검색
-
-
뮌헨공대, 태양광 수소 생산 세계 최고…경제성 확보 과제
- 독일 뮌헨대학교 연구팀이 태양광 수소 생산 분야에서 세계 기록을 경신했다. 이들은 햇빛을 활용하여 포름산으로부터 수소를 생산하는 플라즈몬 나노구조를 개발하여 녹색 수소 개발에 획기적인 발전을 이루어냈다. 산업 전문매체 '오일프라이스(Oil Price)'는 뮌헨대학교 연구팀의 이 발견이 획기적이라면서도 고가의 원자재를 사용하는 한계로 인해 경제적인 측면에서 더 효과적인 대안을 모색해야 한다고 지적했다. 뮌헨대학교 연구팀은 녹색 수소 생산 분야에서 세계적인 기록을 경신했으며, 이러한 성과를 이루어낸 고성능 나노구조를 개발했다. 뮌헨대학교 실험물리학 및 에너지 변환 교수인 에밀리아노 코르테스(Emiliano Cortés)는 나노우주로의 도약을 이루어냈다. 코르테스 교수는 "태양광의 고에너지 입자가 원자 구조와 상호 작용하는 지점에서 연구가 시작되었다"라며 "태양에너지를 더 효율적으로 활용하기 위한 소재 솔루션을 연구 중"이라고 설명했다. 이러한 발견은 새로운 태양전지와 광촉매의 가능성을 열어두고 있다. 그러나 코르테스 교수는 "햇빛이 희석돼 지구에 도달하기 때문에 면적당 에너지가 상대적으로 낮다"는 문제에 직면하고 있다고 말했다. 헤란 박사는 "먼저, 우리는 플라즈몬 금속(우리 경우에는 금)에서 10~200나노미터 범위의 입자를 생성했다"라며 "이 크기에서 가시광선은 금 전자와 매우 강하게 상호작용하여 공명 진동을 유발한다"라고 설명했다. 이러한 현상을 통해 나노입자는 더 많은 햇빛을 포착하고, 매우 높은 에너지의 전자로 변환할 수 있다는 것을 밝혔다. 헤란 박사는 "이러한 과정에서 매우 국지적이고 강한 전기장이 핫스팟에서 발생한다"고 말했다. 이러한 핫스팟은 금 입자 사이에서 형성되며, 따라서 두 사람은 백금 나노입자를 이러한 핫스팟 사이 공간에 직접 배치하는 아이디어를 얻었다. 오늘날 수소는 주로 화석 연료, 주로 천연가스에서 생산된다. 그러나 두 사람은 "플라즈몬 금속과 촉매 금속의 결합을 통해 이산화탄소를 유용한 물질로 변환하는 등 다양한 산업 응용 분야를 위한 강력한 광촉매를 개발 중이다"라고 밝혔다. 이들은 이미 이러한 물질 개발에 대한 특허를 취득했다. 또한, 이전에 매사추세츠 공과대학(MIT)의 엔지니어들이 태양열을 활용하여 온실가스 배출 없이 수소를 효율적으로 생산하는 '태양열화학수소' 시스템을 개발했다. MIT, 태양열 최대 40% 활용 기존의 태양열 열화학 수소 생산 시스템은 효율성이 낮았지만, MIT의 설계는 태양열을 최대 40%까지 효율적으로 활용할 수 있다. 이 시스템은 태양열을 활용하여 물을 분해하고, 이 과정에서 생성된 수소를 청정 연료로 사용할 수 있게 한다. 이렇게 생산된 수소는 장거리 트럭, 선박, 항공기의 연료로 사용될 수 있으며, 온실가스가 전혀 배출되지 않는다. MIT의 새로운 시스템은 집중형 태양열 발전소(CSP) 방식을 사용하며, 다수의 거울을 활용하여 태양광을 집중시켜 열을 발생시킨다. 이렇게 집중된 열은 수소 생산에 활용된다. 한국의 DGIST(대구경북과학기술원)와 단국대학교 연구팀은 친환경적인 양자점을 활용하여 세계 최고 수준의 태양광 수소 생산 기술을 개발했다. 이 기술은 양자점의 물성을 조절하여 광전기화학 소자에 적용, 태양광을 효과적으로 수소 생산에 활용하는 방법을 제공한다. 게다가 한국의 DGIST(대구경북과학기술원)와 단국대학교 연구팀은 친환경적인 양자점을 활용하여 세계 최고 수준의 태양광 수소 생산 기술을 개발했다. 이 기술은 양자점의 물성을 조절하여 광전기화학 소자에 적용함으로써, 태양광을 효과적으로 수소 생산에 활용할 수 있는 방법을 제시한다.
-
- 산업
-
뮌헨공대, 태양광 수소 생산 세계 최고…경제성 확보 과제
-
-
전기화학 기술, 가축 분뇨에서 친환경 자원 생산
- 환경 오염을 주범으로 여겨지는 가축 분뇨에서 친환경적으로 전기를 생산하는 기술이 개발됐다. 매년 전 세계 축산농가에서 30억톤 이상의 동물 배설물이 발생하고 있다. 이는 미국 엠파이어 스테이트 빌딩 9000개 이상에 해당하는 양이다. 모든 분뇨는 수질을 악화시키며 유독한 연기와 온실가스를 방출한다. 그러나 저렴한 전기를 이용해 동물 배설물을 재활용하고 귀중한 화학물질을 회수할 수 있는 기술이 개발돼 환경 오염을 크게 줄일 수 있을 것으로 기대된다. 학술지 '사이언스 어드밴스(Science Advances)'에서는 '네이처 서스테이너빌리티(Nature Sustainability)'에 발표된 연구를 소개했다. 이 연구는 전기를 이용하여 동물 배설물에서 유기 영양소를 분해하고, 동시에 가치 있는 화학물질을 회수하는 새로운 방법을 제시한다. 초기 예측에 따르면, 이 방법으로 얻어지는 화학물질의 경제적 가치가 기술 구현 비용을 상회할 것으로 예상된다. 이는 농부들에게 수익성이 높은 선택지가 될 수 있음을 시사한다. 클락슨 대학의 김태영 화학자는 이번 연구에는 참여하지 않았지만 "풍력, 태양열 발전소에서 발생하는 값싸고 재생가능한 전기를 결합하면 거름이 풍부한 시골 농업 지역에서도 찬환경 전기가 생산될 수 있다"고 말했다. 많은 축산업자들은 이미 동물 배설물을 재활용하기 위해 노력하고 있다. 이들은 배설물을 분뇨 라군(연못)에 저장하여, 바닥에 침전된 암모니아가 풍부한 고형물을 준설하여 비료로 재사용한다. 또한, 남은 유기 화합물을 미생물이 메탄으로 분해하게 하여 이를 수집, 태워 전기를 생산할 수 있다. 이러한 방식은 지속 가능한 에너지와 농업 사이의 상호 작용을 보여주는 예이다. 그럼에도 불구하고, 엄청난 양의 암모니아와 기타 화합물이 자연환경으로 방출되어 해조류가 번성하고 물고기가 죽게 되는 환경오염이 발생한다. 이에 최근 몇 년 동안 몇몇 연구팀에서는 분뇨 라군에서 암모니아와 기타 귀중한 화학물질을 포착하기 위한 전기화학적 방법을 탐색하기 시작했다. 예를 들어, 2021년 실험실 연구에서 김태영 교수와 그의 동료들은 전류를 사용해 막을 통해 양으로 하전된 암모늄 이온을 유도하여 비료 전구체를 농축하고 쉽게 복구할 수 있는 배터리 유형 설정을 보고했다. 그러나 멤브레인(두께가 얇은 막) 설정은 운영하기 어렵고 확장하는 데 비용이 많이 들 수 있다. 위스콘신 매디슨 대학교 환경 엔지니어인 모한 킨(Mohan Qin)과 동료 송진이 이끄는 연구팀은 2단계 접근 방식을 채택해 멤브레인을 없앨 수 있는 가능성을 확인했다. 두 단계 모두 KNiHCF(칼륨·니켈·헥사시아노철산염)라는 배터리 전극 재료를 사용한다. KNiHCF는 이온이 들어오고 나갈 수 있는 간격이 있는 층 구조를 가지고 있다. 연구원들은 KNiHCF의 층 간격이 나트륨이나 칼슘과 같이 분뇨에서 일반적이지만 가치는 떨어지는 이온 대신 암모늄 및 칼륨 이온을 끌어들이는 데 이상적이라는 것을 발견했다. 연구진은 이후 이온으로 채워진 KNiHCF 전극을 폐수 용액에서 제거하고, 이를 이온 전도성 전해질을 첨가한 깨끗한 물이 담긴 두 번째 용기에 두 번째 전극과 함께 배치했다. 전압을 가하면 전자가 두 번째 전극으로 흘러 들어갔고, 이로 인해 KNiHCF 전극에서 양전하를 띤 암모늄 및 칼륨 이온을 용액으로 끌어당겨 농축하고 쉽게 복구할 수 있는 음전하가 생성됐다. 이 설정에는 보너스가 있다. 두 번째 전극의 음전하는 용액의 물과 산소를 유발하여 수소 가스나 과산화수소로 반응했는데, 두 가지 모두 회수된 암모니아 및 칼륨과 함께 판매될 수 있는 귀중한 화학물질이다. 연구팀은 KNiHCF 전극은 반복적으로 사용하면 성능이 저하되는데, 이 문제는 이미 해결 방안을 찾았다고 밝혔다. 연구원들은 또한 1000마리의 젖소가 있는 낙농장의 폐기물을 확장하고 관리하기 위한 설정의 잠재력을 평가하기 위한 분석을 수행했다. 그들은 전기 가격이 미국 평균인 킬로와트시(kWh)당 약 0.08달러(약 100원)로 책정될 경우 해당 운영에서 연간 최대 20만달러(약 2억6320만원)의 이익을 창출할 수 있을 만큼 귀중한 화학 물질을 생성할 수 있다는 사실을 발견했다. 송진 연구원은 재생 가능 전력이 일부 농촌 지역의 전기 비용을 2030년까지 kWh당 약 0.03달러(약 39원)로 낮출 수 있을 것으로 예상했다. 풍력이나 태양열 발전소는 종종 전력망이 처리할 수 있는 것보다 더 많은 전기를 생산하므로 엔지니어는 전력을 버리거나 터빈을 꺼야 했다. 이에 송진은 "풍력, 태양광과 결합할 수 있다면, 가격이 저렴할 때만 전기를 사용하도록 설계할 수 있다"고 말했다. 모한 킨은 "전체 공정이 얼마나 효율적인지 고려할 때, 전기화학적 처리는 거름에 있는 암모니아의 거의 70%를 포착하고 비슷한 양만큼 농장에서 배출되는 암모니아를 줄일 수 있다"며 "이것은 오래된 (가축 분뇨)문제를 처리하는 매우 간단하고 효율적인 방법"이라고 주장했다.
-
- 산업
-
전기화학 기술, 가축 분뇨에서 친환경 자원 생산
-
-
콜레스테롤 55%↓ 유전자 편집 치료제, 사망자 발생
- 유전자 편집 치료제가 콜레스테롤 수치를 55%나 낮췄으나 사망자가 발생해 안전성 문제가 제기됐다. 과학 전문 매체 네오스코프(NEOSCOPE)는 최근 과학 저널 '네이처'를 인용해 연구진이 실험적인 유전자 편집 치료법을 통해 인간 피험자의 나쁜 콜레스테롤 수치를 극적으로 낮추는 데 성공했다고 발표했으나 이 치료법을 시험한 피험자 중 한 명이 사망하면서 안전성에 대한 우려가 나타났다고 보도했다. 임상시험에서는 선천적으로 저밀도 지단백(LDL), 즉 나쁜 콜레스테롤 수치가 높은 10명의 피험자를 대상으로 염기 편집 기술을 활용한 유전자 편집 치료제인 VERVE-101을 투여했다. 이 치료법은 간에서 발견되며 LDL 콜레스테롤 수치를 조절하는 PCSK9 단백질의 유전자를 차단하는 방식으로 작동한다. LDL 수치가 높으면 관상동맥 심장 질환과 같은 심각한 건강 문제를 유발할 수 있는 위험 요소로 알려져 있다. 염기 편집 기술, 특히 '크리스퍼(CRISPR)'를 이용한 방식은 세균이 외부 유전자로부터 자신을 보호하기 위해 사용하는 자연적인 방어 시스템을 기반으로 한다. 이 시스템은 DNA 내에 특정 염기 서열과 일치하는 DNA 절단효소를 결합하여 DNA를 절단하는 방식으로 작동한다. 절단된 후, 세포의 DNA 복구 시스템이 활동하여 절단된 부분을 복구하면서, 연구자들이 원하는 새로운 염기 서열로 교체된다. 임상 실험 결과, 피험자들에게 VERVE-101 치료제를 투여한 후 28일이 지난 시점에서 LDL(나쁜 콜레스테롤) 수치가 평균 55% 감소하는 등의 놀라운 효과가 나타났다. 실험에 앞서 피험자들의 평균 LDL 수치는 193mg/dL로, 의학적으로 권장되는 100mg/dL을 크게 초과하는 매우 높은 수치였다. 치료제 주사 6개월 후에도, 고용량의 VERVE-101을 투여받은 참가자들의 LDL 수치는 지속적으로 낮은 상태를 유지했다. 이는 VERVE-101이 장기간 LDL 수치를 효과적으로 낮출 수 있는 가능성을 시사하는 결과로, 심혈관 질환의 예방과 관리에 중요한 영향을 미칠 수 있는 중대한 발견이다. 피츠버그 대학의 심장 전문가인 리투 탐만(Ritu Thamman) 박사는 VERVE 101의 유전자 편집 기술이 기존의 스타틴 치료법에 비해 더 효과적일 수 있다고 언급했다. 탐만 박사는 이번 임상시험에 직접 참여하지는 않았지만, 유전자 편집 기술이 기존의 치료법과 비교하여 혁신적인 가능성을 가질 수 있다고 강조했다. 이 연구는 유전자 편집 기술이 콜레스테롤 수치를 낮추는 데 있어 새로운 효과적인 방법을 제공할 수 있음을 보여준다. 그러나, 임상 시험 참가자들 중 일부는 치료 후 독감과 유사한 증상으로 오한, 발열, 두통을 겪었으며, 간 효소 수치가 일시적으로 증가하는 부작용을 경험했다. 임상시험 결과, 10명의 참가자 중 1명은 투여 후 약 5주 만에, 또 다른 피험자는 투여 후 단 하루 만에 심장마비로 사망하는 사건이 발생했다. 이와 관련하여, '네이처(Nature)'는 제3자 전문가들로 구성된 안전성 패널이 이 두 건의 사망 사례가 VERVE-101 치료제 때문이 아니라, 피험자들이 이미 앓고 있던 진행성 심장병 상태 때문이라고 전했다. 이러한 사건은 임상시험의 복잡성을 보여주며, 피험자의 건강 상태와 같은 다양한 요인을 고려해야 할 필요성을 강조한다. 또한 새로운 치료법의 안전성과 효과성을 평가할 때 주의 깊은 접근이 필요함을 나타낸다. 한편, 네이처에 따르면 매사추세츠주 보스턴의 생명공학 기업 버브 테라퓨틱스(Verve Therapeutics)는 2025년 VERVE-101의 임상 2상을 시작할 예정이다.
-
- IT/바이오
-
콜레스테롤 55%↓ 유전자 편집 치료제, 사망자 발생
-
-
ETH 취리히, 뼈·인대·힘줄 로봇 손 3D 프린팅 성공
- 스위스의 한 공과대학에서 3D 프린팅을 통해 뼈와 인대 등을 갖춘 로봇 손을 제작했다. 연구원들이 처음으로 뼈, 인대, 힘줄이 있는 로봇 손을 인쇄하는 데 성공했으며 이를 이용하면 부드러운 재료와 단단한 재료를 결합하는 것이 훨씬 쉬워진다고 미국 IT매체 엔가젯(Engadget)이 최근 보도했다. 스위스 취리히 연방공과대학(ETH 취리히)의 연구원들은 잉크빗(Inkbit)이라는 미국 기반 스타트업과 함께 사람의 손과 유사한 로봇 손을 3D 프린팅했다. 그들은 처음으로 뼈, 인대, 힘줄을 갖춘 로봇 손을 프린트했는데, 이는 3D 프린팅 기술의 큰 도약을 의미한다는 것이 엔가젯의 설명이다. 연구 성과가 게재된 '네이처(Nature)' 저널에 따르면 로봇 손의 뼈와 힘줄 등 여러 부분이 동시에 인쇄됐으며 나중에 별도로 조립되지 않았다는 점에 주목해야 한다. 로봇 손의 각 부품은 다양한 부드러움과 강성을 지닌 폴리머로 제작되었으며, 이는 새로운 레이저 스캐닝 기술을 통해 가능했다. 이 기술은 '탄성을 지닌 특수 플라스틱'을 한 번에 만들 수 있으며, 이를 통해 보다 복잡하고 세밀한 구조를 구현할 수 있다. 이러한 기술적 진보는 보철 분야와 소프트 로봇 구조의 생산에 큰 가능성을 열어준다. 기존에는 빠르게 경화되는 플라스틱에 주로 사용되었던 3D 프린팅 기술을, 잉크빗 연구원들은 느린 경화 플라스틱에도 적용할 수 있는 방법을 개발했다. 이 하이브리드 프린팅 방법은 내구성과 탄성을 개선하는 등 여러 장점을 제공한다. 이 기술을 통해 자연을 보다 정확하게 모방하는 것이 가능해져, 로봇 공학 및 의료 분야에서의 적용 가능성이 크게 확대될 것으로 예상된다. ETH 취리히의 로봇공학 교수인 로버트 카츠슈만(Robert Katzschmann)은 최근 그들이 개발한 부드러운 소재로 만들어진 로봇 손의 장점에 대해 설명했다. 그는 "우리가 개발한 부드러운 소재로 만들어진 로봇은 인간과 작업할 때 부상 위험이 적고 깨지기 쉬운 물건을 다루는 데 더 적합하다"고 말했다. 이러한 3D 프린팅 기술의 발전은 여전히 레이어별로 인쇄되는 기존의 방식을 따르지만, 통합 스캐너를 사용하여 프린팅 중 표면의 이상 여부를 지속적으로 확인하고, 시스템에 다음 재료 유형으로 이동하라고 지시한다. 또한, 느린 경화 폴리머 사용을 위해 압출기와 스크레이퍼가 업데이트됐다. 이 기술은 다양한 산업에 적합한 독특한 물체를 만들기 위해 강성을 미세 조정하는 데 사용될 수 있다. 인간의 손과 같은 부속물을 만드는 것은 이 기술의 하나의 사용 사례에 불과하며, 소음과 진동을 흡수하는 제조 물체를 만드는 데도 이 기술이 활용될 수 있다. 이러한 발전은 로봇공학, 의료 기술, 제조업 등 다양한 분야에서 혁신적인 솔루션을 제공할 잠재력을 가지고 있다. MIT 산하 스타트업 잉크빗은 이 혁신적인 3D 프린팅 기술 개발에 기여했다. 이 회사는 이미 이를 활용해 수익을 창출할 방법을 모색하기 시작했다. 회사는 곧 새로 개발된 프린터를 제조업체에 판매할 계획이며, 또한 이 기술을 이용한 복잡한 3D 프린팅 제품들을 소규모 기업에게도 판매할 예정이다. 이는 잉크빗이 제조업계에 새로운 기술을 제공하고, 다양한 시장에 진출하려는 전략의 일환으로 보인다. 한편, 3D 프린트 제조업체인 3D시스템즈에 따르면, 3D 프린팅 기술을 사용해 실리콘을 제작하는 것은 기존 사출 성형에 비해 최대 90% 정도 더 빠르고, 엄청난 비용과 시간을 절약할 수 있다. 의료 분야에서 3D 프린팅의 도입은 진단, 치료, 외과적 개입 방식에 혁신을 가져오고 있다. 특히 맞춤형 임플란트와 보철 영역에서의 응용은 3D 프린팅 기술의 가장 유망한 사용 사례 중 하나로 평가된다. 이 기술을 통해 개별 환자에게 최적화된 맞춤형 관절 임플란트, 복잡하게 설계된 의족 등을 제작함으로써 환자의 삶의 질을 크게 향상시킬 수 있다. 또한, 의료 기기와 수술 도구를 주문 제작할 수 있어 의료 공급자는 리드 시간과 비용을 줄이고 환자의 요구에 신속하게 대응할 수 있다. 이러한 다양한 접근 방식으로 인해 의료용 3D 프린팅의 가능성은 점점 더 현실화되고 있다. 이는 의료 분야에서의 혁신과 질적 향상을 이끌고 있으며, 향후에도 더 많은 발전이 기대된다.
-
- 생활경제
-
ETH 취리히, 뼈·인대·힘줄 로봇 손 3D 프린팅 성공
-
-
美 MIT, 연필심 흑연에서 5층 능면체 적층 그래핀 개발
- 미국 MIT의 물리학자들이 연필심에 사용되는 흑연, 즉 그래파이트에서 새로운 형태의 그래핀을 개발했다는 소식이 전해졌다. 이 그래핀은 흑연의 5층 능면체 구조를 적층하여 제작됐다. 흑연은 탄소로 구성된 광물로, 연필심의 주요 성분이다. MIT 뉴스에 따르면, 연구팀은 5개의 얇은 층을 특정 순서대로 쌓아 천연 흑연에서 볼 수 없었던 중요한 세 가지 특성을 지닌 새로운 재료를 만들어냈다. 이 연구를 이끈 물리학과 롱 주(Long Ju) 조교수는 "자연에는 놀라움이 많고, 특히 흑연에 많은 흥미로운 특성이 내장되어 있음을 발견했다"며, 이러한 다양한 특성을 지닌 재료를 찾는 것이 매우 드물다고 강조했다. 이 연구는 '네이처 나노테크놀러지(Nature Nanotechnology)'에 게재됐다. 5층 능면체 적층 그래핀 개발 흑연은 그래핀으로 구성되는데, 그래핀은 벌집 구조와 유사한 육각형 형태로 배열된 단일 탄소 원자 층이다. 그래핀은 약 20년 전 처음 분리된 이후로 집중적인 연구 대상이 되었다. 대략 5년 전, MIT 팀을 포함한 연구자들은 그래핀 시트를 쌓고 서로 약간 비틀면 재료에 초전도성에서 자성에 이르기까지 새로운 특성을 부여할 수 있다는 것을 발견했다. 이러한 발견으로 '트위스트로닉스'라는 분야가 생겨났는데, 이는 2차원 격자 구조를 다양한 방식으로 겹쳐 나타나는 성질을 연구하는 것이다. 롱 주 조교수는 이번 그래핀 연구에서 "전혀 뒤틀림이 없는 특별한 특성을 발견했다"고 말했다. 그와 동료들은 특정 순서로 배열된 5개의 그래핀 층이 전자들이 물질 내에서 서로 상호작용할 수 있도록 하는 것을 발견한 것. 이러한 현상은 '전자 상관관계'라고 알려져 있으며, 주 연구원은 이를 "이러한 모든 새로운 특성을 가능하게 하는 마법"이라고 표현했다. 벌크 흑연과 단일 시트의 그래핀은 이미 우수한 전기 전도체로 알려져 있지만, 이것이 전부는 아니다. 주의 연구팀이 분리한 '5층 능면체 적층 그래핀'이라 불리는 새로운 물질은 단순한 부품의 합보다 훨씬 더 큰 성질을 나타낸다. 이 물질을 분리하는 데 핵심적인 역할을 한 것은 나노스케일에서 중요한 특성을 빠르고 비교적 저렴하게 파악할 수 있는 2021년 MIT에서 주 연구원이 개발한 새로운 현미경 덕분이었다. 5층 능면체 적층 그래핀의 두께는 수십억 분의 1미터에 불과하다. '산란형 주사형 근접장 광학 현미경(s-SNOM)'으로 알려진 주 연구원이 개발한 현미경을 통해 과학자들은 특정한 능면체 적층 순서에서 5층 그래핀만을 식별하고 분리할 수 있었다. 주 연구원을 포함한 과학자들은 '능면체 적층'이라는 매우 정밀한 순서로 쌓인 다층 그래핀을 연구하고 있었다. 주는 "5개 레이어(층)로 이루어진 구조에서는 10개 이상의 적층 순서가 가능하며, 능면체 적층은 그 중 하나"라고 설명했다. 연구팀은 이 5층 능면체 적층 그래핀을 질화붕소로 만든 '빵'으로 둘러싼 '샌드위치' 구조에 전극을 부착했다고 이해하기 쉽게 설명했다. 이를 통해 다양한 전압과 전류를 사용하여 시스템을 조절할 수 있었으며, 그 결과 전자의 수에 따라 세 가지 다른 현상이 나타나는 것을 발견했다. 이들은 이 물질이 절연성, 자성 또는 위상학적 성질을 보일 수 있다는 것을 발견했다. 위상학적 물질(토폴로지, topology)은 물질의 가장자리를 따라 전자가 방해받지 않고 움직일 수 있지만, 중앙을 통과하는 것은 허용하지 않는 특성을 갖는다. 위상학적 물질에서 전자는 중심부를 구성하는 중앙 분리대에 의해 분리되며, 물질의 가장자리를 따라 고속도로처럼 한 방향으로 이동한다. 이로 인해 위상학적 물질의 가장자리는 완벽한 도체 역할을 하고, 중심부는 절연체가 된다. 주와 그의 연구팀은 이 연구를 통해 "강력하게 상관된 위상물리학의 새로운 가능성을 탐구하기 위한 고도로 조정 가능한 플랫폼으로서 능면체 적층 다층 그래핀을 확립했다"고 결론지었다. 이는 위상물리학 분야에서 새로운 연구 방향을 제시하는 중요한 발견으로 여겨진다. 카이스트, '납작한 벨트형 그래핀 섬유' 개발 한편, 한국의 카이스트(KAIST) 신소재공학과 김상욱 교수 연구팀은 지난 6월 그래핀의 기존 응용범위와 한계를 뛰어넘는 새로운 형태의 그래핀 섬유를 개발하는데 성공했다. 이 새로운 기술은 값싼 흑연을 사용하여 용액 공정을 통해 쉽게 얻을 수 있으며, 기존의 탄소섬유보다 저렴하면서도 유연성과 같은 차별화된 물리적 특성을 지니고 있어 경제적인 장점도 갖추고 있다. 그래핀(Graphene)은 탄소 원자가 벌집 모양으로 이뤄진 2차원 물질(원자만큼 얇은 물질)이다. 이론적으로 강철보다 100배 강하고 열·전기 전도성이 뛰어나기 때문에 꿈의 신소재로 불린다. 김상욱 연구팀의 이번 성과가 높게 평가받는 이유는 100% 그래핀으로 이뤄진 섬유가 만들어지는 과정에서 스스로 납작해져서 벨트와 같은 단면을 형성하는 현상을 세계 최초로 발견했다는 점이다. 이 납작한 벨트형 그래핀 섬유는 내부에 적층된 그래핀의 배열이 우수해 섬유의 기계적 강도와 전기전도성이 크게 향상됐다는 평가다. 연구 결과, 이 섬유는 원형 단면을 갖는 일반 섬유에 비해 기계적 강도가 약 3.2배(320%), 전기전도성이 약 1.5배(152%) 향상된 것으로 나타났다. 해당 연구 논문은 그 성과를 인정받아 'ACS 센트럴 사이언스'의 7월호 표지에 게재됐다.
-
- 산업
-
美 MIT, 연필심 흑연에서 5층 능면체 적층 그래핀 개발
-
-
[퓨처 Eyes(12)]액체 금속, 화학공학 공정 혁신 '녹색화' 기대
- 호주 시드니 대학교에서 저온에서 촉매 역할을 하는 액체 금속을 개발했다. 액체 금속은 말 그대로 액체 상태인 금속을 의미한다. 이러한 금속들은 특정 온도에서 액체 상태로 존재하며, 그 특성 때문에 로봇공학이나 인공 장기, 핵융합 등 여러 분야에서 다양한 용도로 활용된다. 과학 전문매체 사이키(phys.org)에 따르면 호주 시드니 대학교 화학·생명분자 공학부의 쿠로쉬 칼란타르-자데 교수와 시드니 대학교와 뉴사우스웨일스 대학교에서 활동하는 준마 탕 박사가 이끄는 연구팀은 에너지 대량 소비가 특징인 20세기 초반의 화학 공정을 대체할 새로운 기술인 액체 금속을 테스트했다고 발표했다. '네이처 나노테크놀로지'에 발표된 액체 금속에 대한 최신 연구는 화학 산업의 전환점을 제시하고 있다. 연구팀은 녹는점이 낮은 30도의 액체 갈륨에 녹는점이 높은 주석과 니켈을 용해해 액체 금속을 얻었다. 액체 금속은 높은 전도성, 낮은 점도, 그리고 가변적인 형태를 가지고 있다. 즉, 액체 금속은 고체 금속에 비해 이동성이 높고, 형태를 자유롭게 변형할 수 있다. 대표적인 액체 금속인 수은은 상온에서 액체 상태를 유지한다. 연구팀은 에너지를 대량 소비하는 전통적인 고체 촉매 대신 액체 금속을 사용하는 새로운 방법을 도입했다. 현재 화학 공정으로 금속을 생산하는 것은 전체 온실가스 배출의 약 10~15%를 차지하고 있다. 전 세계 에너지의 10% 이상을 화학 공정에서 사용하는 현재 상황에서 이번 액체 금속 기술 개발은 중요한 의미를 갖는다. 액체 금속을 사용하는 방법은 기존 고체 촉매 기반 공정에 비해 에너지 소비를 크게 줄일 수 있다. 이는 환경에 미치는 부정적인 영향을 감소시키는 동시에 산업 효율성을 향상시킬 수 있다. 이 연구는 화학 산업의 지속 가능한 미래를 위한 중요한 단계로 여겨지며, 화학 공정의 혁신과 환경 보호라는 두 가지 주요 과제를 동시에 해결할 수 있는 가능성을 제시했다. 액체 금속의 특성 액체 금속은 독특한 물리적 성질과 화학적 안정성 덕분에 전자기기와 고체 배터리의 전극 소재, 냉각 시스템, 의료기기, 로봇공학 등 다양한 분야에서 적용될 수 있는 잠재력을 가지고 있다. 액체 금속은 뛰어난 전기 전도성을 가지고 있어, 유연한 전자기기, 인쇄 회로, 연결기기, 센서, 안테나 설계 등에 사용된다. 또한, 액체 금속의 낮은 점도와 높은 표면 장력은 미세 전자기기의 제조에 이상적이다. 아울러 액체 금속은 높은 열 전도성과 낮은 점도를 가지고 있어, 고성능 컴퓨터, 레이저 시스템, 핵 융합 반응기 등에서 발생하는 열을 효과적으로 관리하고 분산시키는 데 사용된다. 액체 금속은 핵 융합 반응기에서 냉각재로 사용되며, 핵 연료 재처리와 폐기물 관리에도 적용될 수 있다. 더 나아가 액체 금속의 생체 적합성과 유연성으로 인해, 의료 장치, 인공 장기, 생체 센서, 약물 전달 시스템 등의 개발에 활용된다. 액체 금속은 유연한 로봇, 착용 가능한 로봇 기술, 소프트 로봇공학에서 구조 및 센서 재료로서의 가능성을 가지고 있다. 액체 금속의 특성은 에너지 저장 시스템, 특히 고온 배터리와 연료 전지에서의 응용에 유리하다. 이러한 다양한 응용 분야는 액체 금속의 유연성과 기능성을 강조하며 미래 기술 발전에서 중요한 역할을 할 것으로 기대된다. 화학 공정 혁신으로 '녹색화' 기대 연구자들은 액체 금속이 기존 화학 산업의 '녹색화'를 앞당겨 화학 공정 혁신을 가져올 것으로 전망했다. 액체 금속 공정은 에너지 집약적인 고체 공정과 달리, 녹는점이 낮은 주석과 니켈을 용해하여 액체 금속의 표면으로 이동시키고 입력 분자인 카놀라유와 반응시킨다. 이 과정을 통해 작은 유기 사슬을 형성하며, 이 중에는 많은 산업에서 중요한 고에너지 연료인 프로필렌도 포함된다. 칼란타르-자데 교수는 "우리의 방법은 화학 산업이 에너지 소비를 줄이고 화학 반응을 녹색화하는 데 전례 없는 잠재력을제공한다"며 "2050년까지 화학 부문의 탄소 배출이 20% 이상을 차지할 것으로 예상되는 가운데, 패러다임 전환이 필수적이다"라고 말했다. 사진=시드니 대학교 연구팀은 녹는점이 높은 니켈과 주석을, 녹는점이 30도인 액체 갈륨 기반의 액체 금속에 용해시켜 액체 금속이라는 새로운 공정을 개발했다. 탕 박사는 "액체 갈륨에 니켈을 용해함으로써, 우리는 매우 낮은 온도에서 '슈퍼' 촉매로 작용하는 액체 니켈을 활용할 수 있게 되었다"고 설명했다. 저온에서 '슈퍼' 촉매 역할 시드니 대학교 화학 및 생명분자 공학부의 아리푸르 라힘 박사와 준마 탕 박사 팀은 액체 금속을 만든 공식을 낮은 온도 공정을 사용하여 다른 금속을 혼합함으로써 다양한 화학 반응에도 적용할 수 있다고 밝혔다. 탕 박사는 "낮은 온도에서 촉매 작용이 이루어지므로 이론적으로 주방 가스레인지에서도 가능하지만, 집에서는 시도하지 않는 것이 좋다"고 권했다. 한편 액체 금속은 다양한 분야에서 활용이 가능하다. 우선 냉각제다. 액체 금속은 열을 잘 전달하기 때문에, 반도체 제조 공정이나 레이저 제조 공정에서 냉각제로 활용된다. 또 액체 금속은 열을 잘 전달하기 때문에, 전자 제품이나 자동차의 냉각 시스템에서 열전도체로 활용된다. 전기를 잘 전달하기 때문에, 전기 회로나 센서의 전기 전도체로도 사용될 수 있다. 아직 연구 초기 단계에 있지만, 이러한 다양한 용도로 인해 액체 금속은 높은 잠재력을 지닌 신소재로 평가 받고 있다.
-
- 포커스온
-
[퓨처 Eyes(12)]액체 금속, 화학공학 공정 혁신 '녹색화' 기대
-
-
AI 생성 논문을 전례 없는 정확도로 포착하는 '챗GPT 감지기'
- 인공지능(AI)이 인간의 능력을 넘어서면서 다양한 산업 분야에서 중요한 역할을 하고 있다. 하지만 이러한 AI의 능력이 다 유용한 것은 아닌 것 같다. 최근 한국은행의 보고에 따르면 의사, 회계사, 변호사와 같은 전문직의 업무 영역이 AI에 의해 위협받을 가능성이 제기됐다. 특히 교육계에서는 이 문제를 더욱 심각하게 받아들이고 있다. 자연과학, 응용과학, 의학 등의 분야에서 AI가 인간 대신 논문을 작성할 수 있게 되었다는 사실이 큰 우려를 낳고 있다. 그런데 이 같은 걱정을 앞으론 덜 수 있을 것 같다. 최근 국제 학술지 '네이처'는 캔자스 대학의 헤서 디자이어 교수와 그의 연구팀이 개발한 새로운 툴(도구)을 소개했다. 이 도구는 AI가 작성한 글을 분류할 수 있어, AI의 글쓰기 능력과 관련된 문제를 해결하는 데 도움이 될 것으로 기대된다. 최근에 개발된 새로운 AI 탐지 툴은 기존의 두 가지 AI 탐지기보다 우수한 성능을 자랑한다. 이 특화된 도구는 학술 출판사들이 AI 텍스트 생성기를 통해 만들어진 논문을 식별하는 데 큰 도움이 될 것으로 예상된다. 헤서 디자이어 교수는 이번 연구 결과가 AI 감지기 개발에 있어서의 중요한 진전을 보여준다고 언급했다. 이는 소프트웨어를 특정한 유형의 글쓰기에 맞게 조정함으로써 감지 능력을 강화할 수 있음을 시사한다. 문장 길이, 특정 단어 및 문장 부호 등으로 특징 디자이어 교수와 그의 연구팀은 챗GPT 탐지기를 '사이언스2(Science2)' 저널의 '퍼스펙티브(Perspective)' 기사에 적용한 사례를 소개했다. 이 탐지기는 기계 학습을 활용하여 글쓰기 스타일의 20가지 특성, 예를 들어 문장 길이의 변화, 특정 단어 및 문장 부호의 사용 빈도 등을 분석한다. 이를 통해 텍스트가 학술 과학자에 의해 작성되었는지, 아니면 챗GPT와 같은 AI에 의해 작성되었는지를 판별할 수 있으며, 이 연구는 높은 정확도를 달성했다고 보고됐다. 최근 진행된 연구에 따르면, 개발된 검출기는 미국 화학 학회(ACS)에서 발행한 10개의 화학 저널에서 나온 논문들의 서문 섹션을 분석하기 위해 특별히 교육을 받았다. 연구 팀은 논문의 서문 작성이 챗GPT를 사용할 경우 특히 쉽다는 점을 인지하고, 배경 문헌에 접근할 수 있는 상황에서 이 섹션을 선택했다. 연구원들은 이 도구를 효과적으로 교육하기 위해 100편의 인간이 작성한 서문을 사용했다. 이후, 그들은 챗GPT-3.5에게 ACS 저널의 스타일에 맞춰 200개의 서문을 작성하도록 요청했다. 이 중 100개는 논문의 제목을 도구에 제공하여 작성되었고, 나머지 100개는 논문의 초록을 기반으로 작성됐다. 실험 결과, 이 도구는 제목을 기반으로 한 챗GPT-3.5로 작성된 서문을 100% 정확도로 식별할 수 있었다. 반면, 논문 초록을 기반으로 작성된 서문의 경우, 정확도는 약간 낮은 98%로 나타났다. 이러한 결과는 동일한 저널에서 인간과 AI가 작성한 서문을 비교할 때 얻어졌다. 이 새로운 도구는 최신 버전인 챗GPT-4가 작성한 텍스트에서도 효과적으로 작동했다. 반면, AI 탐지기 ZeroGPT는 사용된 챗GPT 버전과 논문의 제목 또는 초록에서 생성된 소개에 따라 35~65%의 정확도로 AI가 작성한 소개를 식별하는 데 그쳤다. 또한, 챗GPT 제조사인 오픈AI가 제작한 텍스트 분류 도구의 성능 역시 높지 않았다. 이 도구는 AI로 작성된 소개를 찾아내는 데 약 10~55%의 정확도를 보였다. 이에 비해 새로운 챗GPT 탐지 도구는 훈련받지 않은 저널의 서문에서도 높은 성능을 발휘했다. 이 도구는 AI 탐지기를 혼동시키기 위해 다양한 프롬프트에서 생성된 AI 텍스트를 포착하는 데 성공했다. 하지만, 이 시스템은 과학 저널 기사에 특화되어 있어, 대학 신문의 실제 기사를 제시했을 때에는 인간이 작성한 것으로 인식하지 못하는 한계를 보였다. 학술 표절, 짧은 논문작성 기간 압박으로 탄생 베를린 응용과학대학교에서 학술 표절을 연구하는 컴퓨터 과학자인 데보라 웨버 울프는 학계에서 챗GPT의 사용이 증가하는 배경에 다른 문제들이 있다고 언급했다. 그녀는 많은 연구자들이 논문을 신속하게 작성해야 하는 압박을 받고 있으며, 이로 인해 논문 작성 과정이 과학의 중요한 부분으로 인식되지 않을 위험이 있다고 지적했다. 웨버 울프 교수는 AI 탐지 도구가 이와 같은 문제를 해결할 수 없다고 강조했다. 그녀는 이러한 도구들을 사회적 문제에 대한 '마법의 소프트웨어 솔루션'으로 여겨서는 안된다고 주장하며, 이는 더 넓은 사회적 맥락에서의 해결이 필요한 문제임을 시사했다.
-
- IT/바이오
-
AI 생성 논문을 전례 없는 정확도로 포착하는 '챗GPT 감지기'
-
-
네이처, '상온 초전도물질 개발' 논문 철회…LK-99 제외
- 세계적인 과학 저널인 '네이처(Nature)'가 지난 7일 실온에서 초전도 현상을 보이는 물질에 관한 미국 연구팀의 논문을 신뢰성 문제로 철회하기로 결정했다. 해당 논문은 섭씨 20.5도의 실내온도에서 초전도 현상을 관찰했다고 주장했다. 이 연구는 미국 로체스터대의 기계공학 및 물리학 조교수인 란가 디아스(Ranga Dias) 박사가 이끄는 팀에 의해 수행되었으며, '질소 주입 루테튬 수소화물'(NDLH)이라는 이름의 초전도 물질 개발에 관한 내용을 담고 있었다. 이 논문은 지난 3월 네이처에 게재됐다. 디아스 박사팀은 NDLH에 고압을 가하면 실온에서도 초전도체의 성질을 띠게 된다고 주장했다. 그러나 이 논문에 대한 과학계의 의구심이 제기되었다. 주장된 초전도 현상이 다른 연구실에서 재현되지 않았기 때문이다. 이러한 신빙성 문제로 네이처는 결국 논문의 철회를 결정했다. "초전도체 연구계에서 LK-99는 올해의 부끄러움의 표식으로 여겨질 수 있으나, 실제 상황은 더 복잡하다. 물질과학 분야에서 최근 발견된 특정한 결함이 2023년의 주요 사건으로 보기는 어렵다는 것이 전문가들의 의견이다." 과학기술 전문 매체인 톰스하드웨어(tom’s HARDWARE)는 국제 학술지 '네이처'에 게재되었던 란가 디아스와 그의 공동 저자들의 상온 초전도체 관련 논문 철회 사건을 다루며 이러한 주장을 제기했다. 이번 철회는 뉴욕 로체스터 대학교에서 수행된 디아스의 연구와 네바다 라스베가스 대학교(UNLV)의 물리학자 애쉬칸 살라맛(Ashkan Salamat)의 연구에 대한 과학적 의심의 세 번째 사례로 보인다. 전문가들은 이러한 문제들로 인해 해당 분야의 명성에 타격이 갈 것을 우려하고 있다. 디아스의 논문에는 여러 명의 공동 저자들이 참여했기 때문에, 책임 소재, 신뢰성 문제, 논문 내 오류의 발생 시점과 그 성격을 정확히 파악하는 것이 어렵다는 점이 지적되고 있다. 수소화물 초전도체 논문 철회 사태 수소화물 초전도체 연구에 관한 원래의 논문(현재 철회된)에는 11명의 저자가 있었으며, 이 중 8명이 철회 공지를 제출했다. 톰스하드웨어에 따르면, 이 논문의 결과를 둘러싼 논란이 출판에서 얻을 수 있는 이점보다 더 큰 부정적인 영향을 끼쳤다고 한다. 철회 공지에 따르면, 이 8명의 공동 저자들은 연구에 기여한 연구원으로서, 출판된 논문이 연구에 사용된 재료의 출처, 수행된 실험 측정 및 적용된 데이터 처리 방법을 정확히 반영하지 않는다는 의견을 표명했다. 원래의 논문은 상온, 상압에서 초전도성을 보이는 수소화물에 대해 다뤘다. 수소화물은 추가 전자(기술적으로 음이온을 만드는)를 특징으로 하는 수소 기반 재료이며 재료과학 및 초전도체 연구의 대표적인 소재 중 하나다. 2015년부터 수소화물에서 발견된 여러 초전도체 대부분은 초전도성을 얻기 위해 대기압보다 수백만 배 더 높은 압력이 필요하다는 것이 밝혀졌다. 이는 해당 소재의 실용적인 응용 가능성을 크게 제한하는 요인으로 지적되어 왔다. 초전도체 연구 분야에서의 신뢰 위기 초전도체 및 응집물질 물리학 분야에서 2023년은 특히 일부 전문가들 사이에서 '신뢰의 위기'라고 불리는 해였다. 이러한 위기의 근본 원인은 잘못된 과학적 접근 방식이다. 문제의 핵심은 과학적 연구가 계획대로 진행되더라도 복제가 어렵다는 것이다. 과학적 연구의 요건은 이론적으로 단순하다고 볼 수 있다. 즉, 동일한 조건과 과정에서 검증 가능하고, 독립적으로 복제할 수 있는 원본 연구를 제공해야 한다는 것이다. 톰스하드웨어는 "그러나 네이처의 논문 철회 사례는 과학적 사기로 결론을 내리기까지 어려움을 보여준다"고 전했다. 이 매체는 논문이 철회되었다고 해서 이것이 자동적으로 사기를 의미하는 것은 아니라며 철회 사유는 다양하며, 각 경우에 따라 신중한 검토와 판단이 필요하다는 것이다. 과학계의 신뢰 위기와 악의적인 연구 조작 동일한 이론적 간소함이 악의적인 연구자에 의한 피해를 증가시키고 있다. 매년 수백 개의 연구 그룹이 잘못 기술되거나 때로는 조작된 연구 결과의 복제를 시도하며, 이 과정에서 상당한 시간과 자금을 낭비하게 된다. 과학계 내에서 신뢰의 위기에 대한 논의가 이루어지고 있지만, 최근 10년 동안 철회된 논문 수가 10배 증가한 것은 사실상 더 엄격해진 편집 통제와 강화된 동료 평가 과정의 결과로 볼 수 있다. 이러한 변화는 과학 분야에서의 신뢰성과 정확성을 강화하는 긍정적인 방향으로 해석될 수 있으며, 과학의 배타적인 영역에 국한되지 않는 현상이다. 초전도체의 다양한 분류와 특성 초전도체는 전기 저항이 완전히 0이 되는 물질이다. 이는 전자가 격자 구조의 빈 공간을 자유롭게 이동할 수 있기 때문이다. 초전도체는 고온 초전도체, 저온 초전도체, 상온 초전도체로 나눌 수 있다. 고온 초전도체는 상온(약 300K) 근처에서 초전도성을 나타내는 물질로, YBCO(YBa2Cu3O7-x), LSCO(La2CuO4-x), BSCCO(Bi2Sr2CaCu2O8+x) 등이 대표적인 예이다. 반면, 저온 초전도체는 상온보다 훨씬 낮은 온도에서 초전도 현상을 보이며, Nb3Sn, NbTi, Pb, Hg 등이 이에 속한다. 상온 초전도체는 실온에서 초전도성을 나타낼 수 있는 물질로, 만약 실제로 존재한다면 획기적인 기술 혁신을 가져올 것으로 기대되고 있다. 이 분야는 최근 여러 논란에 휩싸여 주목받고 있다. 현재 많은 연구팀들이 실온 초전도체 개발을 목표로 활발한 연구를 진행하고 있다. 주요 연구 방향은 다음과 같다. △기존 재료에 새로운 물질을 결합하거나 새로운 구조를 도입해 실온에서 초전도성을 갖는 재료를 개발하는 연구, △압력 조절을 통해 실온에서 초전도성을 발휘하는 재료를 개발하는 연구, △자기장 조절을 통해 실온 초전도성을 갖는 재료를 개발하는 연구 등이다. 만약 실온에서 작동하는 초전도체가 발견된다면, 이는 전기 에너지의 효율적 전송, 자기 부상 열차, 의료 장비, 컴퓨터 등 다양한 분야에서 혁명적인 변화를 가져올 것으로 기대된다. 이러한 발견은 기존 기술의 한계를 넘어서는 새로운 가능성을 열어줄 것이다.
-
- 산업
-
네이처, '상온 초전도물질 개발' 논문 철회…LK-99 제외
-
-
美 칼텍, "지구 내부 '덩어리'는 다른 행성의 '흔적'"
- 달을 생성한 것으로 추정되는 원시 행성의 흔적이 지구 내부에서 발견되어 큰 관심을 끌고 있다. 최근의 이 발견은 지구와 달의 기원에 대한 이론에 중요한 증거가 될 수 있다. 영국의 과학 전문 매체 사이키(phys.org)는 미국 캘리포니아 공대(칼텍, Caltech) 과학자들이 '네이처' 학술지에 발표한 논문을 인용해 지구 내부에서 원시 지구와 충돌한 행성의 흔적을 발견했다고 보도했다. 이 연구는 두 가지 중요한 과학적 미스터리를 해결할 수 있는 가능성을 제시한다. 하나는 수천 년 동안 인류를 매혹시켜온 달의 기원에 관한 것이고, 다른 하나는 그 충돌이 지구 내부에 어떤 영향을 미쳤는지에 관한 것이다. 주된 이론은 약 45억 년 전, 화성 크기의 행성이 아직 형성 중이던 지구와 충돌하여 달이 생성되었다는 것이다. 수천 년 동안, 달의 기원은 과학자부터 호기심 많은 어린이까지 모두를 매혹시켜왔다. 가장 널리 받아들여지는 이론은 약 45억 년 전, 지구가 형성되는 과정에서 화성 크기의 행성인 '테이아(Theia)'와의 거대한 충돌로 인해 달이 생성되었다는 것이다. 당시 지구는 현재 크기의 약 85%에 불과했으며, 이 충돌로 인한 엄청난 양의 잔해가 우주로 튕겨져 나가 달을 형성했다. 이 이론에도 불구하고, 수십 년 동안 테이아의 존재를 뒷받침할 명확한 증거는 발견되지 않았다. 그러나 최근 네이처에 발표된 미국 연구팀의 새로운 연구 결과는 우리가 테이아에 대해 이해하는 방식에 대해 새로운 관점을 제시할 수 있음을 나타낸다. 이 연구는 과학자들이 테이아의 흔적을 찾는 방식에 대해 재고할 필요가 있음을 시사하고 있다. '원시지구' 충돌 행성 흔적 2곳 추정 1980년대에 지진파를 통해 발견된 지구 표면 아래 약 2900킬로미터(1800마일) 깊이에 위치한 두 개의 거대한 '덩어리'는 지질학자들에게 오랫동안 의문을 제기해왔다. 이 대륙 크기의 물질 덩어리는 지구의 암석 맨틀의 바닥, 즉 녹아 있는 핵 근처에 걸쳐 있다. 하나는 아프리카 아래, 다른 하나는 태평양 아래에 위치해 있다. 과학자들은 이 덩어리들이 주변 암석에 비해 훨씬 더 뜨겁고 밀도가 높다는 것을 발견했다. 그러나 이 덩어리들의 정확한 성질과 기원에 대해서는 여전히 많은 것이 불확실하다. 최근 연구에 따르면, 이 덩어리들은 지구 형성 당시 테이아라는 원시 행성과의 충돌로 지구 내부로 들어온 ‘매장된 유물'일 수 있다. 이 충돌로 인해 테이아의 잔해가 지구의 깊은 내부에 숨겨져 있었을 가능성이 제시되고 있다. 연구팀은 달을 형성시킨 테이아와의 충돌이 지구가 생명을 유지할 수 있는 독특한 행성으로 발전하는 데 중요한 역할을 했을 것이라고 주장했다. 캘리포니아 공과대학의 지구역학 연구원이자 이번 연구의 주 저자인 첸 위안(Qian Yuan)은 AFP와의 인터뷰에서 테이아 충돌의 증거가 아직 발견되지 않은 것이 "매우, 매우 이상하다"고 언급했다. 위안에 따르면, 테이아는 원시 지구와 충돌할 때 초당 10km(약 6마일) 이상의 속도로 이동하고 있었으며, 이 속도로 인해 일부 잔해가 지구의 하부 맨틀까지 침투할 수 있었다고 한다. 맨틀은 지각과 외핵 사이의 암석층을 의미한다. 철분 함량 높아 지구 멘틀에 축적 연구팀이 개발한 시뮬레이션 동영상은 테이아의 맨틀 덩어리가 지구 내부에서 어떻게 움직이는지 보여주고 있다. 이 덩어리들은 수십 킬로미터에 이르는 너비를 가지고 있으며, 지구 내부를 소용돌이치며 이동하고 있다. 과학자들은 녹은 테이아 물질이 냉각되고 굳어지면서, 높은 철분 함량으로 인해 지구 맨틀과 핵의 경계에까지 가라앉았다고 설명했다. 이 물질들은 오랜 시간에 걸쳐 대규모저속지역(LLVP)으로 알려진 별도의 두 개의 덩어리로 축적되었으며, 현재는 각각 달보다 더 큰 크기에 이르렀다. 첸 위안은 이러한 발견에 대해 "지구의 깊은 내부에 대한 이론을 검증하는 것은 매우 어렵고, 모델링이 100% 확실할 수 없다"고 말했다. 이는 지질학적 연구에서 자주 마주치는 복잡성과 불확실성을 반영하는 발언이다. 이 이론이 만약 사실이라면 그 의미는 중대할 수 있다. 지구는 현재까지 알려진 바에 의하면 우주에서 생명이 존재할 수 있는 유일한 행성이다. 첸 위안은 테이아와의 충돌이 지구의 구성을 단 24시간 만에 극적으로 변화시켰을 수 있다고 말했다. 위안은 초기 조건이 지구를 독특하게 만드는 중요한 요소, 즉 다른 암석 행성과 구별되는 이유라고 주장했다. 이전 연구들은 테이아가 생명의 핵심 성분인 물을 지구에 가져왔을 가능성을 제시했다. 또한, 이 덩어리가 맨틀 기둥(마그마 기둥)을 형성하여 지구 표면에 영향을 미치고 초대륙의 진화와도 연관이 있을 수 있다는 관찰이 있었다. 위안은 "테이아는 지구에 중요한 무언가를 남겼고, 이는 지난 45억 년 동안 지구의 진화에 중요한 역할을 했다"고 강조했다. 스코틀랜드 스털링 대학교의 지구 과학 및 행성 탐사 전문가 크리스티안 슈뢰더는 이 이론이 다양한 증거와 일치한다며, 이것이 매우 중요하고 흥미로운 발견임을 강조했다. 슈뢰더는 달의 형성에 대한 미스터리가 여전히 완전히 해결되지 않았다고 언급하면서도, 이번 연구가 테이아 충돌 이론에 무게를 두고 있으며 핵과 맨틀의 경계에서 관찰되는 이상 현상에 대한 신뢰할 수 있는 설명을 제공한다고 말했다. 이처럼 지구 내부에 보존될 가능성이 있는 테이아의 잔해가 오늘날 지구상에서 진행되는 중요한 과정들에 영향을 미쳤을 수 있다는 의견에 힘이 실리고 있다.
-
- 생활경제
-
美 칼텍, "지구 내부 '덩어리'는 다른 행성의 '흔적'"
-
-
[퓨처 Eyes(11)] 나노와이어 '두뇌' 네트워크, "즉시 학습하고 기억" 가능성 입증
- 최근 '나노와이어 두뇌' 등 물리적 신경망의 혁신적인 발전이 주목을 받고 있다. 뇌의 뉴런이 작동하는 방식에서 영감 받은 물리적 신경망은 최근 실험에서 처음으로 즉석에서 학습하고 기억하는 것이 확인되는 단계에 이르렀다. 나노와이어 두뇌는 인공 지능(AI)과 기계 학습 분야에서 사용되는 혁신적인 기술 중 하나다. 이 개념의 핵심은 미세한 나노스케일의 와이어를 사용하여 인간 두뇌의 작동 방식을 모방하는 것이다. 다시 말하면, 나노와이어 두뇌 또는 나노와이어를 사용하는 인공 신경망은 뇌의 구조와 기능을 모방하기 위해 나노스케일의 전도성 와이어를 사용하는 첨단 기술이다. 이 기술은 신경과학과 나노기술의 교차점에 있으며, 인공 지능과 머신 러닝 분야에서 혁신적인 발전을 가져올 가능성이 크다. 과학전문 매체 사이키(phys.org)에 따르면 호주 시드니 대학교와 미국 로스앤젤레스 캘리포니아 대학교의 과학자들이 주도한 최근 연구에서 나노와이어 네트워크(신경망)가 뇌의 뉴런처럼 작동하여 '즉석에서 학습하고 기억'하는 능력을 보여주었다. 나노와이어 신경망이란? 나노와이어 네트워크는 직경이 불과 10억 분의 1미터인 미세한 와이어들로 구성되어 있다. 이 와이어들은 어린이 게임 '나무 블록 빼기 놀이'(Pick Up Sticks, 쌓아 올려져 있는 나무 조각들의 밑창 빼기)와 유사한 패턴으로 배열되어 있으며, 인간 뇌의 신경망을 모방한다. 이는 복잡한 실제 학습과 기억 작업을 수행할 수 있는 저에너지 기계 지능 개발의 가능성을 열어주고 있다. 논문 제1저자인 루오민 주(Ruomin Zhu) 시드니대학교 나노연구소 및 물리학과 박사과정 연구원은 "나노와이어 네트워크를 사용해 뇌에서 영감을 받은 학습·기억 기능을 동적 스트리밍 데이터 처리에 활용할 수 있다"고 설명했다. 기억과 학습 작업은 나노와이어가 교차하는 접점에서 발생하는 전자 저항의 변화를 이용한 간단한 알고리즘을 통해 이루어진다. 이 기능은 '저항성 메모리 스위칭'으로 알려져 있으며, 전기적 입력이 전도성 변화와 맞닥뜨릴 때 발생한다. 이는 인간 뇌의 시냅스에서 일어나는 현상과 유사하다. 이 연구는 인공 지능과 기계 학습 분야에서 새로운 장을 열고 있으며, 향후 더욱 효율적이고 지능적인 기계 시스템의 개발로 이어질 것으로 기대된다. 이 연구 결과는 '네이처 커뮤니케이션즈'에 지난 11월 1일 게재됐다. 이 연구에서 과학자들은 이미지에 해당하는 전기 펄스 시퀀스를 인식하고 기억하는 방법으로 나노와이어 네트워크를 활용했다. 이는 인간 뇌의 정보 처리 방식에서 영감을 얻은 것으로, 뇌과학과 인공 지능의 접목을 시도한 중요한 연구 사례로 평가된다. 전화번호 기억과 비슷 연구 책임자인 즈덴카 쿤치치 교수는 이 기억 과제가 전화번호를 기억하는 것과 비슷하다고 설명했다. 그는 이 네트워크가 MNIST 데이터베이스의 필기 숫자 이미지, 즉 머신 러닝에서 사용되는 7만개의 작은 회색조 이미지 컬렉션을 활용하여 벤치마크 이미지 인식 작업을 수행했다고 말했다. 쿤치치 교수는 "과거 연구에서 나노와이어 네트워크가 간단한 작업을 기억하는 능력을 증명했다. 이번 연구는 온라인으로 접근 가능한 동적 데이터를 활용하여 작업을 수행함으로써 이러한 연구 결과를 확장했다"고 덧붙였다. 그는 "지속적으로 변경되는 대량의 데이터를 처리할 때 온라인 학습 기능을 달성하는 것은 어려운 과제다. 표준 방식은 데이터를 먼저 메모리에 저장한 후 이를 활용해 머신 러닝 모델을 훈련하는 것이지만, 이 방법은 광범위한 적용에는 너무 많은 에너지를 소모한다"고 설명했다. 이어 "우리의 새로운 접근 방식을 통해 나노와이어 신경망은 데이터 샘플마다 즉시 학습하고 기억함으로써 온라인으로 데이터를 추출할 수 있으며, 이는 메모리와 에너지 사용을 크게 줄여준다"고 말했다. 루오민 주 연구원은 온라인 정보 처리의 추가적인 장점을 언급했다. 그는 "예를 들어, 센서에서 데이터가 지속적으로 스트리밍되는 상황에서는, 인공 신경망을 활용한 머신 러닝이 실시간으로 적응할 수 있어야 한다. 하지만 현재 기술은 이에 최적화되어 있지 않다"고 부연했다. 이 연구에서 나노와이어 신경망은 테스트 이미지를 93.4%의 정확도로 식별하며 벤치마크 머신 러닝 성능을 입증했다. 연구에 포함된 기억 과제는 최대 8자리 숫자 시퀀스를 재생하는 것이었다. 두 과제 모두에서, 데이터를 네트워크로 스트리밍하여 온라인 학습 능력을 증명하고, 메모리가 학습을 어떻게 향상시키는지를 보여주었다. 나노와이어 두뇌 특징 나노와이어 두뇌의 특징으로는 나노스케일 구조와 전도성, 플라스틱성, 저에너지 소비 등이 있다. 먼저 나노와이어는 극도로 작은 크기(일반적으로 나노미터 단위)를 가지고 있어, 매우 높은 밀도의 신경망을 구현할 수 있다. 이는 인간 두뇌의 복잡한 신경망을 모방하는 데 유리하며, 여러 신경망의 연결을 통해 복잡한 계산을 수행할 수 있다. 전통적인 전자 기기에 비해 에너지 효율이 높아 저에너지를 사용한다. 또한 나노와이어는 전기 신호를 효율적으로 전달할 수 있어, 뇌의 신경 전달 방식을 모방하는 데 적합하다. 나노와이어 기반 신경망은 플라스틱성(학습과 기억에 필요한 구조적, 기능적 변화)을 통해 새로운 정보를 학습하고 저장할 수 있다. 나노와이어는 전기화학적 신호를 사용하여 정보를 처리하고 저장한다. 뉴런과 같이 동적으로 연결되며, 학습과 기억 과정에서 이들 연결이 강화되거나 약화된다. 나노와이어 두뇌 응용 분야 나노와이어 두뇌는 인간 두뇌와 유사한 방식으로 정보를 처리하고 학습하는 AI 시스템에 활용된다. 데이터 스트리밍과 실시간 학습 능력을 통해 기계 학습 모델을 개선하는 데 사용될 수 있다. 자율적인 의사결정과 복잡한 환경에서의 적응력을 갖춘 로봇에 적용될 수 있다. 나노와이어 기반 기술은 미래의 AI 및 컴퓨팅 분야에서 중요한 역할을 할 수 있는 잠재력을 가지고 있다. 그러나 이 기술은 아직까지 연구 개발 단계에 있으며, 상용화까지는 추가 연구와 발전이 필요하다. 이러한 나노와이어 두뇌 기술은 빠르게 진화하고 있는 분야로, 그 개발과 응용은 향후 몇 년 동안 상당한 관심을 끌 것으로 예상된다.
-
- 포커스온
-
[퓨처 Eyes(11)] 나노와이어 '두뇌' 네트워크, "즉시 학습하고 기억" 가능성 입증
-
-
美 MIT 연구원, 흑연에서 금 생성 연구
- 꿈의 신소재로 불리는 그래핀. 전기전도성과 열전도성을 갖고 있으면서 강도가 높아 디스플레이나 에너지 재료로 사용되고 있다. 그런데 이 그래핀으로 금을 만드는 연구가 진행됐다. 미국 매사추세츠 공과대학(MIT)의 연구팀이 특정 순서로 쌓인 5개의 초박편 조각을 분리해 흑연을 금으로 만들었다. 과학지 마이닝닷컴(mining.com)은 국제학술지 '네이처 나노테크놀로지(Nature Nanotechnology)'에 발표된 MIT 연구팀의 금 생성 과정을 최근 소개했다. 연구에 따르면 생성된 물질이 이전까지 자연 흑연에서 볼 수 없었던 세 가지 중요한 특성을 나타내도록 조정될 수 있다. 흑연은 벌집 구조와 유사한 육각형으로 배열된 단일 탄소 원자층인 그래핀(탄소 동소체 중 하나)으로 구성된다. 약 20년 전에 처음 분리된 이후로 그래핀은 강력한 연구 대상이 되었다. 특히, 약 5년 전 연구자들은 그래핀 시트를 서로 약간의 각도로 비틀어 쌓음으로써, 재료에 초전도성에서 자성에 이르는 새로운 특성을 부여할 수 있다는 사실을 발견했다. 이러한 연구는 '트위스트로닉스' 분야의 탄생으로 이어졌다. MIT의 수석 연구원 롱 주(Long Ju)는 이 연구에 대해 언급하면서, "전혀 비틀지 않아도 흥미로운 특성을 발견했다"고 말했다. 그와 동료들은 특정한 순서로 배열된 5개의 그래핀 층이 물질 내부를 돌아다니는 전자들이 서로 상호작용할 수 있게 한다는 것을 발견했다. 이러한 전자 상관관계(electron correlation) 현상은 새로운 재료 특성을 가능하게 하는 '마법'으로 묘사된다. 단순한 대량의 흑연이나 심지어 단일 그래핀 층은 기본적으로 우수한 전기 전도체에 불과하다. 주 연구원 팀이 분리한 이 재료는 몇십 나노미터 두께밖에 안 되지만, 그 부분들의 합보다 훨씬 더 많은 역할을 수행한다. 연구팀은 '능면체 적층(rhombohedral stacking)'으로 알려진 특정한 순서로 적층된 다층 그래핀을 연구하고 있었다. 연구원은 이에 대해, "5개의 층을 쌓을 때 가능한 순서는 10가지 이상이 있으며, 능면체 적층은 그 중 하나에 불과하다"라고 언급했다. 주 연구원이 2021년에 개발한 특별한 현미경은 나노 규모에서 재료의 다양하고 중요한 특성을 신속하고 상대적으로 저렴한 비용으로 결정하고 분리하는 데 사용됐다. 이 현미경의 도움을 받아, 연구팀은 보론 질화물로 만들어진 '빵'과 같은 구조의 작은 샌드위치에 전극을 부착했고, 이는 펜타레이어(5층) 마름모형으로 쌓인 그래핀의 연약한 '육질(meat)' 부분을 보호한다. 이 전극을 활용해 시스템에 다양한 전압이나 전기량을 적용할 때, 전자 수에 따라 세 가지 다른 현상이 관찰됐다. 주 연구원은 "우리는 재료가 절연성, 자성 또는 위상학적 성질을 가질 수 있음을 발견했다"고 말했다. 위상학적 성질은 도체와 절연체 둘 다와 어느 정도 관련이 있는 특성이다. 기본적으로, 위상학적 물질은 물질의 가장자리를 따라 전자가 방해받지 않고 이동할 수 있게 하지만, 물질의 중간을 통과하는 것은 허용하지 않는다. 이러한 전자들은 재료의 가장자리를 따라 한 방향으로만 이동하며, 물질의 중앙을 가로지르는 중심선에 의해 중간 부분과 구분된다. 결과적으로 위상학적 재료의 가장자리는 완벽한 전도체 역할을 하고, 중앙 부분은 절연체로 작용한다. 롱 주의 연구팀은 "우리의 연구는 마름모형으로 쌓인 다층 그래핀을 사용하여, 위상학적 물리와 관련된 새로운 가능성을 탐구하기 위한 높은 조절 가능성을 가진 플랫폼으로 확립한다"고 말했다.
-
- 산업
-
美 MIT 연구원, 흑연에서 금 생성 연구
-
-
설탕 대체품 알룰로스, 대량 생산 기술 개발
- 설탕 대체품 알룰로스 대량 생산 기술이 개발됐다. 미국 매체 뉴아틀라스(newatlas)는 식품과학&기술분야 저명 학술지 '네이처스 npj 음식 과학(Nature's npj Science of Food)'에 게재된 설탕 대체품 알룰로스를 대량 생산할 수 있는 기술에 대해 소개했다. 설탕은 우리 몸에 필요한 에너지를 제공하는 주요 영양소이기도 하지만, 과다하게 섭취하면 체중이 늘거나, 제2형 당뇨병, 심장병 등의 만성질환을 일으킬 수 있다. 알룰로스는 자당보다 약 70% 정도의 당도를 가지고 있으면서도, 열량은 단지 10% 정도이며, 제2형 당뇨병 환자의 혈당 수치를 개선할 수 있다. 다만, 현재의 생산 방법으로는 알룰로스의 생산량이 낮고 품질도 높지 않아, 그 성장 가능성이 제한되고 있다. 그런데 캘리포니아 대학교 데이비스 캠퍼스(UC Davis)의 과학자들이 알룰로스 생산에 대한 중요한 돌파구를 제시했다. 알룰로스의 품질을 높이고 생산량을 증대할 수 있는 방법을 개발해 건강한 설탕 대체품의 가능성을 확대시켰다. 알룰로스는 1그램 당 약 0.4칼로리로, 일반 설탕의 4칼로리에 비해 칼로리가 상당히 낮다. 또한, 단당류로 신체 내에서 다른 신진대사 과정을 거친다. 대장에서 약 70%의 알룰로스가 흡수되며, 이는 24시간 이내에 소변으로 배출된다. 나머지 알룰로스는 대장을 통해 48시간 이내에 몸 밖으로 나온다. 그 결과, 알룰로스는 혈당이나 인슐린 수치에 별다른 영향을 주지 않는다. 현재, 알룰로스는 D-타가토스-3-에피머라아제(D-tagatose-3-epimerase,DTEase)와 D-프시코스-3-에피머라아제(D-psicose-3-epimerase, DPEase)라는 효소를 사용해 프루토스로부터 변환되는 과정을 통해 추출된다. 그러나 이 방법에는 일부 제한적인 요소가 있어, 생산량이 최대 50%에 그치며 순도도 낮게 유지되고 있다. 연구팀은 기존 효소를 개선하여 생산량을 늘리려는 시도를 넘어, 알룰로스를 새로운 방법으로 생산할 방안을 모색했다. 이 과정에서 일반적인 장내 세균인 대장균(E. coli)을 이용한 새로운 생산 방법을 찾아냈다. 이 미생물의 대사 과정을 수정해 포도당을 공급받으면 알룰로스로 변환하도록 했다. 이로 인해 62% 이상의 생산량 증가와 중요한 순도 수준도 달성할 수 있었다. 연구팀은 새로운 생산 방법이 현재 인프라와 생물화학 기술을 사용해 알룰로스 생산을 증대하는 것이 지속 가능하고 경제적이라고 설명했다. 연구자들은 논문에서 "전체 세포 촉매 기술과 인프라는 이미 산업적으로 확립되어 있고, 모델 생물인 대장균은 상업적 식품 생산과 경쟁하지 않는 원료를 사용할 수 있다"고 언급했다. 희귀 설탕인 알룰로스를 대량으로 생산할 수 있는 이 기술은 초가공 식품에 사용될 저칼로리 설탕 대체제를 제공함으로써, 전 세계적으로 증가하고 있는 비만 문제 해결에 기여할 것으로 예상된다. 더불어, 알룰로스의 생산 증가는 의학적으로 중요한 단당류 공급에도 도움을 줄 것으로 보인다. 수정된 대장균은 공급받는 모든 포도당을 소비하므로 현재의 생산 방법에서 필요한 순도 향상을 위한 추가적인 후속 작업이 줄어들 것이 예상된다. 한편, 설탕 대체제로 널리 알려진 감미료에는 스테비아가 있다. 단맛이 강한 대신 칼로리가 없고 체내 흡수가 안 되며 소변으로 그대로 배출되는 것으로 알려졌다. 그러나 스테비아가 장내 미생물 균형에 부정적인 영향을 미친다는 연구 결과도 있다. 에리스리톨 또한 저칼로리 감미료로 알려져 있다. 특정 과일에서 자연적으로 발견되는 설탕 알코올이다. 설탕과는 매우 비슷한 맛을 가졌는데 혈당이나 인슐린 수치를 급등시키지 않는다. 하지만 과도하게 섭취할 경우, 소화에 문제가 생기거나 가스 배출과 설사를 유발할 수 있다. 껌을 통해 잘 알려진 자일리톨도 단맛을 지닌 설탕 알코올이다. 산을 형성하지 않는 천연 감미료이지만 역시 섭취가 지나치면 소화계 부작용이 발생할 수 있다. 이 밖에 몽크푸르트, 사카린 등이 설탕을 대체할 감미료로 알려져 있다.
-
- 생활경제
-
설탕 대체품 알룰로스, 대량 생산 기술 개발
-
-
그린란드 빙하, 온도 상승 제어하면 복원 가능하다
- 기후 변화로 인해 그린란드의 빙하가 빠르게 녹고 있다. 과학자들은 이러한 변화가 지속될 경우 해수면이 상승하여 일부 국가들은 땅이 잠길 위험이 있으며, 다른 국가들은 가뭄과 극심한 무더위에 시달릴 것이라고 경고하고 있다. 미국 매체 뉴저(Newser)는 지구의 온도가 파리 협정의 목표를 초과하여 상승하더라도 특정 조건하에서 빙하가 회복할 수 있다는 '네이처(Nature)'에 게재된 연구 결과를 소개했다. 지구온난화 방지 노력이 필요 없다는 것이 아니라, 온도 상승을 빠르게 제어할 경우 빙하의 복원이 가능하다는 주장이다. 또다른 매체 NPR에 따르면, 역사적으로 두께가 2마일(약 3.2km)에 이르는 밀도 높은 빙하는 몇 차례 큰 변화를 겪었지만 완전히 회복된 적이 있다. 논문의 주 저자인 닐스 보초(Nils Bochow)는 "그린란드 빙하는 우리가 생각했던 것보다 더 탄력적이다"라고 평가했다. 빙하의 회복력은 기후 변화의 정도와 그 영향에 대해 어떻게 대응하는지에 따라 결정될 것이라는 것. 네이처의 보고서에 따르면, 2023년 기후 변화의 기록적인 온도 상승이 산업화 이전에 비해 화씨 3.6도(섭씨 약 -15.7℃)를 초과하지 않을 것으로 파리협정 목표에 부합할 것으로 예상된다. 하지만, 연구팀은 온도가 계속 상승하여 목표치를 초과하더라도, 100~200년 후에 온도가 급격히 하락한다면 빙하는 회복의 기회를 갖게 될 것이라고 예측했다. 보초는 "온도를 일정 시간 동안 제어할 수 있다면, 빙하의 큰 손실을 방지할 수 있다"고 설명했다. 즉, 산업화 이전 대비 지구 온도가 6도 이상 상승해도 몇 세기 내에 온도 상승을 1.5도로 조절할 수 있다면, 빙하 손실을 크게 줄일 수 있을 것이라고 추정했다. 지구의 온도가 앞으로 몇 도 상승되고, 빙하 회복 기간이 얼마나 걸릴지에 대한 확실한 답은 아직 없다. 현재 빙하 녹는 속도는 과거의 환경 조건에 크게 의존하고 있다. 파리협정의 목표 온도에 도달한다면, 시간이 흐름에 따라 빙하는 점차 회복될 가능성이 있다. 그러나 이는 아직 '가정'에 불과하다. '파리협정'은 2015년 유엔 기후 변화 회의에서 채택된 조약으로 195개국이 채택했으며 '파리기후변화협정'이라고도 한다. 2016년 11월 4일부터 국제법으로 효력이 발효됐다. 당시 버락 오바마 전 미국 대통령 주도로 체결된 이 협정은 산업화 이전 수준 대비 지구 평균온도가 2℃ 이상 상승하지 않도록 온실가스 배출량을 단계적으로 감축하는 내용을 담고 있다. 보초는 네이처와의 인터뷰에서 "지금 당장 조치를 취하지 않으면, 우리는 시간과의 싸움에서 밀릴 것"이라면서 "기다릴수록 상황은 더 어려워질 것"이라고 말했다. 그러나 빙하의 회복 가능성이 있지만, 그 이전에 빙하가 녹으면서 다른 지역에서는 여전히 파괴적인 영향을 끼칠 것이 분명하다고 우려했다. 워싱턴 포스트(Washington Post)는 앞서 미국에서 2050년까지 해수면이 약 30.5cm(1피트) 상승할 경우, 해안을 따라 '매우 파괴적인 홍수'가 발생할 가능성이 5배 커질 것이라고 보도했다. 현재 그린란드의 빙하는 매년 약 2700억 톤씩 녹아 내려가고 있어, 해수면이 연간 약 4mm 상승하고 있다. 빙하 전문가 지니 카타니아(Ginny Catania)는 "그린란드에서 녹아 내린 빙하는 이미 해수면 상승의 약 20%를 차지하고 있다. 만약 그린란드의 빙하가 모두 녹아내린다면, 해수면은 약 6m(20피트) 상승할 것"이라고 말했다. 카타니아는 "이것은 인간이 기후 변화에 어떻게 대응해야 하는지에 대한 중요한 고려 요소"라고 덧붙였다.
-
- 산업
-
그린란드 빙하, 온도 상승 제어하면 복원 가능하다
-
-
美 스탠퍼드 대, 질병‧노화 새 지표 '리피돔' 발견
- 인간의 DNA염기 서열이 분석되면서 불로장생(不老長生)을 향한 과학자들의 노력이 이어지고 있다. 이를 통해 희귀암 환자에게 삶을 연장할 수 있는 희망의 길이 열리고, 질병의 원인이 무엇인지도 밝혀지고 있다. 그러나 이런 것만으로는 신체 활동을 전부 표시하기에는 부족하다. 미국 과학기술 전문매체 사이테크데일리(SciTechDaily)는 스탠퍼드 대학교 과학자들이 건강과 질병, 노화에 대한 새로운 지표인 '리피돔(lipidome)'을 발견했다고 최근 보도했다. 리피돔은 지방이나 오일과 같은 성분을 포함하는 넓은 범주의 분자로, 트리글리세라이드, 콜레스테롤, 호르몬과 일부 비타민을 포함한다. 우리 몸에서는 세포막을 구성하고 세포 전달자 역할을 하며 에너지를 저장하고, 감염에 대응하고 신진대사를 조절하는 데 중요한 역할을 한다. 먼저 리피돔을 이해하기 전에 프로테옴(proteome)에 대한 이해가 필요하다. 게놈이 사람이 지닌 모든 유전 정보의 집합체라면 프로테옴은 특정 세포나 특수 상황에서 만들어지고 작용하는 단백질의 총합을 말한다. 인간의 게놈은 본질적으로 안정적이다. 프로테옴은 건강과 환경의 영향을 받기는 하지만 유전자에 의해 암호화된 내용에 크게 좌우된다. 반면 리피돔은 우리가 먹는 음식과 장 내에 살고 있는 미생물에 의해 직접적으로 변경될 수 있다. 리피돔은 장을 더 유연하게 만들기도 한다. 그러나 지질 분자의 수와 다양성(적어도 수천 개가 있음)으로 인해 연구하기가 어렵다. 스탠퍼드 대학교 FACS 유전학 교수인 마이클 P. 스나이더(Michael P. Snyder) 박사는 "리피돔은 사실상 모든 것과 관련이 있지만, 너무 다양하고 많기 때문에 대부분의 리피돔이 어떤 작용을 하는지 알지 못할 수도 있다"고 지적했다. 스나이더 박사의 연구팀이 2023년 9월11일 학술지 '네이처 메타볼리즘(Nature Metabolism)'에 발표한 새로운 연구는 인간 리피돔에 대해 깊이 파고들어 건강한 상태와 질병에 따른 변화를 추적했다. 이는 제2형 당뇨병의 발병에서 리피돔이 어떻게 변하는지 추적한 최초의 연구 중 하나다. 건강 지표 리피돔 당뇨병 위험이 있는 많은 참가자를 포함한 100명 이상이 건강할 때는 3개월마다 혈액 샘플을 제공하고, 질병이 발생하면 주기적으로 샘플을 제공해 최대 9년 동안 추적했다. 연구팀은 분자 무게와 전하에 따라 화합물을 분리하는 질량 분석 기술을 사용해 약 800개의 리피돔과 인슐린 저항성, 바이러스 감염, 노화 등의 연관성을 기록했다. 연구 결과 모든 사람의 리피돔이 시간이 지나도 안정적으로 유지되는 독특한 특성이 있지만, 특정 유형의 리피돔은 사람의 건강에 따라 예측 가능하게 변한다는 사실을 발견했다. 예를 들어, 목록에 있는 리피돔 중 절반 이상이 인슐린 저항성(신체 세포가 인슐린을 사용하여 혈액에서 포도당을 흡수할 수 없는 경우)과 연관되어 있으며, 이는 제2형 당뇨병으로 이어질 수 있다. 인슐린 저항성은 혈당을 측정해 진단할 수 있지만, 리피돔의 변화를 이해하면 작용 중인 생물학적 과정을 밝혀낼 수 있다. 제2형 당뇨병과 리피돔 이 연구의 공동 저자인 다니엘 호른버그(Daniel Hornburg) 박사는 "질병과 관련된 모든 분자는 메커니즘에 대한 더 많은 정보를 제공하고, 질병 진행에 영향을 미치는 대상으로 작용할 수 있다"고 말했다. 또한, 호흡기 바이러스 감염 과정에서 변동하는 200개 이상의 리피돔을 확인했다. 리피돔의 수준이 상승하고 하락함에 따라 초기 감염 시 체내 고에너지 대사 및 염증을 반영해 질병의 경과를 나타낼 수 있다. 인슐린 저항성을 가진 사람들은 감염에 대한 이러한 반응에서 일부 이상을 보였을 뿐 아니라 백신에 대한 약한 반응도 보였다. 인간의 노화는 사람에 따라 빠르게 진행되기도 하고, 느리게 진행되기도 하다 연구팀은 20~79세까지 참가자의 광범위한 연령 범위와 오랜 연구 기간을 통해 노화에 따라 리피돔이 어떻게 변하는지 확인할 수 있었다. 콜레스테롤과 같은 대부분의 리피돔이 노화에 따라 증가하지만 오메가-3 지방산을 포함한 일부 리피돔은 감소한다는 것을 발견했다. 게다가, 리피돔의 이러한 노화 징후는 모든 사람에게 동일한 속도로 발생하지 않는다. 예를 들어 인슐린 저항은 이러한 변화를 가속화 시키는 것으로 보인다. 공동 저자이자 스나이더 연구실의 또 다른 전 연구원인 시 우(Si Wu) 박사는 "리피돔 프로필은 흥미롭게도 개인이 생물학적으로 더 빨리 또는 더 느리게 노화가 진행되는 것을 예측할 수 있다"고 말했다. 또 일부 리피돔 그룹들이 항산화제로 알려진 세포 신호 전달에 관여하는 에테르 결합 포스파티딜에탈올아민(phosphatidylethanolamines)과 같은 특정 그룹의 리피돔과 건강의 연관성이 얼마나 일관되게 나타나는지를 관찰했다. 이는 건강을 모니터링하거나 새로운 식이 보충제를 섭취하는 데 도움이 될 수 있다. 앞으로 스나이더 연구팀은 이러한 조사에서 얻은 정보를 기반으로 특정 리피돔과 생활방식 변화 사이의 상관관계를 조사할 계획이다. 한편, 일상생활에서 노화를 늦추기 위해서 제일 먼저 균형잡힌 영양과 규칙적인 식사를 하는 것이 좋다. 또한 적게 먹는 소식과 규칙적인 운동, 충분한 수면도 노화를 늦추는 방법이 될 수 있다.
-
- 생활경제
-
美 스탠퍼드 대, 질병‧노화 새 지표 '리피돔' 발견
-
-
원숭이, 유전자 조작 돼지 신장 이식해 2년 생존
- 돼지의 신장을 이식 받은 원숭이가 2년 이상 생존했다는 실험 결과가 나왔다. 의학 전문 매체 메디컬 익스프레스는 미국에서 유전자를 수정해 원숭이에게 이식했을 때 장기 거부 반응을 감소시키는 연구를 진행했다고 최근 보도했다. 이 연구는 수정된 게놈을 가진 여러 소형 돼지의 신장을 시노몰구스 원숭이에 이식해 거부 반응을 줄일 수 있는지 실험했다. 메릴랜드 의과 대학의 무하마드 모히우딘(Muhammad Mohiuddin) 연구원은 최근 학술지 '네이처(Nature)'에 여러 연구 기관이 연합해서 진행한 해당 실험 연구 결과를 게재했다. 장기 이식은 장기 부전 환자를 치료하는 주요 방법 중 하나이지만, 기증자 장기의 공급이 수요를 충족시키지 못하고 있다. 이에 따라 과학자들은 줄기세포를 이용한 장기 재생, 비생물학적 물질로 장기를 생성, 또는 동물 장기를 이용하는 등의 대체 방안을 모색하고 있다. 인간 기증자의 장기가 아닌 동물 장기 이용 등의 방법은 가능성은 보이고 있지만, 수술 후 장기 거부 반응이라는 문제가 여전히 남아있다. 이에 연구팀은 기증 동물의 유전자를 수정함으로써 이러한 장기 거부 반응을 줄일 수 있는 새로운 방법을 탐구했다. 먼저 연구팀은 돼지 유전자 69개를 수정했다. 이 중 3개는 장기 거부 반응과 관련된 분자의 생성에 관여하며, 59개는 과거 세대의 돼지 유전체에 포함된 역성 바이러스 DNA와 연관되어 있다. 나머지 7개는 불필요한 혈전 형성을 방지하고 건강한 장기 성장을 돕는 인간 유전자를 추가하기 위해 사용됐다. 연구팀은 수정된 유전자를 가진 돼지를 성체로 키운 후, 15마리 돼지의 신장을 원숭이에게 이식했다. 거부 반응을 방지하기 위해 모든 원숭이에게 면역 억제제를 복용했다. 실험 결과 유전자를 수정하지 않은 돼지 신장을 이식받은 원숭이들은 대부분 2개월 미만 생존했다. 유전자 수정된 돼지 신장을 이식받은 원숭이 중 9마리는 2개월 이상 생존했다. 특히 5마리는 1년 이상, 그리고 1마리는 2년 동안 생존했다. 또 이식받은 신장은 원래의 신장처럼 정상적으로 기능했다. 이번 연구는 동물 장기를 인간에게 이식하는 연구 분야에서 중요한 발전을 이루었다는 평가를 받았다. 전 세계적으로 장기 이식을 기다리는 환자는 수백만 명에 이르지만, 기증자가 부족해 많은 환자들이 제때 필요한 이식을 받지 못하고 있다. 동물 장기를 인간에게 이식하는 방법은 이러한 기증자 부족 문제를 해결할 수 있을 것으로 보인다. 그러나 현재의 연구는 동물에 대한 실험 단계에 머물러 있으며, 인간에게 적용하려면 추가 연구가 필요하다. 연구팀은 향후 인간을 대상으로 한 임상 시험을 진행하여, 동물 장기를 인간에게 이식하는 것이 안전한 방법인지를 확인할 예정이다.
-
- 생활경제
-
원숭이, 유전자 조작 돼지 신장 이식해 2년 생존
-
-
잠비아서 세계 최고령 목재 구조물 발견…인류 진화 새 단서
- 잠비아에서 세계에서 가장 오래된 목재 구조물이 발견됐다. 영국 과학저널 '네이처'에 따르면, 잠비아와 탄자니아 국경 근처 칼람보 폭포 상류에서 발견된 목재 구조물은 약 47만 6000년 전의 것으로 세계에서 가장 오래된 유물로 확인됐다. 이 구조물은 두 막대기로 구성되어 있고, 노치로 연결되어 있다. 나무에는 다양한 돌 도구로 만들어진 표시들이 보인다. 이 구조물이 당시 사람들이 식량이나 나무를 저장하는 곳 또는 내부 통로의 토대로 사용되었을 것으로 추정된다. 더욱이, 이 구조물은 주택의 기초로 사용되었을 가능성도 있어 연구자들의 눈길을 끌고 있다. 특히 이 구조물은 현대인의 직계 조상인 호모 사피엔스가 등장하기 훨씬 전에 만들어진 것으로 보여, 인류의 조상과 초기 인류의 생활에 대한 새로운 이해를 제공한다. 이 구조물은 고대 인류가 복잡한 계획을 세우고, 언어를 사용할 수 있었던 높은 수준의 지적 능력을 가지고 있었음을 시사한다. 또한 이 구조물 주변의 풍부한 물과 식량 자원은 초기 석기 시대 인류가 유목 생활보다는 정착 생활을 했을 가능성을 제시하며, 이는 학계의 기존 견해를 재검토하게 만들고 있다. 칼람보 폭포에서 발견된 세계 최고령의 목재 구조물이 한국의 고고학 연구에 중요한 시사점을 제공하게 되었다. 한국에서도 구석기 시대의 목재 유물이 여러 건 발견되고 있으나, 칼람보 폭포에서 발견된 것처럼 보존 상태가 양호한 경우는 상당히 드물다. 이러한 새로운 유물의 발견이 한국의 구석기 시대 연구와 이해를 더욱 풍성하게 해 줄 것으로 기대된다. 연구자들은 이번 발견이 아프리카에서의 목공예 및 초기 인류 기술에 대한 이해를 넓혀줄 것이라고 밝혔다. 또한, 이 구조물이 발견된 상태는 예상외로 매우 양호하여, 지금까지 단순한 기술만을 가진 수렵 채집 사냥꾼으로 여겨졌던 초기 인류인 호미닌이 사실은 더 발전된 건축 기술을 가지고 있었음을 암시하는 중요한 단서가 되었다고 덧붙였다. 석기 시대 목재 유물의 보존이 어려운 이유는 시간이 흐르면서 자연적으로 붕괴하기 때문이다. 그러나 칼람보 폭포에서 발견된 유물은 산소에 노출되지 않은, 물에 젖은 퇴적물 속에서 발견되어 비교적 잘 보존되어 있다. 이번 칼람보 폭포에서의 발견은 인류 진화 연구 분야에서 중요한 역할을 할 것으로 전망된다. 이는 인류의 초기 조상들이 우리가 이전에 생각했던 것보다 훨씬 더 오래 전부터 고도의 기술과 지식을 갖추고 있었음을 나타내며, 인류 진화에 대한 새로운 통찰을 제공한다.
-
- 생활경제
-
잠비아서 세계 최고령 목재 구조물 발견…인류 진화 새 단서
-
-
뇌, 수면 중에도 언어자극에 반응
- 잠자는 동안에도 사람의 뇌는 언어 자극에 반응한다는 연구 결과가 공개됐다. 프랑스 의학 전문매체 메디컬 익스프레스에 따르면, 파리 뇌 연구소(Paris Brain Institute)와 파리 피티에 살페트리에르 대학 병원(Pitié-Salpêtrière University Hospital)의 연구팀은 수면 중에도 단어를 듣고 이해할 수 있다는 연구 결과를 발표했다. 이 연구는 국제 학술지 '네이처 뉴로사이언스(Nature Neuroscience)'에 게재되었다. 연구자들은 수면 중인 사람의 뇌가 주변 환경의 언어 자극에 반응하며, 이는 수면의 정의와 구분에 대한 새로운 의문을 제기했다. 지금까지 수면은 신체와 정신이 완전히 휴식을 취하는 상태로 여겨졌다. 하지만 이번 연구로 인해 수면과 각성 상태 사이의 경계가 생각보다 모호하다는 것이 드러났다. 연구팀은 잠자는 동안 사람들이 언어 정보를 인식하고 이에 물리적 반응을 보이며, 이런 현상이 수면의 다양한 단계에서 일어난다고 밝혔다. 이러한 발견은 잠자는 동안에도 외부 세계와의 연결이 일시적으로 유지된다는 증거가 될 수 있으며, 수면 연구에 새로운 지평을 열어줄 것으로 전망된다. 수면과 각성 경계 모호 이번 연구에서의 새로운 발견은 잠자는 동안의 정신 활동 변화에 대한 이해를 깊게 하고, 잠자는 사람과의 표준화된 의사소통 프로토콜을 개발하는 데 기여할 수 있음을 보여준다. 이를 통해 정상 수면과 병리 수면의 기초를 이해하는 새로운 도구와 방법이 곧 나올 것으로 예상된다. "수면은 일상적으로 경험하는 것이지만, 실제로는 매우 복잡한 현상"이라며 피티에 살페트리에르 대학 병원의 라이오닐 나카체(Lionel Naccache) 박사는 "각성과 수면 사이에는 명확한 경계가 없으며, 다양한 의식 상태가 혼재해 있다."고 설명했다. 수면 연구에서는 각성 상태와 수면 사이의 다양한 뇌 활동을 파악하는 것이 중요하다. 연구 팀은 이러한 중간 상태의 뇌 메커니즘을 이해하려고 노력하고 있으며, 이것이 몽유병이나 수면 마비, 환각 등의 수면 장애와 관련이 있을 수 있음을 발견했다. 연구자들은 뇌파검사 등의 기존 방법으로는 잠자는 동안의 정신 활동을 완벽하게 이해할 수 없다고 지적하며, 수면 중인 사람의 실제 경험과 더 잘 맞는 새로운 연구 방법의 개발이 필요하다고 강조했다. 이런 방법은 수면과 각성의 다양한 단계를 더 정확하게 구분하고 이해하는 데 도움이 될 것으로 기대된다. 무의식과 명쾌함 사이의 놀이 이번 연구에서 연구자들은 수면 장애가 없는 22명과 기면증을 가진 27명을 대상으로 연구를 진행했다. 기면증 환자들은 주로 낮에 통제할 수 없는 졸음을 겪으며, 자각몽을 자주 경험하는 것으로 알려져 있다. 이러한 환자들은 꿈 속에서 자신이 잠들어 있다는 것을 인식하며, 때로는 꿈의 내용을 스스로 조절할 수도 있다. 델핀 오디에뜨(Delphine Oudiette) 박사는 "기면증 환자들은 REM 수면 단계로 빠르게 들어갈 수 있기 때문에, 수면 중 의식의 변화를 연구하기에 적합한 대상이다"라고 설명했다. 연구 과정에서 참가자들은 낮잠을 취하게 했고, '어휘 결정' 테스트를 통해 언어 자극에 대한 반응을 관찰했다. 이 테스트에서 연구자들은 참가자들에게 실제 단어와 가상의 단어를 들려주었으며, 참가자들은 이에 반응하여 각 단어를 구분했다. 이와 같은 실험을 통해 연구자들은 참가자들의 수면 패턴, 뇌 활동, 심장 박동 등을 종합적으로 분석했다. 그 결과, 대부분의 참가자들, 기면증 여부와 상관없이 잠든 상태에서도 언어 자극에 적절하게 반응했으며, 특히 자각몽을 꾸는 경우 이러한 현상이 더 자주 발생했다고 이자벨 아눌프(Isabelle Arnulf) 박사는 밝혔다. 수면의 단절에 도전 연구자들은 생리학적 및 행동적 데이터와 참가자들의 주관적 보고를 종합적으로 분석함으로써 수면 중에 환경과의 상호작용이 언제 가능한지를 예측할 수 있었다. 이러한 상호작용의 가능성은 뇌 활동의 증가와 풍부한 인지 활동과 연관되어 있었다. 라이오넬 나카체 박사는 "자각몽을 경험하는 사람들은 말에 반응하고, 꿈에서 깨어났을 때 그 경험을 더 잘 기억하는 것으로 나타났다. 이러한 사람들은 내부 세계, 그리고 때로는 외부 세계에 대한 더 높은 인식을 가지고 있는 것으로 보인다"고 설명했다. 추가 연구를 통해 이러한 상호작용의 빈도가 수면의 질이나 학습 능력, 또는 특정 수면 장애와 어떤 관련이 있는지 알아볼 필요가 있다. 델핀 오디에뜨 박사는 "자기뇌파검사와 같은 첨단 신경 영상 기술을 사용하면, 수면 중의 뇌 활동과 행동을 더 정확하게 이해할 수 있을 것"이라고 밝혔다. 이번 연구에서 얻은 새로운 데이터는 우리의 수면에 대한 이해를 깊게 하며, 수면이 단순한 휴식 상태가 아니라 활발한 인지 활동이 이루어지는 중요한 시간임을 재조명할 수 있을 것으로 보인다.
-
- 생활경제
-
뇌, 수면 중에도 언어자극에 반응
-
-
AI 에너지 효율성 100배 개선⋯클라우드 의존 없는 실시간 나노전자소자 개발
- 노스웨스턴 대학교 엔지니어들은 가장 에너지 효율적인 방식으로 정확한 머신러닝 분류 작업을 수행할 수 있는 새로운 나노 전자 장치를 개발했다. 12일(현지시간) 미국 매체 노스웨스턴나우(northwestern now)에 따르면 기존 기술보다 100배 적은 에너지를 사용하는 방식으로 실시간으로 인공지능(AI) 작업을 수행할 수 있다. 이 장치의 가장 큰 특징은 클라우드를 이용하지 않고도 대용량 데이터를 실시간으로 처리하고 분석할 수 있는 점이다. 따라서 설치 공간이 협소하고 전력 소비가 적은 웨어러블 기기, 예를 들어 스마트 시계나 피트니스 트래커에 적용하기에 이상적이다. 연구 팀은 이 새로운 나노전자소자의 성능을 확인하기 위해 심전도(ECG) 데이터를 활용해 불규칙한 심장 박동인 부정맥을 진단하는 실험을 진행했다. 실험 결과, 이 장치는 다양한 부정맥 유형을 거의 95%의 높은 정확도로 판별할 수 있었다. 이번 연구 결과는 공학과 의학 분야에서 큰 파장을 일으킬 것으로 보이며, 관련 논문은 12일 '네이처 일렉트로닉스(Nature Electronics)' 저널에 게재됐다. '개인화된 서포트 벡터 머신 분류를 위한 재구성 가능한 혼합 커널 이종 접합 트랜지스터'라는 제목의 이 연구는 미국 에너지부, 국립과학재단, 육군 연구소의 지원을 받아 진행됐다. 이 연구의 선임 저자인 노스웨스턴의 마크 허삼(Mark C. Hersam) 박사는 "오늘날 대부분의 센서는 데이터를 수집한 다음 클라우드로 전송하고, 분석은 에너지 소모가 많은 서버에서 수행된 후 최종적으로 사용자에게 결과를 전송한다"며 "이 접근 방식은 엄청나게 비싸고 상당한 에너지를 소비하며 시간이 많이 걸린다"고 성명했다. 이어 "우리 장치는 에너지 효율이 매우 높아 웨어러블 전자기기에 직접 배치하여 실시간 감지 및 데이터 처리를 할 수 있으므로 건강 응급상황에 보다 신속하게 개입할 수 있다"고 말했다. 나노기술 전문가로 유명한 허삼 박사는 노스웨스턴 맥코믹 공과대학에서 월터 머피 재료과학 및 공학 교수로 활약하고 있다. 또한 재료 과학 및 공학과 학과장, 재료 연구 과학 및 공학 센터 소장, 그리고 국제 나노기술연구소 회원 등 왕성한 역할을 하고 있다. 허삼 박사는 이번 연구를 서던캘리포니아 대학교의 한 왕(Han Wang) 교수, 노스웨스턴 대학교의 비노드 상완(Vinod Sangwan) 연구 조교수와 공동으로 주도했다. 머신러닝 툴은 신규 데이터를 분석하기 전에, 먼저 학습 데이터를 다양한 카테고리에 정확하게 분류하는 과정을 거쳐야 한다. 예를 들어, 사진을 색상별로 분류하는 도구의 경우, 빨간색이나 노란색, 파란색 등 각 사진의 색상을 정확히 식별할 수 있어야 한다. 이러한 작업은 인간에게는 간단하지만, 기계에게는 상당한 에너지를 소모하는 복잡한 작업이다. 현재 실리콘 기반 기술로 심전도와 같은 대규모 데이터 세트를 분류하려면 100개 이상의 트랜지스터를 필요로 한다.이러한 각각의 트랜지스터는 작동과정에서 에너지를 소비한다. 하지만 노스웨스턴의 나노 전자 장치는 단 두 개의 장치로 동일한 머신러닝 분류를 수행할 수 있다. 연구진은 디바이스 수를 줄임으로써 전력 소비를 획기적으로 줄이고 표준 웨어러블 기기에 적용 가능한 훨씬 더 작은 크기의 디바이스를 개발했다. 이 새로운 디바이스의 비결은 다양한 소재를 혼합하여 전례 없는 조정성을 구현한 것이다. 기존 기술은 실리콘을 사용하지만 연구진은 2차원 이황화몰리브덴과 1차원 탄소 나노튜브로 소형화된 트랜지스터를 제작했다. 따라서 데이터 처리 단계마다 하나씩 많은 실리콘 트랜지스터가 필요한 대신, 재구성 가능한 트랜지스터는 다양한 단계 간에 전환할 수 있을 만큼 동적이다. 이번 새로운 디바이스의 성공 비결은 다양한 소재의 혼합과 창의적인 조절 능력에 있다. 기존에는 실리콘을 주로 사용했으나, 이번 연구에서는 2차원 이황화몰리브덴과 1차원 탄소 나노튜브를 활용하여 소형화된 트랜지스터를 구현했다. 이러한 혁신적 접근 방법 덕분에, 각 데이터 처리 단계에 여러 개의 실리콘 트랜지스터를 사용하는 것이 아니라, 하나의 재구성 가능한 트랜지스터만으로도 다양한 단계를 동적으로 전환할 수 있게 되었다. 허삼 박사는 이에 대해 "두 가지 서로 다른 재료를 하나의 디바이스에 통합함으로써, 전류 흐름을 강력하게 조절할 수 있는 동적 재구성이 가능하다"며 "이런 방식으로 단일 디바이스에서도 높은 수준의 조절이 가능해져, 작은 공간과 적은 에너지만을 소비하면서도 정교한 분류 알고리즘 실행이 가능하다"고 덧붙였다. 연구진은 장치를 테스트하기 위해 공개적으로 사용가능한 의료 데이터 세트를 찾았다. 먼저 심전도 데이터를 해석하도록 디바이스를 훈련시켰는데, 이는 일반적으로 숙련된 의료진이 상당한 시간을 들여야 하는 작업이다. 그런 다음 장치에 정상, 심방 조기 박동, 심실 조기 수축, 속도 박동, 왼쪽 다발 분기 블록 박동, 오른쪽 다발 분기 블록 박동 등 6가지 유형의 심장 박동을 분류하도록 요청했다. 연구팀은 장치의 성능을 테스트하기 위해 공개적으로 접근 가능한 의료 데이터 세트를 활용했다. 첫 단계에서 연구팀은 디바이스를 훈련시켜 심전도 데이터를 해석할 수 있도록 하였는데, 이는 일반적으로 전문 의료인력이 상당한 시간을 투입해야 해결할 수 있는 문제였다. 연구팀은 이어서 장치에게 정상 심장 박동, 심방 조기 박동, 심실 조기 수축, 속도 박동, 왼쪽 번치 가지 블록, 오른쪽 번치 가지 블록 등 총 6가지 유형의 심장 박동 패턴을 구분하도록 요청했다. 이렇게 개발된 나노전자 장치는 1만 개의 심전도 샘플을 분석하며 각각의 부정맥 유형을 정확하게 식별할 수 있었다. 또한, 이 장치는 데이터를 클라우드로 전송할 필요가 없어, 환자의 소중한 시간을 절약할 수 있을 뿐만 아니라, 환자의 개인 정보 보호도 가능하다. 허삼 박사는 "데이터가 전송될 때마다 도난당할 위험이 증가한다"고 주장했다. 그는 "개인 건강 정보가 손목 시계와 같은 웨어러블 장치에서 로컬로 처리될 경우, 정보의 도난 위험이 크게 감소한다"고 덧붙였다. 그러면서 이런 방법으로 이 장치가 개인 정보의 보호를 강화하고 정보 유출의 위험을 줄일 것이라고 강조했다. 그는 이러한 나노전자 장치가 향후 웨어러블 기기에 통합되어, 각 사용자의 건강 상태에 맞춰 개인화되며 실시간 애플리케이션에 적용될 것으로 전망했다. 이를 통해 사용자들은 추가적인 전력 소모 없이도 기존에 수집된 데이터를 최적화하여 활용할 수 있을 것으로 보인다고 말했다. 허삼 박사는 "AI 도구들이 전력 소비의 큰 부분을 차지하고 있는 상황"이라며 "현재의 컴퓨터 하드웨어에 계속 의존하는 것은 지속 가능하지 않다"라고 경고했다.
-
- IT/바이오
-
AI 에너지 효율성 100배 개선⋯클라우드 의존 없는 실시간 나노전자소자 개발
-
-
[퓨처 Eyes(6)] SF가 현실로? 금속도 자가 치유한다
- 금속이 자체적으로 균열을 복구하는 모습이 관찰됐다. 10일(현지시간) 과학 전문 매체 '사이테크데일리'에 따르면, 텍사스 A&M대학교 마이클 뎀코비츠 박사가 예측했던 금속의 자가 치유 현상이 올여름에 발견되어 세계 과학자들을 충격에 빠뜨렸다. 연구 과정에서 아주 작은 백금 조각에 지속적인 스트레칭을 가하자 미세한 균열이 형성됐다. 항공기 사고나 교각 붕괴 등으로 이어지는 '금속의 피로' 현상의 균열 성장을 살펴보기 위해 설계된 이 실험은 처음에는 과학자들의 예상대로 진행됐다. 견고한 금속은 외부의 힘이 반복해서 작용하면 눈에 보이지 않는 미세한 균열이 발생하고, 마침내 부러지게 된다. 그러나 실험도중 예기치 않게, 균열이 더 이상 커지지 않고 오히려 줄어들기 시작하는 금속이 스스로를 '치유 복구'하는 모습이 관찰됐다. 금속의 피로 현상은 교각이나 건축물이 망가지거나, 항공기의 부품 파손 등 기계가 손상되는 주요 원인으로 꼽힌다. 그로 인해 학계는 금속 피로 현상을 스스로 복구하는 소재 개발에 집중해왔다. 미국 샌디아 국립연구소(SNL)의 연구팀은 올 여름 나노 결정질 금속의 균열 실험 중 놀라운 금속 자가치유 현상을 발견했다. 그 결과는 국제 학술지 '네이처(Nature)'에 게재됐다. 금속의 이런 자가 복구 능력은 지금까지 공상 과학 소설에서나 나올 법한 이야기로 여겨졌다. 하지만, 텍사스 A&M 대학의 재료 과학 및 공학부 교수이자 이 연구의 공동 저자인 마이클 뎀코비츠 박사는 그런 가정을 뒤엎는 놀라운 발견을 했다. '금속 피로 복구' 10년 전 예측이 현실로 뎀코비츠 박사와 그의 팀은 10년 전 매사추세츠 공과대학의 조교수 시절 이미 금속의 자가 치유 현상을 예상했다. 당시 뎀코비츠 교수는 일정 조건이 갖춰지면 비록 나노 수준이지만 금속의 균열 복구가 이론적으로 가능하다고 주장했다. 뎀코비츠 박사는 "처음엔 금속의 치유나 복구를 목표로 한 것은 아니다. 저의 제자 구오샹 쉬가 골절에 관한 시뮬레이션을 진행 중이었다"며 회상했다. 이어 "우연히 시뮬레이션에서 금속의 자연 치유 현상을 발견, 이에 대한 추가 연구를 시작하기로 결정했다"고 덧붙였다. 2013년 당시의 연구 결과도 이번만큼이나 눈길을 끌었다. 특수 전자현미경인 투과형 전자 현미경기술이 발달하면서 금속의 나노 스케일 피로 균열 관찰이 가능해진 점도 이 현상을 발견하는 데 도움이 됐다. 뎀코비츠 박사의 공동 연구팀은 금속 피로현상 조사 과정에서 백금의 자가치유 능력을 발견했다. 뎀코비츠 박사는 "진공 상태의 백금 조각에 나노 스케일의 균열을 내고 이를 초당 200회 당겨 군열 변화를 관찰했다며 실험 시작 40분 뒤 백금 표면의 균열이 복구됐다"고 설명했다. 그는 "당시 나와 우리 팀, 동료들까지도 모두 이 이론에 대해 의구심을 가지고 있었다"고 회상했다. 그렇지만, 그의 시뮬레이션은 이후 몇 년 간 여러 연구자들에게 검증되며 확장되어왔다. 뎀코비츠 박사는 "다른 연구자들도 같은 결과를 시뮬레이션에서 확인해, 우리의 모델링에 오류가 없다는 것이 확실해졌다"면서도 "그럼에도 불구하고, 지금까지 실제 실험은 이루어지지 않았다"고 덧붙였다. 2013년의 모델과 최근의 실험에서는 둘다 나노 단위로 결정 구조나 입자 크기가 측정되는 나노결정 금속이 사용됐다. 이 단위는 100만분의 1밀리미터(mm)를 의미한다. 뎀코비츠 박사에 따르면, 이러한 나노결정 금속은 엔지니어링에서는 널리 활용되지 않지만 대다수의 금속을 이 형태로 제작할 수 있다. 뎀코비츠는 나노 결정 금속의 작은 입자 크기 때문에 더 많은 미세 구조적 특징이 있어, 균열 사이의 상호작용이 쉽게 일어난다고 설명했다. 이는 자가 치유 연구를 용이하게 했다. 두 연구에서 모두 입자 경계의 이동 방향이 균열의 치유에 영향을 미친다는 공통점을 발견했다. 뎀코비츠 박사는 이런 특징이 다양한 금속과 합금에서도 확인될 수 있으며, 조절이 가능하다고 말했다. 진공 환경에서 실험 성공 뎀코비츠 박사는 "현재 연구의 주요 성과는 이론적 예측이 단순히 '도면 상의 아이디어'에서 벗어나 실제로 가능하다는 것을 입증한 것"이라고 강조했다. 그는 "아직 우리는 자가 치유를 위한 미세 구조의 최적화 작업에 발을 들이지도 않았다. 어떤 구조적 변화가 금속의 자가 치유를 더욱 촉진시킬지를 파악하는 것은 앞으로의 연구에서의 큰 도전"이라고 말했다. 이 연구의 발전 가능성은 매우 광범위하다. 뎀코비츠는 입자 크기의 더 큰 일반적인 금속에서도 이런 자가 치유 과정이 일어날 수 있을 것이라고 지적하면서, 그에 대한 추가적인 연구가 필요하다고 밝혔다. 2013년의 이론과 최근 실험 사이의 주요 연결점은 둘 다 외부 물질이 혼입되지 않는 진공 상태에서 이루어졌다. 외부 요소는 금속의 균열 표면이 재결합하거나 냉간 용접 과정을 방해할 수 있기 때문이다. 이런 제한사항에도 불구하고, 이 기술은 우주선 혹은 외부 대기로부터 보호되는 내부 균열처럼 특정 환경에서는 유용하게 활용될 수 있다. 10년이 흐른 지금, 뎀코비츠의 금속 자가치유 초기 이론은 샌디아 국립연구소의 실험을 통해 그 가치가 입증됐다. 이번 연구를 통해, 뎀코비츠는 최근에 관찰된 결과가 그의 초기 시뮬레이션 모델과 일치함을 확인할 수 있었다. 뎀코비츠 박사는 "이 실험은 진정으로 놀랍다. 이론적 측면에서도 의미가 크다"고 말했다. 그는 "물질의 복잡한 특성으로 인해 자신있게 새로운 현상을 예측하는 것은 종종 매우 어려운 일이다. 이번 발견은 물질의 반응에 대한 우리의 이론적 접근이 옳은 방향을 향하고 있다는 확신을 갖게 해준다"고 말했다. '퓨처 아이즈(Future Eyes)'는 지금까지 경험하지 못한 혁신 기술이 어떻게 새로운 세상을 창조하는지 탐색한다. 애플의 아이폰은 휴대폰 산업의 판도를 바꾸었으며, 오픈AI의 챗GPT는 AI의 유행을 일으키며 우리의 일상과 기업 환경에 변화를 가져왔다. 메타버스부터 플라잉카, 휴머노이드 로봇, 양자 컴퓨팅, 핵 융합에 이르기까지, 이 시리즈는 혁신적인 기술과 그것이 우리 생활에 미치는 영향을 짚어본다.
-
- 포커스온
-
[퓨처 Eyes(6)] SF가 현실로? 금속도 자가 치유한다
-
-
신비한 핑크 다이아몬드, 희귀한 이유는?
- 누구나 한 번쯤은 사랑하는 연인이나 결혼 기념일 또는 특별한 순간을 기념하기 위해 다이아몬드를 선물하거나, 혹은 선물 받고 싶다는 생각을 한다. 다이아몬드는 그 자체로 귀중한 보석으로 알려져 있지만, 그 중에서도 핑크 다이아몬드는 특별한 가치를 지닌다. 최근 프랑스의 매체 푸투라(FUTURA)는 이 희귀한 핑크 다이아몬드의 신비한 기원에 대한 연구결과를 보도했다. 다이아몬드의 희소성은 그것이 형성되는 극도의 환경 때문이다. 이런 보석은 지구 내부 약 140~190km 깊이에서 극도의 온도와 압력 속에서 수십억 년 동안 천천히 형성된다. 푸투라에 따르면, 이러한 고유한 형성 과정이 다이아몬드의 가치를 높여준다. 특히, 핑크 다이아몬드는 10만 개의 다이아몬드 중 단 하나만이 가지는 독특한 색상으로, 그것만으로도 특별한 보석임을 확인시켜 준다. 핑크 다이아몬드는 전 세계 몇 안 되는 광산에서만 발견되며, 그 중 호주의 아가일 광산은 시장에 공급되는 핑크 다이아몬드의 약 90%를 생산하고 있다. 호주에 위치한 이 고대 화산에는 특별한 특징이 있다. 이 광산은 일반적인 경우처럼 킴벌라이트[반상조직의 초고철질(ultramafic) 화성암으로 칼륨의 함량이 매우 높다]가 아니라 램프로이트(150km를 초과하는 깊이에서 부분적으로 녹은 맨틀에서 형성되는 암석) 화산 도관에서 채취된 것이다. 이 화산암이 형성된 지질과정은 아직 미스터리한 채로 남아 있다. 학술지 네이처 커뮤니케이션즈(Nature Communications)에 등재된 연구 결과에 따르면, 아가일 램프로이트는 약 13억년 전 형성됐을 것으로 추정된다. 이는 이전까지 추정되던 시기보다 1억년 앞선 것이며, 바로 이 점이 광산의 형성 이해에 큰 영향을 미칠 것으로 보인다. 아가일이 위치한 지구상에서 가장 오래된 대륙 중 하나인 킴벌리 대륙과 북부 오스트레일리아 대륙의 접합 지대는 오래전부터 알려진 지역이다. 이 지점은 약 18억년 전, 세계에서 가장 고대의 대륙 중 하나인 누나(Nuna) 형성 과정에서 생겨났다. 핑크 다이아몬드의 형성에는 극도의 지각압이 필요하다고 여겨진다. 이러한 조건은 아가일 지역에서 충족됐을 것이다. 그렇지만, 이 귀한 다이아몬드가 어떻게 지표면까지 올라왔는지는 아직 풀리지 않았다. 최근 연구에 따르면, 아가일 램프로이트는 대략 13억년 전에 형성되었을 것으로 추정되며, 이는 초대륙 분열의 시작과 일치한다. 그러나 아가일 지역의 분열은 완전히 이루어지지는 않았다. 지각이 매우 얇아진 결과로 마그마가 지표로 상승했고, 이 과정에서 지구 깊은 곳에서 형성된 핑크 다이아몬드가 표면으로 올라 온 것으로 추정된다. 이런 지리적 특징은 앞으로 전 세계에서 새로운 광산 위치를 파악하는 데 중요한 단서가 될 수 있다. 한편, 다이아몬드 산업은 광업에서 더 넓은 제조업 영역으로 확장되고 있다. 금속 촉매제인 철과 니켈을 탄소 파우더에 첨가하여 고온 및 고압에서 다이아몬드 '씨앗'을 합성하는 방법이 개발됐다. 이 합성 다이아몬드 제조 기술을 보유한 국가로는 인도, 중국, 한국 등 총 8개국이 있다. '랩그로운 다이아몬드'라는 이름으로 알려진 이 인공 다이아몬드는 천연 다이아몬드보다 가격이 경제적이다. 환경에 미치는 영향도 크게 줄일 수 있어서 인공 다이아몬드에 대한 수요가 크게 증가하고 있다.
-
- 생활경제
-
신비한 핑크 다이아몬드, 희귀한 이유는?