검색
-
-
[우주의 속삭임(36)] 수성 표면, 최대 16km 두께의 다이아몬드층 존재 가능성 제기
- 태양계에서 가장 작은 행성인 수성에 다량의 다이아몬드가 존재한다는 주장이 제기됐다고 스페이스닷컴이 전했다. 벨기에의 뢰번 가톨릭 대학교(KU Leuven) 연구팀은 나사(NASA)의 수성 미션인 메신저(MESSENGER) 우주선의 데이터를 분석, 태양에서 가장 가까운 행성인 수성의 지각 아래에 16km 두께의 다이아몬드 층이 존재할 수 있다는 가능성을 제기했다. 수성은 다른 태양계 행성에서는 보기 어려운 다양한 특성을 갖고 있어 천문학자들의 탐구의 대상이었다. 매우 어두운 표면, 눈에 띄게 밀도가 높은 핵, 조기에 끝난 화산 시대 등이 대표적인 특징이었다. 또한 수성은 표면에 탄소의 일종인 흑연 조각도 포함하고 있다. 천문학자들은 이에 근거해 수성의 형성 초기에 탄소가 풍부한 마그마 바다가 있었다는 이론을 제기했다. 마그마 바다가 표면으로 부상해 흑연 조각과 함께 수성 표면의 어두운 색조를 만들었을 것이라는 추정이었다. 동일한 과정으로 인해 수성 표면 아래에 탄소가 풍부한 층이 형성됐다는 것이 뢰번 연구팀의 주장이다. 팀은 이 탄소 층이 과거에 제기됐던 그래핀이 아니라 다이아몬드로 구성되어 있다고 추정하고 있다. 그래핀은 탄소의 동소체 중 하나로 탄소 원자들이 모여 2차원 평면을 이루고 있는 구조다. 다이아몬드 결정과는 근본적으로 다르다. 연구팀의 올리버 나머 교수는 "우리 팀은 수성이 탄소가 풍부한 행성이라는 것과 수성의 맨틀-핵 경계의 압력에 대한 새로운 추정치를 감안, 맨틀과 핵 사이의 경계면에서 형성되는 탄소 함유 광물이 흑연이 아니라 다이아몬드라고 추정한다"라고 말했다. 메신저 우주선의 영자 표기 MESSENGER는 'Mercury Surface, Space Environment, Geochemistry, and Ranging'의 머리글에서 따 온 것으로 '수성 표면, 우주 환경, 지구화학 및 거리 측정'을 의미한다. 메신저 우주선은 지난 2004년 8월 발사돼 수성 궤도를 돌며 탐사하는 최초의 우주선이었다. 2015년에 임무를 종료했으며, 수성 극지방의 음영 속에 풍부한 얼음을 발견하고 수성의 지질학과 자기장에 대한 중요한 데이터를 수집하면서 수성 전체 지도를 작성하는 성과를 거두었다.
-
- IT/바이오
-
[우주의 속삭임(36)] 수성 표면, 최대 16km 두께의 다이아몬드층 존재 가능성 제기
-
-
[신소재 신기술(76)] 그래핀 유래 신소재 EGNITE, 신경 보철 성능 강화
- 그래핀에서 파생된 신소재 EGNITE가 신경 보철 성능을 크게 향상시켰다는 연구 결과가 나왔다. 스페인 바르셀로나에 위치한 UAB 신경과학 연구소(INc-UAB) 연구팀은 그래핀 유래 소재인 EGNITE 전극의 말초 신경 자극과 기록 능력을 장시간 연구해 이같은 결과를 얻었다고 메디컬 익스프레스가 지난 10일(현지시간) 보도했다. EGNITE(Engineered Graphene for Neural interface) 전극은 그래핀 유래 신소재로 만들어진 차세대 신경 인터스페이스 기술이다. 기존의 금속 미세 전극보다 크기가 작고 유연하며, 우수한 전기적 특성과 생체 적합성을 가지고 있어 신경 자극 등의 효율을 높일 수 있다. 절단 또는 신경 손상 환자는 팔다리의 운동과 감각 기능을 상실해 일상 생활에 제약을 받는다. 이러한 기능 회복을 위한 유일한 방법은 신경 보철이다. 신경 보철은 특정 감각을 유도하기 위해 신경을 자극하고. 운동 신호를 기록해 생체 공학 보철물로 전송하는 전극으로 구성된다. 신경 보철 설계에서 전극은 신경 내 소수의 축삭과만 선택적으로 상호작용할 수 있도록 충분히 작아야 한다. 기존 신경 보철에는 금, 백금, 산화이리듐과 같은 금속이 주로 사용됐다. 그러나 더 작은 전극 접점을 만들기 위해 전도성이 향상된 새로운 소재 개발이 필요했다. 이러한 요구에 부응해 그래핀과 그 유도체는 탁월한 전기적 특성을 바탕으로 차세대 미세 전극 개발에 활용되고 있다. 연구팀은 그래핀 유래 소재인 EGNITE의 말초 신경 자극 및 기록 능력을 연구하고, 장시간 기능 유지를 위한 생체 적합성을 검증했다. 연구 결과는 '어드밴스트 사이언스(Advanced Science)' 저널에 게재됐다. 이번 연구는 자비에 나바로 교수가 이끄는 INc-UAB의 신경 가소성 및 재생 연구팀과 INC2의 호세 가리도 연구팀의 협력으로 진행됐다. INC2는 신경 인터페이스와 함께 EGNITE 개발을 담당했다. 연구팀은 쥐 실험을 통해 쥐의 좌골 신경에 이식된 EGNITE 전극이 최대 60일 동안 선택적인 근육 활성화를 유도하는 것을 확인했다. 팀은 EGNITE 전극이 기존 금속 미세 전극보다 근육 활성화에 필요한 전류가 현저히 감소했다고 설명했다. EGNITE 전극은 크기가 작아 신경 내 특정 부위만 선택적으로 자극할 수 있어, 신경 보철 장치의 정확도와 효율성을 향상시켰다. 또한 그래핀의 우수한 전기 전도성을 바탕으로 신경 신호를 효과적으로 전달하고 기록할 수 있다. INc-UAB의 박사후 연구원이자 이 논문의 제1저자인 브루노 로드리게스-메이나는 "근육 활성화를 생성하는 데 필요한 전류의 감소는 다른 대형 금속 미세 전극과 비교할 때 현저한 차이가 있었다"고 말했다. 또한 EGINITE 전극은 생체 적합성이 우수해 이식된 인터페이스로 인한 기능 변화나 염증 반응이 관찰되지 않았다. 나바로 교수는 "이 연구의 다음 단계는 EGNITE 기반 기술의 최적화외 미주 신경 또는 척수 자극 시스템에 대한 임상 전 연구에의 적용으로 구성될 것이다"라고 말했다. 연구팀은 아울러 생체 전자 의학 분야에서 임상 적용을 위한 연구도 병행할 계획이다. EGNITE 전극은 신경 보철뿐만 아니라, 뇌-컴퓨터 인터페이스 등 다양한 분야에서 활용될 수 있다. 또한 팔다리 절단 환자나 신경 손상 환자의 운동 및 감각 기능 회복에 기여해 삶의 질을 높일 것으로 기대된다.
-
- 포커스온
-
[신소재 신기술(76)] 그래핀 유래 신소재 EGNITE, 신경 보철 성능 강화
-
-
[우주의 속삭임(21)] 중국, 달 샘플서 '그래핀' 발견…달 기원에 도전장
- 중국 달 탐사선이 달에서 채취한 샘플에서 자체 토착 탄소인 그래핀이 발견돼 달의 기원에 도전장을 내밀고 있다. 달의 기원에 대해서는 여러 가지 가설이 존재하지만, 현재 가장 유력한 가설은 '거대 충돌설'이다. 약 45억년 전 원시 지구와 화성 크기의 천체 테이아(Theia)가 충돌해 두 천체가 합쳐지고, 그, 충격으로 떨어져 나간 파편들이 지구 주위를 돌며 뭉쳐져 달이 형성됐다는 이론이다. 이 가설은 달 샘플의 화학적 구성, 달 공전 궤도, 지구와 달의 자전축 기울기 등 여러 증거를 통해 뒷받침되고 있다. 중국 지린 대학교 과학자들은 2020년 12월 창어 5호가 달 표면에서 채취한 샘플을 분석하는 과정에서 특이하게 그래핀을 발견했다. 연구팀은 자연 상태에서 생성된 '소수층 그래핀(few-layer graphene)'을 달 샘플에서 처음으로 발견했다고 국영 통신사 글로벌 타임스가 보도했다. 이는 향후 인류가 달 현지 자원을 활용하는 계획에 중요한 영향을 미칠 수 있다. 그래핀은 탄소 원자들이 욱각형 벌집 모양으로 연결되어 2차원 평면 구조를 이루는 소재다. 그래핀은 원자 한 층으로 이루어져 세상에서 가장 얇은 물질이다. 쉽게 말하면 연필심에 사용되는 흑연을 아주 얇게 한 겹만 떼어낸 것으로 볼 수 있다. 이번 발견은 달의 초기 지질학적 진화 과정에 대한 새로운 통찰력을 제공할 수 있으며, 달이 지구와 소행성의 충돌로 형성되었고 탄소 대부분이 이 충돌에서 유래했다는 기존 이론에 의문을 제기할 수 있다고 퓨처리즘은 전했다. 연구팀은 "널리 받아들여지는 '거대 충돌 이론'은 (미국 우주선) 아폴로 샘플의 초기 분석에서 파생된 '탄소 결핍 달'이라는 개념에 의해 강력하게 뒷받침되어 왔다"고 논문에서 밝혔다. 그러나 이번 연구 결과는 달에서 '탄소 포집 과정'이 존재하며, '토착 탄소의 점진적 축적'이 일어났음을 시사한다. 이는 '달의 화학 성분 및 역사에 대한 이해를 재정립할 수 있는 발견'이라는 점에서 중요하다. 연구팀은 비파괴 화학 분석 방법인 '라만 분광법'을 사용하여 소수층 그래핀의 존재를 확인했다. 소수층 그래핀은 2~10개 층으로 이루어진 그래핀으로, 실험실에서도 제조될 수 있다. 연구팀은 이 물질이 태양풍이 달 표면을 강타하고 초기 화산 폭발이 일어나는 과정에서 형성되었을 가능성을 제시했다. 순수한 '토착 탄소'의 존재는 약 44억 5000만 년 전 화성 크기의 소행성이 지구와 충돌하여 달이 형성되었다는 기존 가설에 배치되는 점이다. 그러나 연구팀은 이전 연구 결과와 마찬가지로 운석 충돌이 달에서 흑연 탄소 형성에 기여했을 가능성도 인정했다. 연구팀은 "자연 그래핀의 특성에 대한 심층적인 연구는 달의 지질학적 진화에 대한 더 많은 정보를 제공할 것"이라고 말했다. 한편, 중국은 무인 달 탐사선 창어-6호가 세계 최초로 달 뒷면의 샘플을 채취해 지난 6월 25일 내몽골에 성공적으로 착륙했다. 창어-6호는 달 뒷면에 있는 거대한 분화구인 남극 에이컨 분지(South Pole-Aitken Basin) 분지에서 달 토양을 수집해 지구로 53일만에 귀환한 것. 최대 2kg(4.4 파운드)에 달하는 이 샘플은 지난 26일 새벽 베이징으로 공수돼 중국 우주 기술 아카데미(CAST)로 이송됐다. 스페이스닷컴에 따르면 중국이 달 뒷면에처 채취한 샘플은 2020년 창어-5호가 수집한 샘플과 마찬가지로 재료를 분류한 다음 중국 전역의 과학자 및 기관의 연구에 사용할 수 있도록 제공될 예정이다. 이 자료는 2년 후 국제 그룹과 연구자들의 응용 프로그램에 제공될 가능성이 높다고 한다. 미 항공우주국(나사·NASA)의 자금 지원을 받은 연구원들은 지난해 말 달 샘플에 대한 접근을 신청할 수 있는 특별 허가를 받았다. 과학자들은 이 샘플이 달, 지구, 태양계의 형성에 중요한 단서를 제공할 것으로 기대하고 있다. 중국은 우주 강국으로 자리매김하기 위해 2026년 창어-7호를 달 남극에 발사하고, 2028년에는 창어-8호를 발사해 자원 활용에 집중할 계획이다. 아울러 중국은 2030년까지 우주비행사를 달 남극에 보낼 계획이다. 달 남극은 인간의 생존에 필수적인 물과 각종 희토류 등이 있는 것으로 알려져 인도와 미국 등 세계 각국의 탐사 목표지로 급부상했다.
-
- IT/바이오
-
[우주의 속삭임(21)] 중국, 달 샘플서 '그래핀' 발견…달 기원에 도전장
-
-
[신소재 신기술(54)] 무산소 공정으로 고품질 그래핀 대량 생산 가능
- 북미 과학자들이 무산소 공정을 활용해 '꿈의 소재'로 불리는 그래핀의 대량 생산 길을 열었다. 미국 콜럼비아 대학교 대학원 엔지니어링의 혼(Hone) 연구소가 국립표준기술연구소(NIST), 캐나다 몬트리올 대학교 연구원들과 함께 '무산소 화학 지상 증착(OF-CVD)' 기술을 개발해 고품질 그래핀의 대량 생산을 가능하게 했다고 아조나노와 인디펜던스 등 다수 외신이 보도했다. 이 기술은 고품질 그래핀 샘플을 대규모로 생산할 수 있으며, 산소와 그래핀 품질 간의 직접적인 상관관계를 밝히고 미량 산소가 그래핀의 성장 속도에 어떤 영향을 미치는지 보여준다고 그래핀은 탄소 원자 단일층으로 이루어진 물질로 2004년 처음 발견됐다. '21세기 경이로운 소재'로 꼽히는 그래핀은 전기 전도성과 강도가 매우 뛰어나 에너지 저장부터 의료 기기, 전자 제품에 이르기까지 다양한 산업 분야에서 혁신을 가져올 수 있는 물질로 알려져 있다. 하지만 현재까지 그래핀은 제조 과정에서 불순물이 발생하고 대량생산이 어려워 산업 활용에 한계가 있었다. 특히 산소 존재는 그래핀 성장 속도에 영향을 미치고 불순물을 발생시켜 산업적 활용을 저해하는 주요 원인이었다. 연구팀은 산소를 거의 완전히 제가한 상태에서 그래핀을 화학 기상 증착(CVD)방식으로 합성하는 새로운 방법을 개발했다. 연구팀은 "산소 제거를 통한 고품질 그래핀 합성 재현 기능성 확보는 대량 생산으로 나아가는 중요한 이정표"라고 말했다. 기존 그래핀 제조 방법은 두 가지였다. 첫번째는 박리 그래핀 방식이다. 연필 심과 동일한 재료인 흑연 샘플에서 가정용 테이프를 사용해 흑연 막을 벗겨내는 '스카치 테이프(박리 그래핀)' 방법은 매우 순수한 그래핀을 얻을 수 있지만 대량 생산에는 적합하지 않다. 두 번째는 CVD 성장 방식으로 알려져 있다. 15년 전 개발된 CVD 방식은 대량 생산이 가능하지만 산소 존재로 인해 품질이 균일하지 않았고, 성장 속도 저하 문제 등이 있었다. CVD 방식은 메탄과 같은 탄소 함유 가스가 구리 표면위로 통과한다. 가스의 온도가 메탄 조직과 탄소 원자가 재구성되어 벌집 모양의 단일 그래핀 층을 형성하는 지점까지 올라가면 그래핀이 합성된다. CVD 성장을 확장하면 cm(센티미터) 혹은 m(미터) 크기의 그래핀 샘플을 생산하는 것이 가능하다. 그러나 문제는 산소였다. 연구팀은 산소로 인해 공정이 훼손되는 문제를 해결하기 위해 산소 제어를 통한 그래핀 합성 프로세스를 개선했다. 공동 저자인 몬트리올의 리차드 마텔(Richard Martel)과 피에르 레베스크(Pierre Levesque)는 이전에 미세한 농도의 산소가 성장을 방해하고 심지어 그래핀을 제거할 수 있다는 사실을 입증했다. 약 6년 전, GSAS'19의 크리스토퍼 디마르코는 증착 과정에서 첨가되는 산소의 양을 정밀하게 제어할 수 있는 CVD 성장 시스템을 설계하고 구축했다. 디마르코의 연구는 현재 박사 과정 중인 싱저우 얀(Xingzhou Yan)과 제이콥 아몬트리(Jacob Amontree)가 수행해 성장 시스템을 개선했다. 이들은 미량의 산소가 제거되었을 때 CVD 성장이 일관되게 더 빨라진다는 사실을 발견했다. 또한 산소가 없는 CVD 그래핀 성장의 동역학을 조사하고 간단한 모델을 사용하여 온도와 가스 압력 등 다양한 매개변수에 따라 성장 속도를 예측할 수 있음을 발견했다. OF-CVD로 성장한 샘플의 품질은 박리 그래핀의 품질과 거의 동일한 것으로 나타났다. 컬럼비아 대학교 물리학과 교수들과 협력으로 생산된 그래핀은 자기장이 존재할 때 분수 양자 홀 효과에 대한 강력한 증거를 제공했다. 개선된 공정을 통해 빠르고 안정적으로 성장하는 고품질 그래핀을 얻을 수 있었으며, 이는 향후 그래핀 대량 활용 가능성을 열어준다. 이번 연구 결과는 학술지 '네이처(Nature)'에 '산소 없는 화학 기상 증착을 통한 재현 가능한 그래핀 합성'이라는 제목으로 게재됐다.
-
- 포커스온
-
[신소재 신기술(54)] 무산소 공정으로 고품질 그래핀 대량 생산 가능
-
-
[신소재 신기술(47)] ETH 취리히, 그래핀 내 전자 소용돌이 최초 감지
- 스위스 연방 공과대학교(ETH 취리히)의 연구팀이 최초로 고해상도 자기장 센서를 사용해 그래핀에서 전자 소용돌이를 직접 검출하는 데 성공했다고 과학 웹사이트 phys.org가 지난 14일(현지시간) 보도했다. 금속 와이어와 같은 일반적인 전기 도체를 배터리에 연결하면 도체 내의 전자는 배터리가 생성하는 전기장에 의해 가속된다. 전자는 이동하는 동안 전선의 불순물 원자 또는 결정 격자의 빈 공간과 자주 충돌해 운동 에너지의 일부를 격자 진동으로 변환한다. 이 과정에서 손실되는 에너지는 예를 들어 백열전구를 만질 때 느낄 수 있는 열로 변환된다. 격자 불순물과의 충돌은 자주 발생하지만 전자 간의 충돌은 훨씬 드물다. 그러나 벌집 모양 격자로 배열된 탄소 원자 단일층인 그래핀을 일반적인 철 또는 구리 와이어 대신 사용하면 상황이 달라진다. 그래핀에서 불순물 충돌은 드물고 전자 간 충돌이 주요 역할을 한다. 이 경우 전자는 점성 액체처럼 행동한다. 따라서 잘 알려진 흐름 현상인 소용돌이(와류)가 그래핀 층에서 발생해야 한다. ETH 취리히의 크리스티안 데겐(Christian Degen) 연구원은 고해상도 자기장 센서를 사용해 그래핀의 전자 소용돌이를 처음으로 직접 감지하는 데 성공했다고 '사이언스(Science)' 저널에 보고했다. 고감도 양자 감지 현미경 데겐과 그의 동료 연구원들은 제작 과정에서 폭 1㎛(마이크로미터) 너비의 전도성 그래핀 스트립에 부착한 작은 원형 디스크에 형성된 소용돌이를 연구했다. 디스크의 직경은 1.2㎛에서 3㎛사이였다. 이론적 계산에 따르면 작은 디스크에서는 전자 소용돌이가 형성되지만 큰 디스크에서는 형성되지 않아야 한다. 소용돌이를 가시화하기 위해 연구팀은 그래핀 내부에 흐르는 전자가 생성하는 미세한 자기장을 측정했다. 이를 위해 연구팀은 다이아몬드 바늘 끝에 질소-공동 센터(Nitrogen-vacancy center, NV 센터)가 내장된 양자 자기장 센서를 사용했다. 원자 결함인 NV 센터는 외부 자기장에 따라 에너지 레벨이 변하는 양자 물체처럼 작동한다. 레이저 빔과 마이크로웨이브 펄스를 사용하면 센터의 양자 상태를 자기장에 최대 감도를 갖도록 준비할 수 있다. 연구원들은 레이저를 사용해 양자 상태를 판독함으로써 이러한 자기장의 세기를 매우 정확하게 측정할 수 있었다. 데겐 연구팀의 박사 과정 학생이었던 마리우스 팜은 "다이아몬드 바늘의 크기가 작고 그래핀 층과의 거리가 약 70나노미터에 불과하기 때문에 100나노미터 미만의 해상도로 전자 전류를 볼 수 있었다"고 말했다. 이 분해능은 소용돌이를 관찰하기에 충분하다. 소용돌이 흐름 방향 반전 관찰 연구팀은 측정에서 더 작은 디스크에서 예상되는 소용돌이의 특징적인 징후, 즉 흐름 방향의 반전을 관찰했다. 일반(확산) 전자 수송에서는 스트립과 디스크의 전자가 같은 방향으로 흐르지만, 소용돌이의 경우 디스크 내부의 흐름 방향이 반전된다. 계산에서 예측한 대로 더 큰 디스크에서는 소용돌이가 관찰되지 않았다. 팜은 "매우 민감한 센서와 높은 공간 분해능 덕분에 그래핀을 냉각할 필요도 없었고 상온에서 실험을 수행할 수 있었다"고 말했다. 또한, 연구팀은 전자 와류뿐만 아니라 정공 캐리어에 의해 형성된 와류도 감지했다. 그래핀 아래에서 전압을 가함으로써, 연구원들은 전류 흐름이 더 이상 전자가 아닌 정공이라고도 하는 누락된 전자에 의해 전달되도록 자유 전자의 수를 변경했다. 전자와 정공이 모두 작고 균형 잡힌 농도가 있는 전하 중립점에서만 와류가 완전히 사라졌다. 팜은 "현재 전자 소용돌이의 탐지는 기초 연구이며 아직 미해결 과제가 많이 남아 있다"고 말했다. 연구팀은 전자와 그래핀의 경계면과의 충돌이 흐름 패턴에 어떤 영향을 미치는지, 더 작은 구조에서 어떤 효과가 발생하는지 추가 연구를 진행할 계획이다. 출처: Marius L. Palm 외, '상온에서 그래핀의 전류 소용돌이 관찰', Science (2024). DOI: 10.1126/science.adj2167
-
- IT/바이오
-
[신소재 신기술(47)] ETH 취리히, 그래핀 내 전자 소용돌이 최초 감지
-
-
[신소재 신기술(33)] 원자 1개 두께의 이상한 형태의 금
- 스웨덴 과학자들은 단일 원자층으로 구성된 아주 얇은 박막의 금 소재를 개발했다. 이 새로운 물질은 '골덴'이라고 명명되었으며 반도체 특성을 지니고 있다. 과학 전문매체 사이언스 얼럿은 스웨덴 린쇼핑 대학교(Linköping University) 연구원들은 금을 더 이상 얇아질 수 없는 원자 1개 두께의 납작한 박막 시트 형태로 만들어내는 새로운 방법을 개발했다며 지난 16일(현지시간) 이같이 보도했다. 재료 과학의 명명 관습에 따라 연구팀은 이 새로운 2차원 물질에 '골덴(goldene)'이라는 이름을 붙였다. 골덴은 3차원 형태의 금에서는 볼 수 없는 몇 가지 흥미로운 특성을 가지고 있다. 스웨덴 린쇼핑 대학교의 재료 과학자 슌 카시와야는 "그래핀처럼 물질을 매우 얇게 만들면 놀라운 일이 일어난다"며 "금도 마찬가지다. 아시다시피 금은 보통 금속이지만, 단일 원자층 두께로 만들면 금이 반도체가 될 수 있다"라고 설명했다. 금은 서로 뭉치는 경향이 있기 때문에 2차원 구조로 동축하는 것은 매우 어렵다. 이전의 시도는 몇 원자 두께의 얇은 시트를 만들거나 다른 물질 사이에 또는 그 위에 단층을 끼워 분리할 수 없는 결과를 낳았다. 카시와야와 연구팀은 금을 만들려고 시작한 것이 아니라 우연히 공정의 첫 단계를 발견하게 됐다고 전했다. 린쇼핑 대학교의 나노 공학 분야의 연구를 이끌고 있는 재료 물리학자 라르스 튈트만(Lars Hultman)은 "우리는 완전히 다른 응용 분야를 염두에 두고 기본 재료를 만들었다"면서 "우리는 실리콘이 얇은 층으로 이루어진 티타늄 실리콘 카바이드라는 전기 전도성 세라믹으로 시작했다. 그런 다음 이 소재를 금으로 코팅해 접촉을 만드는 것이 아이디어였다. 하지만 부품을 고온에 노출시켰을 때 실리콘 층이 기본 재료 내부의 금으로 대체됐다"라고 설명했다. 튈트만 교수는 금속 나노구조의 합성 및 특성 연구에 선구자적인 역할을 했다. 특히, 금속 나노입자, 나노선, 나노막 등 다양한 금속 나노구조를 합성하고, 그들의 광학적, 전기적, 촉매적 특성을 연구해 다양한 응용 분야에 활용 가능한 새로운 재료를 개발하는 데 기여했다. 앞서 연구팀은 단층 금을 만들려는 시도에서 중요한 단계에서 한계에 도달해 연구 과정이 중단됐다. 몇 년 동안 연구팀이 만든 인터칼레이티드 티타늄 금 카바이드는 티타늄과 탄소 층 사이에 있는 초박막 금 층을 추출할 방법이 없어 그냥 그 상태로 남아있었다. 이에 연구팀은 무라카미 시약이라는 에칭 용액에 기반한 기술을 사용해 지난 연구의 한계를 돌파했다. 무라카미 시약은 금속 가공에 사용되는 화학 물질의 혼합물로, 탄소를 에칭하고 강철을 얼룩지게 하여 일부 일본 칼에서 볼 수 있는 무늬를 만들어낸다. 연구팀은 혼합물의 농도와 에칭 공정이 금을 둘러싼 티타늄과 탄소를 부식시키는 시간대를 다르게 시도했다. 무라카미 시약의 에칭 효과는 페로시아나이드 칼륨이라는 부산물을 생성한다. 이 화합물은 빛에 노출되면 시안화물을 방출하여 금을 녹이기 때문에 연구팀은 에칭 공정을 완전히 어둠 속에서 진행해야 했다. 게다가 얇은 금 시트는 말리거나 뭉치는 경향이 있었다. 이에 연구팀은 층이 접히거나 달라붙는 것을 방지하는 계면활성제를 추가해 금의 단일 원자층의 무결성을 유지했다. 연구팀은 이론적 시뮬레이션에서 예측한 대로 이 까다로운 단계를 거쳐 마침내 안정적인 금을 형성하는 데 성공했다. 이번 연구는 학술지 '네이처 신티시스(Nature Synthesis)'에 게재됐다. 일반적으로 금은 우수한 전기 전도성 물질이다. 원소가 2차원 시트 형태를 취할 때 원자는 두 개의 자유 결합을 가지며 도체와 절연체 사이의 전도 특성을 가진 반도체로 변모한다. 이는 전도도를 조절할 수 있기 때문에 유용하다. 다시 말하면, 전기 전도성이 우수하고 부식에 강한 금은 반도체 소자의 접점, 연결 부품, 패키징 등에 사용된다. 금은 나노 크기의 입자로 제조될 수 있으며, 이러한 금 나노 입자는 차세대 반도체 소자의 제작에 활용될 수 있다. 예를 들어, 금 나노 입자는 트랜지스터의 게이트 전극, 메모리 소자의 저장 매질, 광전자 소자의 광 감지 소자 등으로 사용될 수 있다. 게다가 금은 생체 적합성이 우수하고 전기 전도성이 높기 때문에 생체 의료 분야에서 사용되는 뇌-컴퓨터 인터페이스, 심장 박동기 리드, 인공 근육 등의 전극 소재로 활용될 수 있다. 그러나 금은 높은 비용과 가공의 어려움, 제한된 반도체 특성 등의 단점도 존재한다. 금은 반도체 특성이 제한적이기 때문에 고성능 트랜지스터 제작에는 적합하지 않다.
-
- 포커스온
-
[신소재 신기술(33)] 원자 1개 두께의 이상한 형태의 금
-
-
의료용 그래핀 센서 개발 기업 MCK테크, 버사리엔 한국자산 60만4000파운드에 매입
- 영국 서부 포레스트 오브 딘(Forest of Dean)의 첨단 소재 엔지니어링 그룹 버사리엔(Versarien)이 한국에 있는 그룹의 공장과 장비를 매각한다. 11일(현지시간) 영국 비즈니스 전문매체 펀치라인에 따르면 버사리엔은 의료용 그래핀 센서 개발 기업 MCK테크(주)와 총 60만4000만 파운드(약 10억1525만원)에 그룹의 한국 공장 및 장비를 매각하고, 그룹 소유의 특허 5건에 대한 독점 라이선스 계약과 함께 추가 비용을 지불하는 계약을 체결했다. 버사리엔은 회사 재건 전략의 일환으로 주요 사업 이외의 자산 처분을 추진하고 있으며, 2020년 한화 에어로스페이스로부터 인수한 한국 공장과 설비는 주요 사업과 연관이 없다고 판단되어 매각 대상으로 선정됐다고 이 매체는 전했다. 현재 버사리엔은 첨단 소재 회사인 고성능 나노복합소재를 개발·제조하는 에에에이씨 시로마(AAC Cyroma)와 고성능 텅스텐 카바이드 소재를 개발·제조하는 토탈 카바이드(Total Carbide) 등 성숙한 사업 부문도 매각을 위해 논의를 진행하고 있다. 추가 자산 매각 시기와 인수 자금의 규모는 아직 확실하지 않은 것으로 알려졌다. 매각 수익금은 기업 운영 및 워킹 캐피탈 충당에 사용될 예정이며, 버사리엔은 회사 재건 전략 지원을 위한 단기 및 장기 자금 조달을 계속 추진할 것으로 예상된다. 2023년 3월 31일 기준 한국 공장의 총 자산 가치는 84만4151 파운드(약 14억 3587만원)였으며, 2022년 9월 30일까지 18개월 동안 버사리엔 코리아의 순손실은 77만1690 파운드(약 13억 원)에 달했다. 버사리엔의 스티븐 홋지 최고경영자(CEO)는 "앞서 언급했던 바와 같이, 버사리엔의 전략은 영국에서 제조 부분을 최소화하고 특허, 기술 노하우 및 기타 지식재산권을 주요 파트너에게 라이센싱하는 것이다. 이 전략에 따라 한국산 CVD 그래핀 생산 장비 매각과 5건의 특허를 MCK Tech에 라이센싱하게 되어 기쁘다. MCK Tech는 의료 분야용 그래핀 센서 개발을 하는 우수한 기업이다"라고 밝혔다. 이어 홋지 CEO는 "MCK테크의 조승민 대표는 삼성테크윈과 한화에어로스페이스에서 그룹장을 역임한 후 2017년 대전의 첨단메타소재센터(CAMM)와 합작법인인 MCK테크를 설립한 국내 CVD 그래핀의 선구자 중 한 명이다. 앞으로도 CVD 그래핀 소재에 대한 접근성을 유지하고 협업을 통해 MCK테크의 성장을 지원할 수 있기를 기대한다"고 말했다. MCK테크 조승민 CEO는 "CVD 그래핀 생산 장비 인수는 CVD 그래핀 제조 및 응용 분야 개발을 위한 전략적 투자다. 삼성테크윈과 한화 에어로스페이스의 기술을 계승하여 그래핀 산업에서 선두 기업으로 자리 잡을 수 있게 됐다. 또한 저명한 그래핀 기업인 버사리엔과의 협력 관계 구축을 통해 향후 수년간 CVD 그래핀과 그래핀 플레이크 상용화에 공동 노력할 수 있게 되어 기쁘다"라고 말했다. 한편, CVD 그래핀은 화학기상증착(Chemical Vapor Deposition) 방법으로 합성된 그래핀을 말한다. 이 방법은 고순도의 그래핀을 대면적으로 생산할 수 있어 산업적으로 매우 중요하다. 화학기상증착 과정에서는 탄소를 함유한 가스(예: 메탄)가 높은 온도에서 촉매 금속 표면(주로 구리나 니켈) 위에 흘러가며 탄소 원자가 분리되어 촉매 표면 위에 그래핀층을 형성하게 된다. '대면적'은 그래핀이 넓은 면적에 걸쳐 균일하게 합성되었음을 의미한다. 대면적 그래핀 생산은 고기능성 전자기기, 대형 투명 전도성 필름 등 큰 규모의 응용을 가능하게 하는 중요한 기술적 달성이다. 또한 CVD 그래핀의 생산 방법은 고도로 제어 가능하여, 높은 품질의 그래핀을 일관되게 생산할 수 있는 장점이 있다. 이렇게 생산된 그래핀은 투명 전도 필름, 전자기기, 에너지 저장 장치, 각종 센서 등 다양한 고기능성 소재로의 응용이 가능하다.
-
- IT/바이오
-
의료용 그래핀 센서 개발 기업 MCK테크, 버사리엔 한국자산 60만4000파운드에 매입
-
-
[신기술 신소재(4)] 혁신적인 비독성 고품질 산화그래핀 생산 기술 개발
- 스웨덴 과학자들이 가장 일반적인 방법으로 생산되는 물질에 비해 결함이 훨씬 적은 그래핀 산화물을 합성하는 새로운 방법을 발견했다. 과학전문 매체 싸이키ORG는 지난 20일 스웨덴 우메오 대학 연구팀 그래핀 산화물 합성에 새로운 비독성 방법을 개발하여 기존 주요 방법보다 결함이 현저히 적은 물질을 얻는데 성공했다고 보도했다. 이전에는 유사한 품질의 그래핀 산화물을 얻기 위해서는 매우 독성이 강한 발연 질산을 사용하는 위험한 방법밖에 없었다. 그래핀 산화물은 일반적으로 산소를 제거하여 그래핀을 제조하는데 사용된다. 하지만 그래핀 산화물에 구멍이 존재하면 그래핀으로 전환될 때도 구멍이 생기게 된다. 따라서 그래핀 산화물의 품질은 매우 중요하다. 우메오 대학의 알렉산드르 탈리진(Alexandr Talyzin)박사와 그의 연구팀은 안전하게 고품질 그래핀 산화물을 만드는 방법을 발견했다. 이 연구 결과는 '카본(Carbon)' 저널에 게재됐다. 첨단 나노소재인 그래핀은 유연성, 높은 기계적 강도, 전도성 등 뛰어난 특성으로 인해 경이로운 물질로 불린다. 하지만 모든 그래핀 특성은 결함에 영향을 받는다. 그래핀 산화물로부터 제조된 그래핀은 기대보다 훨씬 낮은 기계적 특성과 전도성을 보인다. 많은 연구에 따르면 가장 많이 사용되는 '험머스(Hummers)' 방법으로 합성하면 항상 많은 결함이 생기는 것으로 나타났다. 험머스 방법은 그래핀 옥사이드(GO, graphene oxide) 제조에 널리 활용되는 대표적인 화학적 합성 기술이다. 1958년 윌리엄 험머스(William S. Hummers)와 리처드 오프만(Richard E. Offeman)에 의해 처음 소개된 이 방법은 강력한 산화제를 사용하여 그래파이트(graphite)를 산화시켜 그래핀 옥사이드를 생산하는 과정으로 이루어진다. 기존 방법들에 비해 안전성이 높고, 합성 속도가 빠르며, 환경 친화적이라는 장점을 지녀 대량 생산에 적합하며 널리 활용되고 있다. 구체적인 합성 과정에서는 황산(H2SO4)을 주요 용매로 사용하고 칼륨 퍼망가네이트(KMnO4)를 산화제로 활용한다. 엄격하게 조절된 온도 조건에서 반응을 진행하여 그래파이트를 산화시키고 그래핀 옥사이드를 생성한다. 이렇게 얻어진 그래핀 옥사이드는 물과 같은 용매에 분산될 수 있으며, 이를 통해 다양한 응용 분야와 연구에 활용될 수 있다. 특히 전자 소자, 에너지 저장 장치, 복합 재료 등 여러 분야에서 험머스 방법으로 제조된 그래핀 옥사이드의 활용도가 높아지고 있다. 훨씬 오래된 '브로디(Brodie)' 방법은 거의 구멍이 없는 그래핀 산화물을 제공하지만 아직 어떤 기업도 이 유형의 그래핀 산화물을 생산하지 않고 상업적으로 이용하지 못하고 있다. 탈리진은 "단순히 너무 위험하고 산업 생산에 적합하지 않다"고 말했다. 브로디 방법은 그래핀 옥사이드 합성에 활용되는 고전적인 화학적 방법이다. 1859년 벤저민 콜린스 브로디(Benjamin Collins Brodie)에 의해 처음 소개된 이 방법은 험머스 방법과는 차별화된 접근 방식을 통해 그래핀 옥사이드를 제조한다. 브로디 방법의 핵심은 강력한 산화제인 질산(HNO3)과 염소산(KClO3)을 사용하여 그래파이트(graphite)를 산화시키는 과정이다. 험머스 방법에 비해 긴 반응 시간과 낮은 온도 조건을 특징으로 하며, 이를 통해 높은 수준의 산화와 기능화를 가진 그래핀 옥사이드를 얻을 수 있다. 장점으로는 브로디 방법으로 제조된 그래핀 옥사이드는 험머스 방법으로 제조된 그래핀 옥사이드보다 높은 수준의 산화와 기능화 수준을 가진다. 이는 특정 응용 분야에서 유용할 수 있다. 또한 브로디 방법은 고도로 산화된 그래핀 옥사이드의 제조에 특히 적합하다. 반면, 브로디 방법의 단점은 긴 반응 시간과 위험한 산화제 사용 등이 있다. 험머스 방법에 비해 반응 시간이 길어 대량 생산에 적합하지 않다. 반응 조건을 엄격하게 제어해야 원하는 결과를 얻을 수 있다. 아울러 질산과 염소산은 위험한 산화제이며 취급에 주의가 필요하다. 브로디 방법은 주로 연구 목적으로 사용된다. 특히 고도로 산화된 그래핀 옥사이드가 필요한 경우 선택적으로 사용되고 있다. 이번 연구팀은 험머스 방법의 산(H2SO4)과 브로디 방법의 산화제(염소산 칼륨)를 결합하여 브로디 방법과 동일하게 결함이 적은 그래핀 산화물을 제조할 수 있는 새로운 방법을 발견했다. 하지만 합성 과정은 험머스 산화만큼 간단하다. 탈리진은 "이 방법은 연구팀의 바르토스 구르제다(Bartosz Gurzeda) 연구원의 이름을 따서 구르제다(Gurzeda) 방법으로 명명되어야 한다"라고 주장했다. 탈리진은 결함 없는 그래핀 산화물이 필요한 경우 구르제다 방법이 험머스 방법만큼 널리 사용될 가능성이 높다고 여긴다. 이 방법은 산소 그룹을 제거하여 그래핀을 만들거나 가스 보호 코팅, 반투과성 막, 센서 등 다양한 응용 분야에 활용될 수 있다. 최근 10여 년 동안 그래핀 산화물 자체의 응용 분야에 대한 관심도 높아지고 있다. 층층 구조의 그래핀 산화물 재료는 해수에서 간단한 여과를 통해 식수를 생산하거나 톨루엔과 같은 유해한 유기 오염 물질을 차단하면서 물만 통과시키는 반투과성 보호 코팅 제작을 위한 막 응용 분야에서 집중적으로 연구되고 있다. 탈리진은 "저희는 연구 커뮤니티가 이 새로운 그래핀 산화물을 응용 분야에 적용하여 시험하고 차이를 확인하기를 바란다. 그래핀 산화물은 하나의 물질이 아니라 다양한 특성을 가진 물질 그룹이며 무한한 새로운 응용 가능성을 제공한다"고 말했다. 한편, 그래핀은 탄소 원자가 단원자층 두께의 이차원 결정 격자를 이루며 구성된, 탁월한 특성을 지닌 신소재다. 그래핀은 동일 두께의 다이아몬드보다 강하며, 존재하는 재료 중 최고 수준의 강도를 자랑한다. 약 130GPa의 인장 강도를 가지고 있으며, 얇음에도 불구하고 압도적인 강도를 유지한다. 또한 그래핀은 탁월한 전기 전도성을 지니고 있어, 전자가 거의 무저항으로 빠르게 이동할 수 있다. 이는 그래핀을 전자 소자, 전도성 잉크, 투명 전극 등에 유용하게 활용할 수 있게 한다. 그래핀은 압도적인 열 전도성을 가지고 있어, 열을 매우 효율적으로 전달한다. 이 특성으로 그래핀은 열 관리 분야의 핵심 소재로 주목받고 있다. 그래핀은 놀라운 유연성과 높은 신축성을 동시에 지닌다. 이러한 특징은 그래핀을 플렉서블 전자기기나 착용 가능한 웨어러블 기술에 이상적인 소재로 꼽힌다. 아울러 그래핀은 극도로 높은 투명성을 가지고 있으며, 약 97.7%의 빛을 투과시킨다. 이는 터치스크린, 라이트 패널, 심지어 태양 전지판 등의 응용 분야에서 획기적인 가능성을 제시한다. 그래핀은 뛰어난 화학적 안정성을 지니고 있어, 대부분의 환경에서 산화되거나 분해되지 않는다. 이는 다양한 화학적, 생물학적 환경에서 안심하고 활용할 수 있게 한다. 이러한 그래핀의 탁월한 특성들은 전자, 에너지, 복합 재료, 바이오메디컬 분야 등 다양한 산업 분야에서 혁신적인 변화를 이끌 핵심 동력이 될 것이다.
-
- 포커스온
-
[신기술 신소재(4)] 혁신적인 비독성 고품질 산화그래핀 생산 기술 개발
-
-
[신소재 신기술(3)] 리튬 금속 음극 전고체 배터리, -25~120℃에서 작동
- 리튬 금속 음극을 채용해 -25℃부터 120℃까지 작동하는 전고체 전지가 개발됐다. 일본의 기술 전문 매체 EE타임스는 지난 19일(현지 시간) 덴소와 큐슈대학교 연구진이 새로운 소결 메커니즘을 활용해 750℃의 저온 소결과 리튬(Li) 금속에 대한 안정성을 갖춘 '고체 전해질'을 개발했다고 보도했다. 덴소는 일본의 대표적인 자동차 부품 전문 기업으로 자동차 전자 제어 시스템, 엔진 관련 부품, 내연기관, 하이브리드 및 전기차용 시스템, 자율 주행 기술, 정보 및 통신 기술 등 다양한 분야에서 기술을 보유하고 있다. 또한, 덴소는 에어컨 시스템, 차량 내부 및 외부 조명, 제동 시스템 등과 같은 자동차 주변 시스템도 제조한다. 연구팀은 리튬 금속 음극을 사용하여 제작한 전고체 전지가 -25℃~120℃까지의 광범위한 온도 범위에서 작동하는 것을 확인했다. 재료 간 연속적으로 일어나는 상호 반응으로 인해 저온에서 소결이 진행된다. 리튬 음극 전고체 배터리의 경우 '소결'은 전기화학적인 과정을 의미한다. 리튬 음극 전고체 배터리는 리튬 금속 또는 리튬 이온의 이동을 통해 전기 에너지를 저장하고 방출하는 전지를 말한다. 소결은 이 배터리의 전극(음극) 부분을 제작하는 과정 중 하나다. 리튬 이온 배터리의 음극은 일반적으로 그래핀, 석탄 블랙 또는 다른 탄소 기반 물질로 만들어진다. 소결 과정은 이러한 물질을 압력과 온도를 가하여 밀착시키고, 전해질과 함께 전지 구조에 통합시키는 것을 말한다. 이러한 과정은 음극의 전기적 특성을 최적화하고, 전지의 성능과 안전성을 향상시키는 데 중요하다. 소결은 전지의 제조과정에서 핵심 단계 중 하나이며, 배터리의 성능과 안전성에 직접적인 영향을 미친다. 따라서 소결 과정은 배터리 제조 과정에서 특히 중요한 부분이다. 덴소의 임진대 연구원(당시 규슈대학교 대학원 종합이공학부 박사과정 3년)과 규슈대학교 대학원 종합이공학연구원의 와타나베 켄 조교수, 시마노에 켄고 교수 등으로 구성된 연구팀은 2024년 2월, 새로운 소결 메커니즘을 활용해 750℃의 저온 소결과 리튬 금속에 대한 안정성을 겸비한 '고체 전해질'을 개발했다고 발표했다. 산화물 전해질을 사용한 전지는 발화 등이 없어 안전성이 높다. 하지만 재료 간 접합을 위해서는 1000℃ 이상의 고온에서 소결해야 한다. 연구팀은 이때 전극재와 전해질재가 반응하는 등 배터리화가 어려웠다고 전했다. 연구팀은 지금까지 전해질 소재인 'Li7La3Zr2O12(LLZ)에 저융점 소결 보조제를 나노 수준으로 복합화해 750℃에서 소결을 실현했다. 그러나 소결 보조제를 첨가하기 때문에 음극 재료인 리튬 금속에 대한 안정성이 현저하게 떨어졌다. 이번 연구에서는 새로운 소결 메커니즘을 활용해 안전성 문제를 해결했다. 연구팀은 열분석과 미세구조 분석 결과, 'Li-Sb-O 산화물' 및 'Li-B-O 산화물'이라는 두 종류의 소결 보조제와 'CO₂'가 연속적으로 상호 반응하는 것을 확인했다. 이를 통해 (Li-)-B-O 산화물은 용융 상태를 유지하며 저온에서 소결이 진행됨을 확인했다. 이 소결 메커니즘을 활용하면 Bi를 포함한 재료 조성을 사용하지 않고도 저온 소결이 가능하다. 또한, Sb를 포함한 조성으로 변경할 수 있어 Li 금속에 대한 안정성이 높은 고체 전해질을 개발하는데 성공했다. 이온전도도는 3.1×10-4S/cm를 달성했다. 'Bi'는 화학 원소 기호로 비스무트(Bismuth)를 나타낸다. 비스무트는 주기율표의 15번째 그룹에 속하는 비금속 원소로, 주로 광산에서 추출된다. 비스무트는 주변환경에서 자연적으로 발견되며, 비스무트의 화합물은 농업, 의약품, 화장품 등 다양한 분야에서 사용된다. 아울러 비스무트는 낮은 독성을 가지고 있어서 의료용 약물로 사용되는 경우가 많다. 또한, Bi는 납의 대체재로서 전자기 기기에 사용되기도 한다. 그러나 높은 가격과 기술적인 제한으로 인해 사용이 제한될 수도 있다. Sb는 화학 원소 기호로 안티모니(Antimony)를 말한다. 안티모니는 주기율표의 15번째 그룹에 속하는 비금속 원소로, 자연적으로 화학적으로 비동정된 형태로 발견된다. 안티모니와 그 화합물은 여러 산업 분야에서 사용되며, 특히 화학, 전자, 의료, 화장품 산업에서 사용되는 경우가 많다. 안티모니의 화합물은 화장품, 화학 처리, 납의 합금, 방사선 차폐재 등 다양한 용도로 사용된다. 또한, 안티모니는 반도체 산업에서 사용되는 반도체 소재의 일부이며, 화합물로서는 일부 의약품에서도 쓰인다. 그러나 안티모니와 그 화합물은 높은 독성을 가지고 있어서 적절한 관리가 필요하다. 연구팀은 개발된 소재를 이용해 제작한 전고체전지의 특성을 평가했다. 그 결과, 상온 환경에서 60회 충전·방전 후 용량 유지율은 98.6%로 나타났다. 전고체 배터리 기술은 지속적으로 발전하고 있다. 이 기술은 전기차 및 재생 에너지 저장 시스템 등의 분야에서 중요한 역할을 할 것으로 예상된다. 전고체 기술은 전통적인 액체 전해질 전지에 비해 안전성이 뛰어나며 에너지 밀도와 충방전 속도를 향상시키는 잠재력이 있다.
-
- IT/바이오
-
[신소재 신기술(3)] 리튬 금속 음극 전고체 배터리, -25~120℃에서 작동
-
-
[퓨처 Eyes(23)] 콘크리트보다 강하고 환경친화적인 차세대 건축자재 '페록'
- 기존 콘크리트보다 5배 강하고 이산화탄소(CO₂)를 흡수하는 환경친화적인 건축 자재 페록이 개발됐다. 콘크리트가 건축 자재로 사용되기 시작한 시기는 고대 로마 시대로 거슬러 올라간다. 로마인들은 기원전 3세기경부터 콘크리트를 사용하기 시작했으며, 이를 활용해 수많은 건축물, 교량, 도로 등을 건설했다. 로마 콘크리트는 화산재와 석회석을 혼합한 것으로, 현대 콘크리트의 전신이라 할 수 있다. 그 당시에 건설된 많은 구조물들이 오늘날까지도 남아 있어 그 내구성을 입증하고 있다. 미국 애리조나 대학에서 개발된 '페록(Ferrock)'이라는 새로운 건축 자재가 과학 저널을 통해 최근 또 다시 주목받고 있다. '페록(Ferrock)'은 '철'과 '돌'이 결합된 용어다. 시멘트 대용품으로 사용되는 친환경 건축 자재인 페록은 주로 폐철강 분진과 유리 분쇄물에서 나온 실리카 등 재활용 재료로 생산된다. 철강 분진은 이산화탄소와 반응해 탄산철을 생성하고, 이것이 응고되면 페록이 된다. 미국 매체 쿨다운(TCD)에 따르면 페록은 기존 콘크리트보다 강하면서 환경친화적이라는 특징을 지니고 있어 건물이나 인프라 구조물 설계에 혁신을 가져올 수 있다는 평가를 받고 있다. 강철 분진과 실리카의 혼합물을 철암 및 물과 혼합하고 고농도의 이산화탄소에 노출시키면 페록 경화 과정이 진행된다. 페록의 강도는 일반 포틀랜드 시멘트로 만든 콘크리트의 5배에 달한다. 또한 기존 콘크리트에 비해 더 유연하다. 균열 없이 움직임과 압력을 견디는 페록은 콘크리트에 비해 지진에 의한 압축 하중을 더 많이 견딘다. 일반적으로 페록 강도는 34.5 Mpa(메가파스칼)에서 48 Mpa 사이이며 일부 페록 테스트에서는 69 Mpa에 도달했다. 갓 만들어진 페록은 빠르게 굳으며 최대 강도에 도달하는 데 약 1주일이 걸린다. 페록의 개발은 10여 년 전, 데이비드 스톤 박사 연구원이 시멘트 대체재 개발 대회에서 폐철강 분진을 사용해 우승하면서 시작됐다. 2013년 특허를 획득한 스톤 박사는 '아이언쉘(Iron Shell)' 회사를 설립해 페록 상용화에 나섰다. 스톤 박사는 "실험실에서의 우연한 발견에서 시작됐다"라고 말했다. 보다 지속 가능한 건축 산업 혁신은 짚을 포함한 모든 종류의 재료를 사용하는 전 세계 연구자들의 관심사다. 폐 철강도 바로 여기에 속한다. 건설업계 전문지 사이언스다이렉트(ScienceDirect)에 따르면 페록은 기존 콘크리트보다 압축 강도 13.5%, 인장 강도 20%, 휨 강도 18%가 강하다. 또한 주재료인 철강 분진과 유리 분말을 포함해 페록 제조 과정에 사용되는 재료의 95%는 재활용 재료로 이루어져 비용 효율이 높은 것으로 알려졌다. 아울러 경화 과정에서 특별한 화학 반응을 통해 대기 중 이산화탄소를 흡수해 오염을 줄이는 효과도 있다. 전 세계 시멘트 연간 생산량은 40억 톤이며, 제조 과정에서 지구 대기 오염의 8%를 차지한다고 로이터통신은 전했다. 현재 공개된 페록 사진은 벽돌 모양의 슬라브와 굳어서 벽을 형성하는 슬러리 형태를 보여준다. 보고서는 폐철강 확보 등 과제가 아직 남아있지만 소규모 프로젝트부터 적용 가능하다고 전했다. 페록 외에도 콘크리트보다 더 강한 신소재에 대한 연구는 다양한 분야에서 활발히 이루어지고 있다. 그래핀이나 탄소 나노튜브, 고성능 폴리머,금속 매트릭스 복합 재료 등의 신소재들은 건축, 항공, 자동차 등 여러 산업에서의 응용 가능성을 탐색하고 있다. 먼저 그래핀은 탄소 원자가 2차원 평면상에서 벌집 모양의 격자를 이루는 형태로, 강철보다 약 100배 강하면서도 매우 가벼운 물질이다. 그래핀은 높은 전도성, 유연성, 투명성을 가지며, 이러한 특성으로 인해 전자기기, 에너지 저장 장치, 심지어 건축재료에 이르기까지 광범위한 응용이 기대되고 있다. 탄소 나노튜브(Carbon Nanotubes, CNTs)는 그래핀을 원통형으로 말아 만든 나노스케일의 튜브 형태로, 뛰어난 인장 강도와 탄성 모듈러스를 가지고 있다. 이러한 속성으로 탄소 나노튜브는 항공우주, 군사, 스포츠 용품 등의 고성능 재료에 유용하게 활용될 수 있다. 고성능 폴리머 등 여러 고분자 재료들은 새로운 제조 기술과 결합해 콘크리트보다 훨씬 강하면서도 가벼운 신소재를 만드는 데 사용된다. 이들은 높은 내구성, 우수한 열 저항성 및 화학 저항성을 제공한다. 금속 매트릭스 복합재료(Metal Matrix Composites, MMCs)는 금속을 기반으로 해 다른 금속이나 비금속 재료를 강화재로 추가하여 제작된다. 이러한 복합재료는 원래 금속의 좋은 성질에 강화재의 특성을 더해, 더 높은 강도와 경도, 개선된 내구성을 제공한다. 그밖에 세라믹 매트릭스 복합재료(Ceramic Matrix Composites, CMCs)는 세라믹을 기반으로 하며, 강화재로 탄소 나노튜브나 그래핀 같은 나노물질을 사용할 수 있다. 이들은 높은 온도에서의 안정성, 낮은 밀도, 뛰어난 내마모성 등을 제공한다. 이러한 신소재들은 각각의 독특한 특성으로 인해 콘크리트와 같은 전통적인 건축 재료를 대체하거나, 그 성능을 크게 향상시킬 수 있는 잠재력을 가지고 있다. 연구와 개발이 계속됨에 따라, 페록과 그래핀 등 신소재들의 생산 비용이 절감되고, 더 넓은 적용 범위와 함께 실용화될 것으로 기대된다.
-
- 포커스온
-
[퓨처 Eyes(23)] 콘크리트보다 강하고 환경친화적인 차세대 건축자재 '페록'
-
-
SK온, 미국산 천연흑연 확보로 IRA 대응력 강화
- SK온이 미국산 천연 흑연을 확보하는 등 공급망 다각화를 통해 인플레이션 감축법(IRA) 대응력 강화에 나섰다. SK온은 12일 미국 음극재 파트너사인 웨스트워터 리소스(이하 웨스트워터)와 천연흑연 공급 계약을 체결했다고 발표했다. 웨스트워터는 2027∼2031년 동안 앨라배마주 켈린턴 소재 정제 공장에서 생산한 천연흑연을 SK온의 미국 공장에 공급할 예정이다. 이 계약은 개발 중인 소재가 특정 조건을 충족하면 사전 협의된 가격으로 구매하는 '조건부 오프 테이크' 계약으로, 북미 전동화 시장의 성장 속도에 따라 최대 3만4천t까지 구매 가능하다. 양사는 이번 계약을 통해 지난해 5월에 체결한 배터리 음극재 공동개발 협약에 이어 파트너십을 더욱 확대하게 됐다. 음극재는 전기화학적 재료 중 하나로서, 전지나 전자기기 등에서 음극(마이너스 극)의 역할을 하는 물질을 말한다. 전지에서 음극재는 전지의 음극에서 전자를 받아들이고, 전지에서 발생한 전기를 저장한다. 주로 사용되는 음극재로는 그래핀, 리튬, 코발트 등의 물질이 있다. 다시 말하면, 음극재는 양극재·분리막·전해질과 함께 리튬이온 배터리를 구성하는 4대 요소로, 배터리의 수명, 충전 속도 등을 좌우한다. 현재 전 세계 음극재 생산의 약 85%를 중국이 차지하고 있다. 반면, 양극재는 전기화학적 재료 중 양극(플러스 극)의 역할을 하는 물질을 가리킨다. 전지나 전자기기에서 양극재는 양극(플러스 극)에서 전자를 방출하고, 전지에서 전기를 생성하거나 사용한다. 양극재로는 주로 리튬이나 다른 금속 산화물이 사용된다. 웨스트워터는 2018년 흑연 업체를 인수한 뒤 배터리용 음극재 개발 기업으로 전환했다. 앨라배마주에서 1만7000ha(헥타르) 규모의 쿠사 흑연 매장 지대의 탐사와 채굴권을 갖고 있다. 현재 광산 근처에 올해 양산을 목표로 연산 7500t 규모의 흑연 정제 공장을 건설하고 있다. 양사는 웨스트워터에서 정제한 흑연을 사용하여 SK온이 개발 중인 배터리에 적용하고, 함께 성능을 개선할 계획이다. SK온은 이번 계약으로 음극재 원재료인 천연흑연을 구매하는 협력까지 확대됐으며, 이를 통해 IRA 대응 역량이 더욱 강화될 것이라고 말했다. IRA에 따르면 2025년부터 배터리에 들어가는 핵심광물을 외국우려기관(FEOC)에서 조달할 경우 미국에서 전기차 보조금을 받을 수 없다. 흑연은 음극재의 주요 소재로, 전 세계적으로 FEOC로 지정된 중국 기업에 의존하고 있는 상황이다. 그로 인해 배터리 산업은 새로운 기술 개발과 공급처 다변화를 위해 흑연의 FEOC 적용을 최소 2년간 유예할 것을 요구하고 있다. 한편, SK온은 음극재 공급망 다각화를 위해 2022년 호주의 시라와 천연흑연 수급을 위한 양해각서를 체결한 후, 지난해 1월에는 미국 우르빅스와 음극재 공동개발 협약을 체결했다. 양극재의 경우, 칠레 SQM과 호주의 레이크 리소스 및 글로벌 리튬과 연이어 계약을 체결하며 배터리 소재의 확보 역량을 강화하고 있다. SK온의 박종진 부사장은 "현지 유력 원소재 기업들과의 지속적인 협업을 통해 IRA에 적극적으로 대응할 것"이라고 말했다. 웨스트워터의 테렌스 크라이언 회장은 "글로벌 전기차 배터리 시장을 선도하는 SK온과의 협력에 기쁨을 느끼며, SK온의 공급망 강화를 지원하게 된 것에 만족스럽다"고 밝혔다.
-
- 산업
-
SK온, 미국산 천연흑연 확보로 IRA 대응력 강화
-
-
그래핀 반도체, 실리콘 한계 뛰어넘다
- 미국 조지아 공대 연구팀이 그래핀을 이용해 새로운 반도체 소재를 개발했다. 이 소재는 기존 실리콘 반도체의 한계를 뛰어넘는 뛰어난 성능을 가지고 있어, 차세대 반도체로 주목받고 있다. 미국 IT 전문지인 톰스하드웨어(tom'sHARDWARE)에 따르면, 조지아 연구팀은 탄화규소 웨이퍼에 그래핀을 성장시켜 에피택셜 그래핀을 만들었다. 에피택셜 그래핀은 탄화규소와 화학적으로 결합해 반도체의 특성을 보이는데, 기존 그래핀이 가지고 있던 밴드갭(Band Gap) 문제를 해결했다는 점에서 혁신적이다. 에피택셜 그래핀은 다른 물질의 표면에 그래핀 결정을 갖도록 성장시킨 것을 말한다. 밴드갭은 전자가 전도대에서 고체 내의 다른 에너지 준위로 이동할 수 있는 에너지 차이를 의미한다. 밴드갭이 없는 그래핀은 전류가 자유롭게 흐르기 때문에 반도체로 사용하기 어렵다. 연구팀이 개발한 에피택셜 그래핀은 밴드갭을 조절할 수 있어, 기존 실리콘 반도체보다 더 빠르고 효율적인 컴퓨팅을 구현할 수 있다. 또한, 양자 컴퓨팅에 필요한 전자의 양자 역학적 파동 특성을 활용할 수 있어, 양자 컴퓨팅의 발전에도 기여할 것으로 기대된다. 그래핀의 뛰어난 특성 그래핀은 탄소 원자가 육각형 벌집 모양으로 연결된 2차원 물질로, 구리보다 100배 이상 전기가 잘 통하고, 강도는 강철의 200배에 달하는 등 뛰어난 전기적, 기계적 특성을 가지고 있다. 이러한 특성으로 인해 그래핀은 반도체, 센서, 광전자 등 다양한 분야에서 차세대 소재로 주목받아 왔다. 그러나 그래핀은 전류 흐름을 조절하기 어려운 밴드갭이 없는 것이 단점으로 지적되어 왔다. 밴드갭은 전자가 전도대에서 고체 내의 다른 에너지 준위로 이동할 수 있는 에너지 차이를 의미한다. 밴드갭이 없는 그래핀은 전류가 자유롭게 흐르기 때문에 반도체로 사용하기 어렵다. 에피택셜 그래핀의 의미 이번 연구에서 조지아대 연구팀은 특수 용광로를 이용해 탄화규소 웨이퍼 표면에 에피택셜 그래핀을 성장시켜 밴드갭 문제를 해결했다. 에피택셜 그래핀은 다른 물질의 표면에 그래핀 결정을 갖도록 성장시킨 것을 말한다. 에피택셜 그래핀이 제대로 만들어지면 탄화규소와 화학적으로 결합해 반도체의 특성을 보인다. 연구팀은 에피택셜 그래핀으로 반도체를 제작한 결과, 실리콘보다 전자 이동성이 10~20배 높은 것으로 나타났다. 이는 그래핀 반도체가 기존 실리콘 반도체보다 더 빠르고 효율적인 컴퓨팅을 구현할 수 있음을 의미한다. 또한, 연구팀은 에피택셜 그래핀이 양자 컴퓨팅에 필요한 전자의 양자 역학적 파동 특성을 활용할 수 있다고 설명했다. 양자 컴퓨팅은 기존 컴퓨팅보다 훨씬 빠른 연산이 가능한 차세대 컴퓨팅 기술이다. 이번 연구는 그래핀을 실리콘을 대체할 차세대 반도체 소재로 만드는 데 중요한 진전을 이룬 것으로 평가받고 있다. 그래핀 반도체의 상용화 가능성 그래핀 반도체는 아직 상용화되지는 않았지만, 이번 연구를 통해 실리콘을 대체할 차세대 반도체 소재로의 가능성을 한층 높였다는 평가를 받고 있다. 연구팀은 앞으로 에피택셜 그래핀의 성능을 더욱 개선하고, 대량 생산 기술을 개발하기 위해 노력할 계획이라고 밝혔다. 그래핀 반도체가 실질적으로 상용화되기 위해서는 대량 생산 기술의 개발이 무엇보다 중요하다. 연구팀의 노력과 더불어 관련 산업의 투자가 확대된다면, 그래핀 반도체는 머지않아 우리 생활 속에서 만나볼 수 있을 것으로 기대된다.
-
- IT/바이오
-
그래핀 반도체, 실리콘 한계 뛰어넘다
-
-
美 MIT, 연필심 흑연에서 5층 능면체 적층 그래핀 개발
- 미국 MIT의 물리학자들이 연필심에 사용되는 흑연, 즉 그래파이트에서 새로운 형태의 그래핀을 개발했다는 소식이 전해졌다. 이 그래핀은 흑연의 5층 능면체 구조를 적층하여 제작됐다. 흑연은 탄소로 구성된 광물로, 연필심의 주요 성분이다. MIT 뉴스에 따르면, 연구팀은 5개의 얇은 층을 특정 순서대로 쌓아 천연 흑연에서 볼 수 없었던 중요한 세 가지 특성을 지닌 새로운 재료를 만들어냈다. 이 연구를 이끈 물리학과 롱 주(Long Ju) 조교수는 "자연에는 놀라움이 많고, 특히 흑연에 많은 흥미로운 특성이 내장되어 있음을 발견했다"며, 이러한 다양한 특성을 지닌 재료를 찾는 것이 매우 드물다고 강조했다. 이 연구는 '네이처 나노테크놀러지(Nature Nanotechnology)'에 게재됐다. 5층 능면체 적층 그래핀 개발 흑연은 그래핀으로 구성되는데, 그래핀은 벌집 구조와 유사한 육각형 형태로 배열된 단일 탄소 원자 층이다. 그래핀은 약 20년 전 처음 분리된 이후로 집중적인 연구 대상이 되었다. 대략 5년 전, MIT 팀을 포함한 연구자들은 그래핀 시트를 쌓고 서로 약간 비틀면 재료에 초전도성에서 자성에 이르기까지 새로운 특성을 부여할 수 있다는 것을 발견했다. 이러한 발견으로 '트위스트로닉스'라는 분야가 생겨났는데, 이는 2차원 격자 구조를 다양한 방식으로 겹쳐 나타나는 성질을 연구하는 것이다. 롱 주 조교수는 이번 그래핀 연구에서 "전혀 뒤틀림이 없는 특별한 특성을 발견했다"고 말했다. 그와 동료들은 특정 순서로 배열된 5개의 그래핀 층이 전자들이 물질 내에서 서로 상호작용할 수 있도록 하는 것을 발견한 것. 이러한 현상은 '전자 상관관계'라고 알려져 있으며, 주 연구원은 이를 "이러한 모든 새로운 특성을 가능하게 하는 마법"이라고 표현했다. 벌크 흑연과 단일 시트의 그래핀은 이미 우수한 전기 전도체로 알려져 있지만, 이것이 전부는 아니다. 주의 연구팀이 분리한 '5층 능면체 적층 그래핀'이라 불리는 새로운 물질은 단순한 부품의 합보다 훨씬 더 큰 성질을 나타낸다. 이 물질을 분리하는 데 핵심적인 역할을 한 것은 나노스케일에서 중요한 특성을 빠르고 비교적 저렴하게 파악할 수 있는 2021년 MIT에서 주 연구원이 개발한 새로운 현미경 덕분이었다. 5층 능면체 적층 그래핀의 두께는 수십억 분의 1미터에 불과하다. '산란형 주사형 근접장 광학 현미경(s-SNOM)'으로 알려진 주 연구원이 개발한 현미경을 통해 과학자들은 특정한 능면체 적층 순서에서 5층 그래핀만을 식별하고 분리할 수 있었다. 주 연구원을 포함한 과학자들은 '능면체 적층'이라는 매우 정밀한 순서로 쌓인 다층 그래핀을 연구하고 있었다. 주는 "5개 레이어(층)로 이루어진 구조에서는 10개 이상의 적층 순서가 가능하며, 능면체 적층은 그 중 하나"라고 설명했다. 연구팀은 이 5층 능면체 적층 그래핀을 질화붕소로 만든 '빵'으로 둘러싼 '샌드위치' 구조에 전극을 부착했다고 이해하기 쉽게 설명했다. 이를 통해 다양한 전압과 전류를 사용하여 시스템을 조절할 수 있었으며, 그 결과 전자의 수에 따라 세 가지 다른 현상이 나타나는 것을 발견했다. 이들은 이 물질이 절연성, 자성 또는 위상학적 성질을 보일 수 있다는 것을 발견했다. 위상학적 물질(토폴로지, topology)은 물질의 가장자리를 따라 전자가 방해받지 않고 움직일 수 있지만, 중앙을 통과하는 것은 허용하지 않는 특성을 갖는다. 위상학적 물질에서 전자는 중심부를 구성하는 중앙 분리대에 의해 분리되며, 물질의 가장자리를 따라 고속도로처럼 한 방향으로 이동한다. 이로 인해 위상학적 물질의 가장자리는 완벽한 도체 역할을 하고, 중심부는 절연체가 된다. 주와 그의 연구팀은 이 연구를 통해 "강력하게 상관된 위상물리학의 새로운 가능성을 탐구하기 위한 고도로 조정 가능한 플랫폼으로서 능면체 적층 다층 그래핀을 확립했다"고 결론지었다. 이는 위상물리학 분야에서 새로운 연구 방향을 제시하는 중요한 발견으로 여겨진다. 카이스트, '납작한 벨트형 그래핀 섬유' 개발 한편, 한국의 카이스트(KAIST) 신소재공학과 김상욱 교수 연구팀은 지난 6월 그래핀의 기존 응용범위와 한계를 뛰어넘는 새로운 형태의 그래핀 섬유를 개발하는데 성공했다. 이 새로운 기술은 값싼 흑연을 사용하여 용액 공정을 통해 쉽게 얻을 수 있으며, 기존의 탄소섬유보다 저렴하면서도 유연성과 같은 차별화된 물리적 특성을 지니고 있어 경제적인 장점도 갖추고 있다. 그래핀(Graphene)은 탄소 원자가 벌집 모양으로 이뤄진 2차원 물질(원자만큼 얇은 물질)이다. 이론적으로 강철보다 100배 강하고 열·전기 전도성이 뛰어나기 때문에 꿈의 신소재로 불린다. 김상욱 연구팀의 이번 성과가 높게 평가받는 이유는 100% 그래핀으로 이뤄진 섬유가 만들어지는 과정에서 스스로 납작해져서 벨트와 같은 단면을 형성하는 현상을 세계 최초로 발견했다는 점이다. 이 납작한 벨트형 그래핀 섬유는 내부에 적층된 그래핀의 배열이 우수해 섬유의 기계적 강도와 전기전도성이 크게 향상됐다는 평가다. 연구 결과, 이 섬유는 원형 단면을 갖는 일반 섬유에 비해 기계적 강도가 약 3.2배(320%), 전기전도성이 약 1.5배(152%) 향상된 것으로 나타났다. 해당 연구 논문은 그 성과를 인정받아 'ACS 센트럴 사이언스'의 7월호 표지에 게재됐다.
-
- 산업
-
美 MIT, 연필심 흑연에서 5층 능면체 적층 그래핀 개발
-
-
도쿄대, 저렴하고 안정적인 나트륨 이온 배터리 음극 재료 개발
- 도쿄 이과대학 연구팀이 현재 주류인 리튬 이온 배터리보다 저렴하고 안정적인 고성능 나트륨 이온 배터리 음극 재료를 개발해 상용화에 한 걸음 다가섰다고 피씨 워치(PC WATCH)가 최근 보도했다. 이번에 개발된 새로운 음극 재료는 아연산화물(ZnO) 주형 하드 카본(HC-Zn)으로, 리튬이나 코발트와 같은 고가의 원소를 사용하지 않아 리튬 이온 배터리의 대안으로 기대된다. 리튬 이온 배터리는 휴대폰, 노트북, 전기차 등에 사용되는 가장 일반적인 배터리다. 리튬 이온을 저장하는 음극과 리튬 이온을 이동시키는 전해질로 구성된다. 리튬 이온 배터리는 높은 에너지 밀도와 수명으로 인해 널리 사용되고 있지만, 리튬이나 코발트와 같은 고가의 원소를 사용한다는 단점이 있다. 나트륨 이온 배터리는 리튬 이온 배터리의 대안으로 개발되고 있는 배터리다. 나트륨 이온을 저장하는 음극과 나트륨 이온을 이동시키는 전해질로 구성된다. 나트륨 이온 배터리는 리튬 이온 배터리와 유사한 성능을 가지고 있지만, 리튬이나 코발트와 같은 고가의 원소를 사용하지 않아 저렴한 비용으로 생산할 수 있다는 장점이 있다. 연구팀은 마그네슘, 아연, 칼슘의 글루코니움 염산을 출발 원료로 하여 기존과 동일한 주형법으로 각 하드 카본을 합성했다. 다양한 평가를 실시한 결과, HC-Zn이 가장 우수한 전극 성능을 나타냈다고 한다. 또한 글루코늄산 아연과 아세트산 아연의 비율이 75:25인 것을 음극 재료로 사용한 나트륨 이온 배터리를 제작하고 배터리 성능을 평가한 결과, 에너지 밀도는 312Wh/kg에 이르렀다. 이는 현재 널리 사용되고 있는 리튬 이온 배터리와 비교하여 동등한 수준이다. 이번 연구로 개발된 HC-Zn 음극 재료는 기존의 그래핀 음극 재료보다 저렴하고 안정적이며, 에너지 밀도도 동등한 수준으로 나타났다. 이는 휴대폰, 노트북, 전기차 등 다양한 전자기기의 배터리 대용량화를 가능하게 할 것으로 기대된다. 또한, 리튬이나 코발트와 같은 고가의 원소를 사용하지 않아 환경 친화적인 배터리의 개발에도 기여할 것으로 전망된다.
-
- 생활경제
-
도쿄대, 저렴하고 안정적인 나트륨 이온 배터리 음극 재료 개발
-
-
美 MIT 연구원, 흑연에서 금 생성 연구
- 꿈의 신소재로 불리는 그래핀. 전기전도성과 열전도성을 갖고 있으면서 강도가 높아 디스플레이나 에너지 재료로 사용되고 있다. 그런데 이 그래핀으로 금을 만드는 연구가 진행됐다. 미국 매사추세츠 공과대학(MIT)의 연구팀이 특정 순서로 쌓인 5개의 초박편 조각을 분리해 흑연을 금으로 만들었다. 과학지 마이닝닷컴(mining.com)은 국제학술지 '네이처 나노테크놀로지(Nature Nanotechnology)'에 발표된 MIT 연구팀의 금 생성 과정을 최근 소개했다. 연구에 따르면 생성된 물질이 이전까지 자연 흑연에서 볼 수 없었던 세 가지 중요한 특성을 나타내도록 조정될 수 있다. 흑연은 벌집 구조와 유사한 육각형으로 배열된 단일 탄소 원자층인 그래핀(탄소 동소체 중 하나)으로 구성된다. 약 20년 전에 처음 분리된 이후로 그래핀은 강력한 연구 대상이 되었다. 특히, 약 5년 전 연구자들은 그래핀 시트를 서로 약간의 각도로 비틀어 쌓음으로써, 재료에 초전도성에서 자성에 이르는 새로운 특성을 부여할 수 있다는 사실을 발견했다. 이러한 연구는 '트위스트로닉스' 분야의 탄생으로 이어졌다. MIT의 수석 연구원 롱 주(Long Ju)는 이 연구에 대해 언급하면서, "전혀 비틀지 않아도 흥미로운 특성을 발견했다"고 말했다. 그와 동료들은 특정한 순서로 배열된 5개의 그래핀 층이 물질 내부를 돌아다니는 전자들이 서로 상호작용할 수 있게 한다는 것을 발견했다. 이러한 전자 상관관계(electron correlation) 현상은 새로운 재료 특성을 가능하게 하는 '마법'으로 묘사된다. 단순한 대량의 흑연이나 심지어 단일 그래핀 층은 기본적으로 우수한 전기 전도체에 불과하다. 주 연구원 팀이 분리한 이 재료는 몇십 나노미터 두께밖에 안 되지만, 그 부분들의 합보다 훨씬 더 많은 역할을 수행한다. 연구팀은 '능면체 적층(rhombohedral stacking)'으로 알려진 특정한 순서로 적층된 다층 그래핀을 연구하고 있었다. 연구원은 이에 대해, "5개의 층을 쌓을 때 가능한 순서는 10가지 이상이 있으며, 능면체 적층은 그 중 하나에 불과하다"라고 언급했다. 주 연구원이 2021년에 개발한 특별한 현미경은 나노 규모에서 재료의 다양하고 중요한 특성을 신속하고 상대적으로 저렴한 비용으로 결정하고 분리하는 데 사용됐다. 이 현미경의 도움을 받아, 연구팀은 보론 질화물로 만들어진 '빵'과 같은 구조의 작은 샌드위치에 전극을 부착했고, 이는 펜타레이어(5층) 마름모형으로 쌓인 그래핀의 연약한 '육질(meat)' 부분을 보호한다. 이 전극을 활용해 시스템에 다양한 전압이나 전기량을 적용할 때, 전자 수에 따라 세 가지 다른 현상이 관찰됐다. 주 연구원은 "우리는 재료가 절연성, 자성 또는 위상학적 성질을 가질 수 있음을 발견했다"고 말했다. 위상학적 성질은 도체와 절연체 둘 다와 어느 정도 관련이 있는 특성이다. 기본적으로, 위상학적 물질은 물질의 가장자리를 따라 전자가 방해받지 않고 이동할 수 있게 하지만, 물질의 중간을 통과하는 것은 허용하지 않는다. 이러한 전자들은 재료의 가장자리를 따라 한 방향으로만 이동하며, 물질의 중앙을 가로지르는 중심선에 의해 중간 부분과 구분된다. 결과적으로 위상학적 재료의 가장자리는 완벽한 전도체 역할을 하고, 중앙 부분은 절연체로 작용한다. 롱 주의 연구팀은 "우리의 연구는 마름모형으로 쌓인 다층 그래핀을 사용하여, 위상학적 물리와 관련된 새로운 가능성을 탐구하기 위한 높은 조절 가능성을 가진 플랫폼으로 확립한다"고 말했다.
-
- 산업
-
美 MIT 연구원, 흑연에서 금 생성 연구
-
-
인도, 초소형 슈퍼커패시터 개발⋯에너지 저장 분야 혁신 기대
- 인도에서 개발된 초소형 슈퍼커패시터(콘덴서)가 에너지 저장 분야에서의 혁신을 예고했다. 과학기술 전문매체 '사이테크 데일리(SciTechDaily)'는 최근 인도 과학 연구소(Indian Institute of Science, IISc)의 응용 물리학부 연구진이 기존의 슈퍼커패시터보다 훨씬 작고 밀도가 높은 초소형 슈퍼커패시터를 개발했다고 보도했다. 화학 분야 학술지 'ACS 에너지 레터(Energy Letters)'에 게재된 최근의 연구에서, 연구원들은 전통적인 커패시터에서 사용되는 금속 전극을 대체하여, 전계 효과 트랜지스터(Field Effect Transistors, FET)를 전하 수집기로 활용해 슈퍼커패시터를 제작했다. 이 연구를 주도한 교신 저자인 아바 미스라(Abha Misra) IAP의 교수는 "FET를 슈퍼커패시터의 전극으로 사용하는 것은 커패시터의 전하 조정 방식에 있어 혁신적인 접근이다"라고 언급했다. 현재 사용되는 커패시터들은 주로 금속 산화물 기반의 전극을 사용하지만, 이는 전자 이동성이 낮다는 한계를 가지고 있다. 이 문제를 해결하기 위해, 미스라 박사 팀은 전자 이동성을 개선하고자 이황화몰리브덴(MoS₂)과 그래핀 층을 몇 원자 두께로 번갈아 가며 금 접점에 연결한 하이브리드 FET를 개발하기로 결정했다. 이들은 두 FET 전극 사이에 고체 젤 전해질을 적용하여 고체 상태의 슈퍼커패시터를 구축했다. 이 전체 구조는 이산화규소와 실리콘 베이스 위에 구축됐다. 미스라 박사는 "두 시스템을 통합하는 것이 설계의 핵심이다"라고 언급했다. 이 두 시스템은 서로 다른 전하 용량을 가진 두 개의 FET 전극과 이온성 매질인 젤 전해질로 구성된다. IAP의 박사 과정 학생이자 연구의 수석 저자 중 한 명인 비노드 판와르(Vinod PanWar)는 트랜지스터의 모든 이상적인 특성을 구현하기 위한 장치 제작이 어려웠다고 말했다. 이 초소형 슈퍼 커패시터는 매우 작아 현미경 없이는 볼 수 없으며, 제작 과정에서는 높은 정밀도와 뛰어난 손기술이 필요하다. 현미경으로 관찰 가능 크기와 무게 면에서 기존 슈퍼커패시터를 능가하는 이 초소형 슈퍼커패시터는 배터리를 대체할 수 있는 새로운 가능성을 제시하고 있다. 연구팀은 전계 효과 트랜지스터(FET)와 이황화 몰리브덴(MoS₂)과 그래핀 층을 통합해 특정 조건에서 전기 용량이 3000% 이상 증가하는 결과를 얻었다. 슈퍼커패시터(콘덴서)는 특히 전기 용량의 성능을 강화하여, 전지처럼 사용할 수 있도록 설계된 부품이다. 전자 회로에서 사용되는 이 커패시터는 전기적으로 충전지와 유사한 기능을 제공한다. 기본적인 원리는 '전력을 저장하여 필요에 따라 방출하는 것'이며, 전자 회로가 안정적으로 작동하도록 하는 데 필수적인 부품 중 하나이다. 초소형 슈퍼커패시터는 기존 슈퍼커패시터보다 훨씬 작고 조밀한 구조를 가진다는 장점이 있다. 이러한 특성은 거리의 가로등부터 전자제품, 전기 자동차, 의료 기기에 이르기까지 다양한 응용 분야에 활용될 수 있는 기회를 제공한다. 현재 이러한 대부분의 장치는 배터리로 작동한다. 하지만 배터리는 시간이 지나면서 전기 저장 능력이 감소하여 제한된 수명을 갖게 된다. 반면, 커패시터는 설계 특성상 훨씬 오래 전기를 저장할 수 있는 장점이 있다. 슈퍼커패시터는 배터리와 커패시터의 장점을 결합하여 대량의 에너지를 저장하고 방출할 수 있는 장치로, 차세대 전자기기에서 매우 중요한 역할을 할 것으로 여겨진다. 이번 연구는 초소형 슈퍼커패시터의 가능성을 보여주는 중요한 성과로 평가된다. 향후 연구가 성공적으로 진행된다면, 초소형 슈퍼커패시터는 기존의 배터리를 대체하여 다양한 전자 기기의 성능과 수명을 향상시키는 데 기여할 것으로 기대된다. 한국, 초소형 슈퍼커패시터 개발 현황 한편, 한국에서도 슈퍼커패시터 관련 연구와 개발을 진행하는 업체가 다수 있다. 에스피지(주)는 고체 전해질 기반의 슈퍼커패시터와 FET를 이용한 초소형 슈퍼커패시터를 개발하고 있다. 포스코케미칼(주)는 그래핀 기반의 초소형 슈퍼커패시터를, LG화학(주)는 전기 자동차용 초소형 슈퍼커패시터를 개발하고 있다. 한국의 슈퍼커패시터 기술은 세계 수준에 도달하고 있다. 이를 바탕으로 국내 업체들이 초소형 슈퍼커패시터 시장에서 글로벌 경쟁력을 확보할 수 있을 것으로 전망된다. 초소형 슈퍼커패시터는 다양한 전자 기기에 적용 가능한 높은 잠재력을 가지고 있다. 특히 전기 자동차, 스마트 워치, IoT 기기 등에서 기존의 배터리를 대체할 수 있는 새로운 솔루션으로 기대를 모으고 있다. 전기 자동차의 경우, 초소형 슈퍼커패시터를 사용하면 배터리의 용량을 줄일 수 있고, 충전 시간을 단축할 수 있다. 또한, 스마트 워치나 IoT 기기에서의 사용은 배터리 수명을 연장할 수 있다. 초소형 슈퍼커패시터 기술의 지속적인 개발과 상용화가 진행된다면, 에너지 저장 분야에서 혁신적인 변화를 이끌 것으로 기대된다.
-
- IT/바이오
-
인도, 초소형 슈퍼커패시터 개발⋯에너지 저장 분야 혁신 기대
-
-
중국, 새로운 희토류 광석 발견...글로벌 공급망 파장
- 희귀 광물 매장량이 가장 많은 중국에서 또 다른 새로운 광물이 발견됐다. 특히 반도체나 군사 무기에 주로 사용되는 희토류의 경우, 중국이 세계 매장량 1위를 차지하고 있다. 미국과 서방, 일본을 비롯한 주요국들이 중국 의존도를 줄이고 있는 가운데 매우 귀중한 이전 볼 수 없었던 새로운 광물이 발견돼 글로벌 공급망에 비상이 걸렸다. 과학 전문매체 '라이브사이언스(LiveScience)'는 중국 사우스차이나 모닝포스트(South China Morning Post)의 보도를 인용, 중국 과학자들이 초전도 특성으로 가치가 높은 희토류 원소를 포함한 새로운 광석을 발견했다고 전했다. 내몽골 바얀오보(Bayan Obo) 광산에서 발견된 '니오보바오티트(niobobaotite)'라는 광물은 나이오븀, 바륨, 티타늄, 철, 염화물로 구성됐다. 이 광물에는 초전도체 역할로 배터리 기술에 혁명을 일으킬 수 있는 귀중한 금속인 나이오븀이 포함 돼 있어 학계와 업계의 주목을 받고 있다. '나이오븀'은 현재 강철 생산에 주로 사용되며 무게를 많이 추가하지 않고도 강도를 높일 수 있다고 알려졌다. 영국왕립화학회(Royal Society of Chemistry)에 따르면, 다른 합금을 만들거나 저온에서 초전도체 특성을 가져 입자 가속기 및 기타 첨단 과학 장비에서 발견될 수 있다. 중국원자력공사(CNNC)는 바얀 오보 광산에서 2023년 10월3일 발견됐으며, 검은 갈색을 띤 광석은 광산에서 발견된 17번째 새로운 종류로, 해당 지역에서 발견된 150종의 새로운 광물 중 하나라고 설명했다. 싱가포르 국립대학교(NUS) 전기 및 컴퓨터 공학 교수인 안토니오 H. 카스트로 네토(Antonio H. Castro Neto)는 "이 나이오븀의 양과 품질에 따라 중국은 자급자족이 가능해질 수 있을 것"이라고 전했다. 현재 중국은 나이오븀 95%를 수입하는 것으로 알려졌다. 브라질은 희토류 금속의 세계 최대 공급국이며, 캐나다가 뒤를 쫓고 있다. 미국 지질 조사국(US Geological Survey)에 따르면, 네브래스카 남부에 나이오븀 광산과 가공 시설을 개설하는 프로젝트가 진행 중이다. 엘크 크릭 크리티컬 미네랄 프로젝트(Elk Creek Critical Minerals Project)는 미국에서 유일한 나이오븀 광산이 될 것으로 보인다. 또한 연구자들은 나이오븀-리튬, 나이오븀-그래핀 배터리를 개발하기 위해 노력 중으로, 이 금속의 수요는 앞으로 더욱 증가할 수 있다. 이러한 배터리는 리튬과 함께 사용될 경웅, 화재 위험을 줄일 수 있다고 알려졌다. 나이오븀-리튬 배터리는 기존 리튬 배터리 보다 충전 속도가 빠르고 자주 충천할 수 있다는 장점을 지녔다. 지난 5월, NUS산하 첨단2D 재료 연구센터(CA2DM) 연구원들은 나이오븀-그래핀 배터리가 리튬 이온 배터리에 비해 10배 더 긴 약 30년 동안 지속될 수 있으며, 10분 미만의 시간 안에 완전 충전될 수 있다고 발표하기도 했다. 한편, 한국의 13개 주요 광물 수입액은 16조5000억원에 달하는 것으로 알려졌다. 이 가운데 리튬과 주석, 안티모니를 비롯한 8개 광물의 수입 의존도는 50%를 넘었다. 2021~2022년 주요 광물 국가별 수입 현황에 따르면, 리튬의 중국 의존도는 64%, 나이오븀의 베트남 의존도 91%, 희토류 중국 의존도는 50%로 각각 나타나 특정 국가에 의존도가 지나치게 높다는 우려를 낳고 있다.
-
- 산업
-
중국, 새로운 희토류 광석 발견...글로벌 공급망 파장
-
-
상온서 작동하는 '자성 양자 컴퓨팅 물질' 개발
- 상온에서 작동하는 자성 양자 컴퓨팅 물질이 개발돼 학계의 주목을 받고 있다. 과학 전문매체 테크놀로지 네트웍스(technologynetworks)는 텍사스 주립대학교 엘 패소 캠퍼스(The University of Texas at El Paso, UTEP) 물리학부 연구원들이 상온에서 작동하는 자성 양자 컴퓨팅 물질을 개발했다고 전했다. 양자 컴퓨팅은 세계를 혁신할 수 있는 잠재력을 가지고 있다. 신약 개발이나 의료 분야뿐만 아니라 과학 연산 문제를 기존 컴퓨팅보다 지수적으로 빠르게 해결할 수 있다. 그러나 양자 컴퓨터는 초저온에서만 작동한다는 큰 단점이 있다. UTEP 물리학부의 아흐마드 엘-겐디(Ahmed El-Gendy) 박사는 "양자 컴퓨터를 작동시키려면 실온에서 사용할 수 없다"고 말했다. 그는 "컴퓨터를 식히고, 그밖에 다른 모든 물질을 식혀야 하는데, 비용이 매우 많이 든다"고 설명했다. 2019년 이후로 UTEP 팀은 양자 컴퓨팅을 위한 완전히 새로운 자성 물질을 개발하기 위해 노력해왔다. 상온에서 작동뿐만 아니라 희귀 희토류 재료로 만들어지지 않은 자석에 중점을 두었다. 마침내 엘-겐디 박사가 이끄는 팀은 일정한 온도에서 작동하는 고자성 양자 컴퓨팅 재료(순수 철의 100배 강한 자성)를 개발했다. 이 논문은 물리학회 저널 「어플라이드 피직스 레터(Applied Physics Letters)」 여름 호에 소개됐다. 희토류 원석으로 만든 자석은 현재 스마트폰, 차량, 솔리드 스테이트 드라이브(SSD)를 포함한 많은 최신 응용 분야에서 사용된다. 이 자석에 컴퓨터 정보가 저장된다. 양자 컴퓨터에서 자석은 속도를 향상시키기 위해 사용된다. 엘-겐디는 현재 강한 자기 특성은 저온에서만 작동한다고 말했다. 실제로 현재 양자 컴퓨터는 절대 영도(-273.15℃) 바로 위 부근인 섭씨 약 -273도(화씨 -459도)의 저온에서 기능이 유지된다. 그는 "모든 자석은 희토류 원소로 만들어져 있으며, 그런 자석을 만들 재료가 부족하다"고 지적했다. 또한 "우리는 곧 어떤 산업에서도 이러한 자석을 만들 수 있는 이러한 재료가 없다는 문제를 직면하게 될 것"이라고 우려했다. 엘-겐디 박사 팀은 수년간의 시행착오 끝에 아미노페로세늄(aminoferrocene)과 그래핀의 혼합물을 찾아냈다. 이 물질은 극도로 강력한 자성을 나타낸다는 점이 특징이다. 그는 "우리는 그 자성을 의심했지만, 실험 결과는 명백한 초자성 동작을 보여준다"고 말했다. 이어 "이런 종류의 물질을 이전에 아무도 만들어보지 않았다. 이 물질을 사용해 상온에서 양자 컴퓨터를 만들 수 있을 것으로 생각한다"고 기대했다. 그러나 이 제품을 상용화하기 위해서는 아직 해결해야 할 과제가 많다. 상온에서 작동하는 자성물질을 만드는 것은 어렵기 때문이다. 엘-겐디 박사 팀은 준비 과정을 최적화하고 물질의 효율성을 계속 향상시키기 위해 더욱 노력하겠다고 밝혔다.
-
- 산업
-
상온서 작동하는 '자성 양자 컴퓨팅 물질' 개발
-
-
전기차 배터리 전문가, CATL 리튬인산철 배터리 급속 충전 이의 제기
- 중국 리튬 이온 배터리 전문 기업 CATL은 지난 8월 중순 세계 최초의 4C 초고속 충전 리튬 인산철 배터리인 '셴싱(Shenxing)'을 개발, '전기차 초고속 충전 시대'를 열었다고 발표했다. 세계 최대의 EV 배터리 제조업체인 CATL(Contemporary Amperex Technology Co.)은 '셴싱' 배터리가 10분 충전으로 전기 자동차에 약 400킬로미터(약 249마일)의 주행 거리를 제공할 수 있다고 주장했다. 그러나 4일(현지시간) 야후 뉴스에 따르면 배터리 기술 과학자 라치드 야자미(Rachid Yazami) 박사는 "전기차의 총 주행 거리로 환산되는 배터리의 사이클 수명, 극한 온도 성능, 안전성 및 비용과 같은 중요한 정보가 CATL의 주장에는 많이 누락되어 있다"며 CALT 주장에 이의를 제기했다. 1979~1980년에 리튬 그래핀 양극을 발명한 야자미 박사는 세계 최고의 배터리 기술 전문가 중 한명이다. 이 양극은 시장에 출시된 리튬 이온 배터리에서 가장 흔히 사용된다. 상업용 리튬 이온 시장은 2023년부터 2032년까지 1303억 달러 규모로 성장할 것으로 예상된다. 리튬인산철(LFP) 배터리의 장점 중 하나는 지속 가능한 청정 에너지 공급원이라는 점이다. 또한 다른 리튬 이온 배터리보다 비용 효율적이고 폭발 위험이 적어 안전하다. CATL은 이 배터리를 연말까지 대량 생산해 2024년 1분기까지 전기차에 탑재할 수 있을 것이라고 밝혔다. 이 회사는 "현재 급속 충전에 대한 불안감이 소비자들이 전기차로 전환하는 것을 막는 가장 큰 요인이 되고 있다"고 말했다. 미국에는 전기차 충전 인프라가 부족하기 때문에 주행 가능 거리는 전기차 소유자와 잠재적 구매자에게 중요한 요소다. 2022년 미국에서 판매되는 전기차의 평균 주행 거리는 291마일(약 470킬로미터)로 알려졌다. CATL은 셴싱의 '높은 에너지 밀도'로 인해 완전 충전 시 435마일(700킬로미터) 이상의 주행거리를 확보할 수 있다고 주장했다. 또한 CATL은 셴싱이 섭씨 -10도(화씨 14℉)에서 30분 만에 0%에서 80%까지 충전할 수 있다고 밝혔다. 더 레지스터는 "셴싱은 LFP 배터리로, 구형 전기차 리튬 배터리보다 과충전 허용 범위가 더 넓다" 면서 "또한 더 높은 온도에서 작동 할 수 있으며, 그 과정에서 더 많은 열이 발생하기 때문에 빠르게 충전하려는 경우 적합하다"고 전했다. 그러나 단점으로 "배터리가 최대 용량에 가까워질수록 충전 속도가 느려지고 추운 날씨도 충전을 지연시킬 수 있다"고 지적했다.
-
- 산업
-
전기차 배터리 전문가, CATL 리튬인산철 배터리 급속 충전 이의 제기
-
-
[퓨처 Eyes(1)] 가트너 선정, 미래를 바꾸는 7가지 기술
- 포커스온경제는 창간을 맞이하여 '퓨처 아이즈(Future Eyes)'를 통해 지금까지 경험하지 못한 혁신 기술이 어떻게 새로운 세상을 창조하는지 탐색한다. 애플의 아이폰은 휴대폰 산업의 판도를 바꾸었으며, 오픈AI의 챗GPT는 AI의 유행을 일으키며 우리의 일상과 기업 환경에 변화를 가져왔다. 메타버스부터 플라잉카, 휴머노이드 로봇, 양자 컴퓨팅, 핵 융합에 이르기까지, 이 시리즈는 혁신적인 기술과 그것이 우리 생활에 미치는 영향을 짚어본다. [편집자 주] 오픈AI에서 출시한 생성형AI의 일종인 챗GPT는 지난해 11월까지 존재하지 않았다. 2009년 출시된 블록체인 기술을 바탕으로 하는 가상화폐 비트코인은 불과 14년 만에 전통 금융 기관이 인정하는 투자 자산으로 자리잡았다. 가상 현실(VR) 기반의 메타버스, 하늘을 나는 자동차(플라잉 카), 그리고 디지털 휴먼과 같은 혁신적인 기술들이 현실 세계로 빠르게 진출하며 사람들의 일상을 바꾸기 시작했다. 플라잉 카와 디지털 휴먼은 공통점이 거의 없어 보이지만, 이들은 미래를 예측하며 세상에 큰 변화를 가져올 기술 혁신으로 평가받고 있다. 미래를 전망하는 전문 매체 '가트너'는 2023년에서 2028년에 이르는 5년 사이에 주목해야 할 기술 혁신 7가지를 발표해 관심을 모으고 있다. 1. 메타버스 메타버스는 가상 또는 초월을 의미하는 '메타(meta)'와 '유니버스(universe)'의 합성어로, 현실과 연동된 가상의 세계를 가리킨다. 컴퓨터 그래픽, 가상현실(VR), 증강현실(AR) 등의 첨단 기술로 구현된다. 메타버스는 현재 업무 환경을 재구성하고 있다. 이 디지털 세계는 사용자에게 몰입감 있는 경험을 제공하며, 재무모델부터 구매 및 판매, 조직의 운영 방식, 협업의 형태에 이르기까지 비즈니스의 다양한 영역에 변화를 가져오고 있다. 그러나 VR 기술이 미디어부터 업무 협업에 이르는 현실의 다양한 분야에 도전하면서 일부에서는 그 혁신적인 가능성에 대한 우려의 목소리도 높아지고 있다. IT 서비스 업체들은 이러한 VR의 잠재력을 실현하고 최대한 활용하기 위해, 고객들이 새로운 VR 환경에서의 업무 프로세스와 시스템을 재구성하고 최적화할 수 있도록 지원하는 다양한 컨설팅과 개발 제품을 선보이며 경쟁력을 강화하고 있다. 2. 플라잉 카, 곧 실현될 '미래의 교통수단' 영화에서나 볼 법했던 하늘을 나는 자동차 즉 플라잉 카가 현실로 다가오고 있다. 다양한 스타트업은 물론 대형 교통 관련 기관에서 이를 위한 연구와 시제품 개발에 속도를 내고 있다. 플라잉 카의 등장은 저고도 영공의 지형을 근본적으로 바꿀 전망이다. 이로 인해 지상 도로의 혼잡이 줄어들 것이며, 새로운 교통 패러다임이 형성될 것으로 예상된다. 플라잉 카가 가져올 간접적인 변화로는 △복잡해질 항공로에 따른 항공 교통 관제 시스템의 변화 △수직 도로가 도입될 도시 구조 △출퇴근 시간의 단축으로 교외 지역이 더 넓게 확장될 가능성 등이 대두되고 있다. 하지만 이런 혁신적인 변화를 위해서는 상당한 기술적 투자와 연구가 필요하다는 의견도 있다. 3. 디지털 휴먼, '가상과 현실의 경계' 허물다 '디지털 휴먼'이란 말 그대로 디지털로 재현된 인간의 모습과 행동을 의미한다. 이는 3D 가상 인간으로, 인공지능, 빅데이터, 클라우드 컴퓨팅과 같은 첨단 기술의 결합으로 탄생했다. 최근 디지털 휴먼 기술은 기하급수적으로 발전하며 실제 인간과 더욱 닮아가고 있다. 사용자와의 상호작용이 간편하게 이루어지며, 다양한 서비스 문제 해결부터 즉각적인 고객 서비스 제공에 이르기까지 그 활용범위가 넓어지고 있다. 특히, 자연어 처리와 로봇 프로세스 자동화 도구와의 통합으로 디지털 휴먼은 더욱더 강력한 존재감을 발휘할 전망이다. 디지털 휴먼의 활용 가능성은 의사와의 상담, 세무사와의 면담, 뉴스 시청, 연례 업무 평가 등 일상에서 인간 간의 상호작용이 이루어지는 거의 모든 분야에서 그 잠재력을 발휘할 수 있을 것으로 전망된다. 4. 블록체인 기반 '분산형 자율 조직(DAO)' 블록체인은 암호화폐의 기술적 기반일 뿐만 아니라 다양한 분야의 혁신을 주도하는 핵심 기술로 부상했다. 특히 이 중심에서 '분산형 자율 조직(DAO)'이 주목받고 있다. 블록체인이란, 데이터를 '블록'이라는 작은 단위로 나누고 이를 전체 네트워크에 참여하는 사용자들과 공유하는 기술을 의미한다. 이로 인해 데이터 조작이 어렵게 되어 투명하고 안전한 거래 기록이 가능하다. 그 가능성은 암호화폐뿐만 아니라 음악, 보험, 정부, 게임 등 광범위한 영역으로 확장되고 있다. DAO는 블록체인 위에서 운영되는 디지털 조직이다. 기존의 인적 관리가 필요 없이 다른 DAO, 디지털 에이전트, 심지어 기업과도 자동으로 상호 작용을 이어간다. DAO는 게임, 투자, 수집, 소셜 등 다양한 분야에서 활용될 수 있다. 특히 근로자들에게 오픈소스 스타일의 창작 활동으로 수익 창출의 새로운 기회를 제공한다. 이는 기존의 비즈니스 방식과 커뮤니케이션 구조에 변화를 가져올 것으로 보인다. 이러한 DAO의 접근방식은 고객의 다양한 요구에 빠르게 대응하려는 기업과 조직에게 큰 매력으로 작용하고 있다. 5. 무선충전 전기 자동차 전기 자동차(EV)는 최근 몇 년 동안 엄청난 속도로 성장해 전 세계 신차 판매량의 약 4.6%를 차지하고 있다. 하지만 충전 시설의 부족은 여전히 전기차 보급의 큰 장벽이다. 무선 충전 기술은 전기차가 도로에 설치된 코일이나 충전 상태가 좋은 다른 차량으로부터 전력을 공유받아 이동 중에도 충전할 수 있게 해준다. 이는 전기차의 운행 거리를 늘리고, 배터리 용량을 줄여 차량의 중량과 비용을 낮출 수 있는 장점을 가지고 있다. 그러나 무선 충전 기술을 보급하기 위해서는 '스마트' 도로와 자동차 소프트웨어의 개선이 필요하다. 도로에는 전력을 공급하고 관리할 수 있는 코일과 센서가 설치되어야 하며, 자동차에는 무선 충전을 인식하고 조절할 수 있는 소프트웨어가 탑재되어야 한다. 6. 컴퓨팅 분야에서 실리콘 대체하는 그래핀(Graphene) 그래핀은 탄소 원자가 벌집 모양의 2차원 구조를 이룬 나노 소재로, 열과 전기를 매우 효율적으로 전도한다. 그래핀은 컴퓨팅 및 전자 기술을 향상시키기 위한 소재로서 많은 장점을 가지고 있다. 그래핀은 실리콘과 같은 기존 반도체 소재보다 저렴하고 성능이 뛰어나며, 무어의 법칙을 따르는 고밀도 집적 회로의 발전을 이끌 수 있다. 그래핀은 이미 투명전극과 에너지 저장소재 등의 분야에서 상용화 단계에 접어들었으며, 앞으로도 다양한 응용 분야에서 활용될 가능성이 높다. 이에 IT 및 비즈니스 컨설팅 회사의 총괄 관리자는 그래핀이 반도체 기술에 미칠 영향을 파악해야 한다. 또한 고객이 공급업체의 최신 기술을 평가하고 활용할 수 있도록 지원하는 것도 중요하다. 7. 일회용 기술로 교환 가능한 IT IT 분야에서는 컴포저블(composable)과 디스포저블(disposable)이라는 개념이 빠르게 부상하고 있다. 이는 기술 혁신을 가속화하고 사용자 수요를 충족하기 위해 기술을 서로 교체하거나 폐기할 수 있도록 하는 방식이다. 일회용 기술은 모든 기술에 영향을 미치지만, 특히 소비자나 고객의 요구에 따라 변화하는 기술에 적용될 수 있다. 일회용 기술은 제품과 서비스를 장기적으로 판매하고자 하는 모든 기술 공급업체에게도 영향을 준다. 복잡한 기술을 위한 비즈니스 모델이나 유지보수 비용 등이 변화할 수 있기 때문이다. 예를 들어, 일회용 원심분리기는 바이오의약품 제조 과정에서 교차 오염을 예방하고, 에너지 사용을 줄이고, 공정 유연성을 갖출 수 있는 장점을 가지고 있다. 하지만 이러한 일회용 원심분리기를 공급하는 업체는 장비의 설계, 제작, 배송, 폐기 등의 과정에서 새로운 비즈니스 모델을 개발해야 할 수 있다. 가트너는 미래의 가장 큰 디지털 혁신 중 일부는 오늘날에는 멀게만 느껴지거나 터무니없어 보이는 기술에서 비롯될 가능성이 높다고 전망했다. 벤 프링 가트너 부사장 겸 애널리스트는 "지각 변동은 하루 아침에 일어나지 않는다"면서 "초기 단계에서 혁신을 무시하면 일반적으로 혁신의 개발 주기 후반에 진입 비용이 더 많이 들기 때문에 전략적, 재정적, 존재론적으로 더 많은 비용이 든다"고 말했다.
-
- 포커스온
-
[퓨처 Eyes(1)] 가트너 선정, 미래를 바꾸는 7가지 기술