검색
-
-
[먹을까? 말까?(74)] 설탕, 생후 1000일까지 아기에게 주면 안되는 이유
- 어린 시절 설탕 섭취를 줄이면 성인이 되어 당뇨병과 고혈압 발병 위협을 낮출 수 있다는 연구 결과가 발표됐다. 해당 내용에 대해서는 BBC와 데일리메일 등 다수 외신이 다루었다. 미국 남부캘리포니아대학교(USC) 연구팀은 제2차 세계대전 이후 영국에서 시행된 설탕 배급제 종료를 자연 실험으로 활용하여, 출생 후 1000일(약 2년 9개월) 동안 설탕 섭취량과 장기적인 건강 상태의 상관 관계를 분석했다. 연구팀은 조기 설탕 섭취가 장기적으로 건강에 미치는 영향을 연구하기 위해 제2차 세계대전이 끝난 이후 1953년 9월 설탕과 과자 배급이 종료되자 10년간의 영국의 '자연 실험'을 활용한 것. 팀은 영국 바이오뱅크 데이터베이스를 분석해 1951년과 1956년 사이에 태어난 6만명의 사람들이 정기적으로 건강을 모니터링 받고 있다는 것을 발견했다. 이를 통해 연구팀은 배극 기간 동안 태어난 사람들과 그 직후에 태어난 사람들의 건강에 대한 통찰력을 얻을 수 있었다. 두 그룹 모두 그 후 70년 동안 동일한 사회적 변혁을 겪었지만, 주요 차이점은 생애 초기 1000일 동안의 설탕 노출이었다. 배급 기간 동안 성인은 일반적으로 일주일에 8온스(약 0. 5파운드, 약 226g)의 설탕과, 4주마다 12온스(0.75파운드, 약340g)의 과자를 섭취했다. 설탕 허용량은 임산부와 어린이를 포함한 오늘날 영국 식단 지침과 비슷했다. 그러나 배급이 종료되자 영국 국민의 하루 평균 설탕 소비량은 약 41g(설탕 10개)에서 하룻밤 사이에 거의 즉시 80g(설탕 20개)으로 약 2배 가까이 증가했다. 연구 결과, 설탕 배급제가 시행되었던 시기에 유년기를 보낸 사람들은 그렇지 않은 사람들에 비해 50~60대에 당뇨병에 걸릴 확률이 약 35%, 고혈압에 걸릴 확률이 약 20% 낮은 것으로 나타났다. 또한 당뇨병 발병 시기는 4년, 고혈압 발병 시기는 2년 지연됐다. 연구팀은 "태아기부터 2세까지의 시기는 장기적인 건강에 매우 중요하며. 이 시기에 과도한 설탕 섭취를 제한하는 것이 성인병 예방에 효과적"이라고 강조했다. 생애 초기에 아이들은 임신 중, 모유 수유 중, 유아용 분유와 이유식을 통해, 또는 엄마가 먹는 음식을 통해 다량의 설탕에 노출된다고 연구팀은 지적했다. 임신 중 어머니의 식단은 중요했다. 저당 식단의 이점 중 3분의 1은 아기가 아직 자궁에 있는 동안 영향을 미쳤다. 또한 연구에 따르면 대부분의 영유아들은 매일 가당 식품과 음료를 섭취하는 것으로 나타났다. 이 연구는 과학 저널 '사이언스(Science)'에 게재됐다. USC 연구원 중 한 명인 타데자 그라츠너는 "어릴 때 설탕에 노출되면 신진대사와 신체가 평생 음식에 반응하는 방식에 영향을 미칠 수 있다"고 말했다. 그라츠너는 "설탕 함량이 높은 산모의 식단은 태아 프로그래밍과 같은 요인을 통해 아이의 비만 및 대사 장애 위험을 높이는 것으로 나타났다"고 설명했다. 그녀는 아주 어릴 때 설탕을 먹으면 평생 달콤한 음식을 선호하게 될 가능성이 있다고 덧붙였다. 런던 메트로폴리탄 대학교의 힐다 멀루니 영양학 박사는 이번 연구에 대해 "영국 인구의 높은 설탕 섭취량과 만성 질환 증가 추세를 고려할 때 매우 시의적절하고 중요한 연구 결과"라고 평가하며, 유아와 어린이를 대상으로 한 식품과 음료의 높은 설탕 함량에 대한 우려를 표명했다고 데일리메일은 전했다. 한편, 올해 초 발표된 보고서에 따르면 영국 어린이들은 정크 푸드 위주의 식습관으로 인해 성장 저해, 비만, 제2형 당뇨병 발병률 증가 등 건강 문제에 직면해 있다. 식품재단(Food Foundation)은 어린이들이 건강한 식습관을 형성하기 어려운 환경에 노출되어 있으며, 고지방, 고당분, 고염분 식품의 공격적인 마케팅과 빈곤 문제가 이러한 현상을 심화시키고 있다고 지적했다.
-
- 생활경제
-
[먹을까? 말까?(74)] 설탕, 생후 1000일까지 아기에게 주면 안되는 이유
-
-
[신소재 신기술(122)]MRI, AI 모델 학습으로 뇌 이상 진단 정확도 높인다
- 미국 과학자들이 뇌의 이상을 진단하는 MRI(자기공명영상)의 정확도를 높이는 머신러닝 모델을 개발했다. 캘리포니아대 샌프란시스코(UCSF) 연구팀이 인공지능(AI)을 활용하여 3T MRI 화질을 7T MRI 수준으로 향상시키는 기술을 개발했다고 뉴로사이언스닷컴 뉴스가 전했다. 이 연구는 지난 7일 제27회 의료영상 컴퓨팅 및 컴퓨터 지원 개입 국제 학술대회(MICCAI)에서 발표됐다. 수석 연구 저자인 UCSF 신경과 조교수인 레자 아바시아슬(Reza Abbasi-Asl)은 "저희 논문은 낮은 품질의 이미지에서 고품질 MRI를 합성하는 머신러닝 모델을 소개한다. 이 AI 시스템이 외상성 뇌 손상에서 MRI로 포착한 뇌 이상을 시각화하고 식별하는 방법을 보여준다"고 설명했다. 저품질 MRI 영상의 고품질화 3T MRI와 7T MRI의 가장 큰 차이점은 자기장의 세기이다. 숫자가 높을수록 자기장이 강하다는 것을 의미하며, 이는 영상의 해상도와 선명도에 직접적인 영향을 미친다. 7T MRI는 3T MRI보다 두 배 이상 강력한 자기장을 사용하기 때문에 더욱 선명하고 상세한 이미지를 얻을 수 있다. 연구팀은 경도 외상성 뇌 손상(TBI) 환자의 3T MRI 영상 데이터를 사용하여 AI 모델을 학습시켰다. 이 모델은 3T MRI 영상을 기반으로 7T MRI와 유사한 고품질 영상을 생성하며, 뇌 병변의 경계를 더욱 선명하게 보여주어 진단 정확도를 높이는 데 기여할 수 있다. 참고로, 미국에서 대부분의 임상 MRI는 1.5T 또는 3T MRI 시스템으로 수행된다. 미국국립보건원(NIH)은 2022년 전 세계적으로 진단 영상에 사용되는 7T MRI는 약 100대에 불과하다고 밝혔다. 신경 퇴행성 진단 활용 기대 연구 결과, 합성된 7T MRI 영상은 실제 7T MRI와 비슷한 수준의 해상도를 보였으며, 뇌 병변의 경계를 더욱 명확하게 구분하고 미세 출혈을 더 잘 포착하는 것으로 나타났다. 특히, 백질 병변 내 다양한 특징을 더욱 세밀하게 보여주어 다발성 경화증과 같은 신경 퇴행성 질환 진단에도 활용될 수 있을 것으로 기대된다. 이 기술은 뇌의 해부학적 구조를 세밀하게 관찰해야 하는 TBI 및 다발성 경화증 환자의 진단 및 치료에 도움을 줄 수 있을 것으로 예상된다. 하지만 연구팀은 "AI 기반 합성 기술이 임상 현장에 적용되기 위해서는 광범위한 검증이 필요하다"며 "향후 모델 결과에 대한 임상적 평가, 모델 생성 영상에 대한 임상 등급 평가, 모델의 불확실성 정량화 등 추가 연구가 필요하다"고 밝혔다. 이번 연구는 AI 기술이 저사양 영상 장비의 한계를 극복하고 의료 영상의 품질을 향상시키는 데 기여할 수 있음을 보여주는 사례로, 의료 분야에서 AI 기술의 활용 가능성을 더욱 확대할 것으로 기대된다.
-
- IT/바이오
-
[신소재 신기술(122)]MRI, AI 모델 학습으로 뇌 이상 진단 정확도 높인다
-
-
[우주의 속삭임(45)] 슈퍼 블루문 직전 희귀한 '달무지개' 포착
- 관찰이 극히 어려운 달무지개가 이번주 슈퍼 블루문이 뜨기 직전 미국 상공의 밤하늘에서 발견되었다고 라이브사이언스가 전했다. 슈퍼문은 달이 지구에서 가장 가까운 지점에 위치할 때 뜨는 보름달로 미니문에 비해 14%나 더 크다. 블루문은 한 달에 두 번 보름달이 뜰 때 나중에 뜨는 달을 말하는 것으로 둘이 동시에 뜰 때 슈퍼 블루문이라고 한다. 밝은 달이 유지되는 며칠 동안 운이 좋다면 초월적인 천문 현상인 달무지개를 볼 수 있는 기회는 여전히 남아 있다고 한다. 달무지개는 태양이 만들어 내는 무지개와 같은 방식으로 생성되지만, 분명한 차이점이 하나 있다. 달빛이 빗방울에 반사되고 굴절될 때 나타난다. 그러나 달빛이 워낙 약해 보름달 주변에서만 볼 수 있다. 그렇기 때문에 달무지개 현상은 훨씬 더 드물다. 달이 밤하늘에서 가장 밝게 빛날 때로 한정되는 것이다. 달빛은 태양에 비해 너무 희미해서, 빛나는 달무지개는 보통 흰색으로 보인다. 이는 우리 눈의 색 감지 수용체가 희미한 빛에서 제대로 작동하지 않기 때문이다. 달무지개도 색이 있지만 워낙 약해 생성된 색상 스펙트럼을 사람의 눈이 구별하지 못한다. 영국기상청에 따르면, 달무지개 역시 일반 무지개와 같은 7가지 색이다. 그런데 이번 보름달은 '10년에 한 번' 나타나는 슈퍼 블루문이 나타나기 직전인 지난 며칠 동안 비정상적으로 밝았고, 달무지개는 더욱 인상적으로 나타났다. 스페이스웨더닷컴에 따르면, 천체 사진작가인 아론 왓슨은 지난 18일 오전 2시경 콜로라도주 파오니아 상공에서 쌍둥이 달무지개를 발견하고 촬영했다. 왓슨은 "육안으로도 생생하고 다채로웠으며 몇 분 지속되면서 천천히 희미해졌다"고 말했다. 그는 사진을 찍기 직전 여러 색깔의 무지개가 더욱 밝고 생생해졌다고 덧붙였다. 핑거레이크데일리뉴스도 같은 날 밤 뉴욕주 케우카(Keuka) 호수 위에서 또 다른 달무지개가 발견되었다고 보도했다. 이 달무지개는 콜로라도에서 촬영된 것보다 밝지는 않았지만, 카메라로 찍은 영상에는 독특한 무지개 색상이 나타났다고 한다. 며칠 동안 달은 최근 달무지개가 발견되었을 때와 비슷한 밝기를 유지할 것으로 보인다. 따라서 달무지개를 볼 가능성은 아직 남아 있다고. 그러나 무지개가 피어나려면 약하게라도 비가 내리고 있어야 하며 달빛은 빗방울에 반사될 만큼 맑아야 한다. 밝은 달무지개는 달이 지평선에 가장 가까울 때 가장 선명하게 보인다. 따라서 가장 좋은 관찰 시간은 일몰 후나 일출 전이다. 그리고 일반 무지개와 마찬가지로, 달무지개는 빛의 근원인 달이 관찰자 뒤에 있을 때만 발견할 수 있다. 카메라는 사람의 눈이 놓칠 수 있는 희미한 색조까지 담아낼 수 있기 때문에 사진을 찍으면 더욱 선명한 달무지개 색깔을 볼 수 있다.
-
- IT/바이오
-
[우주의 속삭임(45)] 슈퍼 블루문 직전 희귀한 '달무지개' 포착
-
-
[먹을까? 말까? (51)] 적당한 음주도 건강에 해롭다…와인도 예외 없어
- 가벼운 음주나 적당한 음주도 노년층의 건강에 해롭다는 연구 결과가 나왔다. 미국의사협회저널(JAMA)의 최근 연구 결과, 적당한 음주가 노년층의 건강에 도움이 되지 않는다는 사실이 밝혀졌다고 CNN, 뉴욕타임스 등이 전했다. 이는 하루 한두 잔의 술, 특히 와인이 건강에 좋다는 기존 통념을 뒤집는 연구 결과들이 늘어나는 가운데 나온 것이다. 지난 12일 JAMA 네트워크 오픈에 발표된 대규모 연구에 따르면, 적당한 수준의 음주는 노년층에게 아무런 이점을 제공하지 않으며 오히려 질병 관련 사망 위험을 높이는 것으로 나타났다. 이러한 연구들은 알코올이 강력한 발암물질이며 우울증, 간 및 신장 질환 등 여러 질병의 잠재적 원인이 될 수 있음을 보여주고 있다. 캐나다 빅토리아 대학교 물질 사용 연구소 소장 티모시 나이미 박사는 "알코올은 발암물질이며 약 50가지 유형의 사망에 기여한다"고 경고하며 "전반적으로 알코올은 건강에 해롭다"고 강조했다. 나이미 박사는 적당한 음주나 얼마나 마셔야 해로운지에 대한 논의가 시작되면 이러한 사실이 간과되는 경향이 있다고 지적했다. 그는 알코올에 관해서는 "덜 마실수록 좋다"는 것이 모든 과학적 연구 결과의 일관된 결론이라고 말했다. 이번 연구는 영국 바이오뱅크 등록 자료를 통해 60세 이상 성인 13만5000여 명의 건강 결과를 추적 조사했다. 첫 번째 조사(2006~2010년)에서 참가자들은 음주 습관에 대한 자세한 질문을 받았고, 연구진은 이를 바탕으로 참가자들을 가끔 또는 저위험, 중위험, 고위험 음주자로 분류해 암 관련 및 모든 원인 사망률 증가를 확인했다. 이러한 연구는 과거를 회고하여 개인의 습관과 건강 사이의 패턴과 관계를 찾는 방식으로, 결과를 왜곡할 수 있는 편향이 존재할 수 있다. 연구진은 음주 습관 연구에서 가장 큰 편향 중 하나인 비음주자와의 비교를 피하려고 노력했다. 비음주자들은 건강 문제나 약물 복용 등으로 인해 술을 마시지 못하는 경우가 많기 때문에, 음주자와 비음주자를 비교하면 음주가 덜 해롭거나 심지어 유익하게 보일 수 있다. 이번 연구에서는 주당 약 20g 미만의 알코올을 섭취하는 가끔 음주자들을 기준 집단으로 삼았다. 미국국립보건원(NIH)에 따르면 미국 표준 음료 한 잔에는 약 14g의 알코올이 포함되어 있다. 사회경제적 또는 건강 관련 위험 요인이 없는 중간 정도의 음주자들에게서는 특별한 연관성이 발견되지 않았다. 그러나 이 그룹에서도 저위험 음주는 여전히 암 사망 위험 증가와 관련이 있었고, 중간 정도의 음주는 암 및 기타 원인으로 인한 사망 가능성을 높이는 것으로 나타났다. 이 연구에는 몇 가지 한계도 있었다. 예를 들어, 대부분의 정보는 자가 보고에 의존했으며, 사람들은 자신이 마신 술의 종류나 양을 정확하게 기억하지 못할 수 있다. 또한, 연구 대상의 다양성이 부족했다. 94% 이상의 참가자가 백인이었기 때문에 다른 인종이나 민족 집단의 경험을 반영하지 못할 수 있다. 연구 결과, 모든 수준의 규칙적인 음주에서 위험이 발견됐다. 저위험 범주에 속하는 사람들은 가끔 음주하는 사람들보다 암으로 사망할 확률이 약 10% 더 높았다. 중위험 음주자들은 모든 원인으로 인한 사망 및 암 사망 위험이 가끔 음주자들보다 약 10~15% 높았고, 고위험 음주자들은 암, 심장병 및 기타 모든 원인으로 인한 사망 위험이 가끔 음주자들보다 약 33% 더 높았다. 연구진은 참가자들의 거주 지역(소득 수준 대리 변수)과 기저 질환(49개 건강 상태 각각에 1점 부여)을 기반으로 점수를 매겼다. 음주와 관련된 위험 증가는 저소득층과 더 많은 건강 문제를 가진 사람들에게서 더욱 뚜렷하게 나타났다. 그러나 주로 와인을 마시거나 식사와 함께 술을 마신다고 답한 사람들은 사회경제적 및 건강 관련 위험에도 불구하고 암 및 사망 위험이 가끔 음주하는 사람들보다 약간 낮았다. 연구진은 이러한 예외적인 경우는 와인의 항산화 성분이나 식사 중 음주 간격 조절 등 알코올 이외의 요인에서 비롯된 것일 수 있다고 추측했다. 즉, 와인을 마시거나 식사와 함께 술을 마시는 사람들은 삶의 다른 영역에서도 절제를 중시하거나 신체 활동과 같은 건강한 행동을 할 가능성이 더 높을 수 있다는 것이다. 나이미 박사는 "적당한 음주는 건강한 생활 방식의 반영일 수는 있지만, 그 원인은 아니며, 이는 매우 중요한 차이점"이라고 강조했다. 이러한 연구 결과들은 적당한 음주조차 건강에 해로울 수 있다는 점을 강조하며, 기존의 통념에 대한 재고를 촉구하고 있다.
-
- 생활경제
-
[먹을까? 말까? (51)] 적당한 음주도 건강에 해롭다…와인도 예외 없어
-
-
[우주의 속삭임(29)] 달에서 지하동굴 발견, 미래 달 탐사 기지 기대
- 닐 암스트롱과 버즈 올드린이 55년 전 달에 착륙한 지점에서 멀지 않은 곳에서 동굴이 발견됐다. 이 동굴은 미래의 우주 비행사들이 거주할 수 있을 것으로 기대되며, 이런 동굴은 최소 수백 개에 달할 것으로 추정된다고 CBS뉴스 등이 보도했다. 이탈리아 천문학자팀은 최근 달에서 가장 깊은 곳으로 알려진 '고요한 바다(Sea of Tranquility)'에서 거대한 동굴의 증거가 나타났다고 보고했다. 이 동굴은 아폴로 11호의 착륙 지점에서 불과 400km 떨어진 곳에 위치해 있다. 동굴은 이미 발견된 200개 이상의 다른 구덩이와 마찬가지로, 용암 동굴이 붕괴되면서 만들어졌다. 연구팀은 나사(NASA)의 달 정찰 궤도선에 의한 레이더 측정을 분석하고 그 결과를 지구의 용암 동굴과 비교해 이를 밝혔다. 연구 결과는 '네이처 천문학' 저널에 실렸다. 연구팀에 따르면, 레이더 정보는 동굴의 입구 부분만을 보여주고 있지만, 동굴은 폭이 적어도 40m, 길이도 최대 수십m에 이를 것으로 추정된다. 연구팀원인 트렌토 대학의 레오나르도 카레와 로렌조 브루존은 "달에 존재하는 동굴은 50년 넘게 수수께끼로 남아 있었지만 마침내 그 존재를 증명해 냈다"고 말했다. 연구 결과는 달에 수백 개의 구덩이와 수천 개의 용암 동굴이 있을 수 있음을 시사한다. 네이처는 이 동굴이 달 표면의 가혹한 환경으로부터 우주인에게 은신처를 제공하고 인간의 달 탐사를 장기적으로 지원할 수 있는 '유망한 달 탐사 기지 후보지'가 될 수 있다고 밝혔다. 그러나 기지를 건설하는 것은 더 많은 시간과 노력이 필요할 것이며, 동굴 벽을 보강하는 등 어려운 작업이 수반될 것이라는 지적이다. 영국 우주비행사 헬렌 샤먼은 BBC 뉴스와의 인터뷰에서 "우주인이 20~30년 안에 달의 동굴에서 활동할 수 있겠지만 동굴이 깊어 리프트와 같은 장비가 필요할 것"이라고 말했다. 한편, 동굴 내부의 암석 및 다른 물질들은 오랜 세월 동안 유지되어 왔기 때문에 천문학계가 달이 어떻게 진화했는지, 특히 달의 화산 활동에 대해 이해할 수 있는 단초를 제공할 수 있을 곳으로 보인다. 학계는 지속적으로 달 관련 데이터 아카이브를 추가하고 있다. 중국의 창어 6호 달 탐사선은 몇 주 전 달의 표면에서 암석과 토양 샘플을 수집해 지구로 귀환했다. 중국은 이번에 입수한 샘플이 독특한 지리적 특징을 가진 달의 양면 사이의 차이점을 밝혀줄 것으로 기대하고 있다.
-
- IT/바이오
-
[우주의 속삭임(29)] 달에서 지하동굴 발견, 미래 달 탐사 기지 기대
-
-
[신소재 신기술(67)] 100% 생분해되는 보리 플라스틱 개발
- 덴마크 코펜하겐 대학교 연구팀이 100% 생분해되는 플라스틱을 개발하고 있다. 이 플라스틱은 보리 전분으로 만들어지며, 기존 플라스틱에 비해 훨씬 빠른 속도인 약 2개월만에 분해된다고 투머로우 월드투데이가 보도했다. 플라스틱은 가볍고 질기며 저렴한 가격과 다양한 활용성 등 많은 장점을 가지고 있지만 환경 오염 문제를 일으키는 주요 원인 중 하나다. 코펜하겐 대학교에 따르면 플라스틱 생산 과정에서 발생하는 이산화탄소 배출량은 전체 항공 교통량을 합친 것보다 많다. 또한 자연적으로 분해되지 않고 미세 플라스틱 형태로 환경에 잔류해 심각한 문제를 야기한다. 미세 플라스틱은 인체의 뇌와 폐, 태반을 비롯해 고환과 음경 등의 생식기에도 검출됐다는 새로운 연구가 속속 발표되고 있다. 이러한 문제를 해결하기 위해 코펜하겐 대학교 연구팀은 변형된 보리 전분으로 만들어져 2개월 안에 완전히 분해되는 새로운 플라스틱을 개발했다. 이 플라스틱은 작물에서 얻은 천연 식물성 원료를 사용해 식품 포장재 등에 활용될 수 있다. 연구팀의 안드레아스 블레노우 교수는 "플라스틱 폐기물 문제는 재활용만으로는 해결할 수 없다"며 "우리는 기존 바이오 플라스틱보다 강하고 물에 대한 내성이 뛰어난 새로운 종류의 바이오 플라스틱을 개발했다"고 밝혔다. 또한 "이 플라스틱은 100% 생분해 가능하며, 미생물에 의해 퇴비로 전환될 수 있다"고 부연했다. 새로운 바이오 플라스틱은 아밀로스와 셀룰로오스라는 식물성 원료를 주성분으로 하며 쇼핑백, 포장재 등 다양한 용도로 활용될 수 있는 잠재력을 가지고 있다. 연구팀은 아직 실험실 단계의 시제품만 개발했지만 덴마크를 비롯한 여러 지역에서 대량 생산이 가능할 것으로 전망했다. 블레노우 교수는 "바이오 플라스틱은 새로운 개념에 아니지만 오해의 소기자 있는 이름"이라고 지적했다. 현재 제한된 양의 바이오 플라스틱만이 분해 가능하며, 산업용 퇴비화 공장에서 특수한 조건에서만 분해된다는 게 그의 설명이다. 그는 "저는 그 이름이 적절하지 않다고 생각한다. 가장 흔한 유형의 바이오 플라스틱은 자연에 버려지면 쉽게 분해되지 않기 때문이다"라고 말했다. 블레노우 교수는 "플라스틱이 분해되는 과정은 수년이 걸릴 수 있으며, 일부는 미세 플라스틱으로 계속 오염을 일으킨다"며 "바이오 플라스틱을 분해하기 위해서는 특수 시설이 필요하다"고 거듭 강조했다. 소위 바이오 북합체에는 자연적으로 분해되는 여러 가지 성분이 포함되어 있다. 주요 성분은 식물계에서 흔히 볼 수 있는 아밀로스와 셀룰로오스다. 예를 들어 아밀로스는 옥수수, 감자, 보리 등에서 추출된다. 어밀로스와 셀룰로오스는 길고 강한 분자 사슬을 형성한다. 아밀로스가 풍부한 전분의 전체 생산 사슬을 이미 존재한다. 실제로 매년 수백만 톤의 순수 감자 전분과 옥수수 전분이 생산되어 식품 산업과 다른 여러 분야에서 사용된다고 불레노우 교수는 밝혔다. 그러나 플라스틱을 효율적으로 재활용하는 것은 결코 간단하지 않다. 각각의 플라스틱의 주요 차이점으로 인해 플라스틱을 분류하는 방법이 다 다르기 때문이다. 또 플라스틱을 재활용하기 위해서는 오염 물질이 용기 내부에 조금이라도 남아 있으면 안 된다. 블레노우 교수는 "플라스틱 재활용은 복잡하고 어려운 문제이며, 근본적인 해결책이 될 수 없다"며 "플라스틱처럼 작동하면서 환경을 오염시키지 않는 새로운 소재를 개발하는 것이 중요하다"고 강조했다. 현구팀은 현재 특허 출원을 처리 중이다. 승인되면 새로운 바이오 복합소재를 생산할 수 있는 기반이 마련될 수 있다.
-
- 포커스온
-
[신소재 신기술(67)] 100% 생분해되는 보리 플라스틱 개발
-
-
미국 최초의 나트륨 이온 배터리 공장, 미시간주 홀랜드에 건설
- 미국 최초의 나트륨 이온 배터리 공장이 미시간주 홀랜드에 건설됐다고 클린테크니카가 최근 보도했다. 리튬 이온 배터리는 2000년대 초반부터 재생 에너지 전환의 주력원이 되어왔지만 현재 에너지 저장 시징은 나트륨 이온 배터리를 주목하고 있다. 연구원들은 공급망 문제를 야기할 수 있는 기존 리튬 이온 배터리와 달리 높은 성능을 제공하는 새로운 나트륨 이온 배터리를 연구해왔다. 미국 스타트업 나트론 에너지(Natron Energy)는 지난 4월 29일 미시간 주 홀랜드에 위치한 공장 가동을 시작하면서 미국 최초의 상업용 규모 나트륨 이온 배터리 생산을 시작했다. 이 새로운 공장은 리튬 이온 배터리 공장을 개조했다. Natron은 이 공장을 통해 연간 600메가와트 규모의 나트륨 이온 배터리를 생산할 예정이다. 600메가와트는 1시간 동안 테슬라 모델 3과 같은 전기차를 약 1만800대를 충전할 수 있는 규모다. 이는 각 차량의 배터리 용량이 50kw이고 충전 효율이 90% 일 때의 계산 결과다. 다만, 이 공장은 초기에 급격히 증가하는 데이터 센터의 에너지 저장 요구를 충족시킬 예정이다. 나트론은 특히 인공지능 기술의 폭발적인 성장이 미국 데이터 센터에서 24시간 전력 공급 및 에너지 저장에 대한 더 큰 수요를 유발할 것으로 예상한다. 나트론은 홀랜드 공장이 향후 기가와트 규모 공장의 모델이 될 것으로 예상하며, 오프로드 산업용 차량, EV 고속 충전소 및 통신 분야 등 추가 시장을 목표로 하고 있다. 미 정부, 나트륨 이온 배터리 개발 지원 미국 에너지부(DOE)가 나트론의 새로운 나트륨 이온 배터리 공장 건설에 기여했다. 2020년 9월, 나트은 고위험 고수익 프로젝트 지원을 위한 에너지부 ARPA-E 사무소로부터 1990만 달러(약 274억원)의 지원금을 받았다. 이 지원금은 새로운 공장 건설을 목표로 하며, 6개월 동안 지속적인 생산 및 판매를 통해 공급망 및 제품의 완전한 위험 제거를 목표로 한다. ARPA-E는 회사의 8킬로와트 50볼트 배터리 트레이가 주로 데이터 센터의 최대 부하량 관리 및 비상 백업 전력 공급을 위해 설계되었지만, EV 고속 충전소 및 그리드 규모 저장과 같은 신흥 시장도 타겟으로 하고 있다고 말했다. ARPA-E는 또한 "나트론의 트레이는 기존 제품에 비해 데이터 센터 운영자에게 최대 2배 높은 출력 밀도와 10배 긴 수명주기를 제공하며 우수한 안전 성능을 보유하고 있다"고 덧붙였다. 은백색 금속 원소인 나트륨(라틴어 natrium에서 유래된 화학 기호 Na)의 지속 가능성 요인은 나트륨 이온 배터리에 대한 관심을 끌고 있다. 하지만 미래의 배터리로 주목받아온 나트륨 이온 배터리는 최근 몇 년 전까지도 쉽게 구현되지 못했다. 나트륨은 리튬보다 훨씬 풍부하지만 무게도 훨씬 무겁다. 전기차용 에너지 저장 측면에서 리튬은 주행 거리 면에서 나트륨보다 유리하다. 반면 나트륨과 리튬 간의 화학적 친밀감은 배터리 연구에 도움이 된다. '피직스 매거진(Physics Magazine)'은 지난 주 "나트륨은 주기율표에서 리튬 바로 아래에 위치하여 화학적 특성이 매우 유사하다"고 설명했다. 나트륨 이온 배터리의 과제 나트륨 이온 배터리는 아직 초기 개발 단계이지만, 리튬 이온 배터리의 단점을 보완할 수 있는 차세대 배터리 기술로 주목받고 있다. 특히 대규모 에너지 저장 시스템(ESS), 저가형 전기 자동차, 항공 우주 분야 등에 활용될 가능성이 높다. 리튬 이온 배터리는 충전과 방전 과정에서 리튬 이온이 양극과 음극 사이를 이동하지만 나트륨 이온 배터리는 나트륨 이온이 음극과 양극 사이를 이동하는 것이 차이점이다. 나트륨 이온 배터리를 리튬보다 풍부하고 저렴하다. 또한 우수한 저온 성능(영하 20°C에서도 90% 이상의 용량 유지)을 제공하고 안전성이 높다. 반면 리튬 이온 배터리는 에너지 밀도가 높아 휴대폰, 노트북 등 소형 전자 기기에 적합하다. 단, 고온에서 성능 저하 및 안전 문제가 발생할 수 있다. 나트륨 이온 배터리는 에너지 말도가 낮으며 아직 초기 개발 단계라서 상용화에 시간이 걸릴 수 있다. 게다가 나트륨 이온을 전달하는데 적합한 전해질과 음극 재료 개발이 필요하다. 향후 지속적인 연구개발을 통해 나트륨 이온 배터리의 에너지 밀도를 높이고 상용화에 필요한 기술을 개발한다면 리튬 이온 배터리의 강력한 경쟁자가 될 것으로 예상된다.
-
- 산업
-
미국 최초의 나트륨 이온 배터리 공장, 미시간주 홀랜드에 건설
-
-
LG전자 로봇·메타버스 AI 기술, 국제 학회서 최상위 논문 선정
- LG전자의 논문이 세계적으로 권위 있는 인공지능(AI) 학술대회인 '표현 학습 국제 학회(ICLR) 2024'에서 최상위 논문으로 선정됐다. 30일 LG전자에 따르면 이 논문은 '공간 인식률을 향상시킨 AI 기술'에 대해 다루며, 전체 제출된 논문 중 상위 1% 안에 들어 구두 발표 대상으로 선택됐다. 오는 5월 7일부터 11일까지 오스트리아 빈에서 열리는 ICLR은 구글 스칼라가 발표하는 엔지니어링 및 컴퓨터 과학 분야에서 전 세계적으로 세 번째로 큰 AI 학술대회로, 매년 선정된다. 이 대회는 논문 채택률이 25%에 불과할 만큼 치열한 경쟁을 보여준다. LG전자의 해당 논문은 AI로 두 이미지 간의 유사성과 차이점을 분석하고 이미지에서 물체의 위치와 형태를 파악하고 예측하는 기술을 설명한다. 특히 이 기술은 로봇 분야에서 공간 인식률을 높이는 것으로 중요하며, 사람이나 동물이 움직임에 따라 위치가 변하거나 조명 변화에도 불구하고 로봇이 정확히 위치를 인식하고 이동할 수 있는 지도를 생성하는 데 중점을 두고 있다. 또한 LG전자가 메타버스의 핵심 기술을 주제로 한 '2D 이미지 기반 3D 공간 재현 기술' 논문은 상위 5% 이내에 선정됐다. 이 논문은 AI가 2D 이미지에서 벽, 천장, 기둥과 같은 실내 구조물 전체를 학습해, 가구나 가전제품과 같은 개별 물체의 세부적인 형태까지 학습하는 방식을 다룬다. 이 기술은 복잡한 공간과 물체의 표면 디테일을 3D 가상 공간으로 재현한다. 이 기술은 스마트팩토리의 '디지털 트윈' 개발이나 메타버스 환경 구축에 활용될 수 있으며, 실제 공간을 정밀하게 재현한 가상 공간에서의 스마트홈 서비스 구현도 가능하다. 김병훈 LG전자 최고기술책임자(CTO) 부사장은 "LG전자의 세계적인 AI 기술을 제품과 서비스에 적용하여 실생활부터 미래의 가상 공간에 이르기까지 다양한 영역에서 고객의 삶을 편리하고 즐겁게 변화시킬 것"이라고 밝혔다. LG전자는 학술대회 기간 글로벌 AI 우수 인재 확보에도 나선다. 행사에 참가한 석·박사 학생들을 대상으로 LG전자 최신 AI 기술 현황을 공유하고 채용 상담 등을 진행한다. LG전자는 이번 학술대회 기간 동안 글로벌 AI 인재를 확보하기 위해 노력할 예정이다. 석사 및 박사 학생들을 대상으로 최신 AI 기술을 소개하고 채용 상담을 진행할 계획이다.
-
- IT/바이오
-
LG전자 로봇·메타버스 AI 기술, 국제 학회서 최상위 논문 선정
-
-
미중 '균형적 성장' 협의…옐런 美 재무장관, 中 허리펑 부총리와 회동
- 재닛 옐런 미국 재무장관과 허리펑(何立峰) 중국 부총리가 5~6일(현지시간) 광저우(廣東省広州)시에서 회담을 가졌다고 중국 국영 CCTV 등 외신이 전했다. 미중 양국의 고위 경제 관리자 간 직접적인 대화는 긴장이 고조된 미중 관계속에서 이루어졌다. 균형 잡힌 경제 성장, 금융 시스템 안정, 자금세탁 방지를 위한 협력 방안에 대한 심도 있는 논의가 이루어졌다. 특히 양국은 글로벌 경제 회복에 기여할 수 있는 방안에 초점을 맞추었다. 옐런 재무장관은 회담에서 "중국의 과잉 생산 능력과 국가 안보와 밀접하게 연결된 경제 활동"에 대해 심각한 우려를 표명했다. 특히 전기차(EV)와 태양광 발전 패널 분야의 과잉 생산이 미치는 영향에 대한 우려를 강조했다. 옐런 재무장관은 미중회담에서 중국의 과잉 생산 능력 문제를 포함한 거시경제 불균형 문제를 집중적으로 논의할 계획임을 밝혔다. 이를 위해 양국은 전문가 TF를 구성해 심층적인 논의를 진행할 예정이다. 두 사람은 5일 저녁 만찬에 함께 참석해 화기애애한 분위기를 연출했다. 중국 SNS(사회관계망서비스)에는 옐런 재무장관이 젓가락을 능숙하게 사용하는 동영상이 올라왔고, 호의적인 댓글이 잇따랐다. 옐런 재무장관의 방중은 이번이 두 번째이며, 허리펑 부총리와의 회담은 세 번째다. 옐런 재무장관은 "미국은 중국과 건전한 경제 관계를 추구하며, 양측 모두에게 이익이 되는 관계를 원한다"고 강조했다. 또한 "미중 경제의 디커플링(분리)을 초래할 생각이 없다"고 설명하고 11월 대선에서 재선을 노리는 트럼프 전 대통령과의 차이점을 강조했다. 미 재무부의 목표는 단순히 관계 개선에만 있는 것이 아니다. 적극적인 대화는 우발적 충돌을 피하기 위한 수단에 불과하다. 미 재무부 고위 관리는 바이든 행정부가 2023년 8월 발표한 중국 대상 투자 규제를 '찬란한 성공 사례'로 평가한다. 반도체, 인공지능(AI), 양자 기술 분야를 대상으로 한 이 규제는 예상했던 격렬한 반발 없이 매끄럽게 진행됐으며, 이는 끈질긴 대화 노력의 결실이라고 강조한다. 관리는 "중국 정부의 직간접적인 지원에 힘입어 중국 기업들은 내수와 세계 시장 수요를 훨씬 뛰어넘는 막대한 생산 능력을 구축하고 있다"고 지적했다. 회담 직전 옐런 재무장관은 다른 장소에서 광저우 지역 미국 기업 경영자들과 만나 중국 경제에 대한 심각한 우려를 공유했다. 바이든 행정부는 2022년 인플레이션 감소법을 통해 태양광 패널과 전기차 산업에 대규모 보조금을 지원하고 있으며, 지난 3월에는 중국이 공정한 경쟁 질서를 저해한다는 이유로 미국을 세계무역기구(WTO)에 제소하기도 했다. 옐런 재무장관은 방중을 앞두고 지난 3일 중국의 과잉 생산에 맞서는 '당당한 정당방위'라는 명분으로 보조금 정책을 강력히 옹호했다. 미국, 일본, 유럽은 보조금 규칙 마련에 착수해 보호무역주의에 대한 비판을 차단하고 있다. 태양광 발전 분야에서 유럽연합 집행위원회는 지난 3일 중국 정부의 자국 기업 보조금이 EU 내 경쟁 질서를 왜곡할 우려가 있다며 철저한 조사에 착수했다. 중국은 미국 정부의 반도체 규제에 대해 거센 반발을 표출하고 있다. 미국과의 대화에서 이 문제가 주요 의제로 떠오를 것으로 예상되나, 바이든 행정부는 반도체를 첨단 군수품 개발과 직결된 안보 문제로 인식하고 있어 양보할 여지가 전혀 없다는 입장을 견지하고 있다.
-
- 경제
-
미중 '균형적 성장' 협의…옐런 美 재무장관, 中 허리펑 부총리와 회동
-
-
[신소재 신기술(27)] 전고체배터리 스타트업 타이란신에너지, 초고에너지밀도 셀 공개
- 중국의 신재생 에너지 기업 타이란신에너지(太藍新能源·Talent New Energy)가 초고에너지 밀도를 갖춘 새로운 전고체 배터리 셀을 공개했다. 중국 전기차 전문매체 CNEV포스트는 전고체 리튬배터리 스타트업 타이란신에너지(이하 타이란)는 단일 셀 용량이 120Ah이고 실제 에너지 밀도가 720Wh/kg인 자동차 등급 전고체 리튬 금속 배터리 시제품을 세계 최초로 개발하는 데 성공했다고 지난 3일(현지시간) 보도했다. 타이란은 지난 2일 성명에서 이 수치가 리튬 배터리의 단일 셀 용량과 에너지 밀도 부분에서 새로운 업계 기록이라고 밝혔다. 참고로 전기차 제조사 니오(Nio)의 150kWh 반고체 배터리 팩은 베이징 위리온 뉴 에너지 테크놀로지(위리온)의 셀을 사용하며, 용량은 360Wh/kg이다. 니오는 지난달 이 반고체 배터리 팩이 2분기에 출시될 예정이며, 니오 차량에 탑재돼 1회 충전으로 최대 주행 거리(단일 충전 기준)를 1000km 이상으로 늘릴 것이라고 밝혔다. 타이란의 전고체 배터리는 위리온의 반고체 배터리보다 에너지 밀도가 두 배 높기 때문에 대량 생산이 가능하다면 전기차의 주행 가능 거리가 약 2000km에 달할 것으로 예상된다. 전고체 배터리와 반고체 배터리는 모두 차세대 에너지 저장 기술로 주목받고 있다. 두 배터리 기술의 주된 차이점은 전해질의 상태에 있다. 전고체 배터리는 액체나 젤 형태의 전해질 대신 고체 전해질을 사용한다. 고체 전해질은 일반적으로 폴리머, 세라믹 또는 복합체로 만들어진다. 고체 전해질은 불연성이기 때문에 전통적인 리튬 이온 배터리보다 화재나 폭발 위험으로부터 더 안전하다. 또한 고체 전해질을 사용함으로써 더 높은 에너지 밀도를 달성할 수 있다. 즉, 더 적은 공간에 더 많은 에너지를 저장할 수 있다. 반고체 배터리는 고체와 액체 성분을 혼합한 전해질을 사용한다. 즉, 부분적으로는 고체 물질을 포함하지만 액체 성분이 일부 존재한다. 반고체 배터리는 전고체 배터리로의 전환을 위한 중간 단계로 볼 수 있다. 타이란은 성명에서 초박막 고밀도 복합 산화물 전고체 전해질, 고용량 양극 및 음극 소재, 전고체 배터리 성형 공정 등 전고체 리튬 배터리의 여러 핵심 기술에서 혁신을 이뤄냈다고 밝혔다. 새로 발표된 배터리의 양극은 고용량, 수명이 긴 리튬이 풍부한 망간 기반 소재를 사용하고 음극은 초광대폭, 초박막이며 높은 사이클 안정성과 다양한 이점을 갖춘 리튬 금속 기반 복합 소재를 사용한다고 회사 측은 설명했다. 타이란은 또 양극 내 이온 및 전자 수송 네트워크를 효율적으로 구축해 양극 내부의 하전 입자 이동을 개선했다고 밝혔다. 아울러 자체 개발한 유연한 층 소재를 통해 배터리의 종합적인 성능 향상을 실현했으며, 이는 기존 리튬 이온 배터리의 주행거리와 안전성 문제 등을 근본적으로 해결할 수 있을 것으로 기대된다고 전했다. 2018년에 설립된 타이란은 전고체 리튬 배터리 및 소재 기술 개발에 주력하고 있다. 2022년 3월 중국 부동산 개발업체 비구이위안(碧桂園·컨트리 가든)으로부터 투자를 유치한 바 있다. 타이란은 산화물 시스템을 기반으로 고체 전해질과 고체 리튬 배터리를 개발했으며 다양한 소재와 반고체 및 전고체 배터리에 대한 기술 파이프라인을 완성했다. 지난해 보도자료에 따르면 1세대 반고체 배터리의 에너지 밀도는 최대 400Wh/kg, 2세대 준고체 배터리는 400Wh/kg에서 500Wh/kg의 에너지 밀도를 달성했다. 타이란은 이러한 1세대 및 2세대 배터리는 여전히 액체 전해질을 포함하고 있으며, 2023년 7월에 3세대 전고체 배터리는 더 이상 액체 전해질을 포함하지 않을 것이라고 말했다.
-
- 포커스온
-
[신소재 신기술(27)] 전고체배터리 스타트업 타이란신에너지, 초고에너지밀도 셀 공개
-
-
알츠하이머 근본 원인, 뇌세포 내 지방 축적 때문
- 알츠하이머의 근본 원인은 뇌세포 내 지방 축적 때문이라는 새로운 연구 결과가 나왔다. 미국 의학 전문매체 메디컬 익스프레스는 19일(현지시간) 미국 스탠퍼드 대학교 연구팀이 주도한 연구에서 알츠하이머의 근본 원인은 뇌세포에 지방이 축적된 것일 수도 있다는 증거를 발견했다고 보도했다. 이 연구는 미국 여러 기관의 신경학자, 줄기 세포 전문가, 분자생물학자 팀이 공동으로 진행했다. 연구 결과는 학술 저널 '네이처(Nature)'에 게재됐다. 기존 연구와의 차이점 기존 연구에서는 알츠하이머 병이 신경 세포 사이에 형성되는 베타 아밀로이드 플라크 축적으로 인해 발생한고 알려졌다. 또 다른 연구에서는 뇌세포에 타우 단백질 축적도 이 질병과 관련이 있다고 보고했다. 따라서 그동안 대부분의 알츠하이머 치료 연구는 이러한 단백질 축적을 감소 또는 제거하는 데 초점을 맞추어왔다. 하지만 이번 연구 결과는 알츠하이머 병 발병의 근본 원인이 다른 요인일 가능성을 제시했다. 알츠하이머 질환을 처음으로 규명한 알로이스 알츠하이머(1915-1964)는 플라크와 타우 단백질 축적 외에도 뇌 세포 내 지방 방울 축적 현상을 관찰했다. 하지만 이러한 지방 축적이 질병의 원인일지에 대한 연구는 거의 이루어지지 않았다. APOE 유전자 기능 주목 이번 연구팀은 APOE 유전자의 기능에 주목했다. 기존 연구 결과는 이 유전자가 지방을 신경 세포로 운반하는 단백질을 암호화한다는 것을 보여줬다. 또한 APOE 유전자에는 1번부터 4번까지 네 가지 변이체가 존재하며, 이 중 APOE4는 뇌 세포로 가장 많은 지방을 운반하고 APOE2는 가장 적게 운반한다는 사실도 밝혀졌다. 연구팀은 이러한 APOE 유전자 변이가 알츠하이머 병 발병 위험과 관련이 있는지 탐구하기 위해 몇 가지 실험을 진행했다. 첫 번째 실험에서 연구팀은 단일 세포 RNA 시퀀싱 기술을 사용해 실험 신경 세포 내 단백질을 분석했다. 또한 그 결과를 알츠하이머로 사망한 사람들의 뇌 조직 검체에 적용했다. 연구 결과, APOE4 유전자를 가진 사람들의 뇌는 지방을 뇌 세포로 이동시키는 효소를 가진 면역 세포가 더 많았다. 또 다른 실험에서는 베타 아밀로이드를 APOE4 또는 APOE3 변이체를 가진 사람들의 뇌 세포에 처리한 결과 이 세포들이 더 많은 지방을 축적하는 것을 관찰했다. 연구팀은 이러한 발견을 바탕으로, 뇌 내 베타 아밀로이드가 축적되면 지방을 뇌 세포로 전송하는 과정을 가속화함으로써 알츠하이머병을 유발할 수 있다고 제시했다. 그러나 APOE 유전자 변이가 반드시 알츠하이머 질병 발병으로 이어지는 것은 아니다. 유전적 요인 외에도 환경적 요인, 생활 방식 및 기타 유전적 요인이 질병 발병에 영향을 미칠 수 있다. 또한 APOE 유전자 변이는 알츠하이머 병 뿐만 아니라 파킨슨병, 뇌졸중, 심혈관 질환 등 다른 질병 발병 위험을 높일 수 있다. 그럼에도 이 연구는 알츠하이머병 치료 연구의 기존 패러다임에 변화를 가져올 새로운 가능성을 열었다. 앞으로 뇌 내 지방 축적과 알츠하이머병 발병 사이의 인과 관계를 더 깊이 탐구하기 위한 추가 연구가 필요하다.
-
- 생활경제
-
알츠하이머 근본 원인, 뇌세포 내 지방 축적 때문
-
-
인간 꼬리 사라진 이유, DNA 돌연변이 밝혀졌다!
- 과학자들이 인간의 꼬리 손실과 일종의 선천적 결함 사이의 잠재적인 유전적 연관성을 발견했다. 지난 2월 28일 '네이처(Nature)' 저널에 발표된 새로운 연구에서 미국 뉴욕대 연구팀은 우리 조상들의 꼬리를 잃게 만든 독특한 DNA 돌연변이를 확인했다. 이 돌연변이는 꼬리 달린 동물의 꼬리 길이에 관여하는 것으로 알려진 TBXT 유전자에 위치한다. 새로운 연구 결과에 따르면 인간과 유인원의 조상은 약 2500만 년 전에 발생한 유전적 돌연변이로 인해 꼬리를 잃었을 가능성이 있다. 이 돌연변이는 TBXT 유전자 내에 발생했으며, 이 유전자는 꼬리 달린 동물의 꼬리 길이에 영향을 미치는 것으로 알려져 있다. 과학전문 매체 라이브사이언스에 따르면 연구팀은 꼬리뼈 부상을 당한 후 꼬리의 기원에 관심을 갖게 된 연구 책임 저자인 보 샤(Bo Xia) 박사가 이끄는 연구팀이 TBXT 유전자를 조사했다. 연구팀은 꼬리 없는 원숭이와 꼬리 있는 유인원을 비교하여 유전자 차이를 분석했다. 또한 쥐에게 인간과 유사한 돌연변이를 유도하여 꼬리 상실 현상과의 연관성을 실험적으로 검증했다. 이번 발견은 뉴욕대학교 대학원생이었으며 현재 브로드 연구소의 수석 연구원으로 재직 중인 제1 연구 저자 보 샤가 꼬리뼈를 다친 후 이 구조의 기원에 관심을 갖게 되면서 시작됐다. 뉴욕대 랭곤 헬스(NYU Langone Health)의 응용 생물정보학 연구소의 과학 책임자이자 이 연구의 선임 저자 이타이 야나이는 "보 샤는 적어도 수천 명의 사람들이 이전에 보았을 법한 것을 보았다. 하지만 그는 다른 것을 보았기 때문에 정말 천재다"라고 말했다. 꼬리의 유전학 인간과 많은 영장류 사이의 가장 분명한 차이점 중 하나는 꼬리가 없다는 것이다. 꼬리가 사라진 것은 약 2500만년 전이다. 침팬지와 우리의 공통 조상을 비교하자면 약 600만년 전이다. 우리는 꼬리를 가진 이 조상의 진화적 흔적으로 미골(꼬리뼈)을 아직도 갖고 있다. 꼬리 손실은 우리 유인원 조상에게서 더 직립한 등의 진화와 동시에 발생했으며, 결과적으로 몸을 지탱하기 위해 네 다리 중 두 개만 사용하는 경향이 있었다. 이러한 진화적 변화가 왜 결합되어 있는지 추측할 수는 있지만, 꼬리 손실이 어떻게 진화했는지(왜가 아니라) 근본적인 유전적 변화가 무엇인지에 대한 문제는 다루지 않았다. 최근 연구에서는 흥미로운 유전 메커니즘을 확인했다. 많은 유전자가 결합하여 포유류의 꼬리 발달을 가능하게 한다. 연구팀은 꼬리가 없는 영장류의 꼬리 결정 유전자인 TBXT에 '점핑 유전자'(jumping gene, 게놈의 새로운 영역으로 이동할 수 있는 DNA 서열)가 하나 더 있다는 사실을 확인했다. 점핑 유전자와 '암흑 물질' 연구팀은 또한 동일한 영장류가 TBXT 유전자 내에 내장된 DNA에서 약간 떨어진 곳에 더 오래되었지만 유사한 점핑 유전자를 가지고 있음을 확인했다. 3일(현지시간) 과학, 기술, 의학 분야의 뉴스를 다루는 영어 웹사이트 Phys.org에 따르면 우리 DNA의 훨씬 더 많은 부분이 단백질을 지정하는 서열(유전자의 고전적 기능)보다 그러한 점핑 유전자의 잔해이므로 점핑 유전자를 얻는 것은 특별한 것이 아니다. 수백만 년에 걸쳐 DNA의 변화는 동물의 진화를 가능하게 한다. 일부 변화는 DNA의 뒤틀린 사다리에서 단 하나의 사다리만 포함하지만 다른 변화는 더 복잡하다. 라이브 사이언스에 따르면 소위 알루 요소(Alu elements)라고 하는 반복적인 DNA 서열은 DNA의 분자 사촌인 RNA 비트를 생성하여 다시 DNA로 변환한 다음 게놈에 무작위로 삽입할 수 있다. 이러한 '전치 가능한 요소' 또는 점핑 유전자는 삽입 시 유전자의 기능을 방해하거나 강화할 수 있다. 이러한 특정 유형의 점핑 유전자는 영장류에만 존재하며 수백만 년 동안 유전적 다양성을 주도해 왔다. 연구팀은 유인원에는 존재하지만 원숭이에는 없는 두 개의 알루 요소를 TBXT 유전자에서 발견했다. 이 요소는 단백질을 코딩하는 유전자 부분인 엑손(exon)이 아니라 인트론(intron)에 있다. 인트론은 엑손 옆에 있는 DNA 서열로, 과거에는 아무런 기능이 없는 것으로 여겨져 게놈의 '암흑 물질'로 불려왔다. 인트론은 RNA 분자가 단백질로 전환되기 전에 서열에서 제거되거나 '스플라이스(spliced)'된다. 그러나 이 경우 세포가 TBXT 유전자를 사용하여 RNA를 생성할 때, Alu 서열의 반복적인 특성으로 인해 서로 결합하게 된다. 이 복잡한 구조는 여전히 더 큰 RNA 분자에서 잘려나가지만 전체 엑손을 가져가므로 결과 단백질의 최종 코드와 구조가 변경된다. NYU 랭곤 헬스 시스템 유전학 연구소의 소장이자 이 연구의 선임 저자인 제프 보케(Jef Boeke)는 "우리는 꼬리 길이나 형태와 관련된 다른 유전자에 대한 다른 많은 분석을 수행했다. 물론 차이점은 있지만, 이것은 마치 번개와도 같았다"라고 말했다. 보케는 라이브사이언스에 "그리고 그것은 모든 유인원에서 100% 보존되고 모든 원숭이에서 100% 없는 비코딩 DNA[인트론]였다"고 말했다. 연구팀은 인간 세포에서 동일한 알루 서열이 TBXT 유전자에 나타나고 동일한 엑손이 제거되는 것을 확인했다. 또한 관련 RNA 분자를 다양한 방식으로 절단하여 동일한 유전자에서 여러 단백질을 생성 할 수 있음을 발견했다. 연구팀은 이에 비해 생쥐는 한 가지 버전의 단백질만 만들기 때문에 두 가지 버전이 모두 있으면 꼬리가 형성되는 것을 방지하는 것으로 보인다고 지적했다. 동일한 유전자에서 서로 다른 단백질을 만드는 이러한 방식을 '대체 스플라이싱(alternative splicing)'이라고 하며, 이는 인간의 생리가 매우 복잡한 이유 중 하나다. 그러나 알루 요소가 대체 스플라이싱을 유발하는 것으로 밝혀진 것은 이번이 처음이다. 연구에 참여하지 않은 로스앤젤레스 캘리포니아 대학교의 생태 및 진화 생물학, 인간 유전학 교수인 커크 로뮐러(Kirk Lohmueller)는 "이와 같은 돌연변이는 종종 진화에서 제한적인 결과를 초래하는 것으로 여겨져 왔다. 이번 연구에서 저자들은 이러한 돌연변이가 우리 종에 지대한 영향을 미쳤다는 것을 보여준다"라고 말했다. 이족 보행과 선천적 결함 연구팀은 동일한 점핑 유전자를 쥐에 삽입하는 실험을 통해 쥐가 꼬리를 잃는다는 사실을 발견했다. 특히 진화 생물학자들은 꼬리가 없어진 덕분에 인간이 이족보행을 할 수 있었다는 가설을 세우고 있다. 야나이는 라이브 사이언스와의 인터뷰에서 "우리는 어떻게 이런 일이 일어났는지에 대한 그럴듯한 시나리오를 구성한 유일한 논문이다"라고 말했다. 그는 "우리는 이제 두 발로 걷고 있다. 그리고 우리는 큰 두뇌와 기술을 진화시켰다"라고 말했다. 야나이는 "이 모든 것은 유전자의 인트론으로 뛰어든 이기적인 요소에서 비롯된 것이다. 정말 놀랍다"라고 덧붙였다. 하지만 연구팀은 또 다른 이상한 점을 발견했다. 이 부분을 제외한 TBXT 유전자의 형태만 가진 쥐를 만들면 인간의 척추 이분증(척추와 척수가 자궁에서 제대로 발달하지 못해 척추에 틈이 생기는 질환)과 매우 유사한 질환이 발생할 수 있다. 이전에는 인간 TBXT의 돌연변이가 이 질환과 관련이 있는 것으로 밝혀졌다. 다른 생쥐는 척추와 척수에 또다른 결함이 있었다. 특히 연구진은 꼬리를 잃은 생쥐에서 척수와 뇌를 생성하는 배아 구조인 신경관에 영향을 미치는 선천성 결함인 척추 이분증 유병률이 더 높다는 사실을 발견했다. 미국 질병통제예방센터에 따르면 이 질환은 출생아 1000명 중 약 1명에 영향을 미친다. 연구진은 꼬리가 없는 것이 큰 이점이므로 척추 이분증의 발병률이 증가하더라도 그만한 가치가 있다고 제안했다. 이는 많은 유전 및 발달 질환의 경우와 마찬가지로, 균형상 우리에게 도움이 되는 일부 돌연변이의 부산물일 수 있다. 예를 들어, 최근 연구에 따르면 폐렴과 싸우는 데 도움이 되는 유전적 변이가 크론병에 걸리기 쉽다는 사실이 밝혀졌다. 보케는 "TBXT 결핍은 일종의 의도하지 않은 결과일 수 있지만, 신경관에 구멍이 남는다는 의미에서 완전한 신경 폐쇄를 얻지 못할 가능성이 더 높다"라고 말했다. 이타이 야나이는 "아무도 우리의 호기심에 따라 같은 돌연변이를 넣어 쥐의 꼬리를 잃게 만들 것이라고는 생각하지 못했는데... 그 쥐에게도 신경관 결함이 있는 것을 확인했다"라고 덧붙였다. 이러한 유형의 대체 스플라이싱의 발견은 향후 게놈 분석 분야 전체에 영향을 미칠 것으로 보인다. 보케는 이러한 영향력 있는 알루 요소에 대해 "앞으로 더 많이 발견될 것이라고 생각한다"고 말했다. 그는 아마도 우리 형질의 진화적 변화의 근본 원인이 되는 대체 스플라이스 단백질이 존재할 것이라고 덧붙였다.
-
- 생활경제
-
인간 꼬리 사라진 이유, DNA 돌연변이 밝혀졌다!
-
-
케네디 우주센터, '괴물 우주선' 로켓 유치 준비
- 기술 억만장자 일론 머스크의 우주 기업 스페이스X는 미국 플로리다의 케네디 우주센터에서 정기적으로 괴물 우주선 스타십 부스터를 발사할 계획이다. 이를 위해 아폴로 시대의 발사장을 개조하고, 새로운 발사장도 건설할 예정이다. 18일(현지시간) 미국의 과학 전문 매체 뉴아틀라스(newatlas)는 이 같은 내용을 담은 스페이스X의 새로운 환경보고서가 발표됐다고 보도했다. 스타십 부스터는 궤도 도달을 시도한 두 번의 시도 모두 실패로 끝나면서 큰 관심을 받고 있다. 스페이스X의 새로운 주력 로켓은 단지 새로운 기술이나 멋진 복고풍 라인을 보여주는 것뿐만이 아니라, 그것은 우주선의 절대적인 괴물 같은 우주선이라는 것이 이 매체의 설명이다. 스타십은 지금까지 날아간 로켓 중에서 가장 크고 강력하며, 완전히 조립된 1단계와 2단계는 높이 120m에 달한다. 이는 최초의 달 착륙 임무에 사용된 아폴로 새턴V의 111m보다 크다. 또한 스타십의 33개 랩터 엔진은 7톤 이상의 추력을 발생시키는데, 이는 새턴V의 두 배에 달하는 수치이다. 심지어 미국 항공우주국(NASA)의 우주 발사 시스템(SLS)보다 더 높이 솟아 있으며, 이 시스템은 높이가 114m에 달하면서도 여전히 두 배의 추력을 갖고 있다. 탑재량과 관련해 스타십은 150톤을 궤도에 올릴 수 있으며, 두 단계 모두 재사용을 위해 지구로 귀환한다. 현재 NASA의 우주 발사 시스템(SLS)은 95톤만 처리할 수 있으며 일회성 부스터로서 스타십과 비교된다. 또 다른 차이점은 스타십이 빈번하고 반복적인 비행을 위해 설계되었지만, SLS는 약 2년에 한 번만 비행한다는 것이다. 2주에 한 번씩 아폴로 11호 이륙 장면을 재현한다고 보면, 스페이스X가 적어도 부분적으로나마 케네디 우주센터를 기지로 삼고 싶은 이유를 알 수 있다. 텍사스에 위치한 스페이스X 시설에서 최초로 궤도 진입을 시도했을 때, 그 장면은 굉장히 멋지기도 하지만 파괴적인 측면도 있었다. 스페이스X 엔지니어들은 발사대 설계가 부족했다고 지적했다. 새턴V 로켓의 발사대는 거대한 콘크리트 구조물과 강철 방폭 통로로 보호되며, 5개의 F1 엔진 열로부터 보호하기 위해 엄청난 물 분사 시스템을 갖추고 있는 반면, 스타십의 발사대는 상당히 기본적이다. 이로 인해 콘크리트 조각들이 뜯겨 나가고 산불이 발생하며 발사대에서 멀리 떨어진 차들이 파괴되고 엄청난 먼지 구름이 형성됐다. 너무 많은 파편이 공중으로 날아가 환경 문제가 발생했으며, 미국 연방항공청(FAA)은 발사 시설 개선과 스타십 설계 모두에 대해 매우 엄격한 입장을 취했다. 결과적으로 두 번째 비행에서는 로켓의 1단계와 2단계 모두 폭발했지만 발사대는 거의 손상되지 않았다. 미국 우주군이 제출한 환경영향평가서에 따르면, 1959년 건설된 초기 아폴로 부스터 시험과 발사 장소로 활용된 우주발사단지 37(SLC-37)을 인수할 것을 제안했다. 이 장소는 무인 아폴로 5호 임무를 위한 것으로 현재 유나이티드 론치 얼라이언스(United Launch Alliance, 록히드 마틴과 보잉의 조인트 벤처)에서 델타 4 헤비(Delta 4 Heavy) 로켓을 운영하는 데 사용되고 있다. 이 로켓은 Vulcan ULA(United Launch Alliance가 개발한 2단 궤도형 소모형 대형 발사체)을 위해 올해 말 퇴역할 예정이다. SLC-37은 스타십을 수용하기 위해 부분적으로 철거되고 재건축될 예정이다. 성명서는 또한 대안으로, 동일한 목적을 위해 인근에 SLC-50이라는 또 다른 발사 단지를 건설할 수 있다고 밝혔다. 최근 몇 년 동안 미 공군과 우주군은 스타십을 화물과 군대를 수송하는 데 한 시간 안에 전 세계 어디든 도달할 수 있는 군사 수송 수단으로 검토해 왔다. 또한 우주군은 스페이스X 참여 없이 운용할 수 있는 스타십 로켓을 구매하거나 임대할 계획도 있다는 제안이 나왔다. 세부 사항이 무엇이든, 이러한 대규모 발사 단지의 확보와 건설은 상업용 발사의 미래가 우주 경쟁의 미래와 매우 다를 것을 보여준다. 미래에는 강력하고 파괴적인 추력을 가진 슈퍼 헤비 로켓과 같은 우주 비행체가 하루에도 여러 번 발사하는 것이 일상적인 제트 여객기 이륙과 같이 익숙한 일이 될 수 있다.
-
- 산업
-
케네디 우주센터, '괴물 우주선' 로켓 유치 준비
-
-
JN.1 변종, 코로나19 판도 전환
- 2023년 후반 발견된 코로나19 변종 JN.1은 바이러스 진화에 중요한 변곡점을 맞이했다. 이 변종의 등장은 지속적인 글로벌 보건 노력의 중요성을 더욱 강조하고 있다. JN.1 변종은 2023년 8월 처음 발견된 이후 호주를 비롯한 전 세계적으로 급속히 확산됐다. 최근 1년 동안 대부분의 국가에서 관찰된 가장 큰 코로나19 확산의 주범으로 지목되고 있다. 과학기술 전문 매체 사이테크데일리(SciTechDaily)는 세계보건기구(WHO)가 2023년 12월 JN.1을 '관심 변이체'로 분류했고, 1월에는 장기적인 건강 결과를 초래할 우려가 있는 "훨씬 많은" 예방 가능한 질병을 유발하는 지속적인 세계적인 건강 위협이라고 강력하게 언급했다고 전했다. JN.1은 병원체로서 놀랍게도 새로운 버전의 사스-CoV-2(코로나를 일으키는 바이러스)이고 다른 순환 균주(오미크론 XBB)를 빠르게 대체하고 있다. 또한 코로나바이러스의 진화에 대해 언급하고 있기 때문에 중요하다. 일반적으로 사스-CoV-2 변이체는 이전에 있었던 것과 매우 비슷해 보이며, 한 번에 몇 개의 변이만 축적되어 바이러스가 부모보다 의미 있는 이점을 제공한다. 그러나, 2년 전 오미크론(B.1.1.529)이 발생했을 때와 같이, 때때로, 이전에 있었던 것과 현저하게 다른 특징들을 가진, 겉보기에는 변형들이 출현한다. 이것은 질병과 전염에 중대한 영향을 미친다. 지금까지, 특히 꾸준히 진화하는 오미크론 변종의 지속적인 성공을 고려할 때, 이러한 "단계 변화" 진화가 다시 일어날 것이라는 것은 확실하지 않았다. JN.1은 매우 독특하고 새로운 감염의 물결을 일으키기 때문에 많은 사람들이 WHO가 JN.1을 자체 그리스 문자에 대한 다음 우려의 변종으로 인정할지 궁금해하고 있다. 어쨌든 JN.1을 통해 우리는 팬데믹의 새로운 단계에 진입했다. JN.1의 기원은? JN.1(또는 BA.2.86.1.1) 이야기는 2023년 중반경 모 계통 BA.2.86의 출현으로 시작되며, 이는 2022년 오미크론 하위 변종 BA.2에서 유래했다. 몇 달 동안 해결되지 않은 채 지속될 수 있는 만성 감염은 이러한 단계적 변화 변이체의 출현에 한 역할을 할 가능성이 높다. 만성적으로 감염된 사람들에게서 바이러스는 조용히 테스트를 하고 결국 면역을 피하고 그 사람에게서 생존하는 데 도움이 되는 많은 돌연변이를 보유한다. BA.2.86의 경우 스파이크 단백질(SARS-CoV-2 표면에 있는 단백질이 우리 세포에 부착되도록 한다)의 돌연변이가 30개 이상 발생했다. 전 세계적으로 발생하는 엄청난 양의 감염은 바이러스의 대규모 진화를 예고하고 있다. 사스-CoV-2의 변이율은 매우 높기 때문에 JN.1 자체도 이미 변이가 빠르게 진행되고 있다. JN.1와 다른 변종의 차이점 BA.2.86과 현재 JN.1은 두 가지 측면에서 실험실 연구에서 독특하게 보이는 방식으로 행동하고 있다. 첫 번째는 바이러스가 면역을 어떻게 회피하는지에 관한 것이다. JN.1은 스파이크 단백질에서 30개 이상의 돌연변이를 물려받았다. 또한 항체가 바이러스에 결합하고 감염을 예방하는 능력(면역 체계의 보호 반응의 한 부분)을 더욱 감소시키는 새로운 돌연변이 L455S를 얻었다. 두 번째는 JN.1이 우리 세포에 들어가 복제하는 방식에 대한 변화를 포함한다는 것이다. 미국과 유럽의 최근 세간의 이목을 끄는 실험실 기반 연구에서는 분자 세부 사항을 자세히 설명하지 않고 BA.2.86이 델타와 같은 마이크로미크론 이전 변이체와 유사한 방식으로 폐에서 세포로 들어가는 것을 관찰했다. 그러나 이와는 대조적으로 호주의 커비 연구소가 다른 기술을 사용한 예비 연구에서는 오미크론 계통과 더 잘 일치하는 복제 특성을 발견했다. 이러한 다양한 세포 진입 결과를 해결하기 위한 추가 연구는 바이러스가 질병의 심각성과 전염에 영향을 미칠 수 있는 체내 복제를 선호할 수 있는 위치에 영향을 미치기 때문에 중요하다. 이런 연구 결과들은 JN.1 그리고 일반적으로 SARS-CoV-2가 우리의 면역체계를 돌아다닐 수 있을 뿐만 아니라, 세포를 감염시키고 효과적으로 전염시킬 수 있는 새로운 방법들을 발견하고 있다는 것을 보여준다. 우리는 이것이 사람들에게 어떻게 작용하는지, 그리고 그것이 임상 결과에 어떻게 영향을 미치는지에 대해 더 연구할 필요가 있다. JN.1의 면역 회피 기능과 결합된 BA.2.86의 단계적 변화 진화는 이 바이러스에 2023년에 직면한 XBB.1 기반 계통을 훨씬 뛰어넘는 글로벌 성장 이점을 제공했다. 이러한 특징에도 불구하고 우리의 적응 면역 체계가 여전히 BA.286과 JN.1을 효과적으로 인식하고 반응할 수 있다는 증거가 있다. 업데이트된 1가 백신, 테스트 및 치료법은 JN.1에 대해 여전히 효과적이다. '심각도'에는 두 가지 요소가 있다. 첫째는 더 '본질적으로' 심각한 경우(면역력이 없는 감염으로 인해 질병이 더욱 악화됨), 두번 째는 바이러스가 전염성이 더 강해 단순히 감염시키기 때문에 더 큰 질병과 사망을 초래하는 경우다. JN.1은 후자에 속한다. 다음은 어떤 바이러스가 퍼질까? 현재 JN.1 변종이 '차세대 일반 감기'로 진화하는 진화적 궤도에 있는지, 그 진화 과정이 얼마나 걸릴지는 불확하다. 과거 네 가지 역사적인 코로나바이러스의 진화 궤적을 분석함으로써 미래 방향을 어느 정도 예측할 수 있지만, 이는 단순히 하나의 가능성에 불과하다. 우리는 비상사태 이후 새로운 팬데믹 단계에 진입했다. 하지만 코로나 바이러스는 여전히 전 세계적으로 피해를 입히는 주요 전염병으로 남아 있다. 사회적 및 개인적 차원에서 새로운 감염 물결에 대한 위험성을 인지해야 한다. 개인 보호와 주변 사람들 보호를 위한 적극적인 조치가 필요하다. 새로운 위협에 대한 팬데믹 대비를 개선하고 현재의 위기에 대한 대응을 개선하기 위해서는 글로벌 감시를 지속하는 것이 중요하다. 또 저소득 및 중소득 국가는 우려할 만한 사각지대라는 것도 고려해야 할 상황이다. 코로나19는 지난 2019년 11월 중국 후베이성 우한시에서 처음으로 발생하여 보고된 새로운 유형의 변종 코로나바이러스인 SARS-CoV-2에 의해 발병한 급성 호흡기 전염병이다. 2019년 11월부터 중국에서 최초 보고되고 퍼지기 시작해 현재까지 전 세계에서 지속되고 있는 범유행전염병이자 사람과 동물 모두 감염되는 인수공통전염병이다. 또한 제1급 감염병 신종감염병 증후군의 법정 감염병이었다.
-
- IT/바이오
-
JN.1 변종, 코로나19 판도 전환
-
-
일본, 달 착륙 도전...'핀포인트 착륙' 성공할까?
- 일본의 달 탐사선 '슬림(SLIM, 달 탐사 스마트 랜더)'이 최초의 달 착륙을 불과 8시간 앞두고 있다. 19일 일본 매체 니케이 보도에 따르면, 일본 우주항공연구개발기구(JAXA)의 소형 탐사선 '슬림'은 20일 오전 0시 무렵 달에 착륙 강하를 시작할 예정이다. 이 탐사선은 목표 지점에 대한 오차범위를 100미터 이내로 줄이는 정확한 '핀포인트 착륙'을 목표로 하고 있다. 슬림은 2023년 9월 7일 일본의 대형 로켓 'H2A'를 통해 다네가시마 우주센터에서 발사되었으며, 이후 약 38만km 떨어진 달로의 여정을 시작했다.이후 작년 10월 지구 궤도를 벗어나 달로 향하기 시작했고, 작년 12월 25일 달 궤도에 진입했다. 이번 착륙 시도가 성공한다면 일본 달 탐사선으로는 첫 착륙으로, 일본의 달 탐사 역량 강화에 크게 기여할 것으로 기대된다. 이 로켓은 600km의 계획된 고도에 근접하고 있으며, 1월 19일 오후 10시 40분에는 약 15km까지 낮춰 최종 준비 단계에 들어간다. 달 착륙은 20일 오전 0시 20분로 예정되어 있다. 20일 오전 0시 현재 슬림은 시속 약 6400km로 제트기보다 몇 배 빠른 속도로 항행할 예정이다. 엔진의 역분사로 속도를 줄여 20분 후 착륙 목표 지점인 약 800km 떨어진 곳으로 항행한다. 일본 지역으로 비유하면 히로시마현 상공에서 감속을 시작해 도쿄돔 지붕에 딱 떨어지는 정확도가 요구된다. 착륙 마지막 단계의 이 과정은 매우 정밀하며, JAXA 기술진은 이를 '마의 20분'이라고 부른다. 이 시간 동안 슬림은 자동으로 항행하여 목표 지점에 도달하게 된다. 고정밀 착륙을 위해서는 지상에서 판단하는 것만으로는 제어를 따라잡을 수 없기 때문이다. 일본이 2007년 발사한 달 궤도 위성 '카구야'가 제공한 달 표면의 고정밀 지도가 슬림 착륙에 도움이 되는 것으로 알려졌다. 슬림은 지도와 카메라로 촬영한 달 표면 이미지를 대조해 자신의 세부 위치를 파악하고 자세와 속도를 조정한다. 목표 지점 바로 위에서는 기체 자세를 수직으로 가깝게 하고, 도중에 장애물인 암석 등이 있으면 수평으로 움직여 회피할 수 있다. 착륙 직전, JAXA는 세계적으로 드문 두 대의 소형 로봇 '레브1'과 '레브2'(통칭 SORA-Q=소라큐)를 발사할 예정이다. 스프링이 장착된 '레브1'은 중앙대, 도쿄농공대와 공동 개발한 약 2kg 무게의 로봇으로, 달 표면에 착륙한 후 반동을 이용해 튀어 오르며 이동한다. '레브2'는 다카라토미와 공동 개발한 야구공 크기의 로봇으로, 중앙에 카메라를 장착하고 바퀴가 달린 외피로 주행한다. 이 로봇들은 슬림과 달 표면의 영상을 촬영하여 데이터 중계 역할을 하는 '레브1'을 통해 지상으로 전송한다. 이들 로봇의 기술은 향후 달 지하 탐사나 경사진 지형 탐사에 유용하게 활용될 수 있다. 레브1에서 쌓은 기술을 활용하면 향후 달 지하에 있는 동굴로 방출해 뛰어다니며 탐사할 수 있다. 레브2의 기술은 가파른 경사가 있는 달 분화구를 오르내리는 등 일반 탐사 차량이 진입하기 어려운 곳을 탐사하는 데 도움이 될 수 있다. 두 로봇이 이번에 계획대로 움직일 수 있을지 주목된다. 슬림, 달 지면에 비스듬히 착륙 슬림의 착륙 방식은 독특하다. 전통적인 수직 착륙 방식이 아닌, 스스로 쓰러지면서 착륙하는 방법을 채택하고 있다. 이 방식은 험준한 절벽이나 경사면에서도 안전한 착륙을 가능하게 한다. 착륙 지점은 '시오리'라 불리는 분화구 근처로, 여기서 탐사선은 적외선 카메라를 사용해 달의 맨틀 성분을 관측하며 지구와의 차이점을 연구할 계획이다. 달이 탄생한 기원과 달과 지구와의 관계에 대한 데이터를 확보하는 것이 목표다. 이번 임무가 성공한다면 일본은 달 탐사 경쟁에 중요한 이정표를 세우게 된다. 과거 냉전 시대에 미국과 소련이 주도했던 달 탐사는 이제 전 세계적인 경쟁으로 확대되고 있다. 미국은 아폴로 프로그램을 통해 여러 차례 유인 달 착륙을 성공적으로 수행했다. 최초의 달 탐사 성공 국가인 미국은 무인 탐사선을 여러 차례 달에 착륙시켰다. 러시아는 작년 8월 달 탐사선을 쏘아올렸으나 착륙에 실패했다. 러시아는 1976년 달 탐사선인 루나 24 이후 47년 동안 어떤 우주선도 달 궤도에 재진입하지 못했다. 현재 달 탐사 분야를 주도하는 중국은 2013년 미국과 소련에 이어 세 번째로 달 착륙에 성공한 국가로, 지금까지 3회의 연속 착륙 성공을 기록했다. 중국은 창어 프로그램을 통해 무인 탐사선을 달에 착륙시켰으며, 유인 달 착륙을 계획하고 있다. 인도는 무인 탐사선 '찬드라얀' 프로그램을 통해 달 탐사를 시도하하고 있다. 작년 8월 달 탐사선 찬드라얀 3호가 달 남극에 무사히 착륙했다. 중국에 대항하기 위해 미국은 현재 아폴로 계획 이후 유인 달 착륙을 목표로 하는 '아르테미스 계획'을 세웠고, 일본도 참여한다. 미국과 중국은 달에서 채굴한 물과 광물 등 자원을 활용해 거주 가능한 달 기지 건설을 구상하고 있다. 한편, JAXA는 20일 새벽 슬림의 달 착륙 결과를 판단해 발표할 예정이다. 성공하면 약 1~2주 후 카메라와 로봇으로 촬영한 달의 이미지를 공개한다. 핀포인트 착륙의 성패를 알 수 있는 것은 약 한 달 후가 될 전망이다.
-
- 산업
-
일본, 달 착륙 도전...'핀포인트 착륙' 성공할까?
-
-
[퓨처 Eyes(18)] 지구 온난화, 폭주 온실 효과로 '금성化' 위기⋯시뮬레이션 결과 '지옥 방불'
- 기후 변화로 인한 폭주 온실 효과로 지구가 금성화 위기에 처했다는 연구 결과가 나왔다. 제네바대학교(UNIGE)의 천문학자 연구팀은 파리와 보르도의 프랑스 국립과학연구소(CNRS)의 지원을 받아 온실효과 폭주의 모든 단계를 시뮬레이션 한 최초의 연구 결과를 발표했다고 과학 매체 '사이언스얼랏'이 최근 보도했다. 연구원들은 처음으로 온실 효과의 모든 단계를 시뮬레이션하여 앞으로 몇 세기 안에 우리의 녹색 행성을 사람이 살 수 없는 '지옥'으로 만들 수 있다는 사실을 발견했다. 미국 우주항공국(NASA)에 따르면 지구는 폭주 온난화를 촉진하기 위해 수십도만 가열하면 평균 표면 온도가 섭씨 464도(화씨 867도)인 금성만큼 살기 어려운 행성이 될 것이라고 한다. 온실 효과는 지구 대기의 특정 가스가 태양의 열을 가두는 과정을 말한다. 폭주 온실 효과란? 일부 온실 가스는 수증기처럼 자연적으로 발생한다. 이산화탄소와 같은 다른 온실가스는 인간이 석탄, 석유, 가스 등 오염 물질인 화석 연료를 태울 때 생성될 수도 있다. UNIGE-CNRS 연구에서 조사된 폭주 온실 효과는 태양 조사가 증가하여 지구의 온도가 눈덩이처럼 급격하게 상승할 때 발생한다. 천문학자들은 성명에서 "이 과정의 초기 단계부터 대기 구조와 구름의 범위가 크게 변화하여 거의 멈출 수 없고 되돌리기 매우 복잡한 폭주 온실 효과를 초래한다"라고 말했다. 돌이킬 수 없는 기후 변화 이 연구는 부분적으로 다른 행성, 특히 소위 외계 행성의 기후를 연구하는 도구를 제공하기 위해 설계됐다. 또한 앞으로 수 세기 동안 지구 기후에 미칠 위험에 대한 통찰력도 제공한다. 연구진은 바다와 생명체로 뒤덮인 멋진 파란색과 녹색 점인 지구와 태양계에서 가장 뜨거운 무균 상태의 유황 행성인 금성의 차이점을 강조했다. 그러나 천문학 및 천체물리학 리뷰에 게재된 이 연구에 따르면 "지구 온도를 수십도만 상승시키는 아주 작은 태양 복사량 증가만으로도 지구에서 돌이킬 수 없는 폭주 과정을 촉발하고 지구를 금성처럼 살기 힘든 곳으로 만들 수 있다"는 사실이 밝혀졌다. 온실 효과의 폭주라는 개념은 새로운 것이 아니다. 이 개념은 지구와 같은 온대 상태에서 표면 온도가 섭씨 1000℃(화씨 1832℃)가 넘는 행성으로 진화하는 것을 상상한다. 연구진은 온실 효과가 없다면 지구의 평균 기온은 영하로 떨어지고 지구는 생명체에 적대적인 얼음으로 덮인 공이 될 것이라고 지적하면서 어느 정도의 온실 효과는 유용하다고 말했다. 그러나 이 효과가 너무 크면 해양의 증발이 증가하여 대기 중 천연 온실가스인 수증기의 양이 증가하여 구조 담요처럼 열에 갇히게 된다. 임계값 전 UNIGE 박사후 연구원이며 이 연구의 수석 저자인 기욤 샤베로(Guillaume Chaverot)는 "이 정도의 수증기에는 지구가 더 이상 식을 수 없는 임계점이 있다"라고 말했다. 샤베로는 "거기서부터 바다가 완전히 증발하고 온도가 수백도에 도달할 때까지 모든 것이 사라진다"라고 설명했다. 이전의 시뮬레이션은 폭주 효과가 시작되기 전의 온화한 상태나 폭주 후의 사람이 살 수 없는 상태에만 초점을 맞췄지만, 연구진은 전체 과정을 시뮬레이션 한 것은 이번이 처음이라고 말했다. 전체 과정을 보여줌으로써 처음부터 높은 대기에서 폭주 효과를 증가시키고 그 과정을 되돌릴 수 없게 만드는 매우 특이하고 밀도가 높은 구름 패턴이 어떻게 나타나는지 설명할 수 있었다. 차베로는 "대기의 구조가 크게 바뀌었다"고 했다. 그는 현재 인간이 배출하는 온실 가스가 태양 광도의 약간의 증가와 동일한 폭주 과정을 유발할 수 있는지 여부를 조사하고 있다고 성명을 통해 밝혔다. 기후 과학자들은 지구의 평균 기온이 산업화 이전 수준보다 1.5°C 이상 상승하면 통제할 수 없는 기후 변화를 촉발할 위험이 있다고 경고했다. 이는 온실 폭주 과정과는 다르지만, 연구자들은 지구가 '종말 시나리오'에서 멀지 않았다고 경고했다. 한편, 3일 기상청 기상자료개방포털 자료에 따르면 지난해 한국의 전국 평균기온은 13.7℃를 기록, 전국에 기상관측망이 대폭 확충돼 각종 기상기록의 기준으로 삼는 시점인 1973년 이후 가장 높았다. 지난해 제주도의 평균기온은 역대 두 번째로 높았던 것으로 나타났다. 제주도의 연평균 최고기온은 20.4℃로, 2021년(20.6℃)에 이어 두 번째로 높았다. 게다가 지난 12월 공개된 해양기후예측센터의 자료에 따르면 지난 8월 동아시아 해역의 해면 수온은 평년보다 0.9℃높아 역대 2위를 기록했으며, 전 지구 해역의 해면 수온은 평년보다 0.6℃높아 역대 최고치였다. 올해 전 지구 표면온도가 사상 최고치를 기록할 것이라는 전망은 이젠 '기정사실'로 받아들여지고 있다. 엘니뇨는 적도 부근 동태평양 해수면 온도가 비정상적으로 상승하는 현상으로, 지구의 평균 온도를 높이며 폭풍우, 가뭄 등의 기상 이변을 유발한다. 엘리뇨는 2월께 최고조에 이르며 6개월은 더 갈 것이라는 예측이다.
-
- 포커스온
-
[퓨처 Eyes(18)] 지구 온난화, 폭주 온실 효과로 '금성化' 위기⋯시뮬레이션 결과 '지옥 방불'
-
-
맥주의 두 종류, 에일과 라거 차이점은?
- 연말이 다가오면서 송년회와 같은 모임에서 맥주를 즐기는 사람들이 늘고 있다. 맥주는 다양한 종류와 맛을 자랑하며, 취향에 맞게 선택할 수 있는 폭이 넓다는 점에서 인기를 얻고 있다. 또한, 맥주는 가격이 비교적 저렴해 부담 없이 즐길 수 있어 많은 이들에게 사랑받고 있다. 남성 전문지 더 메뉴얼(THE MANUAL)에 따르면, 맥주는 주로 발효 방식에 따라 에일(ale)과 라거(lager)로 구분된다. 이 발효 방식은 맥주의 맛과 풍미에 중요한 영향을 미친다. 상면발효맥주(上面醱酵麥酒)라고도 하는 에일은 상온에 가까운 15~25℃의 온도에서 상면 발효 효모를 사용하는 반면, 라거는 좀 더 낮은 7~15℃에서 하면 발효 효모를 사용한다. 이러한 차이는 에일과 라거 각각의 독특한 특성과 맛을 만들어낸다. 에일은 높은 온도에서 발효되기 때문에 라거에 비해 더 많은 에스테르를 생성한다. 에스테르는 과일과 같은 풍미를 내는 화합물로, 이로 인해 에일은 라거보다 일반적으로 더 밝고 과일 향이 나는 특징적인 풍미를 가진다. 반면, 라거는 에일에 비해 발효 시간이 더 오래 걸린다. 에일은 보통 2~3주 만에 발효가 완료되는 것에 비해 라거는 발효에 4~6주가 소요된다. 이처럼 발효 시간이 길어지면 맥주의 맛을 더 부드럽고 균형잡힌 풍미를 만들어 준다. 라거의 경우 상대적으로 에일보다 더 맑은 특성을 가지는데, 이는 종종 콜드 컨디셔닝 과정을 거치기 때문이다. 콜드 컨디셔닝은 발효가 완료된 맥주를 저온에서 숙성시키는 과정으로 맥주의 탁한 성분을 제거하는 과정으로, 라거의 맑고 깨끗한 외관을 만들어낸다. 이처럼 발효 방식과 과정의 차이는 에일과 라거 각각의 독특한 맛과 특성을 만들어내며, 맥주 애호가들에게 다양한 선택의 폭을 제공한다. 대표적인 에일과 라거 종류 에일은 다양한 스타일과 맛을 가진 맥주로, 대표적인 종류에는 IPA(인디아 페일 에일), 스타우트, 포터, 고스, 사워 에일, 밀 맥주 등이 있다. IPA는 홉의 강한 풍미와 쓴맛이 특징인 맥주이며, 스타우트는 짙은 색과 깊은 풍미로 잘 알려져 있다. 포터는 스타우트보다 색이 밝고 쓴맛이 덜하며, 고스는 말린 과일이나 허브를 첨가해 독특한 맛을 낸다. 사워 에일은 발효 과정에서 생성되는 젖산 덕분에 신맛이 나고, 밀 맥주는 밀을 사용하여 부드럽고 약간 달콤한 맛이 난다. 라거의 대표적인 종류로는 필스너, 헬레스(Helles) 라거, 멕시코 라거, 쾰쉬(Kölsch) 스타일 맥주, 비엔나 라거 등이 있다. 라거는 또 다른 인기 있는 맥주 종류로, 필스너, 헬레스(Helles) 라거, 멕시코 라거, 쾰쉬(Kölsch) 스타일 맥주, 비엔나 라거 등이 대표적이다. 이들 라거는 발효 과정과 숙성 기간의 차이로 인해 각기 다른 풍미와 특성을 지니고 있다. 필스너는 1842년 체코에서 처음 양조된 맥주로, 맑은 황금색과 깔끔한 맛이 특징이다. 헬레스 라거는 필스너보다 색이 더 밝고 풍미가 더 가볍다. 멕시코 라거는 옥수수가 함유된 맥주로, 상쾌한 맛과 톡 쏘는 탄산이 특징이다. 쾰쉬 스타일 맥주는 독일 코블렌츠 지역에서 유래한 맥주로, 맑은 황금색과 홉의 풍미가 특징이다. 비엔나 라거는 독일 비엔나 지역에서 유래한 맥주로, 붉은빛을 띠는 황금색과 홉의 풍미가 독특하다. 한국, 에일과 라거 양극화 한국의 맥주는 라거가 주류를 이루고 있다. 대표적인 라거 맥주로는 오비맥주의 카스, 하이트진로의 하이트, 롯데칠성음료의 클라우드 등이 있다. 이 맥주들은 모두 맑고 상쾌한 맛을 특징으로 한다. 반면, 에일은 아직까지 소수의 마니아층을 중심으로 사랑받고 있다. 대표적인 에일 맥주로는 제주맥주의 제주 위트, 칭따오, 카프리, 에델바이스 등이 있다. 연말 술자리에서 맥주를 즐길 때는 적당히 마시고, 물을 자주 마셔주는 것이 좋다. 과음은 건강을 해칠 수 있으므로, 주의해야 한다.
-
- 생활경제
-
맥주의 두 종류, 에일과 라거 차이점은?
-
-
호주, 토큰화로 금융 비용 절감 기대…한국도 규제 마련 추진
- 호주중앙은행(Reserve Bank of Australia, RBA)이 디지털 토큰화를 통한 비용 절감 효과에 주목하고 있다. 최근 발표에 따르면, 토큰화 기술의 도입이 호주 금융 시장에서 수십억 달러의 거래 비용을 절감할 수 있는 가능성을 내비쳤다고 채널뉴스아시아가 보도했다. RBA의 브래드 존스 부총재는 토큰화된 자산의 거래가 중개자 없이 이루어질 수 있어 전통적인 금융 시스템보다 경제적이라고 말했다. 특히, 토큰화된 자산은 블록체인과 같은 분산 원장 기술(DLT)을 이용해 보다 효율적인 기록 관리가 가능하다고 덧붙였다. 이러한 변화를 통해 호주 자본 시장은 연간 약 13억 호주달러(약 8억 미국달러)의 거래 비용을 절약할 것으로 전망되며, 이는 금융 시장의 혁신과 효율성 향상에 크게 기여할 것으로 예상된다. RBA는 디지털 토큰화를 통한 비용 절감을 위해 새로운 전략을 세우고 있다. 첫째, 토큰화된 자산의 표준화를 추진하여 상호 운용성을 강화하고, 더 효율적인 거래 환경을 조성할 계획이다. 둘째, 기술 개발 지원을 통해 비용 절감이 가능한 혁신적인 방법을 발굴할 예정이다. 마지막으로, 토큰화된 자산에 대한 적절한 규제 마련을 통해 소비자를 보호하고 시장의 안정성을 확보할 방침이다. 또한, RBA는 중앙 은행 디지털 통화(CBDC) 발행 또는 민간 기업과의 협력을 통한 인프라 구축 등, 토큰 결제 도입에 대한 다양한 방안을 검토 중이다. RBA의 토큰 결제 방식 도입 검토는 호주뿐만 아니라 전 세계 중앙은행들이 토큰화된 자산에 대한 관심을 높이는 가운데 나온 것으로, 토큰화된 자산이 금융 시스템에 미칠 영향에 대한 관심이 더욱 높아질 것으로 예상된다. 한국, 토큰화 시장 성장 전망 한국은 현재 글로벌 암호화폐 시장에서 주목받는 위치에 있다. 2023년 기준으로 한국은 암호화폐 거래소 거래량에서 세계 1위를 기록하며, 토큰화 시장에서도 큰 성장을 이루고 있다. 한국의 토큰화 시장은 주로 암호화폐와 디지털 자산 두 부분으로 구성되어 있다. 암호화폐 시장은 2022년부터 눈에 띄게 성장하였으며, 거래량이 전년 대비 100% 이상 증가하였다고 추산되고 있다. 한편, 디지털 자산 시장은 한국 금융위원회가 디지털자산기본법 제정안을 발표함으로써 더욱 활성화될 것으로 보인다. 이 법안은 암호화폐와 가상 자산을 포함하고 있다. 한국의 토큰화 시장은 초기 단계에 있지만, 암호화폐 시장의 빠른 성장과 새로운 법규의 도입으로 인해, 앞으로 토큰화 시장이 더욱 활발하게 성장할 것으로 예상된다. 호주와 한국의 토큰화 시장 차이점 호주와 한국의 토큰화 시장은 몇 가지 주요한 차이점을 보이고 있다. 호주 정부는 토큰화에 대한 명확한 정책과 지원 방안을 가지고 시장 발전을 적극 돕고 있다. 반면에 한국 정부는 토큰화 시장에 대한 구체적인 정책과 지원 방안을 아직 발표하지 않았다. 호주의 기업들은 토큰화 시장에 대한 높은 관심을 보이며, 다양한 토큰화된 자산 발행과 거래 플랫폼 출시 등의 활동을 하고 있다. 한국의 기업들도 관심을 보이고 있지만, 시장은 아직 초기 단계에 있어 활동은 상대적으로 적다. 한국은 전 세계적으로도 큰 암호화폐 시장을 가지고 있으며, 토큰화 시장 역시 굉장한 규모와 활약을 보이고 있다. 호주는 이 시장에서 상대적으로 초기 단계에 있지만, 빠르게 성장하려는 움직임을 보이고 있다. 향후 전망 호주와 한국의 토큰화 시장은 모두 성장 가능성이 높은 것으로 평가된다. 호주의 경우 정부의 지원과 기업들의 관심으로 인해 향후 더욱 성장할 것으로 예상된다. 한국의 경우 암호화폐 시장의 성장과 새로운 디지털자산기본법 제정안의 도입이 토큰화 시장의 미래 성장을 뒷받침할 것으로 보인다.
-
- 산업
-
호주, 토큰화로 금융 비용 절감 기대…한국도 규제 마련 추진
-
-
도시바, AI로 '포트홀' 감지해 중대 사고 예방
- 비가 쏟아지면 도로 표면에 구멍이 생기는 포트홀(pot hole)은 자칫 중대 사고로 이어질 확률이 높다. 이 포트홀은 일반적으로 사람의 눈으로 직접 확인하고 보수해야 했기 때문에, 많은 시간과 노동력이 소모되어왔다. 그런데 일본의 전기기기 회사 도시바와 도시바 디지털 솔루션즈가 포트홀을 해결할 수 있는 '노면 변화 감지 AI(인공지능)'를 개발해 실용화에 나섰다. 일본 IT전문 매체 지디넷(ZD NET)에 따르면, 도시바와 도시바 디지털 솔루션즈는 NEXCO 중일본과의 협력 하에 고속도로 일상 점검의 효율성을 향상시키기 위한 검증실험을 진행했다. 그 결과, 이 AI 기술은 일상 점검의 자동화와 노동력 절감 뿐만 아니라, 긴급 보수가 필요한 포트홀을 조기에 발견하는 데 큰 효과가 있음이 밝혀졌다. 이로써 고속도로의 유지보수와 장기적인 안정적 운영에도 큰 도움이 될 것으로 기대된다. 지난 2019년 NEXCO 중일본 지역 내의 고속도로에서 약 3200건의 포트홀이 발견됐다. 이 중 30년이 경과한 도로가 전체의 60%를 차지하며, 노면의 변화로 인해 포트홀 발생 빈도가 증가했다. 이로 인해 적시에 이루어지는 점검 및 유지보수가 절실하게 필요한 상황이었다. 기존의 점검 방식은 점검원이 순찰 차량을 이용하여 정기적으로 도로를 순회하며 육안으로 포트홀을 확인하는 방식이었다. 긴급 보수가 필요한 포트홀을 발견할 경우, 점검원은 안전한 정차 지점을 찾은 후, 다시 포트홀이 있는 장소로 돌아와 사진 촬영을 해야 했다. 이후 해당 사진을 도로관제센터에 보고하는 과정을 거쳤다. 도시바 연구개발센터의 미디어 AI 실험실 전문가 노다 레이코 씨는 "노면 변화 감지 AI는 점검원이 탑승한 차량에 설치된 카메라로 이미지를 수집하며, 이 이미지를 AI로 분석한다. 이를 통해 주행 중에도 실시간으로 포트홀을 자동으로 파악하고, 바로 도로관제센터에 보고가 가능하다. 이로써 점검 품질의 일관성과 작업의 안전성이 보장되며, 긴급 보수에 소요되는 시간도 크게 줄일 수 있다"고 말했다. 이번 AI의 눈에 띄는 특징은 '약교사 학습형' 기술이 탑재된 것이다. '약교사 학습형' 기술은 영어로 'Weakly Supervised Learning'이라고도 하며, 머신러닝에서 사용되는 학습 방식 중 하나다. 도시바는 AI가 딥러닝 모델을 통해 입력 이미지에서 비정상 패턴의 스코어 맵을 생성한다고 설명했다. 이 모델은 스코어 맵의 최대값이 입력 이미지의 변화와 일치하도록 학습되어, 정상 이미지와 비정상 이미지 사이의 차이점을 높은 스코어로 표시한다. 이 기술의 도입으로 이미지 분석 시간이 기존 1분 40초에서 단 1초로 줄어들었다. 이로 인해 작업 부담을 줄이고 다양한 도로 환경에서의 적용이 용이해졌다. 향후 두 회사는 NEXCO 중일본과 실증 실험을 진행해 긴급 보수가 필요한 포트홀의 검출 정밀도를 향상시키고 오는 2024년 실용화를 목표로 하고 있다. 2024년 이후로는, 네쿠스코(NEXCO 일본도로공단 후계의 민영기업으로, 동일본, 중일본, 서일본의 3개 회사로 구성)는 각 점검 항목별로 내부에서 AI 모델을 개발할 수 있는 서비스를 제공할 계획이다.
-
- 산업
-
도시바, AI로 '포트홀' 감지해 중대 사고 예방