염)의 동위원소 구성을 측정했고, 화성의 고대 기후가 어떻게 변화했는지에 대한 새로운 정보를 찾아냈다. 메릴랜드주에 소재한 나사 고다드 우주비행센터의 데이비드 버트 박사는 최근 미국 국립과학원회보에 발표된 연구 논문에서 "이 탄산염의 동위원소 값은 극심한 양의 증발이 있었음을 알려주며, 탄산염은 일시적인 액체 상태의 물만을 지탱할 수 있는 기후에서 형성되었을 가능성이 높다“라고 말했다. 그는 "채취한 탄산염 샘플은 화성 표면에서 생명체가 살았던 고대 환경(생물권)과 일치하지는 않지만, 탄산염이 형성되기 전 생물권이 있었을 가능성을 배제하지는 않는다"고 덧붙였다. 즉, 화성은 탄산염이 생성되기 전 물이 풍부했을 때에는 생물권이 있었을 가능성이 있지만, 갑작스러운 액체 상태 물의 대규모 증발로 인해 물이 마르고 그 과정에서 탄소가 풍부한 탄산염이 만들어졌을 가능성이 있다는 것이다. 동위원소는 원자 번호는 같지만, 질량이 다른 원자를 말한다. 물이 급속도로 증발함에 따라 가벼운 탄소와 산소는 대기 중으로 빠져나가고, 무거운 탄소 원자는 남아 더 많은 양이 축적되어 결국 탄산염 암석과 결합됐다. 과학자들이 탄산염에 관심을 갖는 이유는 기후에 대한 기록, 즉 증거로 작용할 수 있기 때문이다. 이러한 광물은 물의 온도와 산성도, 물과 대기의 구성을 포함, 광물이 형성된 당시 환경의 특징을 그대로 보존한다. 이 논문은 게일 분화구에서 발견된 탄산염에 대한 두 가지 형성 가능성을 제안하고 있다. 첫 번째는 탄산염이 게일 분화구 내에서 일련의 습윤-건조 순환을 통해 만들어졌다는 것이다. 두 번째는 탄산염이 게일 분화구에서 극저온 조건 아래 매우 염분이 많은 물에서 형성됐을 것이라는 가능성이다. 공동 연구자인 나사의 제니퍼 스턴 박사는 "이러한 형성 메커니즘은 서로 다른 생명체 거주 가능성 시나리오를 제시하는 두 가지 다른 기후 체제를 보인다"며 "첫 번째 시나리오인 습윤-건조 순환은 더 살기 좋은 환경과 덜 좋은 환경 사이의 교차를 나타낸다. 반면, 두 번째 시나리오에서 화성 중위도의 극저온 기온은 대부분의 물이 얼어 있고 염분이 많아 거주 가능성이 낮은 환경을 보인다"고 말했다. 첫 번째 시나리오에서 생명체의 거주 가능성이 높음을 시사한다. 고대 화성에 대한 이 같은 기후 시나리오는 특정 광물의 존재, 대규모의 모델링 및 암석층 형성의 식별을 기반으로 제안됐다. 이 결과는 시나리오를 뒷받침하는 암석 샘플의 동위원소 증거를 추가한 최초의 결과다. 화성 탄산염의 중금속 동위원소 값은 지구의 탄산염 광물보다 매우 높으며, 화성 광물에서 기록된 가장 무거운 탄소 및 산소 동위원소 값이다. 연구진에 따르면 습윤-건조 또는 차갑고 염분이 많은 두 가지 기후 시나리오는 모두 중금속 탄소와 산소가 풍부한 탄산염을 형성하는 데 필요하다. 이 발견은 큐리오시티 탐사선에 실린 화성 샘플분석(SAM) 및 레이저분광기(TLS) 장비를 사용해 이루어졌다. SAM은 샘플을 섭씨 900도까지 가열한 다음 TLS를 사용해 가열 단계에서 생성되는 가스를 분석한다. 한편, 이 작업에 대한 자금 지원은 나사의 화성 탐사 프로그램을 통해 지원됐다.
-
- IT/바이오
-
[우주의 속삭임(69)] 화성, 왜 생명체가 살 수 없게 됐나?
-
-
[기후의 역습(70)] WMO, "기후 변화 재앙, 강이 말라간다"
- WMO(세계기상기구)가 세계 수자원현황 보고서(State of Global Water Resources)를 발간하고 "지난 5년 동안 강물의 흐름이 정상보다 크게 낮은 상태를 기록했으며, 식수원인 저수지에 이르는 물도 줄었다"고 우려했다고 유엔(UN)이 홈페이지를 통해 발표했다. 강으로부터의 물 공급 감소로 인해 지역 사회, 농업을 비롯한 산업, 생태계 등에서 필요한 수자원 공급도 줄어들었다. 유엔에 따르면 현재 전 세계적으로 36억 명의 인구가 매년 최소 한 달 이상 물을 이용하지 못하고 있으며, 이 수치는 2050년까지 50억 명 이상으로 증가할 것으로 예상된다. 보고서는 또한 남·북극 및 고산지대의 빙하가 지난 50년 동안 사상 최대의 부피 감소를 기록했다고 밝혔다. 빙하가 있는 전 세계 모든 지역에서 얼음 유실이 보고됐다. 얼음 유실로 인해 600기가(1기가는 10억)톤 이상의 물이 생성되었으며, 그 대부분은 바다와 일부 강으로 흘러 들어갔다. 한편, 2023년은 역사상 가장 더운 해로 기록됐고, 이는 기온 상승과 광범위한 건조 기후로 이어져 극심한 가뭄이 장기화됐다. ◇ '물 부족' 전례 없는 스트레스 셀레스테 사울로 WMO 사무총장은 "물은 기후 변화의 '탄광 속 카나리아'이다. 인류는 점점 더 극심해지는 강우, 홍수, 가뭄의 형태로 조난 신호를 받고 있으며, 이는 생명, 생태계, 경제에 큰 피해를 입힌다"고 강조했다. '탄광 속 카나리아'는 유독 가스에 민감한 카나리아를 탄광 안에 두어 광부의 위험을 미리 알려 주는 조기경보를 의미한다. 보고서는 또한 기후 변화와 수자원 수요 증가로 인해 악화되고 있는 전례 없는 물 스트레스를 강조하면서 세계 담수 자원에 대한 엄중한 경고를 내리고 있다. ◇ 기후 변화 심화 보고서에서는 전 세계적으로 홍수가 빈번해지고 있음을 알린다. 홍수의 급증은 2023년 중반 라니냐에서 엘니뇨로의 기상 패턴 전환을 포함해 자연적으로 발생한 기후 조건과 함께 인간이 유발한 기후 변화의 영향을 받았다는 지적이다. 사울로는 "기온 상승으로 인해 수자원 시스템의 혼란이 가속화됐다. 나아가 수자원 시스템은 더욱 불규칙하고 예측할 수 없게 되었고, 물이 너무 많거나 너무 적은 등 지역적으로 극심한 편차가 일어나고 있어 문제가 커지고 있다"고 설명했다. ◇ 아프리카의 피해 아프리카는 수자원으로 인한 인명 피해가 가장 컸다. 리비아에서는 2023년 9월 대홍수로 인해 댐 두 개가 무너져 1만 1000명 이상이 사망하고 인구의 22%가 피해를 입었다. 홍수는 아프리카의 뿔(Greater Horn of Africa), 콩고민주공화국, 르완다, 모잠비크, 말라위에도 영향을 미쳤다. 아프리카의 뿔은 일반적으로 동아프리카에 위치한 지역으로 지부티, 에리트레아, 에티오피아, 소말리아에 케냐, 우간다, 수단, 남수단을 더한 넓은 범위를 말한다. 한편, 미국 남부, 중미, 아르헨티나, 우루과이, 페루, 브라질은 광범위하고 심각한 가뭄으로 피해를 입었고, 이로 인해 아마존과 볼리비아와 페루 국경에 있는 티티카카 호수의 수위는 관측 역사상 최저를 기록했다. ◇ 모니터링 및 데이터 공유 사울로는 "세계 담수 자원의 실제 상태에 대해 알려진 바가 너무 적다. 측정하지 않는 부분에 대해서는 관리할 수 없다"라고 말하고 "이 보고서는 모니터링, 데이터 공유, 국경 간 협업 및 평가를 개선하는 데 기여하기 위한 것이다. 이는 시급히 필요하다"라고 강조했다. WMO는 보고서가 더 나은 모니터링과 개선된 데이터 공유를 통해 특히 남반구에서 관측 데이터의 접근성과 가용성을 향상하고자 한다고 밝혔다. ◇ 조기경보 보고서는 물 관련 문제를 해결하기 위한 유엔의 글로벌 조기경보 이니셔티브도 소개하고 있다. 이 글로벌 이니셔티브는 2027년까지 전 세계 모든 사람을 위한 조기경보 시스템을 제공하는 것이 목표다. 이를 위해 물 관련 위험 모니터링 및 예측을 위한 데이터 품질과 접근성을 개선하고자 한다. WMO는 물 문제 해결을 위한 조치의 시급성을 지적하고, 전 세계 수자원을 깊이 이해하고 관리하기 위해 개선된 모니터링, 데이터 공유 및 국경 간 협업을 촉구했다.
-
- 생활경제
-
[기후의 역습(70)] WMO, "기후 변화 재앙, 강이 말라간다"
-
-
하수구 박테리아, 플라스틱 분해해 '먹이'로 활용⋯플라스틱 오염 해결 가능성 제시
- 하수구에서 서식하는 박테리아가 플라스틱을 분해하는 것으로 밝혀져 플라스틱 오염 해결 가능성을 제시했다. 미국 노스웨스턴 대학 연구팀이 코마모나스(Comamonas) 박테리아가 플라스틱을 분해하여 영양분으로 활용하는 메커니즘을 밝혀냈다고 PHYS.org가 3일(현지시간) 보도했다. 이 연구 결과는 환경 과학 분야 저명 학술지 '환경 과학 및 기술(Environmental Science & Technology)'에 게재됐다. 연구팀은 하수구에서 흔히 발견되는 코마모나스 박테리아가 플라스틱을 작은 조각(나노플라스틱)으로 분해한 다음, 특수 효소를 분비하여 플라스틱을 더 작은 단위로 분해하는 것을 확인했다. 박테리아는 이 과정에서 플라스틱에서 얻은 탄소 원자를 먹이로 사용한다. 코마모나스는 그람 음성균으로, 극성 편모를 이용하여 운동하는 호기성 세균이다. 다양한 유기물을 분해할 수 있는 능력을 가지고 있어, 환경 정화에 중요한 역할을 한다. 연구를 이끈 루드밀라 아리스틸드 교수는 "이번 연구는 하수구 박테리아가 플라스틱을 분해하고, 이를 탄소원으로 사용하는 전체 과정을 체계적으로 보여준 첫 번째 사례"라며 "플라스틱 분해에 관여하는 핵심 효소를 파악했으며, 이를 활용하여 환경 오염을 일으키는 플라스틱을 제거하는 기술 개발에 기여할 수 있을 것"이라고 밝혔다. 플라스틱 오염 문제 해결 기대 플라스틱, 특히 폴리에틸렌 테레프탈레이트(PET)는 자연 분해가 어려워 환경 오염의 주범으로 꼽힌다. PET는 전 세계 플라스틱 사용량의 12%를 차지하며, 하수구에 존재하는 미세 플라스틱의 최대 50%를 차지한다. 미세 플라스틱은 크기가 최대 5mm에 달하며, 나노 플라스틱은 그보다 더 작은 크기로 10억분의 1미터 단위로 측정한다. 이번 연구 결과는 코마모나스 박테리아를 이용하여 PET를 포함한 플라스틱 오염 문제를 해결하는 데 새로운 가능성을 제시한다. 미세 플라스틱 생성 과정 이해에 도움 연구팀은 코마모나스 박테리아가 플라스틱을 나노 크기의 입자로 분해하는 것을 확인하고, 이 과정에서 박테리아가 어떤 도구를 사용하는지 밝혀냈다. 아리스틸드 교수는 "이번 연구는 하수 처리 과정에서 미생물 활동으로 나노플라스틱이 생성될 수 있음을 보여준다"며 "하수구에서 강과 호수로 이어지는 플라스틱의 이동 경로를 이해하는 데 중요한 정보를 제공한다"고 강조했다. 연구팀은 이번 연구 결과를 바탕으로 플라스틱 분해 효소의 효율성을 높이는 연구를 진행할 계획이다. 또한, 코마모나스 박테리아를 이용한 플라스틱 오염 정화 기술 개발에도 박차를 가할 예정이다.
-
- 생활경제
-
하수구 박테리아, 플라스틱 분해해 '먹이'로 활용⋯플라스틱 오염 해결 가능성 제시