검색
-
-
[신소재 신기술(132)] 플라스틱 폐기물, 고부가가치 화학물질과 수소 에너지로 재활용하는 기술 개발
- 플라스틱 폐기물을 분해해 벤조산과 청정에너지인 수소로 재활용하는 기술이 개발됐다. 독일 연구팀이 가장 흔한 플라스틱 페기물인 폴리스티렌 폐기물을 효율적으로 재활용하는 전기화학적 방법을 개발했다. 이 기술은 저렴한 철 촉매를 사용하여 폴리스티렌을 분해해 벤조산과 그 부산물로 수소를 생성하며, 태양 에너지를 사용하여 작동할 수 있는 장점이 있다고 사이테크 데일리가 보도했다. 플라스틱은 우리 생활에 필수적인 요소가 되었지만, 매립지와 자연 환경에 축적되는 막대한 양의 플라스틱 폐기물은 심각한 문제를 야기한다. 전 세계적으로 생산되는 플라스틱은 재활용율이 겨우 10% 미만에 불과하다. 2025년에는 플라스틱 폐기물이 400억톤에 이를 것으로 예상된다. 특히 포장재와 건축 자재에 널리 사용되는 폴리스티렌(PS)은 매립지에 버려지는 폐기물의 약 33%를 차지하지만, 재활용율은 1%에 불과하다. 2022년 폴리스티렌의 전 세계 생산량은 1540만톤에 달했다. 그 중에서 재활용된 폴리스티렌은 겨우 15만4000톤에 불과했다. PHYS는 캘리포니아 대학교 버클리와 캘리포니아 대학교 산타바바라의 연구자들이 수행한 '2050년까지 전 세계 플라스틱 폐기물 관리 불량과 온실 가스 배출을 줄이기 위한 경로'라는 연구를 인용해 지금처럼 경제 활동을 게속한다면 세계는 2011년부터 2050년까지 엠파이어 스테이트 빌딩 높이의 10배에 달하는 플라스틱 더미로 맨해튼을 덮을 만큼의 쓰레기를 배출할 것이라고 지적했다. 이러한 문제를 해결하기 위해 독일 괴팅겐의 프리드리히 뵐러(Friedrich Wöhler) 지속가능 화학 연구소의 루츠 아커만 교수가 이끄는 연구팀은 폴리스티렌을 효율적으로 분해하는 전기화학적 방법을 개발했다. 이 방법은 폴리스티렌을 분해하여 화학 공정의 원료로 사용할 수 있는 단량체 벤조일 생성물과 짧은 고분자 사슬을 생성하고 그 부산물로 수소를 만들어냈다. 이 기술의 핵심은 헤모글로빈과 유사한 철 포르피린 복합체인 철 기반 촉매이다. 철은 다른 촉매 활성 금속에 비해 독성이 없고 저렴하며 쉽게 구할 수 있다는 장점이 있다. 전기 촉매 반응 과정에서 철 화합물은 Ⅳ, Ⅲ, Ⅱ의 다른 산화 단계를 순환하며, 일련의 반응 단계와 중간 생성물을 거쳐 폴리스티렌의 탄소-탄소 결합을 분해한다. 주요 생성물은 벤조산과 벤즈알데히드이며, 벤조산은 향료 및 방부제 생산 등 다양한 화학 합성의 원료로 사용된다. 연구팀은 실제 플라스틱 기물을 그램 단위로 효율적으로 분해함으로써 이 새로운 전기 촉매 기술의 견고성을 입증했다. 이번 연구 결과는 독일 저명 학술지 '앙게반테 케미(Angewandte Chemie, 응용화학)'에 개재됐다.
-
- IT/바이오
-
[신소재 신기술(132)] 플라스틱 폐기물, 고부가가치 화학물질과 수소 에너지로 재활용하는 기술 개발
-
-
UBS, 트럼프 당선에 중국 내년 성장률 4%로 대폭 하향
- 글로벌 투자은행 UBS가 미국 대통령 당선 결과를 반영해 내년 중국 경제성장률 전망치를 대폭 하향 조정했다. 11일 연합뉴스는 블룸버그 통신을 인용해 UBS는 최근 리서치 노트를 통해 내년도 중국 실질 국내총생산(GDP) 성장률 전망치를 약 4%로 지시했으며 2026년 전망치도 상당폭 하향 조정했다고 전했다. 이는 지난달 UBS가 전망했던 내년도 국제 경제성장률 4.5%에서 0.5% 포인트나 낮아진 수치다. UBS는 불과 한 달만에 전망치를 대폭 수정한 배경으로 도널드 트럼프 미국 대통령 당선인의 대(對) 중국 고율 관세 공약을 꼽았다. 트럼프 당선인은 선거 기간 동안 중국산 제폼에 60% 이상의 고율 관세를 부과하겠다고 공언했다. UBS는 미국 정부가 내년 하반기부터 관세를 인상할 것으로 예상하며 이로 인해 중국 경제가 상당한 타격을 입을 것으로 전망했다. 그러나 UBS는 중국 정부가 이러한 대외적 충격에 대비해 내년부터 후년까지 대규모 내수 부양책을 시행할 것으로 예상했다. 따라서 중국 경제는 외부 충격과 정부 정책 등에 따라 성장 경로가 결정될 것으로 분석했다. 중국 관영매체도 이날 중국의 대규모 경기 부양책이 내년부터 본격 가동될 것 같다고 전했다. 중국공산당과 국무원의 공식 기관지인 경제일보는 11일 "전문가들은 내년 중국이 더욱 강력한 재정 정책을 시행할 가능성이 높다고 전망하며, 특히 활용 가능한 재정 적자 규모를 적극적으로 활용하여 경제 회복을 촉진할 수 있을 것으로 예상한다"고 보도했다. 중국은 올해 경제성장률 목표를 '5% 안팎'으로 설정했지만, 내수 부진과 부동산 시장 침체가 지속되면서 경제 성장에 대한 우려가 커지고 있다. 이에 중국 당국은 지난 9월 말 이후 지급준비율(RRR) 0.5%포인트 인하와 장기 유동성 1조위안(약 190조원) 공급, 정책 금리·부동산 대출 금리 인하, 증시 안정화 자금 투입 등 경기 부양 대책을 잇달아 발표했다. 란포안 중국 재정부장(장관)은 지난 8일 전인대 상무위 폐막 기자회견에서"충분한 정책 도구와 자원이 있어 올해 재정 수지 균형 보장이 가능하고, 중점 지출 강도가 줄지 않을 것"이라며 "중앙 재정은 여전히 부채와 적자 확대 공간이 크고, 내년 발전 목표를 결합해 확대 가능한 적자 공간을 적극 이용할 것"이라고 했다. 경제일보는 "전문가들은 보편적으로 내년 재정 정책 강도가 기대해볼 만할 것이라고 본다"며 특별 채권 발행 규모와 트입 분야 확장, 지방 정부의 특별채권 활용 유연성 상승 등이 예상된다고 전했다. 한편 이날 홍콩 증시는 중국 지방정부 부채 해결 방안에 대한 실망감과 트럼프 당선인 취임 후 예상되는 2차 미·중 무역 전쟁 가능성 등으로 약세를 보였다. 홍콩 항셍지수는 전 거래일 대비 1.70% 하락 마감했다. 투자자들은 중국 전국인민대표대회(전인대) 상무위원회에서 발표된 지방부채 해결 방안이 기대에 미치지 못했으며, 경기 부양책에 대한 언급이 없었던 점에 주목했다. 악사인베스트먼트매니저스의 에스카테리나 비고스 최고투자책임자는 블룸버그 텔레비전 인터뷰에서 "중국 증시의 변동성이 더욱 커질 것"이라고 전망했다. 그는 중국 당국의 정책 발표가 투자 심리에 일부 긍정적인 영향을 미쳤지만, "근본적인 상황은 바뀐 것이 없다"며 기업 이익 개선이 아직 가시화되지 않았다고 지적했다.
-
- 경제
-
UBS, 트럼프 당선에 중국 내년 성장률 4%로 대폭 하향
-
-
[먹을까? 말까?(76)] 수돗물 속 '영원한 화학물질', 젊은층 질병 급증의 원인?
- 최근 미국에서 수돗물, 식품 포장재, 샴푸 등 일상생활에 널리 사용되는 제품에 함유된 과불화화합물(PFAS)이 젊은층의 질병 급증과 관련이 있다는 연구 결과가 잇따라 발표되면서 사회적 불안감이 고조되고 있다. 자연적으로 잘 분해되지 않아 이른바 '영원한 화학물질'로 불리는 PFAS는 체내 및 환경에서 분해되지 않고 축적되는 특성을 지니고 있으며, 1940년대부터 제품의 방수, 방유, 방오 기능을 위해 널리 사용되어 왔다. 그러나 최근 연구를 통해 면역체계 약화, 임신 합병증, 신장암, 고환암 등 다양한 건강 문제와의 연관성이 속속 드러나면서 PFAS의 심각성이 부각되고 있다고 영국 매체 데일리 메일이 온라인 판에서 전했다. 미국 환경보호국(EPA)에 따르면 PFAS에 장기간 노출되면 전립선암, 신장암, 고환암 위험이 증가하고, 어린이의 발달 지연, 여성의 생식력 감소, 신체 호르몬 균형이 깨질 수 있다. 장내 미생물 균형 파괴, 염증 유발 특히 PFAS는 장내 미생물의 섬세한 균형을 파괴해 염증을 유발하고, 이는 대장암과 같은 질병 발생 위험을 높이는 것으로 밝혀졌다. 미국 남부캘리포니아 대학교(USC) 연구팀이 20세 전후의 건강한 성인 78명을 대상으로 진행안 연구 결과, PFAS가 높은 사람들은 장내 염증을 억제하는 박테리아인 '라크노스피라(Lachnospiraceae)' 수치가 현저하게 낮게 나타났다. 이는 PFAS가 장내 미생물 구성을 변화시켜 염증성 장 질환, 대장암 등의 발병 위험을 높일 수 있음을 시사한다. 신장 기능 저하, 면역력 약화 PFAS는 신장 기능에도 심각한 영향을 미치는 것으로 드러났다. USC 연구팀의 4년간 추적 관찰 결과, PFAS 노출은 신장 기능을 최대 50%까지 감소시키는 것으로 나타났다. 신장 기능 감소는 노폐물 여과 기능 저하로 이어져 체내 독성 물질 축적, 주요 장기 기능 손상 등을 유발할 수 있다. 또한 노스이스턴 대학교 연구팀은 PFAS가 면역 체계를 약화시켜 감염에 대한 저항성을 떨어뜨린다는 사실을 밝혀냈다. 이는 면역력 저하로 인한 각종 감염성 질환, 만성 염증성 질환 발병 위험 증가로 이어질 수 있다. 미국, PFAS 규제 강화…식수 오염 심각성 인지 미국에서는 PFAS 오염 문제의 심각성을 인지하고 규제 강화에 나서고 있다. 2024년 연구 결과에 따르면, 7000만 명 이상의 미국인이 PFAS로 오염된 식수에 노출된 것으로 추정된다. 이에 따라 미국 환경보호청(EPA)은 2025년까지 모든 공공 상수도 시스템에 PFAS 검사 및 제한 조치를 의무화하는 법안을 마련했다. 유럽연합(EU)는 2025년부터 PFAS 1만종 이상의 사용을 제한하는 규제를 시행할 예정이다. PFAS 노출 경로 다양⋯생활속 경각심 필요 미국 질병통제예방센터(CDC)에 따르면 PFAS는 수돗물뿐만 아니라 PFAS 공장 인근에서 생산된 식품, 오염된 물에서 잡힌 생선, 토양 및 먼지 등 다양한 경로를 통해 인체에 흡수될 수 있다. 특히 소방관들은 화재 진압용 거품에 포함된 PFAS에 직접적으로 노출되어 대장암 발병 위험이 높은 것으로 알려져 있다. 이번 연구 결과는 과학 저널인 '종합환경과학'에 게재됐다. SUC의 제스 굿리치 교수는 가디언과의 인터뷰에서 "이러한 대사성 질환과 함께 당뇨병이나 만성 신장 질환의 위험이 높아지며, 이는 미국에서 가장 빠르게 증가하는 사망 원인 중 하나이므로 정말 중요한 문제"라고 지적했다. 국내 상황 및 대책 마련 시급 한국은 현재 PFAS에 대한 구체적인 법적 규제가 마련되지 않고, 다만 먹는 물 수질 기준으로 PFOA(퍼플루오르옥탄산)와 PFOS(과불화옥탄술폰산)에 대한 기준(0.07㎍/L)만 설정되어 있다. 국내에서도 PFAS에 대한 우려가 커지고 있는만큼, 국민 건강을 보호하기 위한 적극적인 대책 마련에 나서야 할 것이다. PFAS 노출 경로를 파악하고, 오염원 관리, 규제 강화, 대체 물질 개발 등 다각적인 노력을 통해 국민 건강을 지켜야 할 것이다.
-
- 생활경제
-
[먹을까? 말까?(76)] 수돗물 속 '영원한 화학물질', 젊은층 질병 급증의 원인?
-
-
[기후의 역습(81)] 스페인 홍수, "기후변화가 부른 재앙이다"
- 엄청난 피해를 입히는 단일한 기상 사건이 기후 변화로 인해 발생했다고 단정하는 사례는 거의 존재하지 않는다. 그러나 최근 벌어진 스페인의 홍수에 대해 다수의 전문가들이 이런 관행을 깨고 "스페인의 최악의 홍수는 기후 변화로 인한 기온 상승이 악화의 주된 역할을 했다"고 지적하고 나섰다고 BBC가 전했다. 발렌시아 등 스페인 남동부 지역에 현지 시간으로 지난달 29일 기록적인 폭우가 내렸다. 기습 폭우로 최소 205명이 사망한 것으로 집계되면서 이같은 대참사를 야기한 원인에 이목이 쏠리고 있는 것. 스페인 기상청에 따르면 당시 발렌시아 치바에서는 10월 29일 새벽부터 8시간 동안 1㎡당 491L의 비가 내렸다. 기상청에 따르면 이는 일반적으로 이 지역의 1년치 강수량이다. 임페리얼칼리지 런던의 프리데리케 오토 박사는 BBC와의 인터뷰에서 "스페인에서의 이런 폭발적인 폭우는 의심할 여지 없이 기후 변화로 인해 심화된 결과다"라고 단언했다. 오토 박사는 온난화의 원인과 영향을 연구하는 국제 과학자 그룹을 이끌고 있다. 그는 "화석 연료 연소로 인한 온난화가 섭씨 1도씩 올라갈 때마다 대기는 더 많은 수분을 보유하게 되며, 결과적으로 더 많은 폭우가 쏟아질 수 있다"는 것이다. 기상학자들은 스페인에서 일어난 이번 집중호우의 주요 원인이 가을과 겨울에 스페인을 강타하는 자연적인 기상 현상일 가능성이 높다고 말했다. '고타 프리아(gota fría)' 또는 콜드 드롭(차가운 물방울)이라고 불리는 이 기상 현상은 지난 몇 년 동안 극도로 뜨거운 상황에 놓여 있는 지중해의 따뜻한 바닷물 위로 차가운 공기가 내려오는 것을 보여준다. 그러면 바다 표면의 뜨겁고 습한 공기가 빠르게 상승해 높게 우똑 솟은 비구름이 되어 해안으로 날아와 많은 양의 비를 내린다. 연구진은 기후 변화가 이 구름이 운반하는 비의 양에 직접적인 영향을 미쳤다고 지적했다. 지구 온난화로 인해 기온이 섭씨 1도씩 상승할 때마다 비가 7%씩 증가한다는 것이다. 문제는 지표면이다. 비가 내리면 땅이 그 비를 상당량 흡수하게 된다. 그런데 유럽의 대부분 지역은 포장 도로로 덮여 있다. 게다가 이런 곳은 온도도 높다. 비가 내리기 시작하면 물을 많이 흡수할 수 없는 곳, 온도가 주변보다 높은 곳에 비가 더 강하게 내린다. 리즈 대학교의 마크 스미스 교수는 "강수량이 극심하게 증가하는 것 외에도 여름이 더 더워져 토양이 구워지고, 물을 흡수하는 능력이 떨어지게 된다"고 말했다. "그러면 더 많은 물이 강으로 유입되면서 강수 강도 증가에 더해 직접적인 효과가 증폭된다"는 것이다. 학자들 사이에서는 지구 온난화로 인해 폭풍의 움직임이 더 느려지고, 이로 인해 폭풍으로 내리는 강우량이 더 심해지는지에 대한 논쟁도 있다. 올해는 이런 유형의 폭풍과 폭풍이 가져올 수 있는 파괴에 대한 증거도 보았다. 지난 9월 폭풍 보리스는 중부 유럽의 여러 국가를 강타해 수많은 사상자와 막대한 피해를 남겼고, 이는 지중해의 고온으로 더 심해졌다. 전문가들은 이런 재해가 발생할 가능성이 기후 변화로 인해 두 배나 더 높다고 말했다. 스페인에서는 정확한 기상 예보가 부족해 적절한 조치를 취하지 못했다는 비판도 제기됐다. 다만 기상학자들은 빠르게 움직이는 강렬한 뇌우의 경로를 예측하는 것은 매우 어려운 일이라고 지적했다. 예보는 안전 조치를 취하는 데 도움이 되지만 많은 비가 내리는 정확한 위치를 미리 알기 어려워 예보가 쉽지 않다는 것이다. 스페인의 홍수가 부각시킨 한 가지 문제는 현재의 인프라로는 극심한 홍수에 대처할 수 없다는 사실이다. 현재의 도로와 다리, 거리는 지금의 기후가 아니라 지난 세기의 기후에 맞추어 건설된 것이기 때문에 새로운 접근이 필요하다는 지적이다.
-
- 포커스온
-
[기후의 역습(81)] 스페인 홍수, "기후변화가 부른 재앙이다"
-
-
[퓨처 Eyes(56)] 전기 농업, 식량 위기 극복할 미래 농업의 혁신
- 햇빛 없이도 식물을 키운다? 마치 공상과학 영화에서나 나올 법한 이야기지만, 현실이 될 날이 머지않았다. 광합성은 지구 생명체의 근원이지만 에너지 효율은 겨우 1%에 불과하다. 이 비효율을 극복하고 미래 식량 위기를 해결할 혁신적인 기술이 바로 '전기 농업(electro-agriculture)'이다. 최근 생명공학 학술지 줄(Joule)에 발표된 논문에서 생명공학자들은 전기 농업이라는 새로운 식량 생산 패러다임을 선보였다. 태양 에너지를 이용해 CO₂를 식물의 먹이로 바꾸는 이 기술은, 햇빛에 의존하는 광합성을 대체하며 농업에 필요한 토지는 94%로 감소해 농업의 미래를 뒤흔들 잠재력을 지녔다. 광합성을 대체하는 전기 농업 캘리포니아 리버사이드 대학교의 생물공학자 로버트 진커슨(Robert Jinkerson) 교수와 워싱턴대학교 세인트루이스 캠퍼스의 전기화학자인 펑 지아오(Feng Jiao) 교수는 새로운 전기 농업 기술을 통해 농작물이 빛이 없는 환경에서도 자랄 수 있는 가능성을 제안했다. 농업의 혁신을 가져올 수 있다고 확신하는 진커슨은 "더 이상 햇빛을 필요로 하지 않는다면, 우리는 농업을 환경으로부터 완전히 분리해 통제된 실내 환경에서 식량을 재배할 수 있다"고 강조한다. 이는 농업이 더 이상 기후나 조건에 영향을 받지 않고 언제 어디서든 필요한 식량을 생산할 수 있음을 의미한다. 전기 농업은 단순히 빛을 대체하는 것 이상의 의미를 갖는다. 진커슨 교수의 연구팀은 태양광 패널을 통해 태양 에너지를 흡수하고, 이 에너지를 CO₂와 물 사이의 화학 반응에 활용해 아세트산염을 생성한다. 이 아세트산염은 식물이 에너지와 탄소 공급원으로 사용하게 된다. 진커슨 교수는 "우리는 식물의 발아 과정에서 사용되는 대사 경로를 다시 활성화시켜, 식물이 광합성 없이 아세트산염만으로도 자랄 수 있도록 연구하고 있다"고 덧붙였다. 현재 토마토와 상추를 대상으로 실험 중이며, 향후 고구마나 곡물 등 주요 작물로도 확장할 계획이다. 이 기술이 상용화될 경우, 전통 농업에서 발생하는 온실가스 배출을 크게 줄일 수 있다. 펑 자오 교수는 "현재 약 4%의 에너지 효율을 달성했으며, 이는 기존 광합성의 4배 수준이다. 이 방식이 더 효율적이기 때문에 식량 생산에 따른 CO₂ 배출량을 크게 감소시킬 수 있을 것"이라고 전망했다. 이는 농업의 환경적 부담을 대폭 줄일 뿐만 아니라, 식량 생산의 새로운 장을 열 수 있음을 의미한다. 빛 없도 농사를 지을 수 있는 전기 농업은 우주에서의 까다로운 식량 생산 문제도 해결할 수 있다. 기존 농업은 심각한 삼림 벌채로 이어지는 경우가 많은 데, 이는 생물다양성 손실과 기후 변화의 주요 원인이 되도 한다. 전기 농업은 작물 생산에 필요한 토지의 양을 대폭 줄임으로써 토지 개간에 따른 생태적 피해의 일부를 회복시킬 수 있다. 아울러 수로를 오염시키고 수생태계에 영향을 미칠 수 있는 비료와 살충제에 대한 의존도를 낮추므로 지속 가능한 식량 생산에 대한 유망한 대안을 제시한다. 전기 자극을 통한 수확량 증대 전기 농업의 또 다른 중요한 연구는 전기를 이용해 농작물의 성장을 촉진하는 방법이다. 이 기술은 19세기 말에서 20세기 초에 잠시 유행했던 '전기 재배(electroculture)'의 현대적 버전으로 볼 수 있다. 당시에는 전기를 식물에 직접 적용해 수확량을 늘리거나 해충을 제거하려는 시도가 있었으나, 명확한 과학적 근거 없이 실패한 사례들이 많았다. 하지만 오늘날 연구자들은 더 정교한 방법으로 전기를 농업에 적용하고 있다. 미국 앨라배마주의 오크우드 대학교 생화학자인 알렉산더 볼코프(Alexander Volkov) 교수는 저온 플라즈마(Cold Plasma)를 이용해 씨앗을 자극하는 연구를 진행 중이다. 이 연구에서는 식물의 수확량이 20~75% 증가한 결과를 얻었으며, 감자의 경우 수확량이 40%까지 늘어났다. 볼코프 교수는 "우리는 씨앗을 플라즈마로 1분 미만 처리했을 때, 수확량이 눈에 띄게 증가하는 것을 확인했다. 양배추 수확량도 75% 증가했으며, 맛도 더 달았다"라고 밝혔다. 씨앗의 플라즈마 처리는 농업 분야에 떠오르는 기술로, ㅊ플라즈마를 이용해 씨앗의 발아율을 높이고 생장을 촉진하는 기술이다. 플라즈마는 고체, 액체, 기체 상태 다음의 제4의 물질로, 이온, 전자, 중성 입자 등으로 구성된 이온화된 기체이다. 플라즈마는 씨앗 껍질의 표면을 변화시켜 물 흡수율을 높이고, 발아에 필요한 효소 활성을 증가시켜 발아율을 향상시킨다. 또한 플라즈마는 씨앗 내부의 생화학적 반응을 촉진해 뿌리와 씨앗의 생장을 촉진한다. 게다가 플라즈마는 씨앗 표면의 박테리아, 곰팡이 등 병원균을 살균해 씨앗의 건강을 증진시킨다. 저온 플라즈마는 단순히 씨앗의 수확량을 증가시키는 것뿐만 아니라 씨앗이 발아할 때 환경 스트레스를 덜 받게 만들어 준다. 셰튼홀 대학교의 호세 로페즈(Jose Lopez) 교수는 "씨앗이 처음 발아할 때는 외부 환경의 스트레스에 매우 취약하다. 플라즈마는 씨앗의 껍질을 미세하게 구멍을 내어. 씨앗이 물과 양분을 더 쉽게 흡수할 수 있도록 돋븐다"고 설명했다. 그 결과 플라즈마로 처리된 씨앗은 처리되지 않은 씨앗보다 훨씬 더 빠르게 자란다. 전기 농업의 미래 전기 농업을 도입한다면 자연 서식지의 점진적인 복원이 용이해지고, 생물 다양성이 향상되며 탄소 발자국을 줄일 수 있다. 이처럼 엄청난 잠재력에도 불구하고, 전기 농업은 여전히 해결해야 할 과제가 남아 있다. 핵심 문제로는 태양열 화학 반응기의 초기 설치 비용과 유지 관리, 그리고 대규모 실내 농업시설을 지원하는 데 필요한 인프라를 꼽을 수 있다. 또한 아세트산을 주요 에너지 원으로 사용할 때 식물 생리학에 미치는 장기적인 영향을 이해하기 위해서는 추가 연구가 필요하다. 진커슨은 "식물의 경우, 식물이 이런 방식으로 성장하도록 진화하지 않았기 때문에 아세트산염을 탄소원으로 활용하도록 하는 연구 개발 단계에 있다"고 말했다. 그는 "하지만 버섯과 효모, 해조류는 현재 이런 방식으로 재배할 수 있으므로 이러한 응용 분야가 먼저 상용화되고 식물은 나중에 상용화될 것으로 생각한다"고 덧붙였다. 전기 농업이 성공한다면 식량 생산 자체에 혁명을 일으킬 수 있는 환경 친화적이고 공간 효율적인 방법이 될 수 있다.
-
- 포커스온
-
[퓨처 Eyes(56)] 전기 농업, 식량 위기 극복할 미래 농업의 혁신
-
-
[기후의 역습(80)] 나사, 남극 빙하의 특이한 '바다 연기' 공개
- 남극 서부의 주요 빙하가 이달 초 나사(NASA) 위성 관측에서 마치 '연기를 피우고 있는 듯한' 희귀한 광경을 포착했다고 CNN, 어스닷컴 등 외신이 전했다. 빙하에서 나타난 ‘바다 연기’는 실제 연기가 아니라 안개였던 것으로 밝혀졌다. 위성 이미지에서 파인 아일랜드 빙하(Pine Island Glacier)는 바다와 만나는 어두운 바닷물 표면 위에서 솜털 같은 흰색 연기처럼 보였다. 파인 아일랜드 빙하 및 인근의 스웨이츠 빙하는 서남극 빙상에서 아문센해로 흐르는 얼음의 주요 경로 중 하나로 주목받고 있다. 또한 남극 대륙에서 가장 빠르게 후퇴하는(녹아내리는) 빙하 중 하나다. 기묘한 이미지였던 ‘바다 연기’는 물과 바람이 만들어낸 것이었다. 나사에 따르면 강한 바람이 얼음과 차가운 물을 밀어내고 심해의 더 따뜻한 물이 표면으로 솟구치게 했다. 따뜻한 물이 매우 건조하고 차가운 공기에 따뜻하고 습한 공기를 불어 넣었다. 온도 차이로 인해 그 공기의 수분이 응축되어 안개가 형성된 것이다. CNN은 이를 지상에서 보면 마치 누군가가 물 위의 유령의 집에서 안개를 만드는 기계를 작동한 것처럼 보이다고 전했다. 물 표면에 가까운 지역은 연기와 비슷한 안개에 휩싸이게 되기 때문에 '바다 연기'라는 별명이 붙었다. 바다 연기 자체는 드문 일은 아니라고 한다. 차갑고 건조한 공기가 예외적으로 따뜻한 수역을 지날 때마다 발생할 수 있다. 때때로 북극의 첫 번째 겨울 폭풍이 비교적 따뜻한 호수를 지날 때 볼 수 있다. 그러나 나사에 따르면 이런 현상을 아일랜드 빙하에서 위성으로 관측하는 것은 드문 일이었다. 이 지역은 보통 구름에 가려져 있기 때문이라고. 파인 아일랜드 빙하는 남극 대륙에서 중요하고 엄격하게 모니터링되는 지역이다. 지구 온난화의 영향을 받아 존재가 위협받고 있기 때문이다. 이 빙하는 인접한 거대한 빙상의 배관 역할을 하여 인접한 바다로 얼음을 흘려보낸다. 이런 얼음의 흐름은 빙하가 1990년대부터 따뜻한 공기, 물, 눈 부족으로 균형을 잃고 얼음이 축적되지 않게 되면서 크게 증가해 왔다. 이 빙하는 인근 '최후의 보루'라고 알려진 빙하인 스웨이츠 빙하와 함께 지난 수십 년 동안 가속적으로 얼음을 잃고 있다. 얼음이 녹아 해수면을 몇 피트(1피트는 30.48cm) 올릴 가능성이 있다. 스웨이츠 빙하는 또 해수면을 10피트(약 3m)나 올릴 만큼 얼음이 많은 남극 빙상들이 붕괴되는 것을 막는 중요한 댐 역할을 담당하고 있다.
-
- 포커스온
-
[기후의 역습(80)] 나사, 남극 빙하의 특이한 '바다 연기' 공개
-
-
[퓨처 Eyes(55)] 우주 쓰레기, 인류의 우주 꿈을 위협한다: 4300톤의 그림자, 지구 덮치나?
- 인류의 우주 탐사 역사는 아직 60년 남짓에 불과하지만, 그 짧은 시간 동안 지구 궤도에는 엄청난 양의 우주 쓰레기가 축적되었다. 유럽우주국(ESA)에 따르면 지구 궤도를 도는 위성 파편 등 우주 쓰레기의 무게는 무려 1만3000톤에 달한다. 그중 작은 파편에 해당하는 우주 쓰레기는 4300톤으로, 자유의 여신상(약 204톤) 약 21개에 달하는 무게의 우주 쓰레기가 지구 주위를 맴돌며 인류의 우주 꿈을 위협한다. 1960년대 본격적인 우주 탐사 시대가 열린 이후, 수많은 국가들이 앞다투어 우주로 진출했다. 1969년 아폴로 11호의 달 착륙은 인류에게 새로운 가능성을 제시했고, 이후 미국, 러시아, 중국, 일본, 인도, 유럽연합 등 우주 강국들은 탐사선 개발에 박차를 가하며 우주 경쟁을 펼쳐왔다. 최근에는 한국과 아랍에미리트까지 가세하며 우주를 향한 열망은 더욱 뜨거워지고 있다. 통제 불능의 우주 쓰레기 증가 그러나 우주 탐사의 이면에는 어두운 그림자가 드리워져 있다. 바로 우주 쓰레기 문제다. 나사(NASA)에 따르면 2015년 기준 지구 상공에 위성을 포함해 약 3만 개의 물체가 돌고 있는 것으로 나타났다. 특히 고장난 인공위성, 탐사선의 파편, 로켓 발사 후 남은 잔해물 등이 지구 궤도를 떠돌며 심각한 위협으로 부상하고 있다. 이러한 우주 쓰레기는 운용 중인 인공위성이나 탐사선과 충돌하여 통신 장애, GPS 기능 중단 등의 문제를 일으킬 수 있다. 최근 몇 달 사이, 궤도상에서 폐기된 위성과 로켓 잔해가 잇따라 파손되면서 우주 쓰레기 문제가 더욱 심각해지고 있다. 우주 쓰레기가 급증하면서 '케슬러 증후군'이 현실화 될 것이라는 우려가 제기되고 있다. 1978년 NASA의 과학자 도널드 J. 케슬러가 제시한 케슬러 증후군은 우주 쓰레기가 서로 충돌하면서 기하급수적으로 늘어나, 결국 지구 궤도 전체를 뒤덮어 인공위성이나 우주선의 운용을 불가능하게 하는 현상을 말한다. 케슬러 증후군은 아직까지는 가설 단계지만 늘어난 우주 쓰레기들이 서로 충돌하면서 더욱 많은 파편들이 기하급수적으로 늘어나면서 현실적인 위협으로 인식되고 있다. 실제로 지난 6월에는 러시아의 RESURS-P1 위성이 지구 저궤도에서 파괴되어 100개 이상의 추적 가능한 파편을 생성했으며, 7월에는 미국의 DMSP 5D-2 F8 위성이 분해되었다. 8월에는 중국의 장정 6A 로켓 상단 부분이 파편화되면서 최소 283개의 추적 가능한 파편과 수십만 개의 미세 파편을 발생시켰다. 이처럼 폐기된 우주 물체의 파손은 크고 작은 파편들을 양산하며 우주 쓰레기 문제를 심화시키고 있다. 특히 미세 파편의 경우 추적이 어려워 더 큰 위험 요소로 작용한다. 이러한 파편들은 현재 운용 중인 위성이나 우주선과 충돌하여 심각한 피해를 초래할 수 있다. 최근 발생한 인텔샛 33e 위성(Intelsat 33e·대형 통신 위성) 파손 사고는 이러한 우려를 더욱 증폭시키고 있다. 인텔샛은 2024년 10월 19일, 인도양 상공 약 3만 5000km 궤도에서 인텔샛 33e 위성이 갑작스러운 전력 손실로 파괴됐다고 밝혔다. 최소 20개의 조각으로 분해된 이 위성은 유럽, 아프리카, 중동, 아시아 지역의 위성 통신 서비스에 큰 차질을 빚었다. 무게 6600kg에 리무진 크기의 인텔샛 33e 위성은 보잉에서 설계와 제작을 맡았고 2016년 궤도에 진입해 8년 동안 임무를 수행으나 갑자기 붕괴됐다. 위성이 갑자기 분해된 정확한 이유는 아직까지 불분명하다. 위성 파괴는 연쇄적인 충돌을 야기하여 피해 규모를 더욱 키울 수 있다는 점에서 우주 쓰레기 문제는 '시한폭탄'과 같다. 우주 쓰레기 추적과 관리의 어려움 유럽우주국(ESA)에 따르면, 현재 지구 궤도에는 10cm 이상의 우주 쓰레기가 4만 개 이상, 1cm 미만의 미세 파편은 무려 1억 3000만 개 이상 존재한다. 이를 무게로 환산하면 약 1만3000톤에 달하며, 그 중 4300톤이 작은 파편으로 추정된다. 나사(NASA)에 따르면 사과 크기의 우주 쓰레기가 약 2만1000개, 구슬 크기의 쓰레기가 50만개, 추적이 어려울 정도의 작은 쓰레기가 최고 1억개에 이른다고 추정한다. 특히 지구 저궤도(LEO)에 집중된 우주 쓰레기는 추적과 관리가 매우 어렵다. 정지궤도(GEO)에서 발생하는 파편들은 위치 추적이 더욱 까다로워 효과적인 관리 시스템 마련이 시급하다. 다행히 우주 쓰레기 문제 해결을 위한 노력도 활발히 진행되고 있다. JAXA(일본 우주항공연구개발기구)의 지원을 받는 스타트업 스타 시그널 솔루션스(Star Signal Solutions)는 '사테나비 S-CAN'이라는 혁신적인 충돌 회피 네비게이션 시스템을 개발했다. 이 시스템은 위성 운용자들이 우주 쓰레기의 궤도를 실시간으로 모니터링하고 충돌 위험을 사전에 예측하여 회피할 수 있도록 지원한다. 스타 시그널 솔루션스의 이와키 요타이 대표는 "위성 운용에는 전문 지식과 24시간 대응 체계가 요구되며, 막대한 운영 비용이 발생한다"고 지적하며, "사테나비 S-CAN은 최적의 회피 경로를 제시하여 운영 부담을 줄이고 연료 소비를 최소화하여 비용 절감 효과를 가져온다"고 강조했다. 하지만 기술 개발만으로는 우주 쓰레기 문제를 완전히 해결할 수 없다. 우주 쓰레기 문제는 본질적으로 전 지구적 차원의 문제이기 때문에 국제적인 협력이 필수다. 1972년 제정된 '우주물체에 의한 손해에 대한 국제책임협약'은 우주 물체 발사 국가의 손해 배상 책임을 명시하고 있지만, 실제 적용 사례는 매우 드물다. 우주 공간의 특수성으로 인해 책임 소재 규명이 어렵기 때문이다. 전문가들은 우주 쓰레기 문제 해결을 위해서는 각국의 협력을 통한 국제적 감시 시스템 구축 및 규제 강화가 시급하다고 강조한다. 우주 물체의 안전한 폐기, 추적 기술 개선, 파편 발생 최소화 등 다각적인 노력이 필요하며, 지속 가능한 우주 탐사를 위한 국제 사회의 공동 책임 의식이 무엇보다 중요하다. 국제우주정거장, 지구 재진입후 폐기 예정 참고로 국제우주정거장(ISS)은 2030년 운영 종료 후 2031년 1월에 폐기될 예정이다. NASA는 2031년 1월에 ISS를 지구 대기권으로 재진입시켜 태우는 방식으로 폐기할 계획이다. 잔해는 '우주선의 무덤'으로 불리는 남태평양의 포인트 니모(Point Nemo)에 수장된다. ISS는 1998년부터 운영되어 왔으며, NASA, 캐나다우주국(CSA), 유럽우주국(ESA), 일본우주항공연구개발기구(JAXA), 러시아 연방우주공사(Roscosmos) 등이 협력해 운영해 왔다. 하지만 ISS는 노후화로 인해 유지 보수 비용이 증가하고 있으며, 새로운 우주 탐사 계획을 위해 폐기가 결정됐다. ISS 폐기 후에는 민간 우주 정거장이 그 역할을 대신할 것으로 예상된다. 인류의 우주 탐사는 앞으로도 계속될 것이다. 하지만 우주 쓰레기 문제를 해결하지 못한다면 인류의 우주 꿈은 쓰레기 더미에 묻혀버릴지도 모른다. 지금부터라도 국제 사회가 힘을 모아 책임 있는 자세로 우주 쓰레기 문제 해결에 적극적으로 나서야 할 때다.
-
- 포커스온
-
[퓨처 Eyes(55)] 우주 쓰레기, 인류의 우주 꿈을 위협한다: 4300톤의 그림자, 지구 덮치나?
-
-
대만 TSMC, 중국 화웨이에 자사 반도체 넘긴 고객에 출하중단
- 세계 최대 파운드리(반도체 위탁생산)업체인 대만 TSMC는 이달 특정 고객용으로 제조한 반도체가 최종적으로 중국 통신업체 화웨이(華為技術)로 넘어간 것을 발견하고 이들 고객들에게 반도체 출하를 중단했다. 23일(현지시간) 블룸버그통신 등 외신들은 소식통을 인용해 대만 TSMC가 지난 10월 중순 자산 반도체가 화웨이 제품에 탑재된 것을 깨닫고 이 고객에게 반도체 출하를 중단했다고 보도했다. TSMC가 이 고객에게 반도체 출하를 중단한 것은 화웨이에 대한 기술유출의 방지를 목표로 한 미국의 제재조치에 위반할 가능성이 있기 때문이었다. TSMC는 이후 미국정부와 대만당국 양측에 이같은 사실을 통지했다. 익명의 소식통은 TSMC가 미국정부와 대만당국에 통지하고 이 문제에 관해 더욱 철저한 조사를 벌이고 있다고 전했다. 중국측에 반도체를 넘긴 이 고객이 화웨이를 대신해 규정을 위반한 것인지, 어디에 거점을 두고 있는지는 현재로서는 알 수 없다. 실리콘밸리에 본사를 둔 매체인 '더 인포메이션'은 최근 화웨이용으로 반도체를 제조하지 않았는지 미국정부가 TSMC에 대해 문의했다고 보도했다. 이번 TSMC의 문제발각으로 중국내 반도체개발에서 중국정부가 큰 기대를 주고 있는 화웨이가 어떻게 첨단 반도체를 입수했는지 새로운 의문이 생기고 있다. 캐나다 조사회사 테크인사이츠는 최근 화웨이의 최첨단 반도체 '어센드 910B'를 분해한 결과 TSMC의 반도체를 발견했다고 밝혔다. 테크인사이츠가 공식 리포트를 공표하기 전에 TSMC에 이 결과를 전했으며 TSMC가 이같은 사실을 몇 주 전에 미국 상무부에 보고했다는 것이다. TSMC는 지난 21일 이 문제로 자발적으로 상무부와 연락했다고 설명했다. TSMC는 2020년 9월 중반 이후 화웨이에 반도체를 공급하지 않았다고 설명했다. TSMC는 "현시점에서 당사가 어떠한 조사 대상이 되고 있다고는 인식하고 있지 않다"고 덧붙였다. 미국 상무부는 지난 22일 상무부 산업안전보장국이 미국의 수출규제위반의 가능성을 지적했다는 보도에 대해 파악하고 있다고 밝혔다. 상무부는 수출 규제 위반의 가능성이 보도되고 있다는 것을 알고 있지만 조사가 진행되고 있는지 여부에 대해서는 코멘트할 수 없다고 말했다. 미국 정부는 지난 2019년 안보상의 이유로 화웨이를 수출규제 리스트에 올렸다. 화웨이가 어떤 방식으로 TSMC 반도체를 얻었는지는 명확하지 않다.
-
- 포커스온
-
대만 TSMC, 중국 화웨이에 자사 반도체 넘긴 고객에 출하중단
-
-
앤스로픽, 사용자 대신 작업 수행하는 'AI 에이전트' 공개 베타 출시
- 인공지능(AI) 스타트업 앤스로픽(Anthropic)이 사용자를 대신해 복잡한 일을 처리하는 AI 에이전트를 개발자 대상 공개 베타 버전으로 출시했다고 22일(현지시간) 밝혔다. 앤스로픽은 챗 GPT 개발사인 오픈 AI의 경쟁사로, 아마존으로부터 40억달러(약 5조5300억원) 투자를 유치한 기업이다. AI 에이전트는 인공지능을 기반으로 사용자를 대신하여 특정 목표를 달성하기 위해 자울적으로 행동하는 컴퓨터 프로그램이다. 마치 개인 비서처럼 사용자의 지시를 이해하고, 필요한 정보를 수집하고, 작업을 수행하며, 심지어 스스로 학습하여 능력을 향상시키기도 한다. 미국 기술 전문 매체 더 버지는 이날 앤스로픽의 최신 '클로드 3.5 소넷 AI(Claude 3.5 Sonnet AI)' 모델은 화면을 보고, 커서를 움직이고, 버튼을 클릭하고, 텍스트를 입력하여 컴퓨터를 제어할 수 있는 퍼블릭 베타의 새로운 기능을 제공한다고 전했다. 이 AI 에이전트는 컴퓨터 화면 정보를 해석해 버튼 선택, 텍스트 입력, 웹사이트 탐색 등을 자동으로 수행한다. 예를 들어, 사용자가 "샌프란시스코 금문교가 보이는 하이킹 코스를 찾아 친구에게 일정을 공유해 줘"라고 요청하면, AI 에이전트는 스스로 검색, 경로 설정, 일출 시간 확인 등을 거쳐 친구에게 캘린더 초대장을 보낸다. 심지어 어떤 옷을 입을지 조언까지 제공한다. 또한 이 버전의 클로드는 '선거 관련 활동에 참여하도록 요청받았을 때 모니터링하는 조치와 소셜 미디어에 콘텐츠를 생성 및 게시하거나 웹도메인을 등록하거나 정부 웹사이트와 상호 작용하는 등의 활동에서 벗어나게 유도하는 시스템'이 있는 것으로 알려졌다. 앤스로픽 공동 창업자 재러드 카플란은 "이 AI 에이전트는 사람과 같은 방식으로 컴퓨터를 사용하는 최초의 모델"이라며 "수십, 수백 단계의 작업도 수행 가능하다"고 설명했다. 특히, 다른 AI 에이전트와 달리 사용자 컴퓨터 화면에서 일어나는 일을 실시간으로 처리할 수 있다는 점을 강조했다. AI 에이전트 개발 경쟁 가열⋯구글, 메타, MS 등 적극 투자 AI 에이전트는 단순 답변 제공을 넘어 사용자 대신 복잡한 작업을 수행하는 기술로, 테크 기업들의 개발 경쟁이 치열하다. 구글은 일상생활에 도움을 주는 범용 AI 에이전트를 개발중이며, 메타는 모든 사용자가 자신만의 AI 에이전트를 만들 수 있도록 지원하겠다고 밝혔다. 마이크로소프트(MS)는 가상 직원처럼 작동하는 '코파일럿 에이전트'를 출시하는 등 AI 에이전트 개발에 적극적으로 나서고 있다. 한편, 앤스로픽은 이날 코딩과 추론 능력을 향상시킨 AI 모델 '클로드 3.5 소네트'와 더 저렴하고 빠른 '클로드 3.5 하이쿠' 버전도 함께 출시했다. 앤스로픽은 향후 몇 달 안에, 늦어도 내년 초에는 소비자와 기업 고객에게도 AI 에이전트를 제공할 계획이다. 클로드 3.5 소넷 모델은 많은 벤치 마크에서 개선되었으며, 이전 모델과 동일한 가격과 속도로 고객에게 제공된다. 앤스로픽은 컴퓨터 사용이 여전히 실험적이며, 번거롭고 오류가 발생하기 쉽다면서 "개발자의 피드백을 위해 컴퓨터 사용을 조기에 출시하고 있으며, 시간이 지남에 따라 기능이 빠르게 개선될 것으로 기대한다"고 밝혔다.
-
- IT/바이오
-
앤스로픽, 사용자 대신 작업 수행하는 'AI 에이전트' 공개 베타 출시
-
-
[기후의 역습(69)] 기후 변화로 남극 '녹지' 가속화
- 극심한 더위로 인해 빙하로 뒤덮였던 남극 대륙의 얼음이 녹아내리면서 놀라운 속도로 식물이 자라나 녹색으로 변하고 있다고 CNN이 전했다. 광범위한 지역에 녹지가 형성되고 있으며, 이로 인해 남극의 변화하는 지형에 대한 우려가 높아지고 있다. 전문가들은 위성 이미지와 데이터를 사용, 남아메리카 대륙의 끝부분을 향해 북쪽으로 뻗어 간 긴 산맥인 남극 반도의 식생을 분석했다. 현재 이 남극 반도는 세계 평균보다 훨씬 빠른 속도로 온난화되고 있다. 영국의 엑서터 및 하트퍼드셔 대학교의 과학자들과 영국 남극조사국의 연구원으로 구성된 연구진이 최근 네이처 지구과학 저널에 발표한 연구에 따르면, 이 지역에서 대부분 이끼류로 구성된 식물이 지난 40년 동안 10배 이상 증가한 것으로 나타났다. 1986년에는 남극 반도의 식생이 0.4평방마일 미만이었지만 2021년에는 거의 5평방마일에 달했다. 같은 기간 동안 녹화되는 속도도 더욱 빨라져 2016~2021년 사이에 30% 이상 가속화됐다. 이 지역의 지형은 여전히 거의 전부 눈, 얼음, 바위 지대지만, 이 작은 녹지는 1980년대 중반 이후 극적으로 확대됐다고 엑서터 대학교의 토마스 롤랜드 박사는 말했다. 롤랜드는 "우리의 연구 결과는 인간에 의한 기후 변화의 영향이 한계가 없다는 것을 확인시켜 주었다"며 "가장 극단적이고 외딴 황무지 얼음 지대인 남극 반도에서도 풍경이 변하고 있으며, 이러한 효과는 우주에서도 바라볼 수 있다"고 밝혔다. 지구상에서 가장 추운 곳인 남극은 최근 극심한 더위에 시달리고 있다. 올여름 남극 대륙의 일부 지역은 7월 중순부터 평년 기온보다 화씨 50도 이상 올라가는 기록적인 폭염을 나타냈다. 2022년 3월, 대륙 일부 지역의 기온이 평년 기온보다 최대 70도까지 치솟았는데, 이는 이곳에서 기록된 가장 극심한 기온 변화였다. 화석연료 연소에 따른 오염이 세계를 계속 온난화시키고 있다. 남극은 계속 따뜻해질 것이고, 이로 인한 녹화는 가속화될 가능성이 크다는 전망이다. 남극 반도가 녹화될수록 토양이 더 많이 형성되고, 외부로부터의 침입 식물종에게 더 유리해져 토종 야생 동식물을 위협할 가능성이 커진다. 씨앗, 포자, 식물 조각은 관광객이나 연구자의 신발이나 옷, 조사 장비를 통해 남극 반도로 쉽게 이동할 수 있다. 또 철새와 바람, 해류 등 보다 전통적인 이동 경로를 통해 이 곳으로 옮겨질 가능성도 있다. 남극 생태계의 위험은 분명한 현실이라는 것이다. 녹화는 또한 빙하에 비해 어두운 표면을 형성해 더 많은 열을 흡수한다. 이 때문에 남극 반도를 비롯한 대륙이 태양 복사선을 우주로 반사하는 능력을 감소시킬 수도 있다. 이러한 영향은 지역적으로 선별해 발생할 가능성이 높지만, 기후가 계속 따뜻해지면 식물의 성장을 더욱 가속한다. 남극 대륙의 풍경은 영원히 바뀔 수 있다. 스코틀랜드 해양과학협회의 극지 식물 및 미생물 생태학 전문가 매튜 데이비 박사는 "이 연구는 남극의 식물을 이해하는 데 중요한 진전이다. 확인된 것보다 더 많은 식물이 있을 수 있다"고 말했다. 그는 연구가 "식물이 남극에서 느리게나마 확산되고 있는 추세를 보여준다"면서 다음 단계는 남극 빙하가 더 후퇴하면서 식물이 최근에 노출된 맨땅을 어떻게 점령하는지를 연구하는 것이 되어야 할 것이라고 지적했다.
-
- IT/바이오
-
[기후의 역습(69)] 기후 변화로 남극 '녹지' 가속화
-
-
하수구 박테리아, 플라스틱 분해해 '먹이'로 활용⋯플라스틱 오염 해결 가능성 제시
- 하수구에서 서식하는 박테리아가 플라스틱을 분해하는 것으로 밝혀져 플라스틱 오염 해결 가능성을 제시했다. 미국 노스웨스턴 대학 연구팀이 코마모나스(Comamonas) 박테리아가 플라스틱을 분해하여 영양분으로 활용하는 메커니즘을 밝혀냈다고 PHYS.org가 3일(현지시간) 보도했다. 이 연구 결과는 환경 과학 분야 저명 학술지 '환경 과학 및 기술(Environmental Science & Technology)'에 게재됐다. 연구팀은 하수구에서 흔히 발견되는 코마모나스 박테리아가 플라스틱을 작은 조각(나노플라스틱)으로 분해한 다음, 특수 효소를 분비하여 플라스틱을 더 작은 단위로 분해하는 것을 확인했다. 박테리아는 이 과정에서 플라스틱에서 얻은 탄소 원자를 먹이로 사용한다. 코마모나스는 그람 음성균으로, 극성 편모를 이용하여 운동하는 호기성 세균이다. 다양한 유기물을 분해할 수 있는 능력을 가지고 있어, 환경 정화에 중요한 역할을 한다. 연구를 이끈 루드밀라 아리스틸드 교수는 "이번 연구는 하수구 박테리아가 플라스틱을 분해하고, 이를 탄소원으로 사용하는 전체 과정을 체계적으로 보여준 첫 번째 사례"라며 "플라스틱 분해에 관여하는 핵심 효소를 파악했으며, 이를 활용하여 환경 오염을 일으키는 플라스틱을 제거하는 기술 개발에 기여할 수 있을 것"이라고 밝혔다. 플라스틱 오염 문제 해결 기대 플라스틱, 특히 폴리에틸렌 테레프탈레이트(PET)는 자연 분해가 어려워 환경 오염의 주범으로 꼽힌다. PET는 전 세계 플라스틱 사용량의 12%를 차지하며, 하수구에 존재하는 미세 플라스틱의 최대 50%를 차지한다. 미세 플라스틱은 크기가 최대 5mm에 달하며, 나노 플라스틱은 그보다 더 작은 크기로 10억분의 1미터 단위로 측정한다. 이번 연구 결과는 코마모나스 박테리아를 이용하여 PET를 포함한 플라스틱 오염 문제를 해결하는 데 새로운 가능성을 제시한다. 미세 플라스틱 생성 과정 이해에 도움 연구팀은 코마모나스 박테리아가 플라스틱을 나노 크기의 입자로 분해하는 것을 확인하고, 이 과정에서 박테리아가 어떤 도구를 사용하는지 밝혀냈다. 아리스틸드 교수는 "이번 연구는 하수 처리 과정에서 미생물 활동으로 나노플라스틱이 생성될 수 있음을 보여준다"며 "하수구에서 강과 호수로 이어지는 플라스틱의 이동 경로를 이해하는 데 중요한 정보를 제공한다"고 강조했다. 연구팀은 이번 연구 결과를 바탕으로 플라스틱 분해 효소의 효율성을 높이는 연구를 진행할 계획이다. 또한, 코마모나스 박테리아를 이용한 플라스틱 오염 정화 기술 개발에도 박차를 가할 예정이다.
-
- 생활경제
-
하수구 박테리아, 플라스틱 분해해 '먹이'로 활용⋯플라스틱 오염 해결 가능성 제시
-
-
미국 동부 항만 노조 파업에 한국 경제도 '흔들'…반도체·자동차 산업 '비상등'
- 미국 동남부 지역 항만 노조 파업에 따른 물류 혼란이 우리나라 경제에도 큰 영향을 미칠 것으로 보인다. 미 항만 노동조합인 국제항만노동자협회(ILA)의 동남부지역은 지난달 30일 기존 노사 계약이 만료됐으나 임금 인상과 항만 자동화 등 현안을 둘러싸고 노사 갈등을 빚으면서 지난 1일 47년 만에 파업에 들어갔다. 미국 경제의 핵심 물류 허브인 동부 해안 항만이 마비되면서 하루 50억 달러에 달하는 막대한 경제적 손실이 발생하고 있다. 미국과의 교역 규모가 큰 한국 경제 역시 파업의 여파를 피해 갈 수 없다. 특히 반도체, 자동차, 전자제품 등 주요 산업이 미국 동부 항만을 통한 수출입에 의존하고 있어 피해가 가시화되고 있다. 2023년 기준 한국은 미국으로부터 약 128억 달러 규모의 제품을 수입했고, 반도체, 자동차 부품, 가전제품 등을 주요 수출품으로 하고 있다. 글로벌 공급망 '붕괴'⋯장기적 경기 침체 우려 미국 동부 항만 파업은 단순히 미국과 한국에 국한된 문제가 아니다. 아시아와 유럽을 잇는 중요한 물류 허브인 동부 항만의 마비는 글로벌 공급망 전체를 뒤흔들고 있다. 중국, 일본 등 다른 아시아 국가들도 수출입 물량 감소로 경제적 타격을 입고 있으며, 글로벌 공급망 붕괴가 장기화될 경우 전 세계적인 경기 침체로 이어질 수 있다는 우려가 나온다. 이번 파업으로 동부 항만을 주로 이용하는 유럽 자동차 제조사들이 가장 큰 타격을 받을 가능성이 있다는 전망이 나온다고 로이터는 전했다. BMW와 폭스바겐은 상황을 면밀히 모니터링하면서 영향을 최소화하기 위해 노력하고 있다고 밝혔다. 현대차 측은 물류 계열사인 현대글로비스가 노사 협상을 면밀히 모니터링하고 있으며 차량 인도를 위한 대안을 마련하고 있다고 말했다. 대체 공급망 확보 총력… 정부·기업, '긴급 대응' 나서 미국 정부는 노사 간 협상을 중재하며 사태 해결에 총력을 기울이고 있다. 기업들은 대체 물류 경로 확보에 나서는 등 피해 최소화를 위한 자구책 마련에 분주하다. 한국 정부와 기업들도 대체 공급망 구축, 긴급 대응책 마련 등 발 빠른 대응에 나서고 있다. 한국해양진흥공사가 2일 공개한 미 동부 항만의 주요 현안을 긴급 분석한 특집 보고서는 미 동부 항만의 운영 중단은 컨테이너선 실질 공급 감소와 운임 상승 요인으로 작용하면서 글로벌 공급망에도 적잖은 영향을 미칠 것으로 분석했다. 파업에 따라 항만 전반에 하역 차질, 항만 혼잡, 물류 기간 증가, 항로 우회, 운임 상승 등 물류비 부담 증가가 불가피하고 사태가 장기화할 경우 재고 부족, 컨테이너 장비 부족 등 문제까지 확산할 것으로 우려했다. 화주 입장에서도 화물을 미 서부나 중남미, 캐나다로 우회한 뒤 철도, 트럭 등 내륙 운송이나 항공 운송 등을 이용해 미 동부로 이동시킬 것으로 예상돼 항만 혼잡과 운임 상승을 야기할 것으로 예상했다. 특히 파업 이후 항만 운영을 정상화하는 데 상당한 시간이 걸려 파업을 2주만 지속하더라도 항만 정상화는 내년 이후에나 가능해질 것으로 전망했다. 글로벌 경제 위기… 공급망 취약성 '경고음' 미국 동부 항만 노동자 파업은 글로벌 경제의 취약성을 여실히 드러냈다. 전 세계적인 공급망 위기 속에서 장기적인 대책 마련이 시급하다는 목소리가 높아지고 있다. 해양진흥공사 관계자는 "현재 우크라이나 전쟁, 중동 사태 등으로 글로벌 공급망이 불안정한 가운데 미 동부 항만 파업까지 이어지면서 불확실성은 더 높아지는 상황"이라고 말했다.
-
- 경제
-
미국 동부 항만 노조 파업에 한국 경제도 '흔들'…반도체·자동차 산업 '비상등'
-
-
[기후의 역습(66)] 북극 해빙 속 '수은 폭탄'…지구온난화로 수백만 명 건강 위협
- 북극 영구 동토층이 전례 없는 속도로 녹으면서 인체에 위험한 수은 상당량이 방출되고, 먹이 사슬과 자연환경에 의존하는 지역 사회가 심각한 위험에 처해 있다고 사이테크데일리가 전했다. USC 돈사이프(Dornsife) 센터의 학자팀은 글로벌 전문가들과 협력해 수은의 위험을 평가하는 방법을 개발, 상황의 심각성을 보고서로 전했다. 기후 변화로 북극은 지구 평균보다 최대 4배 더 빨리 더워지고 있다. 유콘강은 알래스카를 가로질러 베링해를 향해 서쪽으로 흐르며 강둑을 따라 북극 영구 동토층을 침식하고 퇴적물을 하류로 운반한다. 그 퇴적물 안에는 독성이 강한 수은이 포함돼 강을 따라 이동한다. 수천 년 동안 영구 동토층에 격리되어 있던 수은이 강에 의해 침식돼 방출되고 있는 것이다. 수은은 북극 지역에 사는 500만 명에게 환경 및 건강 위협을 가하고 있다. 그중 300만 명 이상이 2050년까지 영구 동토층이 완전히 사라질 것으로 예상되는 지역에 거주하고 있다. 수은은 공기와 땅, 물 모두를 오염시킨다. 연구팀은 이를 '폭발을 기다리는 거대한 수은 폭탄'이라고 지칭했다. 돈사이프 센터 문학, 예술, 과학 전문가로 구성된 연구팀은 영구 동토층에서 강으로 방출되는 수은의 양을 측정하고 방출 대기중인 총 수은을 추정하는 정확한 방법론을 도입해 분석에 적용했다. 대상은 알래스카 유콘강 유역의 마을 두 곳이었다. 페어뱅크스에서 북쪽으로 약 160km 떨어진 비버, 비버에서 서쪽으로 400km 떨어진 후슬리아 마을을 집중 탐구했다. 연구팀의 조쉬 웨스트 교수는 지구의 자연적인 대기 순환은 오염 물질을 고위도로 이동시키는 경향이 있으며, 그 결과 북극에 수은이 대량 축적됐다고 설명한다. 영구 동토층에는 수은이 너무 많이 축적되어 있으며, 바다, 토양, 대기 및 생물권을 합친 양보다 훨씬 많을 수 있다는 것이다. 영구 동토층에서 상위 3m의 샘플을 사용한 과거의 수은 수치 측정은 최대 4배까지 차이가 났으며, 샘플링 깊이도 얕아 한계에 부딪혔다. 더 높은 정확도를 위해 연구팀은 강둑과 모래톱의 퇴적물에서 수은을 분석하고 토양층을 더 깊이 파들어가 더 신뢰할 수 있는 측정치를 도출했다. 연구팀은 또 위성의 원격 감지 데이터를 사용해 유콘강의 흐름이 얼마나 빨리 변하는지도 측정했다. 강의 경로에 따른 흐름의 변화가 수은이 함유된 퇴적물의 축적량에 영향을 미치기 때문이었다. 전체적인 역동적 변화를 이해하는 것은 수은의 이동 상황과 정확한 측정을 위해 매우 중요하다. 조사 결과 영구 동토층에서 녹아 자연으로 방출되는 수은은 당장은 거주민들에게 급성 독성 위협을 초래하지는 않는 것으로 나타났다. 그러나 수은의 영향은 시간이 지남에 따라 커지고 장기적으로는 위협적이라는 결론이다. 수은이 서서히 먹이사슬에서 축적됨에 따라 인체의 수은 노출이 증가한다. 특히 이 지역사회의 경우 사냥으로 충당하는 물고기와 육류를 통해 수은 중독이 발생할 가능성이 높다. 반면 식수를 통한 수은 오염 위험은 최소치로 추정된다. 결국 대부분의 수은 노출은 음식을 통해 이루어질 것이라는 예상이다. 변수는 있다. 강이 동토층을 침식하고 수은이 함유된 퇴적물을 운반하더라도, 강은 퇴적물을 모래톱과 둑을 따라 다시 흙으로 퇴적시킨다. 상당한 양의 수은을 다시 땅 속으로 묻고 있다는 것. 따라서 수은이 지역사회에 얼마나 큰 위협을 초래하는지를 실제로 파악하려면 침식과 재매립 과정을 모두 이해해야 한다는 지적이다. 그럼에도 불구하고 수은의 장기적인 악영향은 파괴적일 수 있으며, 특히 사냥과 낚시에 의존하는 북극 지역사회의 경우 더욱 심각하다. 연구팀은 개발한 수은 측정 도구를 개선하고 정확성을 높인다는 계획이다.
-
- 포커스온
-
[기후의 역습(66)] 북극 해빙 속 '수은 폭탄'…지구온난화로 수백만 명 건강 위협
-
-
[우주의 속삭임(59)] 블랙홀, 냉각된 별일까? 아인슈타인 이론 도전하는 새로운 가설
- 블랙홀은 '얼어붙은 별'이라는 새로운 이론이 등장했다. 극도로 강력한 중력을 가진 블랙홀은, 그 중력이 너무 강해서 빛조차도 탈출할 수 없기 때문에 '검은 구멍'이라고 불린다. 또한 블랙홀은 엄청난 질량을 아주 작은 공간에 압축하고 있어서, 주변의 모든 것을 끌어당긴다. 블랙홀의 중심에는 '특이점'이라고 불리는 점이 있다. 이곳에서는 밀도와 중력이 무한대가 되어 우리가 알고 있는 물리 법칙이 적용되지 않는다. 또한 빛 조차도 빠져나갈수 없는 경계인 '사건의 지평선'이라는 두 가지 특징을 갖는다. 하지만 이 모델은 양자 역학이 도입되면서 심각한 문제에 부딪혔다. 게다가 1970년대에 스티븐 호킹은 사건의 지평선 근처의 양자 효과가 우주 진공에 입자를 생성하는 '호킹 복사(호킹의 복사 역설)'라고 알려진 과정을 일으킨다는 사실을 발견했다. 블랙홀은 이처럼 과학 법칙을 거스르는 특이한 존재로, 해결할 수 없는 많은 역설과 연관되어 왔다. 최근 남아프리카공화국의 로즈대학교와 이스라엘의 벤구리온 대학교 공동 연구팀은 블랙홀에 대한 우리의 모든 지식을 바꿀 수 있는 새로운 이론을 제시했다. 연구팀은 얼어붙은 별 모델에 대한 상세한 이론 분석을 수행했으며, 이 모델이 사건의 지평선과 특이점이 모두 없기 때문에 블랙홀이 실제로 '얼어붙은 별(frozen star)'일 수 있다고 주장했다. 얼어붙은 별은 냉각되어 더 이상 빛이나 열을 방출하지 않는 별의 잔해로, 흑색 왜성(black dwarf)이라고도 불리며 별의 마지막 단계를 나타낸다. 일반적으로 과학자들은 별이 흑색 왜성에 도달하는데 수 조년이 걸린다고 추정한다. 우리 우주는 137억년 밖에 되지 않았기 때문에 아직 흑색 왜성은 존재하지 않는다. 그러나 연구팀은 이번 연구에서 흑색 왜성과 블랙홀 사이의 유사성을 자세히 분석해, 기존 블랙홀 모델과 관련된 많은 역설을 해결할 수 있음을 발견했다. 현재 블랙홀 모델의 문제점 과학계는 블랙홀에 관해서는 1915년 알버트 아인슈타인이 일반 상대성 이론에서 제시한 내용을 따르고 있다. 아인슈타인에 따르면 블랙홀에는 두 가지 특징이 있다. 첫째, 중심에 '특이점(singularity)'이라고 하는 무한 밀도의 점이 존재한다. 둘째, 블랙홀에는 '사건의 지평선(event horizon)'이 있어 빛조차도 탈출할 수 없는 경계를 형성한다. 이 이론은 널리 받아들여지고 있지만, 몇 가지 문제점에 직면해 있다. 예를 들어 실제 관측 결과는 자연에 무한대가 존재하지 않음을 시사하며, 이것이 물리학에서 모든 것이 유한하다고 간주되는 이유다. 또 다른 모순은 앞서 말했듯이 스티븐 호킹의 복사 역설에서 발생한다. 이 역설은 블랙홀이 복사를 방출하고 시간이 지남에 따라 질량을 천천히 잃어 결국 완전히 증발한다고 제안한다. 그러나 아인슈타인은 블랙홀에서 아무것도 빠져나갈 수 없다고 했다. 또한 블랙홀이 증발하면 블랙홀을 형성한 물질이 파괴된다. 그러나 이것은 정보 보존의 법칙에 위배된다. 정보 보존 법칙은 물질과 마찬가지로 정보도 생성되거나 파괴될 수 없다고 명시하며, 양자 역학의 기초를 형성한다. 연구팀은 블랙홀을 특이점과 사건의 지평선이 없는 '얼어붙은 별'로 간주하면 이러한 모든 역설이 해결된다고 밝혔다. 블랙홀은 얼어붙은 별일까? 연구팀은 블랙홀의 엔트로피 및 열 복사와 같은 열역학적 특성의 이론적 값이 흑색 왜성의 값과 유사함을 입증했다. 이번 연구의 제1 저자인 이스라엘 벤 구리온 대학교의 라미 브루스타인 물리학 교수는 라이브 사이언스와의 인터뷰에서 "우리는 얼어붙은 별이 사건의 지평선이 없지만 (거의) 완벽한 흡수체처럼 행동하고 중력파의 원천으로 작용하는 방법을 보여주었다"며 이러한 물체는 블랙홀처럼 그 위에 떨어지는 거의 모든 것을 흡수할 수 있다고 지적했다. 그는 "게다가 이 천체들은 기존 블랙홀 모델과 동일한 외부 기하학적 구조를 갖고 있으며 기존의 열역학적 특성을 재현한다"고 덧붙였다. 블랙홀이 얼어붙은 별이라면 무한 밀도의 점이나 특이점이 없다는 것을 의미한다. 이는 블랙홀이 실제 세계의 물체와 동일한 유한성 관련 규칙을 따른다는 것을 시사한다. 또한 사건의 지평선이 없다는 것은 복사와 입자가 경계를 탈출할 수 있음을 의미하며, 이는 호킹이 블랙홀에서 빛이 방출된다는 주장과 일치한다. 브루스타인은 "우리는 얼어붙은 별이 지평선이 없음에도 불구하고 (거의) 완벽한 흡수체처럼 행동하고 중력파의 원천 역할을 하는 방법을 보여주었다. 또한 기존 블랙홀 모델과 동일한 외부 기하학적 구조를 생성하고 기존의 열역학적 특성을 재현한다"고 말했다. 그러나 이 연구에도 몇 가지 한계가 있다. 예를 들어 흑색 왜성은 내부 구조를 가지고 있다고 믿어지지만 블랙홀의 경우에는 그렇지 않다. 또한 블랙홀이 실제로 얼어붙은 별이라는 것을 확인하는 실험적 증거는 없다. 따라서 이 가설을 검증하려면 추가 연구가 필요하다. 이 연구는 '피지컬 리뷰 D(physical Review D)' 저널에 게재됐다.
-
- IT/바이오
-
[우주의 속삭임(59)] 블랙홀, 냉각된 별일까? 아인슈타인 이론 도전하는 새로운 가설
-
-
인간 뇌조직에서 미세 플라스틱 첫 검출⋯잠재적 위험성 제기
- 인간 뇌조직에서 미세 플라스틱이 처음으로 검출되어 잠재적인 건강 위험에 대한 우려가 높아지고 있다. 국제 연구팀이 15명의 사망자 뇌 조직 중 8명의 후각 신경구(코에서 냄새 정보를 받아 들이는 뇌조직 덩어리)에서 미세 플라스틱을 발견했다고 사이언스얼라트와 CNN 등 다수 외신이 보도했다. 이는 뇌 혈전에서 미세 플라스틱이 발견된 이후 뇌조직 자체에서 미세 플라스틱을 보고한 첫 번째 연구다. 베르린 자유 대학의 박사후 미세 플라스틱 연구원이자 이번 연구의 주저자인 루이스 페르난도 아마토-로렌소는 CNN에 "이 구조에 존재하면 뇌의 다른 영역으로 전이될 수 있다"고 밝혔다. 아마토-로렌소는 입자의 크기와 모양이 섬유보다 작기 때문에 뇌와 척수를 여러 유해 물질로부터 보호하는 막인 혈액뇌장벽의 미세아교세포를 우회할 가능성이 더 높다고 덧붙였다. 이전 연구에서 미세 플라스틱과 나노 플라스틱은 우리 몸의 폐 조직과 모유와 태반, 고환 등 생식기에서도 발견됐다. 아울러 플라스틱 페트 병에 든 생수 등 마시는 물에서도 미세 플라스틱이 검출돼 경종을 울렸다. 연구팀은 출판된 논문에서 나일론의 현미경 사진을 게재했으며 "미세 플라스틱은 다양한 인체 조직에서 발견됐지만 인간의 뇌에서 존재한다는 사실은 기록되지 않았으며, 이는 잠재적인 신경 독성 효과와 미세 플라스틱이 뇌 조직에 도달하는 메커니즘에 대한 중요한 의문을 제기한다"고 기술했다. 이번 연구는 지난 16일 미국의학협회 저널 '자마 네트워크 오픈(JAMA Network Open)'에 발표됐다. 검출된 미세 플라스틱은 주로 입자 및 섬유 형태였으며, 폴리프로필렌이 가장 많이 발견됐다. 입자 크기는 5.5마이크로미터(㎛)에서 26.4마이크로미터 사이로, 평균적인 인간 머리카락 너비(약 8만 나노미터)의 1/4도 되지 않았다. 이보다 작은 것은 나노 플라스틱으로 10억분의 1미터 단위로 측정해야 한다. 폴리프로필렌은 포장재부터 자동차 부품, 의료 기기에 이르기까지 가장 널리 사용되는 플라스틱 중 하나이다. 이전 연구에서는 대기 오염 입자가 후각 경로를 따라 올라가는 것을 발견했지만, 이번 연구에서는 미세 플라스틱이 후각구 바로 아래 쪽의 작은 구멍을 통해 뇌까지 동일한 경로를 이용할 수 있음을 시사한다. 연구팀은 "코와 후각구에서 미세 플라스틱이 확인된 것은 취약한 해부학적 구조와 함께 후각 경로가 외인성 입자가 뇌로 들어가는 중요한 진입 지점이라는 개념을 강화한다"고 설명했다. 미세 플라스틱의 건강 영향은 아직 명확하지 않지만. 뇌 내 합성 물질 농도 증가는 긍정적인 신호가 아니다. 최근 연구에 따르면 미세 플라스틱은 신경 손상 및 신경 질환 위험 증가와 연관 있을 수도 있다. 또한 대기 오염과 인지 문제 사이의 연관성은 이미 잘 알려져 있다. 만약 미세 플라스틱이 비강으로 유입된다면 문제를 악화시킬 가능성이 있다. 연구팀은 "파킨슨병과 같은 일부 신경 퇴행성 질환은 초기 증상으로 비강 이상과 관련이 있는 것으로 보인다"고 말했다. 생분해성이 더 높은 플라스틱을 생산하려는 지속적인 노력에도 불구하고, 플라스틱 생산량은 지난 20년 동안 두 배로 늘었다. 지난 9월 4일 '네이처' 저널에 게재된 또다른 연구에 따르면 전 세계는 매년 5700만톤의 플라스틱 오염을 발생시키고 있다. 영국 리즈대학교 연구팀은 매년 발생하는 오염 물질은 약 5200만톤으로, 뉴욕시 센트럴 파크를 엠파이어스테이트 빌딩 높이만큼 플라스틱 쓰레기로 채울 수 있는 수준이라고 밝혔다. 5200만톤의 플라스틱 쓰레기를 서울의 여의도에 쌓으면 높이는 약 1만5600km에 이른다. 이는 지구 반지름(약 6371km)의 두 배가 넘는 엄청난 높이다. 참고로 지구에서 가장 높은 에베레스트 산의 해발 고도는 약 8846미터이다. 이번 연구는 플라스틱 오염의 심각성을 다시 한 번 강조하며, 미세 플라스틱의 건강 영향에 대한 추가 연구의 필요성을 제기한다.
-
- IT/바이오
-
인간 뇌조직에서 미세 플라스틱 첫 검출⋯잠재적 위험성 제기
-
-
[우주의 속삭임(58)] 지구 궤도 진입하는 소행성 '미니문', 두 달간 지구 공전
- 지구가 이달 말 또 다른 달을 얻게 된다. 이 작은 소행성은 올해 말까지 지구의 중력에 의해 묶여 지구를 공전하게 된다고 라이브사이언스가 전했다. '2024 PT5'라고 불리는 소행성 미니문은 지난 8월 7일 '소행성 지구 충돌 최종 경보 시스템(ATLAS)'에 의해 포착됐다. 이 우주 암석은 오는 9월 29일에서 11월 25일 사이에 지구를 한 바퀴 완전히 공전한 후 지구의 중력에서 벗어나게 된다. 그러나 지구를 57일간 근접 비행함에도 불구하고, 이 소행성은 너비가 10m에 불과해 육안으로 발견하기는 어렵다. 지구는 때때로 이 같이 여분의 달을 잡아당긴다. 예를 들어, 천문학자들은 지난 1981년과 2022년에도 비슷한 소행성을 발견했다. 이 때 '2022 NX 1'이라는 천체는 지구와 잠깐 달과 같은 동반자가 되었다가 지구 중력을 벗어나 멀리 날아갔다. 전문가들은 AAS 연구노트(Research Notes of the AAS)에 이 같은 연구 결과를 발표했다. 연구진은 논문에서 "지구는 정기적으로 근지구 천체(NEO: Near-Earth Object) 개체군에서 소행성을 포획하고 궤도로 끌어들여 미니문을 만들 수 있다"라고 썼다. 이어 "최근 발견된 아폴로급 NEO인 2024 PT5는 2022 NX1과 유사한 경로를 따라가며 곧 미니문이 될 수 있다"고 덧붙였다. 나사(NASA)는 지구에서 약 1억 2000만 마일(1억 9000만 km) 이내에 있는 모든 우주 물체를 '근지구 천체'로 간주하고, 지구에서 약 470만 마일(750만 km) 이내에 있는 모든 대형 천체를 '잠재적으로 위험하다'고 분류한다. 나사는 24시간마다 전체 밤하늘을 스캔하는 4개의 망원경으로 구성된 ATLAS를 사용해 약 2만8000개의 소행성의 위치와 궤도를 추적한다.
-
- 포커스온
-
[우주의 속삭임(58)] 지구 궤도 진입하는 소행성 '미니문', 두 달간 지구 공전
-
-
[신소재 신기술(103)] AI 분석 통해 '자폐증 코드 해독' 획기적인 진전
- 인공지능(AI) 분석을 통해 자폐증을 진단하는 방법이 개발돼 주목된다. 이 방법을 통해 자폐증 환자 가족들은 장기간의 불확실성을 겪지 않고 조기 치료가 가능해질 것이라고 영국 데일리메일이 전했다. 새로운 AI 분석은 뇌의 생물학적 활동을 통해 자폐증의 유전적 마커를 89~95%의 정확도로 식별할 수 있다고 한다. 새로운 자폐증 진단 방법은 자기공명영상(MRI)을 통한 표준 뇌 매핑으로 시작, AI 도구를 통해 스캔을 다시 분석함으로써 자폐증을 나타낼 수 있는 뇌 내 단백질, 영양소 및 기타 과정의 움직임을 감지한다. 자폐증은 전통적으로 언어 구사 등 사람의 일상 행동 과정을 진행한 의료진에 의해 진단된다. 그리고 자폐증은 강력한 유전적 기반을 가지고 있다. 미국 질병통제예방센터(CDC)에 따르면 현재 자폐증은 36명의 아동 중 1명 꼴로 나타나고 있다. 이는 미국에서만 매년 9만 명 이상의 아동이 자폐증을 앓고 있음을 의미한다. 그러나 자폐증은 발견하기 어렵기로 악명이 높으며, 자폐증을 앓고 있는 대다수의 어린이는 5세가 될 때까지 진단을 받지 못하고 명확한 행동 징후를 보인다. 설상가상으로 식별 과정에는 일반적으로 수년간의 불확실성, 수십 번의 병원 방문, 언어 검사, 관찰 인터뷰 등을 포함한 다양한 검사가 수반되어 어린이와 가족에게 스트레스가 될 수 있다. 연구진은 이 새로운 진단 기법을 통해 의사들이 자폐증을 유발하는 보다 구체적인 유전자를 찾아낼 수 있을 것으로 기대하고 있다. 자폐증이 뇌의 성장과 작동 방식을 변화시키는 실제 생물학적 경로를 밝혀내는 것이다. 연구진은 이 방법이 "자폐증 코드를 해독한다"고 밝혔다. 그러나 이 방법이 언제쯤 상업적으로 사용될지에 대해서는 언급하지 않았다. 세인트루이스의 워싱턴 대학 방사선과 신지니 쿤두 박사는 대학원생 연구원 시절, 이 새로운 기계 학습 AI 도구와 수학적 뇌 모델링 기술을 개발했다. 뇌에서 생물학적 물질이 수송되는 방식을 따서 '수송 기반 형태 측정법'이라고 명명된 이 기술은 유전 코드의 핵심 부분과 연결된 패턴을 식별하는 데 중점을 두고 있다. '복제 수 변이(CNV)'라고 불리는 유전자 코드의 염기서열은 삭제되거나 복제된 DNA 세그먼트를 보여준다. 이러한 변화는 과거 연구에서 자폐증과 관련이 있는 것으로 나타났다. 그러나 뇌 형태와의 연관성, 즉 회백질이나 백질과 같은 다양한 유형의 뇌 조직이 뇌에서 어떻게 배열되는지는 잘 알려져 있지 않다. CNV가 뇌 조직 형태와 어떻게 관련이 있는지 알아내는 것은 자폐증의 생물학적 기초를 이해하는 데 중요한 첫 단계가 된다. 쿤두 교수와 UC 샌프란시스코 연구진은 이 같은 연구 결과를 '사이언스 어드밴시스' 저널에 발표했다. 연구에는 자폐증과 관련된 유전적 변이가 알려진 피험자 집단인 비영리 시몬스 그룹의 참여자들이 핵심 데이터를 제공했다. 연구진은 결과를 흐리게 할 수 있는 변수를 줄이기 위해 시몬스 그룹과의 유사성(예: 동일 연령, 성별, 비언어적 IQ)을 기반으로 다른 의료 또는 임상 환경에서 '대조군' 환자'를 모집했다. MRI 스캔 등 의료 데이터를 처리하는 대부분의 기존 머신러닝 방법은 해당 데이터에 숨겨진 많은 생물학적 과정에 대한 수학적 모델을 통합하지 않는다. 과거의 AI 모델은 대신 다양한 환자의 건강 데이터에서 비정상 또는 통계적 이상을 식별하기 위한 패턴만 찾았다. 그러나 이번에 개발한 '수송 기반 형태 계측법'은 연구진이 CNV 및 자폐증과 관련된 결실 또는 중복을 넘어 뇌 구조 내의 훨씬 더 뚜렷한 생물학적 변이를 구별할 수 있다. 연구진은 모든 의료 데이터의 90%가 유사한 영상에서 나온다는 점을 감안할 때, 이 방법이 새로운 유용한 자폐증 정보를 도출하는 데 도움이 될 것으로 기대했다.
-
- IT/바이오
-
[신소재 신기술(103)] AI 분석 통해 '자폐증 코드 해독' 획기적인 진전
-
-
[신소재 신기술(102)] 국내 연구진, 플라스틱 생산 미생물 개발⋯석유 기반 플라스틱 대체 가능성 열어
- 국내 연구진이 석유 기반 플라스틱 산업의 대안으로 생분해성 플라스틱을 생산하는 미생물 개발에 성공했다. 한국과학기술원(KAIST) 연구팀은 플라스틱의 강성과 열 안정성을 높이는 고리형 구조의 폴리머를 생산하는 박테리아를 개발했다. 해당 기술에 대해서는 인터레스팅엔지니어링과 물리학org, 사이테크 데일리 등 다수 외신이 조명했다. 외신에서는 "한국 연구진이 개발한 새로운 '살아있는 플라스틱'은 버려지면 스스로 파괴된다"고 호평했다. 연구를 주도한 KAIST 화학 및 생물분자 연구 책임자인 이상엽 교수는 "(플라스틱) 바이오 제조는 기후 변화와 세계적인 플라스틱 위기를 완화하는 데 중요한 역할을 할 것"이라며 "미래를 위한 더 나은 환경을 보장하기 위해 국제적인 협력을 통해 바이오 기반 제조를 촉진해야 한다"고 강조했다. 일반적으로 고리형 분자는 미생물에 독성을 나타내기 때문에 연구진은 독특한 대사 경로를 설계했다. 이를 통해 대장균은 폴리머를 합성할 뿐만 아니라 폴리머와 그 전구체의 축적을 견딜 수 있게 되었다. 결과적으로 생성된 폴리머는 생분해성이며 약물 전달 시스템과 같은 생물 의학 분야에 유용하게 활용될 수 있는 물리적 특성을 가지고 있다. 최초의 미생물을 이용한 방향족 및 지방족 폴리머 생산 포장과 산업 분야에서 사용되는 대부분의 플라스틱(PET, 폴리스티렌 등)은 고리 모양의 '방향족' 구조를 포함하고 있다. 이전 연구에서는 미생물을 이용하여 방향족 및 지방족(비고리형) 단량체가 혼합된 폴리머를 생산하는 데 성공했지만, 이번 연구는 미생물이 방향족 측쇄(곁가지)를 가진 단량체로만 구성된 폴리머를 생산한 최초의 사례다. 이를 위해 연구팀은 다양한 미생물의 효소를 통합하여 새로운 대사 경로를 만들었고, 이를 통해 박테리아가 페닐락테이트라는 방향족 단량체를 생산할 수 있도록 했다. 그런 다음 컴퓨터 시뮬레이션을 활용하여 이러한 페닐락테이트 단량체를 완전한 방향족 폴리머로 효율적으로 조립할 수 있는 폴리머라제 효소를 설계했다. 이상엽 교수는 보도 자료에서 "이 효소는 자연에 존재하는 어떤 효소보다 폴리머를 더 효율적으로 합성할 수 있다"고 설명했다. 산업용 생산을 위한 규모 확대 연구팀은 박테리아의 대사 경로와 폴리머라제 효소를 개선한 후, 6.6리터(1.7갤런) 발효조에서 미생물을 배양하여 실험 규모를 확대했다. 최적화된 균주는 리터당 12.3g의 폴리머(폴리-D-페닐락테이트)를 성공적으로 생산했다. 그러나 상용화를 위해서는 이 수율을 리터당 최소 100g까지 높이는 것을 목표로 하고 있다. 이 교수는 "그 특성에 근거해 우리는 이 폴리머가 특히 약물 전달에 적합할 것이라고 생각한다"며 "주로 분자량이 낮기 때문에 PET만큼 강하지는 않다"고 말했다. 향후 연구진은 다양한 화학적 및 물리적 특성을 가진 추가적인 방향족 단량체 및 폴리머를 개발할 계획이다. 특히 산업용으로 필요한 더 높은 분자량을 가진 폴리머 개발에 주력할 예정이다. 또한 대규모 생산을 가능하게 하기 위해 공정 최적화 작업도 계속 진행할 계획이다. 이상엽 교수는 "수율을 높이기 위해 더 많은 노력을 기울이면 이 방법을 더 큰 규모로 상용화할 수 있을 것"이라며 "생산 공정의 효율성뿐만 아니라 회수 공정도 개선해 생산된 폴리머를 경제적으로 정제할 수 있도록 노력하고 있다"고 밝혔다. 이 연구는 지난 8월 21일 생명공학 분야의 최신 동향과 미래 전망에 대한 리뷰 논문을 주로 다루는 학술지 '트렌드 인 바이오테크놀로지(Trends in Biotechnology)'에 게재됐다.
-
- IT/바이오
-
[신소재 신기술(102)] 국내 연구진, 플라스틱 생산 미생물 개발⋯석유 기반 플라스틱 대체 가능성 열어
-
-
[먹을까? 말까?(53)] 하버드 연구, 붉은 육류 속 헴 철분 당뇨병 위험 높여
- 소고기 등 붉은 색 고기에 함유된 철분이 당뇨병 발병과 연관성이 있는 것으로 밝혀졌다. 미국 하버드 T.H. 챈 보건대학원 연구팀은 붉은 육류 및 동물성 식품에 함유된 헴 철분의 과다 섭취가 제2형 당뇨병 발병 위험을 높인다는 연구 결과를 발표했다고 사이테크데일리가 전했다. 연구팀은 헴 철분과 제2형 당뇨병 사이의 연관성뿐만 아니라 그 기저에 깔린 대사 경로까지 밝혀냈다. 반면, 식물성 식품에 함유된 '비헴 철분'은 당뇨병 위험과 관련이 없는 것으로 나타났다. 이번 연구는 붉은 육류 섭취를 줄이고 식물성 식품 위주의 식단을 채택하는 것이 당뇨병 예방에 도움이 될 수 있음을 시사한다. 또한, 최근 인기를 얻고 있는 식물성 대체육에 헴 철분을 첨가하는 것에 대한 우려를 제기했다. 철분 섭취와 제2형 당뇨병 연관성 입증 연구팀은 '간호사 건강 연구 I 및 II'와 '건강 전문가 추적 연구'에 등록된 20만6615명 성인의 36년간 식이 보고서를 분석해 철분과 제2형 당뇨병 사이의 연관성을 평가했다. 팀은 총 철분, 헴 철분, 비헴 철분, 식이 철분(음식에서 섭취), 보충 철분(보충제에서 섭취) 등 다양한 형태의 철분 섭취량과 제2형 당뇨병 발병 여부를 조사했다. 또한 참가자 일부를 대상으로 헴 철분과 제2형 당뇨병 사이의 생물학적 메커니즘을 분석했다. 연구팀은 참가자 3만7544명의 혈장 대사 바이오마커(인슐린 수치, 혈당, 형중 지질, 염증, 철 대사 관련 바이오마커 포힘)를 조사하고, 참가자 9024명의 대사체 프로파일(음식 또는 화학 물질 분해 등 신체 과정에서 파생된 저분자 대사산물의 혈장 수치)을 분석했다. 헴 철분 섭취량 높을수록 당뇨병 위험 증가 연구 결과 헴 철분 섭취량이 높을 수록 제2형 당뇨병 위험이 증가하는 것으로 나타났다. 헴 철분 섭취량이 가장 높은 그룹은 가장 낮은 그룹에 비해 제2형 당뇨병 발병 위험이 26% 높았다. 또한 헴 철분은 가공되지 않은 붉은 육류와 관련된 제2형 당뇨병 위험의 절반 이상을 차지하며, 여러 당뇨병 관련 식이 패턴의 위험에도 상당 부분 기여하는 것으로 밝혀졌다. 반면, 이전 연구 결과와 마찬가지로 식이 또는 보충제를 통한 비헴 철분 섭취는 제2형 당뇨병 위험과 유의미한 관련성이 없는 것으로 나타났다. 공중 보건 및 식이 권장 사항에 대한 시사점 연구팀은 이번 연구 결과가 당뇨병 발생률 감소를 위한 식이 지침 및 공중 보건 전략 수립에 중요한 시사점을 제공한다고 강조했다. 특히, 식물성 대체육에 헴 철분을 첨가해 육류의 맛과 외관을 향상시키는 것에 대해서는 건강 영향에 대한 추가 연구가 필요하다고 밝혔다. 팀은 "이번 연구는 당뇨병 예방을 위한 식단 선택의 중요성을 강조한다"며 "특히 붉은 육류에서 헴 철분 섭취를 줄이고 식물성 식품 위주의 식단을 채택하는 것이 당뇨병 위험을 낮출 수 있는 효과적인 전략이 될 수 있다"고 말했다. 한편, 연구팀은 이번 연구가 몇 가지 한계점을 가지고 있다고 인정했다. 역학 데이터에서 혼란 변수 및 측정 오류를 완전히 설명하지 못했을 가능성과, 주로 백인을 대상으로 한 연구 결과를 다른 인종 및 민족 그룹에 일반화하는 데 주의가 필요하다는 점을 지적했다.
-
- 생활경제
-
[먹을까? 말까?(53)] 하버드 연구, 붉은 육류 속 헴 철분 당뇨병 위험 높여
-
-
두 희귀 유전병, 대사-면역 결함 밀접한 연관성 드러나
- 대사와 면역의 두 가지 유전적인 질병이 지금까지 알려진 것보다 더 많은 공통점을 가지고 있다는 최신 연구 결과가 나왔다고 메디컬익스프레스가 전했다. 미국 테네시주 밴더빌트 대학 연구진이 수행한 이 연구 결과는 사이언스의 자매 학술지 '사이언스 면역학(Science Immunology)' 저널에 발표됐다. 연구 결과는 면역 체계 T 세포(세포의 면역을 담당하는 림프구의 일종)의 기능에 매우 중요한 '새로운 대사 유전자 세트'를 가리키며, 이러한 대사 또는 면역 장애를 가진 환자들의 치료를 개선할 가능성을 높였다는 평가다. 이 연구는 선천적인 신진대사 오류(세포가 음식을 에너지로 전환하는 과정의 장애)와 선천적인 면역 오류(면역 체계 기능에 영향을 미치는 장애)를 일으키는 유전자들을 조사 분석한 결과다. 현재까지 이러한 희귀하고 복잡한 질병들은 여전히 명쾌하게 규명되지 않았다. 밴더빌트 대학 의료센터의 제프리 러스멜 및 앤드류 패터슨 박사는 "이전에는 대사와 면역이라는 두 질병 목록에 모두 들어가 있는 공통 유전자는 소수에 불과했다. 이번 연구 결과 우리는 더 많은 유전자가 중복돼 있다는 사실을 발견했다“고 말했다. 또한 "우리의 연구는 선천적인 신진대사의 오류와 관련된 많은 유전자들이 돌연변이가 발생할 때 T 세포 기능에도 영향을 미칠 수 있다는 것을 보여 주었다"고 밝혔다. 연구 결과에 따르면 선천적 신진대사 이상이 있는 환자는 치료에 영향을 미칠 수 있는 면역 결함도 있을 수 있다. 반대로 대사 결함은 선천적 면역 결함이 있는 환자의 증상에 영향을 미칠 수 있다. 러스멜 교수는 "아직 규명해야 할 것이 훨씬 많지만, 이러한 연관성들은 다른 치료법들을 시사할 수 있다”며 “이 질병들은 다른 범주라기 보다는 연속선의 일부다. 그들 사이에는 회색 지대가 있으며, 이 둘을 교차하는 새로운 종류의 선천적 면역 대사 오류가 발생할 수 있다”고 설명했다. 패터슨과 연구팀은 유전자 편집 기술 크리스퍼(CRISPR: 유전자가위) 접근법을 사용해 면역 결함이 있는 대사 유전자의 선천적 결함과 대사 결함이 있는 면역 유전자의 선천적 결함을 검사했다. 또한 각 세트에서 면역 및 대사 결함이 있는 유전자를 추가로 분석했다. 기계론적 영향을 더 주의 깊게 조사하기 위해서였다. 연구팀의 목표는 대사 경로가 T 세포 기능을 조절하는 방식을 발견하고, 면역 매개 질환에 대한 표적 치료법을 개발하는 것이었다. 패터슨은 "우리가 한 일은 추가 조사를 위한 기반을 마련하는 것"이라고 말했다. 그는 "우리가 연구한 두 가지 사례는 새로운 생물학과 새로운 메커니즘을 가리키고 있으며, T 세포 기능에서 그들의 역할을 분석하기 위해 수백 개의 다른 유전자를 식별하고 확인한 것“이라고 설명했다. 이 연구 결과는 모두가 이용할 수 있도록 공개됐다.
-
- IT/바이오
-
두 희귀 유전병, 대사-면역 결함 밀접한 연관성 드러나